1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
40 #include "langhooks.h"
44 static rtx
break_out_memory_refs (rtx
);
45 static void emit_stack_probe (rtx
);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
51 trunc_int_for_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
53 int width
= GET_MODE_BITSIZE (mode
);
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode
));
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 return c
& 1 ? STORE_FLAG_VALUE
: 0;
62 /* Sign-extend for the requested mode. */
64 if (width
< HOST_BITS_PER_WIDE_INT
)
66 HOST_WIDE_INT sign
= 1;
76 /* Return an rtx for the sum of X and the integer C. */
79 plus_constant (rtx x
, HOST_WIDE_INT c
)
83 enum machine_mode mode
;
99 return GEN_INT (INTVAL (x
) + c
);
103 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
104 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
105 unsigned HOST_WIDE_INT l2
= c
;
106 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv
;
110 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
112 return immed_double_const (lv
, hv
, VOIDmode
);
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
123 = force_const_mem (GET_MODE (x
),
124 plus_constant (get_pool_constant (XEXP (x
, 0)),
126 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (CONST_INT_P (XEXP (x
, 1)))
158 c
+= INTVAL (XEXP (x
, 1));
160 if (GET_MODE (x
) != VOIDmode
)
161 c
= trunc_int_for_mode (c
, GET_MODE (x
));
166 else if (CONSTANT_P (XEXP (x
, 1)))
168 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
171 else if (find_constant_term_loc (&y
))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy
= copy_rtx (x
);
176 rtx
*const_loc
= find_constant_term_loc (©
);
178 *const_loc
= plus_constant (*const_loc
, c
);
189 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
191 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
193 else if (all_constant
)
194 return gen_rtx_CONST (mode
, x
);
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x
, rtx
*constptr
)
210 if (GET_CODE (x
) != PLUS
)
213 /* First handle constants appearing at this level explicitly. */
214 if (CONST_INT_P (XEXP (x
, 1))
215 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
217 && CONST_INT_P (tem
))
220 return eliminate_constant_term (XEXP (x
, 0), constptr
);
224 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
225 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
226 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
227 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
229 && CONST_INT_P (tem
))
232 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
238 /* Return an rtx for the size in bytes of the value of EXP. */
245 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
246 size
= TREE_OPERAND (exp
, 1);
249 size
= tree_expr_size (exp
);
251 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
254 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
257 /* Return a wide integer for the size in bytes of the value of EXP, or -1
258 if the size can vary or is larger than an integer. */
261 int_expr_size (tree exp
)
265 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
266 size
= TREE_OPERAND (exp
, 1);
269 size
= tree_expr_size (exp
);
273 if (size
== 0 || !host_integerp (size
, 0))
276 return tree_low_cst (size
, 0);
279 /* Return a copy of X in which all memory references
280 and all constants that involve symbol refs
281 have been replaced with new temporary registers.
282 Also emit code to load the memory locations and constants
283 into those registers.
285 If X contains no such constants or memory references,
286 X itself (not a copy) is returned.
288 If a constant is found in the address that is not a legitimate constant
289 in an insn, it is left alone in the hope that it might be valid in the
292 X may contain no arithmetic except addition, subtraction and multiplication.
293 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
296 break_out_memory_refs (rtx x
)
299 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
300 && GET_MODE (x
) != VOIDmode
))
301 x
= force_reg (GET_MODE (x
), x
);
302 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
303 || GET_CODE (x
) == MULT
)
305 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
306 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
308 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
309 x
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
315 /* Given X, a memory address in address space AS' pointer mode, convert it to
316 an address in the address space's address mode, or vice versa (TO_MODE says
317 which way). We take advantage of the fact that pointers are not allowed to
318 overflow by commuting arithmetic operations over conversions so that address
319 arithmetic insns can be used. */
322 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED
,
323 rtx x
, addr_space_t as ATTRIBUTE_UNUSED
)
325 #ifndef POINTERS_EXTEND_UNSIGNED
326 gcc_assert (GET_MODE (x
) == to_mode
|| GET_MODE (x
) == VOIDmode
);
328 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
329 enum machine_mode pointer_mode
, address_mode
, from_mode
;
333 /* If X already has the right mode, just return it. */
334 if (GET_MODE (x
) == to_mode
)
337 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
338 address_mode
= targetm
.addr_space
.address_mode (as
);
339 from_mode
= to_mode
== pointer_mode
? address_mode
: pointer_mode
;
341 /* Here we handle some special cases. If none of them apply, fall through
342 to the default case. */
343 switch (GET_CODE (x
))
347 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
349 else if (POINTERS_EXTEND_UNSIGNED
< 0)
351 else if (POINTERS_EXTEND_UNSIGNED
> 0)
355 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
361 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
362 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
363 return SUBREG_REG (x
);
367 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
368 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
373 temp
= shallow_copy_rtx (x
);
374 PUT_MODE (temp
, to_mode
);
379 return gen_rtx_CONST (to_mode
,
380 convert_memory_address_addr_space
381 (to_mode
, XEXP (x
, 0), as
));
386 /* For addition we can safely permute the conversion and addition
387 operation if one operand is a constant and converting the constant
388 does not change it or if one operand is a constant and we are
389 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
390 We can always safely permute them if we are making the address
392 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
393 || (GET_CODE (x
) == PLUS
394 && CONST_INT_P (XEXP (x
, 1))
395 && (XEXP (x
, 1) == convert_memory_address_addr_space
396 (to_mode
, XEXP (x
, 1), as
)
397 || POINTERS_EXTEND_UNSIGNED
< 0)))
398 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
399 convert_memory_address_addr_space
400 (to_mode
, XEXP (x
, 0), as
),
408 return convert_modes (to_mode
, from_mode
,
409 x
, POINTERS_EXTEND_UNSIGNED
);
410 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
413 /* Return something equivalent to X but valid as a memory address for something
414 of mode MODE in the named address space AS. When X is not itself valid,
415 this works by copying X or subexpressions of it into registers. */
418 memory_address_addr_space (enum machine_mode mode
, rtx x
, addr_space_t as
)
421 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
423 x
= convert_memory_address_addr_space (address_mode
, x
, as
);
425 /* By passing constant addresses through registers
426 we get a chance to cse them. */
427 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
428 x
= force_reg (address_mode
, x
);
430 /* We get better cse by rejecting indirect addressing at this stage.
431 Let the combiner create indirect addresses where appropriate.
432 For now, generate the code so that the subexpressions useful to share
433 are visible. But not if cse won't be done! */
436 if (! cse_not_expected
&& !REG_P (x
))
437 x
= break_out_memory_refs (x
);
439 /* At this point, any valid address is accepted. */
440 if (memory_address_addr_space_p (mode
, x
, as
))
443 /* If it was valid before but breaking out memory refs invalidated it,
444 use it the old way. */
445 if (memory_address_addr_space_p (mode
, oldx
, as
))
451 /* Perform machine-dependent transformations on X
452 in certain cases. This is not necessary since the code
453 below can handle all possible cases, but machine-dependent
454 transformations can make better code. */
457 x
= targetm
.addr_space
.legitimize_address (x
, oldx
, mode
, as
);
458 if (orig_x
!= x
&& memory_address_addr_space_p (mode
, x
, as
))
462 /* PLUS and MULT can appear in special ways
463 as the result of attempts to make an address usable for indexing.
464 Usually they are dealt with by calling force_operand, below.
465 But a sum containing constant terms is special
466 if removing them makes the sum a valid address:
467 then we generate that address in a register
468 and index off of it. We do this because it often makes
469 shorter code, and because the addresses thus generated
470 in registers often become common subexpressions. */
471 if (GET_CODE (x
) == PLUS
)
473 rtx constant_term
= const0_rtx
;
474 rtx y
= eliminate_constant_term (x
, &constant_term
);
475 if (constant_term
== const0_rtx
476 || ! memory_address_addr_space_p (mode
, y
, as
))
477 x
= force_operand (x
, NULL_RTX
);
480 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
481 if (! memory_address_addr_space_p (mode
, y
, as
))
482 x
= force_operand (x
, NULL_RTX
);
488 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
489 x
= force_operand (x
, NULL_RTX
);
491 /* If we have a register that's an invalid address,
492 it must be a hard reg of the wrong class. Copy it to a pseudo. */
496 /* Last resort: copy the value to a register, since
497 the register is a valid address. */
499 x
= force_reg (address_mode
, x
);
504 gcc_assert (memory_address_addr_space_p (mode
, x
, as
));
505 /* If we didn't change the address, we are done. Otherwise, mark
506 a reg as a pointer if we have REG or REG + CONST_INT. */
510 mark_reg_pointer (x
, BITS_PER_UNIT
);
511 else if (GET_CODE (x
) == PLUS
512 && REG_P (XEXP (x
, 0))
513 && CONST_INT_P (XEXP (x
, 1)))
514 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
516 /* OLDX may have been the address on a temporary. Update the address
517 to indicate that X is now used. */
518 update_temp_slot_address (oldx
, x
);
523 /* Convert a mem ref into one with a valid memory address.
524 Pass through anything else unchanged. */
527 validize_mem (rtx ref
)
531 ref
= use_anchored_address (ref
);
532 if (memory_address_addr_space_p (GET_MODE (ref
), XEXP (ref
, 0),
533 MEM_ADDR_SPACE (ref
)))
536 /* Don't alter REF itself, since that is probably a stack slot. */
537 return replace_equiv_address (ref
, XEXP (ref
, 0));
540 /* If X is a memory reference to a member of an object block, try rewriting
541 it to use an anchor instead. Return the new memory reference on success
542 and the old one on failure. */
545 use_anchored_address (rtx x
)
548 HOST_WIDE_INT offset
;
550 if (!flag_section_anchors
)
556 /* Split the address into a base and offset. */
559 if (GET_CODE (base
) == CONST
560 && GET_CODE (XEXP (base
, 0)) == PLUS
561 && CONST_INT_P (XEXP (XEXP (base
, 0), 1)))
563 offset
+= INTVAL (XEXP (XEXP (base
, 0), 1));
564 base
= XEXP (XEXP (base
, 0), 0);
567 /* Check whether BASE is suitable for anchors. */
568 if (GET_CODE (base
) != SYMBOL_REF
569 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base
)
570 || SYMBOL_REF_ANCHOR_P (base
)
571 || SYMBOL_REF_BLOCK (base
) == NULL
572 || !targetm
.use_anchors_for_symbol_p (base
))
575 /* Decide where BASE is going to be. */
576 place_block_symbol (base
);
578 /* Get the anchor we need to use. */
579 offset
+= SYMBOL_REF_BLOCK_OFFSET (base
);
580 base
= get_section_anchor (SYMBOL_REF_BLOCK (base
), offset
,
581 SYMBOL_REF_TLS_MODEL (base
));
583 /* Work out the offset from the anchor. */
584 offset
-= SYMBOL_REF_BLOCK_OFFSET (base
);
586 /* If we're going to run a CSE pass, force the anchor into a register.
587 We will then be able to reuse registers for several accesses, if the
588 target costs say that that's worthwhile. */
589 if (!cse_not_expected
)
590 base
= force_reg (GET_MODE (base
), base
);
592 return replace_equiv_address (x
, plus_constant (base
, offset
));
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
600 rtx temp
= gen_reg_rtx (GET_MODE (x
));
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x
, VOIDmode
))
605 x
= force_operand (x
, temp
);
608 emit_move_insn (temp
, x
);
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
617 copy_addr_to_reg (rtx x
)
619 return copy_to_mode_reg (Pmode
, x
);
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
626 copy_to_mode_reg (enum machine_mode mode
, rtx x
)
628 rtx temp
= gen_reg_rtx (mode
);
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x
, VOIDmode
))
633 x
= force_operand (x
, temp
);
635 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
637 emit_move_insn (temp
, x
);
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
650 force_reg (enum machine_mode mode
, rtx x
)
657 if (general_operand (x
, mode
))
659 temp
= gen_reg_rtx (mode
);
660 insn
= emit_move_insn (temp
, x
);
664 temp
= force_operand (x
, NULL_RTX
);
666 insn
= get_last_insn ();
669 rtx temp2
= gen_reg_rtx (mode
);
670 insn
= emit_move_insn (temp2
, temp
);
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
679 && (set
= single_set (insn
)) != 0
680 && SET_DEST (set
) == temp
681 && ! rtx_equal_p (x
, SET_SRC (set
)))
682 set_unique_reg_note (insn
, REG_EQUAL
, x
);
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
688 if (GET_CODE (x
) == SYMBOL_REF
)
690 align
= BITS_PER_UNIT
;
691 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
692 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
694 else if (GET_CODE (x
) == LABEL_REF
)
695 align
= BITS_PER_UNIT
;
696 else if (GET_CODE (x
) == CONST
697 && GET_CODE (XEXP (x
, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
699 && CONST_INT_P (XEXP (XEXP (x
, 0), 1)))
701 rtx s
= XEXP (XEXP (x
, 0), 0);
702 rtx c
= XEXP (XEXP (x
, 0), 1);
706 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
707 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
709 ca
= exact_log2 (INTVAL (c
) & -INTVAL (c
)) * BITS_PER_UNIT
;
711 align
= MIN (sa
, ca
);
714 if (align
|| (MEM_P (x
) && MEM_POINTER (x
)))
715 mark_reg_pointer (temp
, align
);
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722 that reg. Otherwise, return X. */
725 force_not_mem (rtx x
)
729 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
732 temp
= gen_reg_rtx (GET_MODE (x
));
735 REG_POINTER (temp
) = 1;
737 emit_move_insn (temp
, x
);
741 /* Copy X to TARGET (if it's nonzero and a reg)
742 or to a new temp reg and return that reg.
743 MODE is the mode to use for X in case it is a constant. */
746 copy_to_suggested_reg (rtx x
, rtx target
, enum machine_mode mode
)
750 if (target
&& REG_P (target
))
753 temp
= gen_reg_rtx (mode
);
755 emit_move_insn (temp
, x
);
759 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
760 PUNSIGNEDP points to the signedness of the type and may be adjusted
761 to show what signedness to use on extension operations.
763 FOR_RETURN is nonzero if the caller is promoting the return value
764 of FNDECL, else it is for promoting args. */
767 promote_function_mode (const_tree type
, enum machine_mode mode
, int *punsignedp
,
768 const_tree funtype
, int for_return
)
770 switch (TREE_CODE (type
))
772 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
773 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
774 case POINTER_TYPE
: case REFERENCE_TYPE
:
775 return targetm
.calls
.promote_function_mode (type
, mode
, punsignedp
, funtype
,
782 /* Return the mode to use to store a scalar of TYPE and MODE.
783 PUNSIGNEDP points to the signedness of the type and may be adjusted
784 to show what signedness to use on extension operations. */
787 promote_mode (const_tree type ATTRIBUTE_UNUSED
, enum machine_mode mode
,
788 int *punsignedp ATTRIBUTE_UNUSED
)
790 /* FIXME: this is the same logic that was there until GCC 4.4, but we
791 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
792 is not defined. The affected targets are M32C, S390, SPARC. */
794 const enum tree_code code
= TREE_CODE (type
);
795 int unsignedp
= *punsignedp
;
799 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
800 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
801 PROMOTE_MODE (mode
, unsignedp
, type
);
802 *punsignedp
= unsignedp
;
806 #ifdef POINTERS_EXTEND_UNSIGNED
809 *punsignedp
= POINTERS_EXTEND_UNSIGNED
;
810 return targetm
.addr_space
.address_mode
811 (TYPE_ADDR_SPACE (TREE_TYPE (type
)));
824 /* Use one of promote_mode or promote_function_mode to find the promoted
825 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
826 of DECL after promotion. */
829 promote_decl_mode (const_tree decl
, int *punsignedp
)
831 tree type
= TREE_TYPE (decl
);
832 int unsignedp
= TYPE_UNSIGNED (type
);
833 enum machine_mode mode
= DECL_MODE (decl
);
834 enum machine_mode pmode
;
836 if (TREE_CODE (decl
) == RESULT_DECL
837 || TREE_CODE (decl
) == PARM_DECL
)
838 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
839 TREE_TYPE (current_function_decl
), 2);
841 pmode
= promote_mode (type
, mode
, &unsignedp
);
844 *punsignedp
= unsignedp
;
849 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
850 This pops when ADJUST is positive. ADJUST need not be constant. */
853 adjust_stack (rtx adjust
)
857 if (adjust
== const0_rtx
)
860 /* We expect all variable sized adjustments to be multiple of
861 PREFERRED_STACK_BOUNDARY. */
862 if (CONST_INT_P (adjust
))
863 stack_pointer_delta
-= INTVAL (adjust
);
865 temp
= expand_binop (Pmode
,
866 #ifdef STACK_GROWS_DOWNWARD
871 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
874 if (temp
!= stack_pointer_rtx
)
875 emit_move_insn (stack_pointer_rtx
, temp
);
878 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
879 This pushes when ADJUST is positive. ADJUST need not be constant. */
882 anti_adjust_stack (rtx adjust
)
886 if (adjust
== const0_rtx
)
889 /* We expect all variable sized adjustments to be multiple of
890 PREFERRED_STACK_BOUNDARY. */
891 if (CONST_INT_P (adjust
))
892 stack_pointer_delta
+= INTVAL (adjust
);
894 temp
= expand_binop (Pmode
,
895 #ifdef STACK_GROWS_DOWNWARD
900 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
903 if (temp
!= stack_pointer_rtx
)
904 emit_move_insn (stack_pointer_rtx
, temp
);
907 /* Round the size of a block to be pushed up to the boundary required
908 by this machine. SIZE is the desired size, which need not be constant. */
911 round_push (rtx size
)
913 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
918 if (CONST_INT_P (size
))
920 HOST_WIDE_INT new_size
= (INTVAL (size
) + align
- 1) / align
* align
;
922 if (INTVAL (size
) != new_size
)
923 size
= GEN_INT (new_size
);
927 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
928 but we know it can't. So add ourselves and then do
930 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
931 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
932 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
934 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
940 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
941 to a previously-created save area. If no save area has been allocated,
942 this function will allocate one. If a save area is specified, it
943 must be of the proper mode.
945 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
946 are emitted at the current position. */
949 emit_stack_save (enum save_level save_level
, rtx
*psave
, rtx after
)
952 /* The default is that we use a move insn and save in a Pmode object. */
953 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
954 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
956 /* See if this machine has anything special to do for this kind of save. */
959 #ifdef HAVE_save_stack_block
961 if (HAVE_save_stack_block
)
962 fcn
= gen_save_stack_block
;
965 #ifdef HAVE_save_stack_function
967 if (HAVE_save_stack_function
)
968 fcn
= gen_save_stack_function
;
971 #ifdef HAVE_save_stack_nonlocal
973 if (HAVE_save_stack_nonlocal
)
974 fcn
= gen_save_stack_nonlocal
;
981 /* If there is no save area and we have to allocate one, do so. Otherwise
982 verify the save area is the proper mode. */
986 if (mode
!= VOIDmode
)
988 if (save_level
== SAVE_NONLOCAL
)
989 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
991 *psave
= sa
= gen_reg_rtx (mode
);
1000 do_pending_stack_adjust ();
1001 /* We must validize inside the sequence, to ensure that any instructions
1002 created by the validize call also get moved to the right place. */
1004 sa
= validize_mem (sa
);
1005 emit_insn (fcn (sa
, stack_pointer_rtx
));
1008 emit_insn_after (seq
, after
);
1012 do_pending_stack_adjust ();
1014 sa
= validize_mem (sa
);
1015 emit_insn (fcn (sa
, stack_pointer_rtx
));
1019 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1020 area made by emit_stack_save. If it is zero, we have nothing to do.
1022 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1023 current position. */
1026 emit_stack_restore (enum save_level save_level
, rtx sa
, rtx after
)
1028 /* The default is that we use a move insn. */
1029 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
1031 /* See if this machine has anything special to do for this kind of save. */
1034 #ifdef HAVE_restore_stack_block
1036 if (HAVE_restore_stack_block
)
1037 fcn
= gen_restore_stack_block
;
1040 #ifdef HAVE_restore_stack_function
1042 if (HAVE_restore_stack_function
)
1043 fcn
= gen_restore_stack_function
;
1046 #ifdef HAVE_restore_stack_nonlocal
1048 if (HAVE_restore_stack_nonlocal
)
1049 fcn
= gen_restore_stack_nonlocal
;
1058 sa
= validize_mem (sa
);
1059 /* These clobbers prevent the scheduler from moving
1060 references to variable arrays below the code
1061 that deletes (pops) the arrays. */
1062 emit_clobber (gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
)));
1063 emit_clobber (gen_rtx_MEM (BLKmode
, stack_pointer_rtx
));
1066 discard_pending_stack_adjust ();
1073 emit_insn (fcn (stack_pointer_rtx
, sa
));
1076 emit_insn_after (seq
, after
);
1079 emit_insn (fcn (stack_pointer_rtx
, sa
));
1082 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1083 function. This function should be called whenever we allocate or
1084 deallocate dynamic stack space. */
1087 update_nonlocal_goto_save_area (void)
1092 /* The nonlocal_goto_save_area object is an array of N pointers. The
1093 first one is used for the frame pointer save; the rest are sized by
1094 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1095 of the stack save area slots. */
1096 t_save
= build4 (ARRAY_REF
, ptr_type_node
, cfun
->nonlocal_goto_save_area
,
1097 integer_one_node
, NULL_TREE
, NULL_TREE
);
1098 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1100 emit_stack_save (SAVE_NONLOCAL
, &r_save
, NULL_RTX
);
1103 /* Return an rtx representing the address of an area of memory dynamically
1104 pushed on the stack. This region of memory is always aligned to
1105 a multiple of BIGGEST_ALIGNMENT.
1107 Any required stack pointer alignment is preserved.
1109 SIZE is an rtx representing the size of the area.
1110 TARGET is a place in which the address can be placed.
1112 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1115 allocate_dynamic_stack_space (rtx size
, rtx target
, int known_align
)
1117 /* If we're asking for zero bytes, it doesn't matter what we point
1118 to since we can't dereference it. But return a reasonable
1120 if (size
== const0_rtx
)
1121 return virtual_stack_dynamic_rtx
;
1123 /* Otherwise, show we're calling alloca or equivalent. */
1124 cfun
->calls_alloca
= 1;
1126 /* Ensure the size is in the proper mode. */
1127 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1128 size
= convert_to_mode (Pmode
, size
, 1);
1130 /* We can't attempt to minimize alignment necessary, because we don't
1131 know the final value of preferred_stack_boundary yet while executing
1133 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1135 /* We will need to ensure that the address we return is aligned to
1136 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1137 always know its final value at this point in the compilation (it
1138 might depend on the size of the outgoing parameter lists, for
1139 example), so we must align the value to be returned in that case.
1140 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1141 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1142 We must also do an alignment operation on the returned value if
1143 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1145 If we have to align, we must leave space in SIZE for the hole
1146 that might result from the alignment operation. */
1148 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1149 #define MUST_ALIGN 1
1151 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1156 = force_operand (plus_constant (size
,
1157 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1160 #ifdef SETJMP_VIA_SAVE_AREA
1161 /* If setjmp restores regs from a save area in the stack frame,
1162 avoid clobbering the reg save area. Note that the offset of
1163 virtual_incoming_args_rtx includes the preallocated stack args space.
1164 It would be no problem to clobber that, but it's on the wrong side
1165 of the old save area.
1167 What used to happen is that, since we did not know for sure
1168 whether setjmp() was invoked until after RTL generation, we
1169 would use reg notes to store the "optimized" size and fix things
1170 up later. These days we know this information before we ever
1171 start building RTL so the reg notes are unnecessary. */
1172 if (!cfun
->calls_setjmp
)
1174 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1176 /* ??? Code below assumes that the save area needs maximal
1177 alignment. This constraint may be too strong. */
1178 gcc_assert (PREFERRED_STACK_BOUNDARY
== BIGGEST_ALIGNMENT
);
1180 if (CONST_INT_P (size
))
1182 HOST_WIDE_INT new_size
= INTVAL (size
) / align
* align
;
1184 if (INTVAL (size
) != new_size
)
1185 size
= GEN_INT (new_size
);
1189 /* Since we know overflow is not possible, we avoid using
1190 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1191 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1192 GEN_INT (align
), NULL_RTX
, 1);
1193 size
= expand_mult (Pmode
, size
,
1194 GEN_INT (align
), NULL_RTX
, 1);
1200 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1201 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1203 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1204 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1206 #endif /* SETJMP_VIA_SAVE_AREA */
1208 /* Round the size to a multiple of the required stack alignment.
1209 Since the stack if presumed to be rounded before this allocation,
1210 this will maintain the required alignment.
1212 If the stack grows downward, we could save an insn by subtracting
1213 SIZE from the stack pointer and then aligning the stack pointer.
1214 The problem with this is that the stack pointer may be unaligned
1215 between the execution of the subtraction and alignment insns and
1216 some machines do not allow this. Even on those that do, some
1217 signal handlers malfunction if a signal should occur between those
1218 insns. Since this is an extremely rare event, we have no reliable
1219 way of knowing which systems have this problem. So we avoid even
1220 momentarily mis-aligning the stack. */
1222 /* If we added a variable amount to SIZE,
1223 we can no longer assume it is aligned. */
1224 #if !defined (SETJMP_VIA_SAVE_AREA)
1225 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1227 size
= round_push (size
);
1229 do_pending_stack_adjust ();
1231 /* We ought to be called always on the toplevel and stack ought to be aligned
1233 gcc_assert (!(stack_pointer_delta
1234 % (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
)));
1236 /* If needed, check that we have the required amount of stack. Take into
1237 account what has already been checked. */
1238 if (STACK_CHECK_MOVING_SP
)
1240 else if (flag_stack_check
== GENERIC_STACK_CHECK
)
1241 probe_stack_range (STACK_OLD_CHECK_PROTECT
+ STACK_CHECK_MAX_FRAME_SIZE
,
1243 else if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
1244 probe_stack_range (STACK_CHECK_PROTECT
, size
);
1246 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1247 if (target
== 0 || !REG_P (target
)
1248 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1249 || GET_MODE (target
) != Pmode
)
1250 target
= gen_reg_rtx (Pmode
);
1252 mark_reg_pointer (target
, known_align
);
1254 /* Perform the required allocation from the stack. Some systems do
1255 this differently than simply incrementing/decrementing from the
1256 stack pointer, such as acquiring the space by calling malloc(). */
1257 #ifdef HAVE_allocate_stack
1258 if (HAVE_allocate_stack
)
1260 enum machine_mode mode
= STACK_SIZE_MODE
;
1261 insn_operand_predicate_fn pred
;
1263 /* We don't have to check against the predicate for operand 0 since
1264 TARGET is known to be a pseudo of the proper mode, which must
1265 be valid for the operand. For operand 1, convert to the
1266 proper mode and validate. */
1267 if (mode
== VOIDmode
)
1268 mode
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].mode
;
1270 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1271 if (pred
&& ! ((*pred
) (size
, mode
)))
1272 size
= copy_to_mode_reg (mode
, convert_to_mode (mode
, size
, 1));
1274 emit_insn (gen_allocate_stack (target
, size
));
1279 #ifndef STACK_GROWS_DOWNWARD
1280 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1283 /* Check stack bounds if necessary. */
1284 if (crtl
->limit_stack
)
1287 rtx space_available
= gen_label_rtx ();
1288 #ifdef STACK_GROWS_DOWNWARD
1289 available
= expand_binop (Pmode
, sub_optab
,
1290 stack_pointer_rtx
, stack_limit_rtx
,
1291 NULL_RTX
, 1, OPTAB_WIDEN
);
1293 available
= expand_binop (Pmode
, sub_optab
,
1294 stack_limit_rtx
, stack_pointer_rtx
,
1295 NULL_RTX
, 1, OPTAB_WIDEN
);
1297 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1301 emit_insn (gen_trap ());
1304 error ("stack limits not supported on this target");
1306 emit_label (space_available
);
1309 if (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1310 anti_adjust_stack_and_probe (size
, false);
1312 anti_adjust_stack (size
);
1314 #ifdef STACK_GROWS_DOWNWARD
1315 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1321 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1322 but we know it can't. So add ourselves and then do
1324 target
= expand_binop (Pmode
, add_optab
, target
,
1325 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1326 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1327 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1328 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1330 target
= expand_mult (Pmode
, target
,
1331 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1335 /* Record the new stack level for nonlocal gotos. */
1336 if (cfun
->nonlocal_goto_save_area
!= 0)
1337 update_nonlocal_goto_save_area ();
1342 /* A front end may want to override GCC's stack checking by providing a
1343 run-time routine to call to check the stack, so provide a mechanism for
1344 calling that routine. */
1346 static GTY(()) rtx stack_check_libfunc
;
1349 set_stack_check_libfunc (rtx libfunc
)
1351 stack_check_libfunc
= libfunc
;
1354 /* Emit one stack probe at ADDRESS, an address within the stack. */
1357 emit_stack_probe (rtx address
)
1359 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1361 MEM_VOLATILE_P (memref
) = 1;
1363 /* See if we have an insn to probe the stack. */
1364 #ifdef HAVE_probe_stack
1365 if (HAVE_probe_stack
)
1366 emit_insn (gen_probe_stack (memref
));
1369 emit_move_insn (memref
, const0_rtx
);
1372 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1373 FIRST is a constant and size is a Pmode RTX. These are offsets from
1374 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1375 or subtract them from the stack pointer. */
1377 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1379 #ifdef STACK_GROWS_DOWNWARD
1380 #define STACK_GROW_OP MINUS
1381 #define STACK_GROW_OPTAB sub_optab
1382 #define STACK_GROW_OFF(off) -(off)
1384 #define STACK_GROW_OP PLUS
1385 #define STACK_GROW_OPTAB add_optab
1386 #define STACK_GROW_OFF(off) (off)
1390 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1392 /* First ensure SIZE is Pmode. */
1393 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1394 size
= convert_to_mode (Pmode
, size
, 1);
1396 /* Next see if we have a function to check the stack. */
1397 if (stack_check_libfunc
)
1399 rtx addr
= memory_address (Pmode
,
1400 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1402 plus_constant (size
, first
)));
1403 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1407 /* Next see if we have an insn to check the stack. */
1408 #ifdef HAVE_check_stack
1409 else if (HAVE_check_stack
)
1411 rtx addr
= memory_address (Pmode
,
1412 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1414 plus_constant (size
, first
)));
1415 insn_operand_predicate_fn pred
1416 = insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1417 if (pred
&& !((*pred
) (addr
, Pmode
)))
1418 addr
= copy_to_mode_reg (Pmode
, addr
);
1420 emit_insn (gen_check_stack (addr
));
1424 /* Otherwise we have to generate explicit probes. If we have a constant
1425 small number of them to generate, that's the easy case. */
1426 else if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1428 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1431 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1432 it exceeds SIZE. If only one probe is needed, this will not
1433 generate any code. Then probe at FIRST + SIZE. */
1434 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1436 addr
= memory_address (Pmode
,
1437 plus_constant (stack_pointer_rtx
,
1438 STACK_GROW_OFF (first
+ i
)));
1439 emit_stack_probe (addr
);
1442 addr
= memory_address (Pmode
,
1443 plus_constant (stack_pointer_rtx
,
1444 STACK_GROW_OFF (first
+ isize
)));
1445 emit_stack_probe (addr
);
1448 /* In the variable case, do the same as above, but in a loop. Note that we
1449 must be extra careful with variables wrapping around because we might be
1450 at the very top (or the very bottom) of the address space and we have to
1451 be able to handle this case properly; in particular, we use an equality
1452 test for the loop condition. */
1455 rtx rounded_size
, rounded_size_op
, test_addr
, last_addr
, temp
;
1456 rtx loop_lab
= gen_label_rtx ();
1457 rtx end_lab
= gen_label_rtx ();
1460 /* Step 1: round SIZE to the previous multiple of the interval. */
1462 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1464 = simplify_gen_binary (AND
, Pmode
, size
, GEN_INT (-PROBE_INTERVAL
));
1465 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1468 /* Step 2: compute initial and final value of the loop counter. */
1470 /* TEST_ADDR = SP + FIRST. */
1471 test_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1473 GEN_INT (first
)), NULL_RTX
);
1475 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1476 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1478 rounded_size_op
), NULL_RTX
);
1483 while (TEST_ADDR != LAST_ADDR)
1485 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1489 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1490 until it is equal to ROUNDED_SIZE. */
1492 emit_label (loop_lab
);
1494 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1495 emit_cmp_and_jump_insns (test_addr
, last_addr
, EQ
, NULL_RTX
, Pmode
, 1,
1498 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1499 temp
= expand_binop (Pmode
, STACK_GROW_OPTAB
, test_addr
,
1500 GEN_INT (PROBE_INTERVAL
), test_addr
,
1503 gcc_assert (temp
== test_addr
);
1505 /* Probe at TEST_ADDR. */
1506 emit_stack_probe (test_addr
);
1508 emit_jump (loop_lab
);
1510 emit_label (end_lab
);
1513 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1514 that SIZE is equal to ROUNDED_SIZE. */
1516 /* TEMP = SIZE - ROUNDED_SIZE. */
1517 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1518 if (temp
!= const0_rtx
)
1522 if (GET_CODE (temp
) == CONST_INT
)
1524 /* Use [base + disp} addressing mode if supported. */
1525 HOST_WIDE_INT offset
= INTVAL (temp
);
1526 addr
= memory_address (Pmode
,
1527 plus_constant (last_addr
,
1528 STACK_GROW_OFF (offset
)));
1532 /* Manual CSE if the difference is not known at compile-time. */
1533 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1534 addr
= memory_address (Pmode
,
1535 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1539 emit_stack_probe (addr
);
1544 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1545 while probing it. This pushes when SIZE is positive. SIZE need not
1546 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1547 by plus SIZE at the end. */
1550 anti_adjust_stack_and_probe (rtx size
, bool adjust_back
)
1552 /* We skip the probe for the first interval + a small dope of 4 words and
1553 probe that many bytes past the specified size to maintain a protection
1554 area at the botton of the stack. */
1555 const int dope
= 4 * UNITS_PER_WORD
;
1557 /* First ensure SIZE is Pmode. */
1558 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1559 size
= convert_to_mode (Pmode
, size
, 1);
1561 /* If we have a constant small number of probes to generate, that's the
1563 if (GET_CODE (size
) == CONST_INT
&& INTVAL (size
) < 7 * PROBE_INTERVAL
)
1565 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1566 bool first_probe
= true;
1568 /* Adjust SP and probe to PROBE_INTERVAL + N * PROBE_INTERVAL for
1569 values of N from 1 until it exceeds SIZE. If only one probe is
1570 needed, this will not generate any code. Then adjust and probe
1571 to PROBE_INTERVAL + SIZE. */
1572 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1576 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL
+ dope
));
1577 first_probe
= false;
1580 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1581 emit_stack_probe (stack_pointer_rtx
);
1585 anti_adjust_stack (plus_constant (size
, PROBE_INTERVAL
+ dope
));
1587 anti_adjust_stack (plus_constant (size
, PROBE_INTERVAL
- i
));
1588 emit_stack_probe (stack_pointer_rtx
);
1591 /* In the variable case, do the same as above, but in a loop. Note that we
1592 must be extra careful with variables wrapping around because we might be
1593 at the very top (or the very bottom) of the address space and we have to
1594 be able to handle this case properly; in particular, we use an equality
1595 test for the loop condition. */
1598 rtx rounded_size
, rounded_size_op
, last_addr
, temp
;
1599 rtx loop_lab
= gen_label_rtx ();
1600 rtx end_lab
= gen_label_rtx ();
1603 /* Step 1: round SIZE to the previous multiple of the interval. */
1605 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1607 = simplify_gen_binary (AND
, Pmode
, size
, GEN_INT (-PROBE_INTERVAL
));
1608 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1611 /* Step 2: compute initial and final value of the loop counter. */
1613 /* SP = SP_0 + PROBE_INTERVAL. */
1614 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1616 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1617 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1619 rounded_size_op
), NULL_RTX
);
1624 while (SP != LAST_ADDR)
1626 SP = SP + PROBE_INTERVAL
1630 adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for
1631 values of N from 1 until it is equal to ROUNDED_SIZE. */
1633 emit_label (loop_lab
);
1635 /* Jump to END_LAB if SP == LAST_ADDR. */
1636 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
1639 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1640 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1641 emit_stack_probe (stack_pointer_rtx
);
1643 emit_jump (loop_lab
);
1645 emit_label (end_lab
);
1648 /* Step 4: adjust SP and probe to PROBE_INTERVAL + SIZE if we cannot
1649 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1651 /* TEMP = SIZE - ROUNDED_SIZE. */
1652 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1653 if (temp
!= const0_rtx
)
1655 /* Manual CSE if the difference is not known at compile-time. */
1656 if (GET_CODE (temp
) != CONST_INT
)
1657 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1658 anti_adjust_stack (temp
);
1659 emit_stack_probe (stack_pointer_rtx
);
1663 /* Adjust back and account for the additional first interval. */
1665 adjust_stack (plus_constant (size
, PROBE_INTERVAL
+ dope
));
1667 adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1670 /* Return an rtx representing the register or memory location
1671 in which a scalar value of data type VALTYPE
1672 was returned by a function call to function FUNC.
1673 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1674 function is known, otherwise 0.
1675 OUTGOING is 1 if on a machine with register windows this function
1676 should return the register in which the function will put its result
1680 hard_function_value (const_tree valtype
, const_tree func
, const_tree fntype
,
1681 int outgoing ATTRIBUTE_UNUSED
)
1685 val
= targetm
.calls
.function_value (valtype
, func
? func
: fntype
, outgoing
);
1688 && GET_MODE (val
) == BLKmode
)
1690 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1691 enum machine_mode tmpmode
;
1693 /* int_size_in_bytes can return -1. We don't need a check here
1694 since the value of bytes will then be large enough that no
1695 mode will match anyway. */
1697 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1698 tmpmode
!= VOIDmode
;
1699 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1701 /* Have we found a large enough mode? */
1702 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1706 /* No suitable mode found. */
1707 gcc_assert (tmpmode
!= VOIDmode
);
1709 PUT_MODE (val
, tmpmode
);
1714 /* Return an rtx representing the register or memory location
1715 in which a scalar value of mode MODE was returned by a library call. */
1718 hard_libcall_value (enum machine_mode mode
, rtx fun
)
1720 return targetm
.calls
.libcall_value (mode
, fun
);
1723 /* Look up the tree code for a given rtx code
1724 to provide the arithmetic operation for REAL_ARITHMETIC.
1725 The function returns an int because the caller may not know
1726 what `enum tree_code' means. */
1729 rtx_to_tree_code (enum rtx_code code
)
1731 enum tree_code tcode
;
1754 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1757 return ((int) tcode
);
1760 #include "gt-explow.h"