1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
39 #include "splay-tree.h"
41 #include "langhooks.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
49 #include "tree-ssa-alias.h"
50 #include "pointer-set.h"
51 #include "tree-flow.h"
53 /* The aliasing API provided here solves related but different problems:
55 Say there exists (in c)
69 Consider the four questions:
71 Can a store to x1 interfere with px2->y1?
72 Can a store to x1 interfere with px2->z2?
74 Can a store to x1 change the value pointed to by with py?
75 Can a store to x1 change the value pointed to by with pz?
77 The answer to these questions can be yes, yes, yes, and maybe.
79 The first two questions can be answered with a simple examination
80 of the type system. If structure X contains a field of type Y then
81 a store thru a pointer to an X can overwrite any field that is
82 contained (recursively) in an X (unless we know that px1 != px2).
84 The last two of the questions can be solved in the same way as the
85 first two questions but this is too conservative. The observation
86 is that in some cases analysis we can know if which (if any) fields
87 are addressed and if those addresses are used in bad ways. This
88 analysis may be language specific. In C, arbitrary operations may
89 be applied to pointers. However, there is some indication that
90 this may be too conservative for some C++ types.
92 The pass ipa-type-escape does this analysis for the types whose
93 instances do not escape across the compilation boundary.
95 Historically in GCC, these two problems were combined and a single
96 data structure was used to represent the solution to these
97 problems. We now have two similar but different data structures,
98 The data structure to solve the last two question is similar to the
99 first, but does not contain have the fields in it whose address are
100 never taken. For types that do escape the compilation unit, the
101 data structures will have identical information.
104 /* The alias sets assigned to MEMs assist the back-end in determining
105 which MEMs can alias which other MEMs. In general, two MEMs in
106 different alias sets cannot alias each other, with one important
107 exception. Consider something like:
109 struct S { int i; double d; };
111 a store to an `S' can alias something of either type `int' or type
112 `double'. (However, a store to an `int' cannot alias a `double'
113 and vice versa.) We indicate this via a tree structure that looks
121 (The arrows are directed and point downwards.)
122 In this situation we say the alias set for `struct S' is the
123 `superset' and that those for `int' and `double' are `subsets'.
125 To see whether two alias sets can point to the same memory, we must
126 see if either alias set is a subset of the other. We need not trace
127 past immediate descendants, however, since we propagate all
128 grandchildren up one level.
130 Alias set zero is implicitly a superset of all other alias sets.
131 However, this is no actual entry for alias set zero. It is an
132 error to attempt to explicitly construct a subset of zero. */
134 struct GTY(()) alias_set_entry_d
{
135 /* The alias set number, as stored in MEM_ALIAS_SET. */
136 alias_set_type alias_set
;
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
142 /* The children of the alias set. These are not just the immediate
143 children, but, in fact, all descendants. So, if we have:
145 struct T { struct S s; float f; }
147 continuing our example above, the children here will be all of
148 `int', `double', `float', and `struct S'. */
149 splay_tree
GTY((param1_is (int), param2_is (int))) children
;
151 typedef struct alias_set_entry_d
*alias_set_entry
;
153 static int rtx_equal_for_memref_p (const_rtx
, const_rtx
);
154 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
155 static void record_set (rtx
, const_rtx
, void *);
156 static int base_alias_check (rtx
, rtx
, enum machine_mode
,
158 static rtx
find_base_value (rtx
);
159 static int mems_in_disjoint_alias_sets_p (const_rtx
, const_rtx
);
160 static int insert_subset_children (splay_tree_node
, void*);
161 static alias_set_entry
get_alias_set_entry (alias_set_type
);
162 static const_rtx
fixed_scalar_and_varying_struct_p (const_rtx
, const_rtx
, rtx
, rtx
,
163 bool (*) (const_rtx
, bool));
164 static int aliases_everything_p (const_rtx
);
165 static bool nonoverlapping_component_refs_p (const_tree
, const_tree
);
166 static tree
decl_for_component_ref (tree
);
167 static rtx
adjust_offset_for_component_ref (tree
, rtx
);
168 static int write_dependence_p (const_rtx
, const_rtx
, int);
170 static void memory_modified_1 (rtx
, const_rtx
, void *);
172 /* Set up all info needed to perform alias analysis on memory references. */
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
207 static GTY(()) VEC(rtx
,gc
) *reg_base_value
;
208 static rtx
*new_reg_base_value
;
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
213 static GTY((deletable
)) VEC(rtx
,gc
) *old_reg_base_value
;
215 /* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
219 #define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
223 /* Vector indexed by N giving the initial (unchanging) value known for
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226 static GTY((length("reg_known_value_size"))) rtx
*reg_known_value
;
228 /* Indicates number of valid entries in reg_known_value. */
229 static GTY(()) unsigned int reg_known_value_size
;
231 /* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
234 dependences that would be introduced if that happens.
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
243 static bool *reg_known_equiv_p
;
245 /* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
247 static bool copying_arguments
;
249 DEF_VEC_P(alias_set_entry
);
250 DEF_VEC_ALLOC_P(alias_set_entry
,gc
);
252 /* The splay-tree used to store the various alias set entries. */
253 static GTY (()) VEC(alias_set_entry
,gc
) *alias_sets
;
255 /* Build a decomposed reference object for querying the alias-oracle
256 from the MEM rtx and store it in *REF.
257 Returns false if MEM is not suitable for the alias-oracle. */
260 ao_ref_from_mem (ao_ref
*ref
, const_rtx mem
)
262 tree expr
= MEM_EXPR (mem
);
268 /* If MEM_OFFSET or MEM_SIZE are NULL punt. */
269 if (!MEM_OFFSET (mem
)
273 ao_ref_init (ref
, expr
);
275 /* Get the base of the reference and see if we have to reject or
277 base
= ao_ref_base (ref
);
278 if (base
== NULL_TREE
)
281 /* If this is a pointer dereference of a non-SSA_NAME punt.
282 ??? We could replace it with a pointer to anything. */
283 if (INDIRECT_REF_P (base
)
284 && TREE_CODE (TREE_OPERAND (base
, 0)) != SSA_NAME
)
287 /* The tree oracle doesn't like to have these. */
288 if (TREE_CODE (base
) == FUNCTION_DECL
289 || TREE_CODE (base
) == LABEL_DECL
)
292 /* If this is a reference based on a partitioned decl replace the
293 base with an INDIRECT_REF of the pointer representative we
294 created during stack slot partitioning. */
295 if (TREE_CODE (base
) == VAR_DECL
296 && ! TREE_STATIC (base
)
297 && cfun
->gimple_df
->decls_to_pointers
!= NULL
)
300 namep
= pointer_map_contains (cfun
->gimple_df
->decls_to_pointers
, base
);
303 ref
->base_alias_set
= get_alias_set (base
);
304 ref
->base
= build1 (INDIRECT_REF
, TREE_TYPE (base
), *(tree
*)namep
);
308 ref
->ref_alias_set
= MEM_ALIAS_SET (mem
);
310 /* If the base decl is a parameter we can have negative MEM_OFFSET in
311 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
313 if (INTVAL (MEM_OFFSET (mem
)) < 0
314 && ((INTVAL (MEM_SIZE (mem
)) + INTVAL (MEM_OFFSET (mem
)))
315 * BITS_PER_UNIT
) == ref
->size
)
318 ref
->offset
+= INTVAL (MEM_OFFSET (mem
)) * BITS_PER_UNIT
;
319 ref
->size
= INTVAL (MEM_SIZE (mem
)) * BITS_PER_UNIT
;
321 /* The MEM may extend into adjacent fields, so adjust max_size if
323 if (ref
->max_size
!= -1
324 && ref
->size
> ref
->max_size
)
325 ref
->max_size
= ref
->size
;
327 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
328 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
329 if (MEM_EXPR (mem
) != get_spill_slot_decl (false)
331 || (DECL_P (ref
->base
)
332 && (!host_integerp (DECL_SIZE (ref
->base
), 1)
333 || (TREE_INT_CST_LOW (DECL_SIZE ((ref
->base
)))
334 < (unsigned HOST_WIDE_INT
)(ref
->offset
+ ref
->size
))))))
340 /* Query the alias-oracle on whether the two memory rtx X and MEM may
341 alias. If TBAA_P is set also apply TBAA. Returns true if the
342 two rtxen may alias, false otherwise. */
345 rtx_refs_may_alias_p (const_rtx x
, const_rtx mem
, bool tbaa_p
)
349 if (!ao_ref_from_mem (&ref1
, x
)
350 || !ao_ref_from_mem (&ref2
, mem
))
353 return refs_may_alias_p_1 (&ref1
, &ref2
, tbaa_p
);
356 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
357 such an entry, or NULL otherwise. */
359 static inline alias_set_entry
360 get_alias_set_entry (alias_set_type alias_set
)
362 return VEC_index (alias_set_entry
, alias_sets
, alias_set
);
365 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
366 the two MEMs cannot alias each other. */
369 mems_in_disjoint_alias_sets_p (const_rtx mem1
, const_rtx mem2
)
371 /* Perform a basic sanity check. Namely, that there are no alias sets
372 if we're not using strict aliasing. This helps to catch bugs
373 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
374 where a MEM is allocated in some way other than by the use of
375 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
376 use alias sets to indicate that spilled registers cannot alias each
377 other, we might need to remove this check. */
378 gcc_assert (flag_strict_aliasing
379 || (!MEM_ALIAS_SET (mem1
) && !MEM_ALIAS_SET (mem2
)));
381 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
384 /* Insert the NODE into the splay tree given by DATA. Used by
385 record_alias_subset via splay_tree_foreach. */
388 insert_subset_children (splay_tree_node node
, void *data
)
390 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
395 /* Return true if the first alias set is a subset of the second. */
398 alias_set_subset_of (alias_set_type set1
, alias_set_type set2
)
402 /* Everything is a subset of the "aliases everything" set. */
406 /* Otherwise, check if set1 is a subset of set2. */
407 ase
= get_alias_set_entry (set2
);
409 && ((ase
->has_zero_child
&& set1
== 0)
410 || splay_tree_lookup (ase
->children
,
411 (splay_tree_key
) set1
)))
416 /* Return 1 if the two specified alias sets may conflict. */
419 alias_sets_conflict_p (alias_set_type set1
, alias_set_type set2
)
424 if (alias_sets_must_conflict_p (set1
, set2
))
427 /* See if the first alias set is a subset of the second. */
428 ase
= get_alias_set_entry (set1
);
430 && (ase
->has_zero_child
431 || splay_tree_lookup (ase
->children
,
432 (splay_tree_key
) set2
)))
435 /* Now do the same, but with the alias sets reversed. */
436 ase
= get_alias_set_entry (set2
);
438 && (ase
->has_zero_child
439 || splay_tree_lookup (ase
->children
,
440 (splay_tree_key
) set1
)))
443 /* The two alias sets are distinct and neither one is the
444 child of the other. Therefore, they cannot conflict. */
449 walk_mems_2 (rtx
*x
, rtx mem
)
453 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x
), MEM_ALIAS_SET(mem
)))
462 walk_mems_1 (rtx
*x
, rtx
*pat
)
466 /* Visit all MEMs in *PAT and check indepedence. */
467 if (for_each_rtx (pat
, (rtx_function
) walk_mems_2
, *x
))
468 /* Indicate that dependence was determined and stop traversal. */
476 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
478 insn_alias_sets_conflict_p (rtx insn1
, rtx insn2
)
480 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
481 return for_each_rtx (&PATTERN (insn1
), (rtx_function
) walk_mems_1
,
485 /* Return 1 if the two specified alias sets will always conflict. */
488 alias_sets_must_conflict_p (alias_set_type set1
, alias_set_type set2
)
490 if (set1
== 0 || set2
== 0 || set1
== set2
)
496 /* Return 1 if any MEM object of type T1 will always conflict (using the
497 dependency routines in this file) with any MEM object of type T2.
498 This is used when allocating temporary storage. If T1 and/or T2 are
499 NULL_TREE, it means we know nothing about the storage. */
502 objects_must_conflict_p (tree t1
, tree t2
)
504 alias_set_type set1
, set2
;
506 /* If neither has a type specified, we don't know if they'll conflict
507 because we may be using them to store objects of various types, for
508 example the argument and local variables areas of inlined functions. */
509 if (t1
== 0 && t2
== 0)
512 /* If they are the same type, they must conflict. */
514 /* Likewise if both are volatile. */
515 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
518 set1
= t1
? get_alias_set (t1
) : 0;
519 set2
= t2
? get_alias_set (t2
) : 0;
521 /* We can't use alias_sets_conflict_p because we must make sure
522 that every subtype of t1 will conflict with every subtype of
523 t2 for which a pair of subobjects of these respective subtypes
524 overlaps on the stack. */
525 return alias_sets_must_conflict_p (set1
, set2
);
528 /* Return true if all nested component references handled by
529 get_inner_reference in T are such that we should use the alias set
530 provided by the object at the heart of T.
532 This is true for non-addressable components (which don't have their
533 own alias set), as well as components of objects in alias set zero.
534 This later point is a special case wherein we wish to override the
535 alias set used by the component, but we don't have per-FIELD_DECL
536 assignable alias sets. */
539 component_uses_parent_alias_set (const_tree t
)
543 /* If we're at the end, it vacuously uses its own alias set. */
544 if (!handled_component_p (t
))
547 switch (TREE_CODE (t
))
550 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1)))
555 case ARRAY_RANGE_REF
:
556 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0))))
565 /* Bitfields and casts are never addressable. */
569 t
= TREE_OPERAND (t
, 0);
570 if (get_alias_set (TREE_TYPE (t
)) == 0)
575 /* Return the alias set for the memory pointed to by T, which may be
576 either a type or an expression. Return -1 if there is nothing
577 special about dereferencing T. */
579 static alias_set_type
580 get_deref_alias_set_1 (tree t
)
582 /* If we're not doing any alias analysis, just assume everything
583 aliases everything else. */
584 if (!flag_strict_aliasing
)
587 /* All we care about is the type. */
591 /* If we have an INDIRECT_REF via a void pointer, we don't
592 know anything about what that might alias. Likewise if the
593 pointer is marked that way. */
594 if (TREE_CODE (TREE_TYPE (t
)) == VOID_TYPE
595 || TYPE_REF_CAN_ALIAS_ALL (t
))
601 /* Return the alias set for the memory pointed to by T, which may be
602 either a type or an expression. */
605 get_deref_alias_set (tree t
)
607 alias_set_type set
= get_deref_alias_set_1 (t
);
609 /* Fall back to the alias-set of the pointed-to type. */
614 set
= get_alias_set (TREE_TYPE (t
));
620 /* Return the alias set for T, which may be either a type or an
621 expression. Call language-specific routine for help, if needed. */
624 get_alias_set (tree t
)
628 /* If we're not doing any alias analysis, just assume everything
629 aliases everything else. Also return 0 if this or its type is
631 if (! flag_strict_aliasing
|| t
== error_mark_node
633 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
636 /* We can be passed either an expression or a type. This and the
637 language-specific routine may make mutually-recursive calls to each other
638 to figure out what to do. At each juncture, we see if this is a tree
639 that the language may need to handle specially. First handle things that
645 /* Remove any nops, then give the language a chance to do
646 something with this tree before we look at it. */
648 set
= lang_hooks
.get_alias_set (t
);
652 /* Retrieve the original memory reference if needed. */
653 if (TREE_CODE (t
) == TARGET_MEM_REF
)
654 t
= TMR_ORIGINAL (t
);
656 /* First see if the actual object referenced is an INDIRECT_REF from a
657 restrict-qualified pointer or a "void *". */
659 while (handled_component_p (inner
))
661 inner
= TREE_OPERAND (inner
, 0);
665 if (INDIRECT_REF_P (inner
))
667 set
= get_deref_alias_set_1 (TREE_OPERAND (inner
, 0));
672 /* Otherwise, pick up the outermost object that we could have a pointer
673 to, processing conversions as above. */
674 while (component_uses_parent_alias_set (t
))
676 t
= TREE_OPERAND (t
, 0);
680 /* If we've already determined the alias set for a decl, just return
681 it. This is necessary for C++ anonymous unions, whose component
682 variables don't look like union members (boo!). */
683 if (TREE_CODE (t
) == VAR_DECL
684 && DECL_RTL_SET_P (t
) && MEM_P (DECL_RTL (t
)))
685 return MEM_ALIAS_SET (DECL_RTL (t
));
687 /* Now all we care about is the type. */
691 /* Variant qualifiers don't affect the alias set, so get the main
693 t
= TYPE_MAIN_VARIANT (t
);
695 /* Always use the canonical type as well. If this is a type that
696 requires structural comparisons to identify compatible types
697 use alias set zero. */
698 if (TYPE_STRUCTURAL_EQUALITY_P (t
))
700 /* Allow the language to specify another alias set for this
702 set
= lang_hooks
.get_alias_set (t
);
707 t
= TYPE_CANONICAL (t
);
708 /* Canonical types shouldn't form a tree nor should the canonical
709 type require structural equality checks. */
710 gcc_assert (!TYPE_STRUCTURAL_EQUALITY_P (t
) && TYPE_CANONICAL (t
) == t
);
712 /* If this is a type with a known alias set, return it. */
713 if (TYPE_ALIAS_SET_KNOWN_P (t
))
714 return TYPE_ALIAS_SET (t
);
716 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
717 if (!COMPLETE_TYPE_P (t
))
719 /* For arrays with unknown size the conservative answer is the
720 alias set of the element type. */
721 if (TREE_CODE (t
) == ARRAY_TYPE
)
722 return get_alias_set (TREE_TYPE (t
));
724 /* But return zero as a conservative answer for incomplete types. */
728 /* See if the language has special handling for this type. */
729 set
= lang_hooks
.get_alias_set (t
);
733 /* There are no objects of FUNCTION_TYPE, so there's no point in
734 using up an alias set for them. (There are, of course, pointers
735 and references to functions, but that's different.) */
736 else if (TREE_CODE (t
) == FUNCTION_TYPE
737 || TREE_CODE (t
) == METHOD_TYPE
)
740 /* Unless the language specifies otherwise, let vector types alias
741 their components. This avoids some nasty type punning issues in
742 normal usage. And indeed lets vectors be treated more like an
744 else if (TREE_CODE (t
) == VECTOR_TYPE
)
745 set
= get_alias_set (TREE_TYPE (t
));
747 /* Unless the language specifies otherwise, treat array types the
748 same as their components. This avoids the asymmetry we get
749 through recording the components. Consider accessing a
750 character(kind=1) through a reference to a character(kind=1)[1:1].
751 Or consider if we want to assign integer(kind=4)[0:D.1387] and
752 integer(kind=4)[4] the same alias set or not.
753 Just be pragmatic here and make sure the array and its element
754 type get the same alias set assigned. */
755 else if (TREE_CODE (t
) == ARRAY_TYPE
756 && !TYPE_NONALIASED_COMPONENT (t
))
757 set
= get_alias_set (TREE_TYPE (t
));
760 /* Otherwise make a new alias set for this type. */
761 set
= new_alias_set ();
763 TYPE_ALIAS_SET (t
) = set
;
765 /* If this is an aggregate type, we must record any component aliasing
767 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
768 record_component_aliases (t
);
773 /* Return a brand-new alias set. */
778 if (flag_strict_aliasing
)
781 VEC_safe_push (alias_set_entry
, gc
, alias_sets
, 0);
782 VEC_safe_push (alias_set_entry
, gc
, alias_sets
, 0);
783 return VEC_length (alias_set_entry
, alias_sets
) - 1;
789 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
790 not everything that aliases SUPERSET also aliases SUBSET. For example,
791 in C, a store to an `int' can alias a load of a structure containing an
792 `int', and vice versa. But it can't alias a load of a 'double' member
793 of the same structure. Here, the structure would be the SUPERSET and
794 `int' the SUBSET. This relationship is also described in the comment at
795 the beginning of this file.
797 This function should be called only once per SUPERSET/SUBSET pair.
799 It is illegal for SUPERSET to be zero; everything is implicitly a
800 subset of alias set zero. */
803 record_alias_subset (alias_set_type superset
, alias_set_type subset
)
805 alias_set_entry superset_entry
;
806 alias_set_entry subset_entry
;
808 /* It is possible in complex type situations for both sets to be the same,
809 in which case we can ignore this operation. */
810 if (superset
== subset
)
813 gcc_assert (superset
);
815 superset_entry
= get_alias_set_entry (superset
);
816 if (superset_entry
== 0)
818 /* Create an entry for the SUPERSET, so that we have a place to
819 attach the SUBSET. */
820 superset_entry
= GGC_NEW (struct alias_set_entry_d
);
821 superset_entry
->alias_set
= superset
;
822 superset_entry
->children
823 = splay_tree_new_ggc (splay_tree_compare_ints
);
824 superset_entry
->has_zero_child
= 0;
825 VEC_replace (alias_set_entry
, alias_sets
, superset
, superset_entry
);
829 superset_entry
->has_zero_child
= 1;
832 subset_entry
= get_alias_set_entry (subset
);
833 /* If there is an entry for the subset, enter all of its children
834 (if they are not already present) as children of the SUPERSET. */
837 if (subset_entry
->has_zero_child
)
838 superset_entry
->has_zero_child
= 1;
840 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
841 superset_entry
->children
);
844 /* Enter the SUBSET itself as a child of the SUPERSET. */
845 splay_tree_insert (superset_entry
->children
,
846 (splay_tree_key
) subset
, 0);
850 /* Record that component types of TYPE, if any, are part of that type for
851 aliasing purposes. For record types, we only record component types
852 for fields that are not marked non-addressable. For array types, we
853 only record the component type if it is not marked non-aliased. */
856 record_component_aliases (tree type
)
858 alias_set_type superset
= get_alias_set (type
);
864 switch (TREE_CODE (type
))
868 case QUAL_UNION_TYPE
:
869 /* Recursively record aliases for the base classes, if there are any. */
870 if (TYPE_BINFO (type
))
873 tree binfo
, base_binfo
;
875 for (binfo
= TYPE_BINFO (type
), i
= 0;
876 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
877 record_alias_subset (superset
,
878 get_alias_set (BINFO_TYPE (base_binfo
)));
880 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
881 if (TREE_CODE (field
) == FIELD_DECL
&& !DECL_NONADDRESSABLE_P (field
))
882 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
886 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
889 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
897 /* Allocate an alias set for use in storing and reading from the varargs
900 static GTY(()) alias_set_type varargs_set
= -1;
903 get_varargs_alias_set (void)
906 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
907 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
908 consistently use the varargs alias set for loads from the varargs
909 area. So don't use it anywhere. */
912 if (varargs_set
== -1)
913 varargs_set
= new_alias_set ();
919 /* Likewise, but used for the fixed portions of the frame, e.g., register
922 static GTY(()) alias_set_type frame_set
= -1;
925 get_frame_alias_set (void)
928 frame_set
= new_alias_set ();
933 /* Inside SRC, the source of a SET, find a base address. */
936 find_base_value (rtx src
)
940 #if defined (FIND_BASE_TERM)
941 /* Try machine-dependent ways to find the base term. */
942 src
= FIND_BASE_TERM (src
);
945 switch (GET_CODE (src
))
953 /* At the start of a function, argument registers have known base
954 values which may be lost later. Returning an ADDRESS
955 expression here allows optimization based on argument values
956 even when the argument registers are used for other purposes. */
957 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
958 return new_reg_base_value
[regno
];
960 /* If a pseudo has a known base value, return it. Do not do this
961 for non-fixed hard regs since it can result in a circular
962 dependency chain for registers which have values at function entry.
964 The test above is not sufficient because the scheduler may move
965 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
966 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
967 && regno
< VEC_length (rtx
, reg_base_value
))
969 /* If we're inside init_alias_analysis, use new_reg_base_value
970 to reduce the number of relaxation iterations. */
971 if (new_reg_base_value
&& new_reg_base_value
[regno
]
972 && DF_REG_DEF_COUNT (regno
) == 1)
973 return new_reg_base_value
[regno
];
975 if (VEC_index (rtx
, reg_base_value
, regno
))
976 return VEC_index (rtx
, reg_base_value
, regno
);
982 /* Check for an argument passed in memory. Only record in the
983 copying-arguments block; it is too hard to track changes
985 if (copying_arguments
986 && (XEXP (src
, 0) == arg_pointer_rtx
987 || (GET_CODE (XEXP (src
, 0)) == PLUS
988 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
989 return gen_rtx_ADDRESS (VOIDmode
, src
);
994 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
997 /* ... fall through ... */
1002 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
1004 /* If either operand is a REG that is a known pointer, then it
1006 if (REG_P (src_0
) && REG_POINTER (src_0
))
1007 return find_base_value (src_0
);
1008 if (REG_P (src_1
) && REG_POINTER (src_1
))
1009 return find_base_value (src_1
);
1011 /* If either operand is a REG, then see if we already have
1012 a known value for it. */
1015 temp
= find_base_value (src_0
);
1022 temp
= find_base_value (src_1
);
1027 /* If either base is named object or a special address
1028 (like an argument or stack reference), then use it for the
1031 && (GET_CODE (src_0
) == SYMBOL_REF
1032 || GET_CODE (src_0
) == LABEL_REF
1033 || (GET_CODE (src_0
) == ADDRESS
1034 && GET_MODE (src_0
) != VOIDmode
)))
1038 && (GET_CODE (src_1
) == SYMBOL_REF
1039 || GET_CODE (src_1
) == LABEL_REF
1040 || (GET_CODE (src_1
) == ADDRESS
1041 && GET_MODE (src_1
) != VOIDmode
)))
1044 /* Guess which operand is the base address:
1045 If either operand is a symbol, then it is the base. If
1046 either operand is a CONST_INT, then the other is the base. */
1047 if (CONST_INT_P (src_1
) || CONSTANT_P (src_0
))
1048 return find_base_value (src_0
);
1049 else if (CONST_INT_P (src_0
) || CONSTANT_P (src_1
))
1050 return find_base_value (src_1
);
1056 /* The standard form is (lo_sum reg sym) so look only at the
1058 return find_base_value (XEXP (src
, 1));
1061 /* If the second operand is constant set the base
1062 address to the first operand. */
1063 if (CONST_INT_P (XEXP (src
, 1)) && INTVAL (XEXP (src
, 1)) != 0)
1064 return find_base_value (XEXP (src
, 0));
1068 /* As we do not know which address space the pointer is refering to, we can
1069 handle this only if the target does not support different pointer or
1070 address modes depending on the address space. */
1071 if (!target_default_pointer_address_modes_p ())
1073 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
1083 return find_base_value (XEXP (src
, 0));
1086 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
1087 /* As we do not know which address space the pointer is refering to, we can
1088 handle this only if the target does not support different pointer or
1089 address modes depending on the address space. */
1090 if (!target_default_pointer_address_modes_p ())
1094 rtx temp
= find_base_value (XEXP (src
, 0));
1096 if (temp
!= 0 && CONSTANT_P (temp
))
1097 temp
= convert_memory_address (Pmode
, temp
);
1109 /* Called from init_alias_analysis indirectly through note_stores. */
1111 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1112 register N has been set in this function. */
1113 static char *reg_seen
;
1115 /* Addresses which are known not to alias anything else are identified
1116 by a unique integer. */
1117 static int unique_id
;
1120 record_set (rtx dest
, const_rtx set
, void *data ATTRIBUTE_UNUSED
)
1129 regno
= REGNO (dest
);
1131 gcc_assert (regno
< VEC_length (rtx
, reg_base_value
));
1133 /* If this spans multiple hard registers, then we must indicate that every
1134 register has an unusable value. */
1135 if (regno
< FIRST_PSEUDO_REGISTER
)
1136 n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
1143 reg_seen
[regno
+ n
] = 1;
1144 new_reg_base_value
[regno
+ n
] = 0;
1151 /* A CLOBBER wipes out any old value but does not prevent a previously
1152 unset register from acquiring a base address (i.e. reg_seen is not
1154 if (GET_CODE (set
) == CLOBBER
)
1156 new_reg_base_value
[regno
] = 0;
1159 src
= SET_SRC (set
);
1163 if (reg_seen
[regno
])
1165 new_reg_base_value
[regno
] = 0;
1168 reg_seen
[regno
] = 1;
1169 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
1170 GEN_INT (unique_id
++));
1174 /* If this is not the first set of REGNO, see whether the new value
1175 is related to the old one. There are two cases of interest:
1177 (1) The register might be assigned an entirely new value
1178 that has the same base term as the original set.
1180 (2) The set might be a simple self-modification that
1181 cannot change REGNO's base value.
1183 If neither case holds, reject the original base value as invalid.
1184 Note that the following situation is not detected:
1186 extern int x, y; int *p = &x; p += (&y-&x);
1188 ANSI C does not allow computing the difference of addresses
1189 of distinct top level objects. */
1190 if (new_reg_base_value
[regno
] != 0
1191 && find_base_value (src
) != new_reg_base_value
[regno
])
1192 switch (GET_CODE (src
))
1196 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1197 new_reg_base_value
[regno
] = 0;
1200 /* If the value we add in the PLUS is also a valid base value,
1201 this might be the actual base value, and the original value
1204 rtx other
= NULL_RTX
;
1206 if (XEXP (src
, 0) == dest
)
1207 other
= XEXP (src
, 1);
1208 else if (XEXP (src
, 1) == dest
)
1209 other
= XEXP (src
, 0);
1211 if (! other
|| find_base_value (other
))
1212 new_reg_base_value
[regno
] = 0;
1216 if (XEXP (src
, 0) != dest
|| !CONST_INT_P (XEXP (src
, 1)))
1217 new_reg_base_value
[regno
] = 0;
1220 new_reg_base_value
[regno
] = 0;
1223 /* If this is the first set of a register, record the value. */
1224 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1225 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1226 new_reg_base_value
[regno
] = find_base_value (src
);
1228 reg_seen
[regno
] = 1;
1231 /* If a value is known for REGNO, return it. */
1234 get_reg_known_value (unsigned int regno
)
1236 if (regno
>= FIRST_PSEUDO_REGISTER
)
1238 regno
-= FIRST_PSEUDO_REGISTER
;
1239 if (regno
< reg_known_value_size
)
1240 return reg_known_value
[regno
];
1248 set_reg_known_value (unsigned int regno
, rtx val
)
1250 if (regno
>= FIRST_PSEUDO_REGISTER
)
1252 regno
-= FIRST_PSEUDO_REGISTER
;
1253 if (regno
< reg_known_value_size
)
1254 reg_known_value
[regno
] = val
;
1258 /* Similarly for reg_known_equiv_p. */
1261 get_reg_known_equiv_p (unsigned int regno
)
1263 if (regno
>= FIRST_PSEUDO_REGISTER
)
1265 regno
-= FIRST_PSEUDO_REGISTER
;
1266 if (regno
< reg_known_value_size
)
1267 return reg_known_equiv_p
[regno
];
1273 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1275 if (regno
>= FIRST_PSEUDO_REGISTER
)
1277 regno
-= FIRST_PSEUDO_REGISTER
;
1278 if (regno
< reg_known_value_size
)
1279 reg_known_equiv_p
[regno
] = val
;
1284 /* Returns a canonical version of X, from the point of view alias
1285 analysis. (For example, if X is a MEM whose address is a register,
1286 and the register has a known value (say a SYMBOL_REF), then a MEM
1287 whose address is the SYMBOL_REF is returned.) */
1292 /* Recursively look for equivalences. */
1293 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1295 rtx t
= get_reg_known_value (REGNO (x
));
1299 return canon_rtx (t
);
1302 if (GET_CODE (x
) == PLUS
)
1304 rtx x0
= canon_rtx (XEXP (x
, 0));
1305 rtx x1
= canon_rtx (XEXP (x
, 1));
1307 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1309 if (CONST_INT_P (x0
))
1310 return plus_constant (x1
, INTVAL (x0
));
1311 else if (CONST_INT_P (x1
))
1312 return plus_constant (x0
, INTVAL (x1
));
1313 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1317 /* This gives us much better alias analysis when called from
1318 the loop optimizer. Note we want to leave the original
1319 MEM alone, but need to return the canonicalized MEM with
1320 all the flags with their original values. */
1322 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1327 /* Return 1 if X and Y are identical-looking rtx's.
1328 Expect that X and Y has been already canonicalized.
1330 We use the data in reg_known_value above to see if two registers with
1331 different numbers are, in fact, equivalent. */
1334 rtx_equal_for_memref_p (const_rtx x
, const_rtx y
)
1341 if (x
== 0 && y
== 0)
1343 if (x
== 0 || y
== 0)
1349 code
= GET_CODE (x
);
1350 /* Rtx's of different codes cannot be equal. */
1351 if (code
!= GET_CODE (y
))
1354 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1355 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1357 if (GET_MODE (x
) != GET_MODE (y
))
1360 /* Some RTL can be compared without a recursive examination. */
1364 return REGNO (x
) == REGNO (y
);
1367 return XEXP (x
, 0) == XEXP (y
, 0);
1370 return XSTR (x
, 0) == XSTR (y
, 0);
1376 /* There's no need to compare the contents of CONST_DOUBLEs or
1377 CONST_INTs because pointer equality is a good enough
1378 comparison for these nodes. */
1385 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1387 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1388 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1389 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1390 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1391 /* For commutative operations, the RTX match if the operand match in any
1392 order. Also handle the simple binary and unary cases without a loop. */
1393 if (COMMUTATIVE_P (x
))
1395 rtx xop0
= canon_rtx (XEXP (x
, 0));
1396 rtx yop0
= canon_rtx (XEXP (y
, 0));
1397 rtx yop1
= canon_rtx (XEXP (y
, 1));
1399 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1400 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1401 || (rtx_equal_for_memref_p (xop0
, yop1
)
1402 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1404 else if (NON_COMMUTATIVE_P (x
))
1406 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1407 canon_rtx (XEXP (y
, 0)))
1408 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1409 canon_rtx (XEXP (y
, 1))));
1411 else if (UNARY_P (x
))
1412 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1413 canon_rtx (XEXP (y
, 0)));
1415 /* Compare the elements. If any pair of corresponding elements
1416 fail to match, return 0 for the whole things.
1418 Limit cases to types which actually appear in addresses. */
1420 fmt
= GET_RTX_FORMAT (code
);
1421 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1426 if (XINT (x
, i
) != XINT (y
, i
))
1431 /* Two vectors must have the same length. */
1432 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1435 /* And the corresponding elements must match. */
1436 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1437 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1438 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1443 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1444 canon_rtx (XEXP (y
, i
))) == 0)
1448 /* This can happen for asm operands. */
1450 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1454 /* This can happen for an asm which clobbers memory. */
1458 /* It is believed that rtx's at this level will never
1459 contain anything but integers and other rtx's,
1460 except for within LABEL_REFs and SYMBOL_REFs. */
1469 find_base_term (rtx x
)
1472 struct elt_loc_list
*l
;
1474 #if defined (FIND_BASE_TERM)
1475 /* Try machine-dependent ways to find the base term. */
1476 x
= FIND_BASE_TERM (x
);
1479 switch (GET_CODE (x
))
1482 return REG_BASE_VALUE (x
);
1485 /* As we do not know which address space the pointer is refering to, we can
1486 handle this only if the target does not support different pointer or
1487 address modes depending on the address space. */
1488 if (!target_default_pointer_address_modes_p ())
1490 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1500 return find_base_term (XEXP (x
, 0));
1503 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1504 /* As we do not know which address space the pointer is refering to, we can
1505 handle this only if the target does not support different pointer or
1506 address modes depending on the address space. */
1507 if (!target_default_pointer_address_modes_p ())
1511 rtx temp
= find_base_term (XEXP (x
, 0));
1513 if (temp
!= 0 && CONSTANT_P (temp
))
1514 temp
= convert_memory_address (Pmode
, temp
);
1520 val
= CSELIB_VAL_PTR (x
);
1523 for (l
= val
->locs
; l
; l
= l
->next
)
1524 if ((x
= find_base_term (l
->loc
)) != 0)
1529 /* The standard form is (lo_sum reg sym) so look only at the
1531 return find_base_term (XEXP (x
, 1));
1535 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1541 rtx tmp1
= XEXP (x
, 0);
1542 rtx tmp2
= XEXP (x
, 1);
1544 /* This is a little bit tricky since we have to determine which of
1545 the two operands represents the real base address. Otherwise this
1546 routine may return the index register instead of the base register.
1548 That may cause us to believe no aliasing was possible, when in
1549 fact aliasing is possible.
1551 We use a few simple tests to guess the base register. Additional
1552 tests can certainly be added. For example, if one of the operands
1553 is a shift or multiply, then it must be the index register and the
1554 other operand is the base register. */
1556 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1557 return find_base_term (tmp2
);
1559 /* If either operand is known to be a pointer, then use it
1560 to determine the base term. */
1561 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1563 rtx base
= find_base_term (tmp1
);
1568 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1570 rtx base
= find_base_term (tmp2
);
1575 /* Neither operand was known to be a pointer. Go ahead and find the
1576 base term for both operands. */
1577 tmp1
= find_base_term (tmp1
);
1578 tmp2
= find_base_term (tmp2
);
1580 /* If either base term is named object or a special address
1581 (like an argument or stack reference), then use it for the
1584 && (GET_CODE (tmp1
) == SYMBOL_REF
1585 || GET_CODE (tmp1
) == LABEL_REF
1586 || (GET_CODE (tmp1
) == ADDRESS
1587 && GET_MODE (tmp1
) != VOIDmode
)))
1591 && (GET_CODE (tmp2
) == SYMBOL_REF
1592 || GET_CODE (tmp2
) == LABEL_REF
1593 || (GET_CODE (tmp2
) == ADDRESS
1594 && GET_MODE (tmp2
) != VOIDmode
)))
1597 /* We could not determine which of the two operands was the
1598 base register and which was the index. So we can determine
1599 nothing from the base alias check. */
1604 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) != 0)
1605 return find_base_term (XEXP (x
, 0));
1617 /* Return 0 if the addresses X and Y are known to point to different
1618 objects, 1 if they might be pointers to the same object. */
1621 base_alias_check (rtx x
, rtx y
, enum machine_mode x_mode
,
1622 enum machine_mode y_mode
)
1624 rtx x_base
= find_base_term (x
);
1625 rtx y_base
= find_base_term (y
);
1627 /* If the address itself has no known base see if a known equivalent
1628 value has one. If either address still has no known base, nothing
1629 is known about aliasing. */
1634 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1637 x_base
= find_base_term (x_c
);
1645 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1648 y_base
= find_base_term (y_c
);
1653 /* If the base addresses are equal nothing is known about aliasing. */
1654 if (rtx_equal_p (x_base
, y_base
))
1657 /* The base addresses are different expressions. If they are not accessed
1658 via AND, there is no conflict. We can bring knowledge of object
1659 alignment into play here. For example, on alpha, "char a, b;" can
1660 alias one another, though "char a; long b;" cannot. AND addesses may
1661 implicitly alias surrounding objects; i.e. unaligned access in DImode
1662 via AND address can alias all surrounding object types except those
1663 with aligment 8 or higher. */
1664 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1666 if (GET_CODE (x
) == AND
1667 && (!CONST_INT_P (XEXP (x
, 1))
1668 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1670 if (GET_CODE (y
) == AND
1671 && (!CONST_INT_P (XEXP (y
, 1))
1672 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1675 /* Differing symbols not accessed via AND never alias. */
1676 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1679 /* If one address is a stack reference there can be no alias:
1680 stack references using different base registers do not alias,
1681 a stack reference can not alias a parameter, and a stack reference
1682 can not alias a global. */
1683 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1684 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1687 if (! flag_argument_noalias
)
1690 if (flag_argument_noalias
> 1)
1693 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1694 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1697 /* Convert the address X into something we can use. This is done by returning
1698 it unchanged unless it is a value; in the latter case we call cselib to get
1699 a more useful rtx. */
1705 struct elt_loc_list
*l
;
1707 if (GET_CODE (x
) != VALUE
)
1709 v
= CSELIB_VAL_PTR (x
);
1712 for (l
= v
->locs
; l
; l
= l
->next
)
1713 if (CONSTANT_P (l
->loc
))
1715 for (l
= v
->locs
; l
; l
= l
->next
)
1716 if (!REG_P (l
->loc
) && !MEM_P (l
->loc
))
1719 return v
->locs
->loc
;
1724 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1725 where SIZE is the size in bytes of the memory reference. If ADDR
1726 is not modified by the memory reference then ADDR is returned. */
1729 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
1733 switch (GET_CODE (addr
))
1736 offset
= (n_refs
+ 1) * size
;
1739 offset
= -(n_refs
+ 1) * size
;
1742 offset
= n_refs
* size
;
1745 offset
= -n_refs
* size
;
1753 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
1756 addr
= XEXP (addr
, 0);
1757 addr
= canon_rtx (addr
);
1762 /* Return one if X and Y (memory addresses) reference the
1763 same location in memory or if the references overlap.
1764 Return zero if they do not overlap, else return
1765 minus one in which case they still might reference the same location.
1767 C is an offset accumulator. When
1768 C is nonzero, we are testing aliases between X and Y + C.
1769 XSIZE is the size in bytes of the X reference,
1770 similarly YSIZE is the size in bytes for Y.
1771 Expect that canon_rtx has been already called for X and Y.
1773 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1774 referenced (the reference was BLKmode), so make the most pessimistic
1777 If XSIZE or YSIZE is negative, we may access memory outside the object
1778 being referenced as a side effect. This can happen when using AND to
1779 align memory references, as is done on the Alpha.
1781 Nice to notice that varying addresses cannot conflict with fp if no
1782 local variables had their addresses taken, but that's too hard now.
1784 ??? Contrary to the tree alias oracle this does not return
1785 one for X + non-constant and Y + non-constant when X and Y are equal.
1786 If that is fixed the TBAA hack for union type-punning can be removed. */
1789 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
1791 if (GET_CODE (x
) == VALUE
)
1793 if (GET_CODE (y
) == VALUE
)
1795 if (GET_CODE (x
) == HIGH
)
1797 else if (GET_CODE (x
) == LO_SUM
)
1800 x
= addr_side_effect_eval (x
, xsize
, 0);
1801 if (GET_CODE (y
) == HIGH
)
1803 else if (GET_CODE (y
) == LO_SUM
)
1806 y
= addr_side_effect_eval (y
, ysize
, 0);
1808 if (rtx_equal_for_memref_p (x
, y
))
1810 if (xsize
<= 0 || ysize
<= 0)
1812 if (c
>= 0 && xsize
> c
)
1814 if (c
< 0 && ysize
+c
> 0)
1819 /* This code used to check for conflicts involving stack references and
1820 globals but the base address alias code now handles these cases. */
1822 if (GET_CODE (x
) == PLUS
)
1824 /* The fact that X is canonicalized means that this
1825 PLUS rtx is canonicalized. */
1826 rtx x0
= XEXP (x
, 0);
1827 rtx x1
= XEXP (x
, 1);
1829 if (GET_CODE (y
) == PLUS
)
1831 /* The fact that Y is canonicalized means that this
1832 PLUS rtx is canonicalized. */
1833 rtx y0
= XEXP (y
, 0);
1834 rtx y1
= XEXP (y
, 1);
1836 if (rtx_equal_for_memref_p (x1
, y1
))
1837 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1838 if (rtx_equal_for_memref_p (x0
, y0
))
1839 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1840 if (CONST_INT_P (x1
))
1842 if (CONST_INT_P (y1
))
1843 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1844 c
- INTVAL (x1
) + INTVAL (y1
));
1846 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1849 else if (CONST_INT_P (y1
))
1850 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1854 else if (CONST_INT_P (x1
))
1855 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1857 else if (GET_CODE (y
) == PLUS
)
1859 /* The fact that Y is canonicalized means that this
1860 PLUS rtx is canonicalized. */
1861 rtx y0
= XEXP (y
, 0);
1862 rtx y1
= XEXP (y
, 1);
1864 if (CONST_INT_P (y1
))
1865 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1870 if (GET_CODE (x
) == GET_CODE (y
))
1871 switch (GET_CODE (x
))
1875 /* Handle cases where we expect the second operands to be the
1876 same, and check only whether the first operand would conflict
1879 rtx x1
= canon_rtx (XEXP (x
, 1));
1880 rtx y1
= canon_rtx (XEXP (y
, 1));
1881 if (! rtx_equal_for_memref_p (x1
, y1
))
1883 x0
= canon_rtx (XEXP (x
, 0));
1884 y0
= canon_rtx (XEXP (y
, 0));
1885 if (rtx_equal_for_memref_p (x0
, y0
))
1886 return (xsize
== 0 || ysize
== 0
1887 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1889 /* Can't properly adjust our sizes. */
1890 if (!CONST_INT_P (x1
))
1892 xsize
/= INTVAL (x1
);
1893 ysize
/= INTVAL (x1
);
1895 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1902 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1903 as an access with indeterminate size. Assume that references
1904 besides AND are aligned, so if the size of the other reference is
1905 at least as large as the alignment, assume no other overlap. */
1906 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1)))
1908 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1910 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)), ysize
, y
, c
);
1912 if (GET_CODE (y
) == AND
&& CONST_INT_P (XEXP (y
, 1)))
1914 /* ??? If we are indexing far enough into the array/structure, we
1915 may yet be able to determine that we can not overlap. But we
1916 also need to that we are far enough from the end not to overlap
1917 a following reference, so we do nothing with that for now. */
1918 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1920 return memrefs_conflict_p (xsize
, x
, ysize
, canon_rtx (XEXP (y
, 0)), c
);
1925 if (CONST_INT_P (x
) && CONST_INT_P (y
))
1927 c
+= (INTVAL (y
) - INTVAL (x
));
1928 return (xsize
<= 0 || ysize
<= 0
1929 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1932 if (GET_CODE (x
) == CONST
)
1934 if (GET_CODE (y
) == CONST
)
1935 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1936 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1938 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1941 if (GET_CODE (y
) == CONST
)
1942 return memrefs_conflict_p (xsize
, x
, ysize
,
1943 canon_rtx (XEXP (y
, 0)), c
);
1946 return (xsize
<= 0 || ysize
<= 0
1947 || (rtx_equal_for_memref_p (x
, y
)
1948 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1956 /* Functions to compute memory dependencies.
1958 Since we process the insns in execution order, we can build tables
1959 to keep track of what registers are fixed (and not aliased), what registers
1960 are varying in known ways, and what registers are varying in unknown
1963 If both memory references are volatile, then there must always be a
1964 dependence between the two references, since their order can not be
1965 changed. A volatile and non-volatile reference can be interchanged
1968 A MEM_IN_STRUCT reference at a non-AND varying address can never
1969 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1970 also must allow AND addresses, because they may generate accesses
1971 outside the object being referenced. This is used to generate
1972 aligned addresses from unaligned addresses, for instance, the alpha
1973 storeqi_unaligned pattern. */
1975 /* Read dependence: X is read after read in MEM takes place. There can
1976 only be a dependence here if both reads are volatile. */
1979 read_dependence (const_rtx mem
, const_rtx x
)
1981 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1984 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1985 MEM2 is a reference to a structure at a varying address, or returns
1986 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1987 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1988 to decide whether or not an address may vary; it should return
1989 nonzero whenever variation is possible.
1990 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1993 fixed_scalar_and_varying_struct_p (const_rtx mem1
, const_rtx mem2
, rtx mem1_addr
,
1995 bool (*varies_p
) (const_rtx
, bool))
1997 if (! flag_strict_aliasing
)
2000 if (MEM_ALIAS_SET (mem2
)
2001 && MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
2002 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
2003 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2007 if (MEM_ALIAS_SET (mem1
)
2008 && MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
2009 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
2010 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2017 /* Returns nonzero if something about the mode or address format MEM1
2018 indicates that it might well alias *anything*. */
2021 aliases_everything_p (const_rtx mem
)
2023 if (GET_CODE (XEXP (mem
, 0)) == AND
)
2024 /* If the address is an AND, it's very hard to know at what it is
2025 actually pointing. */
2031 /* Return true if we can determine that the fields referenced cannot
2032 overlap for any pair of objects. */
2035 nonoverlapping_component_refs_p (const_tree x
, const_tree y
)
2037 const_tree fieldx
, fieldy
, typex
, typey
, orig_y
;
2039 if (!flag_strict_aliasing
)
2044 /* The comparison has to be done at a common type, since we don't
2045 know how the inheritance hierarchy works. */
2049 fieldx
= TREE_OPERAND (x
, 1);
2050 typex
= TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx
));
2055 fieldy
= TREE_OPERAND (y
, 1);
2056 typey
= TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy
));
2061 y
= TREE_OPERAND (y
, 0);
2063 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
2065 x
= TREE_OPERAND (x
, 0);
2067 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2068 /* Never found a common type. */
2072 /* If we're left with accessing different fields of a structure,
2074 if (TREE_CODE (typex
) == RECORD_TYPE
2075 && fieldx
!= fieldy
)
2078 /* The comparison on the current field failed. If we're accessing
2079 a very nested structure, look at the next outer level. */
2080 x
= TREE_OPERAND (x
, 0);
2081 y
= TREE_OPERAND (y
, 0);
2084 && TREE_CODE (x
) == COMPONENT_REF
2085 && TREE_CODE (y
) == COMPONENT_REF
);
2090 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2093 decl_for_component_ref (tree x
)
2097 x
= TREE_OPERAND (x
, 0);
2099 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2101 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
2104 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2105 offset of the field reference. */
2108 adjust_offset_for_component_ref (tree x
, rtx offset
)
2110 HOST_WIDE_INT ioffset
;
2115 ioffset
= INTVAL (offset
);
2118 tree offset
= component_ref_field_offset (x
);
2119 tree field
= TREE_OPERAND (x
, 1);
2121 if (! host_integerp (offset
, 1))
2123 ioffset
+= (tree_low_cst (offset
, 1)
2124 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2127 x
= TREE_OPERAND (x
, 0);
2129 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2131 return GEN_INT (ioffset
);
2134 /* Return nonzero if we can determine the exprs corresponding to memrefs
2135 X and Y and they do not overlap. */
2138 nonoverlapping_memrefs_p (const_rtx x
, const_rtx y
)
2140 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2143 rtx moffsetx
, moffsety
;
2144 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
2146 /* Unless both have exprs, we can't tell anything. */
2147 if (exprx
== 0 || expry
== 0)
2150 /* If both are field references, we may be able to determine something. */
2151 if (TREE_CODE (exprx
) == COMPONENT_REF
2152 && TREE_CODE (expry
) == COMPONENT_REF
2153 && nonoverlapping_component_refs_p (exprx
, expry
))
2157 /* If the field reference test failed, look at the DECLs involved. */
2158 moffsetx
= MEM_OFFSET (x
);
2159 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2161 if (TREE_CODE (expry
) == VAR_DECL
2162 && POINTER_TYPE_P (TREE_TYPE (expry
)))
2164 tree field
= TREE_OPERAND (exprx
, 1);
2165 tree fieldcontext
= DECL_FIELD_CONTEXT (field
);
2166 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext
,
2171 tree t
= decl_for_component_ref (exprx
);
2174 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
2178 else if (INDIRECT_REF_P (exprx
))
2180 exprx
= TREE_OPERAND (exprx
, 0);
2181 if (flag_argument_noalias
< 2
2182 || TREE_CODE (exprx
) != PARM_DECL
)
2186 moffsety
= MEM_OFFSET (y
);
2187 if (TREE_CODE (expry
) == COMPONENT_REF
)
2189 if (TREE_CODE (exprx
) == VAR_DECL
2190 && POINTER_TYPE_P (TREE_TYPE (exprx
)))
2192 tree field
= TREE_OPERAND (expry
, 1);
2193 tree fieldcontext
= DECL_FIELD_CONTEXT (field
);
2194 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext
,
2199 tree t
= decl_for_component_ref (expry
);
2202 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
2206 else if (INDIRECT_REF_P (expry
))
2208 expry
= TREE_OPERAND (expry
, 0);
2209 if (flag_argument_noalias
< 2
2210 || TREE_CODE (expry
) != PARM_DECL
)
2214 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2217 /* With invalid code we can end up storing into the constant pool.
2218 Bail out to avoid ICEing when creating RTL for this.
2219 See gfortran.dg/lto/20091028-2_0.f90. */
2220 if (TREE_CODE (exprx
) == CONST_DECL
2221 || TREE_CODE (expry
) == CONST_DECL
)
2224 rtlx
= DECL_RTL (exprx
);
2225 rtly
= DECL_RTL (expry
);
2227 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2228 can't overlap unless they are the same because we never reuse that part
2229 of the stack frame used for locals for spilled pseudos. */
2230 if ((!MEM_P (rtlx
) || !MEM_P (rtly
))
2231 && ! rtx_equal_p (rtlx
, rtly
))
2234 /* If we have MEMs refering to different address spaces (which can
2235 potentially overlap), we cannot easily tell from the addresses
2236 whether the references overlap. */
2237 if (MEM_P (rtlx
) && MEM_P (rtly
)
2238 && MEM_ADDR_SPACE (rtlx
) != MEM_ADDR_SPACE (rtly
))
2241 /* Get the base and offsets of both decls. If either is a register, we
2242 know both are and are the same, so use that as the base. The only
2243 we can avoid overlap is if we can deduce that they are nonoverlapping
2244 pieces of that decl, which is very rare. */
2245 basex
= MEM_P (rtlx
) ? XEXP (rtlx
, 0) : rtlx
;
2246 if (GET_CODE (basex
) == PLUS
&& CONST_INT_P (XEXP (basex
, 1)))
2247 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2249 basey
= MEM_P (rtly
) ? XEXP (rtly
, 0) : rtly
;
2250 if (GET_CODE (basey
) == PLUS
&& CONST_INT_P (XEXP (basey
, 1)))
2251 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2253 /* If the bases are different, we know they do not overlap if both
2254 are constants or if one is a constant and the other a pointer into the
2255 stack frame. Otherwise a different base means we can't tell if they
2257 if (! rtx_equal_p (basex
, basey
))
2258 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2259 || (CONSTANT_P (basex
) && REG_P (basey
)
2260 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2261 || (CONSTANT_P (basey
) && REG_P (basex
)
2262 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2264 sizex
= (!MEM_P (rtlx
) ? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2265 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2267 sizey
= (!MEM_P (rtly
) ? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2268 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2271 /* If we have an offset for either memref, it can update the values computed
2274 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2276 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2278 /* If a memref has both a size and an offset, we can use the smaller size.
2279 We can't do this if the offset isn't known because we must view this
2280 memref as being anywhere inside the DECL's MEM. */
2281 if (MEM_SIZE (x
) && moffsetx
)
2282 sizex
= INTVAL (MEM_SIZE (x
));
2283 if (MEM_SIZE (y
) && moffsety
)
2284 sizey
= INTVAL (MEM_SIZE (y
));
2286 /* Put the values of the memref with the lower offset in X's values. */
2287 if (offsetx
> offsety
)
2289 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2290 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2293 /* If we don't know the size of the lower-offset value, we can't tell
2294 if they conflict. Otherwise, we do the test. */
2295 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2298 /* True dependence: X is read after store in MEM takes place. */
2301 true_dependence (const_rtx mem
, enum machine_mode mem_mode
, const_rtx x
,
2302 bool (*varies
) (const_rtx
, bool))
2304 rtx x_addr
, mem_addr
;
2308 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2311 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2312 This is used in epilogue deallocation functions, and in cselib. */
2313 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2315 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2317 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2318 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2321 /* Read-only memory is by definition never modified, and therefore can't
2322 conflict with anything. We don't expect to find read-only set on MEM,
2323 but stupid user tricks can produce them, so don't die. */
2324 if (MEM_READONLY_P (x
))
2327 /* If we have MEMs refering to different address spaces (which can
2328 potentially overlap), we cannot easily tell from the addresses
2329 whether the references overlap. */
2330 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2333 if (mem_mode
== VOIDmode
)
2334 mem_mode
= GET_MODE (mem
);
2336 x_addr
= get_addr (XEXP (x
, 0));
2337 mem_addr
= get_addr (XEXP (mem
, 0));
2339 base
= find_base_term (x_addr
);
2340 if (base
&& (GET_CODE (base
) == LABEL_REF
2341 || (GET_CODE (base
) == SYMBOL_REF
2342 && CONSTANT_POOL_ADDRESS_P (base
))))
2345 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2348 x_addr
= canon_rtx (x_addr
);
2349 mem_addr
= canon_rtx (mem_addr
);
2351 if ((ret
= memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2352 SIZE_FOR_MODE (x
), x_addr
, 0)) != -1)
2355 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2358 if (nonoverlapping_memrefs_p (mem
, x
))
2361 if (aliases_everything_p (x
))
2364 /* We cannot use aliases_everything_p to test MEM, since we must look
2365 at MEM_MODE, rather than GET_MODE (MEM). */
2366 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2369 /* In true_dependence we also allow BLKmode to alias anything. Why
2370 don't we do this in anti_dependence and output_dependence? */
2371 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2374 if (fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
, varies
))
2377 return rtx_refs_may_alias_p (x
, mem
, true);
2380 /* Canonical true dependence: X is read after store in MEM takes place.
2381 Variant of true_dependence which assumes MEM has already been
2382 canonicalized (hence we no longer do that here).
2383 The mem_addr argument has been added, since true_dependence computed
2384 this value prior to canonicalizing.
2385 If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */
2388 canon_true_dependence (const_rtx mem
, enum machine_mode mem_mode
, rtx mem_addr
,
2389 const_rtx x
, rtx x_addr
, bool (*varies
) (const_rtx
, bool))
2393 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2396 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2397 This is used in epilogue deallocation functions. */
2398 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2400 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2402 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2403 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2406 /* Read-only memory is by definition never modified, and therefore can't
2407 conflict with anything. We don't expect to find read-only set on MEM,
2408 but stupid user tricks can produce them, so don't die. */
2409 if (MEM_READONLY_P (x
))
2412 /* If we have MEMs refering to different address spaces (which can
2413 potentially overlap), we cannot easily tell from the addresses
2414 whether the references overlap. */
2415 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2419 x_addr
= get_addr (XEXP (x
, 0));
2421 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2424 x_addr
= canon_rtx (x_addr
);
2425 if ((ret
= memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2426 SIZE_FOR_MODE (x
), x_addr
, 0)) != -1)
2429 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2432 if (nonoverlapping_memrefs_p (x
, mem
))
2435 if (aliases_everything_p (x
))
2438 /* We cannot use aliases_everything_p to test MEM, since we must look
2439 at MEM_MODE, rather than GET_MODE (MEM). */
2440 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2443 /* In true_dependence we also allow BLKmode to alias anything. Why
2444 don't we do this in anti_dependence and output_dependence? */
2445 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2448 if (fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
, varies
))
2451 return rtx_refs_may_alias_p (x
, mem
, true);
2454 /* Returns nonzero if a write to X might alias a previous read from
2455 (or, if WRITEP is nonzero, a write to) MEM. */
2458 write_dependence_p (const_rtx mem
, const_rtx x
, int writep
)
2460 rtx x_addr
, mem_addr
;
2461 const_rtx fixed_scalar
;
2465 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2468 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2469 This is used in epilogue deallocation functions. */
2470 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2472 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2474 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2475 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2478 /* A read from read-only memory can't conflict with read-write memory. */
2479 if (!writep
&& MEM_READONLY_P (mem
))
2482 /* If we have MEMs refering to different address spaces (which can
2483 potentially overlap), we cannot easily tell from the addresses
2484 whether the references overlap. */
2485 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2488 x_addr
= get_addr (XEXP (x
, 0));
2489 mem_addr
= get_addr (XEXP (mem
, 0));
2493 base
= find_base_term (mem_addr
);
2494 if (base
&& (GET_CODE (base
) == LABEL_REF
2495 || (GET_CODE (base
) == SYMBOL_REF
2496 && CONSTANT_POOL_ADDRESS_P (base
))))
2500 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2504 x_addr
= canon_rtx (x_addr
);
2505 mem_addr
= canon_rtx (mem_addr
);
2507 if ((ret
= memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2508 SIZE_FOR_MODE (x
), x_addr
, 0)) != -1)
2511 if (nonoverlapping_memrefs_p (x
, mem
))
2515 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2518 if ((fixed_scalar
== mem
&& !aliases_everything_p (x
))
2519 || (fixed_scalar
== x
&& !aliases_everything_p (mem
)))
2522 return rtx_refs_may_alias_p (x
, mem
, false);
2525 /* Anti dependence: X is written after read in MEM takes place. */
2528 anti_dependence (const_rtx mem
, const_rtx x
)
2530 return write_dependence_p (mem
, x
, /*writep=*/0);
2533 /* Output dependence: X is written after store in MEM takes place. */
2536 output_dependence (const_rtx mem
, const_rtx x
)
2538 return write_dependence_p (mem
, x
, /*writep=*/1);
2543 init_alias_target (void)
2547 memset (static_reg_base_value
, 0, sizeof static_reg_base_value
);
2549 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2550 /* Check whether this register can hold an incoming pointer
2551 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2552 numbers, so translate if necessary due to register windows. */
2553 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2554 && HARD_REGNO_MODE_OK (i
, Pmode
))
2555 static_reg_base_value
[i
]
2556 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2558 static_reg_base_value
[STACK_POINTER_REGNUM
]
2559 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2560 static_reg_base_value
[ARG_POINTER_REGNUM
]
2561 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2562 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2563 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2564 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2565 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2566 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2570 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2571 to be memory reference. */
2572 static bool memory_modified
;
2574 memory_modified_1 (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
2578 if (anti_dependence (x
, (const_rtx
)data
) || output_dependence (x
, (const_rtx
)data
))
2579 memory_modified
= true;
2584 /* Return true when INSN possibly modify memory contents of MEM
2585 (i.e. address can be modified). */
2587 memory_modified_in_insn_p (const_rtx mem
, const_rtx insn
)
2591 memory_modified
= false;
2592 note_stores (PATTERN (insn
), memory_modified_1
, CONST_CAST_RTX(mem
));
2593 return memory_modified
;
2596 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2600 init_alias_analysis (void)
2602 unsigned int maxreg
= max_reg_num ();
2608 timevar_push (TV_ALIAS_ANALYSIS
);
2610 reg_known_value_size
= maxreg
- FIRST_PSEUDO_REGISTER
;
2611 reg_known_value
= GGC_CNEWVEC (rtx
, reg_known_value_size
);
2612 reg_known_equiv_p
= XCNEWVEC (bool, reg_known_value_size
);
2614 /* If we have memory allocated from the previous run, use it. */
2615 if (old_reg_base_value
)
2616 reg_base_value
= old_reg_base_value
;
2619 VEC_truncate (rtx
, reg_base_value
, 0);
2621 VEC_safe_grow_cleared (rtx
, gc
, reg_base_value
, maxreg
);
2623 new_reg_base_value
= XNEWVEC (rtx
, maxreg
);
2624 reg_seen
= XNEWVEC (char, maxreg
);
2626 /* The basic idea is that each pass through this loop will use the
2627 "constant" information from the previous pass to propagate alias
2628 information through another level of assignments.
2630 This could get expensive if the assignment chains are long. Maybe
2631 we should throttle the number of iterations, possibly based on
2632 the optimization level or flag_expensive_optimizations.
2634 We could propagate more information in the first pass by making use
2635 of DF_REG_DEF_COUNT to determine immediately that the alias information
2636 for a pseudo is "constant".
2638 A program with an uninitialized variable can cause an infinite loop
2639 here. Instead of doing a full dataflow analysis to detect such problems
2640 we just cap the number of iterations for the loop.
2642 The state of the arrays for the set chain in question does not matter
2643 since the program has undefined behavior. */
2648 /* Assume nothing will change this iteration of the loop. */
2651 /* We want to assign the same IDs each iteration of this loop, so
2652 start counting from zero each iteration of the loop. */
2655 /* We're at the start of the function each iteration through the
2656 loop, so we're copying arguments. */
2657 copying_arguments
= true;
2659 /* Wipe the potential alias information clean for this pass. */
2660 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
2662 /* Wipe the reg_seen array clean. */
2663 memset (reg_seen
, 0, maxreg
);
2665 /* Mark all hard registers which may contain an address.
2666 The stack, frame and argument pointers may contain an address.
2667 An argument register which can hold a Pmode value may contain
2668 an address even if it is not in BASE_REGS.
2670 The address expression is VOIDmode for an argument and
2671 Pmode for other registers. */
2673 memcpy (new_reg_base_value
, static_reg_base_value
,
2674 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2676 /* Walk the insns adding values to the new_reg_base_value array. */
2677 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2683 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2684 /* The prologue/epilogue insns are not threaded onto the
2685 insn chain until after reload has completed. Thus,
2686 there is no sense wasting time checking if INSN is in
2687 the prologue/epilogue until after reload has completed. */
2688 if (reload_completed
2689 && prologue_epilogue_contains (insn
))
2693 /* If this insn has a noalias note, process it, Otherwise,
2694 scan for sets. A simple set will have no side effects
2695 which could change the base value of any other register. */
2697 if (GET_CODE (PATTERN (insn
)) == SET
2698 && REG_NOTES (insn
) != 0
2699 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2700 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2702 note_stores (PATTERN (insn
), record_set
, NULL
);
2704 set
= single_set (insn
);
2707 && REG_P (SET_DEST (set
))
2708 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2710 unsigned int regno
= REGNO (SET_DEST (set
));
2711 rtx src
= SET_SRC (set
);
2714 note
= find_reg_equal_equiv_note (insn
);
2715 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
2716 && DF_REG_DEF_COUNT (regno
) != 1)
2719 if (note
!= NULL_RTX
2720 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2721 && ! rtx_varies_p (XEXP (note
, 0), 1)
2722 && ! reg_overlap_mentioned_p (SET_DEST (set
),
2725 set_reg_known_value (regno
, XEXP (note
, 0));
2726 set_reg_known_equiv_p (regno
,
2727 REG_NOTE_KIND (note
) == REG_EQUIV
);
2729 else if (DF_REG_DEF_COUNT (regno
) == 1
2730 && GET_CODE (src
) == PLUS
2731 && REG_P (XEXP (src
, 0))
2732 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
2733 && CONST_INT_P (XEXP (src
, 1)))
2735 t
= plus_constant (t
, INTVAL (XEXP (src
, 1)));
2736 set_reg_known_value (regno
, t
);
2737 set_reg_known_equiv_p (regno
, 0);
2739 else if (DF_REG_DEF_COUNT (regno
) == 1
2740 && ! rtx_varies_p (src
, 1))
2742 set_reg_known_value (regno
, src
);
2743 set_reg_known_equiv_p (regno
, 0);
2747 else if (NOTE_P (insn
)
2748 && NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
2749 copying_arguments
= false;
2752 /* Now propagate values from new_reg_base_value to reg_base_value. */
2753 gcc_assert (maxreg
== (unsigned int) max_reg_num ());
2755 for (ui
= 0; ui
< maxreg
; ui
++)
2757 if (new_reg_base_value
[ui
]
2758 && new_reg_base_value
[ui
] != VEC_index (rtx
, reg_base_value
, ui
)
2759 && ! rtx_equal_p (new_reg_base_value
[ui
],
2760 VEC_index (rtx
, reg_base_value
, ui
)))
2762 VEC_replace (rtx
, reg_base_value
, ui
, new_reg_base_value
[ui
]);
2767 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2769 /* Fill in the remaining entries. */
2770 for (i
= 0; i
< (int)reg_known_value_size
; i
++)
2771 if (reg_known_value
[i
] == 0)
2772 reg_known_value
[i
] = regno_reg_rtx
[i
+ FIRST_PSEUDO_REGISTER
];
2775 free (new_reg_base_value
);
2776 new_reg_base_value
= 0;
2779 timevar_pop (TV_ALIAS_ANALYSIS
);
2783 end_alias_analysis (void)
2785 old_reg_base_value
= reg_base_value
;
2786 ggc_free (reg_known_value
);
2787 reg_known_value
= 0;
2788 reg_known_value_size
= 0;
2789 free (reg_known_equiv_p
);
2790 reg_known_equiv_p
= 0;
2793 #include "gt-alias.h"