* c-ubsan.c (ubsan_instrument_shift): Use type0.
[official-gcc.git] / gcc / tree-eh.c
blob5d41cb423290ecf0db49c939f8c12f6191f1aa0b
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "hashtab.h"
37 #include "hard-reg-set.h"
38 #include "function.h"
39 #include "rtl.h"
40 #include "flags.h"
41 #include "statistics.h"
42 #include "real.h"
43 #include "fixed-value.h"
44 #include "insn-config.h"
45 #include "expmed.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "emit-rtl.h"
50 #include "varasm.h"
51 #include "stmt.h"
52 #include "expr.h"
53 #include "except.h"
54 #include "predict.h"
55 #include "dominance.h"
56 #include "cfg.h"
57 #include "cfganal.h"
58 #include "cfgcleanup.h"
59 #include "basic-block.h"
60 #include "tree-ssa-alias.h"
61 #include "internal-fn.h"
62 #include "tree-eh.h"
63 #include "gimple-expr.h"
64 #include "is-a.h"
65 #include "gimple.h"
66 #include "gimple-iterator.h"
67 #include "gimple-ssa.h"
68 #include "hash-map.h"
69 #include "plugin-api.h"
70 #include "ipa-ref.h"
71 #include "cgraph.h"
72 #include "tree-cfg.h"
73 #include "tree-phinodes.h"
74 #include "ssa-iterators.h"
75 #include "stringpool.h"
76 #include "tree-ssanames.h"
77 #include "tree-into-ssa.h"
78 #include "tree-ssa.h"
79 #include "tree-inline.h"
80 #include "tree-pass.h"
81 #include "langhooks.h"
82 #include "diagnostic-core.h"
83 #include "target.h"
84 #include "cfgloop.h"
85 #include "gimple-low.h"
87 /* In some instances a tree and a gimple need to be stored in a same table,
88 i.e. in hash tables. This is a structure to do this. */
89 typedef union {tree *tp; tree t; gimple g;} treemple;
91 /* Misc functions used in this file. */
93 /* Remember and lookup EH landing pad data for arbitrary statements.
94 Really this means any statement that could_throw_p. We could
95 stuff this information into the stmt_ann data structure, but:
97 (1) We absolutely rely on this information being kept until
98 we get to rtl. Once we're done with lowering here, if we lose
99 the information there's no way to recover it!
101 (2) There are many more statements that *cannot* throw as
102 compared to those that can. We should be saving some amount
103 of space by only allocating memory for those that can throw. */
105 /* Add statement T in function IFUN to landing pad NUM. */
107 static void
108 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
110 gcc_assert (num != 0);
112 if (!get_eh_throw_stmt_table (ifun))
113 set_eh_throw_stmt_table (ifun, hash_map<gimple, int>::create_ggc (31));
115 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
118 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
120 void
121 add_stmt_to_eh_lp (gimple t, int num)
123 add_stmt_to_eh_lp_fn (cfun, t, num);
126 /* Add statement T to the single EH landing pad in REGION. */
128 static void
129 record_stmt_eh_region (eh_region region, gimple t)
131 if (region == NULL)
132 return;
133 if (region->type == ERT_MUST_NOT_THROW)
134 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
135 else
137 eh_landing_pad lp = region->landing_pads;
138 if (lp == NULL)
139 lp = gen_eh_landing_pad (region);
140 else
141 gcc_assert (lp->next_lp == NULL);
142 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
147 /* Remove statement T in function IFUN from its EH landing pad. */
149 bool
150 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
152 if (!get_eh_throw_stmt_table (ifun))
153 return false;
155 if (!get_eh_throw_stmt_table (ifun)->get (t))
156 return false;
158 get_eh_throw_stmt_table (ifun)->remove (t);
159 return true;
163 /* Remove statement T in the current function (cfun) from its
164 EH landing pad. */
166 bool
167 remove_stmt_from_eh_lp (gimple t)
169 return remove_stmt_from_eh_lp_fn (cfun, t);
172 /* Determine if statement T is inside an EH region in function IFUN.
173 Positive numbers indicate a landing pad index; negative numbers
174 indicate a MUST_NOT_THROW region index; zero indicates that the
175 statement is not recorded in the region table. */
178 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
180 if (ifun->eh->throw_stmt_table == NULL)
181 return 0;
183 int *lp_nr = ifun->eh->throw_stmt_table->get (t);
184 return lp_nr ? *lp_nr : 0;
187 /* Likewise, but always use the current function. */
190 lookup_stmt_eh_lp (gimple t)
192 /* We can get called from initialized data when -fnon-call-exceptions
193 is on; prevent crash. */
194 if (!cfun)
195 return 0;
196 return lookup_stmt_eh_lp_fn (cfun, t);
199 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
200 nodes and LABEL_DECL nodes. We will use this during the second phase to
201 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
203 struct finally_tree_node
205 /* When storing a GIMPLE_TRY, we have to record a gimple. However
206 when deciding whether a GOTO to a certain LABEL_DECL (which is a
207 tree) leaves the TRY block, its necessary to record a tree in
208 this field. Thus a treemple is used. */
209 treemple child;
210 gtry *parent;
213 /* Hashtable helpers. */
215 struct finally_tree_hasher : typed_free_remove <finally_tree_node>
217 typedef finally_tree_node *value_type;
218 typedef finally_tree_node *compare_type;
219 static inline hashval_t hash (const finally_tree_node *);
220 static inline bool equal (const finally_tree_node *,
221 const finally_tree_node *);
224 inline hashval_t
225 finally_tree_hasher::hash (const finally_tree_node *v)
227 return (intptr_t)v->child.t >> 4;
230 inline bool
231 finally_tree_hasher::equal (const finally_tree_node *v,
232 const finally_tree_node *c)
234 return v->child.t == c->child.t;
237 /* Note that this table is *not* marked GTY. It is short-lived. */
238 static hash_table<finally_tree_hasher> *finally_tree;
240 static void
241 record_in_finally_tree (treemple child, gtry *parent)
243 struct finally_tree_node *n;
244 finally_tree_node **slot;
246 n = XNEW (struct finally_tree_node);
247 n->child = child;
248 n->parent = parent;
250 slot = finally_tree->find_slot (n, INSERT);
251 gcc_assert (!*slot);
252 *slot = n;
255 static void
256 collect_finally_tree (gimple stmt, gtry *region);
258 /* Go through the gimple sequence. Works with collect_finally_tree to
259 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
261 static void
262 collect_finally_tree_1 (gimple_seq seq, gtry *region)
264 gimple_stmt_iterator gsi;
266 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
267 collect_finally_tree (gsi_stmt (gsi), region);
270 static void
271 collect_finally_tree (gimple stmt, gtry *region)
273 treemple temp;
275 switch (gimple_code (stmt))
277 case GIMPLE_LABEL:
278 temp.t = gimple_label_label (as_a <glabel *> (stmt));
279 record_in_finally_tree (temp, region);
280 break;
282 case GIMPLE_TRY:
283 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
285 temp.g = stmt;
286 record_in_finally_tree (temp, region);
287 collect_finally_tree_1 (gimple_try_eval (stmt),
288 as_a <gtry *> (stmt));
289 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
291 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
293 collect_finally_tree_1 (gimple_try_eval (stmt), region);
294 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
296 break;
298 case GIMPLE_CATCH:
299 collect_finally_tree_1 (gimple_catch_handler (
300 as_a <gcatch *> (stmt)),
301 region);
302 break;
304 case GIMPLE_EH_FILTER:
305 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
306 break;
308 case GIMPLE_EH_ELSE:
310 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
311 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region);
312 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region);
314 break;
316 default:
317 /* A type, a decl, or some kind of statement that we're not
318 interested in. Don't walk them. */
319 break;
324 /* Use the finally tree to determine if a jump from START to TARGET
325 would leave the try_finally node that START lives in. */
327 static bool
328 outside_finally_tree (treemple start, gimple target)
330 struct finally_tree_node n, *p;
334 n.child = start;
335 p = finally_tree->find (&n);
336 if (!p)
337 return true;
338 start.g = p->parent;
340 while (start.g != target);
342 return false;
345 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
346 nodes into a set of gotos, magic labels, and eh regions.
347 The eh region creation is straight-forward, but frobbing all the gotos
348 and such into shape isn't. */
350 /* The sequence into which we record all EH stuff. This will be
351 placed at the end of the function when we're all done. */
352 static gimple_seq eh_seq;
354 /* Record whether an EH region contains something that can throw,
355 indexed by EH region number. */
356 static bitmap eh_region_may_contain_throw_map;
358 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
359 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
360 The idea is to record a gimple statement for everything except for
361 the conditionals, which get their labels recorded. Since labels are
362 of type 'tree', we need this node to store both gimple and tree
363 objects. REPL_STMT is the sequence used to replace the goto/return
364 statement. CONT_STMT is used to store the statement that allows
365 the return/goto to jump to the original destination. */
367 struct goto_queue_node
369 treemple stmt;
370 location_t location;
371 gimple_seq repl_stmt;
372 gimple cont_stmt;
373 int index;
374 /* This is used when index >= 0 to indicate that stmt is a label (as
375 opposed to a goto stmt). */
376 int is_label;
379 /* State of the world while lowering. */
381 struct leh_state
383 /* What's "current" while constructing the eh region tree. These
384 correspond to variables of the same name in cfun->eh, which we
385 don't have easy access to. */
386 eh_region cur_region;
388 /* What's "current" for the purposes of __builtin_eh_pointer. For
389 a CATCH, this is the associated TRY. For an EH_FILTER, this is
390 the associated ALLOWED_EXCEPTIONS, etc. */
391 eh_region ehp_region;
393 /* Processing of TRY_FINALLY requires a bit more state. This is
394 split out into a separate structure so that we don't have to
395 copy so much when processing other nodes. */
396 struct leh_tf_state *tf;
399 struct leh_tf_state
401 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
402 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
403 this so that outside_finally_tree can reliably reference the tree used
404 in the collect_finally_tree data structures. */
405 gtry *try_finally_expr;
406 gtry *top_p;
408 /* While lowering a top_p usually it is expanded into multiple statements,
409 thus we need the following field to store them. */
410 gimple_seq top_p_seq;
412 /* The state outside this try_finally node. */
413 struct leh_state *outer;
415 /* The exception region created for it. */
416 eh_region region;
418 /* The goto queue. */
419 struct goto_queue_node *goto_queue;
420 size_t goto_queue_size;
421 size_t goto_queue_active;
423 /* Pointer map to help in searching goto_queue when it is large. */
424 hash_map<gimple, goto_queue_node *> *goto_queue_map;
426 /* The set of unique labels seen as entries in the goto queue. */
427 vec<tree> dest_array;
429 /* A label to be added at the end of the completed transformed
430 sequence. It will be set if may_fallthru was true *at one time*,
431 though subsequent transformations may have cleared that flag. */
432 tree fallthru_label;
434 /* True if it is possible to fall out the bottom of the try block.
435 Cleared if the fallthru is converted to a goto. */
436 bool may_fallthru;
438 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
439 bool may_return;
441 /* True if the finally block can receive an exception edge.
442 Cleared if the exception case is handled by code duplication. */
443 bool may_throw;
446 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
448 /* Search for STMT in the goto queue. Return the replacement,
449 or null if the statement isn't in the queue. */
451 #define LARGE_GOTO_QUEUE 20
453 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
455 static gimple_seq
456 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
458 unsigned int i;
460 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
462 for (i = 0; i < tf->goto_queue_active; i++)
463 if ( tf->goto_queue[i].stmt.g == stmt.g)
464 return tf->goto_queue[i].repl_stmt;
465 return NULL;
468 /* If we have a large number of entries in the goto_queue, create a
469 pointer map and use that for searching. */
471 if (!tf->goto_queue_map)
473 tf->goto_queue_map = new hash_map<gimple, goto_queue_node *>;
474 for (i = 0; i < tf->goto_queue_active; i++)
476 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
477 &tf->goto_queue[i]);
478 gcc_assert (!existed);
482 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
483 if (slot != NULL)
484 return ((*slot)->repl_stmt);
486 return NULL;
489 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
490 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
491 then we can just splat it in, otherwise we add the new stmts immediately
492 after the GIMPLE_COND and redirect. */
494 static void
495 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
496 gimple_stmt_iterator *gsi)
498 tree label;
499 gimple_seq new_seq;
500 treemple temp;
501 location_t loc = gimple_location (gsi_stmt (*gsi));
503 temp.tp = tp;
504 new_seq = find_goto_replacement (tf, temp);
505 if (!new_seq)
506 return;
508 if (gimple_seq_singleton_p (new_seq)
509 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
511 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
512 return;
515 label = create_artificial_label (loc);
516 /* Set the new label for the GIMPLE_COND */
517 *tp = label;
519 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
520 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
523 /* The real work of replace_goto_queue. Returns with TSI updated to
524 point to the next statement. */
526 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
528 static void
529 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
530 gimple_stmt_iterator *gsi)
532 gimple_seq seq;
533 treemple temp;
534 temp.g = NULL;
536 switch (gimple_code (stmt))
538 case GIMPLE_GOTO:
539 case GIMPLE_RETURN:
540 temp.g = stmt;
541 seq = find_goto_replacement (tf, temp);
542 if (seq)
544 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
545 gsi_remove (gsi, false);
546 return;
548 break;
550 case GIMPLE_COND:
551 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
552 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
553 break;
555 case GIMPLE_TRY:
556 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
557 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
558 break;
559 case GIMPLE_CATCH:
560 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
561 as_a <gcatch *> (stmt)),
562 tf);
563 break;
564 case GIMPLE_EH_FILTER:
565 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
566 break;
567 case GIMPLE_EH_ELSE:
569 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
570 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
571 tf);
572 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
573 tf);
575 break;
577 default:
578 /* These won't have gotos in them. */
579 break;
582 gsi_next (gsi);
585 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
587 static void
588 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
590 gimple_stmt_iterator gsi = gsi_start (*seq);
592 while (!gsi_end_p (gsi))
593 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
596 /* Replace all goto queue members. */
598 static void
599 replace_goto_queue (struct leh_tf_state *tf)
601 if (tf->goto_queue_active == 0)
602 return;
603 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
604 replace_goto_queue_stmt_list (&eh_seq, tf);
607 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
608 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
609 a gimple return. */
611 static void
612 record_in_goto_queue (struct leh_tf_state *tf,
613 treemple new_stmt,
614 int index,
615 bool is_label,
616 location_t location)
618 size_t active, size;
619 struct goto_queue_node *q;
621 gcc_assert (!tf->goto_queue_map);
623 active = tf->goto_queue_active;
624 size = tf->goto_queue_size;
625 if (active >= size)
627 size = (size ? size * 2 : 32);
628 tf->goto_queue_size = size;
629 tf->goto_queue
630 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
633 q = &tf->goto_queue[active];
634 tf->goto_queue_active = active + 1;
636 memset (q, 0, sizeof (*q));
637 q->stmt = new_stmt;
638 q->index = index;
639 q->location = location;
640 q->is_label = is_label;
643 /* Record the LABEL label in the goto queue contained in TF.
644 TF is not null. */
646 static void
647 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
648 location_t location)
650 int index;
651 treemple temp, new_stmt;
653 if (!label)
654 return;
656 /* Computed and non-local gotos do not get processed. Given
657 their nature we can neither tell whether we've escaped the
658 finally block nor redirect them if we knew. */
659 if (TREE_CODE (label) != LABEL_DECL)
660 return;
662 /* No need to record gotos that don't leave the try block. */
663 temp.t = label;
664 if (!outside_finally_tree (temp, tf->try_finally_expr))
665 return;
667 if (! tf->dest_array.exists ())
669 tf->dest_array.create (10);
670 tf->dest_array.quick_push (label);
671 index = 0;
673 else
675 int n = tf->dest_array.length ();
676 for (index = 0; index < n; ++index)
677 if (tf->dest_array[index] == label)
678 break;
679 if (index == n)
680 tf->dest_array.safe_push (label);
683 /* In the case of a GOTO we want to record the destination label,
684 since with a GIMPLE_COND we have an easy access to the then/else
685 labels. */
686 new_stmt = stmt;
687 record_in_goto_queue (tf, new_stmt, index, true, location);
690 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
691 node, and if so record that fact in the goto queue associated with that
692 try_finally node. */
694 static void
695 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
697 struct leh_tf_state *tf = state->tf;
698 treemple new_stmt;
700 if (!tf)
701 return;
703 switch (gimple_code (stmt))
705 case GIMPLE_COND:
707 gcond *cond_stmt = as_a <gcond *> (stmt);
708 new_stmt.tp = gimple_op_ptr (cond_stmt, 2);
709 record_in_goto_queue_label (tf, new_stmt,
710 gimple_cond_true_label (cond_stmt),
711 EXPR_LOCATION (*new_stmt.tp));
712 new_stmt.tp = gimple_op_ptr (cond_stmt, 3);
713 record_in_goto_queue_label (tf, new_stmt,
714 gimple_cond_false_label (cond_stmt),
715 EXPR_LOCATION (*new_stmt.tp));
717 break;
718 case GIMPLE_GOTO:
719 new_stmt.g = stmt;
720 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
721 gimple_location (stmt));
722 break;
724 case GIMPLE_RETURN:
725 tf->may_return = true;
726 new_stmt.g = stmt;
727 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
728 break;
730 default:
731 gcc_unreachable ();
736 #ifdef ENABLE_CHECKING
737 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
738 was in fact structured, and we've not yet done jump threading, then none
739 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
741 static void
742 verify_norecord_switch_expr (struct leh_state *state,
743 gswitch *switch_expr)
745 struct leh_tf_state *tf = state->tf;
746 size_t i, n;
748 if (!tf)
749 return;
751 n = gimple_switch_num_labels (switch_expr);
753 for (i = 0; i < n; ++i)
755 treemple temp;
756 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
757 temp.t = lab;
758 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
761 #else
762 #define verify_norecord_switch_expr(state, switch_expr)
763 #endif
765 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
766 non-null, insert it before the new branch. */
768 static void
769 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
771 gimple x;
773 /* In the case of a return, the queue node must be a gimple statement. */
774 gcc_assert (!q->is_label);
776 /* Note that the return value may have already been computed, e.g.,
778 int x;
779 int foo (void)
781 x = 0;
782 try {
783 return x;
784 } finally {
785 x++;
789 should return 0, not 1. We don't have to do anything to make
790 this happens because the return value has been placed in the
791 RESULT_DECL already. */
793 q->cont_stmt = q->stmt.g;
795 if (mod)
796 gimple_seq_add_seq (&q->repl_stmt, mod);
798 x = gimple_build_goto (finlab);
799 gimple_set_location (x, q->location);
800 gimple_seq_add_stmt (&q->repl_stmt, x);
803 /* Similar, but easier, for GIMPLE_GOTO. */
805 static void
806 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
807 struct leh_tf_state *tf)
809 ggoto *x;
811 gcc_assert (q->is_label);
813 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
815 if (mod)
816 gimple_seq_add_seq (&q->repl_stmt, mod);
818 x = gimple_build_goto (finlab);
819 gimple_set_location (x, q->location);
820 gimple_seq_add_stmt (&q->repl_stmt, x);
823 /* Emit a standard landing pad sequence into SEQ for REGION. */
825 static void
826 emit_post_landing_pad (gimple_seq *seq, eh_region region)
828 eh_landing_pad lp = region->landing_pads;
829 glabel *x;
831 if (lp == NULL)
832 lp = gen_eh_landing_pad (region);
834 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
835 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
837 x = gimple_build_label (lp->post_landing_pad);
838 gimple_seq_add_stmt (seq, x);
841 /* Emit a RESX statement into SEQ for REGION. */
843 static void
844 emit_resx (gimple_seq *seq, eh_region region)
846 gresx *x = gimple_build_resx (region->index);
847 gimple_seq_add_stmt (seq, x);
848 if (region->outer)
849 record_stmt_eh_region (region->outer, x);
852 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
854 static void
855 emit_eh_dispatch (gimple_seq *seq, eh_region region)
857 geh_dispatch *x = gimple_build_eh_dispatch (region->index);
858 gimple_seq_add_stmt (seq, x);
861 /* Note that the current EH region may contain a throw, or a
862 call to a function which itself may contain a throw. */
864 static void
865 note_eh_region_may_contain_throw (eh_region region)
867 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
869 if (region->type == ERT_MUST_NOT_THROW)
870 break;
871 region = region->outer;
872 if (region == NULL)
873 break;
877 /* Check if REGION has been marked as containing a throw. If REGION is
878 NULL, this predicate is false. */
880 static inline bool
881 eh_region_may_contain_throw (eh_region r)
883 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
886 /* We want to transform
887 try { body; } catch { stuff; }
889 normal_sequence:
890 body;
891 over:
892 eh_sequence:
893 landing_pad:
894 stuff;
895 goto over;
897 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
898 should be placed before the second operand, or NULL. OVER is
899 an existing label that should be put at the exit, or NULL. */
901 static gimple_seq
902 frob_into_branch_around (gtry *tp, eh_region region, tree over)
904 gimple x;
905 gimple_seq cleanup, result;
906 location_t loc = gimple_location (tp);
908 cleanup = gimple_try_cleanup (tp);
909 result = gimple_try_eval (tp);
911 if (region)
912 emit_post_landing_pad (&eh_seq, region);
914 if (gimple_seq_may_fallthru (cleanup))
916 if (!over)
917 over = create_artificial_label (loc);
918 x = gimple_build_goto (over);
919 gimple_set_location (x, loc);
920 gimple_seq_add_stmt (&cleanup, x);
922 gimple_seq_add_seq (&eh_seq, cleanup);
924 if (over)
926 x = gimple_build_label (over);
927 gimple_seq_add_stmt (&result, x);
929 return result;
932 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
933 Make sure to record all new labels found. */
935 static gimple_seq
936 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
937 location_t loc)
939 gtry *region = NULL;
940 gimple_seq new_seq;
941 gimple_stmt_iterator gsi;
943 new_seq = copy_gimple_seq_and_replace_locals (seq);
945 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
947 gimple stmt = gsi_stmt (gsi);
948 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
950 tree block = gimple_block (stmt);
951 gimple_set_location (stmt, loc);
952 gimple_set_block (stmt, block);
956 if (outer_state->tf)
957 region = outer_state->tf->try_finally_expr;
958 collect_finally_tree_1 (new_seq, region);
960 return new_seq;
963 /* A subroutine of lower_try_finally. Create a fallthru label for
964 the given try_finally state. The only tricky bit here is that
965 we have to make sure to record the label in our outer context. */
967 static tree
968 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
970 tree label = tf->fallthru_label;
971 treemple temp;
973 if (!label)
975 label = create_artificial_label (gimple_location (tf->try_finally_expr));
976 tf->fallthru_label = label;
977 if (tf->outer->tf)
979 temp.t = label;
980 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
983 return label;
986 /* A subroutine of lower_try_finally. If FINALLY consits of a
987 GIMPLE_EH_ELSE node, return it. */
989 static inline geh_else *
990 get_eh_else (gimple_seq finally)
992 gimple x = gimple_seq_first_stmt (finally);
993 if (gimple_code (x) == GIMPLE_EH_ELSE)
995 gcc_assert (gimple_seq_singleton_p (finally));
996 return as_a <geh_else *> (x);
998 return NULL;
1001 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
1002 langhook returns non-null, then the language requires that the exception
1003 path out of a try_finally be treated specially. To wit: the code within
1004 the finally block may not itself throw an exception. We have two choices
1005 here. First we can duplicate the finally block and wrap it in a
1006 must_not_throw region. Second, we can generate code like
1008 try {
1009 finally_block;
1010 } catch {
1011 if (fintmp == eh_edge)
1012 protect_cleanup_actions;
1015 where "fintmp" is the temporary used in the switch statement generation
1016 alternative considered below. For the nonce, we always choose the first
1017 option.
1019 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
1021 static void
1022 honor_protect_cleanup_actions (struct leh_state *outer_state,
1023 struct leh_state *this_state,
1024 struct leh_tf_state *tf)
1026 tree protect_cleanup_actions;
1027 gimple_stmt_iterator gsi;
1028 bool finally_may_fallthru;
1029 gimple_seq finally;
1030 gimple x;
1031 geh_mnt *eh_mnt;
1032 gtry *try_stmt;
1033 geh_else *eh_else;
1035 /* First check for nothing to do. */
1036 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1037 return;
1038 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1039 if (protect_cleanup_actions == NULL)
1040 return;
1042 finally = gimple_try_cleanup (tf->top_p);
1043 eh_else = get_eh_else (finally);
1045 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1046 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1047 if (eh_else)
1049 finally = gimple_eh_else_e_body (eh_else);
1050 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1052 else if (this_state)
1053 finally = lower_try_finally_dup_block (finally, outer_state,
1054 gimple_location (tf->try_finally_expr));
1055 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1057 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1058 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1059 to be in an enclosing scope, but needs to be implemented at this level
1060 to avoid a nesting violation (see wrap_temporary_cleanups in
1061 cp/decl.c). Since it's logically at an outer level, we should call
1062 terminate before we get to it, so strip it away before adding the
1063 MUST_NOT_THROW filter. */
1064 gsi = gsi_start (finally);
1065 x = gsi_stmt (gsi);
1066 if (gimple_code (x) == GIMPLE_TRY
1067 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1068 && gimple_try_catch_is_cleanup (x))
1070 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1071 gsi_remove (&gsi, false);
1074 /* Wrap the block with protect_cleanup_actions as the action. */
1075 eh_mnt = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1076 try_stmt = gimple_build_try (finally, gimple_seq_alloc_with_stmt (eh_mnt),
1077 GIMPLE_TRY_CATCH);
1078 finally = lower_eh_must_not_throw (outer_state, try_stmt);
1080 /* Drop all of this into the exception sequence. */
1081 emit_post_landing_pad (&eh_seq, tf->region);
1082 gimple_seq_add_seq (&eh_seq, finally);
1083 if (finally_may_fallthru)
1084 emit_resx (&eh_seq, tf->region);
1086 /* Having now been handled, EH isn't to be considered with
1087 the rest of the outgoing edges. */
1088 tf->may_throw = false;
1091 /* A subroutine of lower_try_finally. We have determined that there is
1092 no fallthru edge out of the finally block. This means that there is
1093 no outgoing edge corresponding to any incoming edge. Restructure the
1094 try_finally node for this special case. */
1096 static void
1097 lower_try_finally_nofallthru (struct leh_state *state,
1098 struct leh_tf_state *tf)
1100 tree lab;
1101 gimple x;
1102 geh_else *eh_else;
1103 gimple_seq finally;
1104 struct goto_queue_node *q, *qe;
1106 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1108 /* We expect that tf->top_p is a GIMPLE_TRY. */
1109 finally = gimple_try_cleanup (tf->top_p);
1110 tf->top_p_seq = gimple_try_eval (tf->top_p);
1112 x = gimple_build_label (lab);
1113 gimple_seq_add_stmt (&tf->top_p_seq, x);
1115 q = tf->goto_queue;
1116 qe = q + tf->goto_queue_active;
1117 for (; q < qe; ++q)
1118 if (q->index < 0)
1119 do_return_redirection (q, lab, NULL);
1120 else
1121 do_goto_redirection (q, lab, NULL, tf);
1123 replace_goto_queue (tf);
1125 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1126 eh_else = get_eh_else (finally);
1127 if (eh_else)
1129 finally = gimple_eh_else_n_body (eh_else);
1130 lower_eh_constructs_1 (state, &finally);
1131 gimple_seq_add_seq (&tf->top_p_seq, finally);
1133 if (tf->may_throw)
1135 finally = gimple_eh_else_e_body (eh_else);
1136 lower_eh_constructs_1 (state, &finally);
1138 emit_post_landing_pad (&eh_seq, tf->region);
1139 gimple_seq_add_seq (&eh_seq, finally);
1142 else
1144 lower_eh_constructs_1 (state, &finally);
1145 gimple_seq_add_seq (&tf->top_p_seq, finally);
1147 if (tf->may_throw)
1149 emit_post_landing_pad (&eh_seq, tf->region);
1151 x = gimple_build_goto (lab);
1152 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1153 gimple_seq_add_stmt (&eh_seq, x);
1158 /* A subroutine of lower_try_finally. We have determined that there is
1159 exactly one destination of the finally block. Restructure the
1160 try_finally node for this special case. */
1162 static void
1163 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1165 struct goto_queue_node *q, *qe;
1166 geh_else *eh_else;
1167 glabel *label_stmt;
1168 gimple x;
1169 gimple_seq finally;
1170 gimple_stmt_iterator gsi;
1171 tree finally_label;
1172 location_t loc = gimple_location (tf->try_finally_expr);
1174 finally = gimple_try_cleanup (tf->top_p);
1175 tf->top_p_seq = gimple_try_eval (tf->top_p);
1177 /* Since there's only one destination, and the destination edge can only
1178 either be EH or non-EH, that implies that all of our incoming edges
1179 are of the same type. Therefore we can lower EH_ELSE immediately. */
1180 eh_else = get_eh_else (finally);
1181 if (eh_else)
1183 if (tf->may_throw)
1184 finally = gimple_eh_else_e_body (eh_else);
1185 else
1186 finally = gimple_eh_else_n_body (eh_else);
1189 lower_eh_constructs_1 (state, &finally);
1191 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1193 gimple stmt = gsi_stmt (gsi);
1194 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1196 tree block = gimple_block (stmt);
1197 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1198 gimple_set_block (stmt, block);
1202 if (tf->may_throw)
1204 /* Only reachable via the exception edge. Add the given label to
1205 the head of the FINALLY block. Append a RESX at the end. */
1206 emit_post_landing_pad (&eh_seq, tf->region);
1207 gimple_seq_add_seq (&eh_seq, finally);
1208 emit_resx (&eh_seq, tf->region);
1209 return;
1212 if (tf->may_fallthru)
1214 /* Only reachable via the fallthru edge. Do nothing but let
1215 the two blocks run together; we'll fall out the bottom. */
1216 gimple_seq_add_seq (&tf->top_p_seq, finally);
1217 return;
1220 finally_label = create_artificial_label (loc);
1221 label_stmt = gimple_build_label (finally_label);
1222 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
1224 gimple_seq_add_seq (&tf->top_p_seq, finally);
1226 q = tf->goto_queue;
1227 qe = q + tf->goto_queue_active;
1229 if (tf->may_return)
1231 /* Reachable by return expressions only. Redirect them. */
1232 for (; q < qe; ++q)
1233 do_return_redirection (q, finally_label, NULL);
1234 replace_goto_queue (tf);
1236 else
1238 /* Reachable by goto expressions only. Redirect them. */
1239 for (; q < qe; ++q)
1240 do_goto_redirection (q, finally_label, NULL, tf);
1241 replace_goto_queue (tf);
1243 if (tf->dest_array[0] == tf->fallthru_label)
1245 /* Reachable by goto to fallthru label only. Redirect it
1246 to the new label (already created, sadly), and do not
1247 emit the final branch out, or the fallthru label. */
1248 tf->fallthru_label = NULL;
1249 return;
1253 /* Place the original return/goto to the original destination
1254 immediately after the finally block. */
1255 x = tf->goto_queue[0].cont_stmt;
1256 gimple_seq_add_stmt (&tf->top_p_seq, x);
1257 maybe_record_in_goto_queue (state, x);
1260 /* A subroutine of lower_try_finally. There are multiple edges incoming
1261 and outgoing from the finally block. Implement this by duplicating the
1262 finally block for every destination. */
1264 static void
1265 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1267 gimple_seq finally;
1268 gimple_seq new_stmt;
1269 gimple_seq seq;
1270 gimple x;
1271 geh_else *eh_else;
1272 tree tmp;
1273 location_t tf_loc = gimple_location (tf->try_finally_expr);
1275 finally = gimple_try_cleanup (tf->top_p);
1277 /* Notice EH_ELSE, and simplify some of the remaining code
1278 by considering FINALLY to be the normal return path only. */
1279 eh_else = get_eh_else (finally);
1280 if (eh_else)
1281 finally = gimple_eh_else_n_body (eh_else);
1283 tf->top_p_seq = gimple_try_eval (tf->top_p);
1284 new_stmt = NULL;
1286 if (tf->may_fallthru)
1288 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1289 lower_eh_constructs_1 (state, &seq);
1290 gimple_seq_add_seq (&new_stmt, seq);
1292 tmp = lower_try_finally_fallthru_label (tf);
1293 x = gimple_build_goto (tmp);
1294 gimple_set_location (x, tf_loc);
1295 gimple_seq_add_stmt (&new_stmt, x);
1298 if (tf->may_throw)
1300 /* We don't need to copy the EH path of EH_ELSE,
1301 since it is only emitted once. */
1302 if (eh_else)
1303 seq = gimple_eh_else_e_body (eh_else);
1304 else
1305 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1306 lower_eh_constructs_1 (state, &seq);
1308 emit_post_landing_pad (&eh_seq, tf->region);
1309 gimple_seq_add_seq (&eh_seq, seq);
1310 emit_resx (&eh_seq, tf->region);
1313 if (tf->goto_queue)
1315 struct goto_queue_node *q, *qe;
1316 int return_index, index;
1317 struct labels_s
1319 struct goto_queue_node *q;
1320 tree label;
1321 } *labels;
1323 return_index = tf->dest_array.length ();
1324 labels = XCNEWVEC (struct labels_s, return_index + 1);
1326 q = tf->goto_queue;
1327 qe = q + tf->goto_queue_active;
1328 for (; q < qe; q++)
1330 index = q->index < 0 ? return_index : q->index;
1332 if (!labels[index].q)
1333 labels[index].q = q;
1336 for (index = 0; index < return_index + 1; index++)
1338 tree lab;
1340 q = labels[index].q;
1341 if (! q)
1342 continue;
1344 lab = labels[index].label
1345 = create_artificial_label (tf_loc);
1347 if (index == return_index)
1348 do_return_redirection (q, lab, NULL);
1349 else
1350 do_goto_redirection (q, lab, NULL, tf);
1352 x = gimple_build_label (lab);
1353 gimple_seq_add_stmt (&new_stmt, x);
1355 seq = lower_try_finally_dup_block (finally, state, q->location);
1356 lower_eh_constructs_1 (state, &seq);
1357 gimple_seq_add_seq (&new_stmt, seq);
1359 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1360 maybe_record_in_goto_queue (state, q->cont_stmt);
1363 for (q = tf->goto_queue; q < qe; q++)
1365 tree lab;
1367 index = q->index < 0 ? return_index : q->index;
1369 if (labels[index].q == q)
1370 continue;
1372 lab = labels[index].label;
1374 if (index == return_index)
1375 do_return_redirection (q, lab, NULL);
1376 else
1377 do_goto_redirection (q, lab, NULL, tf);
1380 replace_goto_queue (tf);
1381 free (labels);
1384 /* Need to link new stmts after running replace_goto_queue due
1385 to not wanting to process the same goto stmts twice. */
1386 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1389 /* A subroutine of lower_try_finally. There are multiple edges incoming
1390 and outgoing from the finally block. Implement this by instrumenting
1391 each incoming edge and creating a switch statement at the end of the
1392 finally block that branches to the appropriate destination. */
1394 static void
1395 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1397 struct goto_queue_node *q, *qe;
1398 tree finally_tmp, finally_label;
1399 int return_index, eh_index, fallthru_index;
1400 int nlabels, ndests, j, last_case_index;
1401 tree last_case;
1402 vec<tree> case_label_vec;
1403 gimple_seq switch_body = NULL;
1404 gimple x;
1405 geh_else *eh_else;
1406 tree tmp;
1407 gimple switch_stmt;
1408 gimple_seq finally;
1409 hash_map<tree, gimple> *cont_map = NULL;
1410 /* The location of the TRY_FINALLY stmt. */
1411 location_t tf_loc = gimple_location (tf->try_finally_expr);
1412 /* The location of the finally block. */
1413 location_t finally_loc;
1415 finally = gimple_try_cleanup (tf->top_p);
1416 eh_else = get_eh_else (finally);
1418 /* Mash the TRY block to the head of the chain. */
1419 tf->top_p_seq = gimple_try_eval (tf->top_p);
1421 /* The location of the finally is either the last stmt in the finally
1422 block or the location of the TRY_FINALLY itself. */
1423 x = gimple_seq_last_stmt (finally);
1424 finally_loc = x ? gimple_location (x) : tf_loc;
1426 /* Prepare for switch statement generation. */
1427 nlabels = tf->dest_array.length ();
1428 return_index = nlabels;
1429 eh_index = return_index + tf->may_return;
1430 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1431 ndests = fallthru_index + tf->may_fallthru;
1433 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1434 finally_label = create_artificial_label (finally_loc);
1436 /* We use vec::quick_push on case_label_vec throughout this function,
1437 since we know the size in advance and allocate precisely as muce
1438 space as needed. */
1439 case_label_vec.create (ndests);
1440 last_case = NULL;
1441 last_case_index = 0;
1443 /* Begin inserting code for getting to the finally block. Things
1444 are done in this order to correspond to the sequence the code is
1445 laid out. */
1447 if (tf->may_fallthru)
1449 x = gimple_build_assign (finally_tmp,
1450 build_int_cst (integer_type_node,
1451 fallthru_index));
1452 gimple_seq_add_stmt (&tf->top_p_seq, x);
1454 tmp = build_int_cst (integer_type_node, fallthru_index);
1455 last_case = build_case_label (tmp, NULL,
1456 create_artificial_label (tf_loc));
1457 case_label_vec.quick_push (last_case);
1458 last_case_index++;
1460 x = gimple_build_label (CASE_LABEL (last_case));
1461 gimple_seq_add_stmt (&switch_body, x);
1463 tmp = lower_try_finally_fallthru_label (tf);
1464 x = gimple_build_goto (tmp);
1465 gimple_set_location (x, tf_loc);
1466 gimple_seq_add_stmt (&switch_body, x);
1469 /* For EH_ELSE, emit the exception path (plus resx) now, then
1470 subsequently we only need consider the normal path. */
1471 if (eh_else)
1473 if (tf->may_throw)
1475 finally = gimple_eh_else_e_body (eh_else);
1476 lower_eh_constructs_1 (state, &finally);
1478 emit_post_landing_pad (&eh_seq, tf->region);
1479 gimple_seq_add_seq (&eh_seq, finally);
1480 emit_resx (&eh_seq, tf->region);
1483 finally = gimple_eh_else_n_body (eh_else);
1485 else if (tf->may_throw)
1487 emit_post_landing_pad (&eh_seq, tf->region);
1489 x = gimple_build_assign (finally_tmp,
1490 build_int_cst (integer_type_node, eh_index));
1491 gimple_seq_add_stmt (&eh_seq, x);
1493 x = gimple_build_goto (finally_label);
1494 gimple_set_location (x, tf_loc);
1495 gimple_seq_add_stmt (&eh_seq, x);
1497 tmp = build_int_cst (integer_type_node, eh_index);
1498 last_case = build_case_label (tmp, NULL,
1499 create_artificial_label (tf_loc));
1500 case_label_vec.quick_push (last_case);
1501 last_case_index++;
1503 x = gimple_build_label (CASE_LABEL (last_case));
1504 gimple_seq_add_stmt (&eh_seq, x);
1505 emit_resx (&eh_seq, tf->region);
1508 x = gimple_build_label (finally_label);
1509 gimple_seq_add_stmt (&tf->top_p_seq, x);
1511 lower_eh_constructs_1 (state, &finally);
1512 gimple_seq_add_seq (&tf->top_p_seq, finally);
1514 /* Redirect each incoming goto edge. */
1515 q = tf->goto_queue;
1516 qe = q + tf->goto_queue_active;
1517 j = last_case_index + tf->may_return;
1518 /* Prepare the assignments to finally_tmp that are executed upon the
1519 entrance through a particular edge. */
1520 for (; q < qe; ++q)
1522 gimple_seq mod = NULL;
1523 int switch_id;
1524 unsigned int case_index;
1526 if (q->index < 0)
1528 x = gimple_build_assign (finally_tmp,
1529 build_int_cst (integer_type_node,
1530 return_index));
1531 gimple_seq_add_stmt (&mod, x);
1532 do_return_redirection (q, finally_label, mod);
1533 switch_id = return_index;
1535 else
1537 x = gimple_build_assign (finally_tmp,
1538 build_int_cst (integer_type_node, q->index));
1539 gimple_seq_add_stmt (&mod, x);
1540 do_goto_redirection (q, finally_label, mod, tf);
1541 switch_id = q->index;
1544 case_index = j + q->index;
1545 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1547 tree case_lab;
1548 tmp = build_int_cst (integer_type_node, switch_id);
1549 case_lab = build_case_label (tmp, NULL,
1550 create_artificial_label (tf_loc));
1551 /* We store the cont_stmt in the pointer map, so that we can recover
1552 it in the loop below. */
1553 if (!cont_map)
1554 cont_map = new hash_map<tree, gimple>;
1555 cont_map->put (case_lab, q->cont_stmt);
1556 case_label_vec.quick_push (case_lab);
1559 for (j = last_case_index; j < last_case_index + nlabels; j++)
1561 gimple cont_stmt;
1563 last_case = case_label_vec[j];
1565 gcc_assert (last_case);
1566 gcc_assert (cont_map);
1568 cont_stmt = *cont_map->get (last_case);
1570 x = gimple_build_label (CASE_LABEL (last_case));
1571 gimple_seq_add_stmt (&switch_body, x);
1572 gimple_seq_add_stmt (&switch_body, cont_stmt);
1573 maybe_record_in_goto_queue (state, cont_stmt);
1575 if (cont_map)
1576 delete cont_map;
1578 replace_goto_queue (tf);
1580 /* Make sure that the last case is the default label, as one is required.
1581 Then sort the labels, which is also required in GIMPLE. */
1582 CASE_LOW (last_case) = NULL;
1583 tree tem = case_label_vec.pop ();
1584 gcc_assert (tem == last_case);
1585 sort_case_labels (case_label_vec);
1587 /* Build the switch statement, setting last_case to be the default
1588 label. */
1589 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1590 case_label_vec);
1591 gimple_set_location (switch_stmt, finally_loc);
1593 /* Need to link SWITCH_STMT after running replace_goto_queue
1594 due to not wanting to process the same goto stmts twice. */
1595 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1596 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1599 /* Decide whether or not we are going to duplicate the finally block.
1600 There are several considerations.
1602 First, if this is Java, then the finally block contains code
1603 written by the user. It has line numbers associated with it,
1604 so duplicating the block means it's difficult to set a breakpoint.
1605 Since controlling code generation via -g is verboten, we simply
1606 never duplicate code without optimization.
1608 Second, we'd like to prevent egregious code growth. One way to
1609 do this is to estimate the size of the finally block, multiply
1610 that by the number of copies we'd need to make, and compare against
1611 the estimate of the size of the switch machinery we'd have to add. */
1613 static bool
1614 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1616 int f_estimate, sw_estimate;
1617 geh_else *eh_else;
1619 /* If there's an EH_ELSE involved, the exception path is separate
1620 and really doesn't come into play for this computation. */
1621 eh_else = get_eh_else (finally);
1622 if (eh_else)
1624 ndests -= may_throw;
1625 finally = gimple_eh_else_n_body (eh_else);
1628 if (!optimize)
1630 gimple_stmt_iterator gsi;
1632 if (ndests == 1)
1633 return true;
1635 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1637 gimple stmt = gsi_stmt (gsi);
1638 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1639 return false;
1641 return true;
1644 /* Finally estimate N times, plus N gotos. */
1645 f_estimate = count_insns_seq (finally, &eni_size_weights);
1646 f_estimate = (f_estimate + 1) * ndests;
1648 /* Switch statement (cost 10), N variable assignments, N gotos. */
1649 sw_estimate = 10 + 2 * ndests;
1651 /* Optimize for size clearly wants our best guess. */
1652 if (optimize_function_for_size_p (cfun))
1653 return f_estimate < sw_estimate;
1655 /* ??? These numbers are completely made up so far. */
1656 if (optimize > 1)
1657 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1658 else
1659 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1662 /* REG is the enclosing region for a possible cleanup region, or the region
1663 itself. Returns TRUE if such a region would be unreachable.
1665 Cleanup regions within a must-not-throw region aren't actually reachable
1666 even if there are throwing stmts within them, because the personality
1667 routine will call terminate before unwinding. */
1669 static bool
1670 cleanup_is_dead_in (eh_region reg)
1672 while (reg && reg->type == ERT_CLEANUP)
1673 reg = reg->outer;
1674 return (reg && reg->type == ERT_MUST_NOT_THROW);
1677 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1678 to a sequence of labels and blocks, plus the exception region trees
1679 that record all the magic. This is complicated by the need to
1680 arrange for the FINALLY block to be executed on all exits. */
1682 static gimple_seq
1683 lower_try_finally (struct leh_state *state, gtry *tp)
1685 struct leh_tf_state this_tf;
1686 struct leh_state this_state;
1687 int ndests;
1688 gimple_seq old_eh_seq;
1690 /* Process the try block. */
1692 memset (&this_tf, 0, sizeof (this_tf));
1693 this_tf.try_finally_expr = tp;
1694 this_tf.top_p = tp;
1695 this_tf.outer = state;
1696 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1698 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1699 this_state.cur_region = this_tf.region;
1701 else
1703 this_tf.region = NULL;
1704 this_state.cur_region = state->cur_region;
1707 this_state.ehp_region = state->ehp_region;
1708 this_state.tf = &this_tf;
1710 old_eh_seq = eh_seq;
1711 eh_seq = NULL;
1713 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1715 /* Determine if the try block is escaped through the bottom. */
1716 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1718 /* Determine if any exceptions are possible within the try block. */
1719 if (this_tf.region)
1720 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1721 if (this_tf.may_throw)
1722 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1724 /* Determine how many edges (still) reach the finally block. Or rather,
1725 how many destinations are reached by the finally block. Use this to
1726 determine how we process the finally block itself. */
1728 ndests = this_tf.dest_array.length ();
1729 ndests += this_tf.may_fallthru;
1730 ndests += this_tf.may_return;
1731 ndests += this_tf.may_throw;
1733 /* If the FINALLY block is not reachable, dike it out. */
1734 if (ndests == 0)
1736 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1737 gimple_try_set_cleanup (tp, NULL);
1739 /* If the finally block doesn't fall through, then any destination
1740 we might try to impose there isn't reached either. There may be
1741 some minor amount of cleanup and redirection still needed. */
1742 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1743 lower_try_finally_nofallthru (state, &this_tf);
1745 /* We can easily special-case redirection to a single destination. */
1746 else if (ndests == 1)
1747 lower_try_finally_onedest (state, &this_tf);
1748 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1749 gimple_try_cleanup (tp)))
1750 lower_try_finally_copy (state, &this_tf);
1751 else
1752 lower_try_finally_switch (state, &this_tf);
1754 /* If someone requested we add a label at the end of the transformed
1755 block, do so. */
1756 if (this_tf.fallthru_label)
1758 /* This must be reached only if ndests == 0. */
1759 gimple x = gimple_build_label (this_tf.fallthru_label);
1760 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1763 this_tf.dest_array.release ();
1764 free (this_tf.goto_queue);
1765 if (this_tf.goto_queue_map)
1766 delete this_tf.goto_queue_map;
1768 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1769 If there was no old eh_seq, then the append is trivially already done. */
1770 if (old_eh_seq)
1772 if (eh_seq == NULL)
1773 eh_seq = old_eh_seq;
1774 else
1776 gimple_seq new_eh_seq = eh_seq;
1777 eh_seq = old_eh_seq;
1778 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1782 return this_tf.top_p_seq;
1785 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1786 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1787 exception region trees that records all the magic. */
1789 static gimple_seq
1790 lower_catch (struct leh_state *state, gtry *tp)
1792 eh_region try_region = NULL;
1793 struct leh_state this_state = *state;
1794 gimple_stmt_iterator gsi;
1795 tree out_label;
1796 gimple_seq new_seq, cleanup;
1797 gimple x;
1798 location_t try_catch_loc = gimple_location (tp);
1800 if (flag_exceptions)
1802 try_region = gen_eh_region_try (state->cur_region);
1803 this_state.cur_region = try_region;
1806 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1808 if (!eh_region_may_contain_throw (try_region))
1809 return gimple_try_eval (tp);
1811 new_seq = NULL;
1812 emit_eh_dispatch (&new_seq, try_region);
1813 emit_resx (&new_seq, try_region);
1815 this_state.cur_region = state->cur_region;
1816 this_state.ehp_region = try_region;
1818 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1819 itself, so that e.g. for coverage purposes the nested cleanups don't
1820 appear before the cleanup body. See PR64634 for details. */
1821 gimple_seq old_eh_seq = eh_seq;
1822 eh_seq = NULL;
1824 out_label = NULL;
1825 cleanup = gimple_try_cleanup (tp);
1826 for (gsi = gsi_start (cleanup);
1827 !gsi_end_p (gsi);
1828 gsi_next (&gsi))
1830 eh_catch c;
1831 gcatch *catch_stmt;
1832 gimple_seq handler;
1834 catch_stmt = as_a <gcatch *> (gsi_stmt (gsi));
1835 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
1837 handler = gimple_catch_handler (catch_stmt);
1838 lower_eh_constructs_1 (&this_state, &handler);
1840 c->label = create_artificial_label (UNKNOWN_LOCATION);
1841 x = gimple_build_label (c->label);
1842 gimple_seq_add_stmt (&new_seq, x);
1844 gimple_seq_add_seq (&new_seq, handler);
1846 if (gimple_seq_may_fallthru (new_seq))
1848 if (!out_label)
1849 out_label = create_artificial_label (try_catch_loc);
1851 x = gimple_build_goto (out_label);
1852 gimple_seq_add_stmt (&new_seq, x);
1854 if (!c->type_list)
1855 break;
1858 gimple_try_set_cleanup (tp, new_seq);
1860 gimple_seq new_eh_seq = eh_seq;
1861 eh_seq = old_eh_seq;
1862 gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
1863 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1864 return ret_seq;
1867 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1868 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1869 region trees that record all the magic. */
1871 static gimple_seq
1872 lower_eh_filter (struct leh_state *state, gtry *tp)
1874 struct leh_state this_state = *state;
1875 eh_region this_region = NULL;
1876 gimple inner, x;
1877 gimple_seq new_seq;
1879 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1881 if (flag_exceptions)
1883 this_region = gen_eh_region_allowed (state->cur_region,
1884 gimple_eh_filter_types (inner));
1885 this_state.cur_region = this_region;
1888 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1890 if (!eh_region_may_contain_throw (this_region))
1891 return gimple_try_eval (tp);
1893 new_seq = NULL;
1894 this_state.cur_region = state->cur_region;
1895 this_state.ehp_region = this_region;
1897 emit_eh_dispatch (&new_seq, this_region);
1898 emit_resx (&new_seq, this_region);
1900 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1901 x = gimple_build_label (this_region->u.allowed.label);
1902 gimple_seq_add_stmt (&new_seq, x);
1904 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1905 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1907 gimple_try_set_cleanup (tp, new_seq);
1909 return frob_into_branch_around (tp, this_region, NULL);
1912 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1913 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1914 plus the exception region trees that record all the magic. */
1916 static gimple_seq
1917 lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
1919 struct leh_state this_state = *state;
1921 if (flag_exceptions)
1923 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1924 eh_region this_region;
1926 this_region = gen_eh_region_must_not_throw (state->cur_region);
1927 this_region->u.must_not_throw.failure_decl
1928 = gimple_eh_must_not_throw_fndecl (
1929 as_a <geh_mnt *> (inner));
1930 this_region->u.must_not_throw.failure_loc
1931 = LOCATION_LOCUS (gimple_location (tp));
1933 /* In order to get mangling applied to this decl, we must mark it
1934 used now. Otherwise, pass_ipa_free_lang_data won't think it
1935 needs to happen. */
1936 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1938 this_state.cur_region = this_region;
1941 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1943 return gimple_try_eval (tp);
1946 /* Implement a cleanup expression. This is similar to try-finally,
1947 except that we only execute the cleanup block for exception edges. */
1949 static gimple_seq
1950 lower_cleanup (struct leh_state *state, gtry *tp)
1952 struct leh_state this_state = *state;
1953 eh_region this_region = NULL;
1954 struct leh_tf_state fake_tf;
1955 gimple_seq result;
1956 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1958 if (flag_exceptions && !cleanup_dead)
1960 this_region = gen_eh_region_cleanup (state->cur_region);
1961 this_state.cur_region = this_region;
1964 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1966 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1967 return gimple_try_eval (tp);
1969 /* Build enough of a try-finally state so that we can reuse
1970 honor_protect_cleanup_actions. */
1971 memset (&fake_tf, 0, sizeof (fake_tf));
1972 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1973 fake_tf.outer = state;
1974 fake_tf.region = this_region;
1975 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1976 fake_tf.may_throw = true;
1978 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1980 if (fake_tf.may_throw)
1982 /* In this case honor_protect_cleanup_actions had nothing to do,
1983 and we should process this normally. */
1984 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1985 result = frob_into_branch_around (tp, this_region,
1986 fake_tf.fallthru_label);
1988 else
1990 /* In this case honor_protect_cleanup_actions did nearly all of
1991 the work. All we have left is to append the fallthru_label. */
1993 result = gimple_try_eval (tp);
1994 if (fake_tf.fallthru_label)
1996 gimple x = gimple_build_label (fake_tf.fallthru_label);
1997 gimple_seq_add_stmt (&result, x);
2000 return result;
2003 /* Main loop for lowering eh constructs. Also moves gsi to the next
2004 statement. */
2006 static void
2007 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
2009 gimple_seq replace;
2010 gimple x;
2011 gimple stmt = gsi_stmt (*gsi);
2013 switch (gimple_code (stmt))
2015 case GIMPLE_CALL:
2017 tree fndecl = gimple_call_fndecl (stmt);
2018 tree rhs, lhs;
2020 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2021 switch (DECL_FUNCTION_CODE (fndecl))
2023 case BUILT_IN_EH_POINTER:
2024 /* The front end may have generated a call to
2025 __builtin_eh_pointer (0) within a catch region. Replace
2026 this zero argument with the current catch region number. */
2027 if (state->ehp_region)
2029 tree nr = build_int_cst (integer_type_node,
2030 state->ehp_region->index);
2031 gimple_call_set_arg (stmt, 0, nr);
2033 else
2035 /* The user has dome something silly. Remove it. */
2036 rhs = null_pointer_node;
2037 goto do_replace;
2039 break;
2041 case BUILT_IN_EH_FILTER:
2042 /* ??? This should never appear, but since it's a builtin it
2043 is accessible to abuse by users. Just remove it and
2044 replace the use with the arbitrary value zero. */
2045 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2046 do_replace:
2047 lhs = gimple_call_lhs (stmt);
2048 x = gimple_build_assign (lhs, rhs);
2049 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2050 /* FALLTHRU */
2052 case BUILT_IN_EH_COPY_VALUES:
2053 /* Likewise this should not appear. Remove it. */
2054 gsi_remove (gsi, true);
2055 return;
2057 default:
2058 break;
2061 /* FALLTHRU */
2063 case GIMPLE_ASSIGN:
2064 /* If the stmt can throw use a new temporary for the assignment
2065 to a LHS. This makes sure the old value of the LHS is
2066 available on the EH edge. Only do so for statements that
2067 potentially fall through (no noreturn calls e.g.), otherwise
2068 this new assignment might create fake fallthru regions. */
2069 if (stmt_could_throw_p (stmt)
2070 && gimple_has_lhs (stmt)
2071 && gimple_stmt_may_fallthru (stmt)
2072 && !tree_could_throw_p (gimple_get_lhs (stmt))
2073 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2075 tree lhs = gimple_get_lhs (stmt);
2076 tree tmp = create_tmp_var (TREE_TYPE (lhs));
2077 gimple s = gimple_build_assign (lhs, tmp);
2078 gimple_set_location (s, gimple_location (stmt));
2079 gimple_set_block (s, gimple_block (stmt));
2080 gimple_set_lhs (stmt, tmp);
2081 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2082 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2083 DECL_GIMPLE_REG_P (tmp) = 1;
2084 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2086 /* Look for things that can throw exceptions, and record them. */
2087 if (state->cur_region && stmt_could_throw_p (stmt))
2089 record_stmt_eh_region (state->cur_region, stmt);
2090 note_eh_region_may_contain_throw (state->cur_region);
2092 break;
2094 case GIMPLE_COND:
2095 case GIMPLE_GOTO:
2096 case GIMPLE_RETURN:
2097 maybe_record_in_goto_queue (state, stmt);
2098 break;
2100 case GIMPLE_SWITCH:
2101 verify_norecord_switch_expr (state, as_a <gswitch *> (stmt));
2102 break;
2104 case GIMPLE_TRY:
2106 gtry *try_stmt = as_a <gtry *> (stmt);
2107 if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
2108 replace = lower_try_finally (state, try_stmt);
2109 else
2111 x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt));
2112 if (!x)
2114 replace = gimple_try_eval (try_stmt);
2115 lower_eh_constructs_1 (state, &replace);
2117 else
2118 switch (gimple_code (x))
2120 case GIMPLE_CATCH:
2121 replace = lower_catch (state, try_stmt);
2122 break;
2123 case GIMPLE_EH_FILTER:
2124 replace = lower_eh_filter (state, try_stmt);
2125 break;
2126 case GIMPLE_EH_MUST_NOT_THROW:
2127 replace = lower_eh_must_not_throw (state, try_stmt);
2128 break;
2129 case GIMPLE_EH_ELSE:
2130 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2131 gcc_unreachable ();
2132 default:
2133 replace = lower_cleanup (state, try_stmt);
2134 break;
2139 /* Remove the old stmt and insert the transformed sequence
2140 instead. */
2141 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2142 gsi_remove (gsi, true);
2144 /* Return since we don't want gsi_next () */
2145 return;
2147 case GIMPLE_EH_ELSE:
2148 /* We should be eliminating this in lower_try_finally et al. */
2149 gcc_unreachable ();
2151 default:
2152 /* A type, a decl, or some kind of statement that we're not
2153 interested in. Don't walk them. */
2154 break;
2157 gsi_next (gsi);
2160 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2162 static void
2163 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2165 gimple_stmt_iterator gsi;
2166 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2167 lower_eh_constructs_2 (state, &gsi);
2170 namespace {
2172 const pass_data pass_data_lower_eh =
2174 GIMPLE_PASS, /* type */
2175 "eh", /* name */
2176 OPTGROUP_NONE, /* optinfo_flags */
2177 TV_TREE_EH, /* tv_id */
2178 PROP_gimple_lcf, /* properties_required */
2179 PROP_gimple_leh, /* properties_provided */
2180 0, /* properties_destroyed */
2181 0, /* todo_flags_start */
2182 0, /* todo_flags_finish */
2185 class pass_lower_eh : public gimple_opt_pass
2187 public:
2188 pass_lower_eh (gcc::context *ctxt)
2189 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2192 /* opt_pass methods: */
2193 virtual unsigned int execute (function *);
2195 }; // class pass_lower_eh
2197 unsigned int
2198 pass_lower_eh::execute (function *fun)
2200 struct leh_state null_state;
2201 gimple_seq bodyp;
2203 bodyp = gimple_body (current_function_decl);
2204 if (bodyp == NULL)
2205 return 0;
2207 finally_tree = new hash_table<finally_tree_hasher> (31);
2208 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2209 memset (&null_state, 0, sizeof (null_state));
2211 collect_finally_tree_1 (bodyp, NULL);
2212 lower_eh_constructs_1 (&null_state, &bodyp);
2213 gimple_set_body (current_function_decl, bodyp);
2215 /* We assume there's a return statement, or something, at the end of
2216 the function, and thus ploping the EH sequence afterward won't
2217 change anything. */
2218 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2219 gimple_seq_add_seq (&bodyp, eh_seq);
2221 /* We assume that since BODYP already existed, adding EH_SEQ to it
2222 didn't change its value, and we don't have to re-set the function. */
2223 gcc_assert (bodyp == gimple_body (current_function_decl));
2225 delete finally_tree;
2226 finally_tree = NULL;
2227 BITMAP_FREE (eh_region_may_contain_throw_map);
2228 eh_seq = NULL;
2230 /* If this function needs a language specific EH personality routine
2231 and the frontend didn't already set one do so now. */
2232 if (function_needs_eh_personality (fun) == eh_personality_lang
2233 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2234 DECL_FUNCTION_PERSONALITY (current_function_decl)
2235 = lang_hooks.eh_personality ();
2237 return 0;
2240 } // anon namespace
2242 gimple_opt_pass *
2243 make_pass_lower_eh (gcc::context *ctxt)
2245 return new pass_lower_eh (ctxt);
2248 /* Create the multiple edges from an EH_DISPATCH statement to all of
2249 the possible handlers for its EH region. Return true if there's
2250 no fallthru edge; false if there is. */
2252 bool
2253 make_eh_dispatch_edges (geh_dispatch *stmt)
2255 eh_region r;
2256 eh_catch c;
2257 basic_block src, dst;
2259 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2260 src = gimple_bb (stmt);
2262 switch (r->type)
2264 case ERT_TRY:
2265 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2267 dst = label_to_block (c->label);
2268 make_edge (src, dst, 0);
2270 /* A catch-all handler doesn't have a fallthru. */
2271 if (c->type_list == NULL)
2272 return false;
2274 break;
2276 case ERT_ALLOWED_EXCEPTIONS:
2277 dst = label_to_block (r->u.allowed.label);
2278 make_edge (src, dst, 0);
2279 break;
2281 default:
2282 gcc_unreachable ();
2285 return true;
2288 /* Create the single EH edge from STMT to its nearest landing pad,
2289 if there is such a landing pad within the current function. */
2291 void
2292 make_eh_edges (gimple stmt)
2294 basic_block src, dst;
2295 eh_landing_pad lp;
2296 int lp_nr;
2298 lp_nr = lookup_stmt_eh_lp (stmt);
2299 if (lp_nr <= 0)
2300 return;
2302 lp = get_eh_landing_pad_from_number (lp_nr);
2303 gcc_assert (lp != NULL);
2305 src = gimple_bb (stmt);
2306 dst = label_to_block (lp->post_landing_pad);
2307 make_edge (src, dst, EDGE_EH);
2310 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2311 do not actually perform the final edge redirection.
2313 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2314 we intend to change the destination EH region as well; this means
2315 EH_LANDING_PAD_NR must already be set on the destination block label.
2316 If false, we're being called from generic cfg manipulation code and we
2317 should preserve our place within the region tree. */
2319 static void
2320 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2322 eh_landing_pad old_lp, new_lp;
2323 basic_block old_bb;
2324 gimple throw_stmt;
2325 int old_lp_nr, new_lp_nr;
2326 tree old_label, new_label;
2327 edge_iterator ei;
2328 edge e;
2330 old_bb = edge_in->dest;
2331 old_label = gimple_block_label (old_bb);
2332 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2333 gcc_assert (old_lp_nr > 0);
2334 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2336 throw_stmt = last_stmt (edge_in->src);
2337 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2339 new_label = gimple_block_label (new_bb);
2341 /* Look for an existing region that might be using NEW_BB already. */
2342 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2343 if (new_lp_nr)
2345 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2346 gcc_assert (new_lp);
2348 /* Unless CHANGE_REGION is true, the new and old landing pad
2349 had better be associated with the same EH region. */
2350 gcc_assert (change_region || new_lp->region == old_lp->region);
2352 else
2354 new_lp = NULL;
2355 gcc_assert (!change_region);
2358 /* Notice when we redirect the last EH edge away from OLD_BB. */
2359 FOR_EACH_EDGE (e, ei, old_bb->preds)
2360 if (e != edge_in && (e->flags & EDGE_EH))
2361 break;
2363 if (new_lp)
2365 /* NEW_LP already exists. If there are still edges into OLD_LP,
2366 there's nothing to do with the EH tree. If there are no more
2367 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2368 If CHANGE_REGION is true, then our caller is expecting to remove
2369 the landing pad. */
2370 if (e == NULL && !change_region)
2371 remove_eh_landing_pad (old_lp);
2373 else
2375 /* No correct landing pad exists. If there are no more edges
2376 into OLD_LP, then we can simply re-use the existing landing pad.
2377 Otherwise, we have to create a new landing pad. */
2378 if (e == NULL)
2380 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2381 new_lp = old_lp;
2383 else
2384 new_lp = gen_eh_landing_pad (old_lp->region);
2385 new_lp->post_landing_pad = new_label;
2386 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2389 /* Maybe move the throwing statement to the new region. */
2390 if (old_lp != new_lp)
2392 remove_stmt_from_eh_lp (throw_stmt);
2393 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2397 /* Redirect EH edge E to NEW_BB. */
2399 edge
2400 redirect_eh_edge (edge edge_in, basic_block new_bb)
2402 redirect_eh_edge_1 (edge_in, new_bb, false);
2403 return ssa_redirect_edge (edge_in, new_bb);
2406 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2407 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2408 The actual edge update will happen in the caller. */
2410 void
2411 redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
2413 tree new_lab = gimple_block_label (new_bb);
2414 bool any_changed = false;
2415 basic_block old_bb;
2416 eh_region r;
2417 eh_catch c;
2419 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2420 switch (r->type)
2422 case ERT_TRY:
2423 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2425 old_bb = label_to_block (c->label);
2426 if (old_bb == e->dest)
2428 c->label = new_lab;
2429 any_changed = true;
2432 break;
2434 case ERT_ALLOWED_EXCEPTIONS:
2435 old_bb = label_to_block (r->u.allowed.label);
2436 gcc_assert (old_bb == e->dest);
2437 r->u.allowed.label = new_lab;
2438 any_changed = true;
2439 break;
2441 default:
2442 gcc_unreachable ();
2445 gcc_assert (any_changed);
2448 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2450 bool
2451 operation_could_trap_helper_p (enum tree_code op,
2452 bool fp_operation,
2453 bool honor_trapv,
2454 bool honor_nans,
2455 bool honor_snans,
2456 tree divisor,
2457 bool *handled)
2459 *handled = true;
2460 switch (op)
2462 case TRUNC_DIV_EXPR:
2463 case CEIL_DIV_EXPR:
2464 case FLOOR_DIV_EXPR:
2465 case ROUND_DIV_EXPR:
2466 case EXACT_DIV_EXPR:
2467 case CEIL_MOD_EXPR:
2468 case FLOOR_MOD_EXPR:
2469 case ROUND_MOD_EXPR:
2470 case TRUNC_MOD_EXPR:
2471 case RDIV_EXPR:
2472 if (honor_snans || honor_trapv)
2473 return true;
2474 if (fp_operation)
2475 return flag_trapping_math;
2476 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2477 return true;
2478 return false;
2480 case LT_EXPR:
2481 case LE_EXPR:
2482 case GT_EXPR:
2483 case GE_EXPR:
2484 case LTGT_EXPR:
2485 /* Some floating point comparisons may trap. */
2486 return honor_nans;
2488 case EQ_EXPR:
2489 case NE_EXPR:
2490 case UNORDERED_EXPR:
2491 case ORDERED_EXPR:
2492 case UNLT_EXPR:
2493 case UNLE_EXPR:
2494 case UNGT_EXPR:
2495 case UNGE_EXPR:
2496 case UNEQ_EXPR:
2497 return honor_snans;
2499 case NEGATE_EXPR:
2500 case ABS_EXPR:
2501 case CONJ_EXPR:
2502 /* These operations don't trap with floating point. */
2503 if (honor_trapv)
2504 return true;
2505 return false;
2507 case PLUS_EXPR:
2508 case MINUS_EXPR:
2509 case MULT_EXPR:
2510 /* Any floating arithmetic may trap. */
2511 if (fp_operation && flag_trapping_math)
2512 return true;
2513 if (honor_trapv)
2514 return true;
2515 return false;
2517 case COMPLEX_EXPR:
2518 case CONSTRUCTOR:
2519 /* Constructing an object cannot trap. */
2520 return false;
2522 default:
2523 /* Any floating arithmetic may trap. */
2524 if (fp_operation && flag_trapping_math)
2525 return true;
2527 *handled = false;
2528 return false;
2532 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2533 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2534 type operands that may trap. If OP is a division operator, DIVISOR contains
2535 the value of the divisor. */
2537 bool
2538 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2539 tree divisor)
2541 bool honor_nans = (fp_operation && flag_trapping_math
2542 && !flag_finite_math_only);
2543 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2544 bool handled;
2546 if (TREE_CODE_CLASS (op) != tcc_comparison
2547 && TREE_CODE_CLASS (op) != tcc_unary
2548 && TREE_CODE_CLASS (op) != tcc_binary)
2549 return false;
2551 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2552 honor_nans, honor_snans, divisor,
2553 &handled);
2557 /* Returns true if it is possible to prove that the index of
2558 an array access REF (an ARRAY_REF expression) falls into the
2559 array bounds. */
2561 static bool
2562 in_array_bounds_p (tree ref)
2564 tree idx = TREE_OPERAND (ref, 1);
2565 tree min, max;
2567 if (TREE_CODE (idx) != INTEGER_CST)
2568 return false;
2570 min = array_ref_low_bound (ref);
2571 max = array_ref_up_bound (ref);
2572 if (!min
2573 || !max
2574 || TREE_CODE (min) != INTEGER_CST
2575 || TREE_CODE (max) != INTEGER_CST)
2576 return false;
2578 if (tree_int_cst_lt (idx, min)
2579 || tree_int_cst_lt (max, idx))
2580 return false;
2582 return true;
2585 /* Returns true if it is possible to prove that the range of
2586 an array access REF (an ARRAY_RANGE_REF expression) falls
2587 into the array bounds. */
2589 static bool
2590 range_in_array_bounds_p (tree ref)
2592 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2593 tree range_min, range_max, min, max;
2595 range_min = TYPE_MIN_VALUE (domain_type);
2596 range_max = TYPE_MAX_VALUE (domain_type);
2597 if (!range_min
2598 || !range_max
2599 || TREE_CODE (range_min) != INTEGER_CST
2600 || TREE_CODE (range_max) != INTEGER_CST)
2601 return false;
2603 min = array_ref_low_bound (ref);
2604 max = array_ref_up_bound (ref);
2605 if (!min
2606 || !max
2607 || TREE_CODE (min) != INTEGER_CST
2608 || TREE_CODE (max) != INTEGER_CST)
2609 return false;
2611 if (tree_int_cst_lt (range_min, min)
2612 || tree_int_cst_lt (max, range_max))
2613 return false;
2615 return true;
2618 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2619 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2620 This routine expects only GIMPLE lhs or rhs input. */
2622 bool
2623 tree_could_trap_p (tree expr)
2625 enum tree_code code;
2626 bool fp_operation = false;
2627 bool honor_trapv = false;
2628 tree t, base, div = NULL_TREE;
2630 if (!expr)
2631 return false;
2633 code = TREE_CODE (expr);
2634 t = TREE_TYPE (expr);
2636 if (t)
2638 if (COMPARISON_CLASS_P (expr))
2639 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2640 else
2641 fp_operation = FLOAT_TYPE_P (t);
2642 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2645 if (TREE_CODE_CLASS (code) == tcc_binary)
2646 div = TREE_OPERAND (expr, 1);
2647 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2648 return true;
2650 restart:
2651 switch (code)
2653 case COMPONENT_REF:
2654 case REALPART_EXPR:
2655 case IMAGPART_EXPR:
2656 case BIT_FIELD_REF:
2657 case VIEW_CONVERT_EXPR:
2658 case WITH_SIZE_EXPR:
2659 expr = TREE_OPERAND (expr, 0);
2660 code = TREE_CODE (expr);
2661 goto restart;
2663 case ARRAY_RANGE_REF:
2664 base = TREE_OPERAND (expr, 0);
2665 if (tree_could_trap_p (base))
2666 return true;
2667 if (TREE_THIS_NOTRAP (expr))
2668 return false;
2669 return !range_in_array_bounds_p (expr);
2671 case ARRAY_REF:
2672 base = TREE_OPERAND (expr, 0);
2673 if (tree_could_trap_p (base))
2674 return true;
2675 if (TREE_THIS_NOTRAP (expr))
2676 return false;
2677 return !in_array_bounds_p (expr);
2679 case TARGET_MEM_REF:
2680 case MEM_REF:
2681 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2682 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2683 return true;
2684 if (TREE_THIS_NOTRAP (expr))
2685 return false;
2686 /* We cannot prove that the access is in-bounds when we have
2687 variable-index TARGET_MEM_REFs. */
2688 if (code == TARGET_MEM_REF
2689 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2690 return true;
2691 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2693 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2694 offset_int off = mem_ref_offset (expr);
2695 if (wi::neg_p (off, SIGNED))
2696 return true;
2697 if (TREE_CODE (base) == STRING_CST)
2698 return wi::leu_p (TREE_STRING_LENGTH (base), off);
2699 else if (DECL_SIZE_UNIT (base) == NULL_TREE
2700 || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
2701 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off))
2702 return true;
2703 /* Now we are sure the first byte of the access is inside
2704 the object. */
2705 return false;
2707 return true;
2709 case INDIRECT_REF:
2710 return !TREE_THIS_NOTRAP (expr);
2712 case ASM_EXPR:
2713 return TREE_THIS_VOLATILE (expr);
2715 case CALL_EXPR:
2716 t = get_callee_fndecl (expr);
2717 /* Assume that calls to weak functions may trap. */
2718 if (!t || !DECL_P (t))
2719 return true;
2720 if (DECL_WEAK (t))
2721 return tree_could_trap_p (t);
2722 return false;
2724 case FUNCTION_DECL:
2725 /* Assume that accesses to weak functions may trap, unless we know
2726 they are certainly defined in current TU or in some other
2727 LTO partition. */
2728 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2730 cgraph_node *node = cgraph_node::get (expr);
2731 if (node)
2732 node = node->function_symbol ();
2733 return !(node && node->in_other_partition);
2735 return false;
2737 case VAR_DECL:
2738 /* Assume that accesses to weak vars may trap, unless we know
2739 they are certainly defined in current TU or in some other
2740 LTO partition. */
2741 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2743 varpool_node *node = varpool_node::get (expr);
2744 if (node)
2745 node = node->ultimate_alias_target ();
2746 return !(node && node->in_other_partition);
2748 return false;
2750 default:
2751 return false;
2756 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2757 an assignment or a conditional) may throw. */
2759 static bool
2760 stmt_could_throw_1_p (gimple stmt)
2762 enum tree_code code = gimple_expr_code (stmt);
2763 bool honor_nans = false;
2764 bool honor_snans = false;
2765 bool fp_operation = false;
2766 bool honor_trapv = false;
2767 tree t;
2768 size_t i;
2769 bool handled, ret;
2771 if (TREE_CODE_CLASS (code) == tcc_comparison
2772 || TREE_CODE_CLASS (code) == tcc_unary
2773 || TREE_CODE_CLASS (code) == tcc_binary)
2775 if (is_gimple_assign (stmt)
2776 && TREE_CODE_CLASS (code) == tcc_comparison)
2777 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2778 else if (gimple_code (stmt) == GIMPLE_COND)
2779 t = TREE_TYPE (gimple_cond_lhs (stmt));
2780 else
2781 t = gimple_expr_type (stmt);
2782 fp_operation = FLOAT_TYPE_P (t);
2783 if (fp_operation)
2785 honor_nans = flag_trapping_math && !flag_finite_math_only;
2786 honor_snans = flag_signaling_nans != 0;
2788 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2789 honor_trapv = true;
2792 /* Check if the main expression may trap. */
2793 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2794 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2795 honor_nans, honor_snans, t,
2796 &handled);
2797 if (handled)
2798 return ret;
2800 /* If the expression does not trap, see if any of the individual operands may
2801 trap. */
2802 for (i = 0; i < gimple_num_ops (stmt); i++)
2803 if (tree_could_trap_p (gimple_op (stmt, i)))
2804 return true;
2806 return false;
2810 /* Return true if statement STMT could throw an exception. */
2812 bool
2813 stmt_could_throw_p (gimple stmt)
2815 if (!flag_exceptions)
2816 return false;
2818 /* The only statements that can throw an exception are assignments,
2819 conditionals, calls, resx, and asms. */
2820 switch (gimple_code (stmt))
2822 case GIMPLE_RESX:
2823 return true;
2825 case GIMPLE_CALL:
2826 return !gimple_call_nothrow_p (as_a <gcall *> (stmt));
2828 case GIMPLE_ASSIGN:
2829 case GIMPLE_COND:
2830 if (!cfun->can_throw_non_call_exceptions)
2831 return false;
2832 return stmt_could_throw_1_p (stmt);
2834 case GIMPLE_ASM:
2835 if (!cfun->can_throw_non_call_exceptions)
2836 return false;
2837 return gimple_asm_volatile_p (as_a <gasm *> (stmt));
2839 default:
2840 return false;
2845 /* Return true if expression T could throw an exception. */
2847 bool
2848 tree_could_throw_p (tree t)
2850 if (!flag_exceptions)
2851 return false;
2852 if (TREE_CODE (t) == MODIFY_EXPR)
2854 if (cfun->can_throw_non_call_exceptions
2855 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2856 return true;
2857 t = TREE_OPERAND (t, 1);
2860 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2861 t = TREE_OPERAND (t, 0);
2862 if (TREE_CODE (t) == CALL_EXPR)
2863 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2864 if (cfun->can_throw_non_call_exceptions)
2865 return tree_could_trap_p (t);
2866 return false;
2869 /* Return true if STMT can throw an exception that is not caught within
2870 the current function (CFUN). */
2872 bool
2873 stmt_can_throw_external (gimple stmt)
2875 int lp_nr;
2877 if (!stmt_could_throw_p (stmt))
2878 return false;
2880 lp_nr = lookup_stmt_eh_lp (stmt);
2881 return lp_nr == 0;
2884 /* Return true if STMT can throw an exception that is caught within
2885 the current function (CFUN). */
2887 bool
2888 stmt_can_throw_internal (gimple stmt)
2890 int lp_nr;
2892 if (!stmt_could_throw_p (stmt))
2893 return false;
2895 lp_nr = lookup_stmt_eh_lp (stmt);
2896 return lp_nr > 0;
2899 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2900 remove any entry it might have from the EH table. Return true if
2901 any change was made. */
2903 bool
2904 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2906 if (stmt_could_throw_p (stmt))
2907 return false;
2908 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2911 /* Likewise, but always use the current function. */
2913 bool
2914 maybe_clean_eh_stmt (gimple stmt)
2916 return maybe_clean_eh_stmt_fn (cfun, stmt);
2919 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2920 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2921 in the table if it should be in there. Return TRUE if a replacement was
2922 done that my require an EH edge purge. */
2924 bool
2925 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2927 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2929 if (lp_nr != 0)
2931 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2933 if (new_stmt == old_stmt && new_stmt_could_throw)
2934 return false;
2936 remove_stmt_from_eh_lp (old_stmt);
2937 if (new_stmt_could_throw)
2939 add_stmt_to_eh_lp (new_stmt, lp_nr);
2940 return false;
2942 else
2943 return true;
2946 return false;
2949 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2950 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2951 operand is the return value of duplicate_eh_regions. */
2953 bool
2954 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2955 struct function *old_fun, gimple old_stmt,
2956 hash_map<void *, void *> *map,
2957 int default_lp_nr)
2959 int old_lp_nr, new_lp_nr;
2961 if (!stmt_could_throw_p (new_stmt))
2962 return false;
2964 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2965 if (old_lp_nr == 0)
2967 if (default_lp_nr == 0)
2968 return false;
2969 new_lp_nr = default_lp_nr;
2971 else if (old_lp_nr > 0)
2973 eh_landing_pad old_lp, new_lp;
2975 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2976 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
2977 new_lp_nr = new_lp->index;
2979 else
2981 eh_region old_r, new_r;
2983 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2984 new_r = static_cast<eh_region> (*map->get (old_r));
2985 new_lp_nr = -new_r->index;
2988 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2989 return true;
2992 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2993 and thus no remapping is required. */
2995 bool
2996 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2998 int lp_nr;
3000 if (!stmt_could_throw_p (new_stmt))
3001 return false;
3003 lp_nr = lookup_stmt_eh_lp (old_stmt);
3004 if (lp_nr == 0)
3005 return false;
3007 add_stmt_to_eh_lp (new_stmt, lp_nr);
3008 return true;
3011 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
3012 GIMPLE_TRY) that are similar enough to be considered the same. Currently
3013 this only handles handlers consisting of a single call, as that's the
3014 important case for C++: a destructor call for a particular object showing
3015 up in multiple handlers. */
3017 static bool
3018 same_handler_p (gimple_seq oneh, gimple_seq twoh)
3020 gimple_stmt_iterator gsi;
3021 gimple ones, twos;
3022 unsigned int ai;
3024 gsi = gsi_start (oneh);
3025 if (!gsi_one_before_end_p (gsi))
3026 return false;
3027 ones = gsi_stmt (gsi);
3029 gsi = gsi_start (twoh);
3030 if (!gsi_one_before_end_p (gsi))
3031 return false;
3032 twos = gsi_stmt (gsi);
3034 if (!is_gimple_call (ones)
3035 || !is_gimple_call (twos)
3036 || gimple_call_lhs (ones)
3037 || gimple_call_lhs (twos)
3038 || gimple_call_chain (ones)
3039 || gimple_call_chain (twos)
3040 || !gimple_call_same_target_p (ones, twos)
3041 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3042 return false;
3044 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3045 if (!operand_equal_p (gimple_call_arg (ones, ai),
3046 gimple_call_arg (twos, ai), 0))
3047 return false;
3049 return true;
3052 /* Optimize
3053 try { A() } finally { try { ~B() } catch { ~A() } }
3054 try { ... } finally { ~A() }
3055 into
3056 try { A() } catch { ~B() }
3057 try { ~B() ... } finally { ~A() }
3059 This occurs frequently in C++, where A is a local variable and B is a
3060 temporary used in the initializer for A. */
3062 static void
3063 optimize_double_finally (gtry *one, gtry *two)
3065 gimple oneh;
3066 gimple_stmt_iterator gsi;
3067 gimple_seq cleanup;
3069 cleanup = gimple_try_cleanup (one);
3070 gsi = gsi_start (cleanup);
3071 if (!gsi_one_before_end_p (gsi))
3072 return;
3074 oneh = gsi_stmt (gsi);
3075 if (gimple_code (oneh) != GIMPLE_TRY
3076 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3077 return;
3079 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3081 gimple_seq seq = gimple_try_eval (oneh);
3083 gimple_try_set_cleanup (one, seq);
3084 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3085 seq = copy_gimple_seq_and_replace_locals (seq);
3086 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3087 gimple_try_set_eval (two, seq);
3091 /* Perform EH refactoring optimizations that are simpler to do when code
3092 flow has been lowered but EH structures haven't. */
3094 static void
3095 refactor_eh_r (gimple_seq seq)
3097 gimple_stmt_iterator gsi;
3098 gimple one, two;
3100 one = NULL;
3101 two = NULL;
3102 gsi = gsi_start (seq);
3103 while (1)
3105 one = two;
3106 if (gsi_end_p (gsi))
3107 two = NULL;
3108 else
3109 two = gsi_stmt (gsi);
3110 if (one && two)
3111 if (gtry *try_one = dyn_cast <gtry *> (one))
3112 if (gtry *try_two = dyn_cast <gtry *> (two))
3113 if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY
3114 && gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY)
3115 optimize_double_finally (try_one, try_two);
3116 if (one)
3117 switch (gimple_code (one))
3119 case GIMPLE_TRY:
3120 refactor_eh_r (gimple_try_eval (one));
3121 refactor_eh_r (gimple_try_cleanup (one));
3122 break;
3123 case GIMPLE_CATCH:
3124 refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one)));
3125 break;
3126 case GIMPLE_EH_FILTER:
3127 refactor_eh_r (gimple_eh_filter_failure (one));
3128 break;
3129 case GIMPLE_EH_ELSE:
3131 geh_else *eh_else_stmt = as_a <geh_else *> (one);
3132 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt));
3133 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt));
3135 break;
3136 default:
3137 break;
3139 if (two)
3140 gsi_next (&gsi);
3141 else
3142 break;
3146 namespace {
3148 const pass_data pass_data_refactor_eh =
3150 GIMPLE_PASS, /* type */
3151 "ehopt", /* name */
3152 OPTGROUP_NONE, /* optinfo_flags */
3153 TV_TREE_EH, /* tv_id */
3154 PROP_gimple_lcf, /* properties_required */
3155 0, /* properties_provided */
3156 0, /* properties_destroyed */
3157 0, /* todo_flags_start */
3158 0, /* todo_flags_finish */
3161 class pass_refactor_eh : public gimple_opt_pass
3163 public:
3164 pass_refactor_eh (gcc::context *ctxt)
3165 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3168 /* opt_pass methods: */
3169 virtual bool gate (function *) { return flag_exceptions != 0; }
3170 virtual unsigned int execute (function *)
3172 refactor_eh_r (gimple_body (current_function_decl));
3173 return 0;
3176 }; // class pass_refactor_eh
3178 } // anon namespace
3180 gimple_opt_pass *
3181 make_pass_refactor_eh (gcc::context *ctxt)
3183 return new pass_refactor_eh (ctxt);
3186 /* At the end of gimple optimization, we can lower RESX. */
3188 static bool
3189 lower_resx (basic_block bb, gresx *stmt,
3190 hash_map<eh_region, tree> *mnt_map)
3192 int lp_nr;
3193 eh_region src_r, dst_r;
3194 gimple_stmt_iterator gsi;
3195 gimple x;
3196 tree fn, src_nr;
3197 bool ret = false;
3199 lp_nr = lookup_stmt_eh_lp (stmt);
3200 if (lp_nr != 0)
3201 dst_r = get_eh_region_from_lp_number (lp_nr);
3202 else
3203 dst_r = NULL;
3205 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3206 gsi = gsi_last_bb (bb);
3208 if (src_r == NULL)
3210 /* We can wind up with no source region when pass_cleanup_eh shows
3211 that there are no entries into an eh region and deletes it, but
3212 then the block that contains the resx isn't removed. This can
3213 happen without optimization when the switch statement created by
3214 lower_try_finally_switch isn't simplified to remove the eh case.
3216 Resolve this by expanding the resx node to an abort. */
3218 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3219 x = gimple_build_call (fn, 0);
3220 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3222 while (EDGE_COUNT (bb->succs) > 0)
3223 remove_edge (EDGE_SUCC (bb, 0));
3225 else if (dst_r)
3227 /* When we have a destination region, we resolve this by copying
3228 the excptr and filter values into place, and changing the edge
3229 to immediately after the landing pad. */
3230 edge e;
3232 if (lp_nr < 0)
3234 basic_block new_bb;
3235 tree lab;
3237 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3238 the failure decl into a new block, if needed. */
3239 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3241 tree *slot = mnt_map->get (dst_r);
3242 if (slot == NULL)
3244 gimple_stmt_iterator gsi2;
3246 new_bb = create_empty_bb (bb);
3247 add_bb_to_loop (new_bb, bb->loop_father);
3248 lab = gimple_block_label (new_bb);
3249 gsi2 = gsi_start_bb (new_bb);
3251 fn = dst_r->u.must_not_throw.failure_decl;
3252 x = gimple_build_call (fn, 0);
3253 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3254 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3256 mnt_map->put (dst_r, lab);
3258 else
3260 lab = *slot;
3261 new_bb = label_to_block (lab);
3264 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3265 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3266 e->count = bb->count;
3267 e->probability = REG_BR_PROB_BASE;
3269 else
3271 edge_iterator ei;
3272 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3274 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3275 src_nr = build_int_cst (integer_type_node, src_r->index);
3276 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3277 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3279 /* Update the flags for the outgoing edge. */
3280 e = single_succ_edge (bb);
3281 gcc_assert (e->flags & EDGE_EH);
3282 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3284 /* If there are no more EH users of the landing pad, delete it. */
3285 FOR_EACH_EDGE (e, ei, e->dest->preds)
3286 if (e->flags & EDGE_EH)
3287 break;
3288 if (e == NULL)
3290 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3291 remove_eh_landing_pad (lp);
3295 ret = true;
3297 else
3299 tree var;
3301 /* When we don't have a destination region, this exception escapes
3302 up the call chain. We resolve this by generating a call to the
3303 _Unwind_Resume library function. */
3305 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3306 with no arguments for C++ and Java. Check for that. */
3307 if (src_r->use_cxa_end_cleanup)
3309 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3310 x = gimple_build_call (fn, 0);
3311 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3313 else
3315 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3316 src_nr = build_int_cst (integer_type_node, src_r->index);
3317 x = gimple_build_call (fn, 1, src_nr);
3318 var = create_tmp_var (ptr_type_node);
3319 var = make_ssa_name (var, x);
3320 gimple_call_set_lhs (x, var);
3321 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3323 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3324 x = gimple_build_call (fn, 1, var);
3325 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3328 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3331 gsi_remove (&gsi, true);
3333 return ret;
3336 namespace {
3338 const pass_data pass_data_lower_resx =
3340 GIMPLE_PASS, /* type */
3341 "resx", /* name */
3342 OPTGROUP_NONE, /* optinfo_flags */
3343 TV_TREE_EH, /* tv_id */
3344 PROP_gimple_lcf, /* properties_required */
3345 0, /* properties_provided */
3346 0, /* properties_destroyed */
3347 0, /* todo_flags_start */
3348 0, /* todo_flags_finish */
3351 class pass_lower_resx : public gimple_opt_pass
3353 public:
3354 pass_lower_resx (gcc::context *ctxt)
3355 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3358 /* opt_pass methods: */
3359 virtual bool gate (function *) { return flag_exceptions != 0; }
3360 virtual unsigned int execute (function *);
3362 }; // class pass_lower_resx
3364 unsigned
3365 pass_lower_resx::execute (function *fun)
3367 basic_block bb;
3368 bool dominance_invalidated = false;
3369 bool any_rewritten = false;
3371 hash_map<eh_region, tree> mnt_map;
3373 FOR_EACH_BB_FN (bb, fun)
3375 gimple last = last_stmt (bb);
3376 if (last && is_gimple_resx (last))
3378 dominance_invalidated |=
3379 lower_resx (bb, as_a <gresx *> (last), &mnt_map);
3380 any_rewritten = true;
3384 if (dominance_invalidated)
3386 free_dominance_info (CDI_DOMINATORS);
3387 free_dominance_info (CDI_POST_DOMINATORS);
3390 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3393 } // anon namespace
3395 gimple_opt_pass *
3396 make_pass_lower_resx (gcc::context *ctxt)
3398 return new pass_lower_resx (ctxt);
3401 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3402 external throw. */
3404 static void
3405 optimize_clobbers (basic_block bb)
3407 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3408 bool any_clobbers = false;
3409 bool seen_stack_restore = false;
3410 edge_iterator ei;
3411 edge e;
3413 /* Only optimize anything if the bb contains at least one clobber,
3414 ends with resx (checked by caller), optionally contains some
3415 debug stmts or labels, or at most one __builtin_stack_restore
3416 call, and has an incoming EH edge. */
3417 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3419 gimple stmt = gsi_stmt (gsi);
3420 if (is_gimple_debug (stmt))
3421 continue;
3422 if (gimple_clobber_p (stmt))
3424 any_clobbers = true;
3425 continue;
3427 if (!seen_stack_restore
3428 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3430 seen_stack_restore = true;
3431 continue;
3433 if (gimple_code (stmt) == GIMPLE_LABEL)
3434 break;
3435 return;
3437 if (!any_clobbers)
3438 return;
3439 FOR_EACH_EDGE (e, ei, bb->preds)
3440 if (e->flags & EDGE_EH)
3441 break;
3442 if (e == NULL)
3443 return;
3444 gsi = gsi_last_bb (bb);
3445 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3447 gimple stmt = gsi_stmt (gsi);
3448 if (!gimple_clobber_p (stmt))
3449 continue;
3450 unlink_stmt_vdef (stmt);
3451 gsi_remove (&gsi, true);
3452 release_defs (stmt);
3456 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3457 internal throw to successor BB. */
3459 static int
3460 sink_clobbers (basic_block bb)
3462 edge e;
3463 edge_iterator ei;
3464 gimple_stmt_iterator gsi, dgsi;
3465 basic_block succbb;
3466 bool any_clobbers = false;
3467 unsigned todo = 0;
3469 /* Only optimize if BB has a single EH successor and
3470 all predecessor edges are EH too. */
3471 if (!single_succ_p (bb)
3472 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3473 return 0;
3475 FOR_EACH_EDGE (e, ei, bb->preds)
3477 if ((e->flags & EDGE_EH) == 0)
3478 return 0;
3481 /* And BB contains only CLOBBER stmts before the final
3482 RESX. */
3483 gsi = gsi_last_bb (bb);
3484 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3486 gimple stmt = gsi_stmt (gsi);
3487 if (is_gimple_debug (stmt))
3488 continue;
3489 if (gimple_code (stmt) == GIMPLE_LABEL)
3490 break;
3491 if (!gimple_clobber_p (stmt))
3492 return 0;
3493 any_clobbers = true;
3495 if (!any_clobbers)
3496 return 0;
3498 edge succe = single_succ_edge (bb);
3499 succbb = succe->dest;
3501 /* See if there is a virtual PHI node to take an updated virtual
3502 operand from. */
3503 gphi *vphi = NULL;
3504 tree vuse = NULL_TREE;
3505 for (gphi_iterator gpi = gsi_start_phis (succbb);
3506 !gsi_end_p (gpi); gsi_next (&gpi))
3508 tree res = gimple_phi_result (gpi.phi ());
3509 if (virtual_operand_p (res))
3511 vphi = gpi.phi ();
3512 vuse = res;
3513 break;
3517 dgsi = gsi_after_labels (succbb);
3518 gsi = gsi_last_bb (bb);
3519 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3521 gimple stmt = gsi_stmt (gsi);
3522 tree lhs;
3523 if (is_gimple_debug (stmt))
3524 continue;
3525 if (gimple_code (stmt) == GIMPLE_LABEL)
3526 break;
3527 lhs = gimple_assign_lhs (stmt);
3528 /* Unfortunately we don't have dominance info updated at this
3529 point, so checking if
3530 dominated_by_p (CDI_DOMINATORS, succbb,
3531 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3532 would be too costly. Thus, avoid sinking any clobbers that
3533 refer to non-(D) SSA_NAMEs. */
3534 if (TREE_CODE (lhs) == MEM_REF
3535 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3536 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3538 unlink_stmt_vdef (stmt);
3539 gsi_remove (&gsi, true);
3540 release_defs (stmt);
3541 continue;
3544 /* As we do not change stmt order when sinking across a
3545 forwarder edge we can keep virtual operands in place. */
3546 gsi_remove (&gsi, false);
3547 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3549 /* But adjust virtual operands if we sunk across a PHI node. */
3550 if (vuse)
3552 gimple use_stmt;
3553 imm_use_iterator iter;
3554 use_operand_p use_p;
3555 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3556 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3557 SET_USE (use_p, gimple_vdef (stmt));
3558 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3560 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3561 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3563 /* Adjust the incoming virtual operand. */
3564 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3565 SET_USE (gimple_vuse_op (stmt), vuse);
3567 /* If there isn't a single predecessor but no virtual PHI node
3568 arrange for virtual operands to be renamed. */
3569 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3570 && !single_pred_p (succbb))
3572 /* In this case there will be no use of the VDEF of this stmt.
3573 ??? Unless this is a secondary opportunity and we have not
3574 removed unreachable blocks yet, so we cannot assert this.
3575 Which also means we will end up renaming too many times. */
3576 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3577 mark_virtual_operands_for_renaming (cfun);
3578 todo |= TODO_update_ssa_only_virtuals;
3582 return todo;
3585 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3586 we have found some duplicate labels and removed some edges. */
3588 static bool
3589 lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
3591 gimple_stmt_iterator gsi;
3592 int region_nr;
3593 eh_region r;
3594 tree filter, fn;
3595 gimple x;
3596 bool redirected = false;
3598 region_nr = gimple_eh_dispatch_region (stmt);
3599 r = get_eh_region_from_number (region_nr);
3601 gsi = gsi_last_bb (src);
3603 switch (r->type)
3605 case ERT_TRY:
3607 auto_vec<tree> labels;
3608 tree default_label = NULL;
3609 eh_catch c;
3610 edge_iterator ei;
3611 edge e;
3612 hash_set<tree> seen_values;
3614 /* Collect the labels for a switch. Zero the post_landing_pad
3615 field becase we'll no longer have anything keeping these labels
3616 in existence and the optimizer will be free to merge these
3617 blocks at will. */
3618 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3620 tree tp_node, flt_node, lab = c->label;
3621 bool have_label = false;
3623 c->label = NULL;
3624 tp_node = c->type_list;
3625 flt_node = c->filter_list;
3627 if (tp_node == NULL)
3629 default_label = lab;
3630 break;
3634 /* Filter out duplicate labels that arise when this handler
3635 is shadowed by an earlier one. When no labels are
3636 attached to the handler anymore, we remove
3637 the corresponding edge and then we delete unreachable
3638 blocks at the end of this pass. */
3639 if (! seen_values.contains (TREE_VALUE (flt_node)))
3641 tree t = build_case_label (TREE_VALUE (flt_node),
3642 NULL, lab);
3643 labels.safe_push (t);
3644 seen_values.add (TREE_VALUE (flt_node));
3645 have_label = true;
3648 tp_node = TREE_CHAIN (tp_node);
3649 flt_node = TREE_CHAIN (flt_node);
3651 while (tp_node);
3652 if (! have_label)
3654 remove_edge (find_edge (src, label_to_block (lab)));
3655 redirected = true;
3659 /* Clean up the edge flags. */
3660 FOR_EACH_EDGE (e, ei, src->succs)
3662 if (e->flags & EDGE_FALLTHRU)
3664 /* If there was no catch-all, use the fallthru edge. */
3665 if (default_label == NULL)
3666 default_label = gimple_block_label (e->dest);
3667 e->flags &= ~EDGE_FALLTHRU;
3670 gcc_assert (default_label != NULL);
3672 /* Don't generate a switch if there's only a default case.
3673 This is common in the form of try { A; } catch (...) { B; }. */
3674 if (!labels.exists ())
3676 e = single_succ_edge (src);
3677 e->flags |= EDGE_FALLTHRU;
3679 else
3681 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3682 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3683 region_nr));
3684 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3685 filter = make_ssa_name (filter, x);
3686 gimple_call_set_lhs (x, filter);
3687 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3689 /* Turn the default label into a default case. */
3690 default_label = build_case_label (NULL, NULL, default_label);
3691 sort_case_labels (labels);
3693 x = gimple_build_switch (filter, default_label, labels);
3694 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3697 break;
3699 case ERT_ALLOWED_EXCEPTIONS:
3701 edge b_e = BRANCH_EDGE (src);
3702 edge f_e = FALLTHRU_EDGE (src);
3704 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3705 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3706 region_nr));
3707 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3708 filter = make_ssa_name (filter, x);
3709 gimple_call_set_lhs (x, filter);
3710 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3712 r->u.allowed.label = NULL;
3713 x = gimple_build_cond (EQ_EXPR, filter,
3714 build_int_cst (TREE_TYPE (filter),
3715 r->u.allowed.filter),
3716 NULL_TREE, NULL_TREE);
3717 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3719 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3720 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3722 break;
3724 default:
3725 gcc_unreachable ();
3728 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3729 gsi_remove (&gsi, true);
3730 return redirected;
3733 namespace {
3735 const pass_data pass_data_lower_eh_dispatch =
3737 GIMPLE_PASS, /* type */
3738 "ehdisp", /* name */
3739 OPTGROUP_NONE, /* optinfo_flags */
3740 TV_TREE_EH, /* tv_id */
3741 PROP_gimple_lcf, /* properties_required */
3742 0, /* properties_provided */
3743 0, /* properties_destroyed */
3744 0, /* todo_flags_start */
3745 0, /* todo_flags_finish */
3748 class pass_lower_eh_dispatch : public gimple_opt_pass
3750 public:
3751 pass_lower_eh_dispatch (gcc::context *ctxt)
3752 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3755 /* opt_pass methods: */
3756 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3757 virtual unsigned int execute (function *);
3759 }; // class pass_lower_eh_dispatch
3761 unsigned
3762 pass_lower_eh_dispatch::execute (function *fun)
3764 basic_block bb;
3765 int flags = 0;
3766 bool redirected = false;
3768 assign_filter_values ();
3770 FOR_EACH_BB_FN (bb, fun)
3772 gimple last = last_stmt (bb);
3773 if (last == NULL)
3774 continue;
3775 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3777 redirected |= lower_eh_dispatch (bb,
3778 as_a <geh_dispatch *> (last));
3779 flags |= TODO_update_ssa_only_virtuals;
3781 else if (gimple_code (last) == GIMPLE_RESX)
3783 if (stmt_can_throw_external (last))
3784 optimize_clobbers (bb);
3785 else
3786 flags |= sink_clobbers (bb);
3790 if (redirected)
3791 delete_unreachable_blocks ();
3792 return flags;
3795 } // anon namespace
3797 gimple_opt_pass *
3798 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3800 return new pass_lower_eh_dispatch (ctxt);
3803 /* Walk statements, see what regions and, optionally, landing pads
3804 are really referenced.
3806 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3807 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3809 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3810 regions are marked.
3812 The caller is responsible for freeing the returned sbitmaps. */
3814 static void
3815 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3817 sbitmap r_reachable, lp_reachable;
3818 basic_block bb;
3819 bool mark_landing_pads = (lp_reachablep != NULL);
3820 gcc_checking_assert (r_reachablep != NULL);
3822 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3823 bitmap_clear (r_reachable);
3824 *r_reachablep = r_reachable;
3826 if (mark_landing_pads)
3828 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3829 bitmap_clear (lp_reachable);
3830 *lp_reachablep = lp_reachable;
3832 else
3833 lp_reachable = NULL;
3835 FOR_EACH_BB_FN (bb, cfun)
3837 gimple_stmt_iterator gsi;
3839 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3841 gimple stmt = gsi_stmt (gsi);
3843 if (mark_landing_pads)
3845 int lp_nr = lookup_stmt_eh_lp (stmt);
3847 /* Negative LP numbers are MUST_NOT_THROW regions which
3848 are not considered BB enders. */
3849 if (lp_nr < 0)
3850 bitmap_set_bit (r_reachable, -lp_nr);
3852 /* Positive LP numbers are real landing pads, and BB enders. */
3853 else if (lp_nr > 0)
3855 gcc_assert (gsi_one_before_end_p (gsi));
3856 eh_region region = get_eh_region_from_lp_number (lp_nr);
3857 bitmap_set_bit (r_reachable, region->index);
3858 bitmap_set_bit (lp_reachable, lp_nr);
3862 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3863 switch (gimple_code (stmt))
3865 case GIMPLE_RESX:
3866 bitmap_set_bit (r_reachable,
3867 gimple_resx_region (as_a <gresx *> (stmt)));
3868 break;
3869 case GIMPLE_EH_DISPATCH:
3870 bitmap_set_bit (r_reachable,
3871 gimple_eh_dispatch_region (
3872 as_a <geh_dispatch *> (stmt)));
3873 break;
3874 case GIMPLE_CALL:
3875 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
3876 for (int i = 0; i < 2; ++i)
3878 tree rt = gimple_call_arg (stmt, i);
3879 HOST_WIDE_INT ri = tree_to_shwi (rt);
3881 gcc_assert (ri = (int)ri);
3882 bitmap_set_bit (r_reachable, ri);
3884 break;
3885 default:
3886 break;
3892 /* Remove unreachable handlers and unreachable landing pads. */
3894 static void
3895 remove_unreachable_handlers (void)
3897 sbitmap r_reachable, lp_reachable;
3898 eh_region region;
3899 eh_landing_pad lp;
3900 unsigned i;
3902 mark_reachable_handlers (&r_reachable, &lp_reachable);
3904 if (dump_file)
3906 fprintf (dump_file, "Before removal of unreachable regions:\n");
3907 dump_eh_tree (dump_file, cfun);
3908 fprintf (dump_file, "Reachable regions: ");
3909 dump_bitmap_file (dump_file, r_reachable);
3910 fprintf (dump_file, "Reachable landing pads: ");
3911 dump_bitmap_file (dump_file, lp_reachable);
3914 if (dump_file)
3916 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3917 if (region && !bitmap_bit_p (r_reachable, region->index))
3918 fprintf (dump_file,
3919 "Removing unreachable region %d\n",
3920 region->index);
3923 remove_unreachable_eh_regions (r_reachable);
3925 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3926 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3928 if (dump_file)
3929 fprintf (dump_file,
3930 "Removing unreachable landing pad %d\n",
3931 lp->index);
3932 remove_eh_landing_pad (lp);
3935 if (dump_file)
3937 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3938 dump_eh_tree (dump_file, cfun);
3939 fprintf (dump_file, "\n\n");
3942 sbitmap_free (r_reachable);
3943 sbitmap_free (lp_reachable);
3945 #ifdef ENABLE_CHECKING
3946 verify_eh_tree (cfun);
3947 #endif
3950 /* Remove unreachable handlers if any landing pads have been removed after
3951 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3953 void
3954 maybe_remove_unreachable_handlers (void)
3956 eh_landing_pad lp;
3957 unsigned i;
3959 if (cfun->eh == NULL)
3960 return;
3962 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3963 if (lp && lp->post_landing_pad)
3965 if (label_to_block (lp->post_landing_pad) == NULL)
3967 remove_unreachable_handlers ();
3968 return;
3973 /* Remove regions that do not have landing pads. This assumes
3974 that remove_unreachable_handlers has already been run, and
3975 that we've just manipulated the landing pads since then.
3977 Preserve regions with landing pads and regions that prevent
3978 exceptions from propagating further, even if these regions
3979 are not reachable. */
3981 static void
3982 remove_unreachable_handlers_no_lp (void)
3984 eh_region region;
3985 sbitmap r_reachable;
3986 unsigned i;
3988 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3990 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3992 if (! region)
3993 continue;
3995 if (region->landing_pads != NULL
3996 || region->type == ERT_MUST_NOT_THROW)
3997 bitmap_set_bit (r_reachable, region->index);
3999 if (dump_file
4000 && !bitmap_bit_p (r_reachable, region->index))
4001 fprintf (dump_file,
4002 "Removing unreachable region %d\n",
4003 region->index);
4006 remove_unreachable_eh_regions (r_reachable);
4008 sbitmap_free (r_reachable);
4011 /* Undo critical edge splitting on an EH landing pad. Earlier, we
4012 optimisticaly split all sorts of edges, including EH edges. The
4013 optimization passes in between may not have needed them; if not,
4014 we should undo the split.
4016 Recognize this case by having one EH edge incoming to the BB and
4017 one normal edge outgoing; BB should be empty apart from the
4018 post_landing_pad label.
4020 Note that this is slightly different from the empty handler case
4021 handled by cleanup_empty_eh, in that the actual handler may yet
4022 have actual code but the landing pad has been separated from the
4023 handler. As such, cleanup_empty_eh relies on this transformation
4024 having been done first. */
4026 static bool
4027 unsplit_eh (eh_landing_pad lp)
4029 basic_block bb = label_to_block (lp->post_landing_pad);
4030 gimple_stmt_iterator gsi;
4031 edge e_in, e_out;
4033 /* Quickly check the edge counts on BB for singularity. */
4034 if (!single_pred_p (bb) || !single_succ_p (bb))
4035 return false;
4036 e_in = single_pred_edge (bb);
4037 e_out = single_succ_edge (bb);
4039 /* Input edge must be EH and output edge must be normal. */
4040 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4041 return false;
4043 /* The block must be empty except for the labels and debug insns. */
4044 gsi = gsi_after_labels (bb);
4045 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4046 gsi_next_nondebug (&gsi);
4047 if (!gsi_end_p (gsi))
4048 return false;
4050 /* The destination block must not already have a landing pad
4051 for a different region. */
4052 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4054 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4055 tree lab;
4056 int lp_nr;
4058 if (!label_stmt)
4059 break;
4060 lab = gimple_label_label (label_stmt);
4061 lp_nr = EH_LANDING_PAD_NR (lab);
4062 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4063 return false;
4066 /* The new destination block must not already be a destination of
4067 the source block, lest we merge fallthru and eh edges and get
4068 all sorts of confused. */
4069 if (find_edge (e_in->src, e_out->dest))
4070 return false;
4072 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4073 thought this should have been cleaned up by a phicprop pass, but
4074 that doesn't appear to handle virtuals. Propagate by hand. */
4075 if (!gimple_seq_empty_p (phi_nodes (bb)))
4077 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); )
4079 gimple use_stmt;
4080 gphi *phi = gpi.phi ();
4081 tree lhs = gimple_phi_result (phi);
4082 tree rhs = gimple_phi_arg_def (phi, 0);
4083 use_operand_p use_p;
4084 imm_use_iterator iter;
4086 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4088 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4089 SET_USE (use_p, rhs);
4092 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4093 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4095 remove_phi_node (&gpi, true);
4099 if (dump_file && (dump_flags & TDF_DETAILS))
4100 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4101 lp->index, e_out->dest->index);
4103 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4104 a successor edge, humor it. But do the real CFG change with the
4105 predecessor of E_OUT in order to preserve the ordering of arguments
4106 to the PHI nodes in E_OUT->DEST. */
4107 redirect_eh_edge_1 (e_in, e_out->dest, false);
4108 redirect_edge_pred (e_out, e_in->src);
4109 e_out->flags = e_in->flags;
4110 e_out->probability = e_in->probability;
4111 e_out->count = e_in->count;
4112 remove_edge (e_in);
4114 return true;
4117 /* Examine each landing pad block and see if it matches unsplit_eh. */
4119 static bool
4120 unsplit_all_eh (void)
4122 bool changed = false;
4123 eh_landing_pad lp;
4124 int i;
4126 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4127 if (lp)
4128 changed |= unsplit_eh (lp);
4130 return changed;
4133 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4134 to OLD_BB to NEW_BB; return true on success, false on failure.
4136 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4137 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4138 Virtual PHIs may be deleted and marked for renaming. */
4140 static bool
4141 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4142 edge old_bb_out, bool change_region)
4144 gphi_iterator ngsi, ogsi;
4145 edge_iterator ei;
4146 edge e;
4147 bitmap ophi_handled;
4149 /* The destination block must not be a regular successor for any
4150 of the preds of the landing pad. Thus, avoid turning
4151 <..>
4152 | \ EH
4153 | <..>
4155 <..>
4156 into
4157 <..>
4158 | | EH
4159 <..>
4160 which CFG verification would choke on. See PR45172 and PR51089. */
4161 FOR_EACH_EDGE (e, ei, old_bb->preds)
4162 if (find_edge (e->src, new_bb))
4163 return false;
4165 FOR_EACH_EDGE (e, ei, old_bb->preds)
4166 redirect_edge_var_map_clear (e);
4168 ophi_handled = BITMAP_ALLOC (NULL);
4170 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4171 for the edges we're going to move. */
4172 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4174 gphi *ophi, *nphi = ngsi.phi ();
4175 tree nresult, nop;
4177 nresult = gimple_phi_result (nphi);
4178 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4180 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4181 the source ssa_name. */
4182 ophi = NULL;
4183 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4185 ophi = ogsi.phi ();
4186 if (gimple_phi_result (ophi) == nop)
4187 break;
4188 ophi = NULL;
4191 /* If we did find the corresponding PHI, copy those inputs. */
4192 if (ophi)
4194 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4195 if (!has_single_use (nop))
4197 imm_use_iterator imm_iter;
4198 use_operand_p use_p;
4200 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4202 if (!gimple_debug_bind_p (USE_STMT (use_p))
4203 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4204 || gimple_bb (USE_STMT (use_p)) != new_bb))
4205 goto fail;
4208 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4209 FOR_EACH_EDGE (e, ei, old_bb->preds)
4211 location_t oloc;
4212 tree oop;
4214 if ((e->flags & EDGE_EH) == 0)
4215 continue;
4216 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4217 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4218 redirect_edge_var_map_add (e, nresult, oop, oloc);
4221 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4222 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4223 variable is unchanged from input to the block and we can simply
4224 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4225 else
4227 location_t nloc
4228 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4229 FOR_EACH_EDGE (e, ei, old_bb->preds)
4230 redirect_edge_var_map_add (e, nresult, nop, nloc);
4234 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4235 we don't know what values from the other edges into NEW_BB to use. */
4236 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4238 gphi *ophi = ogsi.phi ();
4239 tree oresult = gimple_phi_result (ophi);
4240 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4241 goto fail;
4244 /* Finally, move the edges and update the PHIs. */
4245 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4246 if (e->flags & EDGE_EH)
4248 /* ??? CFG manipluation routines do not try to update loop
4249 form on edge redirection. Do so manually here for now. */
4250 /* If we redirect a loop entry or latch edge that will either create
4251 a multiple entry loop or rotate the loop. If the loops merge
4252 we may have created a loop with multiple latches.
4253 All of this isn't easily fixed thus cancel the affected loop
4254 and mark the other loop as possibly having multiple latches. */
4255 if (e->dest == e->dest->loop_father->header)
4257 mark_loop_for_removal (e->dest->loop_father);
4258 new_bb->loop_father->latch = NULL;
4259 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4261 redirect_eh_edge_1 (e, new_bb, change_region);
4262 redirect_edge_succ (e, new_bb);
4263 flush_pending_stmts (e);
4265 else
4266 ei_next (&ei);
4268 BITMAP_FREE (ophi_handled);
4269 return true;
4271 fail:
4272 FOR_EACH_EDGE (e, ei, old_bb->preds)
4273 redirect_edge_var_map_clear (e);
4274 BITMAP_FREE (ophi_handled);
4275 return false;
4278 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4279 old region to NEW_REGION at BB. */
4281 static void
4282 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4283 eh_landing_pad lp, eh_region new_region)
4285 gimple_stmt_iterator gsi;
4286 eh_landing_pad *pp;
4288 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4289 continue;
4290 *pp = lp->next_lp;
4292 lp->region = new_region;
4293 lp->next_lp = new_region->landing_pads;
4294 new_region->landing_pads = lp;
4296 /* Delete the RESX that was matched within the empty handler block. */
4297 gsi = gsi_last_bb (bb);
4298 unlink_stmt_vdef (gsi_stmt (gsi));
4299 gsi_remove (&gsi, true);
4301 /* Clean up E_OUT for the fallthru. */
4302 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4303 e_out->probability = REG_BR_PROB_BASE;
4306 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4307 unsplitting than unsplit_eh was prepared to handle, e.g. when
4308 multiple incoming edges and phis are involved. */
4310 static bool
4311 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4313 gimple_stmt_iterator gsi;
4314 tree lab;
4316 /* We really ought not have totally lost everything following
4317 a landing pad label. Given that BB is empty, there had better
4318 be a successor. */
4319 gcc_assert (e_out != NULL);
4321 /* The destination block must not already have a landing pad
4322 for a different region. */
4323 lab = NULL;
4324 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4326 glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4327 int lp_nr;
4329 if (!stmt)
4330 break;
4331 lab = gimple_label_label (stmt);
4332 lp_nr = EH_LANDING_PAD_NR (lab);
4333 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4334 return false;
4337 /* Attempt to move the PHIs into the successor block. */
4338 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4340 if (dump_file && (dump_flags & TDF_DETAILS))
4341 fprintf (dump_file,
4342 "Unsplit EH landing pad %d to block %i "
4343 "(via cleanup_empty_eh).\n",
4344 lp->index, e_out->dest->index);
4345 return true;
4348 return false;
4351 /* Return true if edge E_FIRST is part of an empty infinite loop
4352 or leads to such a loop through a series of single successor
4353 empty bbs. */
4355 static bool
4356 infinite_empty_loop_p (edge e_first)
4358 bool inf_loop = false;
4359 edge e;
4361 if (e_first->dest == e_first->src)
4362 return true;
4364 e_first->src->aux = (void *) 1;
4365 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4367 gimple_stmt_iterator gsi;
4368 if (e->dest->aux)
4370 inf_loop = true;
4371 break;
4373 e->dest->aux = (void *) 1;
4374 gsi = gsi_after_labels (e->dest);
4375 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4376 gsi_next_nondebug (&gsi);
4377 if (!gsi_end_p (gsi))
4378 break;
4380 e_first->src->aux = NULL;
4381 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4382 e->dest->aux = NULL;
4384 return inf_loop;
4387 /* Examine the block associated with LP to determine if it's an empty
4388 handler for its EH region. If so, attempt to redirect EH edges to
4389 an outer region. Return true the CFG was updated in any way. This
4390 is similar to jump forwarding, just across EH edges. */
4392 static bool
4393 cleanup_empty_eh (eh_landing_pad lp)
4395 basic_block bb = label_to_block (lp->post_landing_pad);
4396 gimple_stmt_iterator gsi;
4397 gimple resx;
4398 eh_region new_region;
4399 edge_iterator ei;
4400 edge e, e_out;
4401 bool has_non_eh_pred;
4402 bool ret = false;
4403 int new_lp_nr;
4405 /* There can be zero or one edges out of BB. This is the quickest test. */
4406 switch (EDGE_COUNT (bb->succs))
4408 case 0:
4409 e_out = NULL;
4410 break;
4411 case 1:
4412 e_out = single_succ_edge (bb);
4413 break;
4414 default:
4415 return false;
4418 resx = last_stmt (bb);
4419 if (resx && is_gimple_resx (resx))
4421 if (stmt_can_throw_external (resx))
4422 optimize_clobbers (bb);
4423 else if (sink_clobbers (bb))
4424 ret = true;
4427 gsi = gsi_after_labels (bb);
4429 /* Make sure to skip debug statements. */
4430 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4431 gsi_next_nondebug (&gsi);
4433 /* If the block is totally empty, look for more unsplitting cases. */
4434 if (gsi_end_p (gsi))
4436 /* For the degenerate case of an infinite loop bail out.
4437 If bb has no successors and is totally empty, which can happen e.g.
4438 because of incorrect noreturn attribute, bail out too. */
4439 if (e_out == NULL
4440 || infinite_empty_loop_p (e_out))
4441 return ret;
4443 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4446 /* The block should consist only of a single RESX statement, modulo a
4447 preceding call to __builtin_stack_restore if there is no outgoing
4448 edge, since the call can be eliminated in this case. */
4449 resx = gsi_stmt (gsi);
4450 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4452 gsi_next (&gsi);
4453 resx = gsi_stmt (gsi);
4455 if (!is_gimple_resx (resx))
4456 return ret;
4457 gcc_assert (gsi_one_before_end_p (gsi));
4459 /* Determine if there are non-EH edges, or resx edges into the handler. */
4460 has_non_eh_pred = false;
4461 FOR_EACH_EDGE (e, ei, bb->preds)
4462 if (!(e->flags & EDGE_EH))
4463 has_non_eh_pred = true;
4465 /* Find the handler that's outer of the empty handler by looking at
4466 where the RESX instruction was vectored. */
4467 new_lp_nr = lookup_stmt_eh_lp (resx);
4468 new_region = get_eh_region_from_lp_number (new_lp_nr);
4470 /* If there's no destination region within the current function,
4471 redirection is trivial via removing the throwing statements from
4472 the EH region, removing the EH edges, and allowing the block
4473 to go unreachable. */
4474 if (new_region == NULL)
4476 gcc_assert (e_out == NULL);
4477 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4478 if (e->flags & EDGE_EH)
4480 gimple stmt = last_stmt (e->src);
4481 remove_stmt_from_eh_lp (stmt);
4482 remove_edge (e);
4484 else
4485 ei_next (&ei);
4486 goto succeed;
4489 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4490 to handle the abort and allow the blocks to go unreachable. */
4491 if (new_region->type == ERT_MUST_NOT_THROW)
4493 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4494 if (e->flags & EDGE_EH)
4496 gimple stmt = last_stmt (e->src);
4497 remove_stmt_from_eh_lp (stmt);
4498 add_stmt_to_eh_lp (stmt, new_lp_nr);
4499 remove_edge (e);
4501 else
4502 ei_next (&ei);
4503 goto succeed;
4506 /* Try to redirect the EH edges and merge the PHIs into the destination
4507 landing pad block. If the merge succeeds, we'll already have redirected
4508 all the EH edges. The handler itself will go unreachable if there were
4509 no normal edges. */
4510 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4511 goto succeed;
4513 /* Finally, if all input edges are EH edges, then we can (potentially)
4514 reduce the number of transfers from the runtime by moving the landing
4515 pad from the original region to the new region. This is a win when
4516 we remove the last CLEANUP region along a particular exception
4517 propagation path. Since nothing changes except for the region with
4518 which the landing pad is associated, the PHI nodes do not need to be
4519 adjusted at all. */
4520 if (!has_non_eh_pred)
4522 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4523 if (dump_file && (dump_flags & TDF_DETAILS))
4524 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4525 lp->index, new_region->index);
4527 /* ??? The CFG didn't change, but we may have rendered the
4528 old EH region unreachable. Trigger a cleanup there. */
4529 return true;
4532 return ret;
4534 succeed:
4535 if (dump_file && (dump_flags & TDF_DETAILS))
4536 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4537 remove_eh_landing_pad (lp);
4538 return true;
4541 /* Do a post-order traversal of the EH region tree. Examine each
4542 post_landing_pad block and see if we can eliminate it as empty. */
4544 static bool
4545 cleanup_all_empty_eh (void)
4547 bool changed = false;
4548 eh_landing_pad lp;
4549 int i;
4551 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4552 if (lp)
4553 changed |= cleanup_empty_eh (lp);
4555 return changed;
4558 /* Perform cleanups and lowering of exception handling
4559 1) cleanups regions with handlers doing nothing are optimized out
4560 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4561 3) Info about regions that are containing instructions, and regions
4562 reachable via local EH edges is collected
4563 4) Eh tree is pruned for regions no longer necessary.
4565 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4566 Unify those that have the same failure decl and locus.
4569 static unsigned int
4570 execute_cleanup_eh_1 (void)
4572 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4573 looking up unreachable landing pads. */
4574 remove_unreachable_handlers ();
4576 /* Watch out for the region tree vanishing due to all unreachable. */
4577 if (cfun->eh->region_tree)
4579 bool changed = false;
4581 if (optimize)
4582 changed |= unsplit_all_eh ();
4583 changed |= cleanup_all_empty_eh ();
4585 if (changed)
4587 free_dominance_info (CDI_DOMINATORS);
4588 free_dominance_info (CDI_POST_DOMINATORS);
4590 /* We delayed all basic block deletion, as we may have performed
4591 cleanups on EH edges while non-EH edges were still present. */
4592 delete_unreachable_blocks ();
4594 /* We manipulated the landing pads. Remove any region that no
4595 longer has a landing pad. */
4596 remove_unreachable_handlers_no_lp ();
4598 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4602 return 0;
4605 namespace {
4607 const pass_data pass_data_cleanup_eh =
4609 GIMPLE_PASS, /* type */
4610 "ehcleanup", /* name */
4611 OPTGROUP_NONE, /* optinfo_flags */
4612 TV_TREE_EH, /* tv_id */
4613 PROP_gimple_lcf, /* properties_required */
4614 0, /* properties_provided */
4615 0, /* properties_destroyed */
4616 0, /* todo_flags_start */
4617 0, /* todo_flags_finish */
4620 class pass_cleanup_eh : public gimple_opt_pass
4622 public:
4623 pass_cleanup_eh (gcc::context *ctxt)
4624 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4627 /* opt_pass methods: */
4628 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4629 virtual bool gate (function *fun)
4631 return fun->eh != NULL && fun->eh->region_tree != NULL;
4634 virtual unsigned int execute (function *);
4636 }; // class pass_cleanup_eh
4638 unsigned int
4639 pass_cleanup_eh::execute (function *fun)
4641 int ret = execute_cleanup_eh_1 ();
4643 /* If the function no longer needs an EH personality routine
4644 clear it. This exposes cross-language inlining opportunities
4645 and avoids references to a never defined personality routine. */
4646 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4647 && function_needs_eh_personality (fun) != eh_personality_lang)
4648 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4650 return ret;
4653 } // anon namespace
4655 gimple_opt_pass *
4656 make_pass_cleanup_eh (gcc::context *ctxt)
4658 return new pass_cleanup_eh (ctxt);
4661 /* Verify that BB containing STMT as the last statement, has precisely the
4662 edge that make_eh_edges would create. */
4664 DEBUG_FUNCTION bool
4665 verify_eh_edges (gimple stmt)
4667 basic_block bb = gimple_bb (stmt);
4668 eh_landing_pad lp = NULL;
4669 int lp_nr;
4670 edge_iterator ei;
4671 edge e, eh_edge;
4673 lp_nr = lookup_stmt_eh_lp (stmt);
4674 if (lp_nr > 0)
4675 lp = get_eh_landing_pad_from_number (lp_nr);
4677 eh_edge = NULL;
4678 FOR_EACH_EDGE (e, ei, bb->succs)
4680 if (e->flags & EDGE_EH)
4682 if (eh_edge)
4684 error ("BB %i has multiple EH edges", bb->index);
4685 return true;
4687 else
4688 eh_edge = e;
4692 if (lp == NULL)
4694 if (eh_edge)
4696 error ("BB %i can not throw but has an EH edge", bb->index);
4697 return true;
4699 return false;
4702 if (!stmt_could_throw_p (stmt))
4704 error ("BB %i last statement has incorrectly set lp", bb->index);
4705 return true;
4708 if (eh_edge == NULL)
4710 error ("BB %i is missing an EH edge", bb->index);
4711 return true;
4714 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4716 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4717 return true;
4720 return false;
4723 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4725 DEBUG_FUNCTION bool
4726 verify_eh_dispatch_edge (geh_dispatch *stmt)
4728 eh_region r;
4729 eh_catch c;
4730 basic_block src, dst;
4731 bool want_fallthru = true;
4732 edge_iterator ei;
4733 edge e, fall_edge;
4735 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4736 src = gimple_bb (stmt);
4738 FOR_EACH_EDGE (e, ei, src->succs)
4739 gcc_assert (e->aux == NULL);
4741 switch (r->type)
4743 case ERT_TRY:
4744 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4746 dst = label_to_block (c->label);
4747 e = find_edge (src, dst);
4748 if (e == NULL)
4750 error ("BB %i is missing an edge", src->index);
4751 return true;
4753 e->aux = (void *)e;
4755 /* A catch-all handler doesn't have a fallthru. */
4756 if (c->type_list == NULL)
4758 want_fallthru = false;
4759 break;
4762 break;
4764 case ERT_ALLOWED_EXCEPTIONS:
4765 dst = label_to_block (r->u.allowed.label);
4766 e = find_edge (src, dst);
4767 if (e == NULL)
4769 error ("BB %i is missing an edge", src->index);
4770 return true;
4772 e->aux = (void *)e;
4773 break;
4775 default:
4776 gcc_unreachable ();
4779 fall_edge = NULL;
4780 FOR_EACH_EDGE (e, ei, src->succs)
4782 if (e->flags & EDGE_FALLTHRU)
4784 if (fall_edge != NULL)
4786 error ("BB %i too many fallthru edges", src->index);
4787 return true;
4789 fall_edge = e;
4791 else if (e->aux)
4792 e->aux = NULL;
4793 else
4795 error ("BB %i has incorrect edge", src->index);
4796 return true;
4799 if ((fall_edge != NULL) ^ want_fallthru)
4801 error ("BB %i has incorrect fallthru edge", src->index);
4802 return true;
4805 return false;