1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
103 asm ("foo" : "=t" (a) : "f" (b));
105 This asm says that input B is not popped by the asm, and that
106 the asm pushes a result onto the reg-stack, i.e., the stack is one
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
114 The asm above would be written as
116 asm ("foo" : "=&t" (a) : "f" (b));
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "coretypes.h"
156 #include "hash-set.h"
157 #include "machmode.h"
159 #include "double-int.h"
163 #include "wide-int.h"
167 #include "rtl-error.h"
169 #include "hard-reg-set.h"
171 #include "function.h"
172 #include "insn-config.h"
177 #include "dominance.h"
181 #include "cfgbuild.h"
182 #include "cfgcleanup.h"
183 #include "basic-block.h"
186 #include "tree-pass.h"
189 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
190 #include "rtl-iter.h"
194 /* We use this array to cache info about insns, because otherwise we
195 spend too much time in stack_regs_mentioned_p.
197 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
198 the insn uses stack registers, two indicates the insn does not use
200 static vec
<char> stack_regs_mentioned_data
;
202 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
204 int regstack_completed
= 0;
206 /* This is the basic stack record. TOP is an index into REG[] such
207 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
209 If TOP is -2, REG[] is not yet initialized. Stack initialization
210 consists of placing each live reg in array `reg' and setting `top'
213 REG_SET indicates which registers are live. */
215 typedef struct stack_def
217 int top
; /* index to top stack element */
218 HARD_REG_SET reg_set
; /* set of live registers */
219 unsigned char reg
[REG_STACK_SIZE
];/* register - stack mapping */
222 /* This is used to carry information about basic blocks. It is
223 attached to the AUX field of the standard CFG block. */
225 typedef struct block_info_def
227 struct stack_def stack_in
; /* Input stack configuration. */
228 struct stack_def stack_out
; /* Output stack configuration. */
229 HARD_REG_SET out_reg_set
; /* Stack regs live on output. */
230 int done
; /* True if block already converted. */
231 int predecessors
; /* Number of predecessors that need
235 #define BLOCK_INFO(B) ((block_info) (B)->aux)
237 /* Passed to change_stack to indicate where to emit insns. */
244 /* The block we're currently working on. */
245 static basic_block current_block
;
247 /* In the current_block, whether we're processing the first register
248 stack or call instruction, i.e. the regstack is currently the
249 same as BLOCK_INFO(current_block)->stack_in. */
250 static bool starting_stack_p
;
252 /* This is the register file for all register after conversion. */
254 FP_mode_reg
[LAST_STACK_REG
+1-FIRST_STACK_REG
][(int) MAX_MACHINE_MODE
];
256 #define FP_MODE_REG(regno,mode) \
257 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
259 /* Used to initialize uninitialized registers. */
260 static rtx not_a_num
;
262 /* Forward declarations */
264 static int stack_regs_mentioned_p (const_rtx pat
);
265 static void pop_stack (stack_ptr
, int);
266 static rtx
*get_true_reg (rtx
*);
268 static int check_asm_stack_operands (rtx_insn
*);
269 static void get_asm_operands_in_out (rtx
, int *, int *);
270 static rtx
stack_result (tree
);
271 static void replace_reg (rtx
*, int);
272 static void remove_regno_note (rtx_insn
*, enum reg_note
, unsigned int);
273 static int get_hard_regnum (stack_ptr
, rtx
);
274 static rtx_insn
*emit_pop_insn (rtx_insn
*, stack_ptr
, rtx
, enum emit_where
);
275 static void swap_to_top (rtx_insn
*, stack_ptr
, rtx
, rtx
);
276 static bool move_for_stack_reg (rtx_insn
*, stack_ptr
, rtx
);
277 static bool move_nan_for_stack_reg (rtx_insn
*, stack_ptr
, rtx
);
278 static int swap_rtx_condition_1 (rtx
);
279 static int swap_rtx_condition (rtx_insn
*);
280 static void compare_for_stack_reg (rtx_insn
*, stack_ptr
, rtx
);
281 static bool subst_stack_regs_pat (rtx_insn
*, stack_ptr
, rtx
);
282 static void subst_asm_stack_regs (rtx_insn
*, stack_ptr
);
283 static bool subst_stack_regs (rtx_insn
*, stack_ptr
);
284 static void change_stack (rtx_insn
*, stack_ptr
, stack_ptr
, enum emit_where
);
285 static void print_stack (FILE *, stack_ptr
);
286 static rtx_insn
*next_flags_user (rtx_insn
*);
288 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
291 stack_regs_mentioned_p (const_rtx pat
)
296 if (STACK_REG_P (pat
))
299 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
300 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
306 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
307 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
310 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
317 /* Return nonzero if INSN mentions stacked registers, else return zero. */
320 stack_regs_mentioned (const_rtx insn
)
322 unsigned int uid
, max
;
325 if (! INSN_P (insn
) || !stack_regs_mentioned_data
.exists ())
328 uid
= INSN_UID (insn
);
329 max
= stack_regs_mentioned_data
.length ();
332 /* Allocate some extra size to avoid too many reallocs, but
333 do not grow too quickly. */
334 max
= uid
+ uid
/ 20 + 1;
335 stack_regs_mentioned_data
.safe_grow_cleared (max
);
338 test
= stack_regs_mentioned_data
[uid
];
341 /* This insn has yet to be examined. Do so now. */
342 test
= stack_regs_mentioned_p (PATTERN (insn
)) ? 1 : 2;
343 stack_regs_mentioned_data
[uid
] = test
;
349 static rtx ix86_flags_rtx
;
352 next_flags_user (rtx_insn
*insn
)
354 /* Search forward looking for the first use of this value.
355 Stop at block boundaries. */
357 while (insn
!= BB_END (current_block
))
359 insn
= NEXT_INSN (insn
);
361 if (INSN_P (insn
) && reg_mentioned_p (ix86_flags_rtx
, PATTERN (insn
)))
370 /* Reorganize the stack into ascending numbers, before this insn. */
373 straighten_stack (rtx_insn
*insn
, stack_ptr regstack
)
375 struct stack_def temp_stack
;
378 /* If there is only a single register on the stack, then the stack is
379 already in increasing order and no reorganization is needed.
381 Similarly if the stack is empty. */
382 if (regstack
->top
<= 0)
385 COPY_HARD_REG_SET (temp_stack
.reg_set
, regstack
->reg_set
);
387 for (top
= temp_stack
.top
= regstack
->top
; top
>= 0; top
--)
388 temp_stack
.reg
[top
] = FIRST_STACK_REG
+ temp_stack
.top
- top
;
390 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
393 /* Pop a register from the stack. */
396 pop_stack (stack_ptr regstack
, int regno
)
398 int top
= regstack
->top
;
400 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
402 /* If regno was not at the top of stack then adjust stack. */
403 if (regstack
->reg
[top
] != regno
)
406 for (i
= regstack
->top
; i
>= 0; i
--)
407 if (regstack
->reg
[i
] == regno
)
410 for (j
= i
; j
< top
; j
++)
411 regstack
->reg
[j
] = regstack
->reg
[j
+ 1];
417 /* Return a pointer to the REG expression within PAT. If PAT is not a
418 REG, possible enclosed by a conversion rtx, return the inner part of
419 PAT that stopped the search. */
422 get_true_reg (rtx
*pat
)
425 switch (GET_CODE (*pat
))
428 /* Eliminate FP subregister accesses in favor of the
429 actual FP register in use. */
432 if (STACK_REG_P (subreg
= SUBREG_REG (*pat
)))
434 int regno_off
= subreg_regno_offset (REGNO (subreg
),
438 *pat
= FP_MODE_REG (REGNO (subreg
) + regno_off
,
446 pat
= & XEXP (*pat
, 0);
450 if (XINT (*pat
, 1) == UNSPEC_TRUNC_NOOP
451 || XINT (*pat
, 1) == UNSPEC_FILD_ATOMIC
)
452 pat
= & XVECEXP (*pat
, 0, 0);
456 if (!flag_unsafe_math_optimizations
)
458 pat
= & XEXP (*pat
, 0);
466 /* Set if we find any malformed asms in a block. */
467 static bool any_malformed_asm
;
469 /* There are many rules that an asm statement for stack-like regs must
470 follow. Those rules are explained at the top of this file: the rule
471 numbers below refer to that explanation. */
474 check_asm_stack_operands (rtx_insn
*insn
)
478 int malformed_asm
= 0;
479 rtx body
= PATTERN (insn
);
481 char reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
482 char implicitly_dies
[FIRST_PSEUDO_REGISTER
];
484 rtx
*clobber_reg
= 0;
485 int n_inputs
, n_outputs
;
487 /* Find out what the constraints require. If no constraint
488 alternative matches, this asm is malformed. */
489 extract_constrain_insn (insn
);
491 preprocess_constraints (insn
);
493 get_asm_operands_in_out (body
, &n_outputs
, &n_inputs
);
495 if (which_alternative
< 0)
498 /* Avoid further trouble with this insn. */
499 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
502 const operand_alternative
*op_alt
= which_op_alt ();
504 /* Strip SUBREGs here to make the following code simpler. */
505 for (i
= 0; i
< recog_data
.n_operands
; i
++)
506 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
507 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
508 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
510 /* Set up CLOBBER_REG. */
514 if (GET_CODE (body
) == PARALLEL
)
516 clobber_reg
= XALLOCAVEC (rtx
, XVECLEN (body
, 0));
518 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
519 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
521 rtx clobber
= XVECEXP (body
, 0, i
);
522 rtx reg
= XEXP (clobber
, 0);
524 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
525 reg
= SUBREG_REG (reg
);
527 if (STACK_REG_P (reg
))
529 clobber_reg
[n_clobbers
] = reg
;
535 /* Enforce rule #4: Output operands must specifically indicate which
536 reg an output appears in after an asm. "=f" is not allowed: the
537 operand constraints must select a class with a single reg.
539 Also enforce rule #5: Output operands must start at the top of
540 the reg-stack: output operands may not "skip" a reg. */
542 memset (reg_used_as_output
, 0, sizeof (reg_used_as_output
));
543 for (i
= 0; i
< n_outputs
; i
++)
544 if (STACK_REG_P (recog_data
.operand
[i
]))
546 if (reg_class_size
[(int) op_alt
[i
].cl
] != 1)
548 error_for_asm (insn
, "output constraint %d must specify a single register", i
);
555 for (j
= 0; j
< n_clobbers
; j
++)
556 if (REGNO (recog_data
.operand
[i
]) == REGNO (clobber_reg
[j
]))
558 error_for_asm (insn
, "output constraint %d cannot be specified together with \"%s\" clobber",
559 i
, reg_names
[REGNO (clobber_reg
[j
])]);
564 reg_used_as_output
[REGNO (recog_data
.operand
[i
])] = 1;
569 /* Search for first non-popped reg. */
570 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
571 if (! reg_used_as_output
[i
])
574 /* If there are any other popped regs, that's an error. */
575 for (; i
< LAST_STACK_REG
+ 1; i
++)
576 if (reg_used_as_output
[i
])
579 if (i
!= LAST_STACK_REG
+ 1)
581 error_for_asm (insn
, "output regs must be grouped at top of stack");
585 /* Enforce rule #2: All implicitly popped input regs must be closer
586 to the top of the reg-stack than any input that is not implicitly
589 memset (implicitly_dies
, 0, sizeof (implicitly_dies
));
590 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
591 if (STACK_REG_P (recog_data
.operand
[i
]))
593 /* An input reg is implicitly popped if it is tied to an
594 output, or if there is a CLOBBER for it. */
597 for (j
= 0; j
< n_clobbers
; j
++)
598 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
601 if (j
< n_clobbers
|| op_alt
[i
].matches
>= 0)
602 implicitly_dies
[REGNO (recog_data
.operand
[i
])] = 1;
605 /* Search for first non-popped reg. */
606 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
607 if (! implicitly_dies
[i
])
610 /* If there are any other popped regs, that's an error. */
611 for (; i
< LAST_STACK_REG
+ 1; i
++)
612 if (implicitly_dies
[i
])
615 if (i
!= LAST_STACK_REG
+ 1)
618 "implicitly popped regs must be grouped at top of stack");
622 /* Enforce rule #3: If any input operand uses the "f" constraint, all
623 output constraints must use the "&" earlyclobber.
625 ??? Detect this more deterministically by having constrain_asm_operands
626 record any earlyclobber. */
628 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
629 if (op_alt
[i
].matches
== -1)
633 for (j
= 0; j
< n_outputs
; j
++)
634 if (operands_match_p (recog_data
.operand
[j
], recog_data
.operand
[i
]))
637 "output operand %d must use %<&%> constraint", j
);
644 /* Avoid further trouble with this insn. */
645 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
646 any_malformed_asm
= true;
653 /* Calculate the number of inputs and outputs in BODY, an
654 asm_operands. N_OPERANDS is the total number of operands, and
655 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
659 get_asm_operands_in_out (rtx body
, int *pout
, int *pin
)
661 rtx asmop
= extract_asm_operands (body
);
663 *pin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
664 *pout
= (recog_data
.n_operands
665 - ASM_OPERANDS_INPUT_LENGTH (asmop
)
666 - ASM_OPERANDS_LABEL_LENGTH (asmop
));
669 /* If current function returns its result in an fp stack register,
670 return the REG. Otherwise, return 0. */
673 stack_result (tree decl
)
677 /* If the value is supposed to be returned in memory, then clearly
678 it is not returned in a stack register. */
679 if (aggregate_value_p (DECL_RESULT (decl
), decl
))
682 result
= DECL_RTL_IF_SET (DECL_RESULT (decl
));
684 result
= targetm
.calls
.function_value (TREE_TYPE (DECL_RESULT (decl
)),
687 return result
!= 0 && STACK_REG_P (result
) ? result
: 0;
692 * This section deals with stack register substitution, and forms the second
696 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
697 the desired hard REGNO. */
700 replace_reg (rtx
*reg
, int regno
)
702 gcc_assert (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
));
703 gcc_assert (STACK_REG_P (*reg
));
705 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg
))
706 || GET_MODE_CLASS (GET_MODE (*reg
)) == MODE_COMPLEX_FLOAT
);
708 *reg
= FP_MODE_REG (regno
, GET_MODE (*reg
));
711 /* Remove a note of type NOTE, which must be found, for register
712 number REGNO from INSN. Remove only one such note. */
715 remove_regno_note (rtx_insn
*insn
, enum reg_note note
, unsigned int regno
)
717 rtx
*note_link
, this_rtx
;
719 note_link
= ®_NOTES (insn
);
720 for (this_rtx
= *note_link
; this_rtx
; this_rtx
= XEXP (this_rtx
, 1))
721 if (REG_NOTE_KIND (this_rtx
) == note
722 && REG_P (XEXP (this_rtx
, 0)) && REGNO (XEXP (this_rtx
, 0)) == regno
)
724 *note_link
= XEXP (this_rtx
, 1);
728 note_link
= &XEXP (this_rtx
, 1);
733 /* Find the hard register number of virtual register REG in REGSTACK.
734 The hard register number is relative to the top of the stack. -1 is
735 returned if the register is not found. */
738 get_hard_regnum (stack_ptr regstack
, rtx reg
)
742 gcc_assert (STACK_REG_P (reg
));
744 for (i
= regstack
->top
; i
>= 0; i
--)
745 if (regstack
->reg
[i
] == REGNO (reg
))
748 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
751 /* Emit an insn to pop virtual register REG before or after INSN.
752 REGSTACK is the stack state after INSN and is updated to reflect this
753 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
754 is represented as a SET whose destination is the register to be popped
755 and source is the top of stack. A death note for the top of stack
756 cases the movdf pattern to pop. */
759 emit_pop_insn (rtx_insn
*insn
, stack_ptr regstack
, rtx reg
, enum emit_where where
)
765 /* For complex types take care to pop both halves. These may survive in
766 CLOBBER and USE expressions. */
767 if (COMPLEX_MODE_P (GET_MODE (reg
)))
769 rtx reg1
= FP_MODE_REG (REGNO (reg
), DFmode
);
770 rtx reg2
= FP_MODE_REG (REGNO (reg
) + 1, DFmode
);
773 if (get_hard_regnum (regstack
, reg1
) >= 0)
774 pop_insn
= emit_pop_insn (insn
, regstack
, reg1
, where
);
775 if (get_hard_regnum (regstack
, reg2
) >= 0)
776 pop_insn
= emit_pop_insn (insn
, regstack
, reg2
, where
);
777 gcc_assert (pop_insn
);
781 hard_regno
= get_hard_regnum (regstack
, reg
);
783 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
785 pop_rtx
= gen_rtx_SET (FP_MODE_REG (hard_regno
, DFmode
),
786 FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
788 if (where
== EMIT_AFTER
)
789 pop_insn
= emit_insn_after (pop_rtx
, insn
);
791 pop_insn
= emit_insn_before (pop_rtx
, insn
);
793 add_reg_note (pop_insn
, REG_DEAD
, FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
795 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
796 = regstack
->reg
[regstack
->top
];
798 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
803 /* Emit an insn before or after INSN to swap virtual register REG with
804 the top of stack. REGSTACK is the stack state before the swap, and
805 is updated to reflect the swap. A swap insn is represented as a
806 PARALLEL of two patterns: each pattern moves one reg to the other.
808 If REG is already at the top of the stack, no insn is emitted. */
811 emit_swap_insn (rtx_insn
*insn
, stack_ptr regstack
, rtx reg
)
815 int other_reg
; /* swap regno temps */
816 rtx_insn
*i1
; /* the stack-reg insn prior to INSN */
817 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
819 hard_regno
= get_hard_regnum (regstack
, reg
);
821 if (hard_regno
== FIRST_STACK_REG
)
823 if (hard_regno
== -1)
825 /* Something failed if the register wasn't on the stack. If we had
826 malformed asms, we zapped the instruction itself, but that didn't
827 produce the same pattern of register sets as before. To prevent
828 further failure, adjust REGSTACK to include REG at TOP. */
829 gcc_assert (any_malformed_asm
);
830 regstack
->reg
[++regstack
->top
] = REGNO (reg
);
833 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
835 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
836 std::swap (regstack
->reg
[regstack
->top
], regstack
->reg
[other_reg
]);
838 /* Find the previous insn involving stack regs, but don't pass a
841 if (current_block
&& insn
!= BB_HEAD (current_block
))
843 rtx_insn
*tmp
= PREV_INSN (insn
);
844 rtx_insn
*limit
= PREV_INSN (BB_HEAD (current_block
));
849 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
850 || (NONJUMP_INSN_P (tmp
)
851 && stack_regs_mentioned (tmp
)))
856 tmp
= PREV_INSN (tmp
);
861 && (i1set
= single_set (i1
)) != NULL_RTX
)
863 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
864 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
866 /* If the previous register stack push was from the reg we are to
867 swap with, omit the swap. */
869 if (REG_P (i1dest
) && REGNO (i1dest
) == FIRST_STACK_REG
871 && REGNO (i1src
) == (unsigned) hard_regno
- 1
872 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
875 /* If the previous insn wrote to the reg we are to swap with,
878 if (REG_P (i1dest
) && REGNO (i1dest
) == (unsigned) hard_regno
879 && REG_P (i1src
) && REGNO (i1src
) == FIRST_STACK_REG
880 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
884 /* Avoid emitting the swap if this is the first register stack insn
885 of the current_block. Instead update the current_block's stack_in
886 and let compensate edges take care of this for us. */
887 if (current_block
&& starting_stack_p
)
889 BLOCK_INFO (current_block
)->stack_in
= *regstack
;
890 starting_stack_p
= false;
894 swap_rtx
= gen_swapxf (FP_MODE_REG (hard_regno
, XFmode
),
895 FP_MODE_REG (FIRST_STACK_REG
, XFmode
));
898 emit_insn_after (swap_rtx
, i1
);
899 else if (current_block
)
900 emit_insn_before (swap_rtx
, BB_HEAD (current_block
));
902 emit_insn_before (swap_rtx
, insn
);
905 /* Emit an insns before INSN to swap virtual register SRC1 with
906 the top of stack and virtual register SRC2 with second stack
907 slot. REGSTACK is the stack state before the swaps, and
908 is updated to reflect the swaps. A swap insn is represented as a
909 PARALLEL of two patterns: each pattern moves one reg to the other.
911 If SRC1 and/or SRC2 are already at the right place, no swap insn
915 swap_to_top (rtx_insn
*insn
, stack_ptr regstack
, rtx src1
, rtx src2
)
917 struct stack_def temp_stack
;
920 temp_stack
= *regstack
;
922 /* Place operand 1 at the top of stack. */
923 regno
= get_hard_regnum (&temp_stack
, src1
);
924 gcc_assert (regno
>= 0);
925 if (regno
!= FIRST_STACK_REG
)
927 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
930 std::swap (temp_stack
.reg
[j
], temp_stack
.reg
[k
]);
933 /* Place operand 2 next on the stack. */
934 regno
= get_hard_regnum (&temp_stack
, src2
);
935 gcc_assert (regno
>= 0);
936 if (regno
!= FIRST_STACK_REG
+ 1)
938 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
939 j
= temp_stack
.top
- 1;
941 std::swap (temp_stack
.reg
[j
], temp_stack
.reg
[k
]);
944 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
947 /* Handle a move to or from a stack register in PAT, which is in INSN.
948 REGSTACK is the current stack. Return whether a control flow insn
949 was deleted in the process. */
952 move_for_stack_reg (rtx_insn
*insn
, stack_ptr regstack
, rtx pat
)
954 rtx
*psrc
= get_true_reg (&SET_SRC (pat
));
955 rtx
*pdest
= get_true_reg (&SET_DEST (pat
));
958 bool control_flow_insn_deleted
= false;
960 src
= *psrc
; dest
= *pdest
;
962 if (STACK_REG_P (src
) && STACK_REG_P (dest
))
964 /* Write from one stack reg to another. If SRC dies here, then
965 just change the register mapping and delete the insn. */
967 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
972 /* If this is a no-op move, there must not be a REG_DEAD note. */
973 gcc_assert (REGNO (src
) != REGNO (dest
));
975 for (i
= regstack
->top
; i
>= 0; i
--)
976 if (regstack
->reg
[i
] == REGNO (src
))
979 /* The destination must be dead, or life analysis is borked. */
980 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
982 /* If the source is not live, this is yet another case of
983 uninitialized variables. Load up a NaN instead. */
985 return move_nan_for_stack_reg (insn
, regstack
, dest
);
987 /* It is possible that the dest is unused after this insn.
988 If so, just pop the src. */
990 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
991 emit_pop_insn (insn
, regstack
, src
, EMIT_AFTER
);
994 regstack
->reg
[i
] = REGNO (dest
);
995 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
996 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
999 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1001 return control_flow_insn_deleted
;
1004 /* The source reg does not die. */
1006 /* If this appears to be a no-op move, delete it, or else it
1007 will confuse the machine description output patterns. But if
1008 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1009 for REG_UNUSED will not work for deleted insns. */
1011 if (REGNO (src
) == REGNO (dest
))
1013 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1014 emit_pop_insn (insn
, regstack
, dest
, EMIT_AFTER
);
1016 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1018 return control_flow_insn_deleted
;
1021 /* The destination ought to be dead. */
1022 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1024 replace_reg (psrc
, get_hard_regnum (regstack
, src
));
1026 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1027 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1028 replace_reg (pdest
, FIRST_STACK_REG
);
1030 else if (STACK_REG_P (src
))
1032 /* Save from a stack reg to MEM, or possibly integer reg. Since
1033 only top of stack may be saved, emit an exchange first if
1036 emit_swap_insn (insn
, regstack
, src
);
1038 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1041 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1043 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1045 else if ((GET_MODE (src
) == XFmode
)
1046 && regstack
->top
< REG_STACK_SIZE
- 1)
1048 /* A 387 cannot write an XFmode value to a MEM without
1049 clobbering the source reg. The output code can handle
1050 this by reading back the value from the MEM.
1051 But it is more efficient to use a temp register if one is
1052 available. Push the source value here if the register
1053 stack is not full, and then write the value to memory via
1056 rtx top_stack_reg
= FP_MODE_REG (FIRST_STACK_REG
, GET_MODE (src
));
1058 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1059 emit_insn_before (push_rtx
, insn
);
1060 add_reg_note (insn
, REG_DEAD
, top_stack_reg
);
1063 replace_reg (psrc
, FIRST_STACK_REG
);
1067 rtx pat
= PATTERN (insn
);
1069 gcc_assert (STACK_REG_P (dest
));
1071 /* Load from MEM, or possibly integer REG or constant, into the
1072 stack regs. The actual target is always the top of the
1073 stack. The stack mapping is changed to reflect that DEST is
1074 now at top of stack. */
1076 /* The destination ought to be dead. However, there is a
1077 special case with i387 UNSPEC_TAN, where destination is live
1078 (an argument to fptan) but inherent load of 1.0 is modelled
1079 as a load from a constant. */
1080 if (GET_CODE (pat
) == PARALLEL
1081 && XVECLEN (pat
, 0) == 2
1082 && GET_CODE (XVECEXP (pat
, 0, 1)) == SET
1083 && GET_CODE (SET_SRC (XVECEXP (pat
, 0, 1))) == UNSPEC
1084 && XINT (SET_SRC (XVECEXP (pat
, 0, 1)), 1) == UNSPEC_TAN
)
1085 emit_swap_insn (insn
, regstack
, dest
);
1087 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1089 gcc_assert (regstack
->top
< REG_STACK_SIZE
);
1091 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1092 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1093 replace_reg (pdest
, FIRST_STACK_REG
);
1096 return control_flow_insn_deleted
;
1099 /* A helper function which replaces INSN with a pattern that loads up
1100 a NaN into DEST, then invokes move_for_stack_reg. */
1103 move_nan_for_stack_reg (rtx_insn
*insn
, stack_ptr regstack
, rtx dest
)
1107 dest
= FP_MODE_REG (REGNO (dest
), SFmode
);
1108 pat
= gen_rtx_SET (dest
, not_a_num
);
1109 PATTERN (insn
) = pat
;
1110 INSN_CODE (insn
) = -1;
1112 return move_for_stack_reg (insn
, regstack
, pat
);
1115 /* Swap the condition on a branch, if there is one. Return true if we
1116 found a condition to swap. False if the condition was not used as
1120 swap_rtx_condition_1 (rtx pat
)
1125 if (COMPARISON_P (pat
))
1127 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1132 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1133 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1139 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1140 r
|= swap_rtx_condition_1 (XVECEXP (pat
, i
, j
));
1142 else if (fmt
[i
] == 'e')
1143 r
|= swap_rtx_condition_1 (XEXP (pat
, i
));
1151 swap_rtx_condition (rtx_insn
*insn
)
1153 rtx pat
= PATTERN (insn
);
1155 /* We're looking for a single set to cc0 or an HImode temporary. */
1157 if (GET_CODE (pat
) == SET
1158 && REG_P (SET_DEST (pat
))
1159 && REGNO (SET_DEST (pat
)) == FLAGS_REG
)
1161 insn
= next_flags_user (insn
);
1162 if (insn
== NULL_RTX
)
1164 pat
= PATTERN (insn
);
1167 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1168 with the cc value right now. We may be able to search for one
1171 if (GET_CODE (pat
) == SET
1172 && GET_CODE (SET_SRC (pat
)) == UNSPEC
1173 && XINT (SET_SRC (pat
), 1) == UNSPEC_FNSTSW
)
1175 rtx dest
= SET_DEST (pat
);
1177 /* Search forward looking for the first use of this value.
1178 Stop at block boundaries. */
1179 while (insn
!= BB_END (current_block
))
1181 insn
= NEXT_INSN (insn
);
1182 if (INSN_P (insn
) && reg_mentioned_p (dest
, insn
))
1188 /* We haven't found it. */
1189 if (insn
== BB_END (current_block
))
1192 /* So we've found the insn using this value. If it is anything
1193 other than sahf or the value does not die (meaning we'd have
1194 to search further), then we must give up. */
1195 pat
= PATTERN (insn
);
1196 if (GET_CODE (pat
) != SET
1197 || GET_CODE (SET_SRC (pat
)) != UNSPEC
1198 || XINT (SET_SRC (pat
), 1) != UNSPEC_SAHF
1199 || ! dead_or_set_p (insn
, dest
))
1202 /* Now we are prepared to handle this as a normal cc0 setter. */
1203 insn
= next_flags_user (insn
);
1204 if (insn
== NULL_RTX
)
1206 pat
= PATTERN (insn
);
1209 if (swap_rtx_condition_1 (pat
))
1212 INSN_CODE (insn
) = -1;
1213 if (recog_memoized (insn
) == -1)
1215 /* In case the flags don't die here, recurse to try fix
1216 following user too. */
1217 else if (! dead_or_set_p (insn
, ix86_flags_rtx
))
1219 insn
= next_flags_user (insn
);
1220 if (!insn
|| !swap_rtx_condition (insn
))
1225 swap_rtx_condition_1 (pat
);
1233 /* Handle a comparison. Special care needs to be taken to avoid
1234 causing comparisons that a 387 cannot do correctly, such as EQ.
1236 Also, a pop insn may need to be emitted. The 387 does have an
1237 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1238 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1242 compare_for_stack_reg (rtx_insn
*insn
, stack_ptr regstack
, rtx pat_src
)
1245 rtx src1_note
, src2_note
;
1247 src1
= get_true_reg (&XEXP (pat_src
, 0));
1248 src2
= get_true_reg (&XEXP (pat_src
, 1));
1250 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1251 registers that die in this insn - move those to stack top first. */
1252 if ((! STACK_REG_P (*src1
)
1253 || (STACK_REG_P (*src2
)
1254 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1255 && swap_rtx_condition (insn
))
1257 std::swap (XEXP (pat_src
, 0), XEXP (pat_src
, 1));
1259 src1
= get_true_reg (&XEXP (pat_src
, 0));
1260 src2
= get_true_reg (&XEXP (pat_src
, 1));
1262 INSN_CODE (insn
) = -1;
1265 /* We will fix any death note later. */
1267 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1269 if (STACK_REG_P (*src2
))
1270 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1272 src2_note
= NULL_RTX
;
1274 emit_swap_insn (insn
, regstack
, *src1
);
1276 replace_reg (src1
, FIRST_STACK_REG
);
1278 if (STACK_REG_P (*src2
))
1279 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1283 pop_stack (regstack
, REGNO (XEXP (src1_note
, 0)));
1284 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1287 /* If the second operand dies, handle that. But if the operands are
1288 the same stack register, don't bother, because only one death is
1289 needed, and it was just handled. */
1292 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1293 && REGNO (*src1
) == REGNO (*src2
)))
1295 /* As a special case, two regs may die in this insn if src2 is
1296 next to top of stack and the top of stack also dies. Since
1297 we have already popped src1, "next to top of stack" is really
1298 at top (FIRST_STACK_REG) now. */
1300 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1303 pop_stack (regstack
, REGNO (XEXP (src2_note
, 0)));
1304 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1308 /* The 386 can only represent death of the first operand in
1309 the case handled above. In all other cases, emit a separate
1310 pop and remove the death note from here. */
1311 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1312 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1318 /* Substitute hardware stack regs in debug insn INSN, using stack
1319 layout REGSTACK. If we can't find a hardware stack reg for any of
1320 the REGs in it, reset the debug insn. */
1323 subst_all_stack_regs_in_debug_insn (rtx_insn
*insn
, struct stack_def
*regstack
)
1325 subrtx_ptr_iterator::array_type array
;
1326 FOR_EACH_SUBRTX_PTR (iter
, array
, &INSN_VAR_LOCATION_LOC (insn
), NONCONST
)
1330 if (STACK_REG_P (x
))
1332 int hard_regno
= get_hard_regnum (regstack
, x
);
1334 /* If we can't find an active register, reset this debug insn. */
1335 if (hard_regno
== -1)
1337 INSN_VAR_LOCATION_LOC (insn
) = gen_rtx_UNKNOWN_VAR_LOC ();
1341 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
1342 replace_reg (loc
, hard_regno
);
1343 iter
.skip_subrtxes ();
1348 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1349 is the current register layout. Return whether a control flow insn
1350 was deleted in the process. */
1353 subst_stack_regs_pat (rtx_insn
*insn
, stack_ptr regstack
, rtx pat
)
1356 bool control_flow_insn_deleted
= false;
1358 switch (GET_CODE (pat
))
1361 /* Deaths in USE insns can happen in non optimizing compilation.
1362 Handle them by popping the dying register. */
1363 src
= get_true_reg (&XEXP (pat
, 0));
1364 if (STACK_REG_P (*src
)
1365 && find_regno_note (insn
, REG_DEAD
, REGNO (*src
)))
1367 /* USEs are ignored for liveness information so USEs of dead
1368 register might happen. */
1369 if (TEST_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src
)))
1370 emit_pop_insn (insn
, regstack
, *src
, EMIT_AFTER
);
1371 return control_flow_insn_deleted
;
1373 /* Uninitialized USE might happen for functions returning uninitialized
1374 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1375 so it is safe to ignore the use here. This is consistent with behavior
1376 of dataflow analyzer that ignores USE too. (This also imply that
1377 forcibly initializing the register to NaN here would lead to ICE later,
1378 since the REG_DEAD notes are not issued.) */
1388 dest
= get_true_reg (&XEXP (pat
, 0));
1389 if (STACK_REG_P (*dest
))
1391 note
= find_reg_note (insn
, REG_DEAD
, *dest
);
1393 if (pat
!= PATTERN (insn
))
1395 /* The fix_truncdi_1 pattern wants to be able to
1396 allocate its own scratch register. It does this by
1397 clobbering an fp reg so that it is assured of an
1398 empty reg-stack register. If the register is live,
1399 kill it now. Remove the DEAD/UNUSED note so we
1400 don't try to kill it later too.
1402 In reality the UNUSED note can be absent in some
1403 complicated cases when the register is reused for
1404 partially set variable. */
1407 emit_pop_insn (insn
, regstack
, *dest
, EMIT_BEFORE
);
1409 note
= find_reg_note (insn
, REG_UNUSED
, *dest
);
1411 remove_note (insn
, note
);
1412 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1416 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1417 indicates an uninitialized value. Because reload removed
1418 all other clobbers, this must be due to a function
1419 returning without a value. Load up a NaN. */
1424 if (COMPLEX_MODE_P (GET_MODE (t
)))
1426 rtx u
= FP_MODE_REG (REGNO (t
) + 1, SFmode
);
1427 if (get_hard_regnum (regstack
, u
) == -1)
1429 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, u
);
1430 rtx_insn
*insn2
= emit_insn_before (pat2
, insn
);
1431 control_flow_insn_deleted
1432 |= move_nan_for_stack_reg (insn2
, regstack
, u
);
1435 if (get_hard_regnum (regstack
, t
) == -1)
1436 control_flow_insn_deleted
1437 |= move_nan_for_stack_reg (insn
, regstack
, t
);
1446 rtx
*src1
= (rtx
*) 0, *src2
;
1447 rtx src1_note
, src2_note
;
1450 dest
= get_true_reg (&SET_DEST (pat
));
1451 src
= get_true_reg (&SET_SRC (pat
));
1452 pat_src
= SET_SRC (pat
);
1454 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1455 if (STACK_REG_P (*src
)
1456 || (STACK_REG_P (*dest
)
1457 && (REG_P (*src
) || MEM_P (*src
)
1458 || CONST_DOUBLE_P (*src
))))
1460 control_flow_insn_deleted
|= move_for_stack_reg (insn
, regstack
, pat
);
1464 switch (GET_CODE (pat_src
))
1467 compare_for_stack_reg (insn
, regstack
, pat_src
);
1473 for (count
= REG_NREGS (*dest
); --count
>= 0;)
1475 regstack
->reg
[++regstack
->top
] = REGNO (*dest
) + count
;
1476 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
) + count
);
1479 replace_reg (dest
, FIRST_STACK_REG
);
1483 /* This is a `tstM2' case. */
1484 gcc_assert (*dest
== cc0_rtx
);
1489 case FLOAT_TRUNCATE
:
1493 /* These insns only operate on the top of the stack. DEST might
1494 be cc0_rtx if we're processing a tstM pattern. Also, it's
1495 possible that the tstM case results in a REG_DEAD note on the
1499 src1
= get_true_reg (&XEXP (pat_src
, 0));
1501 emit_swap_insn (insn
, regstack
, *src1
);
1503 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1505 if (STACK_REG_P (*dest
))
1506 replace_reg (dest
, FIRST_STACK_REG
);
1510 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1512 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1515 replace_reg (src1
, FIRST_STACK_REG
);
1520 /* On i386, reversed forms of subM3 and divM3 exist for
1521 MODE_FLOAT, so the same code that works for addM3 and mulM3
1525 /* These insns can accept the top of stack as a destination
1526 from a stack reg or mem, or can use the top of stack as a
1527 source and some other stack register (possibly top of stack)
1528 as a destination. */
1530 src1
= get_true_reg (&XEXP (pat_src
, 0));
1531 src2
= get_true_reg (&XEXP (pat_src
, 1));
1533 /* We will fix any death note later. */
1535 if (STACK_REG_P (*src1
))
1536 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1538 src1_note
= NULL_RTX
;
1539 if (STACK_REG_P (*src2
))
1540 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1542 src2_note
= NULL_RTX
;
1544 /* If either operand is not a stack register, then the dest
1545 must be top of stack. */
1547 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
1548 emit_swap_insn (insn
, regstack
, *dest
);
1551 /* Both operands are REG. If neither operand is already
1552 at the top of stack, choose to make the one that is the
1553 dest the new top of stack. */
1555 int src1_hard_regnum
, src2_hard_regnum
;
1557 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
1558 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
1560 /* If the source is not live, this is yet another case of
1561 uninitialized variables. Load up a NaN instead. */
1562 if (src1_hard_regnum
== -1)
1564 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, *src1
);
1565 rtx_insn
*insn2
= emit_insn_before (pat2
, insn
);
1566 control_flow_insn_deleted
1567 |= move_nan_for_stack_reg (insn2
, regstack
, *src1
);
1569 if (src2_hard_regnum
== -1)
1571 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, *src2
);
1572 rtx_insn
*insn2
= emit_insn_before (pat2
, insn
);
1573 control_flow_insn_deleted
1574 |= move_nan_for_stack_reg (insn2
, regstack
, *src2
);
1577 if (src1_hard_regnum
!= FIRST_STACK_REG
1578 && src2_hard_regnum
!= FIRST_STACK_REG
)
1579 emit_swap_insn (insn
, regstack
, *dest
);
1582 if (STACK_REG_P (*src1
))
1583 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1584 if (STACK_REG_P (*src2
))
1585 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1589 rtx src1_reg
= XEXP (src1_note
, 0);
1591 /* If the register that dies is at the top of stack, then
1592 the destination is somewhere else - merely substitute it.
1593 But if the reg that dies is not at top of stack, then
1594 move the top of stack to the dead reg, as though we had
1595 done the insn and then a store-with-pop. */
1597 if (REGNO (src1_reg
) == regstack
->reg
[regstack
->top
])
1599 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1600 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1604 int regno
= get_hard_regnum (regstack
, src1_reg
);
1606 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1607 replace_reg (dest
, regno
);
1609 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1610 = regstack
->reg
[regstack
->top
];
1613 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1614 REGNO (XEXP (src1_note
, 0)));
1615 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1620 rtx src2_reg
= XEXP (src2_note
, 0);
1621 if (REGNO (src2_reg
) == regstack
->reg
[regstack
->top
])
1623 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1624 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1628 int regno
= get_hard_regnum (regstack
, src2_reg
);
1630 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1631 replace_reg (dest
, regno
);
1633 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1634 = regstack
->reg
[regstack
->top
];
1637 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1638 REGNO (XEXP (src2_note
, 0)));
1639 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
1644 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1645 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1648 /* Keep operand 1 matching with destination. */
1649 if (COMMUTATIVE_ARITH_P (pat_src
)
1650 && REG_P (*src1
) && REG_P (*src2
)
1651 && REGNO (*src1
) != REGNO (*dest
))
1653 int tmp
= REGNO (*src1
);
1654 replace_reg (src1
, REGNO (*src2
));
1655 replace_reg (src2
, tmp
);
1660 switch (XINT (pat_src
, 1))
1663 case UNSPEC_FIST_ATOMIC
:
1665 case UNSPEC_FIST_FLOOR
:
1666 case UNSPEC_FIST_CEIL
:
1668 /* These insns only operate on the top of the stack. */
1670 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1671 emit_swap_insn (insn
, regstack
, *src1
);
1673 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1675 if (STACK_REG_P (*dest
))
1676 replace_reg (dest
, FIRST_STACK_REG
);
1680 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1682 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1685 replace_reg (src1
, FIRST_STACK_REG
);
1690 /* This insn only operate on the top of the stack. */
1692 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1693 emit_swap_insn (insn
, regstack
, *src1
);
1695 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1697 replace_reg (src1
, FIRST_STACK_REG
);
1701 remove_regno_note (insn
, REG_DEAD
,
1702 REGNO (XEXP (src1_note
, 0)));
1703 emit_pop_insn (insn
, regstack
, XEXP (src1_note
, 0),
1711 case UNSPEC_FRNDINT
:
1714 case UNSPEC_FRNDINT_FLOOR
:
1715 case UNSPEC_FRNDINT_CEIL
:
1716 case UNSPEC_FRNDINT_TRUNC
:
1717 case UNSPEC_FRNDINT_MASK_PM
:
1719 /* Above insns operate on the top of the stack. */
1721 case UNSPEC_SINCOS_COS
:
1722 case UNSPEC_XTRACT_FRACT
:
1724 /* Above insns operate on the top two stack slots,
1725 first part of one input, double output insn. */
1727 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1729 emit_swap_insn (insn
, regstack
, *src1
);
1731 /* Input should never die, it is replaced with output. */
1732 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1733 gcc_assert (!src1_note
);
1735 if (STACK_REG_P (*dest
))
1736 replace_reg (dest
, FIRST_STACK_REG
);
1738 replace_reg (src1
, FIRST_STACK_REG
);
1741 case UNSPEC_SINCOS_SIN
:
1742 case UNSPEC_XTRACT_EXP
:
1744 /* These insns operate on the top two stack slots,
1745 second part of one input, double output insn. */
1752 /* For UNSPEC_TAN, regstack->top is already increased
1753 by inherent load of constant 1.0. */
1755 /* Output value is generated in the second stack slot.
1756 Move current value from second slot to the top. */
1757 regstack
->reg
[regstack
->top
]
1758 = regstack
->reg
[regstack
->top
- 1];
1760 gcc_assert (STACK_REG_P (*dest
));
1762 regstack
->reg
[regstack
->top
- 1] = REGNO (*dest
);
1763 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1764 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1766 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1768 replace_reg (src1
, FIRST_STACK_REG
);
1773 case UNSPEC_FYL2XP1
:
1774 /* These insns operate on the top two stack slots. */
1776 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1777 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1779 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1780 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1782 swap_to_top (insn
, regstack
, *src1
, *src2
);
1784 replace_reg (src1
, FIRST_STACK_REG
);
1785 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1788 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1790 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1792 /* Pop both input operands from the stack. */
1793 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1794 regstack
->reg
[regstack
->top
]);
1795 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1796 regstack
->reg
[regstack
->top
- 1]);
1799 /* Push the result back onto the stack. */
1800 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1801 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1802 replace_reg (dest
, FIRST_STACK_REG
);
1805 case UNSPEC_FSCALE_FRACT
:
1806 case UNSPEC_FPREM_F
:
1807 case UNSPEC_FPREM1_F
:
1808 /* These insns operate on the top two stack slots,
1809 first part of double input, double output insn. */
1811 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1812 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1814 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1815 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1817 /* Inputs should never die, they are
1818 replaced with outputs. */
1819 gcc_assert (!src1_note
);
1820 gcc_assert (!src2_note
);
1822 swap_to_top (insn
, regstack
, *src1
, *src2
);
1824 /* Push the result back onto stack. Empty stack slot
1825 will be filled in second part of insn. */
1826 if (STACK_REG_P (*dest
))
1828 regstack
->reg
[regstack
->top
] = REGNO (*dest
);
1829 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1830 replace_reg (dest
, FIRST_STACK_REG
);
1833 replace_reg (src1
, FIRST_STACK_REG
);
1834 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1837 case UNSPEC_FSCALE_EXP
:
1838 case UNSPEC_FPREM_U
:
1839 case UNSPEC_FPREM1_U
:
1840 /* These insns operate on the top two stack slots,
1841 second part of double input, double output insn. */
1843 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1844 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1846 /* Push the result back onto stack. Fill empty slot from
1847 first part of insn and fix top of stack pointer. */
1848 if (STACK_REG_P (*dest
))
1850 regstack
->reg
[regstack
->top
- 1] = REGNO (*dest
);
1851 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1852 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1855 replace_reg (src1
, FIRST_STACK_REG
);
1856 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1859 case UNSPEC_C2_FLAG
:
1860 /* This insn operates on the top two stack slots,
1861 third part of C2 setting double input insn. */
1863 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1864 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1866 replace_reg (src1
, FIRST_STACK_REG
);
1867 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1871 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1872 The combination matches the PPRO fcomi instruction. */
1874 pat_src
= XVECEXP (pat_src
, 0, 0);
1875 gcc_assert (GET_CODE (pat_src
) == UNSPEC
);
1876 gcc_assert (XINT (pat_src
, 1) == UNSPEC_FNSTSW
);
1880 /* Combined fcomp+fnstsw generated for doing well with
1881 CSE. When optimizing this would have been broken
1884 pat_src
= XVECEXP (pat_src
, 0, 0);
1885 gcc_assert (GET_CODE (pat_src
) == COMPARE
);
1887 compare_for_stack_reg (insn
, regstack
, pat_src
);
1896 /* This insn requires the top of stack to be the destination. */
1898 src1
= get_true_reg (&XEXP (pat_src
, 1));
1899 src2
= get_true_reg (&XEXP (pat_src
, 2));
1901 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1902 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1904 /* If the comparison operator is an FP comparison operator,
1905 it is handled correctly by compare_for_stack_reg () who
1906 will move the destination to the top of stack. But if the
1907 comparison operator is not an FP comparison operator, we
1908 have to handle it here. */
1909 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
1910 && REGNO (*dest
) != regstack
->reg
[regstack
->top
])
1912 /* In case one of operands is the top of stack and the operands
1913 dies, it is safe to make it the destination operand by
1914 reversing the direction of cmove and avoid fxch. */
1915 if ((REGNO (*src1
) == regstack
->reg
[regstack
->top
]
1917 || (REGNO (*src2
) == regstack
->reg
[regstack
->top
]
1920 int idx1
= (get_hard_regnum (regstack
, *src1
)
1922 int idx2
= (get_hard_regnum (regstack
, *src2
)
1925 /* Make reg-stack believe that the operands are already
1926 swapped on the stack */
1927 regstack
->reg
[regstack
->top
- idx1
] = REGNO (*src2
);
1928 regstack
->reg
[regstack
->top
- idx2
] = REGNO (*src1
);
1930 /* Reverse condition to compensate the operand swap.
1931 i386 do have comparison always reversible. */
1932 PUT_CODE (XEXP (pat_src
, 0),
1933 reversed_comparison_code (XEXP (pat_src
, 0), insn
));
1936 emit_swap_insn (insn
, regstack
, *dest
);
1944 src_note
[1] = src1_note
;
1945 src_note
[2] = src2_note
;
1947 if (STACK_REG_P (*src1
))
1948 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1949 if (STACK_REG_P (*src2
))
1950 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1952 for (i
= 1; i
<= 2; i
++)
1955 int regno
= REGNO (XEXP (src_note
[i
], 0));
1957 /* If the register that dies is not at the top of
1958 stack, then move the top of stack to the dead reg.
1959 Top of stack should never die, as it is the
1961 gcc_assert (regno
!= regstack
->reg
[regstack
->top
]);
1962 remove_regno_note (insn
, REG_DEAD
, regno
);
1963 emit_pop_insn (insn
, regstack
, XEXP (src_note
[i
], 0),
1968 /* Make dest the top of stack. Add dest to regstack if
1970 if (get_hard_regnum (regstack
, *dest
) < FIRST_STACK_REG
)
1971 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1972 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1973 replace_reg (dest
, FIRST_STACK_REG
);
1986 return control_flow_insn_deleted
;
1989 /* Substitute hard regnums for any stack regs in INSN, which has
1990 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1991 before the insn, and is updated with changes made here.
1993 There are several requirements and assumptions about the use of
1994 stack-like regs in asm statements. These rules are enforced by
1995 record_asm_stack_regs; see comments there for details. Any
1996 asm_operands left in the RTL at this point may be assume to meet the
1997 requirements, since record_asm_stack_regs removes any problem asm. */
2000 subst_asm_stack_regs (rtx_insn
*insn
, stack_ptr regstack
)
2002 rtx body
= PATTERN (insn
);
2004 rtx
*note_reg
; /* Array of note contents */
2005 rtx
**note_loc
; /* Address of REG field of each note */
2006 enum reg_note
*note_kind
; /* The type of each note */
2008 rtx
*clobber_reg
= 0;
2009 rtx
**clobber_loc
= 0;
2011 struct stack_def temp_stack
;
2016 int n_inputs
, n_outputs
;
2018 if (! check_asm_stack_operands (insn
))
2021 /* Find out what the constraints required. If no constraint
2022 alternative matches, that is a compiler bug: we should have caught
2023 such an insn in check_asm_stack_operands. */
2024 extract_constrain_insn (insn
);
2026 preprocess_constraints (insn
);
2027 const operand_alternative
*op_alt
= which_op_alt ();
2029 get_asm_operands_in_out (body
, &n_outputs
, &n_inputs
);
2031 /* Strip SUBREGs here to make the following code simpler. */
2032 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2033 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
2034 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
2036 recog_data
.operand_loc
[i
] = & SUBREG_REG (recog_data
.operand
[i
]);
2037 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
2040 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2042 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2045 note_reg
= XALLOCAVEC (rtx
, i
);
2046 note_loc
= XALLOCAVEC (rtx
*, i
);
2047 note_kind
= XALLOCAVEC (enum reg_note
, i
);
2050 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2052 if (GET_CODE (note
) != EXPR_LIST
)
2054 rtx reg
= XEXP (note
, 0);
2055 rtx
*loc
= & XEXP (note
, 0);
2057 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2059 loc
= & SUBREG_REG (reg
);
2060 reg
= SUBREG_REG (reg
);
2063 if (STACK_REG_P (reg
)
2064 && (REG_NOTE_KIND (note
) == REG_DEAD
2065 || REG_NOTE_KIND (note
) == REG_UNUSED
))
2067 note_reg
[n_notes
] = reg
;
2068 note_loc
[n_notes
] = loc
;
2069 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
2074 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2078 if (GET_CODE (body
) == PARALLEL
)
2080 clobber_reg
= XALLOCAVEC (rtx
, XVECLEN (body
, 0));
2081 clobber_loc
= XALLOCAVEC (rtx
*, XVECLEN (body
, 0));
2083 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2084 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
2086 rtx clobber
= XVECEXP (body
, 0, i
);
2087 rtx reg
= XEXP (clobber
, 0);
2088 rtx
*loc
= & XEXP (clobber
, 0);
2090 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2092 loc
= & SUBREG_REG (reg
);
2093 reg
= SUBREG_REG (reg
);
2096 if (STACK_REG_P (reg
))
2098 clobber_reg
[n_clobbers
] = reg
;
2099 clobber_loc
[n_clobbers
] = loc
;
2105 temp_stack
= *regstack
;
2107 /* Put the input regs into the desired place in TEMP_STACK. */
2109 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2110 if (STACK_REG_P (recog_data
.operand
[i
])
2111 && reg_class_subset_p (op_alt
[i
].cl
, FLOAT_REGS
)
2112 && op_alt
[i
].cl
!= FLOAT_REGS
)
2114 /* If an operand needs to be in a particular reg in
2115 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2116 these constraints are for single register classes, and
2117 reload guaranteed that operand[i] is already in that class,
2118 we can just use REGNO (recog_data.operand[i]) to know which
2119 actual reg this operand needs to be in. */
2121 int regno
= get_hard_regnum (&temp_stack
, recog_data
.operand
[i
]);
2123 gcc_assert (regno
>= 0);
2125 if ((unsigned int) regno
!= REGNO (recog_data
.operand
[i
]))
2127 /* recog_data.operand[i] is not in the right place. Find
2128 it and swap it with whatever is already in I's place.
2129 K is where recog_data.operand[i] is now. J is where it
2133 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
2135 - (REGNO (recog_data
.operand
[i
]) - FIRST_STACK_REG
));
2137 std::swap (temp_stack
.reg
[j
], temp_stack
.reg
[k
]);
2141 /* Emit insns before INSN to make sure the reg-stack is in the right
2144 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
2146 /* Make the needed input register substitutions. Do death notes and
2147 clobbers too, because these are for inputs, not outputs. */
2149 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2150 if (STACK_REG_P (recog_data
.operand
[i
]))
2152 int regnum
= get_hard_regnum (regstack
, recog_data
.operand
[i
]);
2154 gcc_assert (regnum
>= 0);
2156 replace_reg (recog_data
.operand_loc
[i
], regnum
);
2159 for (i
= 0; i
< n_notes
; i
++)
2160 if (note_kind
[i
] == REG_DEAD
)
2162 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2164 gcc_assert (regnum
>= 0);
2166 replace_reg (note_loc
[i
], regnum
);
2169 for (i
= 0; i
< n_clobbers
; i
++)
2171 /* It's OK for a CLOBBER to reference a reg that is not live.
2172 Don't try to replace it in that case. */
2173 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2177 /* Sigh - clobbers always have QImode. But replace_reg knows
2178 that these regs can't be MODE_INT and will assert. Just put
2179 the right reg there without calling replace_reg. */
2181 *clobber_loc
[i
] = FP_MODE_REG (regnum
, DFmode
);
2185 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2187 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2188 if (STACK_REG_P (recog_data
.operand
[i
]))
2190 /* An input reg is implicitly popped if it is tied to an
2191 output, or if there is a CLOBBER for it. */
2194 for (j
= 0; j
< n_clobbers
; j
++)
2195 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
2198 if (j
< n_clobbers
|| op_alt
[i
].matches
>= 0)
2200 /* recog_data.operand[i] might not be at the top of stack.
2201 But that's OK, because all we need to do is pop the
2202 right number of regs off of the top of the reg-stack.
2203 record_asm_stack_regs guaranteed that all implicitly
2204 popped regs were grouped at the top of the reg-stack. */
2206 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2207 regstack
->reg
[regstack
->top
]);
2212 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2213 Note that there isn't any need to substitute register numbers.
2214 ??? Explain why this is true. */
2216 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2218 /* See if there is an output for this hard reg. */
2221 for (j
= 0; j
< n_outputs
; j
++)
2222 if (STACK_REG_P (recog_data
.operand
[j
])
2223 && REGNO (recog_data
.operand
[j
]) == (unsigned) i
)
2225 regstack
->reg
[++regstack
->top
] = i
;
2226 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2231 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2232 input that the asm didn't implicitly pop. If the asm didn't
2233 implicitly pop an input reg, that reg will still be live.
2235 Note that we can't use find_regno_note here: the register numbers
2236 in the death notes have already been substituted. */
2238 for (i
= 0; i
< n_outputs
; i
++)
2239 if (STACK_REG_P (recog_data
.operand
[i
]))
2243 for (j
= 0; j
< n_notes
; j
++)
2244 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2245 && note_kind
[j
] == REG_UNUSED
)
2247 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2253 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2254 if (STACK_REG_P (recog_data
.operand
[i
]))
2258 for (j
= 0; j
< n_notes
; j
++)
2259 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2260 && note_kind
[j
] == REG_DEAD
2261 && TEST_HARD_REG_BIT (regstack
->reg_set
,
2262 REGNO (recog_data
.operand
[i
])))
2264 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2271 /* Substitute stack hard reg numbers for stack virtual registers in
2272 INSN. Non-stack register numbers are not changed. REGSTACK is the
2273 current stack content. Insns may be emitted as needed to arrange the
2274 stack for the 387 based on the contents of the insn. Return whether
2275 a control flow insn was deleted in the process. */
2278 subst_stack_regs (rtx_insn
*insn
, stack_ptr regstack
)
2280 rtx
*note_link
, note
;
2281 bool control_flow_insn_deleted
= false;
2286 int top
= regstack
->top
;
2288 /* If there are any floating point parameters to be passed in
2289 registers for this call, make sure they are in the right
2294 straighten_stack (insn
, regstack
);
2296 /* Now mark the arguments as dead after the call. */
2298 while (regstack
->top
>= 0)
2300 CLEAR_HARD_REG_BIT (regstack
->reg_set
, FIRST_STACK_REG
+ regstack
->top
);
2306 /* Do the actual substitution if any stack regs are mentioned.
2307 Since we only record whether entire insn mentions stack regs, and
2308 subst_stack_regs_pat only works for patterns that contain stack regs,
2309 we must check each pattern in a parallel here. A call_value_pop could
2312 if (stack_regs_mentioned (insn
))
2314 int n_operands
= asm_noperands (PATTERN (insn
));
2315 if (n_operands
>= 0)
2317 /* This insn is an `asm' with operands. Decode the operands,
2318 decide how many are inputs, and do register substitution.
2319 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2321 subst_asm_stack_regs (insn
, regstack
);
2322 return control_flow_insn_deleted
;
2325 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2326 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2328 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2330 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
2331 XVECEXP (PATTERN (insn
), 0, i
)
2332 = shallow_copy_rtx (XVECEXP (PATTERN (insn
), 0, i
));
2333 control_flow_insn_deleted
2334 |= subst_stack_regs_pat (insn
, regstack
,
2335 XVECEXP (PATTERN (insn
), 0, i
));
2339 control_flow_insn_deleted
2340 |= subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2343 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2344 REG_UNUSED will already have been dealt with, so just return. */
2346 if (NOTE_P (insn
) || insn
->deleted ())
2347 return control_flow_insn_deleted
;
2349 /* If this a noreturn call, we can't insert pop insns after it.
2350 Instead, reset the stack state to empty. */
2352 && find_reg_note (insn
, REG_NORETURN
, NULL
))
2355 CLEAR_HARD_REG_SET (regstack
->reg_set
);
2356 return control_flow_insn_deleted
;
2359 /* If there is a REG_UNUSED note on a stack register on this insn,
2360 the indicated reg must be popped. The REG_UNUSED note is removed,
2361 since the form of the newly emitted pop insn references the reg,
2362 making it no longer `unset'. */
2364 note_link
= ®_NOTES (insn
);
2365 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2366 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2368 *note_link
= XEXP (note
, 1);
2369 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), EMIT_AFTER
);
2372 note_link
= &XEXP (note
, 1);
2374 return control_flow_insn_deleted
;
2377 /* Change the organization of the stack so that it fits a new basic
2378 block. Some registers might have to be popped, but there can never be
2379 a register live in the new block that is not now live.
2381 Insert any needed insns before or after INSN, as indicated by
2382 WHERE. OLD is the original stack layout, and NEW is the desired
2383 form. OLD is updated to reflect the code emitted, i.e., it will be
2384 the same as NEW upon return.
2386 This function will not preserve block_end[]. But that information
2387 is no longer needed once this has executed. */
2390 change_stack (rtx_insn
*insn
, stack_ptr old
, stack_ptr new_stack
,
2391 enum emit_where where
)
2397 /* Stack adjustments for the first insn in a block update the
2398 current_block's stack_in instead of inserting insns directly.
2399 compensate_edges will add the necessary code later. */
2402 && where
== EMIT_BEFORE
)
2404 BLOCK_INFO (current_block
)->stack_in
= *new_stack
;
2405 starting_stack_p
= false;
2410 /* We will be inserting new insns "backwards". If we are to insert
2411 after INSN, find the next insn, and insert before it. */
2413 if (where
== EMIT_AFTER
)
2415 if (current_block
&& BB_END (current_block
) == insn
)
2417 insn
= NEXT_INSN (insn
);
2420 /* Initialize partially dead variables. */
2421 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
2422 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, i
)
2423 && !TEST_HARD_REG_BIT (old
->reg_set
, i
))
2425 old
->reg
[++old
->top
] = i
;
2426 SET_HARD_REG_BIT (old
->reg_set
, i
);
2427 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i
, SFmode
), not_a_num
),
2431 /* Pop any registers that are not needed in the new block. */
2433 /* If the destination block's stack already has a specified layout
2434 and contains two or more registers, use a more intelligent algorithm
2435 to pop registers that minimizes the number number of fxchs below. */
2436 if (new_stack
->top
> 0)
2438 bool slots
[REG_STACK_SIZE
];
2439 int pops
[REG_STACK_SIZE
];
2440 int next
, dest
, topsrc
;
2442 /* First pass to determine the free slots. */
2443 for (reg
= 0; reg
<= new_stack
->top
; reg
++)
2444 slots
[reg
] = TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]);
2446 /* Second pass to allocate preferred slots. */
2448 for (reg
= old
->top
; reg
> new_stack
->top
; reg
--)
2449 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]))
2452 for (next
= 0; next
<= new_stack
->top
; next
++)
2453 if (!slots
[next
] && new_stack
->reg
[next
] == old
->reg
[reg
])
2455 /* If this is a preference for the new top of stack, record
2456 the fact by remembering it's old->reg in topsrc. */
2457 if (next
== new_stack
->top
)
2468 /* Intentionally, avoid placing the top of stack in it's correct
2469 location, if we still need to permute the stack below and we
2470 can usefully place it somewhere else. This is the case if any
2471 slot is still unallocated, in which case we should place the
2472 top of stack there. */
2474 for (reg
= 0; reg
< new_stack
->top
; reg
++)
2478 slots
[new_stack
->top
] = false;
2483 /* Third pass allocates remaining slots and emits pop insns. */
2484 next
= new_stack
->top
;
2485 for (reg
= old
->top
; reg
> new_stack
->top
; reg
--)
2490 /* Find next free slot. */
2495 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[dest
], DFmode
),
2501 /* The following loop attempts to maximize the number of times we
2502 pop the top of the stack, as this permits the use of the faster
2503 ffreep instruction on platforms that support it. */
2507 for (reg
= 0; reg
<= old
->top
; reg
++)
2508 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]))
2512 while (old
->top
>= live
)
2513 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[old
->top
]))
2515 while (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[next
]))
2517 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[next
], DFmode
),
2521 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[old
->top
], DFmode
),
2525 if (new_stack
->top
== -2)
2527 /* If the new block has never been processed, then it can inherit
2528 the old stack order. */
2530 new_stack
->top
= old
->top
;
2531 memcpy (new_stack
->reg
, old
->reg
, sizeof (new_stack
->reg
));
2535 /* This block has been entered before, and we must match the
2536 previously selected stack order. */
2538 /* By now, the only difference should be the order of the stack,
2539 not their depth or liveliness. */
2541 gcc_assert (hard_reg_set_equal_p (old
->reg_set
, new_stack
->reg_set
));
2542 gcc_assert (old
->top
== new_stack
->top
);
2544 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2545 swaps until the stack is correct.
2547 The worst case number of swaps emitted is N + 2, where N is the
2548 depth of the stack. In some cases, the reg at the top of
2549 stack may be correct, but swapped anyway in order to fix
2550 other regs. But since we never swap any other reg away from
2551 its correct slot, this algorithm will converge. */
2553 if (new_stack
->top
!= -1)
2556 /* Swap the reg at top of stack into the position it is
2557 supposed to be in, until the correct top of stack appears. */
2559 while (old
->reg
[old
->top
] != new_stack
->reg
[new_stack
->top
])
2561 for (reg
= new_stack
->top
; reg
>= 0; reg
--)
2562 if (new_stack
->reg
[reg
] == old
->reg
[old
->top
])
2565 gcc_assert (reg
!= -1);
2567 emit_swap_insn (insn
, old
,
2568 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2571 /* See if any regs remain incorrect. If so, bring an
2572 incorrect reg to the top of stack, and let the while loop
2575 for (reg
= new_stack
->top
; reg
>= 0; reg
--)
2576 if (new_stack
->reg
[reg
] != old
->reg
[reg
])
2578 emit_swap_insn (insn
, old
,
2579 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2584 /* At this point there must be no differences. */
2586 for (reg
= old
->top
; reg
>= 0; reg
--)
2587 gcc_assert (old
->reg
[reg
] == new_stack
->reg
[reg
]);
2591 BB_END (current_block
) = PREV_INSN (insn
);
2594 /* Print stack configuration. */
2597 print_stack (FILE *file
, stack_ptr s
)
2603 fprintf (file
, "uninitialized\n");
2604 else if (s
->top
== -1)
2605 fprintf (file
, "empty\n");
2610 for (i
= 0; i
<= s
->top
; ++i
)
2611 fprintf (file
, "%d ", s
->reg
[i
]);
2612 fputs ("]\n", file
);
2616 /* This function was doing life analysis. We now let the regular live
2617 code do it's job, so we only need to check some extra invariants
2618 that reg-stack expects. Primary among these being that all registers
2619 are initialized before use.
2621 The function returns true when code was emitted to CFG edges and
2622 commit_edge_insertions needs to be called. */
2625 convert_regs_entry (void)
2631 /* Load something into each stack register live at function entry.
2632 Such live registers can be caused by uninitialized variables or
2633 functions not returning values on all paths. In order to keep
2634 the push/pop code happy, and to not scrog the register stack, we
2635 must put something in these registers. Use a QNaN.
2637 Note that we are inserting converted code here. This code is
2638 never seen by the convert_regs pass. */
2640 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
2642 basic_block block
= e
->dest
;
2643 block_info bi
= BLOCK_INFO (block
);
2646 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2647 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2651 bi
->stack_in
.reg
[++top
] = reg
;
2653 init
= gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG
, SFmode
),
2655 insert_insn_on_edge (init
, e
);
2659 bi
->stack_in
.top
= top
;
2665 /* Construct the desired stack for function exit. This will either
2666 be `empty', or the function return value at top-of-stack. */
2669 convert_regs_exit (void)
2671 int value_reg_low
, value_reg_high
;
2672 stack_ptr output_stack
;
2675 retvalue
= stack_result (current_function_decl
);
2676 value_reg_low
= value_reg_high
= -1;
2679 value_reg_low
= REGNO (retvalue
);
2680 value_reg_high
= END_REGNO (retvalue
) - 1;
2683 output_stack
= &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun
))->stack_in
;
2684 if (value_reg_low
== -1)
2685 output_stack
->top
= -1;
2690 output_stack
->top
= value_reg_high
- value_reg_low
;
2691 for (reg
= value_reg_low
; reg
<= value_reg_high
; ++reg
)
2693 output_stack
->reg
[value_reg_high
- reg
] = reg
;
2694 SET_HARD_REG_BIT (output_stack
->reg_set
, reg
);
2699 /* Copy the stack info from the end of edge E's source block to the
2700 start of E's destination block. */
2703 propagate_stack (edge e
)
2705 stack_ptr src_stack
= &BLOCK_INFO (e
->src
)->stack_out
;
2706 stack_ptr dest_stack
= &BLOCK_INFO (e
->dest
)->stack_in
;
2709 /* Preserve the order of the original stack, but check whether
2710 any pops are needed. */
2711 dest_stack
->top
= -1;
2712 for (reg
= 0; reg
<= src_stack
->top
; ++reg
)
2713 if (TEST_HARD_REG_BIT (dest_stack
->reg_set
, src_stack
->reg
[reg
]))
2714 dest_stack
->reg
[++dest_stack
->top
] = src_stack
->reg
[reg
];
2716 /* Push in any partially dead values. */
2717 for (reg
= FIRST_STACK_REG
; reg
< LAST_STACK_REG
+ 1; reg
++)
2718 if (TEST_HARD_REG_BIT (dest_stack
->reg_set
, reg
)
2719 && !TEST_HARD_REG_BIT (src_stack
->reg_set
, reg
))
2720 dest_stack
->reg
[++dest_stack
->top
] = reg
;
2724 /* Adjust the stack of edge E's source block on exit to match the stack
2725 of it's target block upon input. The stack layouts of both blocks
2726 should have been defined by now. */
2729 compensate_edge (edge e
)
2731 basic_block source
= e
->src
, target
= e
->dest
;
2732 stack_ptr target_stack
= &BLOCK_INFO (target
)->stack_in
;
2733 stack_ptr source_stack
= &BLOCK_INFO (source
)->stack_out
;
2734 struct stack_def regstack
;
2738 fprintf (dump_file
, "Edge %d->%d: ", source
->index
, target
->index
);
2740 gcc_assert (target_stack
->top
!= -2);
2742 /* Check whether stacks are identical. */
2743 if (target_stack
->top
== source_stack
->top
)
2745 for (reg
= target_stack
->top
; reg
>= 0; --reg
)
2746 if (target_stack
->reg
[reg
] != source_stack
->reg
[reg
])
2752 fprintf (dump_file
, "no changes needed\n");
2759 fprintf (dump_file
, "correcting stack to ");
2760 print_stack (dump_file
, target_stack
);
2763 /* Abnormal calls may appear to have values live in st(0), but the
2764 abnormal return path will not have actually loaded the values. */
2765 if (e
->flags
& EDGE_ABNORMAL_CALL
)
2767 /* Assert that the lifetimes are as we expect -- one value
2768 live at st(0) on the end of the source block, and no
2769 values live at the beginning of the destination block.
2770 For complex return values, we may have st(1) live as well. */
2771 gcc_assert (source_stack
->top
== 0 || source_stack
->top
== 1);
2772 gcc_assert (target_stack
->top
== -1);
2776 /* Handle non-call EH edges specially. The normal return path have
2777 values in registers. These will be popped en masse by the unwind
2779 if (e
->flags
& EDGE_EH
)
2781 gcc_assert (target_stack
->top
== -1);
2785 /* We don't support abnormal edges. Global takes care to
2786 avoid any live register across them, so we should never
2787 have to insert instructions on such edges. */
2788 gcc_assert (! (e
->flags
& EDGE_ABNORMAL
));
2790 /* Make a copy of source_stack as change_stack is destructive. */
2791 regstack
= *source_stack
;
2793 /* It is better to output directly to the end of the block
2794 instead of to the edge, because emit_swap can do minimal
2795 insn scheduling. We can do this when there is only one
2796 edge out, and it is not abnormal. */
2797 if (EDGE_COUNT (source
->succs
) == 1)
2799 current_block
= source
;
2800 change_stack (BB_END (source
), ®stack
, target_stack
,
2801 (JUMP_P (BB_END (source
)) ? EMIT_BEFORE
: EMIT_AFTER
));
2808 current_block
= NULL
;
2811 /* ??? change_stack needs some point to emit insns after. */
2812 after
= emit_note (NOTE_INSN_DELETED
);
2814 change_stack (after
, ®stack
, target_stack
, EMIT_BEFORE
);
2819 insert_insn_on_edge (seq
, e
);
2825 /* Traverse all non-entry edges in the CFG, and emit the necessary
2826 edge compensation code to change the stack from stack_out of the
2827 source block to the stack_in of the destination block. */
2830 compensate_edges (void)
2832 bool inserted
= false;
2835 starting_stack_p
= false;
2837 FOR_EACH_BB_FN (bb
, cfun
)
2838 if (bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2843 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2844 inserted
|= compensate_edge (e
);
2849 /* Select the better of two edges E1 and E2 to use to determine the
2850 stack layout for their shared destination basic block. This is
2851 typically the more frequently executed. The edge E1 may be NULL
2852 (in which case E2 is returned), but E2 is always non-NULL. */
2855 better_edge (edge e1
, edge e2
)
2860 if (EDGE_FREQUENCY (e1
) > EDGE_FREQUENCY (e2
))
2862 if (EDGE_FREQUENCY (e1
) < EDGE_FREQUENCY (e2
))
2865 if (e1
->count
> e2
->count
)
2867 if (e1
->count
< e2
->count
)
2870 /* Prefer critical edges to minimize inserting compensation code on
2873 if (EDGE_CRITICAL_P (e1
) != EDGE_CRITICAL_P (e2
))
2874 return EDGE_CRITICAL_P (e1
) ? e1
: e2
;
2876 /* Avoid non-deterministic behavior. */
2877 return (e1
->src
->index
< e2
->src
->index
) ? e1
: e2
;
2880 /* Convert stack register references in one block. Return true if the CFG
2881 has been modified in the process. */
2884 convert_regs_1 (basic_block block
)
2886 struct stack_def regstack
;
2887 block_info bi
= BLOCK_INFO (block
);
2889 rtx_insn
*insn
, *next
;
2890 bool control_flow_insn_deleted
= false;
2891 bool cfg_altered
= false;
2892 int debug_insns_with_starting_stack
= 0;
2894 any_malformed_asm
= false;
2896 /* Choose an initial stack layout, if one hasn't already been chosen. */
2897 if (bi
->stack_in
.top
== -2)
2899 edge e
, beste
= NULL
;
2902 /* Select the best incoming edge (typically the most frequent) to
2903 use as a template for this basic block. */
2904 FOR_EACH_EDGE (e
, ei
, block
->preds
)
2905 if (BLOCK_INFO (e
->src
)->done
)
2906 beste
= better_edge (beste
, e
);
2909 propagate_stack (beste
);
2912 /* No predecessors. Create an arbitrary input stack. */
2913 bi
->stack_in
.top
= -1;
2914 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2915 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2916 bi
->stack_in
.reg
[++bi
->stack_in
.top
] = reg
;
2922 fprintf (dump_file
, "\nBasic block %d\nInput stack: ", block
->index
);
2923 print_stack (dump_file
, &bi
->stack_in
);
2926 /* Process all insns in this block. Keep track of NEXT so that we
2927 don't process insns emitted while substituting in INSN. */
2928 current_block
= block
;
2929 next
= BB_HEAD (block
);
2930 regstack
= bi
->stack_in
;
2931 starting_stack_p
= true;
2936 next
= NEXT_INSN (insn
);
2938 /* Ensure we have not missed a block boundary. */
2940 if (insn
== BB_END (block
))
2943 /* Don't bother processing unless there is a stack reg
2944 mentioned or if it's a CALL_INSN. */
2945 if (DEBUG_INSN_P (insn
))
2947 if (starting_stack_p
)
2948 debug_insns_with_starting_stack
++;
2951 subst_all_stack_regs_in_debug_insn (insn
, ®stack
);
2953 /* Nothing must ever die at a debug insn. If something
2954 is referenced in it that becomes dead, it should have
2955 died before and the reference in the debug insn
2956 should have been removed so as to avoid changing code
2958 gcc_assert (!find_reg_note (insn
, REG_DEAD
, NULL
));
2961 else if (stack_regs_mentioned (insn
)
2966 fprintf (dump_file
, " insn %d input stack: ",
2968 print_stack (dump_file
, ®stack
);
2970 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
2971 starting_stack_p
= false;
2976 if (debug_insns_with_starting_stack
)
2978 /* Since it's the first non-debug instruction that determines
2979 the stack requirements of the current basic block, we refrain
2980 from updating debug insns before it in the loop above, and
2981 fix them up here. */
2982 for (insn
= BB_HEAD (block
); debug_insns_with_starting_stack
;
2983 insn
= NEXT_INSN (insn
))
2985 if (!DEBUG_INSN_P (insn
))
2988 debug_insns_with_starting_stack
--;
2989 subst_all_stack_regs_in_debug_insn (insn
, &bi
->stack_in
);
2995 fprintf (dump_file
, "Expected live registers [");
2996 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2997 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
))
2998 fprintf (dump_file
, " %d", reg
);
2999 fprintf (dump_file
, " ]\nOutput stack: ");
3000 print_stack (dump_file
, ®stack
);
3003 insn
= BB_END (block
);
3005 insn
= PREV_INSN (insn
);
3007 /* If the function is declared to return a value, but it returns one
3008 in only some cases, some registers might come live here. Emit
3009 necessary moves for them. */
3011 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
3013 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
)
3014 && ! TEST_HARD_REG_BIT (regstack
.reg_set
, reg
))
3019 fprintf (dump_file
, "Emitting insn initializing reg %d\n", reg
);
3021 set
= gen_rtx_SET (FP_MODE_REG (reg
, SFmode
), not_a_num
);
3022 insn
= emit_insn_after (set
, insn
);
3023 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
3027 /* Amongst the insns possibly deleted during the substitution process above,
3028 might have been the only trapping insn in the block. We purge the now
3029 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3030 called at the end of convert_regs. The order in which we process the
3031 blocks ensures that we never delete an already processed edge.
3033 Note that, at this point, the CFG may have been damaged by the emission
3034 of instructions after an abnormal call, which moves the basic block end
3035 (and is the reason why we call fixup_abnormal_edges later). So we must
3036 be sure that the trapping insn has been deleted before trying to purge
3037 dead edges, otherwise we risk purging valid edges.
3039 ??? We are normally supposed not to delete trapping insns, so we pretend
3040 that the insns deleted above don't actually trap. It would have been
3041 better to detect this earlier and avoid creating the EH edge in the first
3042 place, still, but we don't have enough information at that time. */
3044 if (control_flow_insn_deleted
)
3045 cfg_altered
|= purge_dead_edges (block
);
3047 /* Something failed if the stack lives don't match. If we had malformed
3048 asms, we zapped the instruction itself, but that didn't produce the
3049 same pattern of register kills as before. */
3051 gcc_assert (hard_reg_set_equal_p (regstack
.reg_set
, bi
->out_reg_set
)
3052 || any_malformed_asm
);
3053 bi
->stack_out
= regstack
;
3059 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3060 CFG has been modified in the process. */
3063 convert_regs_2 (basic_block block
)
3065 basic_block
*stack
, *sp
;
3066 bool cfg_altered
= false;
3068 /* We process the blocks in a top-down manner, in a way such that one block
3069 is only processed after all its predecessors. The number of predecessors
3070 of every block has already been computed. */
3072 stack
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
3084 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3085 some dead EH outgoing edge after the deletion of the trapping
3086 insn inside the block. Since the number of predecessors of
3087 BLOCK's successors was computed based on the initial edge set,
3088 we check the necessity to process some of these successors
3089 before such an edge deletion may happen. However, there is
3090 a pitfall: if BLOCK is the only predecessor of a successor and
3091 the edge between them happens to be deleted, the successor
3092 becomes unreachable and should not be processed. The problem
3093 is that there is no way to preventively detect this case so we
3094 stack the successor in all cases and hand over the task of
3095 fixing up the discrepancy to convert_regs_1. */
3097 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3098 if (! (e
->flags
& EDGE_DFS_BACK
))
3100 BLOCK_INFO (e
->dest
)->predecessors
--;
3101 if (!BLOCK_INFO (e
->dest
)->predecessors
)
3105 cfg_altered
|= convert_regs_1 (block
);
3107 while (sp
!= stack
);
3114 /* Traverse all basic blocks in a function, converting the register
3115 references in each insn from the "flat" register file that gcc uses,
3116 to the stack-like registers the 387 uses. */
3121 bool cfg_altered
= false;
3127 /* Initialize uninitialized registers on function entry. */
3128 inserted
= convert_regs_entry ();
3130 /* Construct the desired stack for function exit. */
3131 convert_regs_exit ();
3132 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun
))->done
= 1;
3134 /* ??? Future: process inner loops first, and give them arbitrary
3135 initial stacks which emit_swap_insn can modify. This ought to
3136 prevent double fxch that often appears at the head of a loop. */
3138 /* Process all blocks reachable from all entry points. */
3139 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
3140 cfg_altered
|= convert_regs_2 (e
->dest
);
3142 /* ??? Process all unreachable blocks. Though there's no excuse
3143 for keeping these even when not optimizing. */
3144 FOR_EACH_BB_FN (b
, cfun
)
3146 block_info bi
= BLOCK_INFO (b
);
3149 cfg_altered
|= convert_regs_2 (b
);
3152 /* We must fix up abnormal edges before inserting compensation code
3153 because both mechanisms insert insns on edges. */
3154 inserted
|= fixup_abnormal_edges ();
3156 inserted
|= compensate_edges ();
3158 clear_aux_for_blocks ();
3161 commit_edge_insertions ();
3167 fputc ('\n', dump_file
);
3170 /* Convert register usage from "flat" register file usage to a "stack
3171 register file. FILE is the dump file, if used.
3173 Construct a CFG and run life analysis. Then convert each insn one
3174 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3175 code duplication created when the converter inserts pop insns on
3185 /* Clean up previous run. */
3186 stack_regs_mentioned_data
.release ();
3188 /* See if there is something to do. Flow analysis is quite
3189 expensive so we might save some compilation time. */
3190 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
3191 if (df_regs_ever_live_p (i
))
3193 if (i
> LAST_STACK_REG
)
3196 df_note_add_problem ();
3199 mark_dfs_back_edges ();
3201 /* Set up block info for each basic block. */
3202 alloc_aux_for_blocks (sizeof (struct block_info_def
));
3203 FOR_EACH_BB_FN (bb
, cfun
)
3205 block_info bi
= BLOCK_INFO (bb
);
3210 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3211 if (!(e
->flags
& EDGE_DFS_BACK
)
3212 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
3215 /* Set current register status at last instruction `uninitialized'. */
3216 bi
->stack_in
.top
= -2;
3218 /* Copy live_at_end and live_at_start into temporaries. */
3219 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; reg
++)
3221 if (REGNO_REG_SET_P (DF_LR_OUT (bb
), reg
))
3222 SET_HARD_REG_BIT (bi
->out_reg_set
, reg
);
3223 if (REGNO_REG_SET_P (DF_LR_IN (bb
), reg
))
3224 SET_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
);
3228 /* Create the replacement registers up front. */
3229 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
3232 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
3234 mode
= GET_MODE_WIDER_MODE (mode
))
3235 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
3236 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
3238 mode
= GET_MODE_WIDER_MODE (mode
))
3239 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
3242 ix86_flags_rtx
= gen_rtx_REG (CCmode
, FLAGS_REG
);
3244 /* A QNaN for initializing uninitialized variables.
3246 ??? We can't load from constant memory in PIC mode, because
3247 we're inserting these instructions before the prologue and
3248 the PIC register hasn't been set up. In that case, fall back
3249 on zero, which we can get from `fldz'. */
3251 if ((flag_pic
&& !TARGET_64BIT
)
3252 || ix86_cmodel
== CM_LARGE
|| ix86_cmodel
== CM_LARGE_PIC
)
3253 not_a_num
= CONST0_RTX (SFmode
);
3258 real_nan (&r
, "", 1, SFmode
);
3259 not_a_num
= CONST_DOUBLE_FROM_REAL_VALUE (r
, SFmode
);
3260 not_a_num
= force_const_mem (SFmode
, not_a_num
);
3263 /* Allocate a cache for stack_regs_mentioned. */
3264 max_uid
= get_max_uid ();
3265 stack_regs_mentioned_data
.create (max_uid
+ 1);
3266 memset (stack_regs_mentioned_data
.address (),
3267 0, sizeof (char) * (max_uid
+ 1));
3271 free_aux_for_blocks ();
3274 #endif /* STACK_REGS */
3278 const pass_data pass_data_stack_regs
=
3280 RTL_PASS
, /* type */
3281 "*stack_regs", /* name */
3282 OPTGROUP_NONE
, /* optinfo_flags */
3283 TV_REG_STACK
, /* tv_id */
3284 0, /* properties_required */
3285 0, /* properties_provided */
3286 0, /* properties_destroyed */
3287 0, /* todo_flags_start */
3288 0, /* todo_flags_finish */
3291 class pass_stack_regs
: public rtl_opt_pass
3294 pass_stack_regs (gcc::context
*ctxt
)
3295 : rtl_opt_pass (pass_data_stack_regs
, ctxt
)
3298 /* opt_pass methods: */
3299 virtual bool gate (function
*)
3308 }; // class pass_stack_regs
3313 make_pass_stack_regs (gcc::context
*ctxt
)
3315 return new pass_stack_regs (ctxt
);
3318 /* Convert register usage from flat register file usage to a stack
3321 rest_of_handle_stack_regs (void)
3325 regstack_completed
= 1;
3332 const pass_data pass_data_stack_regs_run
=
3334 RTL_PASS
, /* type */
3336 OPTGROUP_NONE
, /* optinfo_flags */
3337 TV_REG_STACK
, /* tv_id */
3338 0, /* properties_required */
3339 0, /* properties_provided */
3340 0, /* properties_destroyed */
3341 0, /* todo_flags_start */
3342 TODO_df_finish
, /* todo_flags_finish */
3345 class pass_stack_regs_run
: public rtl_opt_pass
3348 pass_stack_regs_run (gcc::context
*ctxt
)
3349 : rtl_opt_pass (pass_data_stack_regs_run
, ctxt
)
3352 /* opt_pass methods: */
3353 virtual unsigned int execute (function
*)
3355 return rest_of_handle_stack_regs ();
3358 }; // class pass_stack_regs_run
3363 make_pass_stack_regs_run (gcc::context
*ctxt
)
3365 return new pass_stack_regs_run (ctxt
);