1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
29 #include "hard-reg-set.h"
39 #include "insn-config.h"
40 #include "insn-attr.h"
43 #include "dominance.h"
47 #include "basic-block.h"
48 #include "sched-int.h"
51 #include "double-int.h"
57 #include "insn-codes.h"
59 #include "statistics.h"
61 #include "fixed-value.h"
75 #include "tree-pass.h"
77 #include "loop-unroll.h"
79 #ifdef INSN_SCHEDULING
81 /* This file contains the implementation of the Swing Modulo Scheduler,
82 described in the following references:
83 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
84 Lifetime--sensitive modulo scheduling in a production environment.
85 IEEE Trans. on Comps., 50(3), March 2001
86 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
87 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
88 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
90 The basic structure is:
91 1. Build a data-dependence graph (DDG) for each loop.
92 2. Use the DDG to order the insns of a loop (not in topological order
93 necessarily, but rather) trying to place each insn after all its
94 predecessors _or_ after all its successors.
95 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
96 4. Use the ordering to perform list-scheduling of the loop:
97 1. Set II = MII. We will try to schedule the loop within II cycles.
98 2. Try to schedule the insns one by one according to the ordering.
99 For each insn compute an interval of cycles by considering already-
100 scheduled preds and succs (and associated latencies); try to place
101 the insn in the cycles of this window checking for potential
102 resource conflicts (using the DFA interface).
103 Note: this is different from the cycle-scheduling of schedule_insns;
104 here the insns are not scheduled monotonically top-down (nor bottom-
106 3. If failed in scheduling all insns - bump II++ and try again, unless
107 II reaches an upper bound MaxII, in which case report failure.
108 5. If we succeeded in scheduling the loop within II cycles, we now
109 generate prolog and epilog, decrease the counter of the loop, and
110 perform modulo variable expansion for live ranges that span more than
111 II cycles (i.e. use register copies to prevent a def from overwriting
112 itself before reaching the use).
114 SMS works with countable loops (1) whose control part can be easily
115 decoupled from the rest of the loop and (2) whose loop count can
116 be easily adjusted. This is because we peel a constant number of
117 iterations into a prologue and epilogue for which we want to avoid
118 emitting the control part, and a kernel which is to iterate that
119 constant number of iterations less than the original loop. So the
120 control part should be a set of insns clearly identified and having
121 its own iv, not otherwise used in the loop (at-least for now), which
122 initializes a register before the loop to the number of iterations.
123 Currently SMS relies on the do-loop pattern to recognize such loops,
124 where (1) the control part comprises of all insns defining and/or
125 using a certain 'count' register and (2) the loop count can be
126 adjusted by modifying this register prior to the loop.
127 TODO: Rely on cfgloop analysis instead. */
129 /* This page defines partial-schedule structures and functions for
130 modulo scheduling. */
132 typedef struct partial_schedule
*partial_schedule_ptr
;
133 typedef struct ps_insn
*ps_insn_ptr
;
135 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
136 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
138 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
139 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
141 /* Perform signed modulo, always returning a non-negative value. */
142 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
144 /* The number of different iterations the nodes in ps span, assuming
145 the stage boundaries are placed efficiently. */
146 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
148 /* The stage count of ps. */
149 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
151 /* A single instruction in the partial schedule. */
154 /* Identifies the instruction to be scheduled. Values smaller than
155 the ddg's num_nodes refer directly to ddg nodes. A value of
156 X - num_nodes refers to register move X. */
159 /* The (absolute) cycle in which the PS instruction is scheduled.
160 Same as SCHED_TIME (node). */
163 /* The next/prev PS_INSN in the same row. */
164 ps_insn_ptr next_in_row
,
169 /* Information about a register move that has been added to a partial
171 struct ps_reg_move_info
173 /* The source of the move is defined by the ps_insn with id DEF.
174 The destination is used by the ps_insns with the ids in USES. */
178 /* The original form of USES' instructions used OLD_REG, but they
179 should now use NEW_REG. */
183 /* The number of consecutive stages that the move occupies. */
184 int num_consecutive_stages
;
186 /* An instruction that sets NEW_REG to the correct value. The first
187 move associated with DEF will have an rhs of OLD_REG; later moves
188 use the result of the previous move. */
192 typedef struct ps_reg_move_info ps_reg_move_info
;
194 /* Holds the partial schedule as an array of II rows. Each entry of the
195 array points to a linked list of PS_INSNs, which represents the
196 instructions that are scheduled for that row. */
197 struct partial_schedule
199 int ii
; /* Number of rows in the partial schedule. */
200 int history
; /* Threshold for conflict checking using DFA. */
202 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
205 /* All the moves added for this partial schedule. Index X has
206 a ps_insn id of X + g->num_nodes. */
207 vec
<ps_reg_move_info
> reg_moves
;
209 /* rows_length[i] holds the number of instructions in the row.
210 It is used only (as an optimization) to back off quickly from
211 trying to schedule a node in a full row; that is, to avoid running
212 through futile DFA state transitions. */
215 /* The earliest absolute cycle of an insn in the partial schedule. */
218 /* The latest absolute cycle of an insn in the partial schedule. */
221 ddg_ptr g
; /* The DDG of the insns in the partial schedule. */
223 int stage_count
; /* The stage count of the partial schedule. */
227 static partial_schedule_ptr
create_partial_schedule (int ii
, ddg_ptr
, int history
);
228 static void free_partial_schedule (partial_schedule_ptr
);
229 static void reset_partial_schedule (partial_schedule_ptr
, int new_ii
);
230 void print_partial_schedule (partial_schedule_ptr
, FILE *);
231 static void verify_partial_schedule (partial_schedule_ptr
, sbitmap
);
232 static ps_insn_ptr
ps_add_node_check_conflicts (partial_schedule_ptr
,
233 int, int, sbitmap
, sbitmap
);
234 static void rotate_partial_schedule (partial_schedule_ptr
, int);
235 void set_row_column_for_ps (partial_schedule_ptr
);
236 static void ps_insert_empty_row (partial_schedule_ptr
, int, sbitmap
);
237 static int compute_split_row (sbitmap
, int, int, int, ddg_node_ptr
);
240 /* This page defines constants and structures for the modulo scheduling
243 static int sms_order_nodes (ddg_ptr
, int, int *, int *);
244 static void set_node_sched_params (ddg_ptr
);
245 static partial_schedule_ptr
sms_schedule_by_order (ddg_ptr
, int, int, int *);
246 static void permute_partial_schedule (partial_schedule_ptr
, rtx_insn
*);
247 static void generate_prolog_epilog (partial_schedule_ptr
, struct loop
*,
249 static int calculate_stage_count (partial_schedule_ptr
, int);
250 static void calculate_must_precede_follow (ddg_node_ptr
, int, int,
251 int, int, sbitmap
, sbitmap
, sbitmap
);
252 static int get_sched_window (partial_schedule_ptr
, ddg_node_ptr
,
253 sbitmap
, int, int *, int *, int *);
254 static bool try_scheduling_node_in_cycle (partial_schedule_ptr
, int, int,
255 sbitmap
, int *, sbitmap
, sbitmap
);
256 static void remove_node_from_ps (partial_schedule_ptr
, ps_insn_ptr
);
258 #define NODE_ASAP(node) ((node)->aux.count)
260 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
261 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
262 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
263 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
264 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
266 /* The scheduling parameters held for each node. */
267 typedef struct node_sched_params
269 int time
; /* The absolute scheduling cycle. */
271 int row
; /* Holds time % ii. */
272 int stage
; /* Holds time / ii. */
274 /* The column of a node inside the ps. If nodes u, v are on the same row,
275 u will precede v if column (u) < column (v). */
277 } *node_sched_params_ptr
;
279 typedef struct node_sched_params node_sched_params
;
281 /* The following three functions are copied from the current scheduler
282 code in order to use sched_analyze() for computing the dependencies.
283 They are used when initializing the sched_info structure. */
285 sms_print_insn (const rtx_insn
*insn
, int aligned ATTRIBUTE_UNUSED
)
289 sprintf (tmp
, "i%4d", INSN_UID (insn
));
294 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED
,
295 regset used ATTRIBUTE_UNUSED
)
299 static struct common_sched_info_def sms_common_sched_info
;
301 static struct sched_deps_info_def sms_sched_deps_info
=
303 compute_jump_reg_dependencies
,
304 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
309 static struct haifa_sched_info sms_sched_info
=
318 NULL
, /* insn_finishes_block_p */
323 NULL
, NULL
, NULL
, NULL
,
328 /* Partial schedule instruction ID in PS is a register move. Return
329 information about it. */
330 static struct ps_reg_move_info
*
331 ps_reg_move (partial_schedule_ptr ps
, int id
)
333 gcc_checking_assert (id
>= ps
->g
->num_nodes
);
334 return &ps
->reg_moves
[id
- ps
->g
->num_nodes
];
337 /* Return the rtl instruction that is being scheduled by partial schedule
338 instruction ID, which belongs to schedule PS. */
340 ps_rtl_insn (partial_schedule_ptr ps
, int id
)
342 if (id
< ps
->g
->num_nodes
)
343 return ps
->g
->nodes
[id
].insn
;
345 return ps_reg_move (ps
, id
)->insn
;
348 /* Partial schedule instruction ID, which belongs to PS, occurred in
349 the original (unscheduled) loop. Return the first instruction
350 in the loop that was associated with ps_rtl_insn (PS, ID).
351 If the instruction had some notes before it, this is the first
354 ps_first_note (partial_schedule_ptr ps
, int id
)
356 gcc_assert (id
< ps
->g
->num_nodes
);
357 return ps
->g
->nodes
[id
].first_note
;
360 /* Return the number of consecutive stages that are occupied by
361 partial schedule instruction ID in PS. */
363 ps_num_consecutive_stages (partial_schedule_ptr ps
, int id
)
365 if (id
< ps
->g
->num_nodes
)
368 return ps_reg_move (ps
, id
)->num_consecutive_stages
;
371 /* Given HEAD and TAIL which are the first and last insns in a loop;
372 return the register which controls the loop. Return zero if it has
373 more than one occurrence in the loop besides the control part or the
374 do-loop pattern is not of the form we expect. */
376 doloop_register_get (rtx_insn
*head ATTRIBUTE_UNUSED
, rtx_insn
*tail ATTRIBUTE_UNUSED
)
378 #ifdef HAVE_doloop_end
380 rtx_insn
*insn
, *first_insn_not_to_check
;
385 /* TODO: Free SMS's dependence on doloop_condition_get. */
386 condition
= doloop_condition_get (tail
);
390 if (REG_P (XEXP (condition
, 0)))
391 reg
= XEXP (condition
, 0);
392 else if (GET_CODE (XEXP (condition
, 0)) == PLUS
393 && REG_P (XEXP (XEXP (condition
, 0), 0)))
394 reg
= XEXP (XEXP (condition
, 0), 0);
398 /* Check that the COUNT_REG has no other occurrences in the loop
399 until the decrement. We assume the control part consists of
400 either a single (parallel) branch-on-count or a (non-parallel)
401 branch immediately preceded by a single (decrement) insn. */
402 first_insn_not_to_check
= (GET_CODE (PATTERN (tail
)) == PARALLEL
? tail
403 : prev_nondebug_insn (tail
));
405 for (insn
= head
; insn
!= first_insn_not_to_check
; insn
= NEXT_INSN (insn
))
406 if (!DEBUG_INSN_P (insn
) && reg_mentioned_p (reg
, insn
))
410 fprintf (dump_file
, "SMS count_reg found ");
411 print_rtl_single (dump_file
, reg
);
412 fprintf (dump_file
, " outside control in insn:\n");
413 print_rtl_single (dump_file
, insn
);
425 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
426 that the number of iterations is a compile-time constant. If so,
427 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
428 this constant. Otherwise return 0. */
430 const_iteration_count (rtx count_reg
, basic_block pre_header
,
434 rtx_insn
*head
, *tail
;
439 get_ebb_head_tail (pre_header
, pre_header
, &head
, &tail
);
441 for (insn
= tail
; insn
!= PREV_INSN (head
); insn
= PREV_INSN (insn
))
442 if (NONDEBUG_INSN_P (insn
) && single_set (insn
) &&
443 rtx_equal_p (count_reg
, SET_DEST (single_set (insn
))))
445 rtx pat
= single_set (insn
);
447 if (CONST_INT_P (SET_SRC (pat
)))
449 *count
= INTVAL (SET_SRC (pat
));
459 /* A very simple resource-based lower bound on the initiation interval.
460 ??? Improve the accuracy of this bound by considering the
461 utilization of various units. */
465 if (targetm
.sched
.sms_res_mii
)
466 return targetm
.sched
.sms_res_mii (g
);
468 return ((g
->num_nodes
- g
->num_debug
) / issue_rate
);
472 /* A vector that contains the sched data for each ps_insn. */
473 static vec
<node_sched_params
> node_sched_param_vec
;
475 /* Allocate sched_params for each node and initialize it. */
477 set_node_sched_params (ddg_ptr g
)
479 node_sched_param_vec
.truncate (0);
480 node_sched_param_vec
.safe_grow_cleared (g
->num_nodes
);
483 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
485 extend_node_sched_params (partial_schedule_ptr ps
)
487 node_sched_param_vec
.safe_grow_cleared (ps
->g
->num_nodes
488 + ps
->reg_moves
.length ());
491 /* Update the sched_params (time, row and stage) for node U using the II,
492 the CYCLE of U and MIN_CYCLE.
493 We're not simply taking the following
494 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
495 because the stages may not be aligned on cycle 0. */
497 update_node_sched_params (int u
, int ii
, int cycle
, int min_cycle
)
499 int sc_until_cycle_zero
;
502 SCHED_TIME (u
) = cycle
;
503 SCHED_ROW (u
) = SMODULO (cycle
, ii
);
505 /* The calculation of stage count is done adding the number
506 of stages before cycle zero and after cycle zero. */
507 sc_until_cycle_zero
= CALC_STAGE_COUNT (-1, min_cycle
, ii
);
509 if (SCHED_TIME (u
) < 0)
511 stage
= CALC_STAGE_COUNT (-1, SCHED_TIME (u
), ii
);
512 SCHED_STAGE (u
) = sc_until_cycle_zero
- stage
;
516 stage
= CALC_STAGE_COUNT (SCHED_TIME (u
), 0, ii
);
517 SCHED_STAGE (u
) = sc_until_cycle_zero
+ stage
- 1;
522 print_node_sched_params (FILE *file
, int num_nodes
, partial_schedule_ptr ps
)
528 for (i
= 0; i
< num_nodes
; i
++)
530 node_sched_params_ptr nsp
= SCHED_PARAMS (i
);
532 fprintf (file
, "Node = %d; INSN = %d\n", i
,
533 INSN_UID (ps_rtl_insn (ps
, i
)));
534 fprintf (file
, " asap = %d:\n", NODE_ASAP (&ps
->g
->nodes
[i
]));
535 fprintf (file
, " time = %d:\n", nsp
->time
);
536 fprintf (file
, " stage = %d:\n", nsp
->stage
);
540 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
542 set_columns_for_row (partial_schedule_ptr ps
, int row
)
544 ps_insn_ptr cur_insn
;
548 for (cur_insn
= ps
->rows
[row
]; cur_insn
; cur_insn
= cur_insn
->next_in_row
)
549 SCHED_COLUMN (cur_insn
->id
) = column
++;
552 /* Set SCHED_COLUMN for each instruction in PS. */
554 set_columns_for_ps (partial_schedule_ptr ps
)
558 for (row
= 0; row
< ps
->ii
; row
++)
559 set_columns_for_row (ps
, row
);
562 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
563 Its single predecessor has already been scheduled, as has its
564 ddg node successors. (The move may have also another move as its
565 successor, in which case that successor will be scheduled later.)
567 The move is part of a chain that satisfies register dependencies
568 between a producing ddg node and various consuming ddg nodes.
569 If some of these dependencies have a distance of 1 (meaning that
570 the use is upward-exposed) then DISTANCE1_USES is nonnull and
571 contains the set of uses with distance-1 dependencies.
572 DISTANCE1_USES is null otherwise.
574 MUST_FOLLOW is a scratch bitmap that is big enough to hold
575 all current ps_insn ids.
577 Return true on success. */
579 schedule_reg_move (partial_schedule_ptr ps
, int i_reg_move
,
580 sbitmap distance1_uses
, sbitmap must_follow
)
583 int this_time
, this_distance
, this_start
, this_end
, this_latency
;
584 int start
, end
, c
, ii
;
585 sbitmap_iterator sbi
;
586 ps_reg_move_info
*move
;
590 move
= ps_reg_move (ps
, i_reg_move
);
594 fprintf (dump_file
, "Scheduling register move INSN %d; ii = %d"
595 ", min cycle = %d\n\n", INSN_UID (move
->insn
), ii
,
597 print_rtl_single (dump_file
, move
->insn
);
598 fprintf (dump_file
, "\n%11s %11s %5s\n", "start", "end", "time");
599 fprintf (dump_file
, "=========== =========== =====\n");
605 /* For dependencies of distance 1 between a producer ddg node A
606 and consumer ddg node B, we have a chain of dependencies:
608 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
610 where Mi is the ith move. For dependencies of distance 0 between
611 a producer ddg node A and consumer ddg node C, we have a chain of
614 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
616 where Mi' occupies the same position as Mi but occurs a stage later.
617 We can only schedule each move once, so if we have both types of
618 chain, we model the second as:
620 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
622 First handle the dependencies between the previously-scheduled
623 predecessor and the move. */
624 this_insn
= ps_rtl_insn (ps
, move
->def
);
625 this_latency
= insn_latency (this_insn
, move
->insn
);
626 this_distance
= distance1_uses
&& move
->def
< ps
->g
->num_nodes
? 1 : 0;
627 this_time
= SCHED_TIME (move
->def
) - this_distance
* ii
;
628 this_start
= this_time
+ this_latency
;
629 this_end
= this_time
+ ii
;
631 fprintf (dump_file
, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
632 this_start
, this_end
, SCHED_TIME (move
->def
),
633 INSN_UID (this_insn
), this_latency
, this_distance
,
634 INSN_UID (move
->insn
));
636 if (start
< this_start
)
641 /* Handle the dependencies between the move and previously-scheduled
643 EXECUTE_IF_SET_IN_BITMAP (move
->uses
, 0, u
, sbi
)
645 this_insn
= ps_rtl_insn (ps
, u
);
646 this_latency
= insn_latency (move
->insn
, this_insn
);
647 if (distance1_uses
&& !bitmap_bit_p (distance1_uses
, u
))
651 this_time
= SCHED_TIME (u
) + this_distance
* ii
;
652 this_start
= this_time
- ii
;
653 this_end
= this_time
- this_latency
;
655 fprintf (dump_file
, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
656 this_start
, this_end
, SCHED_TIME (u
), INSN_UID (move
->insn
),
657 this_latency
, this_distance
, INSN_UID (this_insn
));
659 if (start
< this_start
)
667 fprintf (dump_file
, "----------- ----------- -----\n");
668 fprintf (dump_file
, "%11d %11d %5s %s\n", start
, end
, "", "(max, min)");
671 bitmap_clear (must_follow
);
672 bitmap_set_bit (must_follow
, move
->def
);
674 start
= MAX (start
, end
- (ii
- 1));
675 for (c
= end
; c
>= start
; c
--)
677 psi
= ps_add_node_check_conflicts (ps
, i_reg_move
, c
,
678 move
->uses
, must_follow
);
681 update_node_sched_params (i_reg_move
, ii
, c
, PS_MIN_CYCLE (ps
));
683 fprintf (dump_file
, "\nScheduled register move INSN %d at"
684 " time %d, row %d\n\n", INSN_UID (move
->insn
), c
,
685 SCHED_ROW (i_reg_move
));
691 fprintf (dump_file
, "\nNo available slot\n\n");
697 Breaking intra-loop register anti-dependences:
698 Each intra-loop register anti-dependence implies a cross-iteration true
699 dependence of distance 1. Therefore, we can remove such false dependencies
700 and figure out if the partial schedule broke them by checking if (for a
701 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
702 if so generate a register move. The number of such moves is equal to:
703 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
704 nreg_moves = ----------------------------------- + 1 - { dependence.
708 schedule_reg_moves (partial_schedule_ptr ps
)
714 for (i
= 0; i
< g
->num_nodes
; i
++)
716 ddg_node_ptr u
= &g
->nodes
[i
];
718 int nreg_moves
= 0, i_reg_move
;
719 rtx prev_reg
, old_reg
;
723 sbitmap distance1_uses
;
724 rtx set
= single_set (u
->insn
);
726 /* Skip instructions that do not set a register. */
727 if ((set
&& !REG_P (SET_DEST (set
))))
730 /* Compute the number of reg_moves needed for u, by looking at life
731 ranges started at u (excluding self-loops). */
732 distances
[0] = distances
[1] = false;
733 for (e
= u
->out
; e
; e
= e
->next_out
)
734 if (e
->type
== TRUE_DEP
&& e
->dest
!= e
->src
)
736 int nreg_moves4e
= (SCHED_TIME (e
->dest
->cuid
)
737 - SCHED_TIME (e
->src
->cuid
)) / ii
;
739 if (e
->distance
== 1)
740 nreg_moves4e
= (SCHED_TIME (e
->dest
->cuid
)
741 - SCHED_TIME (e
->src
->cuid
) + ii
) / ii
;
743 /* If dest precedes src in the schedule of the kernel, then dest
744 will read before src writes and we can save one reg_copy. */
745 if (SCHED_ROW (e
->dest
->cuid
) == SCHED_ROW (e
->src
->cuid
)
746 && SCHED_COLUMN (e
->dest
->cuid
) < SCHED_COLUMN (e
->src
->cuid
))
749 if (nreg_moves4e
>= 1)
751 /* !single_set instructions are not supported yet and
752 thus we do not except to encounter them in the loop
753 except from the doloop part. For the latter case
754 we assume no regmoves are generated as the doloop
755 instructions are tied to the branch with an edge. */
757 /* If the instruction contains auto-inc register then
758 validate that the regmov is being generated for the
759 target regsiter rather then the inc'ed register. */
760 gcc_assert (!autoinc_var_is_used_p (u
->insn
, e
->dest
->insn
));
765 gcc_assert (e
->distance
< 2);
766 distances
[e
->distance
] = true;
768 nreg_moves
= MAX (nreg_moves
, nreg_moves4e
);
774 /* Create NREG_MOVES register moves. */
775 first_move
= ps
->reg_moves
.length ();
776 ps
->reg_moves
.safe_grow_cleared (first_move
+ nreg_moves
);
777 extend_node_sched_params (ps
);
779 /* Record the moves associated with this node. */
780 first_move
+= ps
->g
->num_nodes
;
782 /* Generate each move. */
783 old_reg
= prev_reg
= SET_DEST (single_set (u
->insn
));
784 for (i_reg_move
= 0; i_reg_move
< nreg_moves
; i_reg_move
++)
786 ps_reg_move_info
*move
= ps_reg_move (ps
, first_move
+ i_reg_move
);
788 move
->def
= i_reg_move
> 0 ? first_move
+ i_reg_move
- 1 : i
;
789 move
->uses
= sbitmap_alloc (first_move
+ nreg_moves
);
790 move
->old_reg
= old_reg
;
791 move
->new_reg
= gen_reg_rtx (GET_MODE (prev_reg
));
792 move
->num_consecutive_stages
= distances
[0] && distances
[1] ? 2 : 1;
793 move
->insn
= gen_move_insn (move
->new_reg
, copy_rtx (prev_reg
));
794 bitmap_clear (move
->uses
);
796 prev_reg
= move
->new_reg
;
799 distance1_uses
= distances
[1] ? sbitmap_alloc (g
->num_nodes
) : NULL
;
802 bitmap_clear (distance1_uses
);
804 /* Every use of the register defined by node may require a different
805 copy of this register, depending on the time the use is scheduled.
806 Record which uses require which move results. */
807 for (e
= u
->out
; e
; e
= e
->next_out
)
808 if (e
->type
== TRUE_DEP
&& e
->dest
!= e
->src
)
810 int dest_copy
= (SCHED_TIME (e
->dest
->cuid
)
811 - SCHED_TIME (e
->src
->cuid
)) / ii
;
813 if (e
->distance
== 1)
814 dest_copy
= (SCHED_TIME (e
->dest
->cuid
)
815 - SCHED_TIME (e
->src
->cuid
) + ii
) / ii
;
817 if (SCHED_ROW (e
->dest
->cuid
) == SCHED_ROW (e
->src
->cuid
)
818 && SCHED_COLUMN (e
->dest
->cuid
) < SCHED_COLUMN (e
->src
->cuid
))
823 ps_reg_move_info
*move
;
825 move
= ps_reg_move (ps
, first_move
+ dest_copy
- 1);
826 bitmap_set_bit (move
->uses
, e
->dest
->cuid
);
827 if (e
->distance
== 1)
828 bitmap_set_bit (distance1_uses
, e
->dest
->cuid
);
832 must_follow
= sbitmap_alloc (first_move
+ nreg_moves
);
833 for (i_reg_move
= 0; i_reg_move
< nreg_moves
; i_reg_move
++)
834 if (!schedule_reg_move (ps
, first_move
+ i_reg_move
,
835 distance1_uses
, must_follow
))
837 sbitmap_free (must_follow
);
839 sbitmap_free (distance1_uses
);
840 if (i_reg_move
< nreg_moves
)
846 /* Emit the moves associatied with PS. Apply the substitutions
847 associated with them. */
849 apply_reg_moves (partial_schedule_ptr ps
)
851 ps_reg_move_info
*move
;
854 FOR_EACH_VEC_ELT (ps
->reg_moves
, i
, move
)
857 sbitmap_iterator sbi
;
859 EXECUTE_IF_SET_IN_BITMAP (move
->uses
, 0, i_use
, sbi
)
861 replace_rtx (ps
->g
->nodes
[i_use
].insn
, move
->old_reg
, move
->new_reg
);
862 df_insn_rescan (ps
->g
->nodes
[i_use
].insn
);
867 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
868 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
869 will move to cycle zero. */
871 reset_sched_times (partial_schedule_ptr ps
, int amount
)
875 ps_insn_ptr crr_insn
;
877 for (row
= 0; row
< ii
; row
++)
878 for (crr_insn
= ps
->rows
[row
]; crr_insn
; crr_insn
= crr_insn
->next_in_row
)
880 int u
= crr_insn
->id
;
881 int normalized_time
= SCHED_TIME (u
) - amount
;
882 int new_min_cycle
= PS_MIN_CYCLE (ps
) - amount
;
886 /* Print the scheduling times after the rotation. */
887 rtx_insn
*insn
= ps_rtl_insn (ps
, u
);
889 fprintf (dump_file
, "crr_insn->node=%d (insn id %d), "
890 "crr_insn->cycle=%d, min_cycle=%d", u
,
891 INSN_UID (insn
), normalized_time
, new_min_cycle
);
893 fprintf (dump_file
, " (branch)");
894 fprintf (dump_file
, "\n");
897 gcc_assert (SCHED_TIME (u
) >= ps
->min_cycle
);
898 gcc_assert (SCHED_TIME (u
) <= ps
->max_cycle
);
900 crr_insn
->cycle
= normalized_time
;
901 update_node_sched_params (u
, ii
, normalized_time
, new_min_cycle
);
905 /* Permute the insns according to their order in PS, from row 0 to
906 row ii-1, and position them right before LAST. This schedules
907 the insns of the loop kernel. */
909 permute_partial_schedule (partial_schedule_ptr ps
, rtx_insn
*last
)
915 for (row
= 0; row
< ii
; row
++)
916 for (ps_ij
= ps
->rows
[row
]; ps_ij
; ps_ij
= ps_ij
->next_in_row
)
918 rtx_insn
*insn
= ps_rtl_insn (ps
, ps_ij
->id
);
920 if (PREV_INSN (last
) != insn
)
922 if (ps_ij
->id
< ps
->g
->num_nodes
)
923 reorder_insns_nobb (ps_first_note (ps
, ps_ij
->id
), insn
,
926 add_insn_before (insn
, last
, NULL
);
931 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
932 respectively only if cycle C falls on the border of the scheduling
933 window boundaries marked by START and END cycles. STEP is the
934 direction of the window. */
936 set_must_precede_follow (sbitmap
*tmp_follow
, sbitmap must_follow
,
937 sbitmap
*tmp_precede
, sbitmap must_precede
, int c
,
938 int start
, int end
, int step
)
946 *tmp_precede
= must_precede
;
947 else /* step == -1. */
948 *tmp_follow
= must_follow
;
953 *tmp_follow
= must_follow
;
954 else /* step == -1. */
955 *tmp_precede
= must_precede
;
960 /* Return True if the branch can be moved to row ii-1 while
961 normalizing the partial schedule PS to start from cycle zero and thus
962 optimize the SC. Otherwise return False. */
964 optimize_sc (partial_schedule_ptr ps
, ddg_ptr g
)
966 int amount
= PS_MIN_CYCLE (ps
);
967 sbitmap sched_nodes
= sbitmap_alloc (g
->num_nodes
);
968 int start
, end
, step
;
971 int stage_count
, stage_count_curr
;
973 /* Compare the SC after normalization and SC after bringing the branch
974 to row ii-1. If they are equal just bail out. */
975 stage_count
= calculate_stage_count (ps
, amount
);
977 calculate_stage_count (ps
, SCHED_TIME (g
->closing_branch
->cuid
) - (ii
- 1));
979 if (stage_count
== stage_count_curr
)
982 fprintf (dump_file
, "SMS SC already optimized.\n");
990 fprintf (dump_file
, "SMS Trying to optimize branch location\n");
991 fprintf (dump_file
, "SMS partial schedule before trial:\n");
992 print_partial_schedule (ps
, dump_file
);
995 /* First, normalize the partial scheduling. */
996 reset_sched_times (ps
, amount
);
997 rotate_partial_schedule (ps
, amount
);
1001 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
1003 print_partial_schedule (ps
, dump_file
);
1006 if (SMODULO (SCHED_TIME (g
->closing_branch
->cuid
), ii
) == ii
- 1)
1012 bitmap_ones (sched_nodes
);
1014 /* Calculate the new placement of the branch. It should be in row
1015 ii-1 and fall into it's scheduling window. */
1016 if (get_sched_window (ps
, g
->closing_branch
, sched_nodes
, ii
, &start
,
1020 ps_insn_ptr next_ps_i
;
1021 int branch_cycle
= SCHED_TIME (g
->closing_branch
->cuid
);
1022 int row
= SMODULO (branch_cycle
, ps
->ii
);
1024 sbitmap must_precede
, must_follow
, tmp_precede
, tmp_follow
;
1028 fprintf (dump_file
, "\nTrying to schedule node %d "
1029 "INSN = %d in (%d .. %d) step %d\n",
1030 g
->closing_branch
->cuid
,
1031 (INSN_UID (g
->closing_branch
->insn
)), start
, end
, step
);
1033 gcc_assert ((step
> 0 && start
< end
) || (step
< 0 && start
> end
));
1036 c
= start
+ ii
- SMODULO (start
, ii
) - 1;
1037 gcc_assert (c
>= start
);
1043 "SMS failed to schedule branch at cycle: %d\n", c
);
1049 c
= start
- SMODULO (start
, ii
) - 1;
1050 gcc_assert (c
<= start
);
1056 "SMS failed to schedule branch at cycle: %d\n", c
);
1062 must_precede
= sbitmap_alloc (g
->num_nodes
);
1063 must_follow
= sbitmap_alloc (g
->num_nodes
);
1065 /* Try to schedule the branch is it's new cycle. */
1066 calculate_must_precede_follow (g
->closing_branch
, start
, end
,
1067 step
, ii
, sched_nodes
,
1068 must_precede
, must_follow
);
1070 set_must_precede_follow (&tmp_follow
, must_follow
, &tmp_precede
,
1071 must_precede
, c
, start
, end
, step
);
1073 /* Find the element in the partial schedule related to the closing
1074 branch so we can remove it from it's current cycle. */
1075 for (next_ps_i
= ps
->rows
[row
];
1076 next_ps_i
; next_ps_i
= next_ps_i
->next_in_row
)
1077 if (next_ps_i
->id
== g
->closing_branch
->cuid
)
1080 remove_node_from_ps (ps
, next_ps_i
);
1082 try_scheduling_node_in_cycle (ps
, g
->closing_branch
->cuid
, c
,
1083 sched_nodes
, &num_splits
,
1084 tmp_precede
, tmp_follow
);
1085 gcc_assert (num_splits
== 0);
1090 "SMS failed to schedule branch at cycle: %d, "
1091 "bringing it back to cycle %d\n", c
, branch_cycle
);
1093 /* The branch was failed to be placed in row ii - 1.
1094 Put it back in it's original place in the partial
1096 set_must_precede_follow (&tmp_follow
, must_follow
, &tmp_precede
,
1097 must_precede
, branch_cycle
, start
, end
,
1100 try_scheduling_node_in_cycle (ps
, g
->closing_branch
->cuid
,
1101 branch_cycle
, sched_nodes
,
1102 &num_splits
, tmp_precede
,
1104 gcc_assert (success
&& (num_splits
== 0));
1109 /* The branch is placed in row ii - 1. */
1112 "SMS success in moving branch to cycle %d\n", c
);
1114 update_node_sched_params (g
->closing_branch
->cuid
, ii
, c
,
1119 free (must_precede
);
1129 duplicate_insns_of_cycles (partial_schedule_ptr ps
, int from_stage
,
1130 int to_stage
, rtx count_reg
)
1135 for (row
= 0; row
< ps
->ii
; row
++)
1136 for (ps_ij
= ps
->rows
[row
]; ps_ij
; ps_ij
= ps_ij
->next_in_row
)
1139 int first_u
, last_u
;
1142 /* Do not duplicate any insn which refers to count_reg as it
1143 belongs to the control part.
1144 The closing branch is scheduled as well and thus should
1146 TODO: This should be done by analyzing the control part of
1148 u_insn
= ps_rtl_insn (ps
, u
);
1149 if (reg_mentioned_p (count_reg
, u_insn
)
1153 first_u
= SCHED_STAGE (u
);
1154 last_u
= first_u
+ ps_num_consecutive_stages (ps
, u
) - 1;
1155 if (from_stage
<= last_u
&& to_stage
>= first_u
)
1157 if (u
< ps
->g
->num_nodes
)
1158 duplicate_insn_chain (ps_first_note (ps
, u
), u_insn
);
1160 emit_insn (copy_rtx (PATTERN (u_insn
)));
1166 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1168 generate_prolog_epilog (partial_schedule_ptr ps
, struct loop
*loop
,
1169 rtx count_reg
, rtx count_init
)
1172 int last_stage
= PS_STAGE_COUNT (ps
) - 1;
1175 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1180 /* Generate instructions at the beginning of the prolog to
1181 adjust the loop count by STAGE_COUNT. If loop count is constant
1182 (count_init), this constant is adjusted by STAGE_COUNT in
1183 generate_prolog_epilog function. */
1184 rtx sub_reg
= NULL_RTX
;
1186 sub_reg
= expand_simple_binop (GET_MODE (count_reg
), MINUS
, count_reg
,
1187 gen_int_mode (last_stage
,
1188 GET_MODE (count_reg
)),
1189 count_reg
, 1, OPTAB_DIRECT
);
1190 gcc_assert (REG_P (sub_reg
));
1191 if (REGNO (sub_reg
) != REGNO (count_reg
))
1192 emit_move_insn (count_reg
, sub_reg
);
1195 for (i
= 0; i
< last_stage
; i
++)
1196 duplicate_insns_of_cycles (ps
, 0, i
, count_reg
);
1198 /* Put the prolog on the entry edge. */
1199 e
= loop_preheader_edge (loop
);
1200 split_edge_and_insert (e
, get_insns ());
1201 if (!flag_resched_modulo_sched
)
1202 e
->dest
->flags
|= BB_DISABLE_SCHEDULE
;
1206 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1209 for (i
= 0; i
< last_stage
; i
++)
1210 duplicate_insns_of_cycles (ps
, i
+ 1, last_stage
, count_reg
);
1212 /* Put the epilogue on the exit edge. */
1213 gcc_assert (single_exit (loop
));
1214 e
= single_exit (loop
);
1215 split_edge_and_insert (e
, get_insns ());
1216 if (!flag_resched_modulo_sched
)
1217 e
->dest
->flags
|= BB_DISABLE_SCHEDULE
;
1222 /* Mark LOOP as software pipelined so the later
1223 scheduling passes don't touch it. */
1225 mark_loop_unsched (struct loop
*loop
)
1228 basic_block
*bbs
= get_loop_body (loop
);
1230 for (i
= 0; i
< loop
->num_nodes
; i
++)
1231 bbs
[i
]->flags
|= BB_DISABLE_SCHEDULE
;
1236 /* Return true if all the BBs of the loop are empty except the
1239 loop_single_full_bb_p (struct loop
*loop
)
1242 basic_block
*bbs
= get_loop_body (loop
);
1244 for (i
= 0; i
< loop
->num_nodes
; i
++)
1246 rtx_insn
*head
, *tail
;
1247 bool empty_bb
= true;
1249 if (bbs
[i
] == loop
->header
)
1252 /* Make sure that basic blocks other than the header
1253 have only notes labels or jumps. */
1254 get_ebb_head_tail (bbs
[i
], bbs
[i
], &head
, &tail
);
1255 for (; head
!= NEXT_INSN (tail
); head
= NEXT_INSN (head
))
1257 if (NOTE_P (head
) || LABEL_P (head
)
1258 || (INSN_P (head
) && (DEBUG_INSN_P (head
) || JUMP_P (head
))))
1274 /* Dump file:line from INSN's location info to dump_file. */
1277 dump_insn_location (rtx_insn
*insn
)
1279 if (dump_file
&& INSN_HAS_LOCATION (insn
))
1281 expanded_location xloc
= insn_location (insn
);
1282 fprintf (dump_file
, " %s:%i", xloc
.file
, xloc
.line
);
1286 /* A simple loop from SMS point of view; it is a loop that is composed of
1287 either a single basic block or two BBs - a header and a latch. */
1288 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1289 && (EDGE_COUNT (loop->latch->preds) == 1) \
1290 && (EDGE_COUNT (loop->latch->succs) == 1))
1292 /* Return true if the loop is in its canonical form and false if not.
1293 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1295 loop_canon_p (struct loop
*loop
)
1298 if (loop
->inner
|| !loop_outer (loop
))
1301 fprintf (dump_file
, "SMS loop inner or !loop_outer\n");
1305 if (!single_exit (loop
))
1309 rtx_insn
*insn
= BB_END (loop
->header
);
1311 fprintf (dump_file
, "SMS loop many exits");
1312 dump_insn_location (insn
);
1313 fprintf (dump_file
, "\n");
1318 if (! SIMPLE_SMS_LOOP_P (loop
) && ! loop_single_full_bb_p (loop
))
1322 rtx_insn
*insn
= BB_END (loop
->header
);
1324 fprintf (dump_file
, "SMS loop many BBs.");
1325 dump_insn_location (insn
);
1326 fprintf (dump_file
, "\n");
1334 /* If there are more than one entry for the loop,
1335 make it one by splitting the first entry edge and
1336 redirecting the others to the new BB. */
1338 canon_loop (struct loop
*loop
)
1343 /* Avoid annoying special cases of edges going to exit
1345 FOR_EACH_EDGE (e
, i
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
1346 if ((e
->flags
& EDGE_FALLTHRU
) && (EDGE_COUNT (e
->src
->succs
) > 1))
1349 if (loop
->latch
== loop
->header
1350 || EDGE_COUNT (loop
->latch
->succs
) > 1)
1352 FOR_EACH_EDGE (e
, i
, loop
->header
->preds
)
1353 if (e
->src
== loop
->latch
)
1361 setup_sched_infos (void)
1363 memcpy (&sms_common_sched_info
, &haifa_common_sched_info
,
1364 sizeof (sms_common_sched_info
));
1365 sms_common_sched_info
.sched_pass_id
= SCHED_SMS_PASS
;
1366 common_sched_info
= &sms_common_sched_info
;
1368 sched_deps_info
= &sms_sched_deps_info
;
1369 current_sched_info
= &sms_sched_info
;
1372 /* Probability in % that the sms-ed loop rolls enough so that optimized
1373 version may be entered. Just a guess. */
1374 #define PROB_SMS_ENOUGH_ITERATIONS 80
1376 /* Used to calculate the upper bound of ii. */
1377 #define MAXII_FACTOR 2
1379 /* Main entry point, perform SMS scheduling on the loops of the function
1380 that consist of single basic blocks. */
1387 int maxii
, max_asap
;
1388 partial_schedule_ptr ps
;
1389 basic_block bb
= NULL
;
1391 basic_block condition_bb
= NULL
;
1393 gcov_type trip_count
= 0;
1395 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1396 | LOOPS_HAVE_RECORDED_EXITS
);
1397 if (number_of_loops (cfun
) <= 1)
1399 loop_optimizer_finalize ();
1400 return; /* There are no loops to schedule. */
1403 /* Initialize issue_rate. */
1404 if (targetm
.sched
.issue_rate
)
1406 int temp
= reload_completed
;
1408 reload_completed
= 1;
1409 issue_rate
= targetm
.sched
.issue_rate ();
1410 reload_completed
= temp
;
1415 /* Initialize the scheduler. */
1416 setup_sched_infos ();
1417 haifa_sched_init ();
1419 /* Allocate memory to hold the DDG array one entry for each loop.
1420 We use loop->num as index into this array. */
1421 g_arr
= XCNEWVEC (ddg_ptr
, number_of_loops (cfun
));
1425 fprintf (dump_file
, "\n\nSMS analysis phase\n");
1426 fprintf (dump_file
, "===================\n\n");
1429 /* Build DDGs for all the relevant loops and hold them in G_ARR
1430 indexed by the loop index. */
1431 FOR_EACH_LOOP (loop
, 0)
1433 rtx_insn
*head
, *tail
;
1436 /* For debugging. */
1437 if (dbg_cnt (sms_sched_loop
) == false)
1440 fprintf (dump_file
, "SMS reached max limit... \n");
1447 rtx_insn
*insn
= BB_END (loop
->header
);
1449 fprintf (dump_file
, "SMS loop num: %d", loop
->num
);
1450 dump_insn_location (insn
);
1451 fprintf (dump_file
, "\n");
1454 if (! loop_canon_p (loop
))
1457 if (! loop_single_full_bb_p (loop
))
1460 fprintf (dump_file
, "SMS not loop_single_full_bb_p\n");
1466 get_ebb_head_tail (bb
, bb
, &head
, &tail
);
1467 latch_edge
= loop_latch_edge (loop
);
1468 gcc_assert (single_exit (loop
));
1469 if (single_exit (loop
)->count
)
1470 trip_count
= latch_edge
->count
/ single_exit (loop
)->count
;
1472 /* Perform SMS only on loops that their average count is above threshold. */
1474 if ( latch_edge
->count
1475 && (latch_edge
->count
< single_exit (loop
)->count
* SMS_LOOP_AVERAGE_COUNT_THRESHOLD
))
1479 dump_insn_location (tail
);
1480 fprintf (dump_file
, "\nSMS single-bb-loop\n");
1481 if (profile_info
&& flag_branch_probabilities
)
1483 fprintf (dump_file
, "SMS loop-count ");
1484 fprintf (dump_file
, "%" PRId64
,
1485 (int64_t) bb
->count
);
1486 fprintf (dump_file
, "\n");
1487 fprintf (dump_file
, "SMS trip-count ");
1488 fprintf (dump_file
, "%" PRId64
,
1489 (int64_t) trip_count
);
1490 fprintf (dump_file
, "\n");
1491 fprintf (dump_file
, "SMS profile-sum-max ");
1492 fprintf (dump_file
, "%" PRId64
,
1493 (int64_t) profile_info
->sum_max
);
1494 fprintf (dump_file
, "\n");
1500 /* Make sure this is a doloop. */
1501 if ( !(count_reg
= doloop_register_get (head
, tail
)))
1504 fprintf (dump_file
, "SMS doloop_register_get failed\n");
1508 /* Don't handle BBs with calls or barriers
1509 or !single_set with the exception of instructions that include
1510 count_reg---these instructions are part of the control part
1511 that do-loop recognizes.
1512 ??? Should handle insns defining subregs. */
1513 for (insn
= head
; insn
!= NEXT_INSN (tail
); insn
= NEXT_INSN (insn
))
1519 || (NONDEBUG_INSN_P (insn
) && !JUMP_P (insn
)
1520 && !single_set (insn
) && GET_CODE (PATTERN (insn
)) != USE
1521 && !reg_mentioned_p (count_reg
, insn
))
1522 || (INSN_P (insn
) && (set
= single_set (insn
))
1523 && GET_CODE (SET_DEST (set
)) == SUBREG
))
1527 if (insn
!= NEXT_INSN (tail
))
1532 fprintf (dump_file
, "SMS loop-with-call\n");
1533 else if (BARRIER_P (insn
))
1534 fprintf (dump_file
, "SMS loop-with-barrier\n");
1535 else if ((NONDEBUG_INSN_P (insn
) && !JUMP_P (insn
)
1536 && !single_set (insn
) && GET_CODE (PATTERN (insn
)) != USE
))
1537 fprintf (dump_file
, "SMS loop-with-not-single-set\n");
1539 fprintf (dump_file
, "SMS loop with subreg in lhs\n");
1540 print_rtl_single (dump_file
, insn
);
1546 /* Always schedule the closing branch with the rest of the
1547 instructions. The branch is rotated to be in row ii-1 at the
1548 end of the scheduling procedure to make sure it's the last
1549 instruction in the iteration. */
1550 if (! (g
= create_ddg (bb
, 1)))
1553 fprintf (dump_file
, "SMS create_ddg failed\n");
1557 g_arr
[loop
->num
] = g
;
1559 fprintf (dump_file
, "...OK\n");
1564 fprintf (dump_file
, "\nSMS transformation phase\n");
1565 fprintf (dump_file
, "=========================\n\n");
1568 /* We don't want to perform SMS on new loops - created by versioning. */
1569 FOR_EACH_LOOP (loop
, 0)
1571 rtx_insn
*head
, *tail
;
1573 rtx_insn
*count_init
;
1574 int mii
, rec_mii
, stage_count
, min_cycle
;
1575 int64_t loop_count
= 0;
1578 if (! (g
= g_arr
[loop
->num
]))
1583 rtx_insn
*insn
= BB_END (loop
->header
);
1585 fprintf (dump_file
, "SMS loop num: %d", loop
->num
);
1586 dump_insn_location (insn
);
1587 fprintf (dump_file
, "\n");
1589 print_ddg (dump_file
, g
);
1592 get_ebb_head_tail (loop
->header
, loop
->header
, &head
, &tail
);
1594 latch_edge
= loop_latch_edge (loop
);
1595 gcc_assert (single_exit (loop
));
1596 if (single_exit (loop
)->count
)
1597 trip_count
= latch_edge
->count
/ single_exit (loop
)->count
;
1601 dump_insn_location (tail
);
1602 fprintf (dump_file
, "\nSMS single-bb-loop\n");
1603 if (profile_info
&& flag_branch_probabilities
)
1605 fprintf (dump_file
, "SMS loop-count ");
1606 fprintf (dump_file
, "%" PRId64
,
1607 (int64_t) bb
->count
);
1608 fprintf (dump_file
, "\n");
1609 fprintf (dump_file
, "SMS profile-sum-max ");
1610 fprintf (dump_file
, "%" PRId64
,
1611 (int64_t) profile_info
->sum_max
);
1612 fprintf (dump_file
, "\n");
1614 fprintf (dump_file
, "SMS doloop\n");
1615 fprintf (dump_file
, "SMS built-ddg %d\n", g
->num_nodes
);
1616 fprintf (dump_file
, "SMS num-loads %d\n", g
->num_loads
);
1617 fprintf (dump_file
, "SMS num-stores %d\n", g
->num_stores
);
1621 /* In case of th loop have doloop register it gets special
1624 if ((count_reg
= doloop_register_get (head
, tail
)))
1626 basic_block pre_header
;
1628 pre_header
= loop_preheader_edge (loop
)->src
;
1629 count_init
= const_iteration_count (count_reg
, pre_header
,
1632 gcc_assert (count_reg
);
1634 if (dump_file
&& count_init
)
1636 fprintf (dump_file
, "SMS const-doloop ");
1637 fprintf (dump_file
, "%" PRId64
,
1639 fprintf (dump_file
, "\n");
1642 node_order
= XNEWVEC (int, g
->num_nodes
);
1644 mii
= 1; /* Need to pass some estimate of mii. */
1645 rec_mii
= sms_order_nodes (g
, mii
, node_order
, &max_asap
);
1646 mii
= MAX (res_MII (g
), rec_mii
);
1647 maxii
= MAX (max_asap
, MAXII_FACTOR
* mii
);
1650 fprintf (dump_file
, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1651 rec_mii
, mii
, maxii
);
1655 set_node_sched_params (g
);
1659 ps
= sms_schedule_by_order (g
, mii
, maxii
, node_order
);
1663 /* Try to achieve optimized SC by normalizing the partial
1664 schedule (having the cycles start from cycle zero).
1665 The branch location must be placed in row ii-1 in the
1666 final scheduling. If failed, shift all instructions to
1667 position the branch in row ii-1. */
1668 opt_sc_p
= optimize_sc (ps
, g
);
1670 stage_count
= calculate_stage_count (ps
, 0);
1673 /* Bring the branch to cycle ii-1. */
1674 int amount
= (SCHED_TIME (g
->closing_branch
->cuid
)
1678 fprintf (dump_file
, "SMS schedule branch at cycle ii-1\n");
1680 stage_count
= calculate_stage_count (ps
, amount
);
1683 gcc_assert (stage_count
>= 1);
1686 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1687 1 means that there is no interleaving between iterations thus
1688 we let the scheduling passes do the job in this case. */
1689 if (stage_count
< PARAM_VALUE (PARAM_SMS_MIN_SC
)
1690 || (count_init
&& (loop_count
<= stage_count
))
1691 || (flag_branch_probabilities
&& (trip_count
<= stage_count
)))
1695 fprintf (dump_file
, "SMS failed... \n");
1696 fprintf (dump_file
, "SMS sched-failed (stage-count=%d,"
1697 " loop-count=", stage_count
);
1698 fprintf (dump_file
, "%" PRId64
, loop_count
);
1699 fprintf (dump_file
, ", trip-count=");
1700 fprintf (dump_file
, "%" PRId64
, trip_count
);
1701 fprintf (dump_file
, ")\n");
1708 /* Rotate the partial schedule to have the branch in row ii-1. */
1709 int amount
= SCHED_TIME (g
->closing_branch
->cuid
) - (ps
->ii
- 1);
1711 reset_sched_times (ps
, amount
);
1712 rotate_partial_schedule (ps
, amount
);
1715 set_columns_for_ps (ps
);
1717 min_cycle
= PS_MIN_CYCLE (ps
) - SMODULO (PS_MIN_CYCLE (ps
), ps
->ii
);
1718 if (!schedule_reg_moves (ps
))
1721 free_partial_schedule (ps
);
1725 /* Moves that handle incoming values might have been added
1726 to a new first stage. Bump the stage count if so.
1728 ??? Perhaps we could consider rotating the schedule here
1730 if (PS_MIN_CYCLE (ps
) < min_cycle
)
1732 reset_sched_times (ps
, 0);
1736 /* The stage count should now be correct without rotation. */
1737 gcc_checking_assert (stage_count
== calculate_stage_count (ps
, 0));
1738 PS_STAGE_COUNT (ps
) = stage_count
;
1744 dump_insn_location (tail
);
1745 fprintf (dump_file
, " SMS succeeded %d %d (with ii, sc)\n",
1746 ps
->ii
, stage_count
);
1747 print_partial_schedule (ps
, dump_file
);
1750 /* case the BCT count is not known , Do loop-versioning */
1751 if (count_reg
&& ! count_init
)
1753 rtx comp_rtx
= gen_rtx_GT (VOIDmode
, count_reg
,
1754 gen_int_mode (stage_count
,
1755 GET_MODE (count_reg
)));
1756 unsigned prob
= (PROB_SMS_ENOUGH_ITERATIONS
1757 * REG_BR_PROB_BASE
) / 100;
1759 loop_version (loop
, comp_rtx
, &condition_bb
,
1760 prob
, prob
, REG_BR_PROB_BASE
- prob
,
1764 /* Set new iteration count of loop kernel. */
1765 if (count_reg
&& count_init
)
1766 SET_SRC (single_set (count_init
)) = GEN_INT (loop_count
1769 /* Now apply the scheduled kernel to the RTL of the loop. */
1770 permute_partial_schedule (ps
, g
->closing_branch
->first_note
);
1772 /* Mark this loop as software pipelined so the later
1773 scheduling passes don't touch it. */
1774 if (! flag_resched_modulo_sched
)
1775 mark_loop_unsched (loop
);
1777 /* The life-info is not valid any more. */
1778 df_set_bb_dirty (g
->bb
);
1780 apply_reg_moves (ps
);
1782 print_node_sched_params (dump_file
, g
->num_nodes
, ps
);
1783 /* Generate prolog and epilog. */
1784 generate_prolog_epilog (ps
, loop
, count_reg
, count_init
);
1788 free_partial_schedule (ps
);
1789 node_sched_param_vec
.release ();
1796 /* Release scheduler data, needed until now because of DFA. */
1797 haifa_sched_finish ();
1798 loop_optimizer_finalize ();
1801 /* The SMS scheduling algorithm itself
1802 -----------------------------------
1803 Input: 'O' an ordered list of insns of a loop.
1804 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1806 'Q' is the empty Set
1807 'PS' is the partial schedule; it holds the currently scheduled nodes with
1809 'PSP' previously scheduled predecessors.
1810 'PSS' previously scheduled successors.
1811 't(u)' the cycle where u is scheduled.
1812 'l(u)' is the latency of u.
1813 'd(v,u)' is the dependence distance from v to u.
1814 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1815 the node ordering phase.
1816 'check_hardware_resources_conflicts(u, PS, c)'
1817 run a trace around cycle/slot through DFA model
1818 to check resource conflicts involving instruction u
1819 at cycle c given the partial schedule PS.
1820 'add_to_partial_schedule_at_time(u, PS, c)'
1821 Add the node/instruction u to the partial schedule
1823 'calculate_register_pressure(PS)'
1824 Given a schedule of instructions, calculate the register
1825 pressure it implies. One implementation could be the
1826 maximum number of overlapping live ranges.
1827 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1828 registers available in the hardware.
1832 3. for each node u in O in pre-computed order
1833 4. if (PSP(u) != Q && PSS(u) == Q) then
1834 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1835 6. start = Early_start; end = Early_start + II - 1; step = 1
1836 11. else if (PSP(u) == Q && PSS(u) != Q) then
1837 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1838 13. start = Late_start; end = Late_start - II + 1; step = -1
1839 14. else if (PSP(u) != Q && PSS(u) != Q) then
1840 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1841 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1842 17. start = Early_start;
1843 18. end = min(Early_start + II - 1 , Late_start);
1845 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1846 21. start = ASAP(u); end = start + II - 1; step = 1
1850 24. for (c = start ; c != end ; c += step)
1851 25. if check_hardware_resources_conflicts(u, PS, c) then
1852 26. add_to_partial_schedule_at_time(u, PS, c)
1857 31. if (success == false) then
1859 33. if (II > maxII) then
1860 34. finish - failed to schedule
1865 39. if (calculate_register_pressure(PS) > maxRP) then
1868 42. compute epilogue & prologue
1869 43. finish - succeeded to schedule
1871 ??? The algorithm restricts the scheduling window to II cycles.
1872 In rare cases, it may be better to allow windows of II+1 cycles.
1873 The window would then start and end on the same row, but with
1874 different "must precede" and "must follow" requirements. */
1876 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1877 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1878 set to 0 to save compile time. */
1879 #define DFA_HISTORY SMS_DFA_HISTORY
1881 /* A threshold for the number of repeated unsuccessful attempts to insert
1882 an empty row, before we flush the partial schedule and start over. */
1883 #define MAX_SPLIT_NUM 10
1884 /* Given the partial schedule PS, this function calculates and returns the
1885 cycles in which we can schedule the node with the given index I.
1886 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1887 noticed that there are several cases in which we fail to SMS the loop
1888 because the sched window of a node is empty due to tight data-deps. In
1889 such cases we want to unschedule some of the predecessors/successors
1890 until we get non-empty scheduling window. It returns -1 if the
1891 scheduling window is empty and zero otherwise. */
1894 get_sched_window (partial_schedule_ptr ps
, ddg_node_ptr u_node
,
1895 sbitmap sched_nodes
, int ii
, int *start_p
, int *step_p
,
1898 int start
, step
, end
;
1899 int early_start
, late_start
;
1901 sbitmap psp
= sbitmap_alloc (ps
->g
->num_nodes
);
1902 sbitmap pss
= sbitmap_alloc (ps
->g
->num_nodes
);
1903 sbitmap u_node_preds
= NODE_PREDECESSORS (u_node
);
1904 sbitmap u_node_succs
= NODE_SUCCESSORS (u_node
);
1910 /* 1. compute sched window for u (start, end, step). */
1913 psp_not_empty
= bitmap_and (psp
, u_node_preds
, sched_nodes
);
1914 pss_not_empty
= bitmap_and (pss
, u_node_succs
, sched_nodes
);
1916 /* We first compute a forward range (start <= end), then decide whether
1918 early_start
= INT_MIN
;
1919 late_start
= INT_MAX
;
1927 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
1929 fprintf (dump_file
, "\nAnalyzing dependencies for node %d (INSN %d)"
1930 "; ii = %d\n\n", u_node
->cuid
, INSN_UID (u_node
->insn
), ii
);
1931 fprintf (dump_file
, "%11s %11s %11s %11s %5s\n",
1932 "start", "early start", "late start", "end", "time");
1933 fprintf (dump_file
, "=========== =========== =========== ==========="
1936 /* Calculate early_start and limit end. Both bounds are inclusive. */
1938 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
1940 int v
= e
->src
->cuid
;
1942 if (bitmap_bit_p (sched_nodes
, v
))
1944 int p_st
= SCHED_TIME (v
);
1945 int earliest
= p_st
+ e
->latency
- (e
->distance
* ii
);
1946 int latest
= (e
->data_type
== MEM_DEP
? p_st
+ ii
- 1 : INT_MAX
);
1950 fprintf (dump_file
, "%11s %11d %11s %11d %5d",
1951 "", earliest
, "", latest
, p_st
);
1952 print_ddg_edge (dump_file
, e
);
1953 fprintf (dump_file
, "\n");
1956 early_start
= MAX (early_start
, earliest
);
1957 end
= MIN (end
, latest
);
1959 if (e
->type
== TRUE_DEP
&& e
->data_type
== REG_DEP
)
1964 /* Calculate late_start and limit start. Both bounds are inclusive. */
1966 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
1968 int v
= e
->dest
->cuid
;
1970 if (bitmap_bit_p (sched_nodes
, v
))
1972 int s_st
= SCHED_TIME (v
);
1973 int earliest
= (e
->data_type
== MEM_DEP
? s_st
- ii
+ 1 : INT_MIN
);
1974 int latest
= s_st
- e
->latency
+ (e
->distance
* ii
);
1978 fprintf (dump_file
, "%11d %11s %11d %11s %5d",
1979 earliest
, "", latest
, "", s_st
);
1980 print_ddg_edge (dump_file
, e
);
1981 fprintf (dump_file
, "\n");
1984 start
= MAX (start
, earliest
);
1985 late_start
= MIN (late_start
, latest
);
1987 if (e
->type
== TRUE_DEP
&& e
->data_type
== REG_DEP
)
1992 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
1994 fprintf (dump_file
, "----------- ----------- ----------- -----------"
1996 fprintf (dump_file
, "%11d %11d %11d %11d %5s %s\n",
1997 start
, early_start
, late_start
, end
, "",
1998 "(max, max, min, min)");
2001 /* Get a target scheduling window no bigger than ii. */
2002 if (early_start
== INT_MIN
&& late_start
== INT_MAX
)
2003 early_start
= NODE_ASAP (u_node
);
2004 else if (early_start
== INT_MIN
)
2005 early_start
= late_start
- (ii
- 1);
2006 late_start
= MIN (late_start
, early_start
+ (ii
- 1));
2008 /* Apply memory dependence limits. */
2009 start
= MAX (start
, early_start
);
2010 end
= MIN (end
, late_start
);
2012 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
2013 fprintf (dump_file
, "%11s %11d %11d %11s %5s final window\n",
2014 "", start
, end
, "", "");
2016 /* If there are at least as many successors as predecessors, schedule the
2017 node close to its successors. */
2018 if (pss_not_empty
&& count_succs
>= count_preds
)
2026 /* Now that we've finalized the window, make END an exclusive rather
2027 than an inclusive bound. */
2036 if ((start
>= end
&& step
== 1) || (start
<= end
&& step
== -1))
2039 fprintf (dump_file
, "\nEmpty window: start=%d, end=%d, step=%d\n",
2047 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2048 node currently been scheduled. At the end of the calculation
2049 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2050 U_NODE which are (1) already scheduled in the first/last row of
2051 U_NODE's scheduling window, (2) whose dependence inequality with U
2052 becomes an equality when U is scheduled in this same row, and (3)
2053 whose dependence latency is zero.
2055 The first and last rows are calculated using the following parameters:
2056 START/END rows - The cycles that begins/ends the traversal on the window;
2057 searching for an empty cycle to schedule U_NODE.
2058 STEP - The direction in which we traverse the window.
2059 II - The initiation interval. */
2062 calculate_must_precede_follow (ddg_node_ptr u_node
, int start
, int end
,
2063 int step
, int ii
, sbitmap sched_nodes
,
2064 sbitmap must_precede
, sbitmap must_follow
)
2067 int first_cycle_in_window
, last_cycle_in_window
;
2069 gcc_assert (must_precede
&& must_follow
);
2071 /* Consider the following scheduling window:
2072 {first_cycle_in_window, first_cycle_in_window+1, ...,
2073 last_cycle_in_window}. If step is 1 then the following will be
2074 the order we traverse the window: {start=first_cycle_in_window,
2075 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2076 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2077 end=first_cycle_in_window-1} if step is -1. */
2078 first_cycle_in_window
= (step
== 1) ? start
: end
- step
;
2079 last_cycle_in_window
= (step
== 1) ? end
- step
: start
;
2081 bitmap_clear (must_precede
);
2082 bitmap_clear (must_follow
);
2085 fprintf (dump_file
, "\nmust_precede: ");
2087 /* Instead of checking if:
2088 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2089 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2090 first_cycle_in_window)
2092 we use the fact that latency is non-negative:
2093 SCHED_TIME (e->src) - (e->distance * ii) <=
2094 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2095 first_cycle_in_window
2097 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2098 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
2099 if (bitmap_bit_p (sched_nodes
, e
->src
->cuid
)
2100 && ((SCHED_TIME (e
->src
->cuid
) - (e
->distance
* ii
)) ==
2101 first_cycle_in_window
))
2104 fprintf (dump_file
, "%d ", e
->src
->cuid
);
2106 bitmap_set_bit (must_precede
, e
->src
->cuid
);
2110 fprintf (dump_file
, "\nmust_follow: ");
2112 /* Instead of checking if:
2113 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2114 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2115 last_cycle_in_window)
2117 we use the fact that latency is non-negative:
2118 SCHED_TIME (e->dest) + (e->distance * ii) >=
2119 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2120 last_cycle_in_window
2122 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2123 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
2124 if (bitmap_bit_p (sched_nodes
, e
->dest
->cuid
)
2125 && ((SCHED_TIME (e
->dest
->cuid
) + (e
->distance
* ii
)) ==
2126 last_cycle_in_window
))
2129 fprintf (dump_file
, "%d ", e
->dest
->cuid
);
2131 bitmap_set_bit (must_follow
, e
->dest
->cuid
);
2135 fprintf (dump_file
, "\n");
2138 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2139 parameters to decide if that's possible:
2140 PS - The partial schedule.
2141 U - The serial number of U_NODE.
2142 NUM_SPLITS - The number of row splits made so far.
2143 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2144 the first row of the scheduling window)
2145 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2146 last row of the scheduling window) */
2149 try_scheduling_node_in_cycle (partial_schedule_ptr ps
,
2150 int u
, int cycle
, sbitmap sched_nodes
,
2151 int *num_splits
, sbitmap must_precede
,
2152 sbitmap must_follow
)
2157 verify_partial_schedule (ps
, sched_nodes
);
2158 psi
= ps_add_node_check_conflicts (ps
, u
, cycle
, must_precede
, must_follow
);
2161 SCHED_TIME (u
) = cycle
;
2162 bitmap_set_bit (sched_nodes
, u
);
2166 fprintf (dump_file
, "Scheduled w/o split in %d\n", cycle
);
2173 /* This function implements the scheduling algorithm for SMS according to the
2175 static partial_schedule_ptr
2176 sms_schedule_by_order (ddg_ptr g
, int mii
, int maxii
, int *nodes_order
)
2179 int i
, c
, success
, num_splits
= 0;
2180 int flush_and_start_over
= true;
2181 int num_nodes
= g
->num_nodes
;
2182 int start
, end
, step
; /* Place together into one struct? */
2183 sbitmap sched_nodes
= sbitmap_alloc (num_nodes
);
2184 sbitmap must_precede
= sbitmap_alloc (num_nodes
);
2185 sbitmap must_follow
= sbitmap_alloc (num_nodes
);
2186 sbitmap tobe_scheduled
= sbitmap_alloc (num_nodes
);
2188 partial_schedule_ptr ps
= create_partial_schedule (ii
, g
, DFA_HISTORY
);
2190 bitmap_ones (tobe_scheduled
);
2191 bitmap_clear (sched_nodes
);
2193 while (flush_and_start_over
&& (ii
< maxii
))
2197 fprintf (dump_file
, "Starting with ii=%d\n", ii
);
2198 flush_and_start_over
= false;
2199 bitmap_clear (sched_nodes
);
2201 for (i
= 0; i
< num_nodes
; i
++)
2203 int u
= nodes_order
[i
];
2204 ddg_node_ptr u_node
= &ps
->g
->nodes
[u
];
2205 rtx_insn
*insn
= u_node
->insn
;
2207 if (!NONDEBUG_INSN_P (insn
))
2209 bitmap_clear_bit (tobe_scheduled
, u
);
2213 if (bitmap_bit_p (sched_nodes
, u
))
2216 /* Try to get non-empty scheduling window. */
2218 if (get_sched_window (ps
, u_node
, sched_nodes
, ii
, &start
,
2222 fprintf (dump_file
, "\nTrying to schedule node %d "
2223 "INSN = %d in (%d .. %d) step %d\n", u
, (INSN_UID
2224 (g
->nodes
[u
].insn
)), start
, end
, step
);
2226 gcc_assert ((step
> 0 && start
< end
)
2227 || (step
< 0 && start
> end
));
2229 calculate_must_precede_follow (u_node
, start
, end
, step
, ii
,
2230 sched_nodes
, must_precede
,
2233 for (c
= start
; c
!= end
; c
+= step
)
2235 sbitmap tmp_precede
, tmp_follow
;
2237 set_must_precede_follow (&tmp_follow
, must_follow
,
2238 &tmp_precede
, must_precede
,
2239 c
, start
, end
, step
);
2241 try_scheduling_node_in_cycle (ps
, u
, c
,
2243 &num_splits
, tmp_precede
,
2249 verify_partial_schedule (ps
, sched_nodes
);
2258 if (num_splits
>= MAX_SPLIT_NUM
)
2261 flush_and_start_over
= true;
2262 verify_partial_schedule (ps
, sched_nodes
);
2263 reset_partial_schedule (ps
, ii
);
2264 verify_partial_schedule (ps
, sched_nodes
);
2269 /* The scheduling window is exclusive of 'end'
2270 whereas compute_split_window() expects an inclusive,
2273 split_row
= compute_split_row (sched_nodes
, start
, end
- 1,
2276 split_row
= compute_split_row (sched_nodes
, end
+ 1, start
,
2279 ps_insert_empty_row (ps
, split_row
, sched_nodes
);
2280 i
--; /* Go back and retry node i. */
2283 fprintf (dump_file
, "num_splits=%d\n", num_splits
);
2286 /* ??? If (success), check register pressure estimates. */
2287 } /* Continue with next node. */
2288 } /* While flush_and_start_over. */
2291 free_partial_schedule (ps
);
2295 gcc_assert (bitmap_equal_p (tobe_scheduled
, sched_nodes
));
2297 sbitmap_free (sched_nodes
);
2298 sbitmap_free (must_precede
);
2299 sbitmap_free (must_follow
);
2300 sbitmap_free (tobe_scheduled
);
2305 /* This function inserts a new empty row into PS at the position
2306 according to SPLITROW, keeping all already scheduled instructions
2307 intact and updating their SCHED_TIME and cycle accordingly. */
2309 ps_insert_empty_row (partial_schedule_ptr ps
, int split_row
,
2310 sbitmap sched_nodes
)
2312 ps_insn_ptr crr_insn
;
2313 ps_insn_ptr
*rows_new
;
2315 int new_ii
= ii
+ 1;
2317 int *rows_length_new
;
2319 verify_partial_schedule (ps
, sched_nodes
);
2321 /* We normalize sched_time and rotate ps to have only non-negative sched
2322 times, for simplicity of updating cycles after inserting new row. */
2323 split_row
-= ps
->min_cycle
;
2324 split_row
= SMODULO (split_row
, ii
);
2326 fprintf (dump_file
, "split_row=%d\n", split_row
);
2328 reset_sched_times (ps
, PS_MIN_CYCLE (ps
));
2329 rotate_partial_schedule (ps
, PS_MIN_CYCLE (ps
));
2331 rows_new
= (ps_insn_ptr
*) xcalloc (new_ii
, sizeof (ps_insn_ptr
));
2332 rows_length_new
= (int *) xcalloc (new_ii
, sizeof (int));
2333 for (row
= 0; row
< split_row
; row
++)
2335 rows_new
[row
] = ps
->rows
[row
];
2336 rows_length_new
[row
] = ps
->rows_length
[row
];
2337 ps
->rows
[row
] = NULL
;
2338 for (crr_insn
= rows_new
[row
];
2339 crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2341 int u
= crr_insn
->id
;
2342 int new_time
= SCHED_TIME (u
) + (SCHED_TIME (u
) / ii
);
2344 SCHED_TIME (u
) = new_time
;
2345 crr_insn
->cycle
= new_time
;
2346 SCHED_ROW (u
) = new_time
% new_ii
;
2347 SCHED_STAGE (u
) = new_time
/ new_ii
;
2352 rows_new
[split_row
] = NULL
;
2354 for (row
= split_row
; row
< ii
; row
++)
2356 rows_new
[row
+ 1] = ps
->rows
[row
];
2357 rows_length_new
[row
+ 1] = ps
->rows_length
[row
];
2358 ps
->rows
[row
] = NULL
;
2359 for (crr_insn
= rows_new
[row
+ 1];
2360 crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2362 int u
= crr_insn
->id
;
2363 int new_time
= SCHED_TIME (u
) + (SCHED_TIME (u
) / ii
) + 1;
2365 SCHED_TIME (u
) = new_time
;
2366 crr_insn
->cycle
= new_time
;
2367 SCHED_ROW (u
) = new_time
% new_ii
;
2368 SCHED_STAGE (u
) = new_time
/ new_ii
;
2373 ps
->min_cycle
= ps
->min_cycle
+ ps
->min_cycle
/ ii
2374 + (SMODULO (ps
->min_cycle
, ii
) >= split_row
? 1 : 0);
2375 ps
->max_cycle
= ps
->max_cycle
+ ps
->max_cycle
/ ii
2376 + (SMODULO (ps
->max_cycle
, ii
) >= split_row
? 1 : 0);
2378 ps
->rows
= rows_new
;
2379 free (ps
->rows_length
);
2380 ps
->rows_length
= rows_length_new
;
2382 gcc_assert (ps
->min_cycle
>= 0);
2384 verify_partial_schedule (ps
, sched_nodes
);
2387 fprintf (dump_file
, "min_cycle=%d, max_cycle=%d\n", ps
->min_cycle
,
2391 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2392 UP which are the boundaries of it's scheduling window; compute using
2393 SCHED_NODES and II a row in the partial schedule that can be split
2394 which will separate a critical predecessor from a critical successor
2395 thereby expanding the window, and return it. */
2397 compute_split_row (sbitmap sched_nodes
, int low
, int up
, int ii
,
2398 ddg_node_ptr u_node
)
2401 int lower
= INT_MIN
, upper
= INT_MAX
;
2406 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
2408 int v
= e
->src
->cuid
;
2410 if (bitmap_bit_p (sched_nodes
, v
)
2411 && (low
== SCHED_TIME (v
) + e
->latency
- (e
->distance
* ii
)))
2412 if (SCHED_TIME (v
) > lower
)
2415 lower
= SCHED_TIME (v
);
2421 crit_cycle
= SCHED_TIME (crit_pred
) + 1;
2422 return SMODULO (crit_cycle
, ii
);
2425 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
2427 int v
= e
->dest
->cuid
;
2429 if (bitmap_bit_p (sched_nodes
, v
)
2430 && (up
== SCHED_TIME (v
) - e
->latency
+ (e
->distance
* ii
)))
2431 if (SCHED_TIME (v
) < upper
)
2434 upper
= SCHED_TIME (v
);
2440 crit_cycle
= SCHED_TIME (crit_succ
);
2441 return SMODULO (crit_cycle
, ii
);
2445 fprintf (dump_file
, "Both crit_pred and crit_succ are NULL\n");
2447 return SMODULO ((low
+ up
+ 1) / 2, ii
);
2451 verify_partial_schedule (partial_schedule_ptr ps
, sbitmap sched_nodes
)
2454 ps_insn_ptr crr_insn
;
2456 for (row
= 0; row
< ps
->ii
; row
++)
2460 for (crr_insn
= ps
->rows
[row
]; crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2462 int u
= crr_insn
->id
;
2465 gcc_assert (bitmap_bit_p (sched_nodes
, u
));
2466 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2467 popcount (sched_nodes) == number of insns in ps. */
2468 gcc_assert (SCHED_TIME (u
) >= ps
->min_cycle
);
2469 gcc_assert (SCHED_TIME (u
) <= ps
->max_cycle
);
2472 gcc_assert (ps
->rows_length
[row
] == length
);
2477 /* This page implements the algorithm for ordering the nodes of a DDG
2478 for modulo scheduling, activated through the
2479 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2481 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2482 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2483 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2484 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2485 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2486 #define DEPTH(x) (ASAP ((x)))
2488 typedef struct node_order_params
* nopa
;
2490 static void order_nodes_of_sccs (ddg_all_sccs_ptr
, int * result
);
2491 static int order_nodes_in_scc (ddg_ptr
, sbitmap
, sbitmap
, int*, int);
2492 static nopa
calculate_order_params (ddg_ptr
, int, int *);
2493 static int find_max_asap (ddg_ptr
, sbitmap
);
2494 static int find_max_hv_min_mob (ddg_ptr
, sbitmap
);
2495 static int find_max_dv_min_mob (ddg_ptr
, sbitmap
);
2497 enum sms_direction
{BOTTOMUP
, TOPDOWN
};
2499 struct node_order_params
2506 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2508 check_nodes_order (int *node_order
, int num_nodes
)
2511 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2516 fprintf (dump_file
, "SMS final nodes order: \n");
2518 for (i
= 0; i
< num_nodes
; i
++)
2520 int u
= node_order
[i
];
2523 fprintf (dump_file
, "%d ", u
);
2524 gcc_assert (u
< num_nodes
&& u
>= 0 && !bitmap_bit_p (tmp
, u
));
2526 bitmap_set_bit (tmp
, u
);
2530 fprintf (dump_file
, "\n");
2535 /* Order the nodes of G for scheduling and pass the result in
2536 NODE_ORDER. Also set aux.count of each node to ASAP.
2537 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2539 sms_order_nodes (ddg_ptr g
, int mii
, int * node_order
, int *pmax_asap
)
2543 ddg_all_sccs_ptr sccs
= create_ddg_all_sccs (g
);
2545 nopa nops
= calculate_order_params (g
, mii
, pmax_asap
);
2548 print_sccs (dump_file
, sccs
, g
);
2550 order_nodes_of_sccs (sccs
, node_order
);
2552 if (sccs
->num_sccs
> 0)
2553 /* First SCC has the largest recurrence_length. */
2554 rec_mii
= sccs
->sccs
[0]->recurrence_length
;
2556 /* Save ASAP before destroying node_order_params. */
2557 for (i
= 0; i
< g
->num_nodes
; i
++)
2559 ddg_node_ptr v
= &g
->nodes
[i
];
2560 v
->aux
.count
= ASAP (v
);
2564 free_ddg_all_sccs (sccs
);
2565 check_nodes_order (node_order
, g
->num_nodes
);
2571 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs
, int * node_order
)
2574 ddg_ptr g
= all_sccs
->ddg
;
2575 int num_nodes
= g
->num_nodes
;
2576 sbitmap prev_sccs
= sbitmap_alloc (num_nodes
);
2577 sbitmap on_path
= sbitmap_alloc (num_nodes
);
2578 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2579 sbitmap ones
= sbitmap_alloc (num_nodes
);
2581 bitmap_clear (prev_sccs
);
2584 /* Perform the node ordering starting from the SCC with the highest recMII.
2585 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2586 for (i
= 0; i
< all_sccs
->num_sccs
; i
++)
2588 ddg_scc_ptr scc
= all_sccs
->sccs
[i
];
2590 /* Add nodes on paths from previous SCCs to the current SCC. */
2591 find_nodes_on_paths (on_path
, g
, prev_sccs
, scc
->nodes
);
2592 bitmap_ior (tmp
, scc
->nodes
, on_path
);
2594 /* Add nodes on paths from the current SCC to previous SCCs. */
2595 find_nodes_on_paths (on_path
, g
, scc
->nodes
, prev_sccs
);
2596 bitmap_ior (tmp
, tmp
, on_path
);
2598 /* Remove nodes of previous SCCs from current extended SCC. */
2599 bitmap_and_compl (tmp
, tmp
, prev_sccs
);
2601 pos
= order_nodes_in_scc (g
, prev_sccs
, tmp
, node_order
, pos
);
2602 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2605 /* Handle the remaining nodes that do not belong to any scc. Each call
2606 to order_nodes_in_scc handles a single connected component. */
2607 while (pos
< g
->num_nodes
)
2609 bitmap_and_compl (tmp
, ones
, prev_sccs
);
2610 pos
= order_nodes_in_scc (g
, prev_sccs
, tmp
, node_order
, pos
);
2612 sbitmap_free (prev_sccs
);
2613 sbitmap_free (on_path
);
2615 sbitmap_free (ones
);
2618 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2619 static struct node_order_params
*
2620 calculate_order_params (ddg_ptr g
, int mii ATTRIBUTE_UNUSED
, int *pmax_asap
)
2624 int num_nodes
= g
->num_nodes
;
2626 /* Allocate a place to hold ordering params for each node in the DDG. */
2627 nopa node_order_params_arr
;
2629 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2630 node_order_params_arr
= (nopa
) xcalloc (num_nodes
,
2631 sizeof (struct node_order_params
));
2633 /* Set the aux pointer of each node to point to its order_params structure. */
2634 for (u
= 0; u
< num_nodes
; u
++)
2635 g
->nodes
[u
].aux
.info
= &node_order_params_arr
[u
];
2637 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2638 calculate ASAP, ALAP, mobility, distance, and height for each node
2639 in the dependence (direct acyclic) graph. */
2641 /* We assume that the nodes in the array are in topological order. */
2644 for (u
= 0; u
< num_nodes
; u
++)
2646 ddg_node_ptr u_node
= &g
->nodes
[u
];
2649 for (e
= u_node
->in
; e
; e
= e
->next_in
)
2650 if (e
->distance
== 0)
2651 ASAP (u_node
) = MAX (ASAP (u_node
),
2652 ASAP (e
->src
) + e
->latency
);
2653 max_asap
= MAX (max_asap
, ASAP (u_node
));
2656 for (u
= num_nodes
- 1; u
> -1; u
--)
2658 ddg_node_ptr u_node
= &g
->nodes
[u
];
2660 ALAP (u_node
) = max_asap
;
2661 HEIGHT (u_node
) = 0;
2662 for (e
= u_node
->out
; e
; e
= e
->next_out
)
2663 if (e
->distance
== 0)
2665 ALAP (u_node
) = MIN (ALAP (u_node
),
2666 ALAP (e
->dest
) - e
->latency
);
2667 HEIGHT (u_node
) = MAX (HEIGHT (u_node
),
2668 HEIGHT (e
->dest
) + e
->latency
);
2673 fprintf (dump_file
, "\nOrder params\n");
2674 for (u
= 0; u
< num_nodes
; u
++)
2676 ddg_node_ptr u_node
= &g
->nodes
[u
];
2678 fprintf (dump_file
, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u
,
2679 ASAP (u_node
), ALAP (u_node
), HEIGHT (u_node
));
2683 *pmax_asap
= max_asap
;
2684 return node_order_params_arr
;
2688 find_max_asap (ddg_ptr g
, sbitmap nodes
)
2693 sbitmap_iterator sbi
;
2695 EXECUTE_IF_SET_IN_BITMAP (nodes
, 0, u
, sbi
)
2697 ddg_node_ptr u_node
= &g
->nodes
[u
];
2699 if (max_asap
< ASAP (u_node
))
2701 max_asap
= ASAP (u_node
);
2709 find_max_hv_min_mob (ddg_ptr g
, sbitmap nodes
)
2713 int min_mob
= INT_MAX
;
2715 sbitmap_iterator sbi
;
2717 EXECUTE_IF_SET_IN_BITMAP (nodes
, 0, u
, sbi
)
2719 ddg_node_ptr u_node
= &g
->nodes
[u
];
2721 if (max_hv
< HEIGHT (u_node
))
2723 max_hv
= HEIGHT (u_node
);
2724 min_mob
= MOB (u_node
);
2727 else if ((max_hv
== HEIGHT (u_node
))
2728 && (min_mob
> MOB (u_node
)))
2730 min_mob
= MOB (u_node
);
2738 find_max_dv_min_mob (ddg_ptr g
, sbitmap nodes
)
2742 int min_mob
= INT_MAX
;
2744 sbitmap_iterator sbi
;
2746 EXECUTE_IF_SET_IN_BITMAP (nodes
, 0, u
, sbi
)
2748 ddg_node_ptr u_node
= &g
->nodes
[u
];
2750 if (max_dv
< DEPTH (u_node
))
2752 max_dv
= DEPTH (u_node
);
2753 min_mob
= MOB (u_node
);
2756 else if ((max_dv
== DEPTH (u_node
))
2757 && (min_mob
> MOB (u_node
)))
2759 min_mob
= MOB (u_node
);
2766 /* Places the nodes of SCC into the NODE_ORDER array starting
2767 at position POS, according to the SMS ordering algorithm.
2768 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2769 the NODE_ORDER array, starting from position zero. */
2771 order_nodes_in_scc (ddg_ptr g
, sbitmap nodes_ordered
, sbitmap scc
,
2772 int * node_order
, int pos
)
2774 enum sms_direction dir
;
2775 int num_nodes
= g
->num_nodes
;
2776 sbitmap workset
= sbitmap_alloc (num_nodes
);
2777 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2778 sbitmap zero_bitmap
= sbitmap_alloc (num_nodes
);
2779 sbitmap predecessors
= sbitmap_alloc (num_nodes
);
2780 sbitmap successors
= sbitmap_alloc (num_nodes
);
2782 bitmap_clear (predecessors
);
2783 find_predecessors (predecessors
, g
, nodes_ordered
);
2785 bitmap_clear (successors
);
2786 find_successors (successors
, g
, nodes_ordered
);
2789 if (bitmap_and (tmp
, predecessors
, scc
))
2791 bitmap_copy (workset
, tmp
);
2794 else if (bitmap_and (tmp
, successors
, scc
))
2796 bitmap_copy (workset
, tmp
);
2803 bitmap_clear (workset
);
2804 if ((u
= find_max_asap (g
, scc
)) >= 0)
2805 bitmap_set_bit (workset
, u
);
2809 bitmap_clear (zero_bitmap
);
2810 while (!bitmap_equal_p (workset
, zero_bitmap
))
2813 ddg_node_ptr v_node
;
2814 sbitmap v_node_preds
;
2815 sbitmap v_node_succs
;
2819 while (!bitmap_equal_p (workset
, zero_bitmap
))
2821 v
= find_max_hv_min_mob (g
, workset
);
2822 v_node
= &g
->nodes
[v
];
2823 node_order
[pos
++] = v
;
2824 v_node_succs
= NODE_SUCCESSORS (v_node
);
2825 bitmap_and (tmp
, v_node_succs
, scc
);
2827 /* Don't consider the already ordered successors again. */
2828 bitmap_and_compl (tmp
, tmp
, nodes_ordered
);
2829 bitmap_ior (workset
, workset
, tmp
);
2830 bitmap_clear_bit (workset
, v
);
2831 bitmap_set_bit (nodes_ordered
, v
);
2834 bitmap_clear (predecessors
);
2835 find_predecessors (predecessors
, g
, nodes_ordered
);
2836 bitmap_and (workset
, predecessors
, scc
);
2840 while (!bitmap_equal_p (workset
, zero_bitmap
))
2842 v
= find_max_dv_min_mob (g
, workset
);
2843 v_node
= &g
->nodes
[v
];
2844 node_order
[pos
++] = v
;
2845 v_node_preds
= NODE_PREDECESSORS (v_node
);
2846 bitmap_and (tmp
, v_node_preds
, scc
);
2848 /* Don't consider the already ordered predecessors again. */
2849 bitmap_and_compl (tmp
, tmp
, nodes_ordered
);
2850 bitmap_ior (workset
, workset
, tmp
);
2851 bitmap_clear_bit (workset
, v
);
2852 bitmap_set_bit (nodes_ordered
, v
);
2855 bitmap_clear (successors
);
2856 find_successors (successors
, g
, nodes_ordered
);
2857 bitmap_and (workset
, successors
, scc
);
2861 sbitmap_free (workset
);
2862 sbitmap_free (zero_bitmap
);
2863 sbitmap_free (predecessors
);
2864 sbitmap_free (successors
);
2869 /* This page contains functions for manipulating partial-schedules during
2870 modulo scheduling. */
2872 /* Create a partial schedule and allocate a memory to hold II rows. */
2874 static partial_schedule_ptr
2875 create_partial_schedule (int ii
, ddg_ptr g
, int history
)
2877 partial_schedule_ptr ps
= XNEW (struct partial_schedule
);
2878 ps
->rows
= (ps_insn_ptr
*) xcalloc (ii
, sizeof (ps_insn_ptr
));
2879 ps
->rows_length
= (int *) xcalloc (ii
, sizeof (int));
2880 ps
->reg_moves
.create (0);
2882 ps
->history
= history
;
2883 ps
->min_cycle
= INT_MAX
;
2884 ps
->max_cycle
= INT_MIN
;
2890 /* Free the PS_INSNs in rows array of the given partial schedule.
2891 ??? Consider caching the PS_INSN's. */
2893 free_ps_insns (partial_schedule_ptr ps
)
2897 for (i
= 0; i
< ps
->ii
; i
++)
2901 ps_insn_ptr ps_insn
= ps
->rows
[i
]->next_in_row
;
2904 ps
->rows
[i
] = ps_insn
;
2910 /* Free all the memory allocated to the partial schedule. */
2913 free_partial_schedule (partial_schedule_ptr ps
)
2915 ps_reg_move_info
*move
;
2921 FOR_EACH_VEC_ELT (ps
->reg_moves
, i
, move
)
2922 sbitmap_free (move
->uses
);
2923 ps
->reg_moves
.release ();
2927 free (ps
->rows_length
);
2931 /* Clear the rows array with its PS_INSNs, and create a new one with
2935 reset_partial_schedule (partial_schedule_ptr ps
, int new_ii
)
2940 if (new_ii
== ps
->ii
)
2942 ps
->rows
= (ps_insn_ptr
*) xrealloc (ps
->rows
, new_ii
2943 * sizeof (ps_insn_ptr
));
2944 memset (ps
->rows
, 0, new_ii
* sizeof (ps_insn_ptr
));
2945 ps
->rows_length
= (int *) xrealloc (ps
->rows_length
, new_ii
* sizeof (int));
2946 memset (ps
->rows_length
, 0, new_ii
* sizeof (int));
2948 ps
->min_cycle
= INT_MAX
;
2949 ps
->max_cycle
= INT_MIN
;
2952 /* Prints the partial schedule as an ii rows array, for each rows
2953 print the ids of the insns in it. */
2955 print_partial_schedule (partial_schedule_ptr ps
, FILE *dump
)
2959 for (i
= 0; i
< ps
->ii
; i
++)
2961 ps_insn_ptr ps_i
= ps
->rows
[i
];
2963 fprintf (dump
, "\n[ROW %d ]: ", i
);
2966 rtx_insn
*insn
= ps_rtl_insn (ps
, ps_i
->id
);
2969 fprintf (dump
, "%d (branch), ", INSN_UID (insn
));
2971 fprintf (dump
, "%d, ", INSN_UID (insn
));
2973 ps_i
= ps_i
->next_in_row
;
2978 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2980 create_ps_insn (int id
, int cycle
)
2982 ps_insn_ptr ps_i
= XNEW (struct ps_insn
);
2985 ps_i
->next_in_row
= NULL
;
2986 ps_i
->prev_in_row
= NULL
;
2987 ps_i
->cycle
= cycle
;
2993 /* Removes the given PS_INSN from the partial schedule. */
2995 remove_node_from_ps (partial_schedule_ptr ps
, ps_insn_ptr ps_i
)
2999 gcc_assert (ps
&& ps_i
);
3001 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
3002 if (! ps_i
->prev_in_row
)
3004 gcc_assert (ps_i
== ps
->rows
[row
]);
3005 ps
->rows
[row
] = ps_i
->next_in_row
;
3007 ps
->rows
[row
]->prev_in_row
= NULL
;
3011 ps_i
->prev_in_row
->next_in_row
= ps_i
->next_in_row
;
3012 if (ps_i
->next_in_row
)
3013 ps_i
->next_in_row
->prev_in_row
= ps_i
->prev_in_row
;
3016 ps
->rows_length
[row
] -= 1;
3021 /* Unlike what literature describes for modulo scheduling (which focuses
3022 on VLIW machines) the order of the instructions inside a cycle is
3023 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
3024 where the current instruction should go relative to the already
3025 scheduled instructions in the given cycle. Go over these
3026 instructions and find the first possible column to put it in. */
3028 ps_insn_find_column (partial_schedule_ptr ps
, ps_insn_ptr ps_i
,
3029 sbitmap must_precede
, sbitmap must_follow
)
3031 ps_insn_ptr next_ps_i
;
3032 ps_insn_ptr first_must_follow
= NULL
;
3033 ps_insn_ptr last_must_precede
= NULL
;
3034 ps_insn_ptr last_in_row
= NULL
;
3040 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
3042 /* Find the first must follow and the last must precede
3043 and insert the node immediately after the must precede
3044 but make sure that it there is no must follow after it. */
3045 for (next_ps_i
= ps
->rows
[row
];
3047 next_ps_i
= next_ps_i
->next_in_row
)
3050 && bitmap_bit_p (must_follow
, next_ps_i
->id
)
3051 && ! first_must_follow
)
3052 first_must_follow
= next_ps_i
;
3053 if (must_precede
&& bitmap_bit_p (must_precede
, next_ps_i
->id
))
3055 /* If we have already met a node that must follow, then
3056 there is no possible column. */
3057 if (first_must_follow
)
3060 last_must_precede
= next_ps_i
;
3062 /* The closing branch must be the last in the row. */
3064 && bitmap_bit_p (must_precede
, next_ps_i
->id
)
3065 && JUMP_P (ps_rtl_insn (ps
, next_ps_i
->id
)))
3068 last_in_row
= next_ps_i
;
3071 /* The closing branch is scheduled as well. Make sure there is no
3072 dependent instruction after it as the branch should be the last
3073 instruction in the row. */
3074 if (JUMP_P (ps_rtl_insn (ps
, ps_i
->id
)))
3076 if (first_must_follow
)
3080 /* Make the branch the last in the row. New instructions
3081 will be inserted at the beginning of the row or after the
3082 last must_precede instruction thus the branch is guaranteed
3083 to remain the last instruction in the row. */
3084 last_in_row
->next_in_row
= ps_i
;
3085 ps_i
->prev_in_row
= last_in_row
;
3086 ps_i
->next_in_row
= NULL
;
3089 ps
->rows
[row
] = ps_i
;
3093 /* Now insert the node after INSERT_AFTER_PSI. */
3095 if (! last_must_precede
)
3097 ps_i
->next_in_row
= ps
->rows
[row
];
3098 ps_i
->prev_in_row
= NULL
;
3099 if (ps_i
->next_in_row
)
3100 ps_i
->next_in_row
->prev_in_row
= ps_i
;
3101 ps
->rows
[row
] = ps_i
;
3105 ps_i
->next_in_row
= last_must_precede
->next_in_row
;
3106 last_must_precede
->next_in_row
= ps_i
;
3107 ps_i
->prev_in_row
= last_must_precede
;
3108 if (ps_i
->next_in_row
)
3109 ps_i
->next_in_row
->prev_in_row
= ps_i
;
3115 /* Advances the PS_INSN one column in its current row; returns false
3116 in failure and true in success. Bit N is set in MUST_FOLLOW if
3117 the node with cuid N must be come after the node pointed to by
3118 PS_I when scheduled in the same cycle. */
3120 ps_insn_advance_column (partial_schedule_ptr ps
, ps_insn_ptr ps_i
,
3121 sbitmap must_follow
)
3123 ps_insn_ptr prev
, next
;
3129 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
3131 if (! ps_i
->next_in_row
)
3134 /* Check if next_in_row is dependent on ps_i, both having same sched
3135 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3136 if (must_follow
&& bitmap_bit_p (must_follow
, ps_i
->next_in_row
->id
))
3139 /* Advance PS_I over its next_in_row in the doubly linked list. */
3140 prev
= ps_i
->prev_in_row
;
3141 next
= ps_i
->next_in_row
;
3143 if (ps_i
== ps
->rows
[row
])
3144 ps
->rows
[row
] = next
;
3146 ps_i
->next_in_row
= next
->next_in_row
;
3148 if (next
->next_in_row
)
3149 next
->next_in_row
->prev_in_row
= ps_i
;
3151 next
->next_in_row
= ps_i
;
3152 ps_i
->prev_in_row
= next
;
3154 next
->prev_in_row
= prev
;
3156 prev
->next_in_row
= next
;
3161 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3162 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3163 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3164 before/after (respectively) the node pointed to by PS_I when scheduled
3165 in the same cycle. */
3167 add_node_to_ps (partial_schedule_ptr ps
, int id
, int cycle
,
3168 sbitmap must_precede
, sbitmap must_follow
)
3171 int row
= SMODULO (cycle
, ps
->ii
);
3173 if (ps
->rows_length
[row
] >= issue_rate
)
3176 ps_i
= create_ps_insn (id
, cycle
);
3178 /* Finds and inserts PS_I according to MUST_FOLLOW and
3180 if (! ps_insn_find_column (ps
, ps_i
, must_precede
, must_follow
))
3186 ps
->rows_length
[row
] += 1;
3190 /* Advance time one cycle. Assumes DFA is being used. */
3192 advance_one_cycle (void)
3194 if (targetm
.sched
.dfa_pre_cycle_insn
)
3195 state_transition (curr_state
,
3196 targetm
.sched
.dfa_pre_cycle_insn ());
3198 state_transition (curr_state
, NULL
);
3200 if (targetm
.sched
.dfa_post_cycle_insn
)
3201 state_transition (curr_state
,
3202 targetm
.sched
.dfa_post_cycle_insn ());
3207 /* Checks if PS has resource conflicts according to DFA, starting from
3208 FROM cycle to TO cycle; returns true if there are conflicts and false
3209 if there are no conflicts. Assumes DFA is being used. */
3211 ps_has_conflicts (partial_schedule_ptr ps
, int from
, int to
)
3215 state_reset (curr_state
);
3217 for (cycle
= from
; cycle
<= to
; cycle
++)
3219 ps_insn_ptr crr_insn
;
3220 /* Holds the remaining issue slots in the current row. */
3221 int can_issue_more
= issue_rate
;
3223 /* Walk through the DFA for the current row. */
3224 for (crr_insn
= ps
->rows
[SMODULO (cycle
, ps
->ii
)];
3226 crr_insn
= crr_insn
->next_in_row
)
3228 rtx_insn
*insn
= ps_rtl_insn (ps
, crr_insn
->id
);
3230 if (!NONDEBUG_INSN_P (insn
))
3233 /* Check if there is room for the current insn. */
3234 if (!can_issue_more
|| state_dead_lock_p (curr_state
))
3237 /* Update the DFA state and return with failure if the DFA found
3238 resource conflicts. */
3239 if (state_transition (curr_state
, insn
) >= 0)
3242 if (targetm
.sched
.variable_issue
)
3244 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
,
3245 insn
, can_issue_more
);
3246 /* A naked CLOBBER or USE generates no instruction, so don't
3247 let them consume issue slots. */
3248 else if (GET_CODE (PATTERN (insn
)) != USE
3249 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3253 /* Advance the DFA to the next cycle. */
3254 advance_one_cycle ();
3259 /* Checks if the given node causes resource conflicts when added to PS at
3260 cycle C. If not the node is added to PS and returned; otherwise zero
3261 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3262 cuid N must be come before/after (respectively) the node pointed to by
3263 PS_I when scheduled in the same cycle. */
3265 ps_add_node_check_conflicts (partial_schedule_ptr ps
, int n
,
3266 int c
, sbitmap must_precede
,
3267 sbitmap must_follow
)
3269 int has_conflicts
= 0;
3272 /* First add the node to the PS, if this succeeds check for
3273 conflicts, trying different issue slots in the same row. */
3274 if (! (ps_i
= add_node_to_ps (ps
, n
, c
, must_precede
, must_follow
)))
3275 return NULL
; /* Failed to insert the node at the given cycle. */
3277 has_conflicts
= ps_has_conflicts (ps
, c
, c
)
3279 && ps_has_conflicts (ps
,
3283 /* Try different issue slots to find one that the given node can be
3284 scheduled in without conflicts. */
3285 while (has_conflicts
)
3287 if (! ps_insn_advance_column (ps
, ps_i
, must_follow
))
3289 has_conflicts
= ps_has_conflicts (ps
, c
, c
)
3291 && ps_has_conflicts (ps
,
3298 remove_node_from_ps (ps
, ps_i
);
3302 ps
->min_cycle
= MIN (ps
->min_cycle
, c
);
3303 ps
->max_cycle
= MAX (ps
->max_cycle
, c
);
3307 /* Calculate the stage count of the partial schedule PS. The calculation
3308 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3310 calculate_stage_count (partial_schedule_ptr ps
, int rotation_amount
)
3312 int new_min_cycle
= PS_MIN_CYCLE (ps
) - rotation_amount
;
3313 int new_max_cycle
= PS_MAX_CYCLE (ps
) - rotation_amount
;
3314 int stage_count
= CALC_STAGE_COUNT (-1, new_min_cycle
, ps
->ii
);
3316 /* The calculation of stage count is done adding the number of stages
3317 before cycle zero and after cycle zero. */
3318 stage_count
+= CALC_STAGE_COUNT (new_max_cycle
, 0, ps
->ii
);
3323 /* Rotate the rows of PS such that insns scheduled at time
3324 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3326 rotate_partial_schedule (partial_schedule_ptr ps
, int start_cycle
)
3328 int i
, row
, backward_rotates
;
3329 int last_row
= ps
->ii
- 1;
3331 if (start_cycle
== 0)
3334 backward_rotates
= SMODULO (start_cycle
, ps
->ii
);
3336 /* Revisit later and optimize this into a single loop. */
3337 for (i
= 0; i
< backward_rotates
; i
++)
3339 ps_insn_ptr first_row
= ps
->rows
[0];
3340 int first_row_length
= ps
->rows_length
[0];
3342 for (row
= 0; row
< last_row
; row
++)
3344 ps
->rows
[row
] = ps
->rows
[row
+ 1];
3345 ps
->rows_length
[row
] = ps
->rows_length
[row
+ 1];
3348 ps
->rows
[last_row
] = first_row
;
3349 ps
->rows_length
[last_row
] = first_row_length
;
3352 ps
->max_cycle
-= start_cycle
;
3353 ps
->min_cycle
-= start_cycle
;
3356 #endif /* INSN_SCHEDULING */
3358 /* Run instruction scheduler. */
3359 /* Perform SMS module scheduling. */
3363 const pass_data pass_data_sms
=
3365 RTL_PASS
, /* type */
3367 OPTGROUP_NONE
, /* optinfo_flags */
3369 0, /* properties_required */
3370 0, /* properties_provided */
3371 0, /* properties_destroyed */
3372 0, /* todo_flags_start */
3373 TODO_df_finish
, /* todo_flags_finish */
3376 class pass_sms
: public rtl_opt_pass
3379 pass_sms (gcc::context
*ctxt
)
3380 : rtl_opt_pass (pass_data_sms
, ctxt
)
3383 /* opt_pass methods: */
3384 virtual bool gate (function
*)
3386 return (optimize
> 0 && flag_modulo_sched
);
3389 virtual unsigned int execute (function
*);
3391 }; // class pass_sms
3394 pass_sms::execute (function
*fun ATTRIBUTE_UNUSED
)
3396 #ifdef INSN_SCHEDULING
3399 /* Collect loop information to be used in SMS. */
3400 cfg_layout_initialize (0);
3403 /* Update the life information, because we add pseudos. */
3404 max_regno
= max_reg_num ();
3406 /* Finalize layout changes. */
3407 FOR_EACH_BB_FN (bb
, fun
)
3408 if (bb
->next_bb
!= EXIT_BLOCK_PTR_FOR_FN (fun
))
3409 bb
->aux
= bb
->next_bb
;
3410 free_dominance_info (CDI_DOMINATORS
);
3411 cfg_layout_finalize ();
3412 #endif /* INSN_SCHEDULING */
3419 make_pass_sms (gcc::context
*ctxt
)
3421 return new pass_sms (ctxt
);