* c-ubsan.c (ubsan_instrument_shift): Use type0.
[official-gcc.git] / gcc / lra.c
blob7c336366d8d5ab1ea1adcab4cafed1a8b6be7535
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
45 Here is block diagram of LRA passes:
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
59 | | |
60 | V New |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
67 | | No change
68 ---------------- V
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
72 ----------------
73 | No susbtitions
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
79 | memory |
80 -------------------------
82 To speed up the process:
83 o We process only insns affected by changes on previous
84 iterations;
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
94 o Pseudo data:
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
97 references etc);
98 o data used for assigning (preferred hard regs, costs etc).
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "tm.h"
107 #include "hard-reg-set.h"
108 #include "rtl.h"
109 #include "tm_p.h"
110 #include "regs.h"
111 #include "insn-config.h"
112 #include "insn-codes.h"
113 #include "recog.h"
114 #include "output.h"
115 #include "addresses.h"
116 #include "flags.h"
117 #include "hashtab.h"
118 #include "hash-set.h"
119 #include "vec.h"
120 #include "machmode.h"
121 #include "input.h"
122 #include "function.h"
123 #include "symtab.h"
124 #include "wide-int.h"
125 #include "inchash.h"
126 #include "tree.h"
127 #include "optabs.h"
128 #include "statistics.h"
129 #include "double-int.h"
130 #include "real.h"
131 #include "fixed-value.h"
132 #include "alias.h"
133 #include "expmed.h"
134 #include "dojump.h"
135 #include "explow.h"
136 #include "calls.h"
137 #include "emit-rtl.h"
138 #include "varasm.h"
139 #include "stmt.h"
140 #include "expr.h"
141 #include "predict.h"
142 #include "dominance.h"
143 #include "cfg.h"
144 #include "cfgrtl.h"
145 #include "cfgbuild.h"
146 #include "basic-block.h"
147 #include "except.h"
148 #include "tree-pass.h"
149 #include "timevar.h"
150 #include "target.h"
151 #include "ira.h"
152 #include "lra-int.h"
153 #include "df.h"
155 /* Dump bitmap SET with TITLE and BB INDEX. */
156 void
157 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
159 unsigned int i;
160 int count;
161 bitmap_iterator bi;
162 static const int max_nums_on_line = 10;
164 if (bitmap_empty_p (set))
165 return;
166 fprintf (lra_dump_file, " %s %d:", title, index);
167 fprintf (lra_dump_file, "\n");
168 count = max_nums_on_line + 1;
169 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
171 if (count > max_nums_on_line)
173 fprintf (lra_dump_file, "\n ");
174 count = 0;
176 fprintf (lra_dump_file, " %4u", i);
177 count++;
179 fprintf (lra_dump_file, "\n");
182 /* Hard registers currently not available for allocation. It can
183 changed after some hard registers become not eliminable. */
184 HARD_REG_SET lra_no_alloc_regs;
186 static int get_new_reg_value (void);
187 static void expand_reg_info (void);
188 static void invalidate_insn_recog_data (int);
189 static int get_insn_freq (rtx_insn *);
190 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
191 rtx_insn *, int);
193 /* Expand all regno related info needed for LRA. */
194 static void
195 expand_reg_data (int old)
197 resize_reg_info ();
198 expand_reg_info ();
199 ira_expand_reg_equiv ();
200 for (int i = (int) max_reg_num () - 1; i >= old; i--)
201 lra_change_class (i, ALL_REGS, " Set", true);
204 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
205 or of VOIDmode, use MD_MODE for the new reg. Initialize its
206 register class to RCLASS. Print message about assigning class
207 RCLASS containing new register name TITLE unless it is NULL. Use
208 attributes of ORIGINAL if it is a register. The created register
209 will have unique held value. */
211 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
212 enum reg_class rclass, const char *title)
214 machine_mode mode;
215 rtx new_reg;
217 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
218 mode = md_mode;
219 lra_assert (mode != VOIDmode);
220 new_reg = gen_reg_rtx (mode);
221 if (original == NULL_RTX || ! REG_P (original))
223 if (lra_dump_file != NULL)
224 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
226 else
228 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
229 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
230 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
231 REG_POINTER (new_reg) = REG_POINTER (original);
232 REG_ATTRS (new_reg) = REG_ATTRS (original);
233 if (lra_dump_file != NULL)
234 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
235 REGNO (new_reg), REGNO (original));
237 if (lra_dump_file != NULL)
239 if (title != NULL)
240 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
241 reg_class_names[rclass], *title == '\0' ? "" : " ",
242 title, REGNO (new_reg));
243 fprintf (lra_dump_file, "\n");
245 expand_reg_data (max_reg_num ());
246 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
247 return new_reg;
250 /* Analogous to the previous function but also inherits value of
251 ORIGINAL. */
253 lra_create_new_reg (machine_mode md_mode, rtx original,
254 enum reg_class rclass, const char *title)
256 rtx new_reg;
258 new_reg
259 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
260 if (original != NULL_RTX && REG_P (original))
261 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
262 return new_reg;
265 /* Set up for REGNO unique hold value. */
266 void
267 lra_set_regno_unique_value (int regno)
269 lra_reg_info[regno].val = get_new_reg_value ();
272 /* Invalidate INSN related info used by LRA. The info should never be
273 used after that. */
274 void
275 lra_invalidate_insn_data (rtx_insn *insn)
277 lra_invalidate_insn_regno_info (insn);
278 invalidate_insn_recog_data (INSN_UID (insn));
281 /* Mark INSN deleted and invalidate the insn related info used by
282 LRA. */
283 void
284 lra_set_insn_deleted (rtx_insn *insn)
286 lra_invalidate_insn_data (insn);
287 SET_INSN_DELETED (insn);
290 /* Delete an unneeded INSN and any previous insns who sole purpose is
291 loading data that is dead in INSN. */
292 void
293 lra_delete_dead_insn (rtx_insn *insn)
295 rtx_insn *prev = prev_real_insn (insn);
296 rtx prev_dest;
298 /* If the previous insn sets a register that dies in our insn,
299 delete it too. */
300 if (prev && GET_CODE (PATTERN (prev)) == SET
301 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
302 && reg_mentioned_p (prev_dest, PATTERN (insn))
303 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
304 && ! side_effects_p (SET_SRC (PATTERN (prev))))
305 lra_delete_dead_insn (prev);
307 lra_set_insn_deleted (insn);
310 /* Emit insn x = y + z. Return NULL if we failed to do it.
311 Otherwise, return the insn. We don't use gen_add3_insn as it might
312 clobber CC. */
313 static rtx
314 emit_add3_insn (rtx x, rtx y, rtx z)
316 rtx_insn *last;
318 last = get_last_insn ();
320 if (have_addptr3_insn (x, y, z))
322 rtx insn = gen_addptr3_insn (x, y, z);
324 /* If the target provides an "addptr" pattern it hopefully does
325 for a reason. So falling back to the normal add would be
326 a bug. */
327 lra_assert (insn != NULL_RTX);
328 emit_insn (insn);
329 return insn;
332 rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
333 y, z)));
334 if (recog_memoized (insn) < 0)
336 delete_insns_since (last);
337 insn = NULL;
339 return insn;
342 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
343 last resort. */
344 static rtx
345 emit_add2_insn (rtx x, rtx y)
347 rtx insn;
349 insn = emit_add3_insn (x, x, y);
350 if (insn == NULL_RTX)
352 insn = gen_add2_insn (x, y);
353 if (insn != NULL_RTX)
354 emit_insn (insn);
356 return insn;
359 /* Target checks operands through operand predicates to recognize an
360 insn. We should have a special precaution to generate add insns
361 which are frequent results of elimination.
363 Emit insns for x = y + z. X can be used to store intermediate
364 values and should be not in Y and Z when we use X to store an
365 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
366 + disp] where base and index are registers, disp and scale are
367 constants. Y should contain base if it is present, Z should
368 contain disp if any. index[*scale] can be part of Y or Z. */
369 void
370 lra_emit_add (rtx x, rtx y, rtx z)
372 int old;
373 rtx_insn *last;
374 rtx a1, a2, base, index, disp, scale, index_scale;
375 bool ok_p;
377 rtx add3_insn = emit_add3_insn (x, y, z);
378 old = max_reg_num ();
379 if (add3_insn != NULL)
381 else
383 disp = a2 = NULL_RTX;
384 if (GET_CODE (y) == PLUS)
386 a1 = XEXP (y, 0);
387 a2 = XEXP (y, 1);
388 disp = z;
390 else
392 a1 = y;
393 if (CONSTANT_P (z))
394 disp = z;
395 else
396 a2 = z;
398 index_scale = scale = NULL_RTX;
399 if (GET_CODE (a1) == MULT)
401 index_scale = a1;
402 index = XEXP (a1, 0);
403 scale = XEXP (a1, 1);
404 base = a2;
406 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
408 index_scale = a2;
409 index = XEXP (a2, 0);
410 scale = XEXP (a2, 1);
411 base = a1;
413 else
415 base = a1;
416 index = a2;
418 if (! (REG_P (base) || GET_CODE (base) == SUBREG)
419 || (index != NULL_RTX
420 && ! (REG_P (index) || GET_CODE (index) == SUBREG))
421 || (disp != NULL_RTX && ! CONSTANT_P (disp))
422 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
424 /* Probably we have no 3 op add. Last chance is to use 2-op
425 add insn. To succeed, don't move Z to X as an address
426 segment always comes in Y. Otherwise, we might fail when
427 adding the address segment to register. */
428 lra_assert (x != y && x != z);
429 emit_move_insn (x, y);
430 rtx insn = emit_add2_insn (x, z);
431 lra_assert (insn != NULL_RTX);
433 else
435 if (index_scale == NULL_RTX)
436 index_scale = index;
437 if (disp == NULL_RTX)
439 /* Generate x = index_scale; x = x + base. */
440 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
441 emit_move_insn (x, index_scale);
442 rtx insn = emit_add2_insn (x, base);
443 lra_assert (insn != NULL_RTX);
445 else if (scale == NULL_RTX)
447 /* Try x = base + disp. */
448 lra_assert (base != NULL_RTX);
449 last = get_last_insn ();
450 rtx_insn *move_insn =
451 emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
452 if (recog_memoized (move_insn) < 0)
454 delete_insns_since (last);
455 /* Generate x = disp; x = x + base. */
456 emit_move_insn (x, disp);
457 rtx add2_insn = emit_add2_insn (x, base);
458 lra_assert (add2_insn != NULL_RTX);
460 /* Generate x = x + index. */
461 if (index != NULL_RTX)
463 rtx insn = emit_add2_insn (x, index);
464 lra_assert (insn != NULL_RTX);
467 else
469 /* Try x = index_scale; x = x + disp; x = x + base. */
470 last = get_last_insn ();
471 rtx_insn *move_insn = emit_move_insn (x, index_scale);
472 ok_p = false;
473 if (recog_memoized (move_insn) >= 0)
475 rtx insn = emit_add2_insn (x, disp);
476 if (insn != NULL_RTX)
478 insn = emit_add2_insn (x, base);
479 if (insn != NULL_RTX)
480 ok_p = true;
483 if (! ok_p)
485 delete_insns_since (last);
486 /* Generate x = disp; x = x + base; x = x + index_scale. */
487 emit_move_insn (x, disp);
488 rtx insn = emit_add2_insn (x, base);
489 lra_assert (insn != NULL_RTX);
490 insn = emit_add2_insn (x, index_scale);
491 lra_assert (insn != NULL_RTX);
496 /* Functions emit_... can create pseudos -- so expand the pseudo
497 data. */
498 if (old != max_reg_num ())
499 expand_reg_data (old);
502 /* The number of emitted reload insns so far. */
503 int lra_curr_reload_num;
505 /* Emit x := y, processing special case when y = u + v or y = u + v *
506 scale + w through emit_add (Y can be an address which is base +
507 index reg * scale + displacement in general case). X may be used
508 as intermediate result therefore it should be not in Y. */
509 void
510 lra_emit_move (rtx x, rtx y)
512 int old;
514 if (GET_CODE (y) != PLUS)
516 if (rtx_equal_p (x, y))
517 return;
518 old = max_reg_num ();
519 emit_move_insn (x, y);
520 if (REG_P (x))
521 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
522 /* Function emit_move can create pseudos -- so expand the pseudo
523 data. */
524 if (old != max_reg_num ())
525 expand_reg_data (old);
526 return;
528 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
531 /* Update insn operands which are duplication of operands whose
532 numbers are in array of NOPS (with end marker -1). The insn is
533 represented by its LRA internal representation ID. */
534 void
535 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
537 int i, j, nop;
538 struct lra_static_insn_data *static_id = id->insn_static_data;
540 for (i = 0; i < static_id->n_dups; i++)
541 for (j = 0; (nop = nops[j]) >= 0; j++)
542 if (static_id->dup_num[i] == nop)
543 *id->dup_loc[i] = *id->operand_loc[nop];
548 /* This page contains code dealing with info about registers in the
549 insns. */
551 /* Pools for insn reg info. */
552 static alloc_pool insn_reg_pool;
554 /* Initiate pool for insn reg info. */
555 static void
556 init_insn_regs (void)
558 insn_reg_pool
559 = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg), 100);
562 /* Create LRA insn related info about a reference to REGNO in INSN with
563 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
564 reference through subreg (SUBREG_P), flag that is early clobbered
565 in the insn (EARLY_CLOBBER), and reference to the next insn reg
566 info (NEXT). */
567 static struct lra_insn_reg *
568 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
569 machine_mode mode,
570 bool subreg_p, bool early_clobber, struct lra_insn_reg *next)
572 struct lra_insn_reg *ir;
574 ir = (struct lra_insn_reg *) pool_alloc (insn_reg_pool);
575 ir->type = type;
576 ir->biggest_mode = mode;
577 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode)
578 && NONDEBUG_INSN_P (insn))
579 lra_reg_info[regno].biggest_mode = mode;
580 ir->subreg_p = subreg_p;
581 ir->early_clobber = early_clobber;
582 ir->regno = regno;
583 ir->next = next;
584 return ir;
587 /* Free insn reg info IR. */
588 static void
589 free_insn_reg (struct lra_insn_reg *ir)
591 pool_free (insn_reg_pool, ir);
594 /* Free insn reg info list IR. */
595 static void
596 free_insn_regs (struct lra_insn_reg *ir)
598 struct lra_insn_reg *next_ir;
600 for (; ir != NULL; ir = next_ir)
602 next_ir = ir->next;
603 free_insn_reg (ir);
607 /* Finish pool for insn reg info. */
608 static void
609 finish_insn_regs (void)
611 free_alloc_pool (insn_reg_pool);
616 /* This page contains code dealing LRA insn info (or in other words
617 LRA internal insn representation). */
619 /* Map INSN_CODE -> the static insn data. This info is valid during
620 all translation unit. */
621 struct lra_static_insn_data *insn_code_data[LAST_INSN_CODE];
623 /* Debug insns are represented as a special insn with one input
624 operand which is RTL expression in var_location. */
626 /* The following data are used as static insn operand data for all
627 debug insns. If structure lra_operand_data is changed, the
628 initializer should be changed too. */
629 static struct lra_operand_data debug_operand_data =
631 NULL, /* alternative */
632 VOIDmode, /* We are not interesting in the operand mode. */
633 OP_IN,
634 0, 0, 0, 0
637 /* The following data are used as static insn data for all debug
638 insns. If structure lra_static_insn_data is changed, the
639 initializer should be changed too. */
640 static struct lra_static_insn_data debug_insn_static_data =
642 &debug_operand_data,
643 0, /* Duplication operands #. */
644 -1, /* Commutative operand #. */
645 1, /* Operands #. There is only one operand which is debug RTL
646 expression. */
647 0, /* Duplications #. */
648 0, /* Alternatives #. We are not interesting in alternatives
649 because we does not proceed debug_insns for reloads. */
650 NULL, /* Hard registers referenced in machine description. */
651 NULL /* Descriptions of operands in alternatives. */
654 /* Called once per compiler work to initialize some LRA data related
655 to insns. */
656 static void
657 init_insn_code_data_once (void)
659 memset (insn_code_data, 0, sizeof (insn_code_data));
662 /* Called once per compiler work to finalize some LRA data related to
663 insns. */
664 static void
665 finish_insn_code_data_once (void)
667 int i;
669 for (i = 0; i < LAST_INSN_CODE; i++)
671 if (insn_code_data[i] != NULL)
672 free (insn_code_data[i]);
676 /* Return static insn data, allocate and setup if necessary. Although
677 dup_num is static data (it depends only on icode), to set it up we
678 need to extract insn first. So recog_data should be valid for
679 normal insn (ICODE >= 0) before the call. */
680 static struct lra_static_insn_data *
681 get_static_insn_data (int icode, int nop, int ndup, int nalt)
683 struct lra_static_insn_data *data;
684 size_t n_bytes;
686 lra_assert (icode < LAST_INSN_CODE);
687 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
688 return data;
689 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
690 n_bytes = sizeof (struct lra_static_insn_data)
691 + sizeof (struct lra_operand_data) * nop
692 + sizeof (int) * ndup;
693 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
694 data->operand_alternative = NULL;
695 data->n_operands = nop;
696 data->n_dups = ndup;
697 data->n_alternatives = nalt;
698 data->operand = ((struct lra_operand_data *)
699 ((char *) data + sizeof (struct lra_static_insn_data)));
700 data->dup_num = ((int *) ((char *) data->operand
701 + sizeof (struct lra_operand_data) * nop));
702 if (icode >= 0)
704 int i;
706 insn_code_data[icode] = data;
707 for (i = 0; i < nop; i++)
709 data->operand[i].constraint
710 = insn_data[icode].operand[i].constraint;
711 data->operand[i].mode = insn_data[icode].operand[i].mode;
712 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
713 data->operand[i].is_operator
714 = insn_data[icode].operand[i].is_operator;
715 data->operand[i].type
716 = (data->operand[i].constraint[0] == '=' ? OP_OUT
717 : data->operand[i].constraint[0] == '+' ? OP_INOUT
718 : OP_IN);
719 data->operand[i].is_address = false;
721 for (i = 0; i < ndup; i++)
722 data->dup_num[i] = recog_data.dup_num[i];
724 return data;
727 /* The current length of the following array. */
728 int lra_insn_recog_data_len;
730 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
731 lra_insn_recog_data_t *lra_insn_recog_data;
733 /* Initialize LRA data about insns. */
734 static void
735 init_insn_recog_data (void)
737 lra_insn_recog_data_len = 0;
738 lra_insn_recog_data = NULL;
739 init_insn_regs ();
742 /* Expand, if necessary, LRA data about insns. */
743 static void
744 check_and_expand_insn_recog_data (int index)
746 int i, old;
748 if (lra_insn_recog_data_len > index)
749 return;
750 old = lra_insn_recog_data_len;
751 lra_insn_recog_data_len = index * 3 / 2 + 1;
752 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
753 lra_insn_recog_data,
754 lra_insn_recog_data_len);
755 for (i = old; i < lra_insn_recog_data_len; i++)
756 lra_insn_recog_data[i] = NULL;
759 /* Finish LRA DATA about insn. */
760 static void
761 free_insn_recog_data (lra_insn_recog_data_t data)
763 if (data->operand_loc != NULL)
764 free (data->operand_loc);
765 if (data->dup_loc != NULL)
766 free (data->dup_loc);
767 if (data->arg_hard_regs != NULL)
768 free (data->arg_hard_regs);
769 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
771 if (data->insn_static_data->operand_alternative != NULL)
772 free (const_cast <operand_alternative *>
773 (data->insn_static_data->operand_alternative));
774 free_insn_regs (data->insn_static_data->hard_regs);
775 free (data->insn_static_data);
777 free_insn_regs (data->regs);
778 data->regs = NULL;
779 free (data);
782 /* Finish LRA data about all insns. */
783 static void
784 finish_insn_recog_data (void)
786 int i;
787 lra_insn_recog_data_t data;
789 for (i = 0; i < lra_insn_recog_data_len; i++)
790 if ((data = lra_insn_recog_data[i]) != NULL)
791 free_insn_recog_data (data);
792 finish_insn_regs ();
793 free (lra_insn_recog_data);
796 /* Setup info about operands in alternatives of LRA DATA of insn. */
797 static void
798 setup_operand_alternative (lra_insn_recog_data_t data,
799 const operand_alternative *op_alt)
801 int i, j, nop, nalt;
802 int icode = data->icode;
803 struct lra_static_insn_data *static_data = data->insn_static_data;
805 static_data->commutative = -1;
806 nop = static_data->n_operands;
807 nalt = static_data->n_alternatives;
808 static_data->operand_alternative = op_alt;
809 for (i = 0; i < nop; i++)
811 static_data->operand[i].early_clobber = false;
812 static_data->operand[i].is_address = false;
813 if (static_data->operand[i].constraint[0] == '%')
815 /* We currently only support one commutative pair of operands. */
816 if (static_data->commutative < 0)
817 static_data->commutative = i;
818 else
819 lra_assert (icode < 0); /* Asm */
820 /* The last operand should not be marked commutative. */
821 lra_assert (i != nop - 1);
824 for (j = 0; j < nalt; j++)
825 for (i = 0; i < nop; i++, op_alt++)
827 static_data->operand[i].early_clobber |= op_alt->earlyclobber;
828 static_data->operand[i].is_address |= op_alt->is_address;
832 /* Recursively process X and collect info about registers, which are
833 not the insn operands, in X with TYPE (in/out/inout) and flag that
834 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
835 to LIST. X is a part of insn given by DATA. Return the result
836 list. */
837 static struct lra_insn_reg *
838 collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data,
839 struct lra_insn_reg *list,
840 enum op_type type, bool early_clobber)
842 int i, j, regno, last;
843 bool subreg_p;
844 machine_mode mode;
845 struct lra_insn_reg *curr;
846 rtx op = *x;
847 enum rtx_code code = GET_CODE (op);
848 const char *fmt = GET_RTX_FORMAT (code);
850 for (i = 0; i < data->insn_static_data->n_operands; i++)
851 if (x == data->operand_loc[i])
852 /* It is an operand loc. Stop here. */
853 return list;
854 for (i = 0; i < data->insn_static_data->n_dups; i++)
855 if (x == data->dup_loc[i])
856 /* It is a dup loc. Stop here. */
857 return list;
858 mode = GET_MODE (op);
859 subreg_p = false;
860 if (code == SUBREG)
862 op = SUBREG_REG (op);
863 code = GET_CODE (op);
864 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op)))
866 mode = GET_MODE (op);
867 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
868 subreg_p = true;
871 if (REG_P (op))
873 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
874 return list;
875 /* Process all regs even unallocatable ones as we need info
876 about all regs for rematerialization pass. */
877 for (last = regno + hard_regno_nregs[regno][mode];
878 regno < last;
879 regno++)
881 for (curr = list; curr != NULL; curr = curr->next)
882 if (curr->regno == regno && curr->subreg_p == subreg_p
883 && curr->biggest_mode == mode)
885 if (curr->type != type)
886 curr->type = OP_INOUT;
887 if (curr->early_clobber != early_clobber)
888 curr->early_clobber = true;
889 break;
891 if (curr == NULL)
893 /* This is a new hard regno or the info can not be
894 integrated into the found structure. */
895 #ifdef STACK_REGS
896 early_clobber
897 = (early_clobber
898 /* This clobber is to inform popping floating
899 point stack only. */
900 && ! (FIRST_STACK_REG <= regno
901 && regno <= LAST_STACK_REG));
902 #endif
903 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
904 early_clobber, list);
907 return list;
909 switch (code)
911 case SET:
912 list = collect_non_operand_hard_regs (&SET_DEST (op), data,
913 list, OP_OUT, false);
914 list = collect_non_operand_hard_regs (&SET_SRC (op), data,
915 list, OP_IN, false);
916 break;
917 case CLOBBER:
918 /* We treat clobber of non-operand hard registers as early
919 clobber (the behavior is expected from asm). */
920 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
921 list, OP_OUT, true);
922 break;
923 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
924 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
925 list, OP_INOUT, false);
926 break;
927 case PRE_MODIFY: case POST_MODIFY:
928 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
929 list, OP_INOUT, false);
930 list = collect_non_operand_hard_regs (&XEXP (op, 1), data,
931 list, OP_IN, false);
932 break;
933 default:
934 fmt = GET_RTX_FORMAT (code);
935 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
937 if (fmt[i] == 'e')
938 list = collect_non_operand_hard_regs (&XEXP (op, i), data,
939 list, OP_IN, false);
940 else if (fmt[i] == 'E')
941 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
942 list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data,
943 list, OP_IN, false);
946 return list;
949 /* Set up and return info about INSN. Set up the info if it is not set up
950 yet. */
951 lra_insn_recog_data_t
952 lra_set_insn_recog_data (rtx_insn *insn)
954 lra_insn_recog_data_t data;
955 int i, n, icode;
956 rtx **locs;
957 unsigned int uid = INSN_UID (insn);
958 struct lra_static_insn_data *insn_static_data;
960 check_and_expand_insn_recog_data (uid);
961 if (DEBUG_INSN_P (insn))
962 icode = -1;
963 else
965 icode = INSN_CODE (insn);
966 if (icode < 0)
967 /* It might be a new simple insn which is not recognized yet. */
968 INSN_CODE (insn) = icode = recog_memoized (insn);
970 data = XNEW (struct lra_insn_recog_data);
971 lra_insn_recog_data[uid] = data;
972 data->insn = insn;
973 data->used_insn_alternative = -1;
974 data->icode = icode;
975 data->regs = NULL;
976 if (DEBUG_INSN_P (insn))
978 data->insn_static_data = &debug_insn_static_data;
979 data->dup_loc = NULL;
980 data->arg_hard_regs = NULL;
981 data->preferred_alternatives = ALL_ALTERNATIVES;
982 data->operand_loc = XNEWVEC (rtx *, 1);
983 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
984 return data;
986 if (icode < 0)
988 int nop, nalt;
989 machine_mode operand_mode[MAX_RECOG_OPERANDS];
990 const char *constraints[MAX_RECOG_OPERANDS];
992 nop = asm_noperands (PATTERN (insn));
993 data->operand_loc = data->dup_loc = NULL;
994 nalt = 1;
995 if (nop < 0)
997 /* It is a special insn like USE or CLOBBER. We should
998 recognize any regular insn otherwise LRA can do nothing
999 with this insn. */
1000 gcc_assert (GET_CODE (PATTERN (insn)) == USE
1001 || GET_CODE (PATTERN (insn)) == CLOBBER
1002 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
1003 data->insn_static_data = insn_static_data
1004 = get_static_insn_data (-1, 0, 0, nalt);
1006 else
1008 /* expand_asm_operands makes sure there aren't too many
1009 operands. */
1010 lra_assert (nop <= MAX_RECOG_OPERANDS);
1011 if (nop != 0)
1012 data->operand_loc = XNEWVEC (rtx *, nop);
1013 /* Now get the operand values and constraints out of the
1014 insn. */
1015 decode_asm_operands (PATTERN (insn), NULL,
1016 data->operand_loc,
1017 constraints, operand_mode, NULL);
1018 if (nop > 0)
1020 const char *p = recog_data.constraints[0];
1022 for (p = constraints[0]; *p; p++)
1023 nalt += *p == ',';
1025 data->insn_static_data = insn_static_data
1026 = get_static_insn_data (-1, nop, 0, nalt);
1027 for (i = 0; i < nop; i++)
1029 insn_static_data->operand[i].mode = operand_mode[i];
1030 insn_static_data->operand[i].constraint = constraints[i];
1031 insn_static_data->operand[i].strict_low = false;
1032 insn_static_data->operand[i].is_operator = false;
1033 insn_static_data->operand[i].is_address = false;
1036 for (i = 0; i < insn_static_data->n_operands; i++)
1037 insn_static_data->operand[i].type
1038 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1039 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1040 : OP_IN);
1041 data->preferred_alternatives = ALL_ALTERNATIVES;
1042 if (nop > 0)
1044 operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1045 nalt * nop);
1046 preprocess_constraints (nop, nalt, constraints, op_alt);
1047 setup_operand_alternative (data, op_alt);
1050 else
1052 insn_extract (insn);
1053 data->insn_static_data = insn_static_data
1054 = get_static_insn_data (icode, insn_data[icode].n_operands,
1055 insn_data[icode].n_dups,
1056 insn_data[icode].n_alternatives);
1057 n = insn_static_data->n_operands;
1058 if (n == 0)
1059 locs = NULL;
1060 else
1062 locs = XNEWVEC (rtx *, n);
1063 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1065 data->operand_loc = locs;
1066 n = insn_static_data->n_dups;
1067 if (n == 0)
1068 locs = NULL;
1069 else
1071 locs = XNEWVEC (rtx *, n);
1072 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1074 data->dup_loc = locs;
1075 data->preferred_alternatives = get_preferred_alternatives (insn);
1076 const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1077 if (!insn_static_data->operand_alternative)
1078 setup_operand_alternative (data, op_alt);
1079 else if (op_alt != insn_static_data->operand_alternative)
1080 insn_static_data->operand_alternative = op_alt;
1082 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1083 insn_static_data->hard_regs = NULL;
1084 else
1085 insn_static_data->hard_regs
1086 = collect_non_operand_hard_regs (&PATTERN (insn), data,
1087 NULL, OP_IN, false);
1088 data->arg_hard_regs = NULL;
1089 if (CALL_P (insn))
1091 rtx link;
1092 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1094 n_hard_regs = 0;
1095 /* Finding implicit hard register usage. We believe it will be
1096 not changed whatever transformations are used. Call insns
1097 are such example. */
1098 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1099 link != NULL_RTX;
1100 link = XEXP (link, 1))
1101 if (GET_CODE (XEXP (link, 0)) == USE
1102 && REG_P (XEXP (XEXP (link, 0), 0)))
1104 regno = REGNO (XEXP (XEXP (link, 0), 0));
1105 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1106 /* It is an argument register. */
1107 for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
1108 arg_hard_regs[n_hard_regs++] = regno + i;
1110 if (n_hard_regs != 0)
1112 arg_hard_regs[n_hard_regs++] = -1;
1113 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1114 memcpy (data->arg_hard_regs, arg_hard_regs,
1115 sizeof (int) * n_hard_regs);
1118 /* Some output operand can be recognized only from the context not
1119 from the constraints which are empty in this case. Call insn may
1120 contain a hard register in set destination with empty constraint
1121 and extract_insn treats them as an input. */
1122 for (i = 0; i < insn_static_data->n_operands; i++)
1124 int j;
1125 rtx pat, set;
1126 struct lra_operand_data *operand = &insn_static_data->operand[i];
1128 /* ??? Should we treat 'X' the same way. It looks to me that
1129 'X' means anything and empty constraint means we do not
1130 care. */
1131 if (operand->type != OP_IN || *operand->constraint != '\0'
1132 || operand->is_operator)
1133 continue;
1134 pat = PATTERN (insn);
1135 if (GET_CODE (pat) == SET)
1137 if (data->operand_loc[i] != &SET_DEST (pat))
1138 continue;
1140 else if (GET_CODE (pat) == PARALLEL)
1142 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1144 set = XVECEXP (PATTERN (insn), 0, j);
1145 if (GET_CODE (set) == SET
1146 && &SET_DEST (set) == data->operand_loc[i])
1147 break;
1149 if (j < 0)
1150 continue;
1152 else
1153 continue;
1154 operand->type = OP_OUT;
1156 return data;
1159 /* Return info about insn give by UID. The info should be already set
1160 up. */
1161 static lra_insn_recog_data_t
1162 get_insn_recog_data_by_uid (int uid)
1164 lra_insn_recog_data_t data;
1166 data = lra_insn_recog_data[uid];
1167 lra_assert (data != NULL);
1168 return data;
1171 /* Invalidate all info about insn given by its UID. */
1172 static void
1173 invalidate_insn_recog_data (int uid)
1175 lra_insn_recog_data_t data;
1177 data = lra_insn_recog_data[uid];
1178 lra_assert (data != NULL);
1179 free_insn_recog_data (data);
1180 lra_insn_recog_data[uid] = NULL;
1183 /* Update all the insn info about INSN. It is usually called when
1184 something in the insn was changed. Return the updated info. */
1185 lra_insn_recog_data_t
1186 lra_update_insn_recog_data (rtx_insn *insn)
1188 lra_insn_recog_data_t data;
1189 int n;
1190 unsigned int uid = INSN_UID (insn);
1191 struct lra_static_insn_data *insn_static_data;
1192 HOST_WIDE_INT sp_offset = 0;
1194 check_and_expand_insn_recog_data (uid);
1195 if ((data = lra_insn_recog_data[uid]) != NULL
1196 && data->icode != INSN_CODE (insn))
1198 sp_offset = data->sp_offset;
1199 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1200 invalidate_insn_recog_data (uid);
1201 data = NULL;
1203 if (data == NULL)
1205 data = lra_get_insn_recog_data (insn);
1206 /* Initiate or restore SP offset. */
1207 data->sp_offset = sp_offset;
1208 return data;
1210 insn_static_data = data->insn_static_data;
1211 data->used_insn_alternative = -1;
1212 if (DEBUG_INSN_P (insn))
1213 return data;
1214 if (data->icode < 0)
1216 int nop;
1217 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1218 const char *constraints[MAX_RECOG_OPERANDS];
1220 nop = asm_noperands (PATTERN (insn));
1221 if (nop >= 0)
1223 lra_assert (nop == data->insn_static_data->n_operands);
1224 /* Now get the operand values and constraints out of the
1225 insn. */
1226 decode_asm_operands (PATTERN (insn), NULL,
1227 data->operand_loc,
1228 constraints, operand_mode, NULL);
1229 #ifdef ENABLE_CHECKING
1231 int i;
1233 for (i = 0; i < nop; i++)
1234 lra_assert
1235 (insn_static_data->operand[i].mode == operand_mode[i]
1236 && insn_static_data->operand[i].constraint == constraints[i]
1237 && ! insn_static_data->operand[i].is_operator);
1239 #endif
1241 #ifdef ENABLE_CHECKING
1243 int i;
1245 for (i = 0; i < insn_static_data->n_operands; i++)
1246 lra_assert
1247 (insn_static_data->operand[i].type
1248 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1249 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1250 : OP_IN));
1252 #endif
1254 else
1256 insn_extract (insn);
1257 n = insn_static_data->n_operands;
1258 if (n != 0)
1259 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1260 n = insn_static_data->n_dups;
1261 if (n != 0)
1262 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1263 lra_assert (check_bool_attrs (insn));
1265 return data;
1268 /* Set up that INSN is using alternative ALT now. */
1269 void
1270 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1272 lra_insn_recog_data_t data;
1274 data = lra_get_insn_recog_data (insn);
1275 data->used_insn_alternative = alt;
1278 /* Set up that insn with UID is using alternative ALT now. The insn
1279 info should be already set up. */
1280 void
1281 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1283 lra_insn_recog_data_t data;
1285 check_and_expand_insn_recog_data (uid);
1286 data = lra_insn_recog_data[uid];
1287 lra_assert (data != NULL);
1288 data->used_insn_alternative = alt;
1293 /* This page contains code dealing with common register info and
1294 pseudo copies. */
1296 /* The size of the following array. */
1297 static int reg_info_size;
1298 /* Common info about each register. */
1299 struct lra_reg *lra_reg_info;
1301 /* Last register value. */
1302 static int last_reg_value;
1304 /* Return new register value. */
1305 static int
1306 get_new_reg_value (void)
1308 return ++last_reg_value;
1311 /* Pools for copies. */
1312 static alloc_pool copy_pool;
1314 /* Vec referring to pseudo copies. */
1315 static vec<lra_copy_t> copy_vec;
1317 /* Initialize I-th element of lra_reg_info. */
1318 static inline void
1319 initialize_lra_reg_info_element (int i)
1321 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1322 #ifdef STACK_REGS
1323 lra_reg_info[i].no_stack_p = false;
1324 #endif
1325 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1326 CLEAR_HARD_REG_SET (lra_reg_info[i].actual_call_used_reg_set);
1327 lra_reg_info[i].preferred_hard_regno1 = -1;
1328 lra_reg_info[i].preferred_hard_regno2 = -1;
1329 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1330 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1331 lra_reg_info[i].biggest_mode = VOIDmode;
1332 lra_reg_info[i].live_ranges = NULL;
1333 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1334 lra_reg_info[i].last_reload = 0;
1335 lra_reg_info[i].restore_regno = -1;
1336 lra_reg_info[i].val = get_new_reg_value ();
1337 lra_reg_info[i].offset = 0;
1338 lra_reg_info[i].copies = NULL;
1341 /* Initialize common reg info and copies. */
1342 static void
1343 init_reg_info (void)
1345 int i;
1347 last_reg_value = 0;
1348 reg_info_size = max_reg_num () * 3 / 2 + 1;
1349 lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
1350 for (i = 0; i < reg_info_size; i++)
1351 initialize_lra_reg_info_element (i);
1352 copy_pool
1353 = create_alloc_pool ("lra copies", sizeof (struct lra_copy), 100);
1354 copy_vec.create (100);
1358 /* Finish common reg info and copies. */
1359 static void
1360 finish_reg_info (void)
1362 int i;
1364 for (i = 0; i < reg_info_size; i++)
1365 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1366 free (lra_reg_info);
1367 reg_info_size = 0;
1368 free_alloc_pool (copy_pool);
1369 copy_vec.release ();
1372 /* Expand common reg info if it is necessary. */
1373 static void
1374 expand_reg_info (void)
1376 int i, old = reg_info_size;
1378 if (reg_info_size > max_reg_num ())
1379 return;
1380 reg_info_size = max_reg_num () * 3 / 2 + 1;
1381 lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
1382 for (i = old; i < reg_info_size; i++)
1383 initialize_lra_reg_info_element (i);
1386 /* Free all copies. */
1387 void
1388 lra_free_copies (void)
1390 lra_copy_t cp;
1392 while (copy_vec.length () != 0)
1394 cp = copy_vec.pop ();
1395 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1396 pool_free (copy_pool, cp);
1400 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1401 frequency is FREQ. */
1402 void
1403 lra_create_copy (int regno1, int regno2, int freq)
1405 bool regno1_dest_p;
1406 lra_copy_t cp;
1408 lra_assert (regno1 != regno2);
1409 regno1_dest_p = true;
1410 if (regno1 > regno2)
1412 int temp = regno2;
1414 regno1_dest_p = false;
1415 regno2 = regno1;
1416 regno1 = temp;
1418 cp = (lra_copy_t) pool_alloc (copy_pool);
1419 copy_vec.safe_push (cp);
1420 cp->regno1_dest_p = regno1_dest_p;
1421 cp->freq = freq;
1422 cp->regno1 = regno1;
1423 cp->regno2 = regno2;
1424 cp->regno1_next = lra_reg_info[regno1].copies;
1425 lra_reg_info[regno1].copies = cp;
1426 cp->regno2_next = lra_reg_info[regno2].copies;
1427 lra_reg_info[regno2].copies = cp;
1428 if (lra_dump_file != NULL)
1429 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1430 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1433 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1434 NULL. */
1435 lra_copy_t
1436 lra_get_copy (int n)
1438 if (n >= (int) copy_vec.length ())
1439 return NULL;
1440 return copy_vec[n];
1445 /* This page contains code dealing with info about registers in
1446 insns. */
1448 /* Process X of insn UID recursively and add info (operand type is
1449 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1450 about registers in X to the insn DATA. */
1451 static void
1452 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid,
1453 enum op_type type, bool early_clobber)
1455 int i, j, regno;
1456 bool subreg_p;
1457 machine_mode mode;
1458 const char *fmt;
1459 enum rtx_code code;
1460 struct lra_insn_reg *curr;
1462 code = GET_CODE (x);
1463 mode = GET_MODE (x);
1464 subreg_p = false;
1465 if (GET_CODE (x) == SUBREG)
1467 x = SUBREG_REG (x);
1468 code = GET_CODE (x);
1469 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1471 mode = GET_MODE (x);
1472 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
1473 subreg_p = true;
1476 if (REG_P (x))
1478 regno = REGNO (x);
1479 /* Process all regs even unallocatable ones as we need info about
1480 all regs for rematerialization pass. */
1481 expand_reg_info ();
1482 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid))
1484 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1485 early_clobber, data->regs);
1486 return;
1488 else
1490 for (curr = data->regs; curr != NULL; curr = curr->next)
1491 if (curr->regno == regno)
1493 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1494 /* The info can not be integrated into the found
1495 structure. */
1496 data->regs = new_insn_reg (data->insn, regno, type, mode,
1497 subreg_p, early_clobber,
1498 data->regs);
1499 else
1501 if (curr->type != type)
1502 curr->type = OP_INOUT;
1503 if (curr->early_clobber != early_clobber)
1504 curr->early_clobber = true;
1506 return;
1508 gcc_unreachable ();
1512 switch (code)
1514 case SET:
1515 add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false);
1516 add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false);
1517 break;
1518 case CLOBBER:
1519 /* We treat clobber of non-operand hard registers as early
1520 clobber (the behavior is expected from asm). */
1521 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true);
1522 break;
1523 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1524 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1525 break;
1526 case PRE_MODIFY: case POST_MODIFY:
1527 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1528 add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false);
1529 break;
1530 default:
1531 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1532 /* Some targets place small structures in registers for return
1533 values of functions, and those registers are wrapped in
1534 PARALLEL that we may see as the destination of a SET. Here
1535 is an example:
1537 (call_insn 13 12 14 2 (set (parallel:BLK [
1538 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1539 (const_int 0 [0]))
1540 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1541 (const_int 8 [0x8]))
1543 (call (mem:QI (symbol_ref:DI (... */
1544 type = OP_IN;
1545 fmt = GET_RTX_FORMAT (code);
1546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1548 if (fmt[i] == 'e')
1549 add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false);
1550 else if (fmt[i] == 'E')
1552 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1553 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid,
1554 type, false);
1560 /* Return execution frequency of INSN. */
1561 static int
1562 get_insn_freq (rtx_insn *insn)
1564 basic_block bb = BLOCK_FOR_INSN (insn);
1566 gcc_checking_assert (bb != NULL);
1567 return REG_FREQ_FROM_BB (bb);
1570 /* Invalidate all reg info of INSN with DATA and execution frequency
1571 FREQ. Update common info about the invalidated registers. */
1572 static void
1573 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1574 int freq)
1576 int uid;
1577 bool debug_p;
1578 unsigned int i;
1579 struct lra_insn_reg *ir, *next_ir;
1581 uid = INSN_UID (insn);
1582 debug_p = DEBUG_INSN_P (insn);
1583 for (ir = data->regs; ir != NULL; ir = next_ir)
1585 i = ir->regno;
1586 next_ir = ir->next;
1587 free_insn_reg (ir);
1588 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1589 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1591 lra_reg_info[i].nrefs--;
1592 lra_reg_info[i].freq -= freq;
1593 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1596 data->regs = NULL;
1599 /* Invalidate all reg info of INSN. Update common info about the
1600 invalidated registers. */
1601 void
1602 lra_invalidate_insn_regno_info (rtx_insn *insn)
1604 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1605 get_insn_freq (insn));
1608 /* Update common reg info from reg info of insn given by its DATA and
1609 execution frequency FREQ. */
1610 static void
1611 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1613 unsigned int i;
1614 struct lra_insn_reg *ir;
1616 for (ir = data->regs; ir != NULL; ir = ir->next)
1617 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1619 lra_reg_info[i].nrefs++;
1620 lra_reg_info[i].freq += freq;
1624 /* Set up insn reg info of INSN. Update common reg info from reg info
1625 of INSN. */
1626 void
1627 lra_update_insn_regno_info (rtx_insn *insn)
1629 int i, uid, freq;
1630 lra_insn_recog_data_t data;
1631 struct lra_static_insn_data *static_data;
1632 enum rtx_code code;
1633 rtx link;
1635 if (! INSN_P (insn))
1636 return;
1637 data = lra_get_insn_recog_data (insn);
1638 static_data = data->insn_static_data;
1639 freq = get_insn_freq (insn);
1640 invalidate_insn_data_regno_info (data, insn, freq);
1641 uid = INSN_UID (insn);
1642 for (i = static_data->n_operands - 1; i >= 0; i--)
1643 add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid,
1644 static_data->operand[i].type,
1645 static_data->operand[i].early_clobber);
1646 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1647 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid,
1648 code == USE ? OP_IN : OP_OUT, false);
1649 if (CALL_P (insn))
1650 /* On some targets call insns can refer to pseudos in memory in
1651 CALL_INSN_FUNCTION_USAGE list. Process them in order to
1652 consider their occurrences in calls for different
1653 transformations (e.g. inheritance) with given pseudos. */
1654 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1655 link != NULL_RTX;
1656 link = XEXP (link, 1))
1657 if (((code = GET_CODE (XEXP (link, 0))) == USE || code == CLOBBER)
1658 && MEM_P (XEXP (XEXP (link, 0), 0)))
1659 add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), uid,
1660 code == USE ? OP_IN : OP_OUT, false);
1661 if (NONDEBUG_INSN_P (insn))
1662 setup_insn_reg_info (data, freq);
1665 /* Return reg info of insn given by it UID. */
1666 struct lra_insn_reg *
1667 lra_get_insn_regs (int uid)
1669 lra_insn_recog_data_t data;
1671 data = get_insn_recog_data_by_uid (uid);
1672 return data->regs;
1677 /* This page contains code dealing with stack of the insns which
1678 should be processed by the next constraint pass. */
1680 /* Bitmap used to put an insn on the stack only in one exemplar. */
1681 static sbitmap lra_constraint_insn_stack_bitmap;
1683 /* The stack itself. */
1684 vec<rtx_insn *> lra_constraint_insn_stack;
1686 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1687 info for INSN, otherwise only update it if INSN is not already on the
1688 stack. */
1689 static inline void
1690 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1692 unsigned int uid = INSN_UID (insn);
1693 if (always_update)
1694 lra_update_insn_regno_info (insn);
1695 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1696 lra_constraint_insn_stack_bitmap =
1697 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1698 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1699 return;
1700 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1701 if (! always_update)
1702 lra_update_insn_regno_info (insn);
1703 lra_constraint_insn_stack.safe_push (insn);
1706 /* Put INSN on the stack. */
1707 void
1708 lra_push_insn (rtx_insn *insn)
1710 lra_push_insn_1 (insn, false);
1713 /* Put INSN on the stack and update its reg info. */
1714 void
1715 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1717 lra_push_insn_1 (insn, true);
1720 /* Put insn with UID on the stack. */
1721 void
1722 lra_push_insn_by_uid (unsigned int uid)
1724 lra_push_insn (lra_insn_recog_data[uid]->insn);
1727 /* Take the last-inserted insns off the stack and return it. */
1728 rtx_insn *
1729 lra_pop_insn (void)
1731 rtx_insn *insn = lra_constraint_insn_stack.pop ();
1732 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1733 return insn;
1736 /* Return the current size of the insn stack. */
1737 unsigned int
1738 lra_insn_stack_length (void)
1740 return lra_constraint_insn_stack.length ();
1743 /* Push insns FROM to TO (excluding it) going in reverse order. */
1744 static void
1745 push_insns (rtx_insn *from, rtx_insn *to)
1747 rtx_insn *insn;
1749 if (from == NULL_RTX)
1750 return;
1751 for (insn = from; insn != to; insn = PREV_INSN (insn))
1752 if (INSN_P (insn))
1753 lra_push_insn (insn);
1756 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1757 taken from the next BB insn after LAST or zero if there in such
1758 insn. */
1759 static void
1760 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1762 rtx_insn *before = next_nonnote_insn_bb (last);
1763 HOST_WIDE_INT offset = (before == NULL_RTX || ! INSN_P (before)
1764 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1766 for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1767 lra_get_insn_recog_data (insn)->sp_offset = offset;
1770 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1771 insns onto the stack. Print about emitting the insns with
1772 TITLE. */
1773 void
1774 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1775 const char *title)
1777 rtx_insn *last;
1779 if (before == NULL_RTX && after == NULL_RTX)
1780 return;
1781 if (lra_dump_file != NULL)
1783 dump_insn_slim (lra_dump_file, insn);
1784 if (before != NULL_RTX)
1786 fprintf (lra_dump_file," %s before:\n", title);
1787 dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1789 if (after != NULL_RTX)
1791 fprintf (lra_dump_file, " %s after:\n", title);
1792 dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1794 fprintf (lra_dump_file, "\n");
1796 if (before != NULL_RTX)
1798 emit_insn_before (before, insn);
1799 push_insns (PREV_INSN (insn), PREV_INSN (before));
1800 setup_sp_offset (before, PREV_INSN (insn));
1802 if (after != NULL_RTX)
1804 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1806 emit_insn_after (after, insn);
1807 push_insns (last, insn);
1808 setup_sp_offset (after, last);
1814 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1815 register NEW_REG. Return true if any change was made. */
1816 bool
1817 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg)
1819 rtx x = *loc;
1820 bool result = false;
1821 enum rtx_code code;
1822 const char *fmt;
1823 int i, j;
1825 if (x == NULL_RTX)
1826 return false;
1828 code = GET_CODE (x);
1829 if (code == REG && (int) REGNO (x) == old_regno)
1831 machine_mode mode = GET_MODE (*loc);
1832 machine_mode inner_mode = GET_MODE (new_reg);
1834 if (mode != inner_mode
1835 && ! (CONST_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1837 if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode)
1838 || ! SCALAR_INT_MODE_P (inner_mode))
1839 new_reg = gen_rtx_SUBREG (mode, new_reg, 0);
1840 else
1841 new_reg = gen_lowpart_SUBREG (mode, new_reg);
1843 *loc = new_reg;
1844 return true;
1847 /* Scan all the operand sub-expressions. */
1848 fmt = GET_RTX_FORMAT (code);
1849 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1851 if (fmt[i] == 'e')
1853 if (lra_substitute_pseudo (&XEXP (x, i), old_regno, new_reg))
1854 result = true;
1856 else if (fmt[i] == 'E')
1858 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1859 if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno, new_reg))
1860 result = true;
1863 return result;
1866 /* Call lra_substitute_pseudo within an insn. This won't update the insn ptr,
1867 just the contents of the insn. */
1868 bool
1869 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno, rtx new_reg)
1871 rtx loc = insn;
1872 return lra_substitute_pseudo (&loc, old_regno, new_reg);
1877 /* This page contains code dealing with scratches (changing them onto
1878 pseudos and restoring them from the pseudos).
1880 We change scratches into pseudos at the beginning of LRA to
1881 simplify dealing with them (conflicts, hard register assignments).
1883 If the pseudo denoting scratch was spilled it means that we do need
1884 a hard register for it. Such pseudos are transformed back to
1885 scratches at the end of LRA. */
1887 /* Description of location of a former scratch operand. */
1888 struct sloc
1890 rtx_insn *insn; /* Insn where the scratch was. */
1891 int nop; /* Number of the operand which was a scratch. */
1894 typedef struct sloc *sloc_t;
1896 /* Locations of the former scratches. */
1897 static vec<sloc_t> scratches;
1899 /* Bitmap of scratch regnos. */
1900 static bitmap_head scratch_bitmap;
1902 /* Bitmap of scratch operands. */
1903 static bitmap_head scratch_operand_bitmap;
1905 /* Return true if pseudo REGNO is made of SCRATCH. */
1906 bool
1907 lra_former_scratch_p (int regno)
1909 return bitmap_bit_p (&scratch_bitmap, regno);
1912 /* Return true if the operand NOP of INSN is a former scratch. */
1913 bool
1914 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
1916 return bitmap_bit_p (&scratch_operand_bitmap,
1917 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
1920 /* Register operand NOP in INSN as a former scratch. It will be
1921 changed to scratch back, if it is necessary, at the LRA end. */
1922 void
1923 lra_register_new_scratch_op (rtx_insn *insn, int nop)
1925 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
1926 rtx op = *id->operand_loc[nop];
1927 sloc_t loc = XNEW (struct sloc);
1928 lra_assert (REG_P (op));
1929 loc->insn = insn;
1930 loc->nop = nop;
1931 scratches.safe_push (loc);
1932 bitmap_set_bit (&scratch_bitmap, REGNO (op));
1933 bitmap_set_bit (&scratch_operand_bitmap,
1934 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
1935 add_reg_note (insn, REG_UNUSED, op);
1938 /* Change scratches onto pseudos and save their location. */
1939 static void
1940 remove_scratches (void)
1942 int i;
1943 bool insn_changed_p;
1944 basic_block bb;
1945 rtx_insn *insn;
1946 rtx reg;
1947 lra_insn_recog_data_t id;
1948 struct lra_static_insn_data *static_id;
1950 scratches.create (get_max_uid ());
1951 bitmap_initialize (&scratch_bitmap, &reg_obstack);
1952 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
1953 FOR_EACH_BB_FN (bb, cfun)
1954 FOR_BB_INSNS (bb, insn)
1955 if (INSN_P (insn))
1957 id = lra_get_insn_recog_data (insn);
1958 static_id = id->insn_static_data;
1959 insn_changed_p = false;
1960 for (i = 0; i < static_id->n_operands; i++)
1961 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
1962 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
1964 insn_changed_p = true;
1965 *id->operand_loc[i] = reg
1966 = lra_create_new_reg (static_id->operand[i].mode,
1967 *id->operand_loc[i], ALL_REGS, NULL);
1968 lra_register_new_scratch_op (insn, i);
1969 if (lra_dump_file != NULL)
1970 fprintf (lra_dump_file,
1971 "Removing SCRATCH in insn #%u (nop %d)\n",
1972 INSN_UID (insn), i);
1974 if (insn_changed_p)
1975 /* Because we might use DF right after caller-saves sub-pass
1976 we need to keep DF info up to date. */
1977 df_insn_rescan (insn);
1981 /* Changes pseudos created by function remove_scratches onto scratches. */
1982 static void
1983 restore_scratches (void)
1985 int regno;
1986 unsigned i;
1987 sloc_t loc;
1988 rtx_insn *last = NULL;
1989 lra_insn_recog_data_t id = NULL;
1991 for (i = 0; scratches.iterate (i, &loc); i++)
1993 if (last != loc->insn)
1995 last = loc->insn;
1996 id = lra_get_insn_recog_data (last);
1998 if (REG_P (*id->operand_loc[loc->nop])
1999 && ((regno = REGNO (*id->operand_loc[loc->nop]))
2000 >= FIRST_PSEUDO_REGISTER)
2001 && lra_get_regno_hard_regno (regno) < 0)
2003 /* It should be only case when scratch register with chosen
2004 constraint 'X' did not get memory or hard register. */
2005 lra_assert (lra_former_scratch_p (regno));
2006 *id->operand_loc[loc->nop]
2007 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2008 lra_update_dup (id, loc->nop);
2009 if (lra_dump_file != NULL)
2010 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2011 INSN_UID (loc->insn), loc->nop);
2014 for (i = 0; scratches.iterate (i, &loc); i++)
2015 free (loc);
2016 scratches.release ();
2017 bitmap_clear (&scratch_bitmap);
2018 bitmap_clear (&scratch_operand_bitmap);
2023 #ifdef ENABLE_CHECKING
2025 /* Function checks RTL for correctness. If FINAL_P is true, it is
2026 done at the end of LRA and the check is more rigorous. */
2027 static void
2028 check_rtl (bool final_p)
2030 basic_block bb;
2031 rtx_insn *insn;
2033 lra_assert (! final_p || reload_completed);
2034 FOR_EACH_BB_FN (bb, cfun)
2035 FOR_BB_INSNS (bb, insn)
2036 if (NONDEBUG_INSN_P (insn)
2037 && GET_CODE (PATTERN (insn)) != USE
2038 && GET_CODE (PATTERN (insn)) != CLOBBER
2039 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2041 if (final_p)
2043 #ifdef ENABLED_CHECKING
2044 extract_constrain_insn (insn);
2045 #endif
2046 continue;
2048 /* LRA code is based on assumption that all addresses can be
2049 correctly decomposed. LRA can generate reloads for
2050 decomposable addresses. The decomposition code checks the
2051 correctness of the addresses. So we don't need to check
2052 the addresses here. Don't call insn_invalid_p here, it can
2053 change the code at this stage. */
2054 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2055 fatal_insn_not_found (insn);
2058 #endif /* #ifdef ENABLE_CHECKING */
2060 /* Determine if the current function has an exception receiver block
2061 that reaches the exit block via non-exceptional edges */
2062 static bool
2063 has_nonexceptional_receiver (void)
2065 edge e;
2066 edge_iterator ei;
2067 basic_block *tos, *worklist, bb;
2069 /* If we're not optimizing, then just err on the safe side. */
2070 if (!optimize)
2071 return true;
2073 /* First determine which blocks can reach exit via normal paths. */
2074 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2076 FOR_EACH_BB_FN (bb, cfun)
2077 bb->flags &= ~BB_REACHABLE;
2079 /* Place the exit block on our worklist. */
2080 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2081 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2083 /* Iterate: find everything reachable from what we've already seen. */
2084 while (tos != worklist)
2086 bb = *--tos;
2088 FOR_EACH_EDGE (e, ei, bb->preds)
2089 if (e->flags & EDGE_ABNORMAL)
2091 free (worklist);
2092 return true;
2094 else
2096 basic_block src = e->src;
2098 if (!(src->flags & BB_REACHABLE))
2100 src->flags |= BB_REACHABLE;
2101 *tos++ = src;
2105 free (worklist);
2106 /* No exceptional block reached exit unexceptionally. */
2107 return false;
2110 #ifdef AUTO_INC_DEC
2112 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2113 static void
2114 add_auto_inc_notes (rtx_insn *insn, rtx x)
2116 enum rtx_code code = GET_CODE (x);
2117 const char *fmt;
2118 int i, j;
2120 if (code == MEM && auto_inc_p (XEXP (x, 0)))
2122 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2123 return;
2126 /* Scan all X sub-expressions. */
2127 fmt = GET_RTX_FORMAT (code);
2128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2130 if (fmt[i] == 'e')
2131 add_auto_inc_notes (insn, XEXP (x, i));
2132 else if (fmt[i] == 'E')
2133 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2134 add_auto_inc_notes (insn, XVECEXP (x, i, j));
2138 #endif
2140 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2141 We change pseudos by hard registers without notification of DF and
2142 that can make the notes obsolete. DF-infrastructure does not deal
2143 with REG_INC notes -- so we should regenerate them here. */
2144 static void
2145 update_inc_notes (void)
2147 rtx *pnote;
2148 basic_block bb;
2149 rtx_insn *insn;
2151 FOR_EACH_BB_FN (bb, cfun)
2152 FOR_BB_INSNS (bb, insn)
2153 if (NONDEBUG_INSN_P (insn))
2155 pnote = &REG_NOTES (insn);
2156 while (*pnote != 0)
2158 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2159 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2160 || REG_NOTE_KIND (*pnote) == REG_INC)
2161 *pnote = XEXP (*pnote, 1);
2162 else
2163 pnote = &XEXP (*pnote, 1);
2165 #ifdef AUTO_INC_DEC
2166 add_auto_inc_notes (insn, PATTERN (insn));
2167 #endif
2171 /* Set to 1 while in lra. */
2172 int lra_in_progress;
2174 /* Start of pseudo regnos before the LRA. */
2175 int lra_new_regno_start;
2177 /* Start of reload pseudo regnos before the new spill pass. */
2178 int lra_constraint_new_regno_start;
2180 /* Avoid spilling pseudos with regno more than the following value if
2181 it is possible. */
2182 int lra_bad_spill_regno_start;
2184 /* Inheritance pseudo regnos before the new spill pass. */
2185 bitmap_head lra_inheritance_pseudos;
2187 /* Split regnos before the new spill pass. */
2188 bitmap_head lra_split_regs;
2190 /* Reload pseudo regnos before the new assignmnet pass which still can
2191 be spilled after the assinment pass as memory is also accepted in
2192 insns for the reload pseudos. */
2193 bitmap_head lra_optional_reload_pseudos;
2195 /* Pseudo regnos used for subreg reloads before the new assignment
2196 pass. Such pseudos still can be spilled after the assinment
2197 pass. */
2198 bitmap_head lra_subreg_reload_pseudos;
2200 /* File used for output of LRA debug information. */
2201 FILE *lra_dump_file;
2203 /* True if we should try spill into registers of different classes
2204 instead of memory. */
2205 bool lra_reg_spill_p;
2207 /* Set up value LRA_REG_SPILL_P. */
2208 static void
2209 setup_reg_spill_flag (void)
2211 int cl, mode;
2213 if (targetm.spill_class != NULL)
2214 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2215 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2216 if (targetm.spill_class ((enum reg_class) cl,
2217 (machine_mode) mode) != NO_REGS)
2219 lra_reg_spill_p = true;
2220 return;
2222 lra_reg_spill_p = false;
2225 /* True if the current function is too big to use regular algorithms
2226 in LRA. In other words, we should use simpler and faster algorithms
2227 in LRA. It also means we should not worry about generation code
2228 for caller saves. The value is set up in IRA. */
2229 bool lra_simple_p;
2231 /* Major LRA entry function. F is a file should be used to dump LRA
2232 debug info. */
2233 void
2234 lra (FILE *f)
2236 int i;
2237 bool live_p, scratch_p, inserted_p;
2239 lra_dump_file = f;
2241 timevar_push (TV_LRA);
2243 /* Make sure that the last insn is a note. Some subsequent passes
2244 need it. */
2245 emit_note (NOTE_INSN_DELETED);
2247 COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
2249 init_reg_info ();
2250 expand_reg_info ();
2252 init_insn_recog_data ();
2254 #ifdef ENABLE_CHECKING
2255 /* Some quick check on RTL generated by previous passes. */
2256 check_rtl (false);
2257 #endif
2259 lra_in_progress = 1;
2261 lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2262 lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2263 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2264 lra_rematerialization_iter = 0;
2266 setup_reg_spill_flag ();
2268 /* Function remove_scratches can creates new pseudos for clobbers --
2269 so set up lra_constraint_new_regno_start before its call to
2270 permit changing reg classes for pseudos created by this
2271 simplification. */
2272 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2273 lra_bad_spill_regno_start = INT_MAX;
2274 remove_scratches ();
2275 scratch_p = lra_constraint_new_regno_start != max_reg_num ();
2277 /* A function that has a non-local label that can reach the exit
2278 block via non-exceptional paths must save all call-saved
2279 registers. */
2280 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2281 crtl->saves_all_registers = 1;
2283 if (crtl->saves_all_registers)
2284 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2285 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
2286 df_set_regs_ever_live (i, true);
2288 /* We don't DF from now and avoid its using because it is to
2289 expensive when a lot of RTL changes are made. */
2290 df_set_flags (DF_NO_INSN_RESCAN);
2291 lra_constraint_insn_stack.create (get_max_uid ());
2292 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2293 bitmap_clear (lra_constraint_insn_stack_bitmap);
2294 lra_live_ranges_init ();
2295 lra_constraints_init ();
2296 lra_curr_reload_num = 0;
2297 push_insns (get_last_insn (), NULL);
2298 /* It is needed for the 1st coalescing. */
2299 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2300 bitmap_initialize (&lra_split_regs, &reg_obstack);
2301 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2302 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2303 live_p = false;
2304 if (get_frame_size () != 0 && crtl->stack_alignment_needed)
2305 /* If we have a stack frame, we must align it now. The stack size
2306 may be a part of the offset computation for register
2307 elimination. */
2308 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2309 lra_init_equiv ();
2310 for (;;)
2312 for (;;)
2314 /* We should try to assign hard registers to scratches even
2315 if there were no RTL transformations in
2316 lra_constraints. */
2317 if (! lra_constraints (lra_constraint_iter == 0)
2318 && (lra_constraint_iter > 1
2319 || (! scratch_p && ! caller_save_needed)))
2320 break;
2321 /* Constraint transformations may result in that eliminable
2322 hard regs become uneliminable and pseudos which use them
2323 should be spilled. It is better to do it before pseudo
2324 assignments.
2326 For example, rs6000 can make
2327 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2328 to use a constant pool. */
2329 lra_eliminate (false, false);
2330 /* Do inheritance only for regular algorithms. */
2331 if (! lra_simple_p)
2333 if (flag_ipa_ra)
2335 if (live_p)
2336 lra_clear_live_ranges ();
2337 /* As a side-effect of lra_create_live_ranges, we calculate
2338 actual_call_used_reg_set, which is needed during
2339 lra_inheritance. */
2340 lra_create_live_ranges (true, true);
2341 live_p = true;
2343 lra_inheritance ();
2345 if (live_p)
2346 lra_clear_live_ranges ();
2347 /* We need live ranges for lra_assign -- so build them. But
2348 don't remove dead insns or change global live info as we
2349 can undo inheritance transformations after inheritance
2350 pseudo assigning. */
2351 lra_create_live_ranges (true, false);
2352 live_p = true;
2353 /* If we don't spill non-reload and non-inheritance pseudos,
2354 there is no sense to run memory-memory move coalescing.
2355 If inheritance pseudos were spilled, the memory-memory
2356 moves involving them will be removed by pass undoing
2357 inheritance. */
2358 if (lra_simple_p)
2359 lra_assign ();
2360 else
2362 bool spill_p = !lra_assign ();
2364 if (lra_undo_inheritance ())
2365 live_p = false;
2366 if (spill_p)
2368 if (! live_p)
2370 lra_create_live_ranges (true, true);
2371 live_p = true;
2373 if (lra_coalesce ())
2374 live_p = false;
2376 if (! live_p)
2377 lra_clear_live_ranges ();
2380 /* Don't clear optional reloads bitmap until all constraints are
2381 satisfied as we need to differ them from regular reloads. */
2382 bitmap_clear (&lra_optional_reload_pseudos);
2383 bitmap_clear (&lra_subreg_reload_pseudos);
2384 bitmap_clear (&lra_inheritance_pseudos);
2385 bitmap_clear (&lra_split_regs);
2386 if (! live_p)
2388 /* We need full live info for spilling pseudos into
2389 registers instead of memory. */
2390 lra_create_live_ranges (lra_reg_spill_p, true);
2391 live_p = true;
2393 /* We should check necessity for spilling here as the above live
2394 range pass can remove spilled pseudos. */
2395 if (! lra_need_for_spills_p ())
2396 break;
2397 /* Now we know what pseudos should be spilled. Try to
2398 rematerialize them first. */
2399 if (lra_remat ())
2401 /* We need full live info -- see the comment above. */
2402 lra_create_live_ranges (lra_reg_spill_p, true);
2403 live_p = true;
2404 if (! lra_need_for_spills_p ())
2405 break;
2407 lra_spill ();
2408 /* Assignment of stack slots changes elimination offsets for
2409 some eliminations. So update the offsets here. */
2410 lra_eliminate (false, false);
2411 lra_constraint_new_regno_start = max_reg_num ();
2412 if (lra_bad_spill_regno_start == INT_MAX
2413 && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2414 && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2415 /* After switching off inheritance and rematerialization
2416 passes, avoid spilling reload pseudos will be created to
2417 prevent LRA cycling in some complicated cases. */
2418 lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2419 lra_assignment_iter_after_spill = 0;
2421 restore_scratches ();
2422 lra_eliminate (true, false);
2423 lra_final_code_change ();
2424 lra_in_progress = 0;
2425 if (live_p)
2426 lra_clear_live_ranges ();
2427 lra_live_ranges_finish ();
2428 lra_constraints_finish ();
2429 finish_reg_info ();
2430 sbitmap_free (lra_constraint_insn_stack_bitmap);
2431 lra_constraint_insn_stack.release ();
2432 finish_insn_recog_data ();
2433 regstat_free_n_sets_and_refs ();
2434 regstat_free_ri ();
2435 reload_completed = 1;
2436 update_inc_notes ();
2438 inserted_p = fixup_abnormal_edges ();
2440 /* We've possibly turned single trapping insn into multiple ones. */
2441 if (cfun->can_throw_non_call_exceptions)
2443 sbitmap blocks;
2444 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2445 bitmap_ones (blocks);
2446 find_many_sub_basic_blocks (blocks);
2447 sbitmap_free (blocks);
2450 if (inserted_p)
2451 commit_edge_insertions ();
2453 /* Replacing pseudos with their memory equivalents might have
2454 created shared rtx. Subsequent passes would get confused
2455 by this, so unshare everything here. */
2456 unshare_all_rtl_again (get_insns ());
2458 #ifdef ENABLE_CHECKING
2459 check_rtl (true);
2460 #endif
2462 timevar_pop (TV_LRA);
2465 /* Called once per compiler to initialize LRA data once. */
2466 void
2467 lra_init_once (void)
2469 init_insn_code_data_once ();
2472 /* Called once per compiler to finish LRA data which are initialize
2473 once. */
2474 void
2475 lra_finish_once (void)
2477 finish_insn_code_data_once ();