* c-ubsan.c (ubsan_instrument_shift): Use type0.
[official-gcc.git] / gcc / lcm.c
blob6188409c38b36631e9de66a944bbbb1ce2e0b629
1 /* Generic partial redundancy elimination with lazy code motion support.
2 Copyright (C) 1998-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* These routines are meant to be used by various optimization
21 passes which can be modeled as lazy code motion problems.
22 Including, but not limited to:
24 * Traditional partial redundancy elimination.
26 * Placement of caller/caller register save/restores.
28 * Load/store motion.
30 * Copy motion.
32 * Conversion of flat register files to a stacked register
33 model.
35 * Dead load/store elimination.
37 These routines accept as input:
39 * Basic block information (number of blocks, lists of
40 predecessors and successors). Note the granularity
41 does not need to be basic block, they could be statements
42 or functions.
44 * Bitmaps of local properties (computed, transparent and
45 anticipatable expressions).
47 The output of these routines is bitmap of redundant computations
48 and a bitmap of optimal placement points. */
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "tm.h"
55 #include "rtl.h"
56 #include "regs.h"
57 #include "hard-reg-set.h"
58 #include "flags.h"
59 #include "insn-config.h"
60 #include "recog.h"
61 #include "predict.h"
62 #include "vec.h"
63 #include "hashtab.h"
64 #include "hash-set.h"
65 #include "machmode.h"
66 #include "input.h"
67 #include "function.h"
68 #include "dominance.h"
69 #include "cfg.h"
70 #include "cfganal.h"
71 #include "lcm.h"
72 #include "basic-block.h"
73 #include "tm_p.h"
74 #include "sbitmap.h"
75 #include "dumpfile.h"
77 /* Edge based LCM routines. */
78 static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
79 static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
80 sbitmap *, sbitmap *, sbitmap *);
81 static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
82 sbitmap *, sbitmap *);
83 static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
84 sbitmap *, sbitmap *, sbitmap *, sbitmap *);
86 /* Edge based LCM routines on a reverse flowgraph. */
87 static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
88 sbitmap*, sbitmap *, sbitmap *);
89 static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
90 sbitmap *, sbitmap *);
91 static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
92 sbitmap *, sbitmap *, sbitmap *,
93 sbitmap *);
95 /* Edge based lcm routines. */
97 /* Compute expression anticipatability at entrance and exit of each block.
98 This is done based on the flow graph, and not on the pred-succ lists.
99 Other than that, its pretty much identical to compute_antinout. */
101 static void
102 compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
103 sbitmap *antout)
105 basic_block bb;
106 edge e;
107 basic_block *worklist, *qin, *qout, *qend;
108 unsigned int qlen;
109 edge_iterator ei;
111 /* Allocate a worklist array/queue. Entries are only added to the
112 list if they were not already on the list. So the size is
113 bounded by the number of basic blocks. */
114 qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
116 /* We want a maximal solution, so make an optimistic initialization of
117 ANTIN. */
118 bitmap_vector_ones (antin, last_basic_block_for_fn (cfun));
120 /* Put every block on the worklist; this is necessary because of the
121 optimistic initialization of ANTIN above. */
122 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
123 int postorder_num = post_order_compute (postorder, false, false);
124 for (int i = 0; i < postorder_num; ++i)
126 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
127 *qin++ = bb;
128 bb->aux = bb;
130 free (postorder);
132 qin = worklist;
133 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
134 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
136 /* Mark blocks which are predecessors of the exit block so that we
137 can easily identify them below. */
138 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
139 e->src->aux = EXIT_BLOCK_PTR_FOR_FN (cfun);
141 /* Iterate until the worklist is empty. */
142 while (qlen)
144 /* Take the first entry off the worklist. */
145 bb = *qout++;
146 qlen--;
148 if (qout >= qend)
149 qout = worklist;
151 if (bb->aux == EXIT_BLOCK_PTR_FOR_FN (cfun))
152 /* Do not clear the aux field for blocks which are predecessors of
153 the EXIT block. That way we never add then to the worklist
154 again. */
155 bitmap_clear (antout[bb->index]);
156 else
158 /* Clear the aux field of this block so that it can be added to
159 the worklist again if necessary. */
160 bb->aux = NULL;
161 bitmap_intersection_of_succs (antout[bb->index], antin, bb);
164 if (bitmap_or_and (antin[bb->index], antloc[bb->index],
165 transp[bb->index], antout[bb->index]))
166 /* If the in state of this block changed, then we need
167 to add the predecessors of this block to the worklist
168 if they are not already on the worklist. */
169 FOR_EACH_EDGE (e, ei, bb->preds)
170 if (!e->src->aux && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
172 *qin++ = e->src;
173 e->src->aux = e;
174 qlen++;
175 if (qin >= qend)
176 qin = worklist;
180 clear_aux_for_edges ();
181 clear_aux_for_blocks ();
182 free (worklist);
185 /* Compute the earliest vector for edge based lcm. */
187 static void
188 compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
189 sbitmap *antout, sbitmap *avout, sbitmap *kill,
190 sbitmap *earliest)
192 sbitmap difference, temp_bitmap;
193 int x, num_edges;
194 basic_block pred, succ;
196 num_edges = NUM_EDGES (edge_list);
198 difference = sbitmap_alloc (n_exprs);
199 temp_bitmap = sbitmap_alloc (n_exprs);
201 for (x = 0; x < num_edges; x++)
203 pred = INDEX_EDGE_PRED_BB (edge_list, x);
204 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
205 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
206 bitmap_copy (earliest[x], antin[succ->index]);
207 else
209 if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun))
210 bitmap_clear (earliest[x]);
211 else
213 bitmap_and_compl (difference, antin[succ->index],
214 avout[pred->index]);
215 bitmap_not (temp_bitmap, antout[pred->index]);
216 bitmap_and_or (earliest[x], difference,
217 kill[pred->index], temp_bitmap);
222 sbitmap_free (temp_bitmap);
223 sbitmap_free (difference);
226 /* later(p,s) is dependent on the calculation of laterin(p).
227 laterin(p) is dependent on the calculation of later(p2,p).
229 laterin(ENTRY) is defined as all 0's
230 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
231 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
233 If we progress in this manner, starting with all basic blocks
234 in the work list, anytime we change later(bb), we need to add
235 succs(bb) to the worklist if they are not already on the worklist.
237 Boundary conditions:
239 We prime the worklist all the normal basic blocks. The ENTRY block can
240 never be added to the worklist since it is never the successor of any
241 block. We explicitly prevent the EXIT block from being added to the
242 worklist.
244 We optimistically initialize LATER. That is the only time this routine
245 will compute LATER for an edge out of the entry block since the entry
246 block is never on the worklist. Thus, LATERIN is neither used nor
247 computed for the ENTRY block.
249 Since the EXIT block is never added to the worklist, we will neither
250 use nor compute LATERIN for the exit block. Edges which reach the
251 EXIT block are handled in the normal fashion inside the loop. However,
252 the insertion/deletion computation needs LATERIN(EXIT), so we have
253 to compute it. */
255 static void
256 compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
257 sbitmap *antloc, sbitmap *later, sbitmap *laterin)
259 int num_edges, i;
260 edge e;
261 basic_block *worklist, *qin, *qout, *qend, bb;
262 unsigned int qlen;
263 edge_iterator ei;
265 num_edges = NUM_EDGES (edge_list);
267 /* Allocate a worklist array/queue. Entries are only added to the
268 list if they were not already on the list. So the size is
269 bounded by the number of basic blocks. */
270 qin = qout = worklist
271 = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
273 /* Initialize a mapping from each edge to its index. */
274 for (i = 0; i < num_edges; i++)
275 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
277 /* We want a maximal solution, so initially consider LATER true for
278 all edges. This allows propagation through a loop since the incoming
279 loop edge will have LATER set, so if all the other incoming edges
280 to the loop are set, then LATERIN will be set for the head of the
281 loop.
283 If the optimistic setting of LATER on that edge was incorrect (for
284 example the expression is ANTLOC in a block within the loop) then
285 this algorithm will detect it when we process the block at the head
286 of the optimistic edge. That will requeue the affected blocks. */
287 bitmap_vector_ones (later, num_edges);
289 /* Note that even though we want an optimistic setting of LATER, we
290 do not want to be overly optimistic. Consider an outgoing edge from
291 the entry block. That edge should always have a LATER value the
292 same as EARLIEST for that edge. */
293 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
294 bitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
296 /* Add all the blocks to the worklist. This prevents an early exit from
297 the loop given our optimistic initialization of LATER above. */
298 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
299 int postorder_num = inverted_post_order_compute (postorder);
300 for (int i = 0; i < postorder_num; ++i)
302 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
303 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
304 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
305 continue;
306 *qin++ = bb;
307 bb->aux = bb;
309 free (postorder);
311 /* Note that we do not use the last allocated element for our queue,
312 as EXIT_BLOCK is never inserted into it. */
313 qin = worklist;
314 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
315 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
317 /* Iterate until the worklist is empty. */
318 while (qlen)
320 /* Take the first entry off the worklist. */
321 bb = *qout++;
322 bb->aux = NULL;
323 qlen--;
324 if (qout >= qend)
325 qout = worklist;
327 /* Compute the intersection of LATERIN for each incoming edge to B. */
328 bitmap_ones (laterin[bb->index]);
329 FOR_EACH_EDGE (e, ei, bb->preds)
330 bitmap_and (laterin[bb->index], laterin[bb->index],
331 later[(size_t)e->aux]);
333 /* Calculate LATER for all outgoing edges. */
334 FOR_EACH_EDGE (e, ei, bb->succs)
335 if (bitmap_ior_and_compl (later[(size_t) e->aux],
336 earliest[(size_t) e->aux],
337 laterin[bb->index],
338 antloc[bb->index])
339 /* If LATER for an outgoing edge was changed, then we need
340 to add the target of the outgoing edge to the worklist. */
341 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest->aux == 0)
343 *qin++ = e->dest;
344 e->dest->aux = e;
345 qlen++;
346 if (qin >= qend)
347 qin = worklist;
351 /* Computation of insertion and deletion points requires computing LATERIN
352 for the EXIT block. We allocated an extra entry in the LATERIN array
353 for just this purpose. */
354 bitmap_ones (laterin[last_basic_block_for_fn (cfun)]);
355 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
356 bitmap_and (laterin[last_basic_block_for_fn (cfun)],
357 laterin[last_basic_block_for_fn (cfun)],
358 later[(size_t) e->aux]);
360 clear_aux_for_edges ();
361 free (worklist);
364 /* Compute the insertion and deletion points for edge based LCM. */
366 static void
367 compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
368 sbitmap *later, sbitmap *laterin, sbitmap *insert,
369 sbitmap *del)
371 int x;
372 basic_block bb;
374 FOR_EACH_BB_FN (bb, cfun)
375 bitmap_and_compl (del[bb->index], antloc[bb->index],
376 laterin[bb->index]);
378 for (x = 0; x < NUM_EDGES (edge_list); x++)
380 basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
382 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
383 bitmap_and_compl (insert[x], later[x],
384 laterin[last_basic_block_for_fn (cfun)]);
385 else
386 bitmap_and_compl (insert[x], later[x], laterin[b->index]);
390 /* Given local properties TRANSP, ANTLOC, AVLOC, KILL return the insert and
391 delete vectors for edge based LCM and return the AVIN, AVOUT bitmap.
392 map the insert vector to what edge an expression should be inserted on. */
394 struct edge_list *
395 pre_edge_lcm_avs (int n_exprs, sbitmap *transp,
396 sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
397 sbitmap *avin, sbitmap *avout,
398 sbitmap **insert, sbitmap **del)
400 sbitmap *antin, *antout, *earliest;
401 sbitmap *later, *laterin;
402 struct edge_list *edge_list;
403 int num_edges;
405 edge_list = create_edge_list ();
406 num_edges = NUM_EDGES (edge_list);
408 #ifdef LCM_DEBUG_INFO
409 if (dump_file)
411 fprintf (dump_file, "Edge List:\n");
412 verify_edge_list (dump_file, edge_list);
413 print_edge_list (dump_file, edge_list);
414 dump_bitmap_vector (dump_file, "transp", "", transp,
415 last_basic_block_for_fn (cfun));
416 dump_bitmap_vector (dump_file, "antloc", "", antloc,
417 last_basic_block_for_fn (cfun));
418 dump_bitmap_vector (dump_file, "avloc", "", avloc,
419 last_basic_block_for_fn (cfun));
420 dump_bitmap_vector (dump_file, "kill", "", kill,
421 last_basic_block_for_fn (cfun));
423 #endif
425 /* Compute global availability. */
426 compute_available (avloc, kill, avout, avin);
428 /* Compute global anticipatability. */
429 antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
430 antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
431 compute_antinout_edge (antloc, transp, antin, antout);
433 #ifdef LCM_DEBUG_INFO
434 if (dump_file)
436 dump_bitmap_vector (dump_file, "antin", "", antin,
437 last_basic_block_for_fn (cfun));
438 dump_bitmap_vector (dump_file, "antout", "", antout,
439 last_basic_block_for_fn (cfun));
441 #endif
443 /* Compute earliestness. */
444 earliest = sbitmap_vector_alloc (num_edges, n_exprs);
445 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
447 #ifdef LCM_DEBUG_INFO
448 if (dump_file)
449 dump_bitmap_vector (dump_file, "earliest", "", earliest, num_edges);
450 #endif
452 sbitmap_vector_free (antout);
453 sbitmap_vector_free (antin);
455 later = sbitmap_vector_alloc (num_edges, n_exprs);
457 /* Allocate an extra element for the exit block in the laterin vector. */
458 laterin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1,
459 n_exprs);
460 compute_laterin (edge_list, earliest, antloc, later, laterin);
462 #ifdef LCM_DEBUG_INFO
463 if (dump_file)
465 dump_bitmap_vector (dump_file, "laterin", "", laterin,
466 last_basic_block_for_fn (cfun) + 1);
467 dump_bitmap_vector (dump_file, "later", "", later, num_edges);
469 #endif
471 sbitmap_vector_free (earliest);
473 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
474 *del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
475 bitmap_vector_clear (*insert, num_edges);
476 bitmap_vector_clear (*del, last_basic_block_for_fn (cfun));
477 compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del);
479 sbitmap_vector_free (laterin);
480 sbitmap_vector_free (later);
482 #ifdef LCM_DEBUG_INFO
483 if (dump_file)
485 dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
486 dump_bitmap_vector (dump_file, "pre_delete_map", "", *del,
487 last_basic_block_for_fn (cfun));
489 #endif
491 return edge_list;
494 /* Wrapper to allocate avin/avout and call pre_edge_lcm_avs. */
496 struct edge_list *
497 pre_edge_lcm (int n_exprs, sbitmap *transp,
498 sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
499 sbitmap **insert, sbitmap **del)
501 struct edge_list *edge_list;
502 sbitmap *avin, *avout;
504 avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
505 avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
507 edge_list = pre_edge_lcm_avs (n_exprs, transp, avloc, antloc, kill,
508 avin, avout, insert, del);
510 sbitmap_vector_free (avout);
511 sbitmap_vector_free (avin);
513 return edge_list;
516 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
517 Return the number of passes we performed to iterate to a solution. */
519 void
520 compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
521 sbitmap *avin)
523 edge e;
524 basic_block *worklist, *qin, *qout, *qend, bb;
525 unsigned int qlen;
526 edge_iterator ei;
528 /* Allocate a worklist array/queue. Entries are only added to the
529 list if they were not already on the list. So the size is
530 bounded by the number of basic blocks. */
531 qin = qout = worklist =
532 XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
534 /* We want a maximal solution. */
535 bitmap_vector_ones (avout, last_basic_block_for_fn (cfun));
537 /* Put every block on the worklist; this is necessary because of the
538 optimistic initialization of AVOUT above. Use inverted postorder
539 to make the dataflow problem require less iterations. */
540 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
541 int postorder_num = inverted_post_order_compute (postorder);
542 for (int i = 0; i < postorder_num; ++i)
544 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
545 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
546 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
547 continue;
548 *qin++ = bb;
549 bb->aux = bb;
551 free (postorder);
553 qin = worklist;
554 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
555 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
557 /* Mark blocks which are successors of the entry block so that we
558 can easily identify them below. */
559 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
560 e->dest->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun);
562 /* Iterate until the worklist is empty. */
563 while (qlen)
565 /* Take the first entry off the worklist. */
566 bb = *qout++;
567 qlen--;
569 if (qout >= qend)
570 qout = worklist;
572 /* If one of the predecessor blocks is the ENTRY block, then the
573 intersection of avouts is the null set. We can identify such blocks
574 by the special value in the AUX field in the block structure. */
575 if (bb->aux == ENTRY_BLOCK_PTR_FOR_FN (cfun))
576 /* Do not clear the aux field for blocks which are successors of the
577 ENTRY block. That way we never add then to the worklist again. */
578 bitmap_clear (avin[bb->index]);
579 else
581 /* Clear the aux field of this block so that it can be added to
582 the worklist again if necessary. */
583 bb->aux = NULL;
584 bitmap_intersection_of_preds (avin[bb->index], avout, bb);
587 if (bitmap_ior_and_compl (avout[bb->index], avloc[bb->index],
588 avin[bb->index], kill[bb->index]))
589 /* If the out state of this block changed, then we need
590 to add the successors of this block to the worklist
591 if they are not already on the worklist. */
592 FOR_EACH_EDGE (e, ei, bb->succs)
593 if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
595 *qin++ = e->dest;
596 e->dest->aux = e;
597 qlen++;
599 if (qin >= qend)
600 qin = worklist;
604 clear_aux_for_edges ();
605 clear_aux_for_blocks ();
606 free (worklist);
609 /* Compute the farthest vector for edge based lcm. */
611 static void
612 compute_farthest (struct edge_list *edge_list, int n_exprs,
613 sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
614 sbitmap *kill, sbitmap *farthest)
616 sbitmap difference, temp_bitmap;
617 int x, num_edges;
618 basic_block pred, succ;
620 num_edges = NUM_EDGES (edge_list);
622 difference = sbitmap_alloc (n_exprs);
623 temp_bitmap = sbitmap_alloc (n_exprs);
625 for (x = 0; x < num_edges; x++)
627 pred = INDEX_EDGE_PRED_BB (edge_list, x);
628 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
629 if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun))
630 bitmap_copy (farthest[x], st_avout[pred->index]);
631 else
633 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
634 bitmap_clear (farthest[x]);
635 else
637 bitmap_and_compl (difference, st_avout[pred->index],
638 st_antin[succ->index]);
639 bitmap_not (temp_bitmap, st_avin[succ->index]);
640 bitmap_and_or (farthest[x], difference,
641 kill[succ->index], temp_bitmap);
646 sbitmap_free (temp_bitmap);
647 sbitmap_free (difference);
650 /* Compute nearer and nearerout vectors for edge based lcm.
652 This is the mirror of compute_laterin, additional comments on the
653 implementation can be found before compute_laterin. */
655 static void
656 compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
657 sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
659 int num_edges, i;
660 edge e;
661 basic_block *worklist, *tos, bb;
662 edge_iterator ei;
664 num_edges = NUM_EDGES (edge_list);
666 /* Allocate a worklist array/queue. Entries are only added to the
667 list if they were not already on the list. So the size is
668 bounded by the number of basic blocks. */
669 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
671 /* Initialize NEARER for each edge and build a mapping from an edge to
672 its index. */
673 for (i = 0; i < num_edges; i++)
674 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
676 /* We want a maximal solution. */
677 bitmap_vector_ones (nearer, num_edges);
679 /* Note that even though we want an optimistic setting of NEARER, we
680 do not want to be overly optimistic. Consider an incoming edge to
681 the exit block. That edge should always have a NEARER value the
682 same as FARTHEST for that edge. */
683 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
684 bitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
686 /* Add all the blocks to the worklist. This prevents an early exit
687 from the loop given our optimistic initialization of NEARER. */
688 FOR_EACH_BB_FN (bb, cfun)
690 *tos++ = bb;
691 bb->aux = bb;
694 /* Iterate until the worklist is empty. */
695 while (tos != worklist)
697 /* Take the first entry off the worklist. */
698 bb = *--tos;
699 bb->aux = NULL;
701 /* Compute the intersection of NEARER for each outgoing edge from B. */
702 bitmap_ones (nearerout[bb->index]);
703 FOR_EACH_EDGE (e, ei, bb->succs)
704 bitmap_and (nearerout[bb->index], nearerout[bb->index],
705 nearer[(size_t) e->aux]);
707 /* Calculate NEARER for all incoming edges. */
708 FOR_EACH_EDGE (e, ei, bb->preds)
709 if (bitmap_ior_and_compl (nearer[(size_t) e->aux],
710 farthest[(size_t) e->aux],
711 nearerout[e->dest->index],
712 st_avloc[e->dest->index])
713 /* If NEARER for an incoming edge was changed, then we need
714 to add the source of the incoming edge to the worklist. */
715 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && e->src->aux == 0)
717 *tos++ = e->src;
718 e->src->aux = e;
722 /* Computation of insertion and deletion points requires computing NEAREROUT
723 for the ENTRY block. We allocated an extra entry in the NEAREROUT array
724 for just this purpose. */
725 bitmap_ones (nearerout[last_basic_block_for_fn (cfun)]);
726 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
727 bitmap_and (nearerout[last_basic_block_for_fn (cfun)],
728 nearerout[last_basic_block_for_fn (cfun)],
729 nearer[(size_t) e->aux]);
731 clear_aux_for_edges ();
732 free (tos);
735 /* Compute the insertion and deletion points for edge based LCM. */
737 static void
738 compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
739 sbitmap *nearer, sbitmap *nearerout,
740 sbitmap *insert, sbitmap *del)
742 int x;
743 basic_block bb;
745 FOR_EACH_BB_FN (bb, cfun)
746 bitmap_and_compl (del[bb->index], st_avloc[bb->index],
747 nearerout[bb->index]);
749 for (x = 0; x < NUM_EDGES (edge_list); x++)
751 basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
752 if (b == ENTRY_BLOCK_PTR_FOR_FN (cfun))
753 bitmap_and_compl (insert[x], nearer[x],
754 nearerout[last_basic_block_for_fn (cfun)]);
755 else
756 bitmap_and_compl (insert[x], nearer[x], nearerout[b->index]);
760 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
761 insert and delete vectors for edge based reverse LCM. Returns an
762 edgelist which is used to map the insert vector to what edge
763 an expression should be inserted on. */
765 struct edge_list *
766 pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
767 sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
768 sbitmap **insert, sbitmap **del)
770 sbitmap *st_antin, *st_antout;
771 sbitmap *st_avout, *st_avin, *farthest;
772 sbitmap *nearer, *nearerout;
773 struct edge_list *edge_list;
774 int num_edges;
776 edge_list = create_edge_list ();
777 num_edges = NUM_EDGES (edge_list);
779 st_antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
780 st_antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
781 bitmap_vector_clear (st_antin, last_basic_block_for_fn (cfun));
782 bitmap_vector_clear (st_antout, last_basic_block_for_fn (cfun));
783 compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
785 /* Compute global anticipatability. */
786 st_avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
787 st_avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
788 compute_available (st_avloc, kill, st_avout, st_avin);
790 #ifdef LCM_DEBUG_INFO
791 if (dump_file)
793 fprintf (dump_file, "Edge List:\n");
794 verify_edge_list (dump_file, edge_list);
795 print_edge_list (dump_file, edge_list);
796 dump_bitmap_vector (dump_file, "transp", "", transp,
797 last_basic_block_for_fn (cfun));
798 dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc,
799 last_basic_block_for_fn (cfun));
800 dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc,
801 last_basic_block_for_fn (cfun));
802 dump_bitmap_vector (dump_file, "st_antin", "", st_antin,
803 last_basic_block_for_fn (cfun));
804 dump_bitmap_vector (dump_file, "st_antout", "", st_antout,
805 last_basic_block_for_fn (cfun));
806 dump_bitmap_vector (dump_file, "st_kill", "", kill,
807 last_basic_block_for_fn (cfun));
809 #endif
811 #ifdef LCM_DEBUG_INFO
812 if (dump_file)
814 dump_bitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block_for_fn (cfun));
815 dump_bitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block_for_fn (cfun));
817 #endif
819 /* Compute farthestness. */
820 farthest = sbitmap_vector_alloc (num_edges, n_exprs);
821 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
822 kill, farthest);
824 #ifdef LCM_DEBUG_INFO
825 if (dump_file)
826 dump_bitmap_vector (dump_file, "farthest", "", farthest, num_edges);
827 #endif
829 sbitmap_vector_free (st_antin);
830 sbitmap_vector_free (st_antout);
832 sbitmap_vector_free (st_avin);
833 sbitmap_vector_free (st_avout);
835 nearer = sbitmap_vector_alloc (num_edges, n_exprs);
837 /* Allocate an extra element for the entry block. */
838 nearerout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1,
839 n_exprs);
840 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
842 #ifdef LCM_DEBUG_INFO
843 if (dump_file)
845 dump_bitmap_vector (dump_file, "nearerout", "", nearerout,
846 last_basic_block_for_fn (cfun) + 1);
847 dump_bitmap_vector (dump_file, "nearer", "", nearer, num_edges);
849 #endif
851 sbitmap_vector_free (farthest);
853 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
854 *del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
855 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
856 *insert, *del);
858 sbitmap_vector_free (nearerout);
859 sbitmap_vector_free (nearer);
861 #ifdef LCM_DEBUG_INFO
862 if (dump_file)
864 dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
865 dump_bitmap_vector (dump_file, "pre_delete_map", "", *del,
866 last_basic_block_for_fn (cfun));
868 #endif
869 return edge_list;