2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "stor-layout.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-pass.h"
53 #include "diagnostic-core.h"
54 #include "tree-chrec.h"
55 #include "tree-scalar-evolution.h"
56 #include "tree-vectorizer.h"
59 /* Loop Vectorization Pass.
61 This pass tries to vectorize loops.
63 For example, the vectorizer transforms the following simple loop:
65 short a[N]; short b[N]; short c[N]; int i;
71 as if it was manually vectorized by rewriting the source code into:
73 typedef int __attribute__((mode(V8HI))) v8hi;
74 short a[N]; short b[N]; short c[N]; int i;
75 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
78 for (i=0; i<N/8; i++){
85 The main entry to this pass is vectorize_loops(), in which
86 the vectorizer applies a set of analyses on a given set of loops,
87 followed by the actual vectorization transformation for the loops that
88 had successfully passed the analysis phase.
89 Throughout this pass we make a distinction between two types of
90 data: scalars (which are represented by SSA_NAMES), and memory references
91 ("data-refs"). These two types of data require different handling both
92 during analysis and transformation. The types of data-refs that the
93 vectorizer currently supports are ARRAY_REFS which base is an array DECL
94 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
95 accesses are required to have a simple (consecutive) access pattern.
99 The driver for the analysis phase is vect_analyze_loop().
100 It applies a set of analyses, some of which rely on the scalar evolution
101 analyzer (scev) developed by Sebastian Pop.
103 During the analysis phase the vectorizer records some information
104 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
105 loop, as well as general information about the loop as a whole, which is
106 recorded in a "loop_vec_info" struct attached to each loop.
108 Transformation phase:
109 =====================
110 The loop transformation phase scans all the stmts in the loop, and
111 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
112 the loop that needs to be vectorized. It inserts the vector code sequence
113 just before the scalar stmt S, and records a pointer to the vector code
114 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
115 attached to S). This pointer will be used for the vectorization of following
116 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
117 otherwise, we rely on dead code elimination for removing it.
119 For example, say stmt S1 was vectorized into stmt VS1:
122 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
125 To vectorize stmt S2, the vectorizer first finds the stmt that defines
126 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
127 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
128 resulting sequence would be:
131 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
133 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
135 Operands that are not SSA_NAMEs, are data-refs that appear in
136 load/store operations (like 'x[i]' in S1), and are handled differently.
140 Currently the only target specific information that is used is the
141 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
142 Targets that can support different sizes of vectors, for now will need
143 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
144 flexibility will be added in the future.
146 Since we only vectorize operations which vector form can be
147 expressed using existing tree codes, to verify that an operation is
148 supported, the vectorizer checks the relevant optab at the relevant
149 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
150 the value found is CODE_FOR_nothing, then there's no target support, and
151 we can't vectorize the stmt.
153 For additional information on this project see:
154 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
157 static void vect_estimate_min_profitable_iters (loop_vec_info
, int *, int *);
159 /* Function vect_determine_vectorization_factor
161 Determine the vectorization factor (VF). VF is the number of data elements
162 that are operated upon in parallel in a single iteration of the vectorized
163 loop. For example, when vectorizing a loop that operates on 4byte elements,
164 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
165 elements can fit in a single vector register.
167 We currently support vectorization of loops in which all types operated upon
168 are of the same size. Therefore this function currently sets VF according to
169 the size of the types operated upon, and fails if there are multiple sizes
172 VF is also the factor by which the loop iterations are strip-mined, e.g.:
179 for (i=0; i<N; i+=VF){
180 a[i:VF] = b[i:VF] + c[i:VF];
185 vect_determine_vectorization_factor (loop_vec_info loop_vinfo
)
187 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
188 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
189 int nbbs
= loop
->num_nodes
;
190 gimple_stmt_iterator si
;
191 unsigned int vectorization_factor
= 0;
196 stmt_vec_info stmt_info
;
199 gimple stmt
, pattern_stmt
= NULL
;
200 gimple_seq pattern_def_seq
= NULL
;
201 gimple_stmt_iterator pattern_def_si
= gsi_none ();
202 bool analyze_pattern_stmt
= false;
204 if (dump_enabled_p ())
205 dump_printf_loc (MSG_NOTE
, vect_location
,
206 "=== vect_determine_vectorization_factor ===\n");
208 for (i
= 0; i
< nbbs
; i
++)
210 basic_block bb
= bbs
[i
];
212 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
215 stmt_info
= vinfo_for_stmt (phi
);
216 if (dump_enabled_p ())
218 dump_printf_loc (MSG_NOTE
, vect_location
, "==> examining phi: ");
219 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
220 dump_printf (MSG_NOTE
, "\n");
223 gcc_assert (stmt_info
);
225 if (STMT_VINFO_RELEVANT_P (stmt_info
))
227 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info
));
228 scalar_type
= TREE_TYPE (PHI_RESULT (phi
));
230 if (dump_enabled_p ())
232 dump_printf_loc (MSG_NOTE
, vect_location
,
233 "get vectype for scalar type: ");
234 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, scalar_type
);
235 dump_printf (MSG_NOTE
, "\n");
238 vectype
= get_vectype_for_scalar_type (scalar_type
);
241 if (dump_enabled_p ())
243 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
244 "not vectorized: unsupported "
246 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
248 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
252 STMT_VINFO_VECTYPE (stmt_info
) = vectype
;
254 if (dump_enabled_p ())
256 dump_printf_loc (MSG_NOTE
, vect_location
, "vectype: ");
257 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, vectype
);
258 dump_printf (MSG_NOTE
, "\n");
261 nunits
= TYPE_VECTOR_SUBPARTS (vectype
);
262 if (dump_enabled_p ())
263 dump_printf_loc (MSG_NOTE
, vect_location
, "nunits = %d\n",
266 if (!vectorization_factor
267 || (nunits
> vectorization_factor
))
268 vectorization_factor
= nunits
;
272 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
) || analyze_pattern_stmt
;)
276 if (analyze_pattern_stmt
)
279 stmt
= gsi_stmt (si
);
281 stmt_info
= vinfo_for_stmt (stmt
);
283 if (dump_enabled_p ())
285 dump_printf_loc (MSG_NOTE
, vect_location
,
286 "==> examining statement: ");
287 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt
, 0);
288 dump_printf (MSG_NOTE
, "\n");
291 gcc_assert (stmt_info
);
293 /* Skip stmts which do not need to be vectorized. */
294 if ((!STMT_VINFO_RELEVANT_P (stmt_info
)
295 && !STMT_VINFO_LIVE_P (stmt_info
))
296 || gimple_clobber_p (stmt
))
298 if (STMT_VINFO_IN_PATTERN_P (stmt_info
)
299 && (pattern_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt
))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt
))))
304 stmt_info
= vinfo_for_stmt (pattern_stmt
);
305 if (dump_enabled_p ())
307 dump_printf_loc (MSG_NOTE
, vect_location
,
308 "==> examining pattern statement: ");
309 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt
, 0);
310 dump_printf (MSG_NOTE
, "\n");
315 if (dump_enabled_p ())
316 dump_printf_loc (MSG_NOTE
, vect_location
, "skip.\n");
321 else if (STMT_VINFO_IN_PATTERN_P (stmt_info
)
322 && (pattern_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
))
323 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt
))
324 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt
))))
325 analyze_pattern_stmt
= true;
327 /* If a pattern statement has def stmts, analyze them too. */
328 if (is_pattern_stmt_p (stmt_info
))
330 if (pattern_def_seq
== NULL
)
332 pattern_def_seq
= STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
);
333 pattern_def_si
= gsi_start (pattern_def_seq
);
335 else if (!gsi_end_p (pattern_def_si
))
336 gsi_next (&pattern_def_si
);
337 if (pattern_def_seq
!= NULL
)
339 gimple pattern_def_stmt
= NULL
;
340 stmt_vec_info pattern_def_stmt_info
= NULL
;
342 while (!gsi_end_p (pattern_def_si
))
344 pattern_def_stmt
= gsi_stmt (pattern_def_si
);
345 pattern_def_stmt_info
346 = vinfo_for_stmt (pattern_def_stmt
);
347 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info
)
348 || STMT_VINFO_LIVE_P (pattern_def_stmt_info
))
350 gsi_next (&pattern_def_si
);
353 if (!gsi_end_p (pattern_def_si
))
355 if (dump_enabled_p ())
357 dump_printf_loc (MSG_NOTE
, vect_location
,
358 "==> examining pattern def stmt: ");
359 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
,
360 pattern_def_stmt
, 0);
361 dump_printf (MSG_NOTE
, "\n");
364 stmt
= pattern_def_stmt
;
365 stmt_info
= pattern_def_stmt_info
;
369 pattern_def_si
= gsi_none ();
370 analyze_pattern_stmt
= false;
374 analyze_pattern_stmt
= false;
377 if (gimple_get_lhs (stmt
) == NULL_TREE
378 /* MASK_STORE has no lhs, but is ok. */
379 && (!is_gimple_call (stmt
)
380 || !gimple_call_internal_p (stmt
)
381 || gimple_call_internal_fn (stmt
) != IFN_MASK_STORE
))
383 if (is_gimple_call (stmt
))
385 /* Ignore calls with no lhs. These must be calls to
386 #pragma omp simd functions, and what vectorization factor
387 it really needs can't be determined until
388 vectorizable_simd_clone_call. */
389 if (!analyze_pattern_stmt
&& gsi_end_p (pattern_def_si
))
391 pattern_def_seq
= NULL
;
396 if (dump_enabled_p ())
398 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
399 "not vectorized: irregular stmt.");
400 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
,
402 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
407 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt
))))
409 if (dump_enabled_p ())
411 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
412 "not vectorized: vector stmt in loop:");
413 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
414 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
419 if (STMT_VINFO_VECTYPE (stmt_info
))
421 /* The only case when a vectype had been already set is for stmts
422 that contain a dataref, or for "pattern-stmts" (stmts
423 generated by the vectorizer to represent/replace a certain
425 gcc_assert (STMT_VINFO_DATA_REF (stmt_info
)
426 || is_pattern_stmt_p (stmt_info
)
427 || !gsi_end_p (pattern_def_si
));
428 vectype
= STMT_VINFO_VECTYPE (stmt_info
);
432 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info
));
433 if (is_gimple_call (stmt
)
434 && gimple_call_internal_p (stmt
)
435 && gimple_call_internal_fn (stmt
) == IFN_MASK_STORE
)
436 scalar_type
= TREE_TYPE (gimple_call_arg (stmt
, 3));
438 scalar_type
= TREE_TYPE (gimple_get_lhs (stmt
));
439 if (dump_enabled_p ())
441 dump_printf_loc (MSG_NOTE
, vect_location
,
442 "get vectype for scalar type: ");
443 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, scalar_type
);
444 dump_printf (MSG_NOTE
, "\n");
446 vectype
= get_vectype_for_scalar_type (scalar_type
);
449 if (dump_enabled_p ())
451 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
452 "not vectorized: unsupported "
454 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
456 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
461 STMT_VINFO_VECTYPE (stmt_info
) = vectype
;
463 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE
, vect_location
, "vectype: ");
466 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, vectype
);
467 dump_printf (MSG_NOTE
, "\n");
471 /* The vectorization factor is according to the smallest
472 scalar type (or the largest vector size, but we only
473 support one vector size per loop). */
474 scalar_type
= vect_get_smallest_scalar_type (stmt
, &dummy
,
476 if (dump_enabled_p ())
478 dump_printf_loc (MSG_NOTE
, vect_location
,
479 "get vectype for scalar type: ");
480 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, scalar_type
);
481 dump_printf (MSG_NOTE
, "\n");
483 vf_vectype
= get_vectype_for_scalar_type (scalar_type
);
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
489 "not vectorized: unsupported data-type ");
490 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
492 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
497 if ((GET_MODE_SIZE (TYPE_MODE (vectype
))
498 != GET_MODE_SIZE (TYPE_MODE (vf_vectype
))))
500 if (dump_enabled_p ())
502 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
503 "not vectorized: different sized vector "
504 "types in statement, ");
505 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
507 dump_printf (MSG_MISSED_OPTIMIZATION
, " and ");
508 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
510 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
515 if (dump_enabled_p ())
517 dump_printf_loc (MSG_NOTE
, vect_location
, "vectype: ");
518 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, vf_vectype
);
519 dump_printf (MSG_NOTE
, "\n");
522 nunits
= TYPE_VECTOR_SUBPARTS (vf_vectype
);
523 if (dump_enabled_p ())
524 dump_printf_loc (MSG_NOTE
, vect_location
, "nunits = %d\n", nunits
);
525 if (!vectorization_factor
526 || (nunits
> vectorization_factor
))
527 vectorization_factor
= nunits
;
529 if (!analyze_pattern_stmt
&& gsi_end_p (pattern_def_si
))
531 pattern_def_seq
= NULL
;
537 /* TODO: Analyze cost. Decide if worth while to vectorize. */
538 if (dump_enabled_p ())
539 dump_printf_loc (MSG_NOTE
, vect_location
, "vectorization factor = %d\n",
540 vectorization_factor
);
541 if (vectorization_factor
<= 1)
543 if (dump_enabled_p ())
544 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
545 "not vectorized: unsupported data-type\n");
548 LOOP_VINFO_VECT_FACTOR (loop_vinfo
) = vectorization_factor
;
554 /* Function vect_is_simple_iv_evolution.
556 FORNOW: A simple evolution of an induction variables in the loop is
557 considered a polynomial evolution. */
560 vect_is_simple_iv_evolution (unsigned loop_nb
, tree access_fn
, tree
* init
,
565 tree evolution_part
= evolution_part_in_loop_num (access_fn
, loop_nb
);
568 /* When there is no evolution in this loop, the evolution function
570 if (evolution_part
== NULL_TREE
)
573 /* When the evolution is a polynomial of degree >= 2
574 the evolution function is not "simple". */
575 if (tree_is_chrec (evolution_part
))
578 step_expr
= evolution_part
;
579 init_expr
= unshare_expr (initial_condition_in_loop_num (access_fn
, loop_nb
));
581 if (dump_enabled_p ())
583 dump_printf_loc (MSG_NOTE
, vect_location
, "step: ");
584 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, step_expr
);
585 dump_printf (MSG_NOTE
, ", init: ");
586 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, init_expr
);
587 dump_printf (MSG_NOTE
, "\n");
593 if (TREE_CODE (step_expr
) != INTEGER_CST
594 && (TREE_CODE (step_expr
) != SSA_NAME
595 || ((bb
= gimple_bb (SSA_NAME_DEF_STMT (step_expr
)))
596 && flow_bb_inside_loop_p (get_loop (cfun
, loop_nb
), bb
))
597 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr
))
598 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
))
599 || !flag_associative_math
)))
600 && (TREE_CODE (step_expr
) != REAL_CST
601 || !flag_associative_math
))
603 if (dump_enabled_p ())
604 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
612 /* Function vect_analyze_scalar_cycles_1.
614 Examine the cross iteration def-use cycles of scalar variables
615 in LOOP. LOOP_VINFO represents the loop that is now being
616 considered for vectorization (can be LOOP, or an outer-loop
620 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo
, struct loop
*loop
)
622 basic_block bb
= loop
->header
;
624 auto_vec
<gimple
, 64> worklist
;
625 gimple_stmt_iterator gsi
;
628 if (dump_enabled_p ())
629 dump_printf_loc (MSG_NOTE
, vect_location
,
630 "=== vect_analyze_scalar_cycles ===\n");
632 /* First - identify all inductions. Reduction detection assumes that all the
633 inductions have been identified, therefore, this order must not be
635 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
637 gimple phi
= gsi_stmt (gsi
);
638 tree access_fn
= NULL
;
639 tree def
= PHI_RESULT (phi
);
640 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (phi
);
642 if (dump_enabled_p ())
644 dump_printf_loc (MSG_NOTE
, vect_location
, "Analyze phi: ");
645 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
646 dump_printf (MSG_NOTE
, "\n");
649 /* Skip virtual phi's. The data dependences that are associated with
650 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
651 if (virtual_operand_p (def
))
654 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_unknown_def_type
;
656 /* Analyze the evolution function. */
657 access_fn
= analyze_scalar_evolution (loop
, def
);
660 STRIP_NOPS (access_fn
);
661 if (dump_enabled_p ())
663 dump_printf_loc (MSG_NOTE
, vect_location
,
664 "Access function of PHI: ");
665 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, access_fn
);
666 dump_printf (MSG_NOTE
, "\n");
668 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo
)
669 = evolution_part_in_loop_num (access_fn
, loop
->num
);
673 || !vect_is_simple_iv_evolution (loop
->num
, access_fn
, &init
, &step
)
674 || (LOOP_VINFO_LOOP (loop_vinfo
) != loop
675 && TREE_CODE (step
) != INTEGER_CST
))
677 worklist
.safe_push (phi
);
681 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo
) != NULL_TREE
);
683 if (dump_enabled_p ())
684 dump_printf_loc (MSG_NOTE
, vect_location
, "Detected induction.\n");
685 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_induction_def
;
689 /* Second - identify all reductions and nested cycles. */
690 while (worklist
.length () > 0)
692 gimple phi
= worklist
.pop ();
693 tree def
= PHI_RESULT (phi
);
694 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (phi
);
698 if (dump_enabled_p ())
700 dump_printf_loc (MSG_NOTE
, vect_location
, "Analyze phi: ");
701 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
702 dump_printf (MSG_NOTE
, "\n");
705 gcc_assert (!virtual_operand_p (def
)
706 && STMT_VINFO_DEF_TYPE (stmt_vinfo
) == vect_unknown_def_type
);
708 nested_cycle
= (loop
!= LOOP_VINFO_LOOP (loop_vinfo
));
709 reduc_stmt
= vect_force_simple_reduction (loop_vinfo
, phi
, !nested_cycle
,
715 if (dump_enabled_p ())
716 dump_printf_loc (MSG_NOTE
, vect_location
,
717 "Detected double reduction.\n");
719 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_double_reduction_def
;
720 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt
)) =
721 vect_double_reduction_def
;
727 if (dump_enabled_p ())
728 dump_printf_loc (MSG_NOTE
, vect_location
,
729 "Detected vectorizable nested cycle.\n");
731 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_nested_cycle
;
732 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt
)) =
737 if (dump_enabled_p ())
738 dump_printf_loc (MSG_NOTE
, vect_location
,
739 "Detected reduction.\n");
741 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_reduction_def
;
742 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt
)) =
744 /* Store the reduction cycles for possible vectorization in
746 LOOP_VINFO_REDUCTIONS (loop_vinfo
).safe_push (reduc_stmt
);
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
753 "Unknown def-use cycle pattern.\n");
758 /* Function vect_analyze_scalar_cycles.
760 Examine the cross iteration def-use cycles of scalar variables, by
761 analyzing the loop-header PHIs of scalar variables. Classify each
762 cycle as one of the following: invariant, induction, reduction, unknown.
763 We do that for the loop represented by LOOP_VINFO, and also to its
764 inner-loop, if exists.
765 Examples for scalar cycles:
780 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo
)
782 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
784 vect_analyze_scalar_cycles_1 (loop_vinfo
, loop
);
786 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
787 Reductions in such inner-loop therefore have different properties than
788 the reductions in the nest that gets vectorized:
789 1. When vectorized, they are executed in the same order as in the original
790 scalar loop, so we can't change the order of computation when
792 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
793 current checks are too strict. */
796 vect_analyze_scalar_cycles_1 (loop_vinfo
, loop
->inner
);
800 /* Function vect_get_loop_niters.
802 Determine how many iterations the loop is executed and place it
803 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
804 in NUMBER_OF_ITERATIONSM1.
806 Return the loop exit condition. */
809 vect_get_loop_niters (struct loop
*loop
, tree
*number_of_iterations
,
810 tree
*number_of_iterationsm1
)
814 if (dump_enabled_p ())
815 dump_printf_loc (MSG_NOTE
, vect_location
,
816 "=== get_loop_niters ===\n");
818 niters
= number_of_latch_executions (loop
);
819 *number_of_iterationsm1
= niters
;
821 /* We want the number of loop header executions which is the number
822 of latch executions plus one.
823 ??? For UINT_MAX latch executions this number overflows to zero
824 for loops like do { n++; } while (n != 0); */
825 if (niters
&& !chrec_contains_undetermined (niters
))
826 niters
= fold_build2 (PLUS_EXPR
, TREE_TYPE (niters
), unshare_expr (niters
),
827 build_int_cst (TREE_TYPE (niters
), 1));
828 *number_of_iterations
= niters
;
830 return get_loop_exit_condition (loop
);
834 /* Function bb_in_loop_p
836 Used as predicate for dfs order traversal of the loop bbs. */
839 bb_in_loop_p (const_basic_block bb
, const void *data
)
841 const struct loop
*const loop
= (const struct loop
*)data
;
842 if (flow_bb_inside_loop_p (loop
, bb
))
848 /* Function new_loop_vec_info.
850 Create and initialize a new loop_vec_info struct for LOOP, as well as
851 stmt_vec_info structs for all the stmts in LOOP. */
854 new_loop_vec_info (struct loop
*loop
)
858 gimple_stmt_iterator si
;
859 unsigned int i
, nbbs
;
861 res
= (loop_vec_info
) xcalloc (1, sizeof (struct _loop_vec_info
));
862 LOOP_VINFO_LOOP (res
) = loop
;
864 bbs
= get_loop_body (loop
);
866 /* Create/Update stmt_info for all stmts in the loop. */
867 for (i
= 0; i
< loop
->num_nodes
; i
++)
869 basic_block bb
= bbs
[i
];
871 /* BBs in a nested inner-loop will have been already processed (because
872 we will have called vect_analyze_loop_form for any nested inner-loop).
873 Therefore, for stmts in an inner-loop we just want to update the
874 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
875 loop_info of the outer-loop we are currently considering to vectorize
876 (instead of the loop_info of the inner-loop).
877 For stmts in other BBs we need to create a stmt_info from scratch. */
878 if (bb
->loop_father
!= loop
)
881 gcc_assert (loop
->inner
&& bb
->loop_father
== loop
->inner
);
882 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
884 gimple phi
= gsi_stmt (si
);
885 stmt_vec_info stmt_info
= vinfo_for_stmt (phi
);
886 loop_vec_info inner_loop_vinfo
=
887 STMT_VINFO_LOOP_VINFO (stmt_info
);
888 gcc_assert (loop
->inner
== LOOP_VINFO_LOOP (inner_loop_vinfo
));
889 STMT_VINFO_LOOP_VINFO (stmt_info
) = res
;
891 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
893 gimple stmt
= gsi_stmt (si
);
894 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
895 loop_vec_info inner_loop_vinfo
=
896 STMT_VINFO_LOOP_VINFO (stmt_info
);
897 gcc_assert (loop
->inner
== LOOP_VINFO_LOOP (inner_loop_vinfo
));
898 STMT_VINFO_LOOP_VINFO (stmt_info
) = res
;
903 /* bb in current nest. */
904 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
906 gimple phi
= gsi_stmt (si
);
907 gimple_set_uid (phi
, 0);
908 set_vinfo_for_stmt (phi
, new_stmt_vec_info (phi
, res
, NULL
));
911 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
913 gimple stmt
= gsi_stmt (si
);
914 gimple_set_uid (stmt
, 0);
915 set_vinfo_for_stmt (stmt
, new_stmt_vec_info (stmt
, res
, NULL
));
920 /* CHECKME: We want to visit all BBs before their successors (except for
921 latch blocks, for which this assertion wouldn't hold). In the simple
922 case of the loop forms we allow, a dfs order of the BBs would the same
923 as reversed postorder traversal, so we are safe. */
926 bbs
= XCNEWVEC (basic_block
, loop
->num_nodes
);
927 nbbs
= dfs_enumerate_from (loop
->header
, 0, bb_in_loop_p
,
928 bbs
, loop
->num_nodes
, loop
);
929 gcc_assert (nbbs
== loop
->num_nodes
);
931 LOOP_VINFO_BBS (res
) = bbs
;
932 LOOP_VINFO_NITERSM1 (res
) = NULL
;
933 LOOP_VINFO_NITERS (res
) = NULL
;
934 LOOP_VINFO_NITERS_UNCHANGED (res
) = NULL
;
935 LOOP_VINFO_COST_MODEL_MIN_ITERS (res
) = 0;
936 LOOP_VINFO_COST_MODEL_THRESHOLD (res
) = 0;
937 LOOP_VINFO_VECTORIZABLE_P (res
) = 0;
938 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res
) = 0;
939 LOOP_VINFO_VECT_FACTOR (res
) = 0;
940 LOOP_VINFO_LOOP_NEST (res
).create (3);
941 LOOP_VINFO_DATAREFS (res
).create (10);
942 LOOP_VINFO_DDRS (res
).create (10 * 10);
943 LOOP_VINFO_UNALIGNED_DR (res
) = NULL
;
944 LOOP_VINFO_MAY_MISALIGN_STMTS (res
).create (
945 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS
));
946 LOOP_VINFO_MAY_ALIAS_DDRS (res
).create (
947 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS
));
948 LOOP_VINFO_GROUPED_STORES (res
).create (10);
949 LOOP_VINFO_REDUCTIONS (res
).create (10);
950 LOOP_VINFO_REDUCTION_CHAINS (res
).create (10);
951 LOOP_VINFO_SLP_INSTANCES (res
).create (10);
952 LOOP_VINFO_SLP_UNROLLING_FACTOR (res
) = 1;
953 LOOP_VINFO_TARGET_COST_DATA (res
) = init_cost (loop
);
954 LOOP_VINFO_PEELING_FOR_GAPS (res
) = false;
955 LOOP_VINFO_PEELING_FOR_NITER (res
) = false;
956 LOOP_VINFO_OPERANDS_SWAPPED (res
) = false;
962 /* Function destroy_loop_vec_info.
964 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
965 stmts in the loop. */
968 destroy_loop_vec_info (loop_vec_info loop_vinfo
, bool clean_stmts
)
973 gimple_stmt_iterator si
;
975 vec
<slp_instance
> slp_instances
;
976 slp_instance instance
;
982 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
984 bbs
= LOOP_VINFO_BBS (loop_vinfo
);
985 nbbs
= clean_stmts
? loop
->num_nodes
: 0;
986 swapped
= LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo
);
988 for (j
= 0; j
< nbbs
; j
++)
990 basic_block bb
= bbs
[j
];
991 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
992 free_stmt_vec_info (gsi_stmt (si
));
994 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); )
996 gimple stmt
= gsi_stmt (si
);
998 /* We may have broken canonical form by moving a constant
999 into RHS1 of a commutative op. Fix such occurrences. */
1000 if (swapped
&& is_gimple_assign (stmt
))
1002 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1004 if ((code
== PLUS_EXPR
1005 || code
== POINTER_PLUS_EXPR
1006 || code
== MULT_EXPR
)
1007 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt
)))
1008 swap_ssa_operands (stmt
,
1009 gimple_assign_rhs1_ptr (stmt
),
1010 gimple_assign_rhs2_ptr (stmt
));
1013 /* Free stmt_vec_info. */
1014 free_stmt_vec_info (stmt
);
1019 free (LOOP_VINFO_BBS (loop_vinfo
));
1020 vect_destroy_datarefs (loop_vinfo
, NULL
);
1021 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo
));
1022 LOOP_VINFO_LOOP_NEST (loop_vinfo
).release ();
1023 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
).release ();
1024 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo
).release ();
1025 slp_instances
= LOOP_VINFO_SLP_INSTANCES (loop_vinfo
);
1026 FOR_EACH_VEC_ELT (slp_instances
, j
, instance
)
1027 vect_free_slp_instance (instance
);
1029 LOOP_VINFO_SLP_INSTANCES (loop_vinfo
).release ();
1030 LOOP_VINFO_GROUPED_STORES (loop_vinfo
).release ();
1031 LOOP_VINFO_REDUCTIONS (loop_vinfo
).release ();
1032 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo
).release ();
1034 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo
).is_created ())
1035 LOOP_VINFO_PEELING_HTAB (loop_vinfo
).dispose ();
1037 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
));
1044 /* Function vect_analyze_loop_1.
1046 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1047 for it. The different analyses will record information in the
1048 loop_vec_info struct. This is a subset of the analyses applied in
1049 vect_analyze_loop, to be applied on an inner-loop nested in the loop
1050 that is now considered for (outer-loop) vectorization. */
1052 static loop_vec_info
1053 vect_analyze_loop_1 (struct loop
*loop
)
1055 loop_vec_info loop_vinfo
;
1057 if (dump_enabled_p ())
1058 dump_printf_loc (MSG_NOTE
, vect_location
,
1059 "===== analyze_loop_nest_1 =====\n");
1061 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1063 loop_vinfo
= vect_analyze_loop_form (loop
);
1066 if (dump_enabled_p ())
1067 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1068 "bad inner-loop form.\n");
1076 /* Function vect_analyze_loop_form.
1078 Verify that certain CFG restrictions hold, including:
1079 - the loop has a pre-header
1080 - the loop has a single entry and exit
1081 - the loop exit condition is simple enough, and the number of iterations
1082 can be analyzed (a countable loop). */
1085 vect_analyze_loop_form (struct loop
*loop
)
1087 loop_vec_info loop_vinfo
;
1089 tree number_of_iterations
= NULL
, number_of_iterationsm1
= NULL
;
1090 loop_vec_info inner_loop_vinfo
= NULL
;
1092 if (dump_enabled_p ())
1093 dump_printf_loc (MSG_NOTE
, vect_location
,
1094 "=== vect_analyze_loop_form ===\n");
1096 /* Different restrictions apply when we are considering an inner-most loop,
1097 vs. an outer (nested) loop.
1098 (FORNOW. May want to relax some of these restrictions in the future). */
1102 /* Inner-most loop. We currently require that the number of BBs is
1103 exactly 2 (the header and latch). Vectorizable inner-most loops
1114 if (loop
->num_nodes
!= 2)
1116 if (dump_enabled_p ())
1117 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1118 "not vectorized: control flow in loop.\n");
1122 if (empty_block_p (loop
->header
))
1124 if (dump_enabled_p ())
1125 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1126 "not vectorized: empty loop.\n");
1132 struct loop
*innerloop
= loop
->inner
;
1135 /* Nested loop. We currently require that the loop is doubly-nested,
1136 contains a single inner loop, and the number of BBs is exactly 5.
1137 Vectorizable outer-loops look like this:
1149 The inner-loop has the properties expected of inner-most loops
1150 as described above. */
1152 if ((loop
->inner
)->inner
|| (loop
->inner
)->next
)
1154 if (dump_enabled_p ())
1155 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1156 "not vectorized: multiple nested loops.\n");
1160 /* Analyze the inner-loop. */
1161 inner_loop_vinfo
= vect_analyze_loop_1 (loop
->inner
);
1162 if (!inner_loop_vinfo
)
1164 if (dump_enabled_p ())
1165 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1166 "not vectorized: Bad inner loop.\n");
1170 if (!expr_invariant_in_loop_p (loop
,
1171 LOOP_VINFO_NITERS (inner_loop_vinfo
)))
1173 if (dump_enabled_p ())
1174 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1175 "not vectorized: inner-loop count not"
1177 destroy_loop_vec_info (inner_loop_vinfo
, true);
1181 if (loop
->num_nodes
!= 5)
1183 if (dump_enabled_p ())
1184 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1185 "not vectorized: control flow in loop.\n");
1186 destroy_loop_vec_info (inner_loop_vinfo
, true);
1190 gcc_assert (EDGE_COUNT (innerloop
->header
->preds
) == 2);
1191 entryedge
= EDGE_PRED (innerloop
->header
, 0);
1192 if (EDGE_PRED (innerloop
->header
, 0)->src
== innerloop
->latch
)
1193 entryedge
= EDGE_PRED (innerloop
->header
, 1);
1195 if (entryedge
->src
!= loop
->header
1196 || !single_exit (innerloop
)
1197 || single_exit (innerloop
)->dest
!= EDGE_PRED (loop
->latch
, 0)->src
)
1199 if (dump_enabled_p ())
1200 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1201 "not vectorized: unsupported outerloop form.\n");
1202 destroy_loop_vec_info (inner_loop_vinfo
, true);
1206 if (dump_enabled_p ())
1207 dump_printf_loc (MSG_NOTE
, vect_location
,
1208 "Considering outer-loop vectorization.\n");
1211 if (!single_exit (loop
)
1212 || EDGE_COUNT (loop
->header
->preds
) != 2)
1214 if (dump_enabled_p ())
1216 if (!single_exit (loop
))
1217 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1218 "not vectorized: multiple exits.\n");
1219 else if (EDGE_COUNT (loop
->header
->preds
) != 2)
1220 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1221 "not vectorized: too many incoming edges.\n");
1223 if (inner_loop_vinfo
)
1224 destroy_loop_vec_info (inner_loop_vinfo
, true);
1228 /* We assume that the loop exit condition is at the end of the loop. i.e,
1229 that the loop is represented as a do-while (with a proper if-guard
1230 before the loop if needed), where the loop header contains all the
1231 executable statements, and the latch is empty. */
1232 if (!empty_block_p (loop
->latch
)
1233 || !gimple_seq_empty_p (phi_nodes (loop
->latch
)))
1235 if (dump_enabled_p ())
1236 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1237 "not vectorized: latch block not empty.\n");
1238 if (inner_loop_vinfo
)
1239 destroy_loop_vec_info (inner_loop_vinfo
, true);
1243 /* Make sure there exists a single-predecessor exit bb: */
1244 if (!single_pred_p (single_exit (loop
)->dest
))
1246 edge e
= single_exit (loop
);
1247 if (!(e
->flags
& EDGE_ABNORMAL
))
1249 split_loop_exit_edge (e
);
1250 if (dump_enabled_p ())
1251 dump_printf (MSG_NOTE
, "split exit edge.\n");
1255 if (dump_enabled_p ())
1256 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1257 "not vectorized: abnormal loop exit edge.\n");
1258 if (inner_loop_vinfo
)
1259 destroy_loop_vec_info (inner_loop_vinfo
, true);
1264 loop_cond
= vect_get_loop_niters (loop
, &number_of_iterations
,
1265 &number_of_iterationsm1
);
1268 if (dump_enabled_p ())
1269 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1270 "not vectorized: complicated exit condition.\n");
1271 if (inner_loop_vinfo
)
1272 destroy_loop_vec_info (inner_loop_vinfo
, true);
1276 if (!number_of_iterations
1277 || chrec_contains_undetermined (number_of_iterations
))
1279 if (dump_enabled_p ())
1280 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1281 "not vectorized: number of iterations cannot be "
1283 if (inner_loop_vinfo
)
1284 destroy_loop_vec_info (inner_loop_vinfo
, true);
1288 if (integer_zerop (number_of_iterations
))
1290 if (dump_enabled_p ())
1291 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1292 "not vectorized: number of iterations = 0.\n");
1293 if (inner_loop_vinfo
)
1294 destroy_loop_vec_info (inner_loop_vinfo
, true);
1298 loop_vinfo
= new_loop_vec_info (loop
);
1299 LOOP_VINFO_NITERSM1 (loop_vinfo
) = number_of_iterationsm1
;
1300 LOOP_VINFO_NITERS (loop_vinfo
) = number_of_iterations
;
1301 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo
) = number_of_iterations
;
1303 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
1305 if (dump_enabled_p ())
1307 dump_printf_loc (MSG_NOTE
, vect_location
,
1308 "Symbolic number of iterations is ");
1309 dump_generic_expr (MSG_NOTE
, TDF_DETAILS
, number_of_iterations
);
1310 dump_printf (MSG_NOTE
, "\n");
1314 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond
)) = loop_exit_ctrl_vec_info_type
;
1316 /* CHECKME: May want to keep it around it in the future. */
1317 if (inner_loop_vinfo
)
1318 destroy_loop_vec_info (inner_loop_vinfo
, false);
1320 gcc_assert (!loop
->aux
);
1321 loop
->aux
= loop_vinfo
;
1326 /* Function vect_analyze_loop_operations.
1328 Scan the loop stmts and make sure they are all vectorizable. */
1331 vect_analyze_loop_operations (loop_vec_info loop_vinfo
, bool slp
)
1333 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1334 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
1335 int nbbs
= loop
->num_nodes
;
1336 gimple_stmt_iterator si
;
1337 unsigned int vectorization_factor
= 0;
1340 stmt_vec_info stmt_info
;
1341 bool need_to_vectorize
= false;
1342 int min_profitable_iters
;
1343 int min_scalar_loop_bound
;
1345 bool only_slp_in_loop
= true, ok
;
1346 HOST_WIDE_INT max_niter
;
1347 HOST_WIDE_INT estimated_niter
;
1348 int min_profitable_estimate
;
1350 if (dump_enabled_p ())
1351 dump_printf_loc (MSG_NOTE
, vect_location
,
1352 "=== vect_analyze_loop_operations ===\n");
1354 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
1355 vectorization_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1358 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1359 vectorization factor of the loop is the unrolling factor required by
1360 the SLP instances. If that unrolling factor is 1, we say, that we
1361 perform pure SLP on loop - cross iteration parallelism is not
1363 for (i
= 0; i
< nbbs
; i
++)
1365 basic_block bb
= bbs
[i
];
1366 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
1368 gimple stmt
= gsi_stmt (si
);
1369 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1370 gcc_assert (stmt_info
);
1371 if ((STMT_VINFO_RELEVANT_P (stmt_info
)
1372 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info
)))
1373 && !PURE_SLP_STMT (stmt_info
))
1374 /* STMT needs both SLP and loop-based vectorization. */
1375 only_slp_in_loop
= false;
1379 if (only_slp_in_loop
)
1380 vectorization_factor
= LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo
);
1382 vectorization_factor
= least_common_multiple (vectorization_factor
,
1383 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo
));
1385 LOOP_VINFO_VECT_FACTOR (loop_vinfo
) = vectorization_factor
;
1386 if (dump_enabled_p ())
1387 dump_printf_loc (MSG_NOTE
, vect_location
,
1388 "Updating vectorization factor to %d\n",
1389 vectorization_factor
);
1392 for (i
= 0; i
< nbbs
; i
++)
1394 basic_block bb
= bbs
[i
];
1396 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
1398 phi
= gsi_stmt (si
);
1401 stmt_info
= vinfo_for_stmt (phi
);
1402 if (dump_enabled_p ())
1404 dump_printf_loc (MSG_NOTE
, vect_location
, "examining phi: ");
1405 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
1406 dump_printf (MSG_NOTE
, "\n");
1409 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1410 (i.e., a phi in the tail of the outer-loop). */
1411 if (! is_loop_header_bb_p (bb
))
1413 /* FORNOW: we currently don't support the case that these phis
1414 are not used in the outerloop (unless it is double reduction,
1415 i.e., this phi is vect_reduction_def), cause this case
1416 requires to actually do something here. */
1417 if ((!STMT_VINFO_RELEVANT_P (stmt_info
)
1418 || STMT_VINFO_LIVE_P (stmt_info
))
1419 && STMT_VINFO_DEF_TYPE (stmt_info
)
1420 != vect_double_reduction_def
)
1422 if (dump_enabled_p ())
1423 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1424 "Unsupported loop-closed phi in "
1429 /* If PHI is used in the outer loop, we check that its operand
1430 is defined in the inner loop. */
1431 if (STMT_VINFO_RELEVANT_P (stmt_info
))
1436 if (gimple_phi_num_args (phi
) != 1)
1439 phi_op
= PHI_ARG_DEF (phi
, 0);
1440 if (TREE_CODE (phi_op
) != SSA_NAME
)
1443 op_def_stmt
= SSA_NAME_DEF_STMT (phi_op
);
1444 if (gimple_nop_p (op_def_stmt
)
1445 || !flow_bb_inside_loop_p (loop
, gimple_bb (op_def_stmt
))
1446 || !vinfo_for_stmt (op_def_stmt
))
1449 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt
))
1450 != vect_used_in_outer
1451 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt
))
1452 != vect_used_in_outer_by_reduction
)
1459 gcc_assert (stmt_info
);
1461 if (STMT_VINFO_LIVE_P (stmt_info
))
1463 /* FORNOW: not yet supported. */
1464 if (dump_enabled_p ())
1465 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1466 "not vectorized: value used after loop.\n");
1470 if (STMT_VINFO_RELEVANT (stmt_info
) == vect_used_in_scope
1471 && STMT_VINFO_DEF_TYPE (stmt_info
) != vect_induction_def
)
1473 /* A scalar-dependence cycle that we don't support. */
1474 if (dump_enabled_p ())
1475 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1476 "not vectorized: scalar dependence cycle.\n");
1480 if (STMT_VINFO_RELEVANT_P (stmt_info
))
1482 need_to_vectorize
= true;
1483 if (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_induction_def
)
1484 ok
= vectorizable_induction (phi
, NULL
, NULL
);
1489 if (dump_enabled_p ())
1491 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1492 "not vectorized: relevant phi not "
1494 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, phi
, 0);
1495 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
1501 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
1503 gimple stmt
= gsi_stmt (si
);
1504 if (!gimple_clobber_p (stmt
)
1505 && !vect_analyze_stmt (stmt
, &need_to_vectorize
, NULL
))
1510 /* All operations in the loop are either irrelevant (deal with loop
1511 control, or dead), or only used outside the loop and can be moved
1512 out of the loop (e.g. invariants, inductions). The loop can be
1513 optimized away by scalar optimizations. We're better off not
1514 touching this loop. */
1515 if (!need_to_vectorize
)
1517 if (dump_enabled_p ())
1518 dump_printf_loc (MSG_NOTE
, vect_location
,
1519 "All the computation can be taken out of the loop.\n");
1520 if (dump_enabled_p ())
1521 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1522 "not vectorized: redundant loop. no profit to "
1527 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
) && dump_enabled_p ())
1528 dump_printf_loc (MSG_NOTE
, vect_location
,
1529 "vectorization_factor = %d, niters = "
1530 HOST_WIDE_INT_PRINT_DEC
"\n", vectorization_factor
,
1531 LOOP_VINFO_INT_NITERS (loop_vinfo
));
1533 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
1534 && (LOOP_VINFO_INT_NITERS (loop_vinfo
) < vectorization_factor
))
1535 || ((max_niter
= max_stmt_executions_int (loop
)) != -1
1536 && (unsigned HOST_WIDE_INT
) max_niter
< vectorization_factor
))
1538 if (dump_enabled_p ())
1539 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1540 "not vectorized: iteration count too small.\n");
1541 if (dump_enabled_p ())
1542 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1543 "not vectorized: iteration count smaller than "
1544 "vectorization factor.\n");
1548 /* Analyze cost. Decide if worth while to vectorize. */
1550 /* Once VF is set, SLP costs should be updated since the number of created
1551 vector stmts depends on VF. */
1552 vect_update_slp_costs_according_to_vf (loop_vinfo
);
1554 vect_estimate_min_profitable_iters (loop_vinfo
, &min_profitable_iters
,
1555 &min_profitable_estimate
);
1556 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo
) = min_profitable_iters
;
1558 if (min_profitable_iters
< 0)
1560 if (dump_enabled_p ())
1561 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1562 "not vectorized: vectorization not profitable.\n");
1563 if (dump_enabled_p ())
1564 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1565 "not vectorized: vector version will never be "
1570 min_scalar_loop_bound
= ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND
)
1571 * vectorization_factor
) - 1);
1574 /* Use the cost model only if it is more conservative than user specified
1577 th
= (unsigned) min_scalar_loop_bound
;
1578 if (min_profitable_iters
1579 && (!min_scalar_loop_bound
1580 || min_profitable_iters
> min_scalar_loop_bound
))
1581 th
= (unsigned) min_profitable_iters
;
1583 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
) = th
;
1585 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
1586 && LOOP_VINFO_INT_NITERS (loop_vinfo
) <= th
)
1588 if (dump_enabled_p ())
1589 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1590 "not vectorized: vectorization not profitable.\n");
1591 if (dump_enabled_p ())
1592 dump_printf_loc (MSG_NOTE
, vect_location
,
1593 "not vectorized: iteration count smaller than user "
1594 "specified loop bound parameter or minimum profitable "
1595 "iterations (whichever is more conservative).\n");
1599 if ((estimated_niter
= estimated_stmt_executions_int (loop
)) != -1
1600 && ((unsigned HOST_WIDE_INT
) estimated_niter
1601 <= MAX (th
, (unsigned)min_profitable_estimate
)))
1603 if (dump_enabled_p ())
1604 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1605 "not vectorized: estimated iteration count too "
1607 if (dump_enabled_p ())
1608 dump_printf_loc (MSG_NOTE
, vect_location
,
1609 "not vectorized: estimated iteration count smaller "
1610 "than specified loop bound parameter or minimum "
1611 "profitable iterations (whichever is more "
1612 "conservative).\n");
1620 /* Function vect_analyze_loop_2.
1622 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1623 for it. The different analyses will record information in the
1624 loop_vec_info struct. */
1626 vect_analyze_loop_2 (loop_vec_info loop_vinfo
)
1628 bool ok
, slp
= false;
1629 int max_vf
= MAX_VECTORIZATION_FACTOR
;
1633 /* Find all data references in the loop (which correspond to vdefs/vuses)
1634 and analyze their evolution in the loop. Also adjust the minimal
1635 vectorization factor according to the loads and stores.
1637 FORNOW: Handle only simple, array references, which
1638 alignment can be forced, and aligned pointer-references. */
1640 ok
= vect_analyze_data_refs (loop_vinfo
, NULL
, &min_vf
);
1643 if (dump_enabled_p ())
1644 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1645 "bad data references.\n");
1649 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1650 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1652 ok
= vect_analyze_data_ref_accesses (loop_vinfo
, NULL
);
1655 if (dump_enabled_p ())
1656 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1657 "bad data access.\n");
1661 /* Classify all cross-iteration scalar data-flow cycles.
1662 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1664 vect_analyze_scalar_cycles (loop_vinfo
);
1666 vect_pattern_recog (loop_vinfo
, NULL
);
1668 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1670 ok
= vect_mark_stmts_to_be_vectorized (loop_vinfo
);
1673 if (dump_enabled_p ())
1674 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1675 "unexpected pattern.\n");
1679 /* Analyze data dependences between the data-refs in the loop
1680 and adjust the maximum vectorization factor according to
1682 FORNOW: fail at the first data dependence that we encounter. */
1684 ok
= vect_analyze_data_ref_dependences (loop_vinfo
, &max_vf
);
1688 if (dump_enabled_p ())
1689 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1690 "bad data dependence.\n");
1694 ok
= vect_determine_vectorization_factor (loop_vinfo
);
1697 if (dump_enabled_p ())
1698 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1699 "can't determine vectorization factor.\n");
1702 if (max_vf
< LOOP_VINFO_VECT_FACTOR (loop_vinfo
))
1704 if (dump_enabled_p ())
1705 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1706 "bad data dependence.\n");
1710 /* Analyze the alignment of the data-refs in the loop.
1711 Fail if a data reference is found that cannot be vectorized. */
1713 ok
= vect_analyze_data_refs_alignment (loop_vinfo
, NULL
);
1716 if (dump_enabled_p ())
1717 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1718 "bad data alignment.\n");
1722 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1723 It is important to call pruning after vect_analyze_data_ref_accesses,
1724 since we use grouping information gathered by interleaving analysis. */
1725 ok
= vect_prune_runtime_alias_test_list (loop_vinfo
);
1728 if (dump_enabled_p ())
1729 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1730 "number of versioning for alias "
1731 "run-time tests exceeds %d "
1732 "(--param vect-max-version-for-alias-checks)\n",
1733 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS
));
1737 /* This pass will decide on using loop versioning and/or loop peeling in
1738 order to enhance the alignment of data references in the loop. */
1740 ok
= vect_enhance_data_refs_alignment (loop_vinfo
);
1743 if (dump_enabled_p ())
1744 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1745 "bad data alignment.\n");
1749 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1750 ok
= vect_analyze_slp (loop_vinfo
, NULL
);
1753 /* Decide which possible SLP instances to SLP. */
1754 slp
= vect_make_slp_decision (loop_vinfo
);
1756 /* Find stmts that need to be both vectorized and SLPed. */
1757 vect_detect_hybrid_slp (loop_vinfo
);
1762 /* Scan all the operations in the loop and make sure they are
1765 ok
= vect_analyze_loop_operations (loop_vinfo
, slp
);
1768 if (dump_enabled_p ())
1769 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1770 "bad operation or unsupported loop bound.\n");
1774 /* Decide whether we need to create an epilogue loop to handle
1775 remaining scalar iterations. */
1776 th
= ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
) + 1)
1777 / LOOP_VINFO_VECT_FACTOR (loop_vinfo
))
1778 * LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1780 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
1781 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) > 0)
1783 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo
)
1784 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
))
1785 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo
)))
1786 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
) = true;
1788 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
)
1789 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo
))
1790 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo
))
1791 /* In case of versioning, check if the maximum number of
1792 iterations is greater than th. If they are identical,
1793 the epilogue is unnecessary. */
1794 && ((!LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
)
1795 && !LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
))
1796 || (unsigned HOST_WIDE_INT
)max_stmt_executions_int
1797 (LOOP_VINFO_LOOP (loop_vinfo
)) > th
)))
1798 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
) = true;
1800 /* If an epilogue loop is required make sure we can create one. */
1801 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
)
1802 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
))
1804 if (dump_enabled_p ())
1805 dump_printf_loc (MSG_NOTE
, vect_location
, "epilog loop required\n");
1806 if (!vect_can_advance_ivs_p (loop_vinfo
)
1807 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo
),
1808 single_exit (LOOP_VINFO_LOOP
1811 if (dump_enabled_p ())
1812 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1813 "not vectorized: can't create required "
1822 /* Function vect_analyze_loop.
1824 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1825 for it. The different analyses will record information in the
1826 loop_vec_info struct. */
1828 vect_analyze_loop (struct loop
*loop
)
1830 loop_vec_info loop_vinfo
;
1831 unsigned int vector_sizes
;
1833 /* Autodetect first vector size we try. */
1834 current_vector_size
= 0;
1835 vector_sizes
= targetm
.vectorize
.autovectorize_vector_sizes ();
1837 if (dump_enabled_p ())
1838 dump_printf_loc (MSG_NOTE
, vect_location
,
1839 "===== analyze_loop_nest =====\n");
1841 if (loop_outer (loop
)
1842 && loop_vec_info_for_loop (loop_outer (loop
))
1843 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop
))))
1845 if (dump_enabled_p ())
1846 dump_printf_loc (MSG_NOTE
, vect_location
,
1847 "outer-loop already vectorized.\n");
1853 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1854 loop_vinfo
= vect_analyze_loop_form (loop
);
1857 if (dump_enabled_p ())
1858 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1859 "bad loop form.\n");
1863 if (vect_analyze_loop_2 (loop_vinfo
))
1865 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo
) = 1;
1870 destroy_loop_vec_info (loop_vinfo
, true);
1872 vector_sizes
&= ~current_vector_size
;
1873 if (vector_sizes
== 0
1874 || current_vector_size
== 0)
1877 /* Try the next biggest vector size. */
1878 current_vector_size
= 1 << floor_log2 (vector_sizes
);
1879 if (dump_enabled_p ())
1880 dump_printf_loc (MSG_NOTE
, vect_location
,
1881 "***** Re-trying analysis with "
1882 "vector size %d\n", current_vector_size
);
1887 /* Function reduction_code_for_scalar_code
1890 CODE - tree_code of a reduction operations.
1893 REDUC_CODE - the corresponding tree-code to be used to reduce the
1894 vector of partial results into a single scalar result (which
1895 will also reside in a vector) or ERROR_MARK if the operation is
1896 a supported reduction operation, but does not have such tree-code.
1898 Return FALSE if CODE currently cannot be vectorized as reduction. */
1901 reduction_code_for_scalar_code (enum tree_code code
,
1902 enum tree_code
*reduc_code
)
1907 *reduc_code
= REDUC_MAX_EXPR
;
1911 *reduc_code
= REDUC_MIN_EXPR
;
1915 *reduc_code
= REDUC_PLUS_EXPR
;
1923 *reduc_code
= ERROR_MARK
;
1932 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1933 STMT is printed with a message MSG. */
1936 report_vect_op (int msg_type
, gimple stmt
, const char *msg
)
1938 dump_printf_loc (msg_type
, vect_location
, "%s", msg
);
1939 dump_gimple_stmt (msg_type
, TDF_SLIM
, stmt
, 0);
1940 dump_printf (msg_type
, "\n");
1944 /* Detect SLP reduction of the form:
1954 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1955 FIRST_STMT is the first reduction stmt in the chain
1956 (a2 = operation (a1)).
1958 Return TRUE if a reduction chain was detected. */
1961 vect_is_slp_reduction (loop_vec_info loop_info
, gimple phi
, gimple first_stmt
)
1963 struct loop
*loop
= (gimple_bb (phi
))->loop_father
;
1964 struct loop
*vect_loop
= LOOP_VINFO_LOOP (loop_info
);
1965 enum tree_code code
;
1966 gimple current_stmt
= NULL
, loop_use_stmt
= NULL
, first
, next_stmt
;
1967 stmt_vec_info use_stmt_info
, current_stmt_info
;
1969 imm_use_iterator imm_iter
;
1970 use_operand_p use_p
;
1971 int nloop_uses
, size
= 0, n_out_of_loop_uses
;
1974 if (loop
!= vect_loop
)
1977 lhs
= PHI_RESULT (phi
);
1978 code
= gimple_assign_rhs_code (first_stmt
);
1982 n_out_of_loop_uses
= 0;
1983 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, lhs
)
1985 gimple use_stmt
= USE_STMT (use_p
);
1986 if (is_gimple_debug (use_stmt
))
1989 /* Check if we got back to the reduction phi. */
1990 if (use_stmt
== phi
)
1992 loop_use_stmt
= use_stmt
;
1997 if (flow_bb_inside_loop_p (loop
, gimple_bb (use_stmt
)))
1999 if (vinfo_for_stmt (use_stmt
)
2000 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt
)))
2002 loop_use_stmt
= use_stmt
;
2007 n_out_of_loop_uses
++;
2009 /* There are can be either a single use in the loop or two uses in
2011 if (nloop_uses
> 1 || (n_out_of_loop_uses
&& nloop_uses
))
2018 /* We reached a statement with no loop uses. */
2019 if (nloop_uses
== 0)
2022 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2023 if (gimple_code (loop_use_stmt
) == GIMPLE_PHI
)
2026 if (!is_gimple_assign (loop_use_stmt
)
2027 || code
!= gimple_assign_rhs_code (loop_use_stmt
)
2028 || !flow_bb_inside_loop_p (loop
, gimple_bb (loop_use_stmt
)))
2031 /* Insert USE_STMT into reduction chain. */
2032 use_stmt_info
= vinfo_for_stmt (loop_use_stmt
);
2035 current_stmt_info
= vinfo_for_stmt (current_stmt
);
2036 GROUP_NEXT_ELEMENT (current_stmt_info
) = loop_use_stmt
;
2037 GROUP_FIRST_ELEMENT (use_stmt_info
)
2038 = GROUP_FIRST_ELEMENT (current_stmt_info
);
2041 GROUP_FIRST_ELEMENT (use_stmt_info
) = loop_use_stmt
;
2043 lhs
= gimple_assign_lhs (loop_use_stmt
);
2044 current_stmt
= loop_use_stmt
;
2048 if (!found
|| loop_use_stmt
!= phi
|| size
< 2)
2051 /* Swap the operands, if needed, to make the reduction operand be the second
2053 lhs
= PHI_RESULT (phi
);
2054 next_stmt
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt
));
2057 if (gimple_assign_rhs2 (next_stmt
) == lhs
)
2059 tree op
= gimple_assign_rhs1 (next_stmt
);
2060 gimple def_stmt
= NULL
;
2062 if (TREE_CODE (op
) == SSA_NAME
)
2063 def_stmt
= SSA_NAME_DEF_STMT (op
);
2065 /* Check that the other def is either defined in the loop
2066 ("vect_internal_def"), or it's an induction (defined by a
2067 loop-header phi-node). */
2069 && gimple_bb (def_stmt
)
2070 && flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
))
2071 && (is_gimple_assign (def_stmt
)
2072 || is_gimple_call (def_stmt
)
2073 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
2074 == vect_induction_def
2075 || (gimple_code (def_stmt
) == GIMPLE_PHI
2076 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
2077 == vect_internal_def
2078 && !is_loop_header_bb_p (gimple_bb (def_stmt
)))))
2080 lhs
= gimple_assign_lhs (next_stmt
);
2081 next_stmt
= GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt
));
2089 tree op
= gimple_assign_rhs2 (next_stmt
);
2090 gimple def_stmt
= NULL
;
2092 if (TREE_CODE (op
) == SSA_NAME
)
2093 def_stmt
= SSA_NAME_DEF_STMT (op
);
2095 /* Check that the other def is either defined in the loop
2096 ("vect_internal_def"), or it's an induction (defined by a
2097 loop-header phi-node). */
2099 && gimple_bb (def_stmt
)
2100 && flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
))
2101 && (is_gimple_assign (def_stmt
)
2102 || is_gimple_call (def_stmt
)
2103 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
2104 == vect_induction_def
2105 || (gimple_code (def_stmt
) == GIMPLE_PHI
2106 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
2107 == vect_internal_def
2108 && !is_loop_header_bb_p (gimple_bb (def_stmt
)))))
2110 if (dump_enabled_p ())
2112 dump_printf_loc (MSG_NOTE
, vect_location
, "swapping oprnds: ");
2113 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, next_stmt
, 0);
2114 dump_printf (MSG_NOTE
, "\n");
2117 swap_ssa_operands (next_stmt
,
2118 gimple_assign_rhs1_ptr (next_stmt
),
2119 gimple_assign_rhs2_ptr (next_stmt
));
2120 update_stmt (next_stmt
);
2122 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt
)))
2123 LOOP_VINFO_OPERANDS_SWAPPED (loop_info
) = true;
2129 lhs
= gimple_assign_lhs (next_stmt
);
2130 next_stmt
= GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt
));
2133 /* Save the chain for further analysis in SLP detection. */
2134 first
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt
));
2135 LOOP_VINFO_REDUCTION_CHAINS (loop_info
).safe_push (first
);
2136 GROUP_SIZE (vinfo_for_stmt (first
)) = size
;
2142 /* Function vect_is_simple_reduction_1
2144 (1) Detect a cross-iteration def-use cycle that represents a simple
2145 reduction computation. We look for the following pattern:
2150 a2 = operation (a3, a1)
2157 a2 = operation (a3, a1)
2160 1. operation is commutative and associative and it is safe to
2161 change the order of the computation (if CHECK_REDUCTION is true)
2162 2. no uses for a2 in the loop (a2 is used out of the loop)
2163 3. no uses of a1 in the loop besides the reduction operation
2164 4. no uses of a1 outside the loop.
2166 Conditions 1,4 are tested here.
2167 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2169 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2170 nested cycles, if CHECK_REDUCTION is false.
2172 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2176 inner loop (def of a3)
2179 If MODIFY is true it tries also to rework the code in-place to enable
2180 detection of more reduction patterns. For the time being we rewrite
2181 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2185 vect_is_simple_reduction_1 (loop_vec_info loop_info
, gimple phi
,
2186 bool check_reduction
, bool *double_reduc
,
2189 struct loop
*loop
= (gimple_bb (phi
))->loop_father
;
2190 struct loop
*vect_loop
= LOOP_VINFO_LOOP (loop_info
);
2191 edge latch_e
= loop_latch_edge (loop
);
2192 tree loop_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, latch_e
);
2193 gimple def_stmt
, def1
= NULL
, def2
= NULL
;
2194 enum tree_code orig_code
, code
;
2195 tree op1
, op2
, op3
= NULL_TREE
, op4
= NULL_TREE
;
2199 imm_use_iterator imm_iter
;
2200 use_operand_p use_p
;
2203 *double_reduc
= false;
2205 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2206 otherwise, we assume outer loop vectorization. */
2207 gcc_assert ((check_reduction
&& loop
== vect_loop
)
2208 || (!check_reduction
&& flow_loop_nested_p (vect_loop
, loop
)));
2210 name
= PHI_RESULT (phi
);
2211 /* ??? If there are no uses of the PHI result the inner loop reduction
2212 won't be detected as possibly double-reduction by vectorizable_reduction
2213 because that tries to walk the PHI arg from the preheader edge which
2214 can be constant. See PR60382. */
2215 if (has_zero_uses (name
))
2218 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, name
)
2220 gimple use_stmt
= USE_STMT (use_p
);
2221 if (is_gimple_debug (use_stmt
))
2224 if (!flow_bb_inside_loop_p (loop
, gimple_bb (use_stmt
)))
2226 if (dump_enabled_p ())
2227 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2228 "intermediate value used outside loop.\n");
2233 if (vinfo_for_stmt (use_stmt
)
2234 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt
)))
2238 if (dump_enabled_p ())
2239 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2240 "reduction used in loop.\n");
2245 if (TREE_CODE (loop_arg
) != SSA_NAME
)
2247 if (dump_enabled_p ())
2249 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2250 "reduction: not ssa_name: ");
2251 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, loop_arg
);
2252 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
2257 def_stmt
= SSA_NAME_DEF_STMT (loop_arg
);
2260 if (dump_enabled_p ())
2261 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2262 "reduction: no def_stmt.\n");
2266 if (!is_gimple_assign (def_stmt
) && gimple_code (def_stmt
) != GIMPLE_PHI
)
2268 if (dump_enabled_p ())
2270 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, def_stmt
, 0);
2271 dump_printf (MSG_NOTE
, "\n");
2276 if (is_gimple_assign (def_stmt
))
2278 name
= gimple_assign_lhs (def_stmt
);
2283 name
= PHI_RESULT (def_stmt
);
2288 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, name
)
2290 gimple use_stmt
= USE_STMT (use_p
);
2291 if (is_gimple_debug (use_stmt
))
2293 if (flow_bb_inside_loop_p (loop
, gimple_bb (use_stmt
))
2294 && vinfo_for_stmt (use_stmt
)
2295 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt
)))
2299 if (dump_enabled_p ())
2300 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2301 "reduction used in loop.\n");
2306 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2307 defined in the inner loop. */
2310 op1
= PHI_ARG_DEF (def_stmt
, 0);
2312 if (gimple_phi_num_args (def_stmt
) != 1
2313 || TREE_CODE (op1
) != SSA_NAME
)
2315 if (dump_enabled_p ())
2316 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2317 "unsupported phi node definition.\n");
2322 def1
= SSA_NAME_DEF_STMT (op1
);
2323 if (flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
))
2325 && flow_bb_inside_loop_p (loop
->inner
, gimple_bb (def1
))
2326 && is_gimple_assign (def1
))
2328 if (dump_enabled_p ())
2329 report_vect_op (MSG_NOTE
, def_stmt
,
2330 "detected double reduction: ");
2332 *double_reduc
= true;
2339 code
= orig_code
= gimple_assign_rhs_code (def_stmt
);
2341 /* We can handle "res -= x[i]", which is non-associative by
2342 simply rewriting this into "res += -x[i]". Avoid changing
2343 gimple instruction for the first simple tests and only do this
2344 if we're allowed to change code at all. */
2345 if (code
== MINUS_EXPR
2347 && (op1
= gimple_assign_rhs1 (def_stmt
))
2348 && TREE_CODE (op1
) == SSA_NAME
2349 && SSA_NAME_DEF_STMT (op1
) == phi
)
2353 && (!commutative_tree_code (code
) || !associative_tree_code (code
)))
2355 if (dump_enabled_p ())
2356 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
2357 "reduction: not commutative/associative: ");
2361 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
2363 if (code
!= COND_EXPR
)
2365 if (dump_enabled_p ())
2366 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
2367 "reduction: not binary operation: ");
2372 op3
= gimple_assign_rhs1 (def_stmt
);
2373 if (COMPARISON_CLASS_P (op3
))
2375 op4
= TREE_OPERAND (op3
, 1);
2376 op3
= TREE_OPERAND (op3
, 0);
2379 op1
= gimple_assign_rhs2 (def_stmt
);
2380 op2
= gimple_assign_rhs3 (def_stmt
);
2382 if (TREE_CODE (op1
) != SSA_NAME
&& TREE_CODE (op2
) != SSA_NAME
)
2384 if (dump_enabled_p ())
2385 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
2386 "reduction: uses not ssa_names: ");
2393 op1
= gimple_assign_rhs1 (def_stmt
);
2394 op2
= gimple_assign_rhs2 (def_stmt
);
2396 if (TREE_CODE (op1
) != SSA_NAME
&& TREE_CODE (op2
) != SSA_NAME
)
2398 if (dump_enabled_p ())
2399 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
2400 "reduction: uses not ssa_names: ");
2406 type
= TREE_TYPE (gimple_assign_lhs (def_stmt
));
2407 if ((TREE_CODE (op1
) == SSA_NAME
2408 && !types_compatible_p (type
,TREE_TYPE (op1
)))
2409 || (TREE_CODE (op2
) == SSA_NAME
2410 && !types_compatible_p (type
, TREE_TYPE (op2
)))
2411 || (op3
&& TREE_CODE (op3
) == SSA_NAME
2412 && !types_compatible_p (type
, TREE_TYPE (op3
)))
2413 || (op4
&& TREE_CODE (op4
) == SSA_NAME
2414 && !types_compatible_p (type
, TREE_TYPE (op4
))))
2416 if (dump_enabled_p ())
2418 dump_printf_loc (MSG_NOTE
, vect_location
,
2419 "reduction: multiple types: operation type: ");
2420 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, type
);
2421 dump_printf (MSG_NOTE
, ", operands types: ");
2422 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2424 dump_printf (MSG_NOTE
, ",");
2425 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2429 dump_printf (MSG_NOTE
, ",");
2430 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2436 dump_printf (MSG_NOTE
, ",");
2437 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2440 dump_printf (MSG_NOTE
, "\n");
2446 /* Check that it's ok to change the order of the computation.
2447 Generally, when vectorizing a reduction we change the order of the
2448 computation. This may change the behavior of the program in some
2449 cases, so we need to check that this is ok. One exception is when
2450 vectorizing an outer-loop: the inner-loop is executed sequentially,
2451 and therefore vectorizing reductions in the inner-loop during
2452 outer-loop vectorization is safe. */
2454 /* CHECKME: check for !flag_finite_math_only too? */
2455 if (SCALAR_FLOAT_TYPE_P (type
) && !flag_associative_math
2458 /* Changing the order of operations changes the semantics. */
2459 if (dump_enabled_p ())
2460 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
2461 "reduction: unsafe fp math optimization: ");
2464 else if (INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_TRAPS (type
)
2467 /* Changing the order of operations changes the semantics. */
2468 if (dump_enabled_p ())
2469 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
2470 "reduction: unsafe int math optimization: ");
2473 else if (SAT_FIXED_POINT_TYPE_P (type
) && check_reduction
)
2475 /* Changing the order of operations changes the semantics. */
2476 if (dump_enabled_p ())
2477 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
2478 "reduction: unsafe fixed-point math optimization: ");
2482 /* If we detected "res -= x[i]" earlier, rewrite it into
2483 "res += -x[i]" now. If this turns out to be useless reassoc
2484 will clean it up again. */
2485 if (orig_code
== MINUS_EXPR
)
2487 tree rhs
= gimple_assign_rhs2 (def_stmt
);
2488 tree negrhs
= make_ssa_name (TREE_TYPE (rhs
), NULL
);
2489 gimple negate_stmt
= gimple_build_assign_with_ops (NEGATE_EXPR
, negrhs
,
2491 gimple_stmt_iterator gsi
= gsi_for_stmt (def_stmt
);
2492 set_vinfo_for_stmt (negate_stmt
, new_stmt_vec_info (negate_stmt
,
2494 gsi_insert_before (&gsi
, negate_stmt
, GSI_NEW_STMT
);
2495 gimple_assign_set_rhs2 (def_stmt
, negrhs
);
2496 gimple_assign_set_rhs_code (def_stmt
, PLUS_EXPR
);
2497 update_stmt (def_stmt
);
2500 /* Reduction is safe. We're dealing with one of the following:
2501 1) integer arithmetic and no trapv
2502 2) floating point arithmetic, and special flags permit this optimization
2503 3) nested cycle (i.e., outer loop vectorization). */
2504 if (TREE_CODE (op1
) == SSA_NAME
)
2505 def1
= SSA_NAME_DEF_STMT (op1
);
2507 if (TREE_CODE (op2
) == SSA_NAME
)
2508 def2
= SSA_NAME_DEF_STMT (op2
);
2510 if (code
!= COND_EXPR
2511 && ((!def1
|| gimple_nop_p (def1
)) && (!def2
|| gimple_nop_p (def2
))))
2513 if (dump_enabled_p ())
2514 report_vect_op (MSG_NOTE
, def_stmt
, "reduction: no defs for operands: ");
2518 /* Check that one def is the reduction def, defined by PHI,
2519 the other def is either defined in the loop ("vect_internal_def"),
2520 or it's an induction (defined by a loop-header phi-node). */
2522 if (def2
&& def2
== phi
2523 && (code
== COND_EXPR
2524 || !def1
|| gimple_nop_p (def1
)
2525 || !flow_bb_inside_loop_p (loop
, gimple_bb (def1
))
2526 || (def1
&& flow_bb_inside_loop_p (loop
, gimple_bb (def1
))
2527 && (is_gimple_assign (def1
)
2528 || is_gimple_call (def1
)
2529 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1
))
2530 == vect_induction_def
2531 || (gimple_code (def1
) == GIMPLE_PHI
2532 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1
))
2533 == vect_internal_def
2534 && !is_loop_header_bb_p (gimple_bb (def1
)))))))
2536 if (dump_enabled_p ())
2537 report_vect_op (MSG_NOTE
, def_stmt
, "detected reduction: ");
2541 if (def1
&& def1
== phi
2542 && (code
== COND_EXPR
2543 || !def2
|| gimple_nop_p (def2
)
2544 || !flow_bb_inside_loop_p (loop
, gimple_bb (def2
))
2545 || (def2
&& flow_bb_inside_loop_p (loop
, gimple_bb (def2
))
2546 && (is_gimple_assign (def2
)
2547 || is_gimple_call (def2
)
2548 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2
))
2549 == vect_induction_def
2550 || (gimple_code (def2
) == GIMPLE_PHI
2551 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2
))
2552 == vect_internal_def
2553 && !is_loop_header_bb_p (gimple_bb (def2
)))))))
2555 if (check_reduction
)
2557 /* Swap operands (just for simplicity - so that the rest of the code
2558 can assume that the reduction variable is always the last (second)
2560 if (dump_enabled_p ())
2561 report_vect_op (MSG_NOTE
, def_stmt
,
2562 "detected reduction: need to swap operands: ");
2564 swap_ssa_operands (def_stmt
, gimple_assign_rhs1_ptr (def_stmt
),
2565 gimple_assign_rhs2_ptr (def_stmt
));
2567 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt
)))
2568 LOOP_VINFO_OPERANDS_SWAPPED (loop_info
) = true;
2572 if (dump_enabled_p ())
2573 report_vect_op (MSG_NOTE
, def_stmt
, "detected reduction: ");
2579 /* Try to find SLP reduction chain. */
2580 if (check_reduction
&& vect_is_slp_reduction (loop_info
, phi
, def_stmt
))
2582 if (dump_enabled_p ())
2583 report_vect_op (MSG_NOTE
, def_stmt
,
2584 "reduction: detected reduction chain: ");
2589 if (dump_enabled_p ())
2590 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
2591 "reduction: unknown pattern: ");
2596 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2597 in-place. Arguments as there. */
2600 vect_is_simple_reduction (loop_vec_info loop_info
, gimple phi
,
2601 bool check_reduction
, bool *double_reduc
)
2603 return vect_is_simple_reduction_1 (loop_info
, phi
, check_reduction
,
2604 double_reduc
, false);
2607 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2608 in-place if it enables detection of more reductions. Arguments
2612 vect_force_simple_reduction (loop_vec_info loop_info
, gimple phi
,
2613 bool check_reduction
, bool *double_reduc
)
2615 return vect_is_simple_reduction_1 (loop_info
, phi
, check_reduction
,
2616 double_reduc
, true);
2619 /* Calculate the cost of one scalar iteration of the loop. */
2621 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo
)
2623 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2624 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
2625 int nbbs
= loop
->num_nodes
, factor
, scalar_single_iter_cost
= 0;
2626 int innerloop_iters
, i
, stmt_cost
;
2628 /* Count statements in scalar loop. Using this as scalar cost for a single
2631 TODO: Add outer loop support.
2633 TODO: Consider assigning different costs to different scalar
2637 innerloop_iters
= 1;
2639 innerloop_iters
= 50; /* FIXME */
2641 for (i
= 0; i
< nbbs
; i
++)
2643 gimple_stmt_iterator si
;
2644 basic_block bb
= bbs
[i
];
2646 if (bb
->loop_father
== loop
->inner
)
2647 factor
= innerloop_iters
;
2651 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
2653 gimple stmt
= gsi_stmt (si
);
2654 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
2656 if (!is_gimple_assign (stmt
) && !is_gimple_call (stmt
))
2659 /* Skip stmts that are not vectorized inside the loop. */
2661 && !STMT_VINFO_RELEVANT_P (stmt_info
)
2662 && (!STMT_VINFO_LIVE_P (stmt_info
)
2663 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info
)))
2664 && !STMT_VINFO_IN_PATTERN_P (stmt_info
))
2667 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt
)))
2669 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt
))))
2670 stmt_cost
= vect_get_stmt_cost (scalar_load
);
2672 stmt_cost
= vect_get_stmt_cost (scalar_store
);
2675 stmt_cost
= vect_get_stmt_cost (scalar_stmt
);
2677 scalar_single_iter_cost
+= stmt_cost
* factor
;
2680 return scalar_single_iter_cost
;
2683 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2685 vect_get_known_peeling_cost (loop_vec_info loop_vinfo
, int peel_iters_prologue
,
2686 int *peel_iters_epilogue
,
2687 int scalar_single_iter_cost
,
2688 stmt_vector_for_cost
*prologue_cost_vec
,
2689 stmt_vector_for_cost
*epilogue_cost_vec
)
2692 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2694 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
2696 *peel_iters_epilogue
= vf
/2;
2697 if (dump_enabled_p ())
2698 dump_printf_loc (MSG_NOTE
, vect_location
,
2699 "cost model: epilogue peel iters set to vf/2 "
2700 "because loop iterations are unknown .\n");
2702 /* If peeled iterations are known but number of scalar loop
2703 iterations are unknown, count a taken branch per peeled loop. */
2704 retval
= record_stmt_cost (prologue_cost_vec
, 2, cond_branch_taken
,
2705 NULL
, 0, vect_prologue
);
2709 int niters
= LOOP_VINFO_INT_NITERS (loop_vinfo
);
2710 peel_iters_prologue
= niters
< peel_iters_prologue
?
2711 niters
: peel_iters_prologue
;
2712 *peel_iters_epilogue
= (niters
- peel_iters_prologue
) % vf
;
2713 /* If we need to peel for gaps, but no peeling is required, we have to
2714 peel VF iterations. */
2715 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
) && !*peel_iters_epilogue
)
2716 *peel_iters_epilogue
= vf
;
2719 if (peel_iters_prologue
)
2720 retval
+= record_stmt_cost (prologue_cost_vec
,
2721 peel_iters_prologue
* scalar_single_iter_cost
,
2722 scalar_stmt
, NULL
, 0, vect_prologue
);
2723 if (*peel_iters_epilogue
)
2724 retval
+= record_stmt_cost (epilogue_cost_vec
,
2725 *peel_iters_epilogue
* scalar_single_iter_cost
,
2726 scalar_stmt
, NULL
, 0, vect_epilogue
);
2730 /* Function vect_estimate_min_profitable_iters
2732 Return the number of iterations required for the vector version of the
2733 loop to be profitable relative to the cost of the scalar version of the
2737 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo
,
2738 int *ret_min_profitable_niters
,
2739 int *ret_min_profitable_estimate
)
2741 int min_profitable_iters
;
2742 int min_profitable_estimate
;
2743 int peel_iters_prologue
;
2744 int peel_iters_epilogue
;
2745 unsigned vec_inside_cost
= 0;
2746 int vec_outside_cost
= 0;
2747 unsigned vec_prologue_cost
= 0;
2748 unsigned vec_epilogue_cost
= 0;
2749 int scalar_single_iter_cost
= 0;
2750 int scalar_outside_cost
= 0;
2751 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2752 int npeel
= LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
);
2753 void *target_cost_data
= LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
);
2755 /* Cost model disabled. */
2756 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo
)))
2758 dump_printf_loc (MSG_NOTE
, vect_location
, "cost model disabled.\n");
2759 *ret_min_profitable_niters
= 0;
2760 *ret_min_profitable_estimate
= 0;
2764 /* Requires loop versioning tests to handle misalignment. */
2765 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
))
2767 /* FIXME: Make cost depend on complexity of individual check. */
2768 unsigned len
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
).length ();
2769 (void) add_stmt_cost (target_cost_data
, len
, vector_stmt
, NULL
, 0,
2771 dump_printf (MSG_NOTE
,
2772 "cost model: Adding cost of checks for loop "
2773 "versioning to treat misalignment.\n");
2776 /* Requires loop versioning with alias checks. */
2777 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
2779 /* FIXME: Make cost depend on complexity of individual check. */
2780 unsigned len
= LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo
).length ();
2781 (void) add_stmt_cost (target_cost_data
, len
, vector_stmt
, NULL
, 0,
2783 dump_printf (MSG_NOTE
,
2784 "cost model: Adding cost of checks for loop "
2785 "versioning aliasing.\n");
2788 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
)
2789 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
2790 (void) add_stmt_cost (target_cost_data
, 1, cond_branch_taken
, NULL
, 0,
2793 /* Count statements in scalar loop. Using this as scalar cost for a single
2796 TODO: Add outer loop support.
2798 TODO: Consider assigning different costs to different scalar
2801 scalar_single_iter_cost
= vect_get_single_scalar_iteration_cost (loop_vinfo
);
2803 /* Add additional cost for the peeled instructions in prologue and epilogue
2806 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2807 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2809 TODO: Build an expression that represents peel_iters for prologue and
2810 epilogue to be used in a run-time test. */
2814 peel_iters_prologue
= vf
/2;
2815 dump_printf (MSG_NOTE
, "cost model: "
2816 "prologue peel iters set to vf/2.\n");
2818 /* If peeling for alignment is unknown, loop bound of main loop becomes
2820 peel_iters_epilogue
= vf
/2;
2821 dump_printf (MSG_NOTE
, "cost model: "
2822 "epilogue peel iters set to vf/2 because "
2823 "peeling for alignment is unknown.\n");
2825 /* If peeled iterations are unknown, count a taken branch and a not taken
2826 branch per peeled loop. Even if scalar loop iterations are known,
2827 vector iterations are not known since peeled prologue iterations are
2828 not known. Hence guards remain the same. */
2829 (void) add_stmt_cost (target_cost_data
, 2, cond_branch_taken
,
2830 NULL
, 0, vect_prologue
);
2831 (void) add_stmt_cost (target_cost_data
, 2, cond_branch_not_taken
,
2832 NULL
, 0, vect_prologue
);
2833 /* FORNOW: Don't attempt to pass individual scalar instructions to
2834 the model; just assume linear cost for scalar iterations. */
2835 (void) add_stmt_cost (target_cost_data
,
2836 peel_iters_prologue
* scalar_single_iter_cost
,
2837 scalar_stmt
, NULL
, 0, vect_prologue
);
2838 (void) add_stmt_cost (target_cost_data
,
2839 peel_iters_epilogue
* scalar_single_iter_cost
,
2840 scalar_stmt
, NULL
, 0, vect_epilogue
);
2844 stmt_vector_for_cost prologue_cost_vec
, epilogue_cost_vec
;
2845 stmt_info_for_cost
*si
;
2847 void *data
= LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
);
2849 prologue_cost_vec
.create (2);
2850 epilogue_cost_vec
.create (2);
2851 peel_iters_prologue
= npeel
;
2853 (void) vect_get_known_peeling_cost (loop_vinfo
, peel_iters_prologue
,
2854 &peel_iters_epilogue
,
2855 scalar_single_iter_cost
,
2857 &epilogue_cost_vec
);
2859 FOR_EACH_VEC_ELT (prologue_cost_vec
, j
, si
)
2861 struct _stmt_vec_info
*stmt_info
2862 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
2863 (void) add_stmt_cost (data
, si
->count
, si
->kind
, stmt_info
,
2864 si
->misalign
, vect_prologue
);
2867 FOR_EACH_VEC_ELT (epilogue_cost_vec
, j
, si
)
2869 struct _stmt_vec_info
*stmt_info
2870 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
2871 (void) add_stmt_cost (data
, si
->count
, si
->kind
, stmt_info
,
2872 si
->misalign
, vect_epilogue
);
2875 prologue_cost_vec
.release ();
2876 epilogue_cost_vec
.release ();
2879 /* FORNOW: The scalar outside cost is incremented in one of the
2882 1. The vectorizer checks for alignment and aliasing and generates
2883 a condition that allows dynamic vectorization. A cost model
2884 check is ANDED with the versioning condition. Hence scalar code
2885 path now has the added cost of the versioning check.
2887 if (cost > th & versioning_check)
2890 Hence run-time scalar is incremented by not-taken branch cost.
2892 2. The vectorizer then checks if a prologue is required. If the
2893 cost model check was not done before during versioning, it has to
2894 be done before the prologue check.
2897 prologue = scalar_iters
2902 if (prologue == num_iters)
2905 Hence the run-time scalar cost is incremented by a taken branch,
2906 plus a not-taken branch, plus a taken branch cost.
2908 3. The vectorizer then checks if an epilogue is required. If the
2909 cost model check was not done before during prologue check, it
2910 has to be done with the epilogue check.
2916 if (prologue == num_iters)
2919 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2922 Hence the run-time scalar cost should be incremented by 2 taken
2925 TODO: The back end may reorder the BBS's differently and reverse
2926 conditions/branch directions. Change the estimates below to
2927 something more reasonable. */
2929 /* If the number of iterations is known and we do not do versioning, we can
2930 decide whether to vectorize at compile time. Hence the scalar version
2931 do not carry cost model guard costs. */
2932 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
2933 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
)
2934 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
2936 /* Cost model check occurs at versioning. */
2937 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
)
2938 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
2939 scalar_outside_cost
+= vect_get_stmt_cost (cond_branch_not_taken
);
2942 /* Cost model check occurs at prologue generation. */
2943 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) < 0)
2944 scalar_outside_cost
+= 2 * vect_get_stmt_cost (cond_branch_taken
)
2945 + vect_get_stmt_cost (cond_branch_not_taken
);
2946 /* Cost model check occurs at epilogue generation. */
2948 scalar_outside_cost
+= 2 * vect_get_stmt_cost (cond_branch_taken
);
2952 /* Complete the target-specific cost calculations. */
2953 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
), &vec_prologue_cost
,
2954 &vec_inside_cost
, &vec_epilogue_cost
);
2956 vec_outside_cost
= (int)(vec_prologue_cost
+ vec_epilogue_cost
);
2958 /* Calculate number of iterations required to make the vector version
2959 profitable, relative to the loop bodies only. The following condition
2961 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2963 SIC = scalar iteration cost, VIC = vector iteration cost,
2964 VOC = vector outside cost, VF = vectorization factor,
2965 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2966 SOC = scalar outside cost for run time cost model check. */
2968 if ((scalar_single_iter_cost
* vf
) > (int) vec_inside_cost
)
2970 if (vec_outside_cost
<= 0)
2971 min_profitable_iters
= 1;
2974 min_profitable_iters
= ((vec_outside_cost
- scalar_outside_cost
) * vf
2975 - vec_inside_cost
* peel_iters_prologue
2976 - vec_inside_cost
* peel_iters_epilogue
)
2977 / ((scalar_single_iter_cost
* vf
)
2980 if ((scalar_single_iter_cost
* vf
* min_profitable_iters
)
2981 <= (((int) vec_inside_cost
* min_profitable_iters
)
2982 + (((int) vec_outside_cost
- scalar_outside_cost
) * vf
)))
2983 min_profitable_iters
++;
2986 /* vector version will never be profitable. */
2989 if (LOOP_VINFO_LOOP (loop_vinfo
)->force_vectorize
)
2990 warning_at (vect_location
, OPT_Wopenmp_simd
, "vectorization "
2991 "did not happen for a simd loop");
2993 if (dump_enabled_p ())
2994 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2995 "cost model: the vector iteration cost = %d "
2996 "divided by the scalar iteration cost = %d "
2997 "is greater or equal to the vectorization factor = %d"
2999 vec_inside_cost
, scalar_single_iter_cost
, vf
);
3000 *ret_min_profitable_niters
= -1;
3001 *ret_min_profitable_estimate
= -1;
3005 if (dump_enabled_p ())
3007 dump_printf_loc (MSG_NOTE
, vect_location
, "Cost model analysis: \n");
3008 dump_printf (MSG_NOTE
, " Vector inside of loop cost: %d\n",
3010 dump_printf (MSG_NOTE
, " Vector prologue cost: %d\n",
3012 dump_printf (MSG_NOTE
, " Vector epilogue cost: %d\n",
3014 dump_printf (MSG_NOTE
, " Scalar iteration cost: %d\n",
3015 scalar_single_iter_cost
);
3016 dump_printf (MSG_NOTE
, " Scalar outside cost: %d\n",
3017 scalar_outside_cost
);
3018 dump_printf (MSG_NOTE
, " Vector outside cost: %d\n",
3020 dump_printf (MSG_NOTE
, " prologue iterations: %d\n",
3021 peel_iters_prologue
);
3022 dump_printf (MSG_NOTE
, " epilogue iterations: %d\n",
3023 peel_iters_epilogue
);
3024 dump_printf (MSG_NOTE
,
3025 " Calculated minimum iters for profitability: %d\n",
3026 min_profitable_iters
);
3027 dump_printf (MSG_NOTE
, "\n");
3030 min_profitable_iters
=
3031 min_profitable_iters
< vf
? vf
: min_profitable_iters
;
3033 /* Because the condition we create is:
3034 if (niters <= min_profitable_iters)
3035 then skip the vectorized loop. */
3036 min_profitable_iters
--;
3038 if (dump_enabled_p ())
3039 dump_printf_loc (MSG_NOTE
, vect_location
,
3040 " Runtime profitability threshold = %d\n",
3041 min_profitable_iters
);
3043 *ret_min_profitable_niters
= min_profitable_iters
;
3045 /* Calculate number of iterations required to make the vector version
3046 profitable, relative to the loop bodies only.
3048 Non-vectorized variant is SIC * niters and it must win over vector
3049 variant on the expected loop trip count. The following condition must hold true:
3050 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3052 if (vec_outside_cost
<= 0)
3053 min_profitable_estimate
= 1;
3056 min_profitable_estimate
= ((vec_outside_cost
+ scalar_outside_cost
) * vf
3057 - vec_inside_cost
* peel_iters_prologue
3058 - vec_inside_cost
* peel_iters_epilogue
)
3059 / ((scalar_single_iter_cost
* vf
)
3062 min_profitable_estimate
--;
3063 min_profitable_estimate
= MAX (min_profitable_estimate
, min_profitable_iters
);
3064 if (dump_enabled_p ())
3065 dump_printf_loc (MSG_NOTE
, vect_location
,
3066 " Static estimate profitability threshold = %d\n",
3067 min_profitable_iters
);
3069 *ret_min_profitable_estimate
= min_profitable_estimate
;
3073 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3074 functions. Design better to avoid maintenance issues. */
3076 /* Function vect_model_reduction_cost.
3078 Models cost for a reduction operation, including the vector ops
3079 generated within the strip-mine loop, the initial definition before
3080 the loop, and the epilogue code that must be generated. */
3083 vect_model_reduction_cost (stmt_vec_info stmt_info
, enum tree_code reduc_code
,
3086 int prologue_cost
= 0, epilogue_cost
= 0;
3087 enum tree_code code
;
3090 gimple stmt
, orig_stmt
;
3092 enum machine_mode mode
;
3093 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
3094 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
3095 void *target_cost_data
= LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
);
3097 /* Cost of reduction op inside loop. */
3098 unsigned inside_cost
= add_stmt_cost (target_cost_data
, ncopies
, vector_stmt
,
3099 stmt_info
, 0, vect_body
);
3100 stmt
= STMT_VINFO_STMT (stmt_info
);
3102 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)))
3104 case GIMPLE_SINGLE_RHS
:
3105 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt
)) == ternary_op
);
3106 reduction_op
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 2);
3108 case GIMPLE_UNARY_RHS
:
3109 reduction_op
= gimple_assign_rhs1 (stmt
);
3111 case GIMPLE_BINARY_RHS
:
3112 reduction_op
= gimple_assign_rhs2 (stmt
);
3114 case GIMPLE_TERNARY_RHS
:
3115 reduction_op
= gimple_assign_rhs3 (stmt
);
3121 vectype
= get_vectype_for_scalar_type (TREE_TYPE (reduction_op
));
3124 if (dump_enabled_p ())
3126 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3127 "unsupported data-type ");
3128 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
3129 TREE_TYPE (reduction_op
));
3130 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3135 mode
= TYPE_MODE (vectype
);
3136 orig_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
3139 orig_stmt
= STMT_VINFO_STMT (stmt_info
);
3141 code
= gimple_assign_rhs_code (orig_stmt
);
3143 /* Add in cost for initial definition. */
3144 prologue_cost
+= add_stmt_cost (target_cost_data
, 1, scalar_to_vec
,
3145 stmt_info
, 0, vect_prologue
);
3147 /* Determine cost of epilogue code.
3149 We have a reduction operator that will reduce the vector in one statement.
3150 Also requires scalar extract. */
3152 if (!nested_in_vect_loop_p (loop
, orig_stmt
))
3154 if (reduc_code
!= ERROR_MARK
)
3156 epilogue_cost
+= add_stmt_cost (target_cost_data
, 1, vector_stmt
,
3157 stmt_info
, 0, vect_epilogue
);
3158 epilogue_cost
+= add_stmt_cost (target_cost_data
, 1, vec_to_scalar
,
3159 stmt_info
, 0, vect_epilogue
);
3163 int vec_size_in_bits
= tree_to_uhwi (TYPE_SIZE (vectype
));
3165 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt
)));
3166 int element_bitsize
= tree_to_uhwi (bitsize
);
3167 int nelements
= vec_size_in_bits
/ element_bitsize
;
3169 optab
= optab_for_tree_code (code
, vectype
, optab_default
);
3171 /* We have a whole vector shift available. */
3172 if (VECTOR_MODE_P (mode
)
3173 && optab_handler (optab
, mode
) != CODE_FOR_nothing
3174 && optab_handler (vec_shr_optab
, mode
) != CODE_FOR_nothing
)
3176 /* Final reduction via vector shifts and the reduction operator.
3177 Also requires scalar extract. */
3178 epilogue_cost
+= add_stmt_cost (target_cost_data
,
3179 exact_log2 (nelements
) * 2,
3180 vector_stmt
, stmt_info
, 0,
3182 epilogue_cost
+= add_stmt_cost (target_cost_data
, 1,
3183 vec_to_scalar
, stmt_info
, 0,
3187 /* Use extracts and reduction op for final reduction. For N
3188 elements, we have N extracts and N-1 reduction ops. */
3189 epilogue_cost
+= add_stmt_cost (target_cost_data
,
3190 nelements
+ nelements
- 1,
3191 vector_stmt
, stmt_info
, 0,
3196 if (dump_enabled_p ())
3197 dump_printf (MSG_NOTE
,
3198 "vect_model_reduction_cost: inside_cost = %d, "
3199 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost
,
3200 prologue_cost
, epilogue_cost
);
3206 /* Function vect_model_induction_cost.
3208 Models cost for induction operations. */
3211 vect_model_induction_cost (stmt_vec_info stmt_info
, int ncopies
)
3213 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
3214 void *target_cost_data
= LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
);
3215 unsigned inside_cost
, prologue_cost
;
3217 /* loop cost for vec_loop. */
3218 inside_cost
= add_stmt_cost (target_cost_data
, ncopies
, vector_stmt
,
3219 stmt_info
, 0, vect_body
);
3221 /* prologue cost for vec_init and vec_step. */
3222 prologue_cost
= add_stmt_cost (target_cost_data
, 2, scalar_to_vec
,
3223 stmt_info
, 0, vect_prologue
);
3225 if (dump_enabled_p ())
3226 dump_printf_loc (MSG_NOTE
, vect_location
,
3227 "vect_model_induction_cost: inside_cost = %d, "
3228 "prologue_cost = %d .\n", inside_cost
, prologue_cost
);
3232 /* Function get_initial_def_for_induction
3235 STMT - a stmt that performs an induction operation in the loop.
3236 IV_PHI - the initial value of the induction variable
3239 Return a vector variable, initialized with the first VF values of
3240 the induction variable. E.g., for an iv with IV_PHI='X' and
3241 evolution S, for a vector of 4 units, we want to return:
3242 [X, X + S, X + 2*S, X + 3*S]. */
3245 get_initial_def_for_induction (gimple iv_phi
)
3247 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (iv_phi
);
3248 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_vinfo
);
3249 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
3252 edge pe
= loop_preheader_edge (loop
);
3253 struct loop
*iv_loop
;
3255 tree new_vec
, vec_init
, vec_step
, t
;
3258 gimple init_stmt
, induction_phi
, new_stmt
;
3259 tree induc_def
, vec_def
, vec_dest
;
3260 tree init_expr
, step_expr
;
3261 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
3265 stmt_vec_info phi_info
= vinfo_for_stmt (iv_phi
);
3266 bool nested_in_vect_loop
= false;
3267 gimple_seq stmts
= NULL
;
3268 imm_use_iterator imm_iter
;
3269 use_operand_p use_p
;
3273 gimple_stmt_iterator si
;
3274 basic_block bb
= gimple_bb (iv_phi
);
3278 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3279 if (nested_in_vect_loop_p (loop
, iv_phi
))
3281 nested_in_vect_loop
= true;
3282 iv_loop
= loop
->inner
;
3286 gcc_assert (iv_loop
== (gimple_bb (iv_phi
))->loop_father
);
3288 latch_e
= loop_latch_edge (iv_loop
);
3289 loop_arg
= PHI_ARG_DEF_FROM_EDGE (iv_phi
, latch_e
);
3291 step_expr
= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info
);
3292 gcc_assert (step_expr
!= NULL_TREE
);
3294 pe
= loop_preheader_edge (iv_loop
);
3295 init_expr
= PHI_ARG_DEF_FROM_EDGE (iv_phi
,
3296 loop_preheader_edge (iv_loop
));
3298 vectype
= get_vectype_for_scalar_type (TREE_TYPE (init_expr
));
3299 resvectype
= get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi
)));
3300 gcc_assert (vectype
);
3301 nunits
= TYPE_VECTOR_SUBPARTS (vectype
);
3302 ncopies
= vf
/ nunits
;
3304 gcc_assert (phi_info
);
3305 gcc_assert (ncopies
>= 1);
3307 /* Convert the step to the desired type. */
3308 step_expr
= force_gimple_operand (fold_convert (TREE_TYPE (vectype
),
3310 &stmts
, true, NULL_TREE
);
3313 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
3314 gcc_assert (!new_bb
);
3317 /* Find the first insertion point in the BB. */
3318 si
= gsi_after_labels (bb
);
3320 /* Create the vector that holds the initial_value of the induction. */
3321 if (nested_in_vect_loop
)
3323 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3324 been created during vectorization of previous stmts. We obtain it
3325 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3326 vec_init
= vect_get_vec_def_for_operand (init_expr
, iv_phi
, NULL
);
3327 /* If the initial value is not of proper type, convert it. */
3328 if (!useless_type_conversion_p (vectype
, TREE_TYPE (vec_init
)))
3330 new_stmt
= gimple_build_assign_with_ops
3332 vect_get_new_vect_var (vectype
, vect_simple_var
, "vec_iv_"),
3333 build1 (VIEW_CONVERT_EXPR
, vectype
, vec_init
), NULL_TREE
);
3334 vec_init
= make_ssa_name (gimple_assign_lhs (new_stmt
), new_stmt
);
3335 gimple_assign_set_lhs (new_stmt
, vec_init
);
3336 new_bb
= gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop
),
3338 gcc_assert (!new_bb
);
3339 set_vinfo_for_stmt (new_stmt
,
3340 new_stmt_vec_info (new_stmt
, loop_vinfo
, NULL
));
3345 vec
<constructor_elt
, va_gc
> *v
;
3347 /* iv_loop is the loop to be vectorized. Create:
3348 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3349 new_var
= vect_get_new_vect_var (TREE_TYPE (vectype
),
3350 vect_scalar_var
, "var_");
3351 new_name
= force_gimple_operand (fold_convert (TREE_TYPE (vectype
),
3353 &stmts
, false, new_var
);
3356 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
3357 gcc_assert (!new_bb
);
3360 vec_alloc (v
, nunits
);
3361 bool constant_p
= is_gimple_min_invariant (new_name
);
3362 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, new_name
);
3363 for (i
= 1; i
< nunits
; i
++)
3365 /* Create: new_name_i = new_name + step_expr */
3366 new_name
= fold_build2 (PLUS_EXPR
, TREE_TYPE (new_name
),
3367 new_name
, step_expr
);
3368 if (!is_gimple_min_invariant (new_name
))
3370 init_stmt
= gimple_build_assign (new_var
, new_name
);
3371 new_name
= make_ssa_name (new_var
, init_stmt
);
3372 gimple_assign_set_lhs (init_stmt
, new_name
);
3373 new_bb
= gsi_insert_on_edge_immediate (pe
, init_stmt
);
3374 gcc_assert (!new_bb
);
3375 if (dump_enabled_p ())
3377 dump_printf_loc (MSG_NOTE
, vect_location
,
3378 "created new init_stmt: ");
3379 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, init_stmt
, 0);
3380 dump_printf (MSG_NOTE
, "\n");
3384 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, new_name
);
3386 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3388 new_vec
= build_vector_from_ctor (vectype
, v
);
3390 new_vec
= build_constructor (vectype
, v
);
3391 vec_init
= vect_init_vector (iv_phi
, new_vec
, vectype
, NULL
);
3395 /* Create the vector that holds the step of the induction. */
3396 if (nested_in_vect_loop
)
3397 /* iv_loop is nested in the loop to be vectorized. Generate:
3398 vec_step = [S, S, S, S] */
3399 new_name
= step_expr
;
3402 /* iv_loop is the loop to be vectorized. Generate:
3403 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3404 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
)))
3406 expr
= build_int_cst (integer_type_node
, vf
);
3407 expr
= fold_convert (TREE_TYPE (step_expr
), expr
);
3410 expr
= build_int_cst (TREE_TYPE (step_expr
), vf
);
3411 new_name
= fold_build2 (MULT_EXPR
, TREE_TYPE (step_expr
),
3413 if (TREE_CODE (step_expr
) == SSA_NAME
)
3414 new_name
= vect_init_vector (iv_phi
, new_name
,
3415 TREE_TYPE (step_expr
), NULL
);
3418 t
= unshare_expr (new_name
);
3419 gcc_assert (CONSTANT_CLASS_P (new_name
)
3420 || TREE_CODE (new_name
) == SSA_NAME
);
3421 stepvectype
= get_vectype_for_scalar_type (TREE_TYPE (new_name
));
3422 gcc_assert (stepvectype
);
3423 new_vec
= build_vector_from_val (stepvectype
, t
);
3424 vec_step
= vect_init_vector (iv_phi
, new_vec
, stepvectype
, NULL
);
3427 /* Create the following def-use cycle:
3432 vec_iv = PHI <vec_init, vec_loop>
3436 vec_loop = vec_iv + vec_step; */
3438 /* Create the induction-phi that defines the induction-operand. */
3439 vec_dest
= vect_get_new_vect_var (vectype
, vect_simple_var
, "vec_iv_");
3440 induction_phi
= create_phi_node (vec_dest
, iv_loop
->header
);
3441 set_vinfo_for_stmt (induction_phi
,
3442 new_stmt_vec_info (induction_phi
, loop_vinfo
, NULL
));
3443 induc_def
= PHI_RESULT (induction_phi
);
3445 /* Create the iv update inside the loop */
3446 new_stmt
= gimple_build_assign_with_ops (PLUS_EXPR
, vec_dest
,
3447 induc_def
, vec_step
);
3448 vec_def
= make_ssa_name (vec_dest
, new_stmt
);
3449 gimple_assign_set_lhs (new_stmt
, vec_def
);
3450 gsi_insert_before (&si
, new_stmt
, GSI_SAME_STMT
);
3451 set_vinfo_for_stmt (new_stmt
, new_stmt_vec_info (new_stmt
, loop_vinfo
,
3454 /* Set the arguments of the phi node: */
3455 add_phi_arg (induction_phi
, vec_init
, pe
, UNKNOWN_LOCATION
);
3456 add_phi_arg (induction_phi
, vec_def
, loop_latch_edge (iv_loop
),
3460 /* In case that vectorization factor (VF) is bigger than the number
3461 of elements that we can fit in a vectype (nunits), we have to generate
3462 more than one vector stmt - i.e - we need to "unroll" the
3463 vector stmt by a factor VF/nunits. For more details see documentation
3464 in vectorizable_operation. */
3468 stmt_vec_info prev_stmt_vinfo
;
3469 /* FORNOW. This restriction should be relaxed. */
3470 gcc_assert (!nested_in_vect_loop
);
3472 /* Create the vector that holds the step of the induction. */
3473 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
)))
3475 expr
= build_int_cst (integer_type_node
, nunits
);
3476 expr
= fold_convert (TREE_TYPE (step_expr
), expr
);
3479 expr
= build_int_cst (TREE_TYPE (step_expr
), nunits
);
3480 new_name
= fold_build2 (MULT_EXPR
, TREE_TYPE (step_expr
),
3482 if (TREE_CODE (step_expr
) == SSA_NAME
)
3483 new_name
= vect_init_vector (iv_phi
, new_name
,
3484 TREE_TYPE (step_expr
), NULL
);
3485 t
= unshare_expr (new_name
);
3486 gcc_assert (CONSTANT_CLASS_P (new_name
)
3487 || TREE_CODE (new_name
) == SSA_NAME
);
3488 new_vec
= build_vector_from_val (stepvectype
, t
);
3489 vec_step
= vect_init_vector (iv_phi
, new_vec
, stepvectype
, NULL
);
3491 vec_def
= induc_def
;
3492 prev_stmt_vinfo
= vinfo_for_stmt (induction_phi
);
3493 for (i
= 1; i
< ncopies
; i
++)
3495 /* vec_i = vec_prev + vec_step */
3496 new_stmt
= gimple_build_assign_with_ops (PLUS_EXPR
, vec_dest
,
3498 vec_def
= make_ssa_name (vec_dest
, new_stmt
);
3499 gimple_assign_set_lhs (new_stmt
, vec_def
);
3501 gsi_insert_before (&si
, new_stmt
, GSI_SAME_STMT
);
3502 if (!useless_type_conversion_p (resvectype
, vectype
))
3504 new_stmt
= gimple_build_assign_with_ops
3506 vect_get_new_vect_var (resvectype
, vect_simple_var
,
3508 build1 (VIEW_CONVERT_EXPR
, resvectype
,
3509 gimple_assign_lhs (new_stmt
)), NULL_TREE
);
3510 gimple_assign_set_lhs (new_stmt
,
3512 (gimple_assign_lhs (new_stmt
), new_stmt
));
3513 gsi_insert_before (&si
, new_stmt
, GSI_SAME_STMT
);
3515 set_vinfo_for_stmt (new_stmt
,
3516 new_stmt_vec_info (new_stmt
, loop_vinfo
, NULL
));
3517 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo
) = new_stmt
;
3518 prev_stmt_vinfo
= vinfo_for_stmt (new_stmt
);
3522 if (nested_in_vect_loop
)
3524 /* Find the loop-closed exit-phi of the induction, and record
3525 the final vector of induction results: */
3527 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, loop_arg
)
3529 gimple use_stmt
= USE_STMT (use_p
);
3530 if (is_gimple_debug (use_stmt
))
3533 if (!flow_bb_inside_loop_p (iv_loop
, gimple_bb (use_stmt
)))
3535 exit_phi
= use_stmt
;
3541 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (exit_phi
);
3542 /* FORNOW. Currently not supporting the case that an inner-loop induction
3543 is not used in the outer-loop (i.e. only outside the outer-loop). */
3544 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo
)
3545 && !STMT_VINFO_LIVE_P (stmt_vinfo
));
3547 STMT_VINFO_VEC_STMT (stmt_vinfo
) = new_stmt
;
3548 if (dump_enabled_p ())
3550 dump_printf_loc (MSG_NOTE
, vect_location
,
3551 "vector of inductions after inner-loop:");
3552 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, new_stmt
, 0);
3553 dump_printf (MSG_NOTE
, "\n");
3559 if (dump_enabled_p ())
3561 dump_printf_loc (MSG_NOTE
, vect_location
,
3562 "transform induction: created def-use cycle: ");
3563 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, induction_phi
, 0);
3564 dump_printf (MSG_NOTE
, "\n");
3565 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
,
3566 SSA_NAME_DEF_STMT (vec_def
), 0);
3567 dump_printf (MSG_NOTE
, "\n");
3570 STMT_VINFO_VEC_STMT (phi_info
) = induction_phi
;
3571 if (!useless_type_conversion_p (resvectype
, vectype
))
3573 new_stmt
= gimple_build_assign_with_ops
3575 vect_get_new_vect_var (resvectype
, vect_simple_var
, "vec_iv_"),
3576 build1 (VIEW_CONVERT_EXPR
, resvectype
, induc_def
), NULL_TREE
);
3577 induc_def
= make_ssa_name (gimple_assign_lhs (new_stmt
), new_stmt
);
3578 gimple_assign_set_lhs (new_stmt
, induc_def
);
3579 si
= gsi_after_labels (bb
);
3580 gsi_insert_before (&si
, new_stmt
, GSI_SAME_STMT
);
3581 set_vinfo_for_stmt (new_stmt
,
3582 new_stmt_vec_info (new_stmt
, loop_vinfo
, NULL
));
3583 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt
))
3584 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi
));
3591 /* Function get_initial_def_for_reduction
3594 STMT - a stmt that performs a reduction operation in the loop.
3595 INIT_VAL - the initial value of the reduction variable
3598 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3599 of the reduction (used for adjusting the epilog - see below).
3600 Return a vector variable, initialized according to the operation that STMT
3601 performs. This vector will be used as the initial value of the
3602 vector of partial results.
3604 Option1 (adjust in epilog): Initialize the vector as follows:
3605 add/bit or/xor: [0,0,...,0,0]
3606 mult/bit and: [1,1,...,1,1]
3607 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3608 and when necessary (e.g. add/mult case) let the caller know
3609 that it needs to adjust the result by init_val.
3611 Option2: Initialize the vector as follows:
3612 add/bit or/xor: [init_val,0,0,...,0]
3613 mult/bit and: [init_val,1,1,...,1]
3614 min/max/cond_expr: [init_val,init_val,...,init_val]
3615 and no adjustments are needed.
3617 For example, for the following code:
3623 STMT is 's = s + a[i]', and the reduction variable is 's'.
3624 For a vector of 4 units, we want to return either [0,0,0,init_val],
3625 or [0,0,0,0] and let the caller know that it needs to adjust
3626 the result at the end by 'init_val'.
3628 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3629 initialization vector is simpler (same element in all entries), if
3630 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3632 A cost model should help decide between these two schemes. */
3635 get_initial_def_for_reduction (gimple stmt
, tree init_val
,
3636 tree
*adjustment_def
)
3638 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (stmt
);
3639 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_vinfo
);
3640 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
3641 tree scalar_type
= TREE_TYPE (init_val
);
3642 tree vectype
= get_vectype_for_scalar_type (scalar_type
);
3644 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3649 bool nested_in_vect_loop
= false;
3651 REAL_VALUE_TYPE real_init_val
= dconst0
;
3652 int int_init_val
= 0;
3653 gimple def_stmt
= NULL
;
3655 gcc_assert (vectype
);
3656 nunits
= TYPE_VECTOR_SUBPARTS (vectype
);
3658 gcc_assert (POINTER_TYPE_P (scalar_type
) || INTEGRAL_TYPE_P (scalar_type
)
3659 || SCALAR_FLOAT_TYPE_P (scalar_type
));
3661 if (nested_in_vect_loop_p (loop
, stmt
))
3662 nested_in_vect_loop
= true;
3664 gcc_assert (loop
== (gimple_bb (stmt
))->loop_father
);
3666 /* In case of double reduction we only create a vector variable to be put
3667 in the reduction phi node. The actual statement creation is done in
3668 vect_create_epilog_for_reduction. */
3669 if (adjustment_def
&& nested_in_vect_loop
3670 && TREE_CODE (init_val
) == SSA_NAME
3671 && (def_stmt
= SSA_NAME_DEF_STMT (init_val
))
3672 && gimple_code (def_stmt
) == GIMPLE_PHI
3673 && flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
))
3674 && vinfo_for_stmt (def_stmt
)
3675 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
3676 == vect_double_reduction_def
)
3678 *adjustment_def
= NULL
;
3679 return vect_create_destination_var (init_val
, vectype
);
3682 if (TREE_CONSTANT (init_val
))
3684 if (SCALAR_FLOAT_TYPE_P (scalar_type
))
3685 init_value
= build_real (scalar_type
, TREE_REAL_CST (init_val
));
3687 init_value
= build_int_cst (scalar_type
, TREE_INT_CST_LOW (init_val
));
3690 init_value
= init_val
;
3694 case WIDEN_SUM_EXPR
:
3702 /* ADJUSMENT_DEF is NULL when called from
3703 vect_create_epilog_for_reduction to vectorize double reduction. */
3706 if (nested_in_vect_loop
)
3707 *adjustment_def
= vect_get_vec_def_for_operand (init_val
, stmt
,
3710 *adjustment_def
= init_val
;
3713 if (code
== MULT_EXPR
)
3715 real_init_val
= dconst1
;
3719 if (code
== BIT_AND_EXPR
)
3722 if (SCALAR_FLOAT_TYPE_P (scalar_type
))
3723 def_for_init
= build_real (scalar_type
, real_init_val
);
3725 def_for_init
= build_int_cst (scalar_type
, int_init_val
);
3727 /* Create a vector of '0' or '1' except the first element. */
3728 elts
= XALLOCAVEC (tree
, nunits
);
3729 for (i
= nunits
- 2; i
>= 0; --i
)
3730 elts
[i
+ 1] = def_for_init
;
3732 /* Option1: the first element is '0' or '1' as well. */
3735 elts
[0] = def_for_init
;
3736 init_def
= build_vector (vectype
, elts
);
3740 /* Option2: the first element is INIT_VAL. */
3742 if (TREE_CONSTANT (init_val
))
3743 init_def
= build_vector (vectype
, elts
);
3746 vec
<constructor_elt
, va_gc
> *v
;
3747 vec_alloc (v
, nunits
);
3748 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, init_val
);
3749 for (i
= 1; i
< nunits
; ++i
)
3750 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, elts
[i
]);
3751 init_def
= build_constructor (vectype
, v
);
3761 *adjustment_def
= NULL_TREE
;
3762 init_def
= vect_get_vec_def_for_operand (init_val
, stmt
, NULL
);
3766 init_def
= build_vector_from_val (vectype
, init_value
);
3777 /* Function vect_create_epilog_for_reduction
3779 Create code at the loop-epilog to finalize the result of a reduction
3782 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3783 reduction statements.
3784 STMT is the scalar reduction stmt that is being vectorized.
3785 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3786 number of elements that we can fit in a vectype (nunits). In this case
3787 we have to generate more than one vector stmt - i.e - we need to "unroll"
3788 the vector stmt by a factor VF/nunits. For more details see documentation
3789 in vectorizable_operation.
3790 REDUC_CODE is the tree-code for the epilog reduction.
3791 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3793 REDUC_INDEX is the index of the operand in the right hand side of the
3794 statement that is defined by REDUCTION_PHI.
3795 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3796 SLP_NODE is an SLP node containing a group of reduction statements. The
3797 first one in this group is STMT.
3800 1. Creates the reduction def-use cycles: sets the arguments for
3802 The loop-entry argument is the vectorized initial-value of the reduction.
3803 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3805 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3806 by applying the operation specified by REDUC_CODE if available, or by
3807 other means (whole-vector shifts or a scalar loop).
3808 The function also creates a new phi node at the loop exit to preserve
3809 loop-closed form, as illustrated below.
3811 The flow at the entry to this function:
3814 vec_def = phi <null, null> # REDUCTION_PHI
3815 VECT_DEF = vector_stmt # vectorized form of STMT
3816 s_loop = scalar_stmt # (scalar) STMT
3818 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3822 The above is transformed by this function into:
3825 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3826 VECT_DEF = vector_stmt # vectorized form of STMT
3827 s_loop = scalar_stmt # (scalar) STMT
3829 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3830 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3831 v_out2 = reduce <v_out1>
3832 s_out3 = extract_field <v_out2, 0>
3833 s_out4 = adjust_result <s_out3>
3839 vect_create_epilog_for_reduction (vec
<tree
> vect_defs
, gimple stmt
,
3840 int ncopies
, enum tree_code reduc_code
,
3841 vec
<gimple
> reduction_phis
,
3842 int reduc_index
, bool double_reduc
,
3845 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
3846 stmt_vec_info prev_phi_info
;
3848 enum machine_mode mode
;
3849 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
3850 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
), *outer_loop
= NULL
;
3851 basic_block exit_bb
;
3854 gimple new_phi
= NULL
, phi
;
3855 gimple_stmt_iterator exit_gsi
;
3857 tree new_temp
= NULL_TREE
, new_dest
, new_name
, new_scalar_dest
;
3858 gimple epilog_stmt
= NULL
;
3859 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3861 tree bitsize
, bitpos
;
3862 tree adjustment_def
= NULL
;
3863 tree vec_initial_def
= NULL
;
3864 tree reduction_op
, expr
, def
;
3865 tree orig_name
, scalar_result
;
3866 imm_use_iterator imm_iter
, phi_imm_iter
;
3867 use_operand_p use_p
, phi_use_p
;
3868 bool extract_scalar_result
= false;
3869 gimple use_stmt
, orig_stmt
, reduction_phi
= NULL
;
3870 bool nested_in_vect_loop
= false;
3871 auto_vec
<gimple
> new_phis
;
3872 auto_vec
<gimple
> inner_phis
;
3873 enum vect_def_type dt
= vect_unknown_def_type
;
3875 auto_vec
<tree
> scalar_results
;
3876 unsigned int group_size
= 1, k
, ratio
;
3877 auto_vec
<tree
> vec_initial_defs
;
3878 auto_vec
<gimple
> phis
;
3879 bool slp_reduc
= false;
3880 tree new_phi_result
;
3881 gimple inner_phi
= NULL
;
3884 group_size
= SLP_TREE_SCALAR_STMTS (slp_node
).length ();
3886 if (nested_in_vect_loop_p (loop
, stmt
))
3890 nested_in_vect_loop
= true;
3891 gcc_assert (!slp_node
);
3894 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)))
3896 case GIMPLE_SINGLE_RHS
:
3897 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt
))
3899 reduction_op
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), reduc_index
);
3901 case GIMPLE_UNARY_RHS
:
3902 reduction_op
= gimple_assign_rhs1 (stmt
);
3904 case GIMPLE_BINARY_RHS
:
3905 reduction_op
= reduc_index
?
3906 gimple_assign_rhs2 (stmt
) : gimple_assign_rhs1 (stmt
);
3908 case GIMPLE_TERNARY_RHS
:
3909 reduction_op
= gimple_op (stmt
, reduc_index
+ 1);
3915 vectype
= get_vectype_for_scalar_type (TREE_TYPE (reduction_op
));
3916 gcc_assert (vectype
);
3917 mode
= TYPE_MODE (vectype
);
3919 /* 1. Create the reduction def-use cycle:
3920 Set the arguments of REDUCTION_PHIS, i.e., transform
3923 vec_def = phi <null, null> # REDUCTION_PHI
3924 VECT_DEF = vector_stmt # vectorized form of STMT
3930 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3931 VECT_DEF = vector_stmt # vectorized form of STMT
3934 (in case of SLP, do it for all the phis). */
3936 /* Get the loop-entry arguments. */
3938 vect_get_vec_defs (reduction_op
, NULL_TREE
, stmt
, &vec_initial_defs
,
3939 NULL
, slp_node
, reduc_index
);
3942 vec_initial_defs
.create (1);
3943 /* For the case of reduction, vect_get_vec_def_for_operand returns
3944 the scalar def before the loop, that defines the initial value
3945 of the reduction variable. */
3946 vec_initial_def
= vect_get_vec_def_for_operand (reduction_op
, stmt
,
3948 vec_initial_defs
.quick_push (vec_initial_def
);
3951 /* Set phi nodes arguments. */
3952 FOR_EACH_VEC_ELT (reduction_phis
, i
, phi
)
3954 tree vec_init_def
= vec_initial_defs
[i
];
3955 tree def
= vect_defs
[i
];
3956 for (j
= 0; j
< ncopies
; j
++)
3958 /* Set the loop-entry arg of the reduction-phi. */
3959 add_phi_arg (phi
, vec_init_def
, loop_preheader_edge (loop
),
3962 /* Set the loop-latch arg for the reduction-phi. */
3964 def
= vect_get_vec_def_for_stmt_copy (vect_unknown_def_type
, def
);
3966 add_phi_arg (phi
, def
, loop_latch_edge (loop
), UNKNOWN_LOCATION
);
3968 if (dump_enabled_p ())
3970 dump_printf_loc (MSG_NOTE
, vect_location
,
3971 "transform reduction: created def-use cycle: ");
3972 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
3973 dump_printf (MSG_NOTE
, "\n");
3974 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, SSA_NAME_DEF_STMT (def
), 0);
3975 dump_printf (MSG_NOTE
, "\n");
3978 phi
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi
));
3982 /* 2. Create epilog code.
3983 The reduction epilog code operates across the elements of the vector
3984 of partial results computed by the vectorized loop.
3985 The reduction epilog code consists of:
3987 step 1: compute the scalar result in a vector (v_out2)
3988 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3989 step 3: adjust the scalar result (s_out3) if needed.
3991 Step 1 can be accomplished using one the following three schemes:
3992 (scheme 1) using reduc_code, if available.
3993 (scheme 2) using whole-vector shifts, if available.
3994 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3997 The overall epilog code looks like this:
3999 s_out0 = phi <s_loop> # original EXIT_PHI
4000 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4001 v_out2 = reduce <v_out1> # step 1
4002 s_out3 = extract_field <v_out2, 0> # step 2
4003 s_out4 = adjust_result <s_out3> # step 3
4005 (step 3 is optional, and steps 1 and 2 may be combined).
4006 Lastly, the uses of s_out0 are replaced by s_out4. */
4009 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4010 v_out1 = phi <VECT_DEF>
4011 Store them in NEW_PHIS. */
4013 exit_bb
= single_exit (loop
)->dest
;
4014 prev_phi_info
= NULL
;
4015 new_phis
.create (vect_defs
.length ());
4016 FOR_EACH_VEC_ELT (vect_defs
, i
, def
)
4018 for (j
= 0; j
< ncopies
; j
++)
4020 tree new_def
= copy_ssa_name (def
, NULL
);
4021 phi
= create_phi_node (new_def
, exit_bb
);
4022 set_vinfo_for_stmt (phi
, new_stmt_vec_info (phi
, loop_vinfo
, NULL
));
4024 new_phis
.quick_push (phi
);
4027 def
= vect_get_vec_def_for_stmt_copy (dt
, def
);
4028 STMT_VINFO_RELATED_STMT (prev_phi_info
) = phi
;
4031 SET_PHI_ARG_DEF (phi
, single_exit (loop
)->dest_idx
, def
);
4032 prev_phi_info
= vinfo_for_stmt (phi
);
4036 /* The epilogue is created for the outer-loop, i.e., for the loop being
4037 vectorized. Create exit phis for the outer loop. */
4041 exit_bb
= single_exit (loop
)->dest
;
4042 inner_phis
.create (vect_defs
.length ());
4043 FOR_EACH_VEC_ELT (new_phis
, i
, phi
)
4045 tree new_result
= copy_ssa_name (PHI_RESULT (phi
), NULL
);
4046 gimple outer_phi
= create_phi_node (new_result
, exit_bb
);
4047 SET_PHI_ARG_DEF (outer_phi
, single_exit (loop
)->dest_idx
,
4049 set_vinfo_for_stmt (outer_phi
, new_stmt_vec_info (outer_phi
,
4051 inner_phis
.quick_push (phi
);
4052 new_phis
[i
] = outer_phi
;
4053 prev_phi_info
= vinfo_for_stmt (outer_phi
);
4054 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi
)))
4056 phi
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi
));
4057 new_result
= copy_ssa_name (PHI_RESULT (phi
), NULL
);
4058 outer_phi
= create_phi_node (new_result
, exit_bb
);
4059 SET_PHI_ARG_DEF (outer_phi
, single_exit (loop
)->dest_idx
,
4061 set_vinfo_for_stmt (outer_phi
, new_stmt_vec_info (outer_phi
,
4063 STMT_VINFO_RELATED_STMT (prev_phi_info
) = outer_phi
;
4064 prev_phi_info
= vinfo_for_stmt (outer_phi
);
4069 exit_gsi
= gsi_after_labels (exit_bb
);
4071 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4072 (i.e. when reduc_code is not available) and in the final adjustment
4073 code (if needed). Also get the original scalar reduction variable as
4074 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4075 represents a reduction pattern), the tree-code and scalar-def are
4076 taken from the original stmt that the pattern-stmt (STMT) replaces.
4077 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4078 are taken from STMT. */
4080 orig_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
4083 /* Regular reduction */
4088 /* Reduction pattern */
4089 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (orig_stmt
);
4090 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo
));
4091 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo
) == stmt
);
4094 code
= gimple_assign_rhs_code (orig_stmt
);
4095 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4096 partial results are added and not subtracted. */
4097 if (code
== MINUS_EXPR
)
4100 scalar_dest
= gimple_assign_lhs (orig_stmt
);
4101 scalar_type
= TREE_TYPE (scalar_dest
);
4102 scalar_results
.create (group_size
);
4103 new_scalar_dest
= vect_create_destination_var (scalar_dest
, NULL
);
4104 bitsize
= TYPE_SIZE (scalar_type
);
4106 /* In case this is a reduction in an inner-loop while vectorizing an outer
4107 loop - we don't need to extract a single scalar result at the end of the
4108 inner-loop (unless it is double reduction, i.e., the use of reduction is
4109 outside the outer-loop). The final vector of partial results will be used
4110 in the vectorized outer-loop, or reduced to a scalar result at the end of
4112 if (nested_in_vect_loop
&& !double_reduc
)
4113 goto vect_finalize_reduction
;
4115 /* SLP reduction without reduction chain, e.g.,
4119 b2 = operation (b1) */
4120 slp_reduc
= (slp_node
&& !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)));
4122 /* In case of reduction chain, e.g.,
4125 a3 = operation (a2),
4127 we may end up with more than one vector result. Here we reduce them to
4129 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)))
4131 tree first_vect
= PHI_RESULT (new_phis
[0]);
4133 gimple new_vec_stmt
= NULL
;
4135 vec_dest
= vect_create_destination_var (scalar_dest
, vectype
);
4136 for (k
= 1; k
< new_phis
.length (); k
++)
4138 gimple next_phi
= new_phis
[k
];
4139 tree second_vect
= PHI_RESULT (next_phi
);
4141 tmp
= build2 (code
, vectype
, first_vect
, second_vect
);
4142 new_vec_stmt
= gimple_build_assign (vec_dest
, tmp
);
4143 first_vect
= make_ssa_name (vec_dest
, new_vec_stmt
);
4144 gimple_assign_set_lhs (new_vec_stmt
, first_vect
);
4145 gsi_insert_before (&exit_gsi
, new_vec_stmt
, GSI_SAME_STMT
);
4148 new_phi_result
= first_vect
;
4151 new_phis
.truncate (0);
4152 new_phis
.safe_push (new_vec_stmt
);
4156 new_phi_result
= PHI_RESULT (new_phis
[0]);
4158 /* 2.3 Create the reduction code, using one of the three schemes described
4159 above. In SLP we simply need to extract all the elements from the
4160 vector (without reducing them), so we use scalar shifts. */
4161 if (reduc_code
!= ERROR_MARK
&& !slp_reduc
)
4165 /*** Case 1: Create:
4166 v_out2 = reduc_expr <v_out1> */
4168 if (dump_enabled_p ())
4169 dump_printf_loc (MSG_NOTE
, vect_location
,
4170 "Reduce using direct vector reduction.\n");
4172 vec_dest
= vect_create_destination_var (scalar_dest
, vectype
);
4173 tmp
= build1 (reduc_code
, vectype
, new_phi_result
);
4174 epilog_stmt
= gimple_build_assign (vec_dest
, tmp
);
4175 new_temp
= make_ssa_name (vec_dest
, epilog_stmt
);
4176 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
4177 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
4179 extract_scalar_result
= true;
4183 enum tree_code shift_code
= ERROR_MARK
;
4184 bool have_whole_vector_shift
= true;
4186 int element_bitsize
= tree_to_uhwi (bitsize
);
4187 int vec_size_in_bits
= tree_to_uhwi (TYPE_SIZE (vectype
));
4190 if (optab_handler (vec_shr_optab
, mode
) != CODE_FOR_nothing
)
4191 shift_code
= VEC_RSHIFT_EXPR
;
4193 have_whole_vector_shift
= false;
4195 /* Regardless of whether we have a whole vector shift, if we're
4196 emulating the operation via tree-vect-generic, we don't want
4197 to use it. Only the first round of the reduction is likely
4198 to still be profitable via emulation. */
4199 /* ??? It might be better to emit a reduction tree code here, so that
4200 tree-vect-generic can expand the first round via bit tricks. */
4201 if (!VECTOR_MODE_P (mode
))
4202 have_whole_vector_shift
= false;
4205 optab optab
= optab_for_tree_code (code
, vectype
, optab_default
);
4206 if (optab_handler (optab
, mode
) == CODE_FOR_nothing
)
4207 have_whole_vector_shift
= false;
4210 if (have_whole_vector_shift
&& !slp_reduc
)
4212 /*** Case 2: Create:
4213 for (offset = VS/2; offset >= element_size; offset/=2)
4215 Create: va' = vec_shift <va, offset>
4216 Create: va = vop <va, va'>
4219 if (dump_enabled_p ())
4220 dump_printf_loc (MSG_NOTE
, vect_location
,
4221 "Reduce using vector shifts\n");
4223 vec_dest
= vect_create_destination_var (scalar_dest
, vectype
);
4224 new_temp
= new_phi_result
;
4225 for (bit_offset
= vec_size_in_bits
/2;
4226 bit_offset
>= element_bitsize
;
4229 tree bitpos
= size_int (bit_offset
);
4231 epilog_stmt
= gimple_build_assign_with_ops (shift_code
,
4232 vec_dest
, new_temp
, bitpos
);
4233 new_name
= make_ssa_name (vec_dest
, epilog_stmt
);
4234 gimple_assign_set_lhs (epilog_stmt
, new_name
);
4235 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
4237 epilog_stmt
= gimple_build_assign_with_ops (code
, vec_dest
,
4238 new_name
, new_temp
);
4239 new_temp
= make_ssa_name (vec_dest
, epilog_stmt
);
4240 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
4241 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
4244 extract_scalar_result
= true;
4250 /*** Case 3: Create:
4251 s = extract_field <v_out2, 0>
4252 for (offset = element_size;
4253 offset < vector_size;
4254 offset += element_size;)
4256 Create: s' = extract_field <v_out2, offset>
4257 Create: s = op <s, s'> // For non SLP cases
4260 if (dump_enabled_p ())
4261 dump_printf_loc (MSG_NOTE
, vect_location
,
4262 "Reduce using scalar code.\n");
4264 vec_size_in_bits
= tree_to_uhwi (TYPE_SIZE (vectype
));
4265 FOR_EACH_VEC_ELT (new_phis
, i
, new_phi
)
4267 if (gimple_code (new_phi
) == GIMPLE_PHI
)
4268 vec_temp
= PHI_RESULT (new_phi
);
4270 vec_temp
= gimple_assign_lhs (new_phi
);
4271 rhs
= build3 (BIT_FIELD_REF
, scalar_type
, vec_temp
, bitsize
,
4273 epilog_stmt
= gimple_build_assign (new_scalar_dest
, rhs
);
4274 new_temp
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
4275 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
4276 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
4278 /* In SLP we don't need to apply reduction operation, so we just
4279 collect s' values in SCALAR_RESULTS. */
4281 scalar_results
.safe_push (new_temp
);
4283 for (bit_offset
= element_bitsize
;
4284 bit_offset
< vec_size_in_bits
;
4285 bit_offset
+= element_bitsize
)
4287 tree bitpos
= bitsize_int (bit_offset
);
4288 tree rhs
= build3 (BIT_FIELD_REF
, scalar_type
, vec_temp
,
4291 epilog_stmt
= gimple_build_assign (new_scalar_dest
, rhs
);
4292 new_name
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
4293 gimple_assign_set_lhs (epilog_stmt
, new_name
);
4294 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
4298 /* In SLP we don't need to apply reduction operation, so
4299 we just collect s' values in SCALAR_RESULTS. */
4300 new_temp
= new_name
;
4301 scalar_results
.safe_push (new_name
);
4305 epilog_stmt
= gimple_build_assign_with_ops (code
,
4306 new_scalar_dest
, new_name
, new_temp
);
4307 new_temp
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
4308 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
4309 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
4314 /* The only case where we need to reduce scalar results in SLP, is
4315 unrolling. If the size of SCALAR_RESULTS is greater than
4316 GROUP_SIZE, we reduce them combining elements modulo
4320 tree res
, first_res
, new_res
;
4323 /* Reduce multiple scalar results in case of SLP unrolling. */
4324 for (j
= group_size
; scalar_results
.iterate (j
, &res
);
4327 first_res
= scalar_results
[j
% group_size
];
4328 new_stmt
= gimple_build_assign_with_ops (code
,
4329 new_scalar_dest
, first_res
, res
);
4330 new_res
= make_ssa_name (new_scalar_dest
, new_stmt
);
4331 gimple_assign_set_lhs (new_stmt
, new_res
);
4332 gsi_insert_before (&exit_gsi
, new_stmt
, GSI_SAME_STMT
);
4333 scalar_results
[j
% group_size
] = new_res
;
4337 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4338 scalar_results
.safe_push (new_temp
);
4340 extract_scalar_result
= false;
4344 /* 2.4 Extract the final scalar result. Create:
4345 s_out3 = extract_field <v_out2, bitpos> */
4347 if (extract_scalar_result
)
4351 if (dump_enabled_p ())
4352 dump_printf_loc (MSG_NOTE
, vect_location
,
4353 "extract scalar result\n");
4355 if (BYTES_BIG_ENDIAN
)
4356 bitpos
= size_binop (MULT_EXPR
,
4357 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype
) - 1),
4358 TYPE_SIZE (scalar_type
));
4360 bitpos
= bitsize_zero_node
;
4362 rhs
= build3 (BIT_FIELD_REF
, scalar_type
, new_temp
, bitsize
, bitpos
);
4363 epilog_stmt
= gimple_build_assign (new_scalar_dest
, rhs
);
4364 new_temp
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
4365 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
4366 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
4367 scalar_results
.safe_push (new_temp
);
4370 vect_finalize_reduction
:
4375 /* 2.5 Adjust the final result by the initial value of the reduction
4376 variable. (When such adjustment is not needed, then
4377 'adjustment_def' is zero). For example, if code is PLUS we create:
4378 new_temp = loop_exit_def + adjustment_def */
4382 gcc_assert (!slp_reduc
);
4383 if (nested_in_vect_loop
)
4385 new_phi
= new_phis
[0];
4386 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def
)) == VECTOR_TYPE
);
4387 expr
= build2 (code
, vectype
, PHI_RESULT (new_phi
), adjustment_def
);
4388 new_dest
= vect_create_destination_var (scalar_dest
, vectype
);
4392 new_temp
= scalar_results
[0];
4393 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def
)) != VECTOR_TYPE
);
4394 expr
= build2 (code
, scalar_type
, new_temp
, adjustment_def
);
4395 new_dest
= vect_create_destination_var (scalar_dest
, scalar_type
);
4398 epilog_stmt
= gimple_build_assign (new_dest
, expr
);
4399 new_temp
= make_ssa_name (new_dest
, epilog_stmt
);
4400 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
4401 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
4402 if (nested_in_vect_loop
)
4404 set_vinfo_for_stmt (epilog_stmt
,
4405 new_stmt_vec_info (epilog_stmt
, loop_vinfo
,
4407 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt
)) =
4408 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi
));
4411 scalar_results
.quick_push (new_temp
);
4413 scalar_results
[0] = new_temp
;
4416 scalar_results
[0] = new_temp
;
4418 new_phis
[0] = epilog_stmt
;
4421 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4422 phis with new adjusted scalar results, i.e., replace use <s_out0>
4427 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4428 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4429 v_out2 = reduce <v_out1>
4430 s_out3 = extract_field <v_out2, 0>
4431 s_out4 = adjust_result <s_out3>
4438 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4439 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4440 v_out2 = reduce <v_out1>
4441 s_out3 = extract_field <v_out2, 0>
4442 s_out4 = adjust_result <s_out3>
4447 /* In SLP reduction chain we reduce vector results into one vector if
4448 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4449 the last stmt in the reduction chain, since we are looking for the loop
4451 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)))
4453 scalar_dest
= gimple_assign_lhs (
4454 SLP_TREE_SCALAR_STMTS (slp_node
)[group_size
- 1]);
4458 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4459 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4460 need to match SCALAR_RESULTS with corresponding statements. The first
4461 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4462 the first vector stmt, etc.
4463 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4464 if (group_size
> new_phis
.length ())
4466 ratio
= group_size
/ new_phis
.length ();
4467 gcc_assert (!(group_size
% new_phis
.length ()));
4472 for (k
= 0; k
< group_size
; k
++)
4476 epilog_stmt
= new_phis
[k
/ ratio
];
4477 reduction_phi
= reduction_phis
[k
/ ratio
];
4479 inner_phi
= inner_phis
[k
/ ratio
];
4484 gimple current_stmt
= SLP_TREE_SCALAR_STMTS (slp_node
)[k
];
4486 orig_stmt
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt
));
4487 /* SLP statements can't participate in patterns. */
4488 gcc_assert (!orig_stmt
);
4489 scalar_dest
= gimple_assign_lhs (current_stmt
);
4493 /* Find the loop-closed-use at the loop exit of the original scalar
4494 result. (The reduction result is expected to have two immediate uses -
4495 one at the latch block, and one at the loop exit). */
4496 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, scalar_dest
)
4497 if (!flow_bb_inside_loop_p (loop
, gimple_bb (USE_STMT (use_p
)))
4498 && !is_gimple_debug (USE_STMT (use_p
)))
4499 phis
.safe_push (USE_STMT (use_p
));
4501 /* While we expect to have found an exit_phi because of loop-closed-ssa
4502 form we can end up without one if the scalar cycle is dead. */
4504 FOR_EACH_VEC_ELT (phis
, i
, exit_phi
)
4508 stmt_vec_info exit_phi_vinfo
= vinfo_for_stmt (exit_phi
);
4511 /* FORNOW. Currently not supporting the case that an inner-loop
4512 reduction is not used in the outer-loop (but only outside the
4513 outer-loop), unless it is double reduction. */
4514 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo
)
4515 && !STMT_VINFO_LIVE_P (exit_phi_vinfo
))
4518 STMT_VINFO_VEC_STMT (exit_phi_vinfo
) = epilog_stmt
;
4520 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo
)
4521 != vect_double_reduction_def
)
4524 /* Handle double reduction:
4526 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4527 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4528 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4529 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4531 At that point the regular reduction (stmt2 and stmt3) is
4532 already vectorized, as well as the exit phi node, stmt4.
4533 Here we vectorize the phi node of double reduction, stmt1, and
4534 update all relevant statements. */
4536 /* Go through all the uses of s2 to find double reduction phi
4537 node, i.e., stmt1 above. */
4538 orig_name
= PHI_RESULT (exit_phi
);
4539 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, orig_name
)
4541 stmt_vec_info use_stmt_vinfo
;
4542 stmt_vec_info new_phi_vinfo
;
4543 tree vect_phi_init
, preheader_arg
, vect_phi_res
, init_def
;
4544 basic_block bb
= gimple_bb (use_stmt
);
4547 /* Check that USE_STMT is really double reduction phi
4549 if (gimple_code (use_stmt
) != GIMPLE_PHI
4550 || gimple_phi_num_args (use_stmt
) != 2
4551 || bb
->loop_father
!= outer_loop
)
4553 use_stmt_vinfo
= vinfo_for_stmt (use_stmt
);
4555 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo
)
4556 != vect_double_reduction_def
)
4559 /* Create vector phi node for double reduction:
4560 vs1 = phi <vs0, vs2>
4561 vs1 was created previously in this function by a call to
4562 vect_get_vec_def_for_operand and is stored in
4564 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4565 vs0 is created here. */
4567 /* Create vector phi node. */
4568 vect_phi
= create_phi_node (vec_initial_def
, bb
);
4569 new_phi_vinfo
= new_stmt_vec_info (vect_phi
,
4570 loop_vec_info_for_loop (outer_loop
), NULL
);
4571 set_vinfo_for_stmt (vect_phi
, new_phi_vinfo
);
4573 /* Create vs0 - initial def of the double reduction phi. */
4574 preheader_arg
= PHI_ARG_DEF_FROM_EDGE (use_stmt
,
4575 loop_preheader_edge (outer_loop
));
4576 init_def
= get_initial_def_for_reduction (stmt
,
4577 preheader_arg
, NULL
);
4578 vect_phi_init
= vect_init_vector (use_stmt
, init_def
,
4581 /* Update phi node arguments with vs0 and vs2. */
4582 add_phi_arg (vect_phi
, vect_phi_init
,
4583 loop_preheader_edge (outer_loop
),
4585 add_phi_arg (vect_phi
, PHI_RESULT (inner_phi
),
4586 loop_latch_edge (outer_loop
), UNKNOWN_LOCATION
);
4587 if (dump_enabled_p ())
4589 dump_printf_loc (MSG_NOTE
, vect_location
,
4590 "created double reduction phi node: ");
4591 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, vect_phi
, 0);
4592 dump_printf (MSG_NOTE
, "\n");
4595 vect_phi_res
= PHI_RESULT (vect_phi
);
4597 /* Replace the use, i.e., set the correct vs1 in the regular
4598 reduction phi node. FORNOW, NCOPIES is always 1, so the
4599 loop is redundant. */
4600 use
= reduction_phi
;
4601 for (j
= 0; j
< ncopies
; j
++)
4603 edge pr_edge
= loop_preheader_edge (loop
);
4604 SET_PHI_ARG_DEF (use
, pr_edge
->dest_idx
, vect_phi_res
);
4605 use
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use
));
4612 if (nested_in_vect_loop
)
4621 /* Find the loop-closed-use at the loop exit of the original scalar
4622 result. (The reduction result is expected to have two immediate uses,
4623 one at the latch block, and one at the loop exit). For double
4624 reductions we are looking for exit phis of the outer loop. */
4625 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, scalar_dest
)
4627 if (!flow_bb_inside_loop_p (loop
, gimple_bb (USE_STMT (use_p
))))
4629 if (!is_gimple_debug (USE_STMT (use_p
)))
4630 phis
.safe_push (USE_STMT (use_p
));
4634 if (double_reduc
&& gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
)
4636 tree phi_res
= PHI_RESULT (USE_STMT (use_p
));
4638 FOR_EACH_IMM_USE_FAST (phi_use_p
, phi_imm_iter
, phi_res
)
4640 if (!flow_bb_inside_loop_p (loop
,
4641 gimple_bb (USE_STMT (phi_use_p
)))
4642 && !is_gimple_debug (USE_STMT (phi_use_p
)))
4643 phis
.safe_push (USE_STMT (phi_use_p
));
4649 FOR_EACH_VEC_ELT (phis
, i
, exit_phi
)
4651 /* Replace the uses: */
4652 orig_name
= PHI_RESULT (exit_phi
);
4653 scalar_result
= scalar_results
[k
];
4654 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, orig_name
)
4655 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
4656 SET_USE (use_p
, scalar_result
);
4664 /* Function vectorizable_reduction.
4666 Check if STMT performs a reduction operation that can be vectorized.
4667 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4668 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4669 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4671 This function also handles reduction idioms (patterns) that have been
4672 recognized in advance during vect_pattern_recog. In this case, STMT may be
4674 X = pattern_expr (arg0, arg1, ..., X)
4675 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4676 sequence that had been detected and replaced by the pattern-stmt (STMT).
4678 In some cases of reduction patterns, the type of the reduction variable X is
4679 different than the type of the other arguments of STMT.
4680 In such cases, the vectype that is used when transforming STMT into a vector
4681 stmt is different than the vectype that is used to determine the
4682 vectorization factor, because it consists of a different number of elements
4683 than the actual number of elements that are being operated upon in parallel.
4685 For example, consider an accumulation of shorts into an int accumulator.
4686 On some targets it's possible to vectorize this pattern operating on 8
4687 shorts at a time (hence, the vectype for purposes of determining the
4688 vectorization factor should be V8HI); on the other hand, the vectype that
4689 is used to create the vector form is actually V4SI (the type of the result).
4691 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4692 indicates what is the actual level of parallelism (V8HI in the example), so
4693 that the right vectorization factor would be derived. This vectype
4694 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4695 be used to create the vectorized stmt. The right vectype for the vectorized
4696 stmt is obtained from the type of the result X:
4697 get_vectype_for_scalar_type (TREE_TYPE (X))
4699 This means that, contrary to "regular" reductions (or "regular" stmts in
4700 general), the following equation:
4701 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4702 does *NOT* necessarily hold for reduction patterns. */
4705 vectorizable_reduction (gimple stmt
, gimple_stmt_iterator
*gsi
,
4706 gimple
*vec_stmt
, slp_tree slp_node
)
4710 tree loop_vec_def0
= NULL_TREE
, loop_vec_def1
= NULL_TREE
;
4711 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
4712 tree vectype_out
= STMT_VINFO_VECTYPE (stmt_info
);
4713 tree vectype_in
= NULL_TREE
;
4714 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
4715 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
4716 enum tree_code code
, orig_code
, epilog_reduc_code
;
4717 enum machine_mode vec_mode
;
4719 optab optab
, reduc_optab
;
4720 tree new_temp
= NULL_TREE
;
4723 enum vect_def_type dt
;
4724 gimple new_phi
= NULL
;
4728 stmt_vec_info orig_stmt_info
;
4729 tree expr
= NULL_TREE
;
4733 stmt_vec_info prev_stmt_info
, prev_phi_info
;
4734 bool single_defuse_cycle
= false;
4735 tree reduc_def
= NULL_TREE
;
4736 gimple new_stmt
= NULL
;
4739 bool nested_cycle
= false, found_nested_cycle_def
= false;
4740 gimple reduc_def_stmt
= NULL
;
4741 /* The default is that the reduction variable is the last in statement. */
4742 int reduc_index
= 2;
4743 bool double_reduc
= false, dummy
;
4745 struct loop
* def_stmt_loop
, *outer_loop
= NULL
;
4747 gimple def_arg_stmt
;
4748 auto_vec
<tree
> vec_oprnds0
;
4749 auto_vec
<tree
> vec_oprnds1
;
4750 auto_vec
<tree
> vect_defs
;
4751 auto_vec
<gimple
> phis
;
4753 tree def0
, def1
, tem
, op0
, op1
= NULL_TREE
;
4755 /* In case of reduction chain we switch to the first stmt in the chain, but
4756 we don't update STMT_INFO, since only the last stmt is marked as reduction
4757 and has reduction properties. */
4758 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)))
4759 stmt
= GROUP_FIRST_ELEMENT (stmt_info
);
4761 if (nested_in_vect_loop_p (loop
, stmt
))
4765 nested_cycle
= true;
4768 /* 1. Is vectorizable reduction? */
4769 /* Not supportable if the reduction variable is used in the loop, unless
4770 it's a reduction chain. */
4771 if (STMT_VINFO_RELEVANT (stmt_info
) > vect_used_in_outer
4772 && !GROUP_FIRST_ELEMENT (stmt_info
))
4775 /* Reductions that are not used even in an enclosing outer-loop,
4776 are expected to be "live" (used out of the loop). */
4777 if (STMT_VINFO_RELEVANT (stmt_info
) == vect_unused_in_scope
4778 && !STMT_VINFO_LIVE_P (stmt_info
))
4781 /* Make sure it was already recognized as a reduction computation. */
4782 if (STMT_VINFO_DEF_TYPE (stmt_info
) != vect_reduction_def
4783 && STMT_VINFO_DEF_TYPE (stmt_info
) != vect_nested_cycle
)
4786 /* 2. Has this been recognized as a reduction pattern?
4788 Check if STMT represents a pattern that has been recognized
4789 in earlier analysis stages. For stmts that represent a pattern,
4790 the STMT_VINFO_RELATED_STMT field records the last stmt in
4791 the original sequence that constitutes the pattern. */
4793 orig_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
4796 orig_stmt_info
= vinfo_for_stmt (orig_stmt
);
4797 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info
));
4798 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info
));
4801 /* 3. Check the operands of the operation. The first operands are defined
4802 inside the loop body. The last operand is the reduction variable,
4803 which is defined by the loop-header-phi. */
4805 gcc_assert (is_gimple_assign (stmt
));
4808 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)))
4810 case GIMPLE_SINGLE_RHS
:
4811 op_type
= TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt
));
4812 if (op_type
== ternary_op
)
4814 tree rhs
= gimple_assign_rhs1 (stmt
);
4815 ops
[0] = TREE_OPERAND (rhs
, 0);
4816 ops
[1] = TREE_OPERAND (rhs
, 1);
4817 ops
[2] = TREE_OPERAND (rhs
, 2);
4818 code
= TREE_CODE (rhs
);
4824 case GIMPLE_BINARY_RHS
:
4825 code
= gimple_assign_rhs_code (stmt
);
4826 op_type
= TREE_CODE_LENGTH (code
);
4827 gcc_assert (op_type
== binary_op
);
4828 ops
[0] = gimple_assign_rhs1 (stmt
);
4829 ops
[1] = gimple_assign_rhs2 (stmt
);
4832 case GIMPLE_TERNARY_RHS
:
4833 code
= gimple_assign_rhs_code (stmt
);
4834 op_type
= TREE_CODE_LENGTH (code
);
4835 gcc_assert (op_type
== ternary_op
);
4836 ops
[0] = gimple_assign_rhs1 (stmt
);
4837 ops
[1] = gimple_assign_rhs2 (stmt
);
4838 ops
[2] = gimple_assign_rhs3 (stmt
);
4841 case GIMPLE_UNARY_RHS
:
4848 if (code
== COND_EXPR
&& slp_node
)
4851 scalar_dest
= gimple_assign_lhs (stmt
);
4852 scalar_type
= TREE_TYPE (scalar_dest
);
4853 if (!POINTER_TYPE_P (scalar_type
) && !INTEGRAL_TYPE_P (scalar_type
)
4854 && !SCALAR_FLOAT_TYPE_P (scalar_type
))
4857 /* Do not try to vectorize bit-precision reductions. */
4858 if ((TYPE_PRECISION (scalar_type
)
4859 != GET_MODE_PRECISION (TYPE_MODE (scalar_type
))))
4862 /* All uses but the last are expected to be defined in the loop.
4863 The last use is the reduction variable. In case of nested cycle this
4864 assumption is not true: we use reduc_index to record the index of the
4865 reduction variable. */
4866 for (i
= 0; i
< op_type
- 1; i
++)
4868 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4869 if (i
== 0 && code
== COND_EXPR
)
4872 is_simple_use
= vect_is_simple_use_1 (ops
[i
], stmt
, loop_vinfo
, NULL
,
4873 &def_stmt
, &def
, &dt
, &tem
);
4876 gcc_assert (is_simple_use
);
4878 if (dt
!= vect_internal_def
4879 && dt
!= vect_external_def
4880 && dt
!= vect_constant_def
4881 && dt
!= vect_induction_def
4882 && !(dt
== vect_nested_cycle
&& nested_cycle
))
4885 if (dt
== vect_nested_cycle
)
4887 found_nested_cycle_def
= true;
4888 reduc_def_stmt
= def_stmt
;
4893 is_simple_use
= vect_is_simple_use_1 (ops
[i
], stmt
, loop_vinfo
, NULL
,
4894 &def_stmt
, &def
, &dt
, &tem
);
4897 gcc_assert (is_simple_use
);
4898 if (!(dt
== vect_reduction_def
4899 || dt
== vect_nested_cycle
4900 || ((dt
== vect_internal_def
|| dt
== vect_external_def
4901 || dt
== vect_constant_def
|| dt
== vect_induction_def
)
4902 && nested_cycle
&& found_nested_cycle_def
)))
4904 /* For pattern recognized stmts, orig_stmt might be a reduction,
4905 but some helper statements for the pattern might not, or
4906 might be COND_EXPRs with reduction uses in the condition. */
4907 gcc_assert (orig_stmt
);
4910 if (!found_nested_cycle_def
)
4911 reduc_def_stmt
= def_stmt
;
4913 gcc_assert (gimple_code (reduc_def_stmt
) == GIMPLE_PHI
);
4915 gcc_assert (orig_stmt
== vect_is_simple_reduction (loop_vinfo
,
4921 gimple tmp
= vect_is_simple_reduction (loop_vinfo
, reduc_def_stmt
,
4922 !nested_cycle
, &dummy
);
4923 /* We changed STMT to be the first stmt in reduction chain, hence we
4924 check that in this case the first element in the chain is STMT. */
4925 gcc_assert (stmt
== tmp
4926 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp
)) == stmt
);
4929 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt
)))
4932 if (slp_node
|| PURE_SLP_STMT (stmt_info
))
4935 ncopies
= (LOOP_VINFO_VECT_FACTOR (loop_vinfo
)
4936 / TYPE_VECTOR_SUBPARTS (vectype_in
));
4938 gcc_assert (ncopies
>= 1);
4940 vec_mode
= TYPE_MODE (vectype_in
);
4942 if (code
== COND_EXPR
)
4944 if (!vectorizable_condition (stmt
, gsi
, NULL
, ops
[reduc_index
], 0, NULL
))
4946 if (dump_enabled_p ())
4947 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
4948 "unsupported condition in reduction\n");
4955 /* 4. Supportable by target? */
4957 if (code
== LSHIFT_EXPR
|| code
== RSHIFT_EXPR
4958 || code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
4960 /* Shifts and rotates are only supported by vectorizable_shifts,
4961 not vectorizable_reduction. */
4962 if (dump_enabled_p ())
4963 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
4964 "unsupported shift or rotation.\n");
4968 /* 4.1. check support for the operation in the loop */
4969 optab
= optab_for_tree_code (code
, vectype_in
, optab_default
);
4972 if (dump_enabled_p ())
4973 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
4979 if (optab_handler (optab
, vec_mode
) == CODE_FOR_nothing
)
4981 if (dump_enabled_p ())
4982 dump_printf (MSG_NOTE
, "op not supported by target.\n");
4984 if (GET_MODE_SIZE (vec_mode
) != UNITS_PER_WORD
4985 || LOOP_VINFO_VECT_FACTOR (loop_vinfo
)
4986 < vect_min_worthwhile_factor (code
))
4989 if (dump_enabled_p ())
4990 dump_printf (MSG_NOTE
, "proceeding using word mode.\n");
4993 /* Worthwhile without SIMD support? */
4994 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in
))
4995 && LOOP_VINFO_VECT_FACTOR (loop_vinfo
)
4996 < vect_min_worthwhile_factor (code
))
4998 if (dump_enabled_p ())
4999 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5000 "not worthwhile without SIMD support.\n");
5006 /* 4.2. Check support for the epilog operation.
5008 If STMT represents a reduction pattern, then the type of the
5009 reduction variable may be different than the type of the rest
5010 of the arguments. For example, consider the case of accumulation
5011 of shorts into an int accumulator; The original code:
5012 S1: int_a = (int) short_a;
5013 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5016 STMT: int_acc = widen_sum <short_a, int_acc>
5019 1. The tree-code that is used to create the vector operation in the
5020 epilog code (that reduces the partial results) is not the
5021 tree-code of STMT, but is rather the tree-code of the original
5022 stmt from the pattern that STMT is replacing. I.e, in the example
5023 above we want to use 'widen_sum' in the loop, but 'plus' in the
5025 2. The type (mode) we use to check available target support
5026 for the vector operation to be created in the *epilog*, is
5027 determined by the type of the reduction variable (in the example
5028 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5029 However the type (mode) we use to check available target support
5030 for the vector operation to be created *inside the loop*, is
5031 determined by the type of the other arguments to STMT (in the
5032 example we'd check this: optab_handler (widen_sum_optab,
5035 This is contrary to "regular" reductions, in which the types of all
5036 the arguments are the same as the type of the reduction variable.
5037 For "regular" reductions we can therefore use the same vector type
5038 (and also the same tree-code) when generating the epilog code and
5039 when generating the code inside the loop. */
5043 /* This is a reduction pattern: get the vectype from the type of the
5044 reduction variable, and get the tree-code from orig_stmt. */
5045 orig_code
= gimple_assign_rhs_code (orig_stmt
);
5046 gcc_assert (vectype_out
);
5047 vec_mode
= TYPE_MODE (vectype_out
);
5051 /* Regular reduction: use the same vectype and tree-code as used for
5052 the vector code inside the loop can be used for the epilog code. */
5058 def_bb
= gimple_bb (reduc_def_stmt
);
5059 def_stmt_loop
= def_bb
->loop_father
;
5060 def_arg
= PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt
,
5061 loop_preheader_edge (def_stmt_loop
));
5062 if (TREE_CODE (def_arg
) == SSA_NAME
5063 && (def_arg_stmt
= SSA_NAME_DEF_STMT (def_arg
))
5064 && gimple_code (def_arg_stmt
) == GIMPLE_PHI
5065 && flow_bb_inside_loop_p (outer_loop
, gimple_bb (def_arg_stmt
))
5066 && vinfo_for_stmt (def_arg_stmt
)
5067 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt
))
5068 == vect_double_reduction_def
)
5069 double_reduc
= true;
5072 epilog_reduc_code
= ERROR_MARK
;
5073 if (reduction_code_for_scalar_code (orig_code
, &epilog_reduc_code
))
5075 reduc_optab
= optab_for_tree_code (epilog_reduc_code
, vectype_out
,
5079 if (dump_enabled_p ())
5080 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5081 "no optab for reduction.\n");
5083 epilog_reduc_code
= ERROR_MARK
;
5087 && optab_handler (reduc_optab
, vec_mode
) == CODE_FOR_nothing
)
5089 if (dump_enabled_p ())
5090 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5091 "reduc op not supported by target.\n");
5093 epilog_reduc_code
= ERROR_MARK
;
5098 if (!nested_cycle
|| double_reduc
)
5100 if (dump_enabled_p ())
5101 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5102 "no reduc code for scalar code.\n");
5108 if (double_reduc
&& ncopies
> 1)
5110 if (dump_enabled_p ())
5111 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5112 "multiple types in double reduction\n");
5117 /* In case of widenning multiplication by a constant, we update the type
5118 of the constant to be the type of the other operand. We check that the
5119 constant fits the type in the pattern recognition pass. */
5120 if (code
== DOT_PROD_EXPR
5121 && !types_compatible_p (TREE_TYPE (ops
[0]), TREE_TYPE (ops
[1])))
5123 if (TREE_CODE (ops
[0]) == INTEGER_CST
)
5124 ops
[0] = fold_convert (TREE_TYPE (ops
[1]), ops
[0]);
5125 else if (TREE_CODE (ops
[1]) == INTEGER_CST
)
5126 ops
[1] = fold_convert (TREE_TYPE (ops
[0]), ops
[1]);
5129 if (dump_enabled_p ())
5130 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5131 "invalid types in dot-prod\n");
5137 if (!vec_stmt
) /* transformation not required. */
5139 if (!vect_model_reduction_cost (stmt_info
, epilog_reduc_code
, ncopies
))
5141 STMT_VINFO_TYPE (stmt_info
) = reduc_vec_info_type
;
5147 if (dump_enabled_p ())
5148 dump_printf_loc (MSG_NOTE
, vect_location
, "transform reduction.\n");
5150 /* FORNOW: Multiple types are not supported for condition. */
5151 if (code
== COND_EXPR
)
5152 gcc_assert (ncopies
== 1);
5154 /* Create the destination vector */
5155 vec_dest
= vect_create_destination_var (scalar_dest
, vectype_out
);
5157 /* In case the vectorization factor (VF) is bigger than the number
5158 of elements that we can fit in a vectype (nunits), we have to generate
5159 more than one vector stmt - i.e - we need to "unroll" the
5160 vector stmt by a factor VF/nunits. For more details see documentation
5161 in vectorizable_operation. */
5163 /* If the reduction is used in an outer loop we need to generate
5164 VF intermediate results, like so (e.g. for ncopies=2):
5169 (i.e. we generate VF results in 2 registers).
5170 In this case we have a separate def-use cycle for each copy, and therefore
5171 for each copy we get the vector def for the reduction variable from the
5172 respective phi node created for this copy.
5174 Otherwise (the reduction is unused in the loop nest), we can combine
5175 together intermediate results, like so (e.g. for ncopies=2):
5179 (i.e. we generate VF/2 results in a single register).
5180 In this case for each copy we get the vector def for the reduction variable
5181 from the vectorized reduction operation generated in the previous iteration.
5184 if (STMT_VINFO_RELEVANT (stmt_info
) == vect_unused_in_scope
)
5186 single_defuse_cycle
= true;
5190 epilog_copies
= ncopies
;
5192 prev_stmt_info
= NULL
;
5193 prev_phi_info
= NULL
;
5196 vec_num
= SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node
);
5197 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out
)
5198 == TYPE_VECTOR_SUBPARTS (vectype_in
));
5203 vec_oprnds0
.create (1);
5204 if (op_type
== ternary_op
)
5205 vec_oprnds1
.create (1);
5208 phis
.create (vec_num
);
5209 vect_defs
.create (vec_num
);
5211 vect_defs
.quick_push (NULL_TREE
);
5213 for (j
= 0; j
< ncopies
; j
++)
5215 if (j
== 0 || !single_defuse_cycle
)
5217 for (i
= 0; i
< vec_num
; i
++)
5219 /* Create the reduction-phi that defines the reduction
5221 new_phi
= create_phi_node (vec_dest
, loop
->header
);
5222 set_vinfo_for_stmt (new_phi
,
5223 new_stmt_vec_info (new_phi
, loop_vinfo
,
5225 if (j
== 0 || slp_node
)
5226 phis
.quick_push (new_phi
);
5230 if (code
== COND_EXPR
)
5232 gcc_assert (!slp_node
);
5233 vectorizable_condition (stmt
, gsi
, vec_stmt
,
5234 PHI_RESULT (phis
[0]),
5236 /* Multiple types are not supported for condition. */
5243 op0
= ops
[!reduc_index
];
5244 if (op_type
== ternary_op
)
5246 if (reduc_index
== 0)
5253 vect_get_vec_defs (op0
, op1
, stmt
, &vec_oprnds0
, &vec_oprnds1
,
5257 loop_vec_def0
= vect_get_vec_def_for_operand (ops
[!reduc_index
],
5259 vec_oprnds0
.quick_push (loop_vec_def0
);
5260 if (op_type
== ternary_op
)
5262 loop_vec_def1
= vect_get_vec_def_for_operand (op1
, stmt
,
5264 vec_oprnds1
.quick_push (loop_vec_def1
);
5272 enum vect_def_type dt
;
5276 vect_is_simple_use (ops
[!reduc_index
], stmt
, loop_vinfo
, NULL
,
5277 &dummy_stmt
, &dummy
, &dt
);
5278 loop_vec_def0
= vect_get_vec_def_for_stmt_copy (dt
,
5280 vec_oprnds0
[0] = loop_vec_def0
;
5281 if (op_type
== ternary_op
)
5283 vect_is_simple_use (op1
, stmt
, loop_vinfo
, NULL
, &dummy_stmt
,
5285 loop_vec_def1
= vect_get_vec_def_for_stmt_copy (dt
,
5287 vec_oprnds1
[0] = loop_vec_def1
;
5291 if (single_defuse_cycle
)
5292 reduc_def
= gimple_assign_lhs (new_stmt
);
5294 STMT_VINFO_RELATED_STMT (prev_phi_info
) = new_phi
;
5297 FOR_EACH_VEC_ELT (vec_oprnds0
, i
, def0
)
5300 reduc_def
= PHI_RESULT (phis
[i
]);
5303 if (!single_defuse_cycle
|| j
== 0)
5304 reduc_def
= PHI_RESULT (new_phi
);
5307 def1
= ((op_type
== ternary_op
)
5308 ? vec_oprnds1
[i
] : NULL
);
5309 if (op_type
== binary_op
)
5311 if (reduc_index
== 0)
5312 expr
= build2 (code
, vectype_out
, reduc_def
, def0
);
5314 expr
= build2 (code
, vectype_out
, def0
, reduc_def
);
5318 if (reduc_index
== 0)
5319 expr
= build3 (code
, vectype_out
, reduc_def
, def0
, def1
);
5322 if (reduc_index
== 1)
5323 expr
= build3 (code
, vectype_out
, def0
, reduc_def
, def1
);
5325 expr
= build3 (code
, vectype_out
, def0
, def1
, reduc_def
);
5329 new_stmt
= gimple_build_assign (vec_dest
, expr
);
5330 new_temp
= make_ssa_name (vec_dest
, new_stmt
);
5331 gimple_assign_set_lhs (new_stmt
, new_temp
);
5332 vect_finish_stmt_generation (stmt
, new_stmt
, gsi
);
5336 SLP_TREE_VEC_STMTS (slp_node
).quick_push (new_stmt
);
5337 vect_defs
.quick_push (new_temp
);
5340 vect_defs
[0] = new_temp
;
5347 STMT_VINFO_VEC_STMT (stmt_info
) = *vec_stmt
= new_stmt
;
5349 STMT_VINFO_RELATED_STMT (prev_stmt_info
) = new_stmt
;
5351 prev_stmt_info
= vinfo_for_stmt (new_stmt
);
5352 prev_phi_info
= vinfo_for_stmt (new_phi
);
5355 /* Finalize the reduction-phi (set its arguments) and create the
5356 epilog reduction code. */
5357 if ((!single_defuse_cycle
|| code
== COND_EXPR
) && !slp_node
)
5359 new_temp
= gimple_assign_lhs (*vec_stmt
);
5360 vect_defs
[0] = new_temp
;
5363 vect_create_epilog_for_reduction (vect_defs
, stmt
, epilog_copies
,
5364 epilog_reduc_code
, phis
, reduc_index
,
5365 double_reduc
, slp_node
);
5370 /* Function vect_min_worthwhile_factor.
5372 For a loop where we could vectorize the operation indicated by CODE,
5373 return the minimum vectorization factor that makes it worthwhile
5374 to use generic vectors. */
5376 vect_min_worthwhile_factor (enum tree_code code
)
5397 /* Function vectorizable_induction
5399 Check if PHI performs an induction computation that can be vectorized.
5400 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5401 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5402 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5405 vectorizable_induction (gimple phi
, gimple_stmt_iterator
*gsi ATTRIBUTE_UNUSED
,
5408 stmt_vec_info stmt_info
= vinfo_for_stmt (phi
);
5409 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
5410 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
5411 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
5412 int nunits
= TYPE_VECTOR_SUBPARTS (vectype
);
5413 int ncopies
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
) / nunits
;
5416 gcc_assert (ncopies
>= 1);
5417 /* FORNOW. These restrictions should be relaxed. */
5418 if (nested_in_vect_loop_p (loop
, phi
))
5420 imm_use_iterator imm_iter
;
5421 use_operand_p use_p
;
5428 if (dump_enabled_p ())
5429 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5430 "multiple types in nested loop.\n");
5435 latch_e
= loop_latch_edge (loop
->inner
);
5436 loop_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, latch_e
);
5437 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, loop_arg
)
5439 gimple use_stmt
= USE_STMT (use_p
);
5440 if (is_gimple_debug (use_stmt
))
5443 if (!flow_bb_inside_loop_p (loop
->inner
, gimple_bb (use_stmt
)))
5445 exit_phi
= use_stmt
;
5451 stmt_vec_info exit_phi_vinfo
= vinfo_for_stmt (exit_phi
);
5452 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo
)
5453 && !STMT_VINFO_LIVE_P (exit_phi_vinfo
)))
5455 if (dump_enabled_p ())
5456 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5457 "inner-loop induction only used outside "
5458 "of the outer vectorized loop.\n");
5464 if (!STMT_VINFO_RELEVANT_P (stmt_info
))
5467 /* FORNOW: SLP not supported. */
5468 if (STMT_SLP_TYPE (stmt_info
))
5471 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_induction_def
);
5473 if (gimple_code (phi
) != GIMPLE_PHI
)
5476 if (!vec_stmt
) /* transformation not required. */
5478 STMT_VINFO_TYPE (stmt_info
) = induc_vec_info_type
;
5479 if (dump_enabled_p ())
5480 dump_printf_loc (MSG_NOTE
, vect_location
,
5481 "=== vectorizable_induction ===\n");
5482 vect_model_induction_cost (stmt_info
, ncopies
);
5488 if (dump_enabled_p ())
5489 dump_printf_loc (MSG_NOTE
, vect_location
, "transform induction phi.\n");
5491 vec_def
= get_initial_def_for_induction (phi
);
5492 *vec_stmt
= SSA_NAME_DEF_STMT (vec_def
);
5496 /* Function vectorizable_live_operation.
5498 STMT computes a value that is used outside the loop. Check if
5499 it can be supported. */
5502 vectorizable_live_operation (gimple stmt
,
5503 gimple_stmt_iterator
*gsi ATTRIBUTE_UNUSED
,
5506 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
5507 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
5508 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
5514 enum vect_def_type dt
;
5515 enum tree_code code
;
5516 enum gimple_rhs_class rhs_class
;
5518 gcc_assert (STMT_VINFO_LIVE_P (stmt_info
));
5520 if (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_reduction_def
)
5523 if (!is_gimple_assign (stmt
))
5525 if (gimple_call_internal_p (stmt
)
5526 && gimple_call_internal_fn (stmt
) == IFN_GOMP_SIMD_LANE
5527 && gimple_call_lhs (stmt
)
5529 && TREE_CODE (gimple_call_arg (stmt
, 0)) == SSA_NAME
5531 == SSA_NAME_VAR (gimple_call_arg (stmt
, 0)))
5533 edge e
= single_exit (loop
);
5534 basic_block merge_bb
= e
->dest
;
5535 imm_use_iterator imm_iter
;
5536 use_operand_p use_p
;
5537 tree lhs
= gimple_call_lhs (stmt
);
5539 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, lhs
)
5541 gimple use_stmt
= USE_STMT (use_p
);
5542 if (gimple_code (use_stmt
) == GIMPLE_PHI
5543 && gimple_bb (use_stmt
) == merge_bb
)
5548 = build_int_cst (unsigned_type_node
,
5549 loop_vinfo
->vectorization_factor
- 1);
5550 SET_PHI_ARG_DEF (use_stmt
, e
->dest_idx
, vfm1
);
5560 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
5563 /* FORNOW. CHECKME. */
5564 if (nested_in_vect_loop_p (loop
, stmt
))
5567 code
= gimple_assign_rhs_code (stmt
);
5568 op_type
= TREE_CODE_LENGTH (code
);
5569 rhs_class
= get_gimple_rhs_class (code
);
5570 gcc_assert (rhs_class
!= GIMPLE_UNARY_RHS
|| op_type
== unary_op
);
5571 gcc_assert (rhs_class
!= GIMPLE_BINARY_RHS
|| op_type
== binary_op
);
5573 /* FORNOW: support only if all uses are invariant. This means
5574 that the scalar operations can remain in place, unvectorized.
5575 The original last scalar value that they compute will be used. */
5577 for (i
= 0; i
< op_type
; i
++)
5579 if (rhs_class
== GIMPLE_SINGLE_RHS
)
5580 op
= TREE_OPERAND (gimple_op (stmt
, 1), i
);
5582 op
= gimple_op (stmt
, i
+ 1);
5584 && !vect_is_simple_use (op
, stmt
, loop_vinfo
, NULL
, &def_stmt
, &def
,
5587 if (dump_enabled_p ())
5588 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5589 "use not simple.\n");
5593 if (dt
!= vect_external_def
&& dt
!= vect_constant_def
)
5597 /* No transformation is required for the cases we currently support. */
5601 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5604 vect_loop_kill_debug_uses (struct loop
*loop
, gimple stmt
)
5606 ssa_op_iter op_iter
;
5607 imm_use_iterator imm_iter
;
5608 def_operand_p def_p
;
5611 FOR_EACH_PHI_OR_STMT_DEF (def_p
, stmt
, op_iter
, SSA_OP_DEF
)
5613 FOR_EACH_IMM_USE_STMT (ustmt
, imm_iter
, DEF_FROM_PTR (def_p
))
5617 if (!is_gimple_debug (ustmt
))
5620 bb
= gimple_bb (ustmt
);
5622 if (!flow_bb_inside_loop_p (loop
, bb
))
5624 if (gimple_debug_bind_p (ustmt
))
5626 if (dump_enabled_p ())
5627 dump_printf_loc (MSG_NOTE
, vect_location
,
5628 "killing debug use\n");
5630 gimple_debug_bind_reset_value (ustmt
);
5631 update_stmt (ustmt
);
5641 /* This function builds ni_name = number of iterations. Statements
5642 are emitted on the loop preheader edge. */
5645 vect_build_loop_niters (loop_vec_info loop_vinfo
)
5647 tree ni
= unshare_expr (LOOP_VINFO_NITERS (loop_vinfo
));
5648 if (TREE_CODE (ni
) == INTEGER_CST
)
5653 gimple_seq stmts
= NULL
;
5654 edge pe
= loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo
));
5656 var
= create_tmp_var (TREE_TYPE (ni
), "niters");
5657 ni_name
= force_gimple_operand (ni
, &stmts
, false, var
);
5659 gsi_insert_seq_on_edge_immediate (pe
, stmts
);
5666 /* This function generates the following statements:
5668 ni_name = number of iterations loop executes
5669 ratio = ni_name / vf
5670 ratio_mult_vf_name = ratio * vf
5672 and places them on the loop preheader edge. */
5675 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo
,
5677 tree
*ratio_mult_vf_name_ptr
,
5678 tree
*ratio_name_ptr
)
5680 tree ni_minus_gap_name
;
5683 tree ratio_mult_vf_name
;
5684 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
5685 edge pe
= loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo
));
5688 log_vf
= build_int_cst (TREE_TYPE (ni_name
), exact_log2 (vf
));
5690 /* If epilogue loop is required because of data accesses with gaps, we
5691 subtract one iteration from the total number of iterations here for
5692 correct calculation of RATIO. */
5693 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
5695 ni_minus_gap_name
= fold_build2 (MINUS_EXPR
, TREE_TYPE (ni_name
),
5697 build_one_cst (TREE_TYPE (ni_name
)));
5698 if (!is_gimple_val (ni_minus_gap_name
))
5700 var
= create_tmp_var (TREE_TYPE (ni_name
), "ni_gap");
5701 gimple stmts
= NULL
;
5702 ni_minus_gap_name
= force_gimple_operand (ni_minus_gap_name
, &stmts
,
5704 gsi_insert_seq_on_edge_immediate (pe
, stmts
);
5708 ni_minus_gap_name
= ni_name
;
5710 /* Create: ratio = ni >> log2(vf) */
5711 /* ??? As we have ni == number of latch executions + 1, ni could
5712 have overflown to zero. So avoid computing ratio based on ni
5713 but compute it using the fact that we know ratio will be at least
5714 one, thus via (ni - vf) >> log2(vf) + 1. */
5716 = fold_build2 (PLUS_EXPR
, TREE_TYPE (ni_name
),
5717 fold_build2 (RSHIFT_EXPR
, TREE_TYPE (ni_name
),
5718 fold_build2 (MINUS_EXPR
, TREE_TYPE (ni_name
),
5721 (TREE_TYPE (ni_name
), vf
)),
5723 build_int_cst (TREE_TYPE (ni_name
), 1));
5724 if (!is_gimple_val (ratio_name
))
5726 var
= create_tmp_var (TREE_TYPE (ni_name
), "bnd");
5727 gimple stmts
= NULL
;
5728 ratio_name
= force_gimple_operand (ratio_name
, &stmts
, true, var
);
5729 gsi_insert_seq_on_edge_immediate (pe
, stmts
);
5731 *ratio_name_ptr
= ratio_name
;
5733 /* Create: ratio_mult_vf = ratio << log2 (vf). */
5735 if (ratio_mult_vf_name_ptr
)
5737 ratio_mult_vf_name
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (ratio_name
),
5738 ratio_name
, log_vf
);
5739 if (!is_gimple_val (ratio_mult_vf_name
))
5741 var
= create_tmp_var (TREE_TYPE (ni_name
), "ratio_mult_vf");
5742 gimple stmts
= NULL
;
5743 ratio_mult_vf_name
= force_gimple_operand (ratio_mult_vf_name
, &stmts
,
5745 gsi_insert_seq_on_edge_immediate (pe
, stmts
);
5747 *ratio_mult_vf_name_ptr
= ratio_mult_vf_name
;
5754 /* Function vect_transform_loop.
5756 The analysis phase has determined that the loop is vectorizable.
5757 Vectorize the loop - created vectorized stmts to replace the scalar
5758 stmts in the loop, and update the loop exit condition. */
5761 vect_transform_loop (loop_vec_info loop_vinfo
)
5763 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
5764 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
5765 int nbbs
= loop
->num_nodes
;
5766 gimple_stmt_iterator si
;
5769 int vectorization_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
5771 bool slp_scheduled
= false;
5772 gimple stmt
, pattern_stmt
;
5773 gimple_seq pattern_def_seq
= NULL
;
5774 gimple_stmt_iterator pattern_def_si
= gsi_none ();
5775 bool transform_pattern_stmt
= false;
5776 bool check_profitability
= false;
5778 /* Record number of iterations before we started tampering with the profile. */
5779 gcov_type expected_iterations
= expected_loop_iterations_unbounded (loop
);
5781 if (dump_enabled_p ())
5782 dump_printf_loc (MSG_NOTE
, vect_location
, "=== vec_transform_loop ===\n");
5784 /* If profile is inprecise, we have chance to fix it up. */
5785 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
5786 expected_iterations
= LOOP_VINFO_INT_NITERS (loop_vinfo
);
5788 /* Use the more conservative vectorization threshold. If the number
5789 of iterations is constant assume the cost check has been performed
5790 by our caller. If the threshold makes all loops profitable that
5791 run at least the vectorization factor number of times checking
5792 is pointless, too. */
5793 th
= LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
);
5794 if (th
>= LOOP_VINFO_VECT_FACTOR (loop_vinfo
) - 1
5795 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
5797 if (dump_enabled_p ())
5798 dump_printf_loc (MSG_NOTE
, vect_location
,
5799 "Profitability threshold is %d loop iterations.\n",
5801 check_profitability
= true;
5804 /* Version the loop first, if required, so the profitability check
5807 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
)
5808 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
5810 vect_loop_versioning (loop_vinfo
, th
, check_profitability
);
5811 check_profitability
= false;
5814 tree ni_name
= vect_build_loop_niters (loop_vinfo
);
5815 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo
) = ni_name
;
5817 /* Peel the loop if there are data refs with unknown alignment.
5818 Only one data ref with unknown store is allowed. */
5820 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
))
5822 vect_do_peeling_for_alignment (loop_vinfo
, ni_name
,
5823 th
, check_profitability
);
5824 check_profitability
= false;
5825 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
5827 ni_name
= NULL_TREE
;
5830 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5831 compile time constant), or it is a constant that doesn't divide by the
5832 vectorization factor, then an epilog loop needs to be created.
5833 We therefore duplicate the loop: the original loop will be vectorized,
5834 and will compute the first (n/VF) iterations. The second copy of the loop
5835 will remain scalar and will compute the remaining (n%VF) iterations.
5836 (VF is the vectorization factor). */
5838 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
)
5839 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
5843 ni_name
= vect_build_loop_niters (loop_vinfo
);
5844 vect_generate_tmps_on_preheader (loop_vinfo
, ni_name
, &ratio_mult_vf
,
5846 vect_do_peeling_for_loop_bound (loop_vinfo
, ni_name
, ratio_mult_vf
,
5847 th
, check_profitability
);
5849 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
5850 ratio
= build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo
)),
5851 LOOP_VINFO_INT_NITERS (loop_vinfo
) / vectorization_factor
);
5855 ni_name
= vect_build_loop_niters (loop_vinfo
);
5856 vect_generate_tmps_on_preheader (loop_vinfo
, ni_name
, NULL
, &ratio
);
5859 /* 1) Make sure the loop header has exactly two entries
5860 2) Make sure we have a preheader basic block. */
5862 gcc_assert (EDGE_COUNT (loop
->header
->preds
) == 2);
5864 split_edge (loop_preheader_edge (loop
));
5866 /* FORNOW: the vectorizer supports only loops which body consist
5867 of one basic block (header + empty latch). When the vectorizer will
5868 support more involved loop forms, the order by which the BBs are
5869 traversed need to be reconsidered. */
5871 for (i
= 0; i
< nbbs
; i
++)
5873 basic_block bb
= bbs
[i
];
5874 stmt_vec_info stmt_info
;
5877 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
5879 phi
= gsi_stmt (si
);
5880 if (dump_enabled_p ())
5882 dump_printf_loc (MSG_NOTE
, vect_location
,
5883 "------>vectorizing phi: ");
5884 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
5885 dump_printf (MSG_NOTE
, "\n");
5887 stmt_info
= vinfo_for_stmt (phi
);
5891 if (MAY_HAVE_DEBUG_STMTS
&& !STMT_VINFO_LIVE_P (stmt_info
))
5892 vect_loop_kill_debug_uses (loop
, phi
);
5894 if (!STMT_VINFO_RELEVANT_P (stmt_info
)
5895 && !STMT_VINFO_LIVE_P (stmt_info
))
5898 if (STMT_VINFO_VECTYPE (stmt_info
)
5899 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info
))
5900 != (unsigned HOST_WIDE_INT
) vectorization_factor
)
5901 && dump_enabled_p ())
5902 dump_printf_loc (MSG_NOTE
, vect_location
, "multiple-types.\n");
5904 if (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_induction_def
)
5906 if (dump_enabled_p ())
5907 dump_printf_loc (MSG_NOTE
, vect_location
, "transform phi.\n");
5908 vect_transform_stmt (phi
, NULL
, NULL
, NULL
, NULL
);
5912 pattern_stmt
= NULL
;
5913 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
) || transform_pattern_stmt
;)
5917 if (transform_pattern_stmt
)
5918 stmt
= pattern_stmt
;
5921 stmt
= gsi_stmt (si
);
5922 /* During vectorization remove existing clobber stmts. */
5923 if (gimple_clobber_p (stmt
))
5925 unlink_stmt_vdef (stmt
);
5926 gsi_remove (&si
, true);
5927 release_defs (stmt
);
5932 if (dump_enabled_p ())
5934 dump_printf_loc (MSG_NOTE
, vect_location
,
5935 "------>vectorizing statement: ");
5936 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt
, 0);
5937 dump_printf (MSG_NOTE
, "\n");
5940 stmt_info
= vinfo_for_stmt (stmt
);
5942 /* vector stmts created in the outer-loop during vectorization of
5943 stmts in an inner-loop may not have a stmt_info, and do not
5944 need to be vectorized. */
5951 if (MAY_HAVE_DEBUG_STMTS
&& !STMT_VINFO_LIVE_P (stmt_info
))
5952 vect_loop_kill_debug_uses (loop
, stmt
);
5954 if (!STMT_VINFO_RELEVANT_P (stmt_info
)
5955 && !STMT_VINFO_LIVE_P (stmt_info
))
5957 if (STMT_VINFO_IN_PATTERN_P (stmt_info
)
5958 && (pattern_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
))
5959 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt
))
5960 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt
))))
5962 stmt
= pattern_stmt
;
5963 stmt_info
= vinfo_for_stmt (stmt
);
5971 else if (STMT_VINFO_IN_PATTERN_P (stmt_info
)
5972 && (pattern_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
))
5973 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt
))
5974 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt
))))
5975 transform_pattern_stmt
= true;
5977 /* If pattern statement has def stmts, vectorize them too. */
5978 if (is_pattern_stmt_p (stmt_info
))
5980 if (pattern_def_seq
== NULL
)
5982 pattern_def_seq
= STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
);
5983 pattern_def_si
= gsi_start (pattern_def_seq
);
5985 else if (!gsi_end_p (pattern_def_si
))
5986 gsi_next (&pattern_def_si
);
5987 if (pattern_def_seq
!= NULL
)
5989 gimple pattern_def_stmt
= NULL
;
5990 stmt_vec_info pattern_def_stmt_info
= NULL
;
5992 while (!gsi_end_p (pattern_def_si
))
5994 pattern_def_stmt
= gsi_stmt (pattern_def_si
);
5995 pattern_def_stmt_info
5996 = vinfo_for_stmt (pattern_def_stmt
);
5997 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info
)
5998 || STMT_VINFO_LIVE_P (pattern_def_stmt_info
))
6000 gsi_next (&pattern_def_si
);
6003 if (!gsi_end_p (pattern_def_si
))
6005 if (dump_enabled_p ())
6007 dump_printf_loc (MSG_NOTE
, vect_location
,
6008 "==> vectorizing pattern def "
6010 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
,
6011 pattern_def_stmt
, 0);
6012 dump_printf (MSG_NOTE
, "\n");
6015 stmt
= pattern_def_stmt
;
6016 stmt_info
= pattern_def_stmt_info
;
6020 pattern_def_si
= gsi_none ();
6021 transform_pattern_stmt
= false;
6025 transform_pattern_stmt
= false;
6028 if (STMT_VINFO_VECTYPE (stmt_info
))
6032 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info
));
6033 if (!STMT_SLP_TYPE (stmt_info
)
6034 && nunits
!= (unsigned int) vectorization_factor
6035 && dump_enabled_p ())
6036 /* For SLP VF is set according to unrolling factor, and not
6037 to vector size, hence for SLP this print is not valid. */
6038 dump_printf_loc (MSG_NOTE
, vect_location
, "multiple-types.\n");
6041 /* SLP. Schedule all the SLP instances when the first SLP stmt is
6043 if (STMT_SLP_TYPE (stmt_info
))
6047 slp_scheduled
= true;
6049 if (dump_enabled_p ())
6050 dump_printf_loc (MSG_NOTE
, vect_location
,
6051 "=== scheduling SLP instances ===\n");
6053 vect_schedule_slp (loop_vinfo
, NULL
);
6056 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6057 if (!vinfo_for_stmt (stmt
) || PURE_SLP_STMT (stmt_info
))
6059 if (!transform_pattern_stmt
&& gsi_end_p (pattern_def_si
))
6061 pattern_def_seq
= NULL
;
6068 /* -------- vectorize statement ------------ */
6069 if (dump_enabled_p ())
6070 dump_printf_loc (MSG_NOTE
, vect_location
, "transform statement.\n");
6072 grouped_store
= false;
6073 is_store
= vect_transform_stmt (stmt
, &si
, &grouped_store
, NULL
, NULL
);
6076 if (STMT_VINFO_GROUPED_ACCESS (stmt_info
))
6078 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6079 interleaving chain was completed - free all the stores in
6082 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info
));
6086 /* Free the attached stmt_vec_info and remove the stmt. */
6087 gimple store
= gsi_stmt (si
);
6088 free_stmt_vec_info (store
);
6089 unlink_stmt_vdef (store
);
6090 gsi_remove (&si
, true);
6091 release_defs (store
);
6094 /* Stores can only appear at the end of pattern statements. */
6095 gcc_assert (!transform_pattern_stmt
);
6096 pattern_def_seq
= NULL
;
6098 else if (!transform_pattern_stmt
&& gsi_end_p (pattern_def_si
))
6100 pattern_def_seq
= NULL
;
6106 slpeel_make_loop_iterate_ntimes (loop
, ratio
);
6108 /* Reduce loop iterations by the vectorization factor. */
6109 scale_loop_profile (loop
, GCOV_COMPUTE_SCALE (1, vectorization_factor
),
6110 expected_iterations
/ vectorization_factor
);
6111 loop
->nb_iterations_upper_bound
6112 = loop
->nb_iterations_upper_bound
.udiv (double_int::from_uhwi (vectorization_factor
),
6114 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
)
6115 && loop
->nb_iterations_upper_bound
!= double_int_zero
)
6116 loop
->nb_iterations_upper_bound
= loop
->nb_iterations_upper_bound
- double_int_one
;
6117 if (loop
->any_estimate
)
6119 loop
->nb_iterations_estimate
6120 = loop
->nb_iterations_estimate
.udiv (double_int::from_uhwi (vectorization_factor
),
6122 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
)
6123 && loop
->nb_iterations_estimate
!= double_int_zero
)
6124 loop
->nb_iterations_estimate
= loop
->nb_iterations_estimate
- double_int_one
;
6127 if (dump_enabled_p ())
6129 dump_printf_loc (MSG_NOTE
, vect_location
,
6130 "LOOP VECTORIZED\n");
6132 dump_printf_loc (MSG_NOTE
, vect_location
,
6133 "OUTER LOOP VECTORIZED\n");
6134 dump_printf (MSG_NOTE
, "\n");