1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
38 The inliner itself is split into two passes:
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
94 #include "coretypes.h"
97 #include "trans-mem.h"
99 #include "tree-inline.h"
100 #include "langhooks.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
107 #include "tree-pass.h"
108 #include "coverage.h"
111 #include "basic-block.h"
112 #include "tree-ssa-alias.h"
113 #include "internal-fn.h"
114 #include "gimple-expr.h"
117 #include "gimple-ssa.h"
118 #include "ipa-prop.h"
121 #include "ipa-inline.h"
122 #include "ipa-utils.h"
126 /* Statistics we collect about inlining algorithm. */
127 static int overall_size
;
128 static gcov_type max_count
;
129 static sreal max_count_real
, max_relbenefit_real
, half_int_min_real
;
131 /* Return false when inlining edge E would lead to violating
132 limits on function unit growth or stack usage growth.
134 The relative function body growth limit is present generally
135 to avoid problems with non-linear behavior of the compiler.
136 To allow inlining huge functions into tiny wrapper, the limit
137 is always based on the bigger of the two functions considered.
139 For stack growth limits we always base the growth in stack usage
140 of the callers. We want to prevent applications from segfaulting
141 on stack overflow when functions with huge stack frames gets
145 caller_growth_limits (struct cgraph_edge
*e
)
147 struct cgraph_node
*to
= e
->caller
;
148 struct cgraph_node
*what
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
151 HOST_WIDE_INT stack_size_limit
= 0, inlined_stack
;
152 struct inline_summary
*info
, *what_info
, *outer_info
= inline_summary (to
);
154 /* Look for function e->caller is inlined to. While doing
155 so work out the largest function body on the way. As
156 described above, we want to base our function growth
157 limits based on that. Not on the self size of the
158 outer function, not on the self size of inline code
159 we immediately inline to. This is the most relaxed
160 interpretation of the rule "do not grow large functions
161 too much in order to prevent compiler from exploding". */
164 info
= inline_summary (to
);
165 if (limit
< info
->self_size
)
166 limit
= info
->self_size
;
167 if (stack_size_limit
< info
->estimated_self_stack_size
)
168 stack_size_limit
= info
->estimated_self_stack_size
;
169 if (to
->global
.inlined_to
)
170 to
= to
->callers
->caller
;
175 what_info
= inline_summary (what
);
177 if (limit
< what_info
->self_size
)
178 limit
= what_info
->self_size
;
180 limit
+= limit
* PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH
) / 100;
182 /* Check the size after inlining against the function limits. But allow
183 the function to shrink if it went over the limits by forced inlining. */
184 newsize
= estimate_size_after_inlining (to
, e
);
185 if (newsize
>= info
->size
186 && newsize
> PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS
)
189 e
->inline_failed
= CIF_LARGE_FUNCTION_GROWTH_LIMIT
;
193 if (!what_info
->estimated_stack_size
)
196 /* FIXME: Stack size limit often prevents inlining in Fortran programs
197 due to large i/o datastructures used by the Fortran front-end.
198 We ought to ignore this limit when we know that the edge is executed
199 on every invocation of the caller (i.e. its call statement dominates
200 exit block). We do not track this information, yet. */
201 stack_size_limit
+= ((gcov_type
)stack_size_limit
202 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH
) / 100);
204 inlined_stack
= (outer_info
->stack_frame_offset
205 + outer_info
->estimated_self_stack_size
206 + what_info
->estimated_stack_size
);
207 /* Check new stack consumption with stack consumption at the place
209 if (inlined_stack
> stack_size_limit
210 /* If function already has large stack usage from sibling
211 inline call, we can inline, too.
212 This bit overoptimistically assume that we are good at stack
214 && inlined_stack
> info
->estimated_stack_size
215 && inlined_stack
> PARAM_VALUE (PARAM_LARGE_STACK_FRAME
))
217 e
->inline_failed
= CIF_LARGE_STACK_FRAME_GROWTH_LIMIT
;
223 /* Dump info about why inlining has failed. */
226 report_inline_failed_reason (struct cgraph_edge
*e
)
230 fprintf (dump_file
, " not inlinable: %s/%i -> %s/%i, %s\n",
231 xstrdup (e
->caller
->name ()), e
->caller
->order
,
232 xstrdup (e
->callee
->name ()), e
->callee
->order
,
233 cgraph_inline_failed_string (e
->inline_failed
));
237 /* Decide whether sanitizer-related attributes allow inlining. */
240 sanitize_attrs_match_for_inline_p (const_tree caller
, const_tree callee
)
242 /* Don't care if sanitizer is disabled */
243 if (!(flag_sanitize
& SANITIZE_ADDRESS
))
246 if (!caller
|| !callee
)
249 return !!lookup_attribute ("no_sanitize_address",
250 DECL_ATTRIBUTES (caller
)) ==
251 !!lookup_attribute ("no_sanitize_address",
252 DECL_ATTRIBUTES (callee
));
255 /* Decide if we can inline the edge and possibly update
256 inline_failed reason.
257 We check whether inlining is possible at all and whether
258 caller growth limits allow doing so.
260 if REPORT is true, output reason to the dump file.
262 if DISREGARD_LIMITS is true, ignore size limits.*/
265 can_inline_edge_p (struct cgraph_edge
*e
, bool report
,
266 bool disregard_limits
= false)
268 bool inlinable
= true;
269 enum availability avail
;
270 struct cgraph_node
*callee
271 = cgraph_function_or_thunk_node (e
->callee
, &avail
);
272 tree caller_tree
= DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e
->caller
->decl
);
274 = callee
? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee
->decl
) : NULL
;
275 struct function
*caller_cfun
= DECL_STRUCT_FUNCTION (e
->caller
->decl
);
276 struct function
*callee_cfun
277 = callee
? DECL_STRUCT_FUNCTION (callee
->decl
) : NULL
;
279 if (!caller_cfun
&& e
->caller
->clone_of
)
280 caller_cfun
= DECL_STRUCT_FUNCTION (e
->caller
->clone_of
->decl
);
282 if (!callee_cfun
&& callee
&& callee
->clone_of
)
283 callee_cfun
= DECL_STRUCT_FUNCTION (callee
->clone_of
->decl
);
285 gcc_assert (e
->inline_failed
);
287 if (!callee
|| !callee
->definition
)
289 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
292 else if (callee
->calls_comdat_local
)
294 e
->inline_failed
= CIF_USES_COMDAT_LOCAL
;
297 else if (!inline_summary (callee
)->inlinable
298 || (caller_cfun
&& fn_contains_cilk_spawn_p (caller_cfun
)))
300 e
->inline_failed
= CIF_FUNCTION_NOT_INLINABLE
;
303 else if (avail
<= AVAIL_OVERWRITABLE
)
305 e
->inline_failed
= CIF_OVERWRITABLE
;
308 else if (e
->call_stmt_cannot_inline_p
)
310 if (e
->inline_failed
!= CIF_FUNCTION_NOT_OPTIMIZED
)
311 e
->inline_failed
= CIF_MISMATCHED_ARGUMENTS
;
314 /* Don't inline if the functions have different EH personalities. */
315 else if (DECL_FUNCTION_PERSONALITY (e
->caller
->decl
)
316 && DECL_FUNCTION_PERSONALITY (callee
->decl
)
317 && (DECL_FUNCTION_PERSONALITY (e
->caller
->decl
)
318 != DECL_FUNCTION_PERSONALITY (callee
->decl
)))
320 e
->inline_failed
= CIF_EH_PERSONALITY
;
323 /* TM pure functions should not be inlined into non-TM_pure
325 else if (is_tm_pure (callee
->decl
)
326 && !is_tm_pure (e
->caller
->decl
))
328 e
->inline_failed
= CIF_UNSPECIFIED
;
331 /* Don't inline if the callee can throw non-call exceptions but the
333 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
334 Move the flag into cgraph node or mirror it in the inline summary. */
335 else if (callee_cfun
&& callee_cfun
->can_throw_non_call_exceptions
336 && !(caller_cfun
&& caller_cfun
->can_throw_non_call_exceptions
))
338 e
->inline_failed
= CIF_NON_CALL_EXCEPTIONS
;
341 /* Check compatibility of target optimization options. */
342 else if (!targetm
.target_option
.can_inline_p (e
->caller
->decl
,
345 e
->inline_failed
= CIF_TARGET_OPTION_MISMATCH
;
348 /* Don't inline a function with mismatched sanitization attributes. */
349 else if (!sanitize_attrs_match_for_inline_p (e
->caller
->decl
, callee
->decl
))
351 e
->inline_failed
= CIF_ATTRIBUTE_MISMATCH
;
354 /* Check if caller growth allows the inlining. */
355 else if (!DECL_DISREGARD_INLINE_LIMITS (callee
->decl
)
357 && !lookup_attribute ("flatten",
359 (e
->caller
->global
.inlined_to
360 ? e
->caller
->global
.inlined_to
->decl
362 && !caller_growth_limits (e
))
364 /* Don't inline a function with a higher optimization level than the
365 caller. FIXME: this is really just tip of iceberg of handling
366 optimization attribute. */
367 else if (caller_tree
!= callee_tree
)
369 struct cl_optimization
*caller_opt
370 = TREE_OPTIMIZATION ((caller_tree
)
372 : optimization_default_node
);
374 struct cl_optimization
*callee_opt
375 = TREE_OPTIMIZATION ((callee_tree
)
377 : optimization_default_node
);
379 if (((caller_opt
->x_optimize
> callee_opt
->x_optimize
)
380 || (caller_opt
->x_optimize_size
!= callee_opt
->x_optimize_size
))
381 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
382 && !DECL_DISREGARD_INLINE_LIMITS (e
->callee
->decl
))
384 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
389 if (!inlinable
&& report
)
390 report_inline_failed_reason (e
);
395 /* Return true if the edge E is inlinable during early inlining. */
398 can_early_inline_edge_p (struct cgraph_edge
*e
)
400 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
,
402 /* Early inliner might get called at WPA stage when IPA pass adds new
403 function. In this case we can not really do any of early inlining
404 because function bodies are missing. */
405 if (!gimple_has_body_p (callee
->decl
))
407 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
410 /* In early inliner some of callees may not be in SSA form yet
411 (i.e. the callgraph is cyclic and we did not process
412 the callee by early inliner, yet). We don't have CIF code for this
413 case; later we will re-do the decision in the real inliner. */
414 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e
->caller
->decl
))
415 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee
->decl
)))
418 fprintf (dump_file
, " edge not inlinable: not in SSA form\n");
421 if (!can_inline_edge_p (e
, true))
427 /* Return number of calls in N. Ignore cheap builtins. */
430 num_calls (struct cgraph_node
*n
)
432 struct cgraph_edge
*e
;
435 for (e
= n
->callees
; e
; e
= e
->next_callee
)
436 if (!is_inexpensive_builtin (e
->callee
->decl
))
442 /* Return true if we are interested in inlining small function. */
445 want_early_inline_function_p (struct cgraph_edge
*e
)
447 bool want_inline
= true;
448 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
450 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
452 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
453 && !flag_inline_small_functions
)
455 e
->inline_failed
= CIF_FUNCTION_NOT_INLINE_CANDIDATE
;
456 report_inline_failed_reason (e
);
461 int growth
= estimate_edge_growth (e
);
466 else if (!cgraph_maybe_hot_edge_p (e
)
470 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
471 "call is cold and code would grow by %i\n",
472 xstrdup (e
->caller
->name ()),
474 xstrdup (callee
->name ()), callee
->order
,
478 else if (growth
> PARAM_VALUE (PARAM_EARLY_INLINING_INSNS
))
481 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
482 "growth %i exceeds --param early-inlining-insns\n",
483 xstrdup (e
->caller
->name ()),
485 xstrdup (callee
->name ()), callee
->order
,
489 else if ((n
= num_calls (callee
)) != 0
490 && growth
* (n
+ 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS
))
493 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
494 "growth %i exceeds --param early-inlining-insns "
495 "divided by number of calls\n",
496 xstrdup (e
->caller
->name ()),
498 xstrdup (callee
->name ()), callee
->order
,
506 /* Compute time of the edge->caller + edge->callee execution when inlining
510 compute_uninlined_call_time (struct inline_summary
*callee_info
,
511 struct cgraph_edge
*edge
)
513 gcov_type uninlined_call_time
=
514 RDIV ((gcov_type
)callee_info
->time
* MAX (edge
->frequency
, 1),
516 gcov_type caller_time
= inline_summary (edge
->caller
->global
.inlined_to
517 ? edge
->caller
->global
.inlined_to
518 : edge
->caller
)->time
;
519 return uninlined_call_time
+ caller_time
;
522 /* Same as compute_uinlined_call_time but compute time when inlining
526 compute_inlined_call_time (struct cgraph_edge
*edge
,
529 gcov_type caller_time
= inline_summary (edge
->caller
->global
.inlined_to
530 ? edge
->caller
->global
.inlined_to
531 : edge
->caller
)->time
;
532 gcov_type time
= (caller_time
533 + RDIV (((gcov_type
) edge_time
534 - inline_edge_summary (edge
)->call_stmt_time
)
535 * MAX (edge
->frequency
, 1), CGRAPH_FREQ_BASE
));
536 /* Possible one roundoff error, but watch for overflows. */
537 gcc_checking_assert (time
>= INT_MIN
/ 2);
543 /* Return true if the speedup for inlining E is bigger than
544 PARAM_MAX_INLINE_MIN_SPEEDUP. */
547 big_speedup_p (struct cgraph_edge
*e
)
549 gcov_type time
= compute_uninlined_call_time (inline_summary (e
->callee
),
551 gcov_type inlined_time
= compute_inlined_call_time (e
,
552 estimate_edge_time (e
));
553 if (time
- inlined_time
554 > RDIV (time
* PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP
), 100))
559 /* Return true if we are interested in inlining small function.
560 When REPORT is true, report reason to dump file. */
563 want_inline_small_function_p (struct cgraph_edge
*e
, bool report
)
565 bool want_inline
= true;
566 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
568 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
570 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
571 && !flag_inline_small_functions
)
573 e
->inline_failed
= CIF_FUNCTION_NOT_INLINE_CANDIDATE
;
576 /* Do fast and conservative check if the function can be good
577 inline cnadidate. At themoment we allow inline hints to
578 promote non-inline function to inline and we increase
579 MAX_INLINE_INSNS_SINGLE 16fold for inline functions. */
580 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
581 && inline_summary (callee
)->min_size
- inline_edge_summary (e
)->call_stmt_size
582 > MAX (MAX_INLINE_INSNS_SINGLE
, MAX_INLINE_INSNS_AUTO
))
584 e
->inline_failed
= CIF_MAX_INLINE_INSNS_AUTO_LIMIT
;
587 else if (DECL_DECLARED_INLINE_P (callee
->decl
)
588 && inline_summary (callee
)->min_size
- inline_edge_summary (e
)->call_stmt_size
589 > 16 * MAX_INLINE_INSNS_SINGLE
)
591 e
->inline_failed
= CIF_MAX_INLINE_INSNS_AUTO_LIMIT
;
596 int growth
= estimate_edge_growth (e
);
597 inline_hints hints
= estimate_edge_hints (e
);
598 bool big_speedup
= big_speedup_p (e
);
602 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
603 hints suggests that inlining given function is very profitable. */
604 else if (DECL_DECLARED_INLINE_P (callee
->decl
)
605 && growth
>= MAX_INLINE_INSNS_SINGLE
607 && !(hints
& (INLINE_HINT_indirect_call
608 | INLINE_HINT_loop_iterations
609 | INLINE_HINT_array_index
610 | INLINE_HINT_loop_stride
)))
611 || growth
>= MAX_INLINE_INSNS_SINGLE
* 16))
613 e
->inline_failed
= CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
;
616 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
617 && !flag_inline_functions
)
619 /* growth_likely_positive is expensive, always test it last. */
620 if (growth
>= MAX_INLINE_INSNS_SINGLE
621 || growth_likely_positive (callee
, growth
))
623 e
->inline_failed
= CIF_NOT_DECLARED_INLINED
;
627 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
628 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
629 inlining given function is very profitable. */
630 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
632 && growth
>= ((hints
& (INLINE_HINT_indirect_call
633 | INLINE_HINT_loop_iterations
634 | INLINE_HINT_array_index
635 | INLINE_HINT_loop_stride
))
636 ? MAX (MAX_INLINE_INSNS_AUTO
,
637 MAX_INLINE_INSNS_SINGLE
)
638 : MAX_INLINE_INSNS_AUTO
))
640 /* growth_likely_positive is expensive, always test it last. */
641 if (growth
>= MAX_INLINE_INSNS_SINGLE
642 || growth_likely_positive (callee
, growth
))
644 e
->inline_failed
= CIF_MAX_INLINE_INSNS_AUTO_LIMIT
;
648 /* If call is cold, do not inline when function body would grow. */
649 else if (!cgraph_maybe_hot_edge_p (e
)
650 && (growth
>= MAX_INLINE_INSNS_SINGLE
651 || growth_likely_positive (callee
, growth
)))
653 e
->inline_failed
= CIF_UNLIKELY_CALL
;
657 if (!want_inline
&& report
)
658 report_inline_failed_reason (e
);
662 /* EDGE is self recursive edge.
663 We hand two cases - when function A is inlining into itself
664 or when function A is being inlined into another inliner copy of function
667 In first case OUTER_NODE points to the toplevel copy of A, while
668 in the second case OUTER_NODE points to the outermost copy of A in B.
670 In both cases we want to be extra selective since
671 inlining the call will just introduce new recursive calls to appear. */
674 want_inline_self_recursive_call_p (struct cgraph_edge
*edge
,
675 struct cgraph_node
*outer_node
,
679 char const *reason
= NULL
;
680 bool want_inline
= true;
681 int caller_freq
= CGRAPH_FREQ_BASE
;
682 int max_depth
= PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO
);
684 if (DECL_DECLARED_INLINE_P (edge
->caller
->decl
))
685 max_depth
= PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH
);
687 if (!cgraph_maybe_hot_edge_p (edge
))
689 reason
= "recursive call is cold";
692 else if (max_count
&& !outer_node
->count
)
694 reason
= "not executed in profile";
697 else if (depth
> max_depth
)
699 reason
= "--param max-inline-recursive-depth exceeded.";
703 if (outer_node
->global
.inlined_to
)
704 caller_freq
= outer_node
->callers
->frequency
;
708 reason
= "function is inlined and unlikely";
714 /* Inlining of self recursive function into copy of itself within other function
715 is transformation similar to loop peeling.
717 Peeling is profitable if we can inline enough copies to make probability
718 of actual call to the self recursive function very small. Be sure that
719 the probability of recursion is small.
721 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
722 This way the expected number of recision is at most max_depth. */
725 int max_prob
= CGRAPH_FREQ_BASE
- ((CGRAPH_FREQ_BASE
+ max_depth
- 1)
728 for (i
= 1; i
< depth
; i
++)
729 max_prob
= max_prob
* max_prob
/ CGRAPH_FREQ_BASE
;
731 && (edge
->count
* CGRAPH_FREQ_BASE
/ outer_node
->count
734 reason
= "profile of recursive call is too large";
738 && (edge
->frequency
* CGRAPH_FREQ_BASE
/ caller_freq
741 reason
= "frequency of recursive call is too large";
745 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
746 depth is large. We reduce function call overhead and increase chances that
747 things fit in hardware return predictor.
749 Recursive inlining might however increase cost of stack frame setup
750 actually slowing down functions whose recursion tree is wide rather than
753 Deciding reliably on when to do recursive inlining without profile feedback
754 is tricky. For now we disable recursive inlining when probability of self
757 Recursive inlining of self recursive call within loop also results in large loop
758 depths that generally optimize badly. We may want to throttle down inlining
759 in those cases. In particular this seems to happen in one of libstdc++ rb tree
764 && (edge
->count
* 100 / outer_node
->count
765 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY
)))
767 reason
= "profile of recursive call is too small";
771 && (edge
->frequency
* 100 / caller_freq
772 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY
)))
774 reason
= "frequency of recursive call is too small";
778 if (!want_inline
&& dump_file
)
779 fprintf (dump_file
, " not inlining recursively: %s\n", reason
);
783 /* Return true when NODE has uninlinable caller;
784 set HAS_HOT_CALL if it has hot call.
785 Worker for cgraph_for_node_and_aliases. */
788 check_callers (struct cgraph_node
*node
, void *has_hot_call
)
790 struct cgraph_edge
*e
;
791 for (e
= node
->callers
; e
; e
= e
->next_caller
)
793 if (!can_inline_edge_p (e
, true))
795 if (!(*(bool *)has_hot_call
) && cgraph_maybe_hot_edge_p (e
))
796 *(bool *)has_hot_call
= true;
801 /* If NODE has a caller, return true. */
804 has_caller_p (struct cgraph_node
*node
, void *data ATTRIBUTE_UNUSED
)
811 /* Decide if inlining NODE would reduce unit size by eliminating
812 the offline copy of function.
813 When COLD is true the cold calls are considered, too. */
816 want_inline_function_to_all_callers_p (struct cgraph_node
*node
, bool cold
)
818 struct cgraph_node
*function
= cgraph_function_or_thunk_node (node
, NULL
);
819 bool has_hot_call
= false;
821 /* Does it have callers? */
822 if (!cgraph_for_node_and_aliases (node
, has_caller_p
, NULL
, true))
824 /* Already inlined? */
825 if (function
->global
.inlined_to
)
827 if (cgraph_function_or_thunk_node (node
, NULL
) != node
)
829 /* Inlining into all callers would increase size? */
830 if (estimate_growth (node
) > 0)
832 /* All inlines must be possible. */
833 if (cgraph_for_node_and_aliases (node
, check_callers
, &has_hot_call
, true))
835 if (!cold
&& !has_hot_call
)
840 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
842 /* Return relative time improvement for inlining EDGE in range
843 1...RELATIVE_TIME_BENEFIT_RANGE */
846 relative_time_benefit (struct inline_summary
*callee_info
,
847 struct cgraph_edge
*edge
,
850 gcov_type relbenefit
;
851 gcov_type uninlined_call_time
= compute_uninlined_call_time (callee_info
, edge
);
852 gcov_type inlined_call_time
= compute_inlined_call_time (edge
, edge_time
);
854 /* Inlining into extern inline function is not a win. */
855 if (DECL_EXTERNAL (edge
->caller
->global
.inlined_to
856 ? edge
->caller
->global
.inlined_to
->decl
857 : edge
->caller
->decl
))
860 /* Watch overflows. */
861 gcc_checking_assert (uninlined_call_time
>= 0);
862 gcc_checking_assert (inlined_call_time
>= 0);
863 gcc_checking_assert (uninlined_call_time
>= inlined_call_time
);
865 /* Compute relative time benefit, i.e. how much the call becomes faster.
866 ??? perhaps computing how much the caller+calle together become faster
867 would lead to more realistic results. */
868 if (!uninlined_call_time
)
869 uninlined_call_time
= 1;
871 RDIV (((gcov_type
)uninlined_call_time
- inlined_call_time
) * RELATIVE_TIME_BENEFIT_RANGE
,
872 uninlined_call_time
);
873 relbenefit
= MIN (relbenefit
, RELATIVE_TIME_BENEFIT_RANGE
);
874 gcc_checking_assert (relbenefit
>= 0);
875 relbenefit
= MAX (relbenefit
, 1);
880 /* A cost model driving the inlining heuristics in a way so the edges with
881 smallest badness are inlined first. After each inlining is performed
882 the costs of all caller edges of nodes affected are recomputed so the
883 metrics may accurately depend on values such as number of inlinable callers
884 of the function or function body size. */
887 edge_badness (struct cgraph_edge
*edge
, bool dump
)
890 int growth
, edge_time
;
891 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (edge
->callee
,
893 struct inline_summary
*callee_info
= inline_summary (callee
);
896 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
899 growth
= estimate_edge_growth (edge
);
900 edge_time
= estimate_edge_time (edge
);
901 hints
= estimate_edge_hints (edge
);
902 gcc_checking_assert (edge_time
>= 0);
903 gcc_checking_assert (edge_time
<= callee_info
->time
);
904 gcc_checking_assert (growth
<= callee_info
->size
);
908 fprintf (dump_file
, " Badness calculation for %s/%i -> %s/%i\n",
909 xstrdup (edge
->caller
->name ()),
911 xstrdup (callee
->name ()),
912 edge
->callee
->order
);
913 fprintf (dump_file
, " size growth %i, time %i ",
916 dump_inline_hints (dump_file
, hints
);
917 if (big_speedup_p (edge
))
918 fprintf (dump_file
, " big_speedup");
919 fprintf (dump_file
, "\n");
922 /* Always prefer inlining saving code size. */
925 badness
= INT_MIN
/ 2 + growth
;
927 fprintf (dump_file
, " %i: Growth %i <= 0\n", (int) badness
,
931 /* When profiling is available, compute badness as:
933 relative_edge_count * relative_time_benefit
934 goodness = -------------------------------------------
938 The fraction is upside down, because on edge counts and time beneits
939 the bounds are known. Edge growth is essentially unlimited. */
943 sreal tmp
, relbenefit_real
, growth_real
;
944 int relbenefit
= relative_time_benefit (callee_info
, edge
, edge_time
);
945 /* Capping edge->count to max_count. edge->count can be larger than
946 max_count if an inline adds new edges which increase max_count
947 after max_count is computed. */
948 gcov_type edge_count
= edge
->count
> max_count
? max_count
: edge
->count
;
950 sreal_init (&relbenefit_real
, relbenefit
, 0);
951 sreal_init (&growth_real
, growth
, 0);
953 /* relative_edge_count. */
954 sreal_init (&tmp
, edge_count
, 0);
955 sreal_div (&tmp
, &tmp
, &max_count_real
);
957 /* relative_time_benefit. */
958 sreal_mul (&tmp
, &tmp
, &relbenefit_real
);
959 sreal_div (&tmp
, &tmp
, &max_relbenefit_real
);
961 /* growth_f_caller. */
962 sreal_mul (&tmp
, &tmp
, &half_int_min_real
);
963 sreal_div (&tmp
, &tmp
, &growth_real
);
965 badness
= -1 * sreal_to_int (&tmp
);
970 " %i (relative %f): profile info. Relative count %f%s"
971 " * Relative benefit %f\n",
972 (int) badness
, (double) badness
/ INT_MIN
,
973 (double) edge_count
/ max_count
,
974 edge
->count
> max_count
? " (capped to max_count)" : "",
975 relbenefit
* 100.0 / RELATIVE_TIME_BENEFIT_RANGE
);
979 /* When function local profile is available. Compute badness as:
981 relative_time_benefit
982 goodness = ---------------------------------
983 growth_of_caller * overall_growth
987 compensated by the inline hints.
989 else if (flag_guess_branch_prob
)
991 badness
= (relative_time_benefit (callee_info
, edge
, edge_time
)
992 * (INT_MIN
/ 16 / RELATIVE_TIME_BENEFIT_RANGE
));
993 badness
/= (MIN (65536/2, growth
) * MIN (65536/2, MAX (1, callee_info
->growth
)));
994 gcc_checking_assert (badness
<=0 && badness
>= INT_MIN
/ 16);
995 if ((hints
& (INLINE_HINT_indirect_call
996 | INLINE_HINT_loop_iterations
997 | INLINE_HINT_array_index
998 | INLINE_HINT_loop_stride
))
999 || callee_info
->growth
<= 0)
1001 if (hints
& (INLINE_HINT_same_scc
))
1003 else if (hints
& (INLINE_HINT_in_scc
))
1005 else if (hints
& (INLINE_HINT_cross_module
))
1007 gcc_checking_assert (badness
<= 0 && badness
>= INT_MIN
/ 2);
1008 if ((hints
& INLINE_HINT_declared_inline
) && badness
>= INT_MIN
/ 32)
1013 " %i: guessed profile. frequency %f,"
1014 " benefit %f%%, time w/o inlining %i, time w inlining %i"
1015 " overall growth %i (current) %i (original)\n",
1016 (int) badness
, (double)edge
->frequency
/ CGRAPH_FREQ_BASE
,
1017 relative_time_benefit (callee_info
, edge
, edge_time
) * 100.0
1018 / RELATIVE_TIME_BENEFIT_RANGE
,
1019 (int)compute_uninlined_call_time (callee_info
, edge
),
1020 (int)compute_inlined_call_time (edge
, edge_time
),
1021 estimate_growth (callee
),
1022 callee_info
->growth
);
1025 /* When function local profile is not available or it does not give
1026 useful information (ie frequency is zero), base the cost on
1027 loop nest and overall size growth, so we optimize for overall number
1028 of functions fully inlined in program. */
1031 int nest
= MIN (inline_edge_summary (edge
)->loop_depth
, 8);
1032 badness
= growth
* 256;
1034 /* Decrease badness if call is nested. */
1042 fprintf (dump_file
, " %i: no profile. nest %i\n", (int) badness
,
1046 /* Ensure that we did not overflow in all the fixed point math above. */
1047 gcc_assert (badness
>= INT_MIN
);
1048 gcc_assert (badness
<= INT_MAX
- 1);
1049 /* Make recursive inlining happen always after other inlining is done. */
1050 if (cgraph_edge_recursive_p (edge
))
1056 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1058 update_edge_key (fibheap_t heap
, struct cgraph_edge
*edge
)
1060 int badness
= edge_badness (edge
, false);
1063 fibnode_t n
= (fibnode_t
) edge
->aux
;
1064 gcc_checking_assert (n
->data
== edge
);
1066 /* fibheap_replace_key only decrease the keys.
1067 When we increase the key we do not update heap
1068 and instead re-insert the element once it becomes
1069 a minimum of heap. */
1070 if (badness
< n
->key
)
1072 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1075 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
1076 xstrdup (edge
->caller
->name ()),
1077 edge
->caller
->order
,
1078 xstrdup (edge
->callee
->name ()),
1079 edge
->callee
->order
,
1083 fibheap_replace_key (heap
, n
, badness
);
1084 gcc_checking_assert (n
->key
== badness
);
1089 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1092 " enqueuing call %s/%i -> %s/%i, badness %i\n",
1093 xstrdup (edge
->caller
->name ()),
1094 edge
->caller
->order
,
1095 xstrdup (edge
->callee
->name ()),
1096 edge
->callee
->order
,
1099 edge
->aux
= fibheap_insert (heap
, badness
, edge
);
1104 /* NODE was inlined.
1105 All caller edges needs to be resetted because
1106 size estimates change. Similarly callees needs reset
1107 because better context may be known. */
1110 reset_edge_caches (struct cgraph_node
*node
)
1112 struct cgraph_edge
*edge
;
1113 struct cgraph_edge
*e
= node
->callees
;
1114 struct cgraph_node
*where
= node
;
1116 struct ipa_ref
*ref
;
1118 if (where
->global
.inlined_to
)
1119 where
= where
->global
.inlined_to
;
1121 /* WHERE body size has changed, the cached growth is invalid. */
1122 reset_node_growth_cache (where
);
1124 for (edge
= where
->callers
; edge
; edge
= edge
->next_caller
)
1125 if (edge
->inline_failed
)
1126 reset_edge_growth_cache (edge
);
1127 for (i
= 0; ipa_ref_list_referring_iterate (&where
->ref_list
,
1129 if (ref
->use
== IPA_REF_ALIAS
)
1130 reset_edge_caches (ipa_ref_referring_node (ref
));
1136 if (!e
->inline_failed
&& e
->callee
->callees
)
1137 e
= e
->callee
->callees
;
1140 if (e
->inline_failed
)
1141 reset_edge_growth_cache (e
);
1148 if (e
->caller
== node
)
1150 e
= e
->caller
->callers
;
1152 while (!e
->next_callee
);
1158 /* Recompute HEAP nodes for each of caller of NODE.
1159 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1160 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1161 it is inlinable. Otherwise check all edges. */
1164 update_caller_keys (fibheap_t heap
, struct cgraph_node
*node
,
1165 bitmap updated_nodes
,
1166 struct cgraph_edge
*check_inlinablity_for
)
1168 struct cgraph_edge
*edge
;
1170 struct ipa_ref
*ref
;
1172 if ((!node
->alias
&& !inline_summary (node
)->inlinable
)
1173 || node
->global
.inlined_to
)
1175 if (!bitmap_set_bit (updated_nodes
, node
->uid
))
1178 for (i
= 0; ipa_ref_list_referring_iterate (&node
->ref_list
,
1180 if (ref
->use
== IPA_REF_ALIAS
)
1182 struct cgraph_node
*alias
= ipa_ref_referring_node (ref
);
1183 update_caller_keys (heap
, alias
, updated_nodes
, check_inlinablity_for
);
1186 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1187 if (edge
->inline_failed
)
1189 if (!check_inlinablity_for
1190 || check_inlinablity_for
== edge
)
1192 if (can_inline_edge_p (edge
, false)
1193 && want_inline_small_function_p (edge
, false))
1194 update_edge_key (heap
, edge
);
1197 report_inline_failed_reason (edge
);
1198 fibheap_delete_node (heap
, (fibnode_t
) edge
->aux
);
1203 update_edge_key (heap
, edge
);
1207 /* Recompute HEAP nodes for each uninlined call in NODE.
1208 This is used when we know that edge badnesses are going only to increase
1209 (we introduced new call site) and thus all we need is to insert newly
1210 created edges into heap. */
1213 update_callee_keys (fibheap_t heap
, struct cgraph_node
*node
,
1214 bitmap updated_nodes
)
1216 struct cgraph_edge
*e
= node
->callees
;
1221 if (!e
->inline_failed
&& e
->callee
->callees
)
1222 e
= e
->callee
->callees
;
1225 enum availability avail
;
1226 struct cgraph_node
*callee
;
1227 /* We do not reset callee growth cache here. Since we added a new call,
1228 growth chould have just increased and consequentely badness metric
1229 don't need updating. */
1230 if (e
->inline_failed
1231 && (callee
= cgraph_function_or_thunk_node (e
->callee
, &avail
))
1232 && inline_summary (callee
)->inlinable
1233 && avail
>= AVAIL_AVAILABLE
1234 && !bitmap_bit_p (updated_nodes
, callee
->uid
))
1236 if (can_inline_edge_p (e
, false)
1237 && want_inline_small_function_p (e
, false))
1238 update_edge_key (heap
, e
);
1241 report_inline_failed_reason (e
);
1242 fibheap_delete_node (heap
, (fibnode_t
) e
->aux
);
1252 if (e
->caller
== node
)
1254 e
= e
->caller
->callers
;
1256 while (!e
->next_callee
);
1262 /* Enqueue all recursive calls from NODE into priority queue depending on
1263 how likely we want to recursively inline the call. */
1266 lookup_recursive_calls (struct cgraph_node
*node
, struct cgraph_node
*where
,
1269 struct cgraph_edge
*e
;
1270 enum availability avail
;
1272 for (e
= where
->callees
; e
; e
= e
->next_callee
)
1273 if (e
->callee
== node
1274 || (cgraph_function_or_thunk_node (e
->callee
, &avail
) == node
1275 && avail
> AVAIL_OVERWRITABLE
))
1277 /* When profile feedback is available, prioritize by expected number
1279 fibheap_insert (heap
,
1280 !max_count
? -e
->frequency
1281 : -(e
->count
/ ((max_count
+ (1<<24) - 1) / (1<<24))),
1284 for (e
= where
->callees
; e
; e
= e
->next_callee
)
1285 if (!e
->inline_failed
)
1286 lookup_recursive_calls (node
, e
->callee
, heap
);
1289 /* Decide on recursive inlining: in the case function has recursive calls,
1290 inline until body size reaches given argument. If any new indirect edges
1291 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1295 recursive_inlining (struct cgraph_edge
*edge
,
1296 vec
<cgraph_edge_p
> *new_edges
)
1298 int limit
= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO
);
1300 struct cgraph_node
*node
;
1301 struct cgraph_edge
*e
;
1302 struct cgraph_node
*master_clone
= NULL
, *next
;
1306 node
= edge
->caller
;
1307 if (node
->global
.inlined_to
)
1308 node
= node
->global
.inlined_to
;
1310 if (DECL_DECLARED_INLINE_P (node
->decl
))
1311 limit
= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE
);
1313 /* Make sure that function is small enough to be considered for inlining. */
1314 if (estimate_size_after_inlining (node
, edge
) >= limit
)
1316 heap
= fibheap_new ();
1317 lookup_recursive_calls (node
, node
, heap
);
1318 if (fibheap_empty (heap
))
1320 fibheap_delete (heap
);
1326 " Performing recursive inlining on %s\n",
1329 /* Do the inlining and update list of recursive call during process. */
1330 while (!fibheap_empty (heap
))
1332 struct cgraph_edge
*curr
1333 = (struct cgraph_edge
*) fibheap_extract_min (heap
);
1334 struct cgraph_node
*cnode
, *dest
= curr
->callee
;
1336 if (!can_inline_edge_p (curr
, true))
1339 /* MASTER_CLONE is produced in the case we already started modified
1340 the function. Be sure to redirect edge to the original body before
1341 estimating growths otherwise we will be seeing growths after inlining
1342 the already modified body. */
1345 cgraph_redirect_edge_callee (curr
, master_clone
);
1346 reset_edge_growth_cache (curr
);
1349 if (estimate_size_after_inlining (node
, curr
) > limit
)
1351 cgraph_redirect_edge_callee (curr
, dest
);
1352 reset_edge_growth_cache (curr
);
1357 for (cnode
= curr
->caller
;
1358 cnode
->global
.inlined_to
; cnode
= cnode
->callers
->caller
)
1360 == cgraph_function_or_thunk_node (curr
->callee
, NULL
)->decl
)
1363 if (!want_inline_self_recursive_call_p (curr
, node
, false, depth
))
1365 cgraph_redirect_edge_callee (curr
, dest
);
1366 reset_edge_growth_cache (curr
);
1373 " Inlining call of depth %i", depth
);
1376 fprintf (dump_file
, " called approx. %.2f times per call",
1377 (double)curr
->count
/ node
->count
);
1379 fprintf (dump_file
, "\n");
1383 /* We need original clone to copy around. */
1384 master_clone
= cgraph_clone_node (node
, node
->decl
,
1385 node
->count
, CGRAPH_FREQ_BASE
,
1386 false, vNULL
, true, NULL
, NULL
);
1387 for (e
= master_clone
->callees
; e
; e
= e
->next_callee
)
1388 if (!e
->inline_failed
)
1389 clone_inlined_nodes (e
, true, false, NULL
, CGRAPH_FREQ_BASE
);
1390 cgraph_redirect_edge_callee (curr
, master_clone
);
1391 reset_edge_growth_cache (curr
);
1394 inline_call (curr
, false, new_edges
, &overall_size
, true);
1395 lookup_recursive_calls (node
, curr
->callee
, heap
);
1399 if (!fibheap_empty (heap
) && dump_file
)
1400 fprintf (dump_file
, " Recursive inlining growth limit met.\n");
1401 fibheap_delete (heap
);
1408 "\n Inlined %i times, "
1409 "body grown from size %i to %i, time %i to %i\n", n
,
1410 inline_summary (master_clone
)->size
, inline_summary (node
)->size
,
1411 inline_summary (master_clone
)->time
, inline_summary (node
)->time
);
1413 /* Remove master clone we used for inlining. We rely that clones inlined
1414 into master clone gets queued just before master clone so we don't
1416 for (node
= cgraph_first_function (); node
!= master_clone
;
1419 next
= cgraph_next_function (node
);
1420 if (node
->global
.inlined_to
== master_clone
)
1421 cgraph_remove_node (node
);
1423 cgraph_remove_node (master_clone
);
1428 /* Given whole compilation unit estimate of INSNS, compute how large we can
1429 allow the unit to grow. */
1432 compute_max_insns (int insns
)
1434 int max_insns
= insns
;
1435 if (max_insns
< PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
))
1436 max_insns
= PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
);
1438 return ((HOST_WIDEST_INT
) max_insns
1439 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH
)) / 100);
1443 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1446 add_new_edges_to_heap (fibheap_t heap
, vec
<cgraph_edge_p
> new_edges
)
1448 while (new_edges
.length () > 0)
1450 struct cgraph_edge
*edge
= new_edges
.pop ();
1452 gcc_assert (!edge
->aux
);
1453 if (edge
->inline_failed
1454 && can_inline_edge_p (edge
, true)
1455 && want_inline_small_function_p (edge
, true))
1456 edge
->aux
= fibheap_insert (heap
, edge_badness (edge
, false), edge
);
1460 /* Remove EDGE from the fibheap. */
1463 heap_edge_removal_hook (struct cgraph_edge
*e
, void *data
)
1466 reset_node_growth_cache (e
->callee
);
1469 fibheap_delete_node ((fibheap_t
)data
, (fibnode_t
)e
->aux
);
1474 /* Return true if speculation of edge E seems useful.
1475 If ANTICIPATE_INLINING is true, be conservative and hope that E
1479 speculation_useful_p (struct cgraph_edge
*e
, bool anticipate_inlining
)
1481 enum availability avail
;
1482 struct cgraph_node
*target
= cgraph_function_or_thunk_node (e
->callee
, &avail
);
1483 struct cgraph_edge
*direct
, *indirect
;
1484 struct ipa_ref
*ref
;
1486 gcc_assert (e
->speculative
&& !e
->indirect_unknown_callee
);
1488 if (!cgraph_maybe_hot_edge_p (e
))
1491 /* See if IP optimizations found something potentially useful about the
1492 function. For now we look only for CONST/PURE flags. Almost everything
1493 else we propagate is useless. */
1494 if (avail
>= AVAIL_AVAILABLE
)
1496 int ecf_flags
= flags_from_decl_or_type (target
->decl
);
1497 if (ecf_flags
& ECF_CONST
)
1499 cgraph_speculative_call_info (e
, direct
, indirect
, ref
);
1500 if (!(indirect
->indirect_info
->ecf_flags
& ECF_CONST
))
1503 else if (ecf_flags
& ECF_PURE
)
1505 cgraph_speculative_call_info (e
, direct
, indirect
, ref
);
1506 if (!(indirect
->indirect_info
->ecf_flags
& ECF_PURE
))
1510 /* If we did not managed to inline the function nor redirect
1511 to an ipa-cp clone (that are seen by having local flag set),
1512 it is probably pointless to inline it unless hardware is missing
1513 indirect call predictor. */
1514 if (!anticipate_inlining
&& e
->inline_failed
&& !target
->local
.local
)
1516 /* For overwritable targets there is not much to do. */
1517 if (e
->inline_failed
&& !can_inline_edge_p (e
, false, true))
1519 /* OK, speculation seems interesting. */
1523 /* We know that EDGE is not going to be inlined.
1524 See if we can remove speculation. */
1527 resolve_noninline_speculation (fibheap_t edge_heap
, struct cgraph_edge
*edge
)
1529 if (edge
->speculative
&& !speculation_useful_p (edge
, false))
1531 struct cgraph_node
*node
= edge
->caller
;
1532 struct cgraph_node
*where
= node
->global
.inlined_to
1533 ? node
->global
.inlined_to
: node
;
1534 bitmap updated_nodes
= BITMAP_ALLOC (NULL
);
1536 cgraph_resolve_speculation (edge
, NULL
);
1537 reset_edge_caches (where
);
1538 inline_update_overall_summary (where
);
1539 update_caller_keys (edge_heap
, where
,
1540 updated_nodes
, NULL
);
1541 update_callee_keys (edge_heap
, where
,
1543 BITMAP_FREE (updated_nodes
);
1547 /* We use greedy algorithm for inlining of small functions:
1548 All inline candidates are put into prioritized heap ordered in
1551 The inlining of small functions is bounded by unit growth parameters. */
1554 inline_small_functions (void)
1556 struct cgraph_node
*node
;
1557 struct cgraph_edge
*edge
;
1558 fibheap_t edge_heap
= fibheap_new ();
1559 bitmap updated_nodes
= BITMAP_ALLOC (NULL
);
1560 int min_size
, max_size
;
1561 auto_vec
<cgraph_edge_p
> new_indirect_edges
;
1562 int initial_size
= 0;
1563 struct cgraph_node
**order
= XCNEWVEC (struct cgraph_node
*, cgraph_n_nodes
);
1564 struct cgraph_edge_hook_list
*edge_removal_hook_holder
;
1566 if (flag_indirect_inlining
)
1567 new_indirect_edges
.create (8);
1569 edge_removal_hook_holder
1570 = cgraph_add_edge_removal_hook (&heap_edge_removal_hook
, edge_heap
);
1572 /* Compute overall unit size and other global parameters used by badness
1576 ipa_reduced_postorder (order
, true, true, NULL
);
1579 FOR_EACH_DEFINED_FUNCTION (node
)
1580 if (!node
->global
.inlined_to
)
1582 if (cgraph_function_with_gimple_body_p (node
)
1583 || node
->thunk
.thunk_p
)
1585 struct inline_summary
*info
= inline_summary (node
);
1586 struct ipa_dfs_info
*dfs
= (struct ipa_dfs_info
*) node
->aux
;
1588 if (!DECL_EXTERNAL (node
->decl
))
1589 initial_size
+= info
->size
;
1590 info
->growth
= estimate_growth (node
);
1591 if (dfs
&& dfs
->next_cycle
)
1593 struct cgraph_node
*n2
;
1594 int id
= dfs
->scc_no
+ 1;
1596 n2
= ((struct ipa_dfs_info
*) node
->aux
)->next_cycle
)
1598 struct inline_summary
*info2
= inline_summary (n2
);
1606 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1607 if (max_count
< edge
->count
)
1608 max_count
= edge
->count
;
1610 sreal_init (&max_count_real
, max_count
, 0);
1611 sreal_init (&max_relbenefit_real
, RELATIVE_TIME_BENEFIT_RANGE
, 0);
1612 sreal_init (&half_int_min_real
, INT_MAX
/ 2, 0);
1613 ipa_free_postorder_info ();
1614 initialize_growth_caches ();
1618 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1621 overall_size
= initial_size
;
1622 max_size
= compute_max_insns (overall_size
);
1623 min_size
= overall_size
;
1625 /* Populate the heap with all edges we might inline. */
1627 FOR_EACH_DEFINED_FUNCTION (node
)
1629 bool update
= false;
1630 struct cgraph_edge
*next
;
1633 fprintf (dump_file
, "Enqueueing calls in %s/%i.\n",
1634 node
->name (), node
->order
);
1636 for (edge
= node
->callees
; edge
; edge
= next
)
1638 next
= edge
->next_callee
;
1639 if (edge
->inline_failed
1641 && can_inline_edge_p (edge
, true)
1642 && want_inline_small_function_p (edge
, true)
1643 && edge
->inline_failed
)
1645 gcc_assert (!edge
->aux
);
1646 update_edge_key (edge_heap
, edge
);
1648 if (edge
->speculative
&& !speculation_useful_p (edge
, edge
->aux
!= NULL
))
1650 cgraph_resolve_speculation (edge
, NULL
);
1656 struct cgraph_node
*where
= node
->global
.inlined_to
1657 ? node
->global
.inlined_to
: node
;
1658 inline_update_overall_summary (where
);
1659 reset_node_growth_cache (where
);
1660 reset_edge_caches (where
);
1661 update_caller_keys (edge_heap
, where
,
1662 updated_nodes
, NULL
);
1663 bitmap_clear (updated_nodes
);
1667 gcc_assert (in_lto_p
1669 || (profile_info
&& flag_branch_probabilities
));
1671 while (!fibheap_empty (edge_heap
))
1673 int old_size
= overall_size
;
1674 struct cgraph_node
*where
, *callee
;
1675 int badness
= fibheap_min_key (edge_heap
);
1676 int current_badness
;
1680 edge
= (struct cgraph_edge
*) fibheap_extract_min (edge_heap
);
1681 gcc_assert (edge
->aux
);
1683 if (!edge
->inline_failed
|| !edge
->callee
->analyzed
)
1686 /* Be sure that caches are maintained consistent.
1687 We can not make this ENABLE_CHECKING only because it cause different
1688 updates of the fibheap queue. */
1689 cached_badness
= edge_badness (edge
, false);
1690 reset_edge_growth_cache (edge
);
1691 reset_node_growth_cache (edge
->callee
);
1693 /* When updating the edge costs, we only decrease badness in the keys.
1694 Increases of badness are handled lazilly; when we see key with out
1695 of date value on it, we re-insert it now. */
1696 current_badness
= edge_badness (edge
, false);
1697 gcc_assert (cached_badness
== current_badness
);
1698 gcc_assert (current_badness
>= badness
);
1699 if (current_badness
!= badness
)
1701 edge
->aux
= fibheap_insert (edge_heap
, current_badness
, edge
);
1705 if (!can_inline_edge_p (edge
, true))
1707 resolve_noninline_speculation (edge_heap
, edge
);
1711 callee
= cgraph_function_or_thunk_node (edge
->callee
, NULL
);
1712 growth
= estimate_edge_growth (edge
);
1716 "\nConsidering %s/%i with %i size\n",
1717 callee
->name (), callee
->order
,
1718 inline_summary (callee
)->size
);
1720 " to be inlined into %s/%i in %s:%i\n"
1721 " Estimated badness is %i, frequency %.2f.\n",
1722 edge
->caller
->name (), edge
->caller
->order
,
1723 flag_wpa
? "unknown"
1724 : gimple_filename ((const_gimple
) edge
->call_stmt
),
1726 : gimple_lineno ((const_gimple
) edge
->call_stmt
),
1728 edge
->frequency
/ (double)CGRAPH_FREQ_BASE
);
1730 fprintf (dump_file
," Called "HOST_WIDEST_INT_PRINT_DEC
"x\n",
1732 if (dump_flags
& TDF_DETAILS
)
1733 edge_badness (edge
, true);
1736 if (overall_size
+ growth
> max_size
1737 && !DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
1739 edge
->inline_failed
= CIF_INLINE_UNIT_GROWTH_LIMIT
;
1740 report_inline_failed_reason (edge
);
1741 resolve_noninline_speculation (edge_heap
, edge
);
1745 if (!want_inline_small_function_p (edge
, true))
1747 resolve_noninline_speculation (edge_heap
, edge
);
1751 /* Heuristics for inlining small functions work poorly for
1752 recursive calls where we do effects similar to loop unrolling.
1753 When inlining such edge seems profitable, leave decision on
1754 specific inliner. */
1755 if (cgraph_edge_recursive_p (edge
))
1757 where
= edge
->caller
;
1758 if (where
->global
.inlined_to
)
1759 where
= where
->global
.inlined_to
;
1760 if (!recursive_inlining (edge
,
1761 flag_indirect_inlining
1762 ? &new_indirect_edges
: NULL
))
1764 edge
->inline_failed
= CIF_RECURSIVE_INLINING
;
1765 resolve_noninline_speculation (edge_heap
, edge
);
1768 reset_edge_caches (where
);
1769 /* Recursive inliner inlines all recursive calls of the function
1770 at once. Consequently we need to update all callee keys. */
1771 if (flag_indirect_inlining
)
1772 add_new_edges_to_heap (edge_heap
, new_indirect_edges
);
1773 update_callee_keys (edge_heap
, where
, updated_nodes
);
1774 bitmap_clear (updated_nodes
);
1778 struct cgraph_node
*outer_node
= NULL
;
1781 /* Consider the case where self recursive function A is inlined
1782 into B. This is desired optimization in some cases, since it
1783 leads to effect similar of loop peeling and we might completely
1784 optimize out the recursive call. However we must be extra
1787 where
= edge
->caller
;
1788 while (where
->global
.inlined_to
)
1790 if (where
->decl
== callee
->decl
)
1791 outer_node
= where
, depth
++;
1792 where
= where
->callers
->caller
;
1795 && !want_inline_self_recursive_call_p (edge
, outer_node
,
1799 = (DECL_DISREGARD_INLINE_LIMITS (edge
->callee
->decl
)
1800 ? CIF_RECURSIVE_INLINING
: CIF_UNSPECIFIED
);
1801 resolve_noninline_speculation (edge_heap
, edge
);
1804 else if (depth
&& dump_file
)
1805 fprintf (dump_file
, " Peeling recursion with depth %i\n", depth
);
1807 gcc_checking_assert (!callee
->global
.inlined_to
);
1808 inline_call (edge
, true, &new_indirect_edges
, &overall_size
, true);
1809 if (flag_indirect_inlining
)
1810 add_new_edges_to_heap (edge_heap
, new_indirect_edges
);
1812 reset_edge_caches (edge
->callee
);
1813 reset_node_growth_cache (callee
);
1815 update_callee_keys (edge_heap
, where
, updated_nodes
);
1817 where
= edge
->caller
;
1818 if (where
->global
.inlined_to
)
1819 where
= where
->global
.inlined_to
;
1821 /* Our profitability metric can depend on local properties
1822 such as number of inlinable calls and size of the function body.
1823 After inlining these properties might change for the function we
1824 inlined into (since it's body size changed) and for the functions
1825 called by function we inlined (since number of it inlinable callers
1827 update_caller_keys (edge_heap
, where
, updated_nodes
, NULL
);
1828 bitmap_clear (updated_nodes
);
1833 " Inlined into %s which now has time %i and size %i,"
1834 "net change of %+i.\n",
1835 edge
->caller
->name (),
1836 inline_summary (edge
->caller
)->time
,
1837 inline_summary (edge
->caller
)->size
,
1838 overall_size
- old_size
);
1840 if (min_size
> overall_size
)
1842 min_size
= overall_size
;
1843 max_size
= compute_max_insns (min_size
);
1846 fprintf (dump_file
, "New minimal size reached: %i\n", min_size
);
1850 free_growth_caches ();
1851 fibheap_delete (edge_heap
);
1854 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1855 initial_size
, overall_size
,
1856 initial_size
? overall_size
* 100 / (initial_size
) - 100: 0);
1857 BITMAP_FREE (updated_nodes
);
1858 cgraph_remove_edge_removal_hook (edge_removal_hook_holder
);
1861 /* Flatten NODE. Performed both during early inlining and
1862 at IPA inlining time. */
1865 flatten_function (struct cgraph_node
*node
, bool early
)
1867 struct cgraph_edge
*e
;
1869 /* We shouldn't be called recursively when we are being processed. */
1870 gcc_assert (node
->aux
== NULL
);
1872 node
->aux
= (void *) node
;
1874 for (e
= node
->callees
; e
; e
= e
->next_callee
)
1876 struct cgraph_node
*orig_callee
;
1877 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
1879 /* We've hit cycle? It is time to give up. */
1884 "Not inlining %s into %s to avoid cycle.\n",
1885 xstrdup (callee
->name ()),
1886 xstrdup (e
->caller
->name ()));
1887 e
->inline_failed
= CIF_RECURSIVE_INLINING
;
1891 /* When the edge is already inlined, we just need to recurse into
1892 it in order to fully flatten the leaves. */
1893 if (!e
->inline_failed
)
1895 flatten_function (callee
, early
);
1899 /* Flatten attribute needs to be processed during late inlining. For
1900 extra code quality we however do flattening during early optimization,
1903 ? !can_inline_edge_p (e
, true)
1904 : !can_early_inline_edge_p (e
))
1907 if (cgraph_edge_recursive_p (e
))
1910 fprintf (dump_file
, "Not inlining: recursive call.\n");
1914 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node
->decl
))
1915 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee
->decl
)))
1918 fprintf (dump_file
, "Not inlining: SSA form does not match.\n");
1922 /* Inline the edge and flatten the inline clone. Avoid
1923 recursing through the original node if the node was cloned. */
1925 fprintf (dump_file
, " Inlining %s into %s.\n",
1926 xstrdup (callee
->name ()),
1927 xstrdup (e
->caller
->name ()));
1928 orig_callee
= callee
;
1929 inline_call (e
, true, NULL
, NULL
, false);
1930 if (e
->callee
!= orig_callee
)
1931 orig_callee
->aux
= (void *) node
;
1932 flatten_function (e
->callee
, early
);
1933 if (e
->callee
!= orig_callee
)
1934 orig_callee
->aux
= NULL
;
1938 if (!node
->global
.inlined_to
)
1939 inline_update_overall_summary (node
);
1942 /* Count number of callers of NODE and store it into DATA (that
1943 points to int. Worker for cgraph_for_node_and_aliases. */
1946 sum_callers (struct cgraph_node
*node
, void *data
)
1948 struct cgraph_edge
*e
;
1949 int *num_calls
= (int *)data
;
1951 for (e
= node
->callers
; e
; e
= e
->next_caller
)
1956 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
1957 DATA points to number of calls originally found so we avoid infinite
1961 inline_to_all_callers (struct cgraph_node
*node
, void *data
)
1963 int *num_calls
= (int *)data
;
1964 while (node
->callers
&& !node
->global
.inlined_to
)
1966 struct cgraph_node
*caller
= node
->callers
->caller
;
1971 "\nInlining %s size %i.\n",
1973 inline_summary (node
)->size
);
1975 " Called once from %s %i insns.\n",
1976 node
->callers
->caller
->name (),
1977 inline_summary (node
->callers
->caller
)->size
);
1980 inline_call (node
->callers
, true, NULL
, NULL
, true);
1983 " Inlined into %s which now has %i size\n",
1985 inline_summary (caller
)->size
);
1986 if (!(*num_calls
)--)
1989 fprintf (dump_file
, "New calls found; giving up.\n");
1996 /* Decide on the inlining. We do so in the topological order to avoid
1997 expenses on updating data structures. */
2002 struct cgraph_node
*node
;
2004 struct cgraph_node
**order
;
2007 bool remove_functions
= false;
2012 order
= XCNEWVEC (struct cgraph_node
*, cgraph_n_nodes
);
2014 if (in_lto_p
&& optimize
)
2015 ipa_update_after_lto_read ();
2018 dump_inline_summaries (dump_file
);
2020 nnodes
= ipa_reverse_postorder (order
);
2022 FOR_EACH_FUNCTION (node
)
2026 fprintf (dump_file
, "\nFlattening functions:\n");
2028 /* In the first pass handle functions to be flattened. Do this with
2029 a priority so none of our later choices will make this impossible. */
2030 for (i
= nnodes
- 1; i
>= 0; i
--)
2034 /* Handle nodes to be flattened.
2035 Ideally when processing callees we stop inlining at the
2036 entry of cycles, possibly cloning that entry point and
2037 try to flatten itself turning it into a self-recursive
2039 if (lookup_attribute ("flatten",
2040 DECL_ATTRIBUTES (node
->decl
)) != NULL
)
2044 "Flattening %s\n", node
->name ());
2045 flatten_function (node
, false);
2049 inline_small_functions ();
2051 /* Do first after-inlining removal. We want to remove all "stale" extern inline
2052 functions and virtual functions so we really know what is called once. */
2053 symtab_remove_unreachable_nodes (false, dump_file
);
2056 /* Inline functions with a property that after inlining into all callers the
2057 code size will shrink because the out-of-line copy is eliminated.
2058 We do this regardless on the callee size as long as function growth limits
2062 "\nDeciding on functions to be inlined into all callers and removing useless speculations:\n");
2064 /* Inlining one function called once has good chance of preventing
2065 inlining other function into the same callee. Ideally we should
2066 work in priority order, but probably inlining hot functions first
2067 is good cut without the extra pain of maintaining the queue.
2069 ??? this is not really fitting the bill perfectly: inlining function
2070 into callee often leads to better optimization of callee due to
2071 increased context for optimization.
2072 For example if main() function calls a function that outputs help
2073 and then function that does the main optmization, we should inline
2074 the second with priority even if both calls are cold by themselves.
2076 We probably want to implement new predicate replacing our use of
2077 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2079 for (cold
= 0; cold
<= 1; cold
++)
2081 FOR_EACH_DEFINED_FUNCTION (node
)
2083 struct cgraph_edge
*edge
, *next
;
2086 for (edge
= node
->callees
; edge
; edge
= next
)
2088 next
= edge
->next_callee
;
2089 if (edge
->speculative
&& !speculation_useful_p (edge
, false))
2091 cgraph_resolve_speculation (edge
, NULL
);
2093 remove_functions
= true;
2098 struct cgraph_node
*where
= node
->global
.inlined_to
2099 ? node
->global
.inlined_to
: node
;
2100 reset_node_growth_cache (where
);
2101 reset_edge_caches (where
);
2102 inline_update_overall_summary (where
);
2104 if (flag_inline_functions_called_once
2105 && want_inline_function_to_all_callers_p (node
, cold
))
2108 cgraph_for_node_and_aliases (node
, sum_callers
,
2110 cgraph_for_node_and_aliases (node
, inline_to_all_callers
,
2112 remove_functions
= true;
2117 /* Free ipa-prop structures if they are no longer needed. */
2119 ipa_free_all_structures_after_iinln ();
2123 "\nInlined %i calls, eliminated %i functions\n\n",
2124 ncalls_inlined
, nfunctions_inlined
);
2127 dump_inline_summaries (dump_file
);
2128 /* In WPA we use inline summaries for partitioning process. */
2130 inline_free_summary ();
2131 return remove_functions
? TODO_remove_functions
: 0;
2134 /* Inline always-inline function calls in NODE. */
2137 inline_always_inline_functions (struct cgraph_node
*node
)
2139 struct cgraph_edge
*e
;
2140 bool inlined
= false;
2142 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2144 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
2145 if (!DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
2148 if (cgraph_edge_recursive_p (e
))
2151 fprintf (dump_file
, " Not inlining recursive call to %s.\n",
2152 e
->callee
->name ());
2153 e
->inline_failed
= CIF_RECURSIVE_INLINING
;
2157 if (!can_early_inline_edge_p (e
))
2159 /* Set inlined to true if the callee is marked "always_inline" but
2160 is not inlinable. This will allow flagging an error later in
2161 expand_call_inline in tree-inline.c. */
2162 if (lookup_attribute ("always_inline",
2163 DECL_ATTRIBUTES (callee
->decl
)) != NULL
)
2169 fprintf (dump_file
, " Inlining %s into %s (always_inline).\n",
2170 xstrdup (e
->callee
->name ()),
2171 xstrdup (e
->caller
->name ()));
2172 inline_call (e
, true, NULL
, NULL
, false);
2176 inline_update_overall_summary (node
);
2181 /* Decide on the inlining. We do so in the topological order to avoid
2182 expenses on updating data structures. */
2185 early_inline_small_functions (struct cgraph_node
*node
)
2187 struct cgraph_edge
*e
;
2188 bool inlined
= false;
2190 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2192 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
2193 if (!inline_summary (callee
)->inlinable
2194 || !e
->inline_failed
)
2197 /* Do not consider functions not declared inline. */
2198 if (!DECL_DECLARED_INLINE_P (callee
->decl
)
2199 && !flag_inline_small_functions
2200 && !flag_inline_functions
)
2204 fprintf (dump_file
, "Considering inline candidate %s.\n",
2207 if (!can_early_inline_edge_p (e
))
2210 if (cgraph_edge_recursive_p (e
))
2213 fprintf (dump_file
, " Not inlining: recursive call.\n");
2217 if (!want_early_inline_function_p (e
))
2221 fprintf (dump_file
, " Inlining %s into %s.\n",
2222 xstrdup (callee
->name ()),
2223 xstrdup (e
->caller
->name ()));
2224 inline_call (e
, true, NULL
, NULL
, true);
2231 /* Do inlining of small functions. Doing so early helps profiling and other
2232 passes to be somewhat more effective and avoids some code duplication in
2233 later real inlining pass for testcases with very many function calls. */
2235 early_inliner (void)
2237 struct cgraph_node
*node
= cgraph_get_node (current_function_decl
);
2238 struct cgraph_edge
*edge
;
2239 unsigned int todo
= 0;
2241 bool inlined
= false;
2246 /* Do nothing if datastructures for ipa-inliner are already computed. This
2247 happens when some pass decides to construct new function and
2248 cgraph_add_new_function calls lowering passes and early optimization on
2249 it. This may confuse ourself when early inliner decide to inline call to
2250 function clone, because function clones don't have parameter list in
2251 ipa-prop matching their signature. */
2252 if (ipa_node_params_vector
.exists ())
2255 #ifdef ENABLE_CHECKING
2256 verify_cgraph_node (node
);
2258 ipa_remove_all_references (&node
->ref_list
);
2260 /* Even when not optimizing or not inlining inline always-inline
2262 inlined
= inline_always_inline_functions (node
);
2266 || !flag_early_inlining
2267 /* Never inline regular functions into always-inline functions
2268 during incremental inlining. This sucks as functions calling
2269 always inline functions will get less optimized, but at the
2270 same time inlining of functions calling always inline
2271 function into an always inline function might introduce
2272 cycles of edges to be always inlined in the callgraph.
2274 We might want to be smarter and just avoid this type of inlining. */
2275 || DECL_DISREGARD_INLINE_LIMITS (node
->decl
))
2277 else if (lookup_attribute ("flatten",
2278 DECL_ATTRIBUTES (node
->decl
)) != NULL
)
2280 /* When the function is marked to be flattened, recursively inline
2284 "Flattening %s\n", node
->name ());
2285 flatten_function (node
, true);
2290 /* We iterate incremental inlining to get trivial cases of indirect
2292 while (iterations
< PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS
)
2293 && early_inline_small_functions (node
))
2295 timevar_push (TV_INTEGRATION
);
2296 todo
|= optimize_inline_calls (current_function_decl
);
2298 /* Technically we ought to recompute inline parameters so the new
2299 iteration of early inliner works as expected. We however have
2300 values approximately right and thus we only need to update edge
2301 info that might be cleared out for newly discovered edges. */
2302 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
2304 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
2306 = estimate_num_insns (edge
->call_stmt
, &eni_size_weights
);
2308 = estimate_num_insns (edge
->call_stmt
, &eni_time_weights
);
2309 if (edge
->callee
->decl
2310 && !gimple_check_call_matching_types (
2311 edge
->call_stmt
, edge
->callee
->decl
, false))
2312 edge
->call_stmt_cannot_inline_p
= true;
2314 if (iterations
< PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS
) - 1)
2315 inline_update_overall_summary (node
);
2316 timevar_pop (TV_INTEGRATION
);
2321 fprintf (dump_file
, "Iterations: %i\n", iterations
);
2326 timevar_push (TV_INTEGRATION
);
2327 todo
|= optimize_inline_calls (current_function_decl
);
2328 timevar_pop (TV_INTEGRATION
);
2331 cfun
->always_inline_functions_inlined
= true;
2338 const pass_data pass_data_early_inline
=
2340 GIMPLE_PASS
, /* type */
2341 "einline", /* name */
2342 OPTGROUP_INLINE
, /* optinfo_flags */
2343 false, /* has_gate */
2344 true, /* has_execute */
2345 TV_EARLY_INLINING
, /* tv_id */
2346 PROP_ssa
, /* properties_required */
2347 0, /* properties_provided */
2348 0, /* properties_destroyed */
2349 0, /* todo_flags_start */
2350 0, /* todo_flags_finish */
2353 class pass_early_inline
: public gimple_opt_pass
2356 pass_early_inline (gcc::context
*ctxt
)
2357 : gimple_opt_pass (pass_data_early_inline
, ctxt
)
2360 /* opt_pass methods: */
2361 unsigned int execute () { return early_inliner (); }
2363 }; // class pass_early_inline
2368 make_pass_early_inline (gcc::context
*ctxt
)
2370 return new pass_early_inline (ctxt
);
2375 const pass_data pass_data_ipa_inline
=
2377 IPA_PASS
, /* type */
2378 "inline", /* name */
2379 OPTGROUP_INLINE
, /* optinfo_flags */
2380 false, /* has_gate */
2381 true, /* has_execute */
2382 TV_IPA_INLINING
, /* tv_id */
2383 0, /* properties_required */
2384 0, /* properties_provided */
2385 0, /* properties_destroyed */
2386 TODO_remove_functions
, /* todo_flags_start */
2387 ( TODO_dump_symtab
), /* todo_flags_finish */
2390 class pass_ipa_inline
: public ipa_opt_pass_d
2393 pass_ipa_inline (gcc::context
*ctxt
)
2394 : ipa_opt_pass_d (pass_data_ipa_inline
, ctxt
,
2395 inline_generate_summary
, /* generate_summary */
2396 inline_write_summary
, /* write_summary */
2397 inline_read_summary
, /* read_summary */
2398 NULL
, /* write_optimization_summary */
2399 NULL
, /* read_optimization_summary */
2400 NULL
, /* stmt_fixup */
2401 0, /* function_transform_todo_flags_start */
2402 inline_transform
, /* function_transform */
2403 NULL
) /* variable_transform */
2406 /* opt_pass methods: */
2407 unsigned int execute () { return ipa_inline (); }
2409 }; // class pass_ipa_inline
2414 make_pass_ipa_inline (gcc::context
*ctxt
)
2416 return new pass_ipa_inline (ctxt
);