2014-04-14 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / graphite-scop-detection.c
blob821f0846ef2bbda19adef9badfba22d6f921a591
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_cloog
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
30 #endif
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tree.h"
35 #include "basic-block.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-expr.h"
39 #include "is-a.h"
40 #include "gimple.h"
41 #include "gimple-iterator.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "ssa-iterators.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "cfgloop.h"
51 #include "tree-chrec.h"
52 #include "tree-data-ref.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-pass.h"
55 #include "sese.h"
56 #include "tree-ssa-propagate.h"
58 #ifdef HAVE_cloog
59 #include "graphite-poly.h"
60 #include "graphite-scop-detection.h"
62 /* Forward declarations. */
63 static void make_close_phi_nodes_unique (basic_block);
65 /* The type of the analyzed basic block. */
67 typedef enum gbb_type {
68 GBB_UNKNOWN,
69 GBB_LOOP_SING_EXIT_HEADER,
70 GBB_LOOP_MULT_EXIT_HEADER,
71 GBB_LOOP_EXIT,
72 GBB_COND_HEADER,
73 GBB_SIMPLE,
74 GBB_LAST
75 } gbb_type;
77 /* Detect the type of BB. Loop headers are only marked, if they are
78 new. This means their loop_father is different to LAST_LOOP.
79 Otherwise they are treated like any other bb and their type can be
80 any other type. */
82 static gbb_type
83 get_bb_type (basic_block bb, struct loop *last_loop)
85 vec<basic_block> dom;
86 int nb_dom;
87 struct loop *loop = bb->loop_father;
89 /* Check, if we entry into a new loop. */
90 if (loop != last_loop)
92 if (single_exit (loop) != NULL)
93 return GBB_LOOP_SING_EXIT_HEADER;
94 else if (loop->num != 0)
95 return GBB_LOOP_MULT_EXIT_HEADER;
96 else
97 return GBB_COND_HEADER;
100 dom = get_dominated_by (CDI_DOMINATORS, bb);
101 nb_dom = dom.length ();
102 dom.release ();
104 if (nb_dom == 0)
105 return GBB_LAST;
107 if (nb_dom == 1 && single_succ_p (bb))
108 return GBB_SIMPLE;
110 return GBB_COND_HEADER;
113 /* A SCoP detection region, defined using bbs as borders.
115 All control flow touching this region, comes in passing basic_block
116 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
117 edges for the borders we are able to represent also regions that do
118 not have a single entry or exit edge.
120 But as they have a single entry basic_block and a single exit
121 basic_block, we are able to generate for every sd_region a single
122 entry and exit edge.
126 3 <- entry
129 / \ This region contains: {3, 4, 5, 6, 7, 8}
134 9 <- exit */
137 typedef struct sd_region_p
139 /* The entry bb dominates all bbs in the sd_region. It is part of
140 the region. */
141 basic_block entry;
143 /* The exit bb postdominates all bbs in the sd_region, but is not
144 part of the region. */
145 basic_block exit;
146 } sd_region;
150 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
152 static void
153 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
155 sd_region *s;
156 int i;
158 FOR_EACH_VEC_ELT (*source, i, s)
159 target->safe_push (*s);
161 source->release ();
164 /* Something like "n * m" is not allowed. */
166 static bool
167 graphite_can_represent_init (tree e)
169 switch (TREE_CODE (e))
171 case POLYNOMIAL_CHREC:
172 return graphite_can_represent_init (CHREC_LEFT (e))
173 && graphite_can_represent_init (CHREC_RIGHT (e));
175 case MULT_EXPR:
176 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
177 return graphite_can_represent_init (TREE_OPERAND (e, 0))
178 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
179 else
180 return graphite_can_represent_init (TREE_OPERAND (e, 1))
181 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
183 case PLUS_EXPR:
184 case POINTER_PLUS_EXPR:
185 case MINUS_EXPR:
186 return graphite_can_represent_init (TREE_OPERAND (e, 0))
187 && graphite_can_represent_init (TREE_OPERAND (e, 1));
189 case NEGATE_EXPR:
190 case BIT_NOT_EXPR:
191 CASE_CONVERT:
192 case NON_LVALUE_EXPR:
193 return graphite_can_represent_init (TREE_OPERAND (e, 0));
195 default:
196 break;
199 return true;
202 /* Return true when SCEV can be represented in the polyhedral model.
204 An expression can be represented, if it can be expressed as an
205 affine expression. For loops (i, j) and parameters (m, n) all
206 affine expressions are of the form:
208 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
210 1 i + 20 j + (-2) m + 25
212 Something like "i * n" or "n * m" is not allowed. */
214 static bool
215 graphite_can_represent_scev (tree scev)
217 if (chrec_contains_undetermined (scev))
218 return false;
220 switch (TREE_CODE (scev))
222 case NEGATE_EXPR:
223 case BIT_NOT_EXPR:
224 CASE_CONVERT:
225 case NON_LVALUE_EXPR:
226 return graphite_can_represent_scev (TREE_OPERAND (scev, 0));
228 case PLUS_EXPR:
229 case POINTER_PLUS_EXPR:
230 case MINUS_EXPR:
231 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
232 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
234 case MULT_EXPR:
235 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
236 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
237 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
238 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
239 && graphite_can_represent_init (scev)
240 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
241 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
243 case POLYNOMIAL_CHREC:
244 /* Check for constant strides. With a non constant stride of
245 'n' we would have a value of 'iv * n'. Also check that the
246 initial value can represented: for example 'n * m' cannot be
247 represented. */
248 if (!evolution_function_right_is_integer_cst (scev)
249 || !graphite_can_represent_init (scev))
250 return false;
251 return graphite_can_represent_scev (CHREC_LEFT (scev));
253 default:
254 break;
257 /* Only affine functions can be represented. */
258 if (tree_contains_chrecs (scev, NULL)
259 || !scev_is_linear_expression (scev))
260 return false;
262 return true;
266 /* Return true when EXPR can be represented in the polyhedral model.
268 This means an expression can be represented, if it is linear with
269 respect to the loops and the strides are non parametric.
270 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
271 entry of the region we analyse. */
273 static bool
274 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
275 tree expr)
277 tree scev = analyze_scalar_evolution (loop, expr);
279 scev = instantiate_scev (scop_entry, loop, scev);
281 return graphite_can_represent_scev (scev);
284 /* Return true if the data references of STMT can be represented by
285 Graphite. */
287 static bool
288 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
289 gimple stmt)
291 data_reference_p dr;
292 unsigned i;
293 int j;
294 bool res = true;
295 vec<data_reference_p> drs = vNULL;
296 loop_p outer;
298 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
300 graphite_find_data_references_in_stmt (outer,
301 loop_containing_stmt (stmt),
302 stmt, &drs);
304 FOR_EACH_VEC_ELT (drs, j, dr)
305 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
306 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
308 res = false;
309 goto done;
312 free_data_refs (drs);
313 drs.create (0);
316 done:
317 free_data_refs (drs);
318 return res;
321 /* Return true only when STMT is simple enough for being handled by
322 Graphite. This depends on SCOP_ENTRY, as the parameters are
323 initialized relatively to this basic block, the linear functions
324 are initialized to OUTERMOST_LOOP and BB is the place where we try
325 to evaluate the STMT. */
327 static bool
328 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
329 gimple stmt, basic_block bb)
331 loop_p loop = bb->loop_father;
333 gcc_assert (scop_entry);
335 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
336 Calls have side-effects, except those to const or pure
337 functions. */
338 if (gimple_has_volatile_ops (stmt)
339 || (gimple_code (stmt) == GIMPLE_CALL
340 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
341 || (gimple_code (stmt) == GIMPLE_ASM))
342 return false;
344 if (is_gimple_debug (stmt))
345 return true;
347 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
348 return false;
350 switch (gimple_code (stmt))
352 case GIMPLE_RETURN:
353 case GIMPLE_LABEL:
354 return true;
356 case GIMPLE_COND:
358 /* We can handle all binary comparisons. Inequalities are
359 also supported as they can be represented with union of
360 polyhedra. */
361 enum tree_code code = gimple_cond_code (stmt);
362 if (!(code == LT_EXPR
363 || code == GT_EXPR
364 || code == LE_EXPR
365 || code == GE_EXPR
366 || code == EQ_EXPR
367 || code == NE_EXPR))
368 return false;
370 for (unsigned i = 0; i < 2; ++i)
372 tree op = gimple_op (stmt, i);
373 if (!graphite_can_represent_expr (scop_entry, loop, op)
374 /* We can not handle REAL_TYPE. Failed for pr39260. */
375 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
376 return false;
379 return true;
382 case GIMPLE_ASSIGN:
383 case GIMPLE_CALL:
384 return true;
386 default:
387 /* These nodes cut a new scope. */
388 return false;
391 return false;
394 /* Returns the statement of BB that contains a harmful operation: that
395 can be a function call with side effects, the induction variables
396 are not linear with respect to SCOP_ENTRY, etc. The current open
397 scop should end before this statement. The evaluation is limited using
398 OUTERMOST_LOOP as outermost loop that may change. */
400 static gimple
401 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
403 gimple_stmt_iterator gsi;
405 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
406 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
407 return gsi_stmt (gsi);
409 return NULL;
412 /* Return true if LOOP can be represented in the polyhedral
413 representation. This is evaluated taking SCOP_ENTRY and
414 OUTERMOST_LOOP in mind. */
416 static bool
417 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
419 tree niter;
420 struct tree_niter_desc niter_desc;
422 /* FIXME: For the moment, graphite cannot be used on loops that
423 iterate using induction variables that wrap. */
425 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
426 && niter_desc.control.no_overflow
427 && (niter = number_of_latch_executions (loop))
428 && !chrec_contains_undetermined (niter)
429 && graphite_can_represent_expr (scop_entry, loop, niter);
432 /* Store information needed by scopdet_* functions. */
434 struct scopdet_info
436 /* Exit of the open scop would stop if the current BB is harmful. */
437 basic_block exit;
439 /* Where the next scop would start if the current BB is harmful. */
440 basic_block next;
442 /* The bb or one of its children contains open loop exits. That means
443 loop exit nodes that are not surrounded by a loop dominated by bb. */
444 bool exits;
446 /* The bb or one of its children contains only structures we can handle. */
447 bool difficult;
450 static struct scopdet_info build_scops_1 (basic_block, loop_p,
451 vec<sd_region> *, loop_p);
453 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
454 to SCOPS. TYPE is the gbb_type of BB. */
456 static struct scopdet_info
457 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
458 vec<sd_region> *scops, gbb_type type)
460 loop_p loop = bb->loop_father;
461 struct scopdet_info result;
462 gimple stmt;
464 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
465 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
466 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
467 result.difficult = (stmt != NULL);
468 result.exit = NULL;
470 switch (type)
472 case GBB_LAST:
473 result.next = NULL;
474 result.exits = false;
476 /* Mark bbs terminating a SESE region difficult, if they start
477 a condition. */
478 if (!single_succ_p (bb))
479 result.difficult = true;
480 else
481 result.exit = single_succ (bb);
483 break;
485 case GBB_SIMPLE:
486 result.next = single_succ (bb);
487 result.exits = false;
488 result.exit = single_succ (bb);
489 break;
491 case GBB_LOOP_SING_EXIT_HEADER:
493 auto_vec<sd_region, 3> regions;
494 struct scopdet_info sinfo;
495 edge exit_e = single_exit (loop);
497 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
499 if (!graphite_can_represent_loop (entry_block, loop))
500 result.difficult = true;
502 result.difficult |= sinfo.difficult;
504 /* Try again with another loop level. */
505 if (result.difficult
506 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
508 outermost_loop = loop;
510 regions.release ();
511 regions.create (3);
513 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
515 result = sinfo;
516 result.difficult = true;
518 if (sinfo.difficult)
519 move_sd_regions (&regions, scops);
520 else
522 sd_region open_scop;
523 open_scop.entry = bb;
524 open_scop.exit = exit_e->dest;
525 scops->safe_push (open_scop);
526 regions.release ();
529 else
531 result.exit = exit_e->dest;
532 result.next = exit_e->dest;
534 /* If we do not dominate result.next, remove it. It's either
535 the exit block, or another bb dominates it and will
536 call the scop detection for this bb. */
537 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
538 result.next = NULL;
540 if (exit_e->src->loop_father != loop)
541 result.next = NULL;
543 result.exits = false;
545 if (result.difficult)
546 move_sd_regions (&regions, scops);
547 else
548 regions.release ();
551 break;
554 case GBB_LOOP_MULT_EXIT_HEADER:
556 /* XXX: For now we just do not join loops with multiple exits. If the
557 exits lead to the same bb it may be possible to join the loop. */
558 auto_vec<sd_region, 3> regions;
559 vec<edge> exits = get_loop_exit_edges (loop);
560 edge e;
561 int i;
562 build_scops_1 (bb, loop, &regions, loop);
564 /* Scan the code dominated by this loop. This means all bbs, that are
565 are dominated by a bb in this loop, but are not part of this loop.
567 The easiest case:
568 - The loop exit destination is dominated by the exit sources.
570 TODO: We miss here the more complex cases:
571 - The exit destinations are dominated by another bb inside
572 the loop.
573 - The loop dominates bbs, that are not exit destinations. */
574 FOR_EACH_VEC_ELT (exits, i, e)
575 if (e->src->loop_father == loop
576 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
578 if (loop_outer (outermost_loop))
579 outermost_loop = loop_outer (outermost_loop);
581 /* Pass loop_outer to recognize e->dest as loop header in
582 build_scops_1. */
583 if (e->dest->loop_father->header == e->dest)
584 build_scops_1 (e->dest, outermost_loop, &regions,
585 loop_outer (e->dest->loop_father));
586 else
587 build_scops_1 (e->dest, outermost_loop, &regions,
588 e->dest->loop_father);
591 result.next = NULL;
592 result.exit = NULL;
593 result.difficult = true;
594 result.exits = false;
595 move_sd_regions (&regions, scops);
596 exits.release ();
597 break;
599 case GBB_COND_HEADER:
601 auto_vec<sd_region, 3> regions;
602 struct scopdet_info sinfo;
603 vec<basic_block> dominated;
604 int i;
605 basic_block dom_bb;
606 basic_block last_exit = NULL;
607 edge e;
608 result.exits = false;
610 /* First check the successors of BB, and check if it is
611 possible to join the different branches. */
612 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
614 /* Ignore loop exits. They will be handled after the loop
615 body. */
616 if (loop_exits_to_bb_p (loop, e->dest))
618 result.exits = true;
619 continue;
622 /* Do not follow edges that lead to the end of the
623 conditions block. For example, in
626 | /|\
627 | 1 2 |
628 | | | |
629 | 3 4 |
630 | \|/
633 the edge from 0 => 6. Only check if all paths lead to
634 the same node 6. */
636 if (!single_pred_p (e->dest))
638 /* Check, if edge leads directly to the end of this
639 condition. */
640 if (!last_exit)
641 last_exit = e->dest;
643 if (e->dest != last_exit)
644 result.difficult = true;
646 continue;
649 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
651 result.difficult = true;
652 continue;
655 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
657 result.exits |= sinfo.exits;
658 result.difficult |= sinfo.difficult;
660 /* Checks, if all branches end at the same point.
661 If that is true, the condition stays joinable.
662 Have a look at the example above. */
663 if (sinfo.exit)
665 if (!last_exit)
666 last_exit = sinfo.exit;
668 if (sinfo.exit != last_exit)
669 result.difficult = true;
671 else
672 result.difficult = true;
675 if (!last_exit)
676 result.difficult = true;
678 /* Join the branches of the condition if possible. */
679 if (!result.exits && !result.difficult)
681 /* Only return a next pointer if we dominate this pointer.
682 Otherwise it will be handled by the bb dominating it. */
683 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
684 && last_exit != bb)
685 result.next = last_exit;
686 else
687 result.next = NULL;
689 result.exit = last_exit;
691 regions.release ();
692 break;
695 /* Scan remaining bbs dominated by BB. */
696 dominated = get_dominated_by (CDI_DOMINATORS, bb);
698 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
700 /* Ignore loop exits: they will be handled after the loop body. */
701 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
702 < loop_depth (loop))
704 result.exits = true;
705 continue;
708 /* Ignore the bbs processed above. */
709 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
710 continue;
712 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
713 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
714 loop_outer (loop));
715 else
716 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
718 result.exits |= sinfo.exits;
719 result.difficult = true;
720 result.exit = NULL;
723 dominated.release ();
725 result.next = NULL;
726 move_sd_regions (&regions, scops);
728 break;
731 default:
732 gcc_unreachable ();
735 return result;
738 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
739 SCOPS. The analyse if a sd_region can be handled is based on the value
740 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
741 is the loop in which CURRENT is handled.
743 TODO: These functions got a little bit big. They definitely should be cleaned
744 up. */
746 static struct scopdet_info
747 build_scops_1 (basic_block current, loop_p outermost_loop,
748 vec<sd_region> *scops, loop_p loop)
750 bool in_scop = false;
751 sd_region open_scop;
752 struct scopdet_info sinfo;
754 /* Initialize result. */
755 struct scopdet_info result;
756 result.exits = false;
757 result.difficult = false;
758 result.next = NULL;
759 result.exit = NULL;
760 open_scop.entry = NULL;
761 open_scop.exit = NULL;
762 sinfo.exit = NULL;
764 /* Loop over the dominance tree. If we meet a difficult bb, close
765 the current SCoP. Loop and condition header start a new layer,
766 and can only be added if all bbs in deeper layers are simple. */
767 while (current != NULL)
769 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
770 get_bb_type (current, loop));
772 if (!in_scop && !(sinfo.exits || sinfo.difficult))
774 open_scop.entry = current;
775 open_scop.exit = NULL;
776 in_scop = true;
778 else if (in_scop && (sinfo.exits || sinfo.difficult))
780 open_scop.exit = current;
781 scops->safe_push (open_scop);
782 in_scop = false;
785 result.difficult |= sinfo.difficult;
786 result.exits |= sinfo.exits;
788 current = sinfo.next;
791 /* Try to close open_scop, if we are still in an open SCoP. */
792 if (in_scop)
794 open_scop.exit = sinfo.exit;
795 gcc_assert (open_scop.exit);
796 scops->safe_push (open_scop);
799 result.exit = sinfo.exit;
800 return result;
803 /* Checks if a bb is contained in REGION. */
805 static bool
806 bb_in_sd_region (basic_block bb, sd_region *region)
808 return bb_in_region (bb, region->entry, region->exit);
811 /* Returns the single entry edge of REGION, if it does not exits NULL. */
813 static edge
814 find_single_entry_edge (sd_region *region)
816 edge e;
817 edge_iterator ei;
818 edge entry = NULL;
820 FOR_EACH_EDGE (e, ei, region->entry->preds)
821 if (!bb_in_sd_region (e->src, region))
823 if (entry)
825 entry = NULL;
826 break;
829 else
830 entry = e;
833 return entry;
836 /* Returns the single exit edge of REGION, if it does not exits NULL. */
838 static edge
839 find_single_exit_edge (sd_region *region)
841 edge e;
842 edge_iterator ei;
843 edge exit = NULL;
845 FOR_EACH_EDGE (e, ei, region->exit->preds)
846 if (bb_in_sd_region (e->src, region))
848 if (exit)
850 exit = NULL;
851 break;
854 else
855 exit = e;
858 return exit;
861 /* Create a single entry edge for REGION. */
863 static void
864 create_single_entry_edge (sd_region *region)
866 if (find_single_entry_edge (region))
867 return;
869 /* There are multiple predecessors for bb_3
871 | 1 2
872 | | /
873 | |/
874 | 3 <- entry
875 | |\
876 | | |
877 | 4 ^
878 | | |
879 | |/
882 There are two edges (1->3, 2->3), that point from outside into the region,
883 and another one (5->3), a loop latch, lead to bb_3.
885 We split bb_3.
887 | 1 2
888 | | /
889 | |/
890 |3.0
891 | |\ (3.0 -> 3.1) = single entry edge
892 |3.1 | <- entry
893 | | |
894 | | |
895 | 4 ^
896 | | |
897 | |/
900 If the loop is part of the SCoP, we have to redirect the loop latches.
902 | 1 2
903 | | /
904 | |/
905 |3.0
906 | | (3.0 -> 3.1) = entry edge
907 |3.1 <- entry
908 | |\
909 | | |
910 | 4 ^
911 | | |
912 | |/
913 | 5 */
915 if (region->entry->loop_father->header != region->entry
916 || dominated_by_p (CDI_DOMINATORS,
917 loop_latch_edge (region->entry->loop_father)->src,
918 region->exit))
920 edge forwarder = split_block_after_labels (region->entry);
921 region->entry = forwarder->dest;
923 else
924 /* This case is never executed, as the loop headers seem always to have a
925 single edge pointing from outside into the loop. */
926 gcc_unreachable ();
928 gcc_checking_assert (find_single_entry_edge (region));
931 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
933 static bool
934 sd_region_without_exit (edge e)
936 sd_region *r = (sd_region *) e->aux;
938 if (r)
939 return r->exit == NULL;
940 else
941 return false;
944 /* Create a single exit edge for REGION. */
946 static void
947 create_single_exit_edge (sd_region *region)
949 edge e;
950 edge_iterator ei;
951 edge forwarder = NULL;
952 basic_block exit;
954 /* We create a forwarder bb (5) for all edges leaving this region
955 (3->5, 4->5). All other edges leading to the same bb, are moved
956 to a new bb (6). If these edges where part of another region (2->5)
957 we update the region->exit pointer, of this region.
959 To identify which edge belongs to which region we depend on the e->aux
960 pointer in every edge. It points to the region of the edge or to NULL,
961 if the edge is not part of any region.
963 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
964 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
965 5 <- exit
967 changes to
969 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
970 | | \/ 3->5 no region, 4->5 no region,
971 | | 5
972 \| / 5->6 region->exit = 6
975 Now there is only a single exit edge (5->6). */
976 exit = region->exit;
977 region->exit = NULL;
978 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
980 /* Unmark the edges, that are no longer exit edges. */
981 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
982 if (e->aux)
983 e->aux = NULL;
985 /* Mark the new exit edge. */
986 single_succ_edge (forwarder->src)->aux = region;
988 /* Update the exit bb of all regions, where exit edges lead to
989 forwarder->dest. */
990 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
991 if (e->aux)
992 ((sd_region *) e->aux)->exit = forwarder->dest;
994 gcc_checking_assert (find_single_exit_edge (region));
997 /* Unmark the exit edges of all REGIONS.
998 See comment in "create_single_exit_edge". */
1000 static void
1001 unmark_exit_edges (vec<sd_region> regions)
1003 int i;
1004 sd_region *s;
1005 edge e;
1006 edge_iterator ei;
1008 FOR_EACH_VEC_ELT (regions, i, s)
1009 FOR_EACH_EDGE (e, ei, s->exit->preds)
1010 e->aux = NULL;
1014 /* Mark the exit edges of all REGIONS.
1015 See comment in "create_single_exit_edge". */
1017 static void
1018 mark_exit_edges (vec<sd_region> regions)
1020 int i;
1021 sd_region *s;
1022 edge e;
1023 edge_iterator ei;
1025 FOR_EACH_VEC_ELT (regions, i, s)
1026 FOR_EACH_EDGE (e, ei, s->exit->preds)
1027 if (bb_in_sd_region (e->src, s))
1028 e->aux = s;
1031 /* Create for all scop regions a single entry and a single exit edge. */
1033 static void
1034 create_sese_edges (vec<sd_region> regions)
1036 int i;
1037 sd_region *s;
1039 FOR_EACH_VEC_ELT (regions, i, s)
1040 create_single_entry_edge (s);
1042 mark_exit_edges (regions);
1044 FOR_EACH_VEC_ELT (regions, i, s)
1045 /* Don't handle multiple edges exiting the function. */
1046 if (!find_single_exit_edge (s)
1047 && s->exit != EXIT_BLOCK_PTR_FOR_FN (cfun))
1048 create_single_exit_edge (s);
1050 unmark_exit_edges (regions);
1052 calculate_dominance_info (CDI_DOMINATORS);
1053 fix_loop_structure (NULL);
1055 #ifdef ENABLE_CHECKING
1056 verify_loop_structure ();
1057 verify_ssa (false);
1058 #endif
1061 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1063 static void
1064 build_graphite_scops (vec<sd_region> regions,
1065 vec<scop_p> *scops)
1067 int i;
1068 sd_region *s;
1070 FOR_EACH_VEC_ELT (regions, i, s)
1072 edge entry = find_single_entry_edge (s);
1073 edge exit = find_single_exit_edge (s);
1074 scop_p scop;
1076 if (!exit)
1077 continue;
1079 scop = new_scop (new_sese (entry, exit));
1080 scops->safe_push (scop);
1082 /* Are there overlapping SCoPs? */
1083 #ifdef ENABLE_CHECKING
1085 int j;
1086 sd_region *s2;
1088 FOR_EACH_VEC_ELT (regions, j, s2)
1089 if (s != s2)
1090 gcc_assert (!bb_in_sd_region (s->entry, s2));
1092 #endif
1096 /* Returns true when BB contains only close phi nodes. */
1098 static bool
1099 contains_only_close_phi_nodes (basic_block bb)
1101 gimple_stmt_iterator gsi;
1103 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1104 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1105 return false;
1107 return true;
1110 /* Print statistics for SCOP to FILE. */
1112 static void
1113 print_graphite_scop_statistics (FILE* file, scop_p scop)
1115 long n_bbs = 0;
1116 long n_loops = 0;
1117 long n_stmts = 0;
1118 long n_conditions = 0;
1119 long n_p_bbs = 0;
1120 long n_p_loops = 0;
1121 long n_p_stmts = 0;
1122 long n_p_conditions = 0;
1124 basic_block bb;
1126 FOR_ALL_BB_FN (bb, cfun)
1128 gimple_stmt_iterator psi;
1129 loop_p loop = bb->loop_father;
1131 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1132 continue;
1134 n_bbs++;
1135 n_p_bbs += bb->count;
1137 if (EDGE_COUNT (bb->succs) > 1)
1139 n_conditions++;
1140 n_p_conditions += bb->count;
1143 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1145 n_stmts++;
1146 n_p_stmts += bb->count;
1149 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1151 n_loops++;
1152 n_p_loops += bb->count;
1157 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1158 fprintf (file, "BBS:%ld, ", n_bbs);
1159 fprintf (file, "LOOPS:%ld, ", n_loops);
1160 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1161 fprintf (file, "STMTS:%ld)\n", n_stmts);
1162 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1163 fprintf (file, "BBS:%ld, ", n_p_bbs);
1164 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1165 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1166 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1169 /* Print statistics for SCOPS to FILE. */
1171 static void
1172 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1174 int i;
1175 scop_p scop;
1177 FOR_EACH_VEC_ELT (scops, i, scop)
1178 print_graphite_scop_statistics (file, scop);
1181 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1183 Example:
1185 for (i |
1187 for (j | SCoP 1
1188 for (k |
1191 * SCoP frontier, as this line is not surrounded by any loop. *
1193 for (l | SCoP 2
1195 This is necessary as scalar evolution and parameter detection need a
1196 outermost loop to initialize parameters correctly.
1198 TODO: FIX scalar evolution and parameter detection to allow more flexible
1199 SCoP frontiers. */
1201 static void
1202 limit_scops (vec<scop_p> *scops)
1204 auto_vec<sd_region, 3> regions;
1206 int i;
1207 scop_p scop;
1209 FOR_EACH_VEC_ELT (*scops, i, scop)
1211 int j;
1212 loop_p loop;
1213 sese region = SCOP_REGION (scop);
1214 build_sese_loop_nests (region);
1216 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1217 if (!loop_in_sese_p (loop_outer (loop), region)
1218 && single_exit (loop))
1220 sd_region open_scop;
1221 open_scop.entry = loop->header;
1222 open_scop.exit = single_exit (loop)->dest;
1224 /* This is a hack on top of the limit_scops hack. The
1225 limit_scops hack should disappear all together. */
1226 if (single_succ_p (open_scop.exit)
1227 && contains_only_close_phi_nodes (open_scop.exit))
1228 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1230 regions.safe_push (open_scop);
1234 free_scops (*scops);
1235 scops->create (3);
1237 create_sese_edges (regions);
1238 build_graphite_scops (regions, scops);
1241 /* Returns true when P1 and P2 are close phis with the same
1242 argument. */
1244 static inline bool
1245 same_close_phi_node (gimple p1, gimple p2)
1247 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1248 gimple_phi_arg_def (p2, 0), 0);
1251 /* Remove the close phi node at GSI and replace its rhs with the rhs
1252 of PHI. */
1254 static void
1255 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1257 gimple use_stmt;
1258 use_operand_p use_p;
1259 imm_use_iterator imm_iter;
1260 tree res = gimple_phi_result (phi);
1261 tree def = gimple_phi_result (gsi_stmt (*gsi));
1263 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1265 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1267 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1268 SET_USE (use_p, res);
1270 update_stmt (use_stmt);
1272 /* It is possible that we just created a duplicate close-phi
1273 for an already-processed containing loop. Check for this
1274 case and clean it up. */
1275 if (gimple_code (use_stmt) == GIMPLE_PHI
1276 && gimple_phi_num_args (use_stmt) == 1)
1277 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1280 remove_phi_node (gsi, true);
1283 /* Removes all the close phi duplicates from BB. */
1285 static void
1286 make_close_phi_nodes_unique (basic_block bb)
1288 gimple_stmt_iterator psi;
1290 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1292 gimple_stmt_iterator gsi = psi;
1293 gimple phi = gsi_stmt (psi);
1295 /* At this point, PHI should be a close phi in normal form. */
1296 gcc_assert (gimple_phi_num_args (phi) == 1);
1298 /* Iterate over the next phis and remove duplicates. */
1299 gsi_next (&gsi);
1300 while (!gsi_end_p (gsi))
1301 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1302 remove_duplicate_close_phi (phi, &gsi);
1303 else
1304 gsi_next (&gsi);
1308 /* Transforms LOOP to the canonical loop closed SSA form. */
1310 static void
1311 canonicalize_loop_closed_ssa (loop_p loop)
1313 edge e = single_exit (loop);
1314 basic_block bb;
1316 if (!e || e->flags & EDGE_ABNORMAL)
1317 return;
1319 bb = e->dest;
1321 if (single_pred_p (bb))
1323 e = split_block_after_labels (bb);
1324 make_close_phi_nodes_unique (e->src);
1326 else
1328 gimple_stmt_iterator psi;
1329 basic_block close = split_edge (e);
1331 e = single_succ_edge (close);
1333 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1335 gimple phi = gsi_stmt (psi);
1336 unsigned i;
1338 for (i = 0; i < gimple_phi_num_args (phi); i++)
1339 if (gimple_phi_arg_edge (phi, i) == e)
1341 tree res, arg = gimple_phi_arg_def (phi, i);
1342 use_operand_p use_p;
1343 gimple close_phi;
1345 if (TREE_CODE (arg) != SSA_NAME)
1346 continue;
1348 close_phi = create_phi_node (NULL_TREE, close);
1349 res = create_new_def_for (arg, close_phi,
1350 gimple_phi_result_ptr (close_phi));
1351 add_phi_arg (close_phi, arg,
1352 gimple_phi_arg_edge (close_phi, 0),
1353 UNKNOWN_LOCATION);
1354 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1355 replace_exp (use_p, res);
1356 update_stmt (phi);
1360 make_close_phi_nodes_unique (close);
1363 /* The code above does not properly handle changes in the post dominance
1364 information (yet). */
1365 free_dominance_info (CDI_POST_DOMINATORS);
1368 /* Converts the current loop closed SSA form to a canonical form
1369 expected by the Graphite code generation.
1371 The loop closed SSA form has the following invariant: a variable
1372 defined in a loop that is used outside the loop appears only in the
1373 phi nodes in the destination of the loop exit. These phi nodes are
1374 called close phi nodes.
1376 The canonical loop closed SSA form contains the extra invariants:
1378 - when the loop contains only one exit, the close phi nodes contain
1379 only one argument. That implies that the basic block that contains
1380 the close phi nodes has only one predecessor, that is a basic block
1381 in the loop.
1383 - the basic block containing the close phi nodes does not contain
1384 other statements.
1386 - there exist only one phi node per definition in the loop.
1389 static void
1390 canonicalize_loop_closed_ssa_form (void)
1392 loop_p loop;
1394 #ifdef ENABLE_CHECKING
1395 verify_loop_closed_ssa (true);
1396 #endif
1398 FOR_EACH_LOOP (loop, 0)
1399 canonicalize_loop_closed_ssa (loop);
1401 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1402 update_ssa (TODO_update_ssa);
1404 #ifdef ENABLE_CHECKING
1405 verify_loop_closed_ssa (true);
1406 #endif
1409 /* Find Static Control Parts (SCoP) in the current function and pushes
1410 them to SCOPS. */
1412 void
1413 build_scops (vec<scop_p> *scops)
1415 struct loop *loop = current_loops->tree_root;
1416 auto_vec<sd_region, 3> regions;
1418 canonicalize_loop_closed_ssa_form ();
1419 build_scops_1 (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1420 ENTRY_BLOCK_PTR_FOR_FN (cfun)->loop_father,
1421 &regions, loop);
1422 create_sese_edges (regions);
1423 build_graphite_scops (regions, scops);
1425 if (dump_file && (dump_flags & TDF_DETAILS))
1426 print_graphite_statistics (dump_file, *scops);
1428 limit_scops (scops);
1429 regions.release ();
1431 if (dump_file && (dump_flags & TDF_DETAILS))
1432 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1433 scops ? scops->length () : 0);
1436 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1437 different colors. If there are not enough colors, paint the
1438 remaining SCoPs in gray.
1440 Special nodes:
1441 - "*" after the node number denotes the entry of a SCoP,
1442 - "#" after the node number denotes the exit of a SCoP,
1443 - "()" around the node number denotes the entry or the
1444 exit nodes of the SCOP. These are not part of SCoP. */
1446 static void
1447 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1449 basic_block bb;
1450 edge e;
1451 edge_iterator ei;
1452 scop_p scop;
1453 const char* color;
1454 int i;
1456 /* Disable debugging while printing graph. */
1457 int tmp_dump_flags = dump_flags;
1458 dump_flags = 0;
1460 fprintf (file, "digraph all {\n");
1462 FOR_ALL_BB_FN (bb, cfun)
1464 int part_of_scop = false;
1466 /* Use HTML for every bb label. So we are able to print bbs
1467 which are part of two different SCoPs, with two different
1468 background colors. */
1469 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1470 bb->index);
1471 fprintf (file, "CELLSPACING=\"0\">\n");
1473 /* Select color for SCoP. */
1474 FOR_EACH_VEC_ELT (scops, i, scop)
1476 sese region = SCOP_REGION (scop);
1477 if (bb_in_sese_p (bb, region)
1478 || (SESE_EXIT_BB (region) == bb)
1479 || (SESE_ENTRY_BB (region) == bb))
1481 switch (i % 17)
1483 case 0: /* red */
1484 color = "#e41a1c";
1485 break;
1486 case 1: /* blue */
1487 color = "#377eb8";
1488 break;
1489 case 2: /* green */
1490 color = "#4daf4a";
1491 break;
1492 case 3: /* purple */
1493 color = "#984ea3";
1494 break;
1495 case 4: /* orange */
1496 color = "#ff7f00";
1497 break;
1498 case 5: /* yellow */
1499 color = "#ffff33";
1500 break;
1501 case 6: /* brown */
1502 color = "#a65628";
1503 break;
1504 case 7: /* rose */
1505 color = "#f781bf";
1506 break;
1507 case 8:
1508 color = "#8dd3c7";
1509 break;
1510 case 9:
1511 color = "#ffffb3";
1512 break;
1513 case 10:
1514 color = "#bebada";
1515 break;
1516 case 11:
1517 color = "#fb8072";
1518 break;
1519 case 12:
1520 color = "#80b1d3";
1521 break;
1522 case 13:
1523 color = "#fdb462";
1524 break;
1525 case 14:
1526 color = "#b3de69";
1527 break;
1528 case 15:
1529 color = "#fccde5";
1530 break;
1531 case 16:
1532 color = "#bc80bd";
1533 break;
1534 default: /* gray */
1535 color = "#999999";
1538 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1540 if (!bb_in_sese_p (bb, region))
1541 fprintf (file, " (");
1543 if (bb == SESE_ENTRY_BB (region)
1544 && bb == SESE_EXIT_BB (region))
1545 fprintf (file, " %d*# ", bb->index);
1546 else if (bb == SESE_ENTRY_BB (region))
1547 fprintf (file, " %d* ", bb->index);
1548 else if (bb == SESE_EXIT_BB (region))
1549 fprintf (file, " %d# ", bb->index);
1550 else
1551 fprintf (file, " %d ", bb->index);
1553 if (!bb_in_sese_p (bb,region))
1554 fprintf (file, ")");
1556 fprintf (file, "</TD></TR>\n");
1557 part_of_scop = true;
1561 if (!part_of_scop)
1563 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1564 fprintf (file, " %d </TD></TR>\n", bb->index);
1566 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1569 FOR_ALL_BB_FN (bb, cfun)
1571 FOR_EACH_EDGE (e, ei, bb->succs)
1572 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1575 fputs ("}\n\n", file);
1577 /* Enable debugging again. */
1578 dump_flags = tmp_dump_flags;
1581 /* Display all SCoPs using dotty. */
1583 DEBUG_FUNCTION void
1584 dot_all_scops (vec<scop_p> scops)
1586 /* When debugging, enable the following code. This cannot be used
1587 in production compilers because it calls "system". */
1588 #if 0
1589 int x;
1590 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1591 gcc_assert (stream);
1593 dot_all_scops_1 (stream, scops);
1594 fclose (stream);
1596 x = system ("dotty /tmp/allscops.dot &");
1597 #else
1598 dot_all_scops_1 (stderr, scops);
1599 #endif
1602 /* Display all SCoPs using dotty. */
1604 DEBUG_FUNCTION void
1605 dot_scop (scop_p scop)
1607 auto_vec<scop_p, 1> scops;
1609 if (scop)
1610 scops.safe_push (scop);
1612 /* When debugging, enable the following code. This cannot be used
1613 in production compilers because it calls "system". */
1614 #if 0
1616 int x;
1617 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1618 gcc_assert (stream);
1620 dot_all_scops_1 (stream, scops);
1621 fclose (stream);
1622 x = system ("dotty /tmp/allscops.dot &");
1624 #else
1625 dot_all_scops_1 (stderr, scops);
1626 #endif
1629 #endif