1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
4 Hacked by Michael Tiemann (tiemann@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction reorganization pass.
24 This pass runs after register allocation and final jump
25 optimization. It should be the last pass to run before peephole.
26 It serves primarily to fill delay slots of insns, typically branch
27 and call insns. Other insns typically involve more complicated
28 interactions of data dependencies and resource constraints, and
29 are better handled by scheduling before register allocation (by the
30 function `schedule_insns').
32 The Branch Penalty is the number of extra cycles that are needed to
33 execute a branch insn. On an ideal machine, branches take a single
34 cycle, and the Branch Penalty is 0. Several RISC machines approach
35 branch delays differently:
37 The MIPS has a single branch delay slot. Most insns
38 (except other branches) can be used to fill this slot. When the
39 slot is filled, two insns execute in two cycles, reducing the
40 branch penalty to zero.
42 The SPARC always has a branch delay slot, but its effects can be
43 annulled when the branch is not taken. This means that failing to
44 find other sources of insns, we can hoist an insn from the branch
45 target that would only be safe to execute knowing that the branch
48 The HP-PA always has a branch delay slot. For unconditional branches
49 its effects can be annulled when the branch is taken. The effects
50 of the delay slot in a conditional branch can be nullified for forward
51 taken branches, or for untaken backward branches. This means
52 we can hoist insns from the fall-through path for forward branches or
53 steal insns from the target of backward branches.
55 The TMS320C3x and C4x have three branch delay slots. When the three
56 slots are filled, the branch penalty is zero. Most insns can fill the
57 delay slots except jump insns.
59 Three techniques for filling delay slots have been implemented so far:
61 (1) `fill_simple_delay_slots' is the simplest, most efficient way
62 to fill delay slots. This pass first looks for insns which come
63 from before the branch and which are safe to execute after the
64 branch. Then it searches after the insn requiring delay slots or,
65 in the case of a branch, for insns that are after the point at
66 which the branch merges into the fallthrough code, if such a point
67 exists. When such insns are found, the branch penalty decreases
68 and no code expansion takes place.
70 (2) `fill_eager_delay_slots' is more complicated: it is used for
71 scheduling conditional jumps, or for scheduling jumps which cannot
72 be filled using (1). A machine need not have annulled jumps to use
73 this strategy, but it helps (by keeping more options open).
74 `fill_eager_delay_slots' tries to guess the direction the branch
75 will go; if it guesses right 100% of the time, it can reduce the
76 branch penalty as much as `fill_simple_delay_slots' does. If it
77 guesses wrong 100% of the time, it might as well schedule nops. When
78 `fill_eager_delay_slots' takes insns from the fall-through path of
79 the jump, usually there is no code expansion; when it takes insns
80 from the branch target, there is code expansion if it is not the
81 only way to reach that target.
83 (3) `relax_delay_slots' uses a set of rules to simplify code that
84 has been reorganized by (1) and (2). It finds cases where
85 conditional test can be eliminated, jumps can be threaded, extra
86 insns can be eliminated, etc. It is the job of (1) and (2) to do a
87 good job of scheduling locally; `relax_delay_slots' takes care of
88 making the various individual schedules work well together. It is
89 especially tuned to handle the control flow interactions of branch
90 insns. It does nothing for insns with delay slots that do not
93 On machines that use CC0, we are very conservative. We will not make
94 a copy of an insn involving CC0 since we want to maintain a 1-1
95 correspondence between the insn that sets and uses CC0. The insns are
96 allowed to be separated by placing an insn that sets CC0 (but not an insn
97 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
98 delay slot. In that case, we point each insn at the other with REG_CC_USER
99 and REG_CC_SETTER notes. Note that these restrictions affect very few
100 machines because most RISC machines with delay slots will not use CC0
101 (the RT is the only known exception at this point). */
105 #include "coretypes.h"
107 #include "diagnostic-core.h"
111 #include "function.h"
112 #include "insn-config.h"
113 #include "conditions.h"
114 #include "hard-reg-set.h"
115 #include "basic-block.h"
120 #include "insn-attr.h"
121 #include "resource.h"
125 #include "tree-pass.h"
126 #include "emit-rtl.h"
130 #ifndef ANNUL_IFTRUE_SLOTS
131 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
133 #ifndef ANNUL_IFFALSE_SLOTS
134 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
137 /* Insns which have delay slots that have not yet been filled. */
139 static struct obstack unfilled_slots_obstack
;
140 static rtx
*unfilled_firstobj
;
142 /* Define macros to refer to the first and last slot containing unfilled
143 insns. These are used because the list may move and its address
144 should be recomputed at each use. */
146 #define unfilled_slots_base \
147 ((rtx *) obstack_base (&unfilled_slots_obstack))
149 #define unfilled_slots_next \
150 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
152 /* Points to the label before the end of the function, or before a
154 static rtx function_return_label
;
155 /* Likewise for a simple_return. */
156 static rtx function_simple_return_label
;
158 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
159 not always monotonically increase. */
160 static int *uid_to_ruid
;
162 /* Highest valid index in `uid_to_ruid'. */
165 static int stop_search_p (rtx
, int);
166 static int resource_conflicts_p (struct resources
*, struct resources
*);
167 static int insn_references_resource_p (rtx
, struct resources
*, bool);
168 static int insn_sets_resource_p (rtx
, struct resources
*, bool);
169 static rtx
find_end_label (rtx
);
170 static rtx
emit_delay_sequence (rtx
, rtx
, int);
171 static rtx
add_to_delay_list (rtx
, rtx
);
172 static rtx
delete_from_delay_slot (rtx
);
173 static void delete_scheduled_jump (rtx
);
174 static void note_delay_statistics (int, int);
175 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
176 static rtx
optimize_skip (rtx
);
178 static int get_jump_flags (rtx
, rtx
);
179 static int mostly_true_jump (rtx
);
180 static rtx
get_branch_condition (rtx
, rtx
);
181 static int condition_dominates_p (rtx
, rtx
);
182 static int redirect_with_delay_slots_safe_p (rtx
, rtx
, rtx
);
183 static int redirect_with_delay_list_safe_p (rtx
, rtx
, rtx
);
184 static int check_annul_list_true_false (int, rtx
);
185 static rtx
steal_delay_list_from_target (rtx
, rtx
, rtx
, rtx
,
189 int, int *, int *, rtx
*);
190 static rtx
steal_delay_list_from_fallthrough (rtx
, rtx
, rtx
, rtx
,
195 static void try_merge_delay_insns (rtx
, rtx
);
196 static rtx
redundant_insn (rtx
, rtx
, rtx
);
197 static int own_thread_p (rtx
, rtx
, int);
198 static void update_block (rtx
, rtx
);
199 static int reorg_redirect_jump (rtx
, rtx
);
200 static void update_reg_dead_notes (rtx
, rtx
);
201 static void fix_reg_dead_note (rtx
, rtx
);
202 static void update_reg_unused_notes (rtx
, rtx
);
203 static void fill_simple_delay_slots (int);
204 static rtx
fill_slots_from_thread (rtx
, rtx
, rtx
, rtx
,
207 static void fill_eager_delay_slots (void);
208 static void relax_delay_slots (rtx
);
209 static void make_return_insns (rtx
);
211 /* A wrapper around next_active_insn which takes care to return ret_rtx
215 first_active_target_insn (rtx insn
)
217 if (ANY_RETURN_P (insn
))
219 return next_active_insn (insn
);
222 /* Return true iff INSN is a simplejump, or any kind of return insn. */
225 simplejump_or_return_p (rtx insn
)
227 return (JUMP_P (insn
)
228 && (simplejump_p (insn
) || ANY_RETURN_P (PATTERN (insn
))));
231 /* Return TRUE if this insn should stop the search for insn to fill delay
232 slots. LABELS_P indicates that labels should terminate the search.
233 In all cases, jumps terminate the search. */
236 stop_search_p (rtx insn
, int labels_p
)
241 /* If the insn can throw an exception that is caught within the function,
242 it may effectively perform a jump from the viewpoint of the function.
243 Therefore act like for a jump. */
244 if (can_throw_internal (insn
))
247 switch (GET_CODE (insn
))
261 /* OK unless it contains a delay slot or is an `asm' insn of some type.
262 We don't know anything about these. */
263 return (GET_CODE (PATTERN (insn
)) == SEQUENCE
264 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
265 || asm_noperands (PATTERN (insn
)) >= 0);
272 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
273 resource set contains a volatile memory reference. Otherwise, return FALSE. */
276 resource_conflicts_p (struct resources
*res1
, struct resources
*res2
)
278 if ((res1
->cc
&& res2
->cc
) || (res1
->memory
&& res2
->memory
)
279 || (res1
->unch_memory
&& res2
->unch_memory
)
280 || res1
->volatil
|| res2
->volatil
)
283 return hard_reg_set_intersect_p (res1
->regs
, res2
->regs
);
286 /* Return TRUE if any resource marked in RES, a `struct resources', is
287 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
288 routine is using those resources.
290 We compute this by computing all the resources referenced by INSN and
291 seeing if this conflicts with RES. It might be faster to directly check
292 ourselves, and this is the way it used to work, but it means duplicating
293 a large block of complex code. */
296 insn_references_resource_p (rtx insn
, struct resources
*res
,
297 bool include_delayed_effects
)
299 struct resources insn_res
;
301 CLEAR_RESOURCE (&insn_res
);
302 mark_referenced_resources (insn
, &insn_res
, include_delayed_effects
);
303 return resource_conflicts_p (&insn_res
, res
);
306 /* Return TRUE if INSN modifies resources that are marked in RES.
307 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
308 included. CC0 is only modified if it is explicitly set; see comments
309 in front of mark_set_resources for details. */
312 insn_sets_resource_p (rtx insn
, struct resources
*res
,
313 bool include_delayed_effects
)
315 struct resources insn_sets
;
317 CLEAR_RESOURCE (&insn_sets
);
318 mark_set_resources (insn
, &insn_sets
, 0,
319 (include_delayed_effects
322 return resource_conflicts_p (&insn_sets
, res
);
325 /* Find a label at the end of the function or before a RETURN. If there
326 is none, try to make one. If that fails, returns 0.
328 The property of such a label is that it is placed just before the
329 epilogue or a bare RETURN insn, so that another bare RETURN can be
330 turned into a jump to the label unconditionally. In particular, the
331 label cannot be placed before a RETURN insn with a filled delay slot.
333 ??? There may be a problem with the current implementation. Suppose
334 we start with a bare RETURN insn and call find_end_label. It may set
335 function_return_label just before the RETURN. Suppose the machinery
336 is able to fill the delay slot of the RETURN insn afterwards. Then
337 function_return_label is no longer valid according to the property
338 described above and find_end_label will still return it unmodified.
339 Note that this is probably mitigated by the following observation:
340 once function_return_label is made, it is very likely the target of
341 a jump, so filling the delay slot of the RETURN will be much more
343 KIND is either simple_return_rtx or ret_rtx, indicating which type of
344 return we're looking for. */
347 find_end_label (rtx kind
)
353 plabel
= &function_return_label
;
356 gcc_assert (kind
== simple_return_rtx
);
357 plabel
= &function_simple_return_label
;
360 /* If we found one previously, return it. */
364 /* Otherwise, see if there is a label at the end of the function. If there
365 is, it must be that RETURN insns aren't needed, so that is our return
366 label and we don't have to do anything else. */
368 insn
= get_last_insn ();
370 || (NONJUMP_INSN_P (insn
)
371 && (GET_CODE (PATTERN (insn
)) == USE
372 || GET_CODE (PATTERN (insn
)) == CLOBBER
)))
373 insn
= PREV_INSN (insn
);
375 /* When a target threads its epilogue we might already have a
376 suitable return insn. If so put a label before it for the
377 function_return_label. */
379 && JUMP_P (PREV_INSN (insn
))
380 && PATTERN (PREV_INSN (insn
)) == kind
)
382 rtx temp
= PREV_INSN (PREV_INSN (insn
));
383 rtx label
= gen_label_rtx ();
384 LABEL_NUSES (label
) = 0;
386 /* Put the label before any USE insns that may precede the RETURN
388 while (GET_CODE (temp
) == USE
)
389 temp
= PREV_INSN (temp
);
391 emit_label_after (label
, temp
);
395 else if (LABEL_P (insn
))
399 rtx label
= gen_label_rtx ();
400 LABEL_NUSES (label
) = 0;
401 /* If the basic block reorder pass moves the return insn to
402 some other place try to locate it again and put our
403 function_return_label there. */
404 while (insn
&& ! (JUMP_P (insn
) && (PATTERN (insn
) == kind
)))
405 insn
= PREV_INSN (insn
);
408 insn
= PREV_INSN (insn
);
410 /* Put the label before any USE insns that may precede the
412 while (GET_CODE (insn
) == USE
)
413 insn
= PREV_INSN (insn
);
415 emit_label_after (label
, insn
);
425 /* The RETURN insn has its delay slot filled so we cannot
426 emit the label just before it. Since we already have
427 an epilogue and cannot emit a new RETURN, we cannot
428 emit the label at all. */
430 #endif /* HAVE_epilogue */
432 /* Otherwise, make a new label and emit a RETURN and BARRIER,
438 /* The return we make may have delay slots too. */
439 rtx insn
= gen_return ();
440 insn
= emit_jump_insn (insn
);
441 set_return_jump_label (insn
);
443 if (num_delay_slots (insn
) > 0)
444 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
451 /* Show one additional use for this label so it won't go away until
453 ++LABEL_NUSES (*plabel
);
458 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
459 the pattern of INSN with the SEQUENCE.
461 Chain the insns so that NEXT_INSN of each insn in the sequence points to
462 the next and NEXT_INSN of the last insn in the sequence points to
463 the first insn after the sequence. Similarly for PREV_INSN. This makes
464 it easier to scan all insns.
466 Returns the SEQUENCE that replaces INSN. */
469 emit_delay_sequence (rtx insn
, rtx list
, int length
)
475 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
476 rtvec seqv
= rtvec_alloc (length
+ 1);
477 rtx seq
= gen_rtx_SEQUENCE (VOIDmode
, seqv
);
478 rtx seq_insn
= make_insn_raw (seq
);
479 rtx first
= get_insns ();
480 rtx last
= get_last_insn ();
482 /* Make a copy of the insn having delay slots. */
483 rtx delay_insn
= copy_rtx (insn
);
485 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
486 confuse further processing. Update LAST in case it was the last insn.
487 We will put the BARRIER back in later. */
488 if (NEXT_INSN (insn
) && BARRIER_P (NEXT_INSN (insn
)))
490 delete_related_insns (NEXT_INSN (insn
));
491 last
= get_last_insn ();
495 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
496 NEXT_INSN (seq_insn
) = NEXT_INSN (insn
);
497 PREV_INSN (seq_insn
) = PREV_INSN (insn
);
500 PREV_INSN (NEXT_INSN (seq_insn
)) = seq_insn
;
503 NEXT_INSN (PREV_INSN (seq_insn
)) = seq_insn
;
505 /* Note the calls to set_new_first_and_last_insn must occur after
506 SEQ_INSN has been completely spliced into the insn stream.
508 Otherwise CUR_INSN_UID will get set to an incorrect value because
509 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
511 set_new_first_and_last_insn (first
, seq_insn
);
514 set_new_first_and_last_insn (seq_insn
, last
);
516 /* Build our SEQUENCE and rebuild the insn chain. */
517 XVECEXP (seq
, 0, 0) = delay_insn
;
518 INSN_DELETED_P (delay_insn
) = 0;
519 PREV_INSN (delay_insn
) = PREV_INSN (seq_insn
);
521 INSN_LOCATION (seq_insn
) = INSN_LOCATION (delay_insn
);
523 for (li
= list
; li
; li
= XEXP (li
, 1), i
++)
525 rtx tem
= XEXP (li
, 0);
528 /* Show that this copy of the insn isn't deleted. */
529 INSN_DELETED_P (tem
) = 0;
531 XVECEXP (seq
, 0, i
) = tem
;
532 PREV_INSN (tem
) = XVECEXP (seq
, 0, i
- 1);
533 NEXT_INSN (XVECEXP (seq
, 0, i
- 1)) = tem
;
535 /* SPARC assembler, for instance, emit warning when debug info is output
536 into the delay slot. */
537 if (INSN_LOCATION (tem
) && !INSN_LOCATION (seq_insn
))
538 INSN_LOCATION (seq_insn
) = INSN_LOCATION (tem
);
539 INSN_LOCATION (tem
) = 0;
541 for (note
= REG_NOTES (tem
); note
; note
= next
)
543 next
= XEXP (note
, 1);
544 switch (REG_NOTE_KIND (note
))
547 /* Remove any REG_DEAD notes because we can't rely on them now
548 that the insn has been moved. */
549 remove_note (tem
, note
);
552 case REG_LABEL_OPERAND
:
553 case REG_LABEL_TARGET
:
554 /* Keep the label reference count up to date. */
555 if (LABEL_P (XEXP (note
, 0)))
556 LABEL_NUSES (XEXP (note
, 0)) ++;
565 NEXT_INSN (XVECEXP (seq
, 0, length
)) = NEXT_INSN (seq_insn
);
567 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
568 last insn in that SEQUENCE to point to us. Similarly for the first
569 insn in the following insn if it is a SEQUENCE. */
571 if (PREV_INSN (seq_insn
) && NONJUMP_INSN_P (PREV_INSN (seq_insn
))
572 && GET_CODE (PATTERN (PREV_INSN (seq_insn
))) == SEQUENCE
)
573 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn
)), 0,
574 XVECLEN (PATTERN (PREV_INSN (seq_insn
)), 0) - 1))
577 if (NEXT_INSN (seq_insn
) && NONJUMP_INSN_P (NEXT_INSN (seq_insn
))
578 && GET_CODE (PATTERN (NEXT_INSN (seq_insn
))) == SEQUENCE
)
579 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn
)), 0, 0)) = seq_insn
;
581 /* If there used to be a BARRIER, put it back. */
583 emit_barrier_after (seq_insn
);
585 gcc_assert (i
== length
+ 1);
590 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
591 be in the order in which the insns are to be executed. */
594 add_to_delay_list (rtx insn
, rtx delay_list
)
596 /* If we have an empty list, just make a new list element. If
597 INSN has its block number recorded, clear it since we may
598 be moving the insn to a new block. */
602 clear_hashed_info_for_insn (insn
);
603 return gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
606 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
608 XEXP (delay_list
, 1) = add_to_delay_list (insn
, XEXP (delay_list
, 1));
613 /* Delete INSN from the delay slot of the insn that it is in, which may
614 produce an insn with no delay slots. Return the new insn. */
617 delete_from_delay_slot (rtx insn
)
619 rtx trial
, seq_insn
, seq
, prev
;
624 /* We first must find the insn containing the SEQUENCE with INSN in its
625 delay slot. Do this by finding an insn, TRIAL, where
626 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
629 PREV_INSN (NEXT_INSN (trial
)) == trial
;
630 trial
= NEXT_INSN (trial
))
633 seq_insn
= PREV_INSN (NEXT_INSN (trial
));
634 seq
= PATTERN (seq_insn
);
636 if (NEXT_INSN (seq_insn
) && BARRIER_P (NEXT_INSN (seq_insn
)))
639 /* Create a delay list consisting of all the insns other than the one
640 we are deleting (unless we were the only one). */
641 if (XVECLEN (seq
, 0) > 2)
642 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
643 if (XVECEXP (seq
, 0, i
) != insn
)
644 delay_list
= add_to_delay_list (XVECEXP (seq
, 0, i
), delay_list
);
646 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
647 list, and rebuild the delay list if non-empty. */
648 prev
= PREV_INSN (seq_insn
);
649 trial
= XVECEXP (seq
, 0, 0);
650 delete_related_insns (seq_insn
);
651 add_insn_after (trial
, prev
, NULL
);
653 /* If there was a barrier after the old SEQUENCE, remit it. */
655 emit_barrier_after (trial
);
657 /* If there are any delay insns, remit them. Otherwise clear the
660 trial
= emit_delay_sequence (trial
, delay_list
, XVECLEN (seq
, 0) - 2);
661 else if (JUMP_P (trial
))
662 INSN_ANNULLED_BRANCH_P (trial
) = 0;
664 INSN_FROM_TARGET_P (insn
) = 0;
666 /* Show we need to fill this insn again. */
667 obstack_ptr_grow (&unfilled_slots_obstack
, trial
);
672 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
673 the insn that sets CC0 for it and delete it too. */
676 delete_scheduled_jump (rtx insn
)
678 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
679 delete the insn that sets the condition code, but it is hard to find it.
680 Since this case is rare anyway, don't bother trying; there would likely
681 be other insns that became dead anyway, which we wouldn't know to
685 if (reg_mentioned_p (cc0_rtx
, insn
))
687 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
689 /* If a reg-note was found, it points to an insn to set CC0. This
690 insn is in the delay list of some other insn. So delete it from
691 the delay list it was in. */
694 if (! FIND_REG_INC_NOTE (XEXP (note
, 0), NULL_RTX
)
695 && sets_cc0_p (PATTERN (XEXP (note
, 0))) == 1)
696 delete_from_delay_slot (XEXP (note
, 0));
700 /* The insn setting CC0 is our previous insn, but it may be in
701 a delay slot. It will be the last insn in the delay slot, if
703 rtx trial
= previous_insn (insn
);
705 trial
= prev_nonnote_insn (trial
);
706 if (sets_cc0_p (PATTERN (trial
)) != 1
707 || FIND_REG_INC_NOTE (trial
, NULL_RTX
))
709 if (PREV_INSN (NEXT_INSN (trial
)) == trial
)
710 delete_related_insns (trial
);
712 delete_from_delay_slot (trial
);
717 delete_related_insns (insn
);
720 /* Counters for delay-slot filling. */
722 #define NUM_REORG_FUNCTIONS 2
723 #define MAX_DELAY_HISTOGRAM 3
724 #define MAX_REORG_PASSES 2
726 static int num_insns_needing_delays
[NUM_REORG_FUNCTIONS
][MAX_REORG_PASSES
];
728 static int num_filled_delays
[NUM_REORG_FUNCTIONS
][MAX_DELAY_HISTOGRAM
+1][MAX_REORG_PASSES
];
730 static int reorg_pass_number
;
733 note_delay_statistics (int slots_filled
, int index
)
735 num_insns_needing_delays
[index
][reorg_pass_number
]++;
736 if (slots_filled
> MAX_DELAY_HISTOGRAM
)
737 slots_filled
= MAX_DELAY_HISTOGRAM
;
738 num_filled_delays
[index
][slots_filled
][reorg_pass_number
]++;
741 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
743 /* Optimize the following cases:
745 1. When a conditional branch skips over only one instruction,
746 use an annulling branch and put that insn in the delay slot.
747 Use either a branch that annuls when the condition if true or
748 invert the test with a branch that annuls when the condition is
749 false. This saves insns, since otherwise we must copy an insn
752 (orig) (skip) (otherwise)
753 Bcc.n L1 Bcc',a L1 Bcc,a L1'
760 2. When a conditional branch skips over only one instruction,
761 and after that, it unconditionally branches somewhere else,
762 perform the similar optimization. This saves executing the
763 second branch in the case where the inverted condition is true.
772 This should be expanded to skip over N insns, where N is the number
773 of delay slots required. */
776 optimize_skip (rtx insn
)
778 rtx trial
= next_nonnote_insn (insn
);
779 rtx next_trial
= next_active_insn (trial
);
783 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
786 || !NONJUMP_INSN_P (trial
)
787 || GET_CODE (PATTERN (trial
)) == SEQUENCE
788 || recog_memoized (trial
) < 0
789 || (! eligible_for_annul_false (insn
, 0, trial
, flags
)
790 && ! eligible_for_annul_true (insn
, 0, trial
, flags
))
791 || can_throw_internal (trial
))
794 /* There are two cases where we are just executing one insn (we assume
795 here that a branch requires only one insn; this should be generalized
796 at some point): Where the branch goes around a single insn or where
797 we have one insn followed by a branch to the same label we branch to.
798 In both of these cases, inverting the jump and annulling the delay
799 slot give the same effect in fewer insns. */
800 if (next_trial
== next_active_insn (JUMP_LABEL (insn
))
802 && simplejump_or_return_p (next_trial
)
803 && JUMP_LABEL (insn
) == JUMP_LABEL (next_trial
)))
805 if (eligible_for_annul_false (insn
, 0, trial
, flags
))
807 if (invert_jump (insn
, JUMP_LABEL (insn
), 1))
808 INSN_FROM_TARGET_P (trial
) = 1;
809 else if (! eligible_for_annul_true (insn
, 0, trial
, flags
))
813 delay_list
= add_to_delay_list (trial
, NULL_RTX
);
814 next_trial
= next_active_insn (trial
);
815 update_block (trial
, trial
);
816 delete_related_insns (trial
);
818 /* Also, if we are targeting an unconditional
819 branch, thread our jump to the target of that branch. Don't
820 change this into a RETURN here, because it may not accept what
821 we have in the delay slot. We'll fix this up later. */
822 if (next_trial
&& simplejump_or_return_p (next_trial
))
824 rtx target_label
= JUMP_LABEL (next_trial
);
825 if (ANY_RETURN_P (target_label
))
826 target_label
= find_end_label (target_label
);
830 /* Recompute the flags based on TARGET_LABEL since threading
831 the jump to TARGET_LABEL may change the direction of the
832 jump (which may change the circumstances in which the
833 delay slot is nullified). */
834 flags
= get_jump_flags (insn
, target_label
);
835 if (eligible_for_annul_true (insn
, 0, trial
, flags
))
836 reorg_redirect_jump (insn
, target_label
);
840 INSN_ANNULLED_BRANCH_P (insn
) = 1;
847 /* Encode and return branch direction and prediction information for
848 INSN assuming it will jump to LABEL.
850 Non conditional branches return no direction information and
851 are predicted as very likely taken. */
854 get_jump_flags (rtx insn
, rtx label
)
858 /* get_jump_flags can be passed any insn with delay slots, these may
859 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
860 direction information, and only if they are conditional jumps.
862 If LABEL is a return, then there is no way to determine the branch
865 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
866 && !ANY_RETURN_P (label
)
867 && INSN_UID (insn
) <= max_uid
868 && INSN_UID (label
) <= max_uid
)
870 = (uid_to_ruid
[INSN_UID (label
)] > uid_to_ruid
[INSN_UID (insn
)])
871 ? ATTR_FLAG_forward
: ATTR_FLAG_backward
;
872 /* No valid direction information. */
879 /* Return truth value of the statement that this branch
880 is mostly taken. If we think that the branch is extremely likely
881 to be taken, we return 2. If the branch is slightly more likely to be
882 taken, return 1. If the branch is slightly less likely to be taken,
883 return 0 and if the branch is highly unlikely to be taken, return -1. */
886 mostly_true_jump (rtx jump_insn
)
888 /* If branch probabilities are available, then use that number since it
889 always gives a correct answer. */
890 rtx note
= find_reg_note (jump_insn
, REG_BR_PROB
, 0);
893 int prob
= INTVAL (XEXP (note
, 0));
895 if (prob
>= REG_BR_PROB_BASE
* 9 / 10)
897 else if (prob
>= REG_BR_PROB_BASE
/ 2)
899 else if (prob
>= REG_BR_PROB_BASE
/ 10)
905 /* If there is no note, assume branches are not taken.
906 This should be rare. */
910 /* Return the condition under which INSN will branch to TARGET. If TARGET
911 is zero, return the condition under which INSN will return. If INSN is
912 an unconditional branch, return const_true_rtx. If INSN isn't a simple
913 type of jump, or it doesn't go to TARGET, return 0. */
916 get_branch_condition (rtx insn
, rtx target
)
918 rtx pat
= PATTERN (insn
);
921 if (condjump_in_parallel_p (insn
))
922 pat
= XVECEXP (pat
, 0, 0);
924 if (ANY_RETURN_P (pat
))
925 return pat
== target
? const_true_rtx
: 0;
927 if (GET_CODE (pat
) != SET
|| SET_DEST (pat
) != pc_rtx
)
931 if (GET_CODE (src
) == LABEL_REF
&& XEXP (src
, 0) == target
)
932 return const_true_rtx
;
934 else if (GET_CODE (src
) == IF_THEN_ELSE
935 && XEXP (src
, 2) == pc_rtx
936 && GET_CODE (XEXP (src
, 1)) == LABEL_REF
937 && XEXP (XEXP (src
, 1), 0) == target
)
938 return XEXP (src
, 0);
940 else if (GET_CODE (src
) == IF_THEN_ELSE
941 && XEXP (src
, 1) == pc_rtx
942 && GET_CODE (XEXP (src
, 2)) == LABEL_REF
943 && XEXP (XEXP (src
, 2), 0) == target
)
946 rev
= reversed_comparison_code (XEXP (src
, 0), insn
);
948 return gen_rtx_fmt_ee (rev
, GET_MODE (XEXP (src
, 0)),
949 XEXP (XEXP (src
, 0), 0),
950 XEXP (XEXP (src
, 0), 1));
956 /* Return nonzero if CONDITION is more strict than the condition of
957 INSN, i.e., if INSN will always branch if CONDITION is true. */
960 condition_dominates_p (rtx condition
, rtx insn
)
962 rtx other_condition
= get_branch_condition (insn
, JUMP_LABEL (insn
));
963 enum rtx_code code
= GET_CODE (condition
);
964 enum rtx_code other_code
;
966 if (rtx_equal_p (condition
, other_condition
)
967 || other_condition
== const_true_rtx
)
970 else if (condition
== const_true_rtx
|| other_condition
== 0)
973 other_code
= GET_CODE (other_condition
);
974 if (GET_RTX_LENGTH (code
) != 2 || GET_RTX_LENGTH (other_code
) != 2
975 || ! rtx_equal_p (XEXP (condition
, 0), XEXP (other_condition
, 0))
976 || ! rtx_equal_p (XEXP (condition
, 1), XEXP (other_condition
, 1)))
979 return comparison_dominates_p (code
, other_code
);
982 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
983 any insns already in the delay slot of JUMP. */
986 redirect_with_delay_slots_safe_p (rtx jump
, rtx newlabel
, rtx seq
)
989 rtx pat
= PATTERN (seq
);
991 /* Make sure all the delay slots of this jump would still
992 be valid after threading the jump. If they are still
993 valid, then return nonzero. */
995 flags
= get_jump_flags (jump
, newlabel
);
996 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
998 #ifdef ANNUL_IFFALSE_SLOTS
999 (INSN_ANNULLED_BRANCH_P (jump
)
1000 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1001 ? eligible_for_annul_false (jump
, i
- 1,
1002 XVECEXP (pat
, 0, i
), flags
) :
1004 #ifdef ANNUL_IFTRUE_SLOTS
1005 (INSN_ANNULLED_BRANCH_P (jump
)
1006 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1007 ? eligible_for_annul_true (jump
, i
- 1,
1008 XVECEXP (pat
, 0, i
), flags
) :
1010 eligible_for_delay (jump
, i
- 1, XVECEXP (pat
, 0, i
), flags
)))
1013 return (i
== XVECLEN (pat
, 0));
1016 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1017 any insns we wish to place in the delay slot of JUMP. */
1020 redirect_with_delay_list_safe_p (rtx jump
, rtx newlabel
, rtx delay_list
)
1025 /* Make sure all the insns in DELAY_LIST would still be
1026 valid after threading the jump. If they are still
1027 valid, then return nonzero. */
1029 flags
= get_jump_flags (jump
, newlabel
);
1030 for (li
= delay_list
, i
= 0; li
; li
= XEXP (li
, 1), i
++)
1032 #ifdef ANNUL_IFFALSE_SLOTS
1033 (INSN_ANNULLED_BRANCH_P (jump
)
1034 && INSN_FROM_TARGET_P (XEXP (li
, 0)))
1035 ? eligible_for_annul_false (jump
, i
, XEXP (li
, 0), flags
) :
1037 #ifdef ANNUL_IFTRUE_SLOTS
1038 (INSN_ANNULLED_BRANCH_P (jump
)
1039 && ! INSN_FROM_TARGET_P (XEXP (li
, 0)))
1040 ? eligible_for_annul_true (jump
, i
, XEXP (li
, 0), flags
) :
1042 eligible_for_delay (jump
, i
, XEXP (li
, 0), flags
)))
1045 return (li
== NULL
);
1048 /* DELAY_LIST is a list of insns that have already been placed into delay
1049 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1050 If not, return 0; otherwise return 1. */
1053 check_annul_list_true_false (int annul_true_p
, rtx delay_list
)
1059 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1061 rtx trial
= XEXP (temp
, 0);
1063 if ((annul_true_p
&& INSN_FROM_TARGET_P (trial
))
1064 || (!annul_true_p
&& !INSN_FROM_TARGET_P (trial
)))
1072 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1073 the condition tested by INSN is CONDITION and the resources shown in
1074 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1075 from SEQ's delay list, in addition to whatever insns it may execute
1076 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1077 needed while searching for delay slot insns. Return the concatenated
1078 delay list if possible, otherwise, return 0.
1080 SLOTS_TO_FILL is the total number of slots required by INSN, and
1081 PSLOTS_FILLED points to the number filled so far (also the number of
1082 insns in DELAY_LIST). It is updated with the number that have been
1083 filled from the SEQUENCE, if any.
1085 PANNUL_P points to a nonzero value if we already know that we need
1086 to annul INSN. If this routine determines that annulling is needed,
1087 it may set that value nonzero.
1089 PNEW_THREAD points to a location that is to receive the place at which
1090 execution should continue. */
1093 steal_delay_list_from_target (rtx insn
, rtx condition
, rtx seq
,
1094 rtx delay_list
, struct resources
*sets
,
1095 struct resources
*needed
,
1096 struct resources
*other_needed
,
1097 int slots_to_fill
, int *pslots_filled
,
1098 int *pannul_p
, rtx
*pnew_thread
)
1101 int slots_remaining
= slots_to_fill
- *pslots_filled
;
1102 int total_slots_filled
= *pslots_filled
;
1103 rtx new_delay_list
= 0;
1104 int must_annul
= *pannul_p
;
1107 struct resources cc_set
;
1109 /* We can't do anything if there are more delay slots in SEQ than we
1110 can handle, or if we don't know that it will be a taken branch.
1111 We know that it will be a taken branch if it is either an unconditional
1112 branch or a conditional branch with a stricter branch condition.
1114 Also, exit if the branch has more than one set, since then it is computing
1115 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1116 ??? It may be possible to move other sets into INSN in addition to
1117 moving the instructions in the delay slots.
1119 We can not steal the delay list if one of the instructions in the
1120 current delay_list modifies the condition codes and the jump in the
1121 sequence is a conditional jump. We can not do this because we can
1122 not change the direction of the jump because the condition codes
1123 will effect the direction of the jump in the sequence. */
1125 CLEAR_RESOURCE (&cc_set
);
1126 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1128 rtx trial
= XEXP (temp
, 0);
1130 mark_set_resources (trial
, &cc_set
, 0, MARK_SRC_DEST_CALL
);
1131 if (insn_references_resource_p (XVECEXP (seq
, 0, 0), &cc_set
, false))
1135 if (XVECLEN (seq
, 0) - 1 > slots_remaining
1136 || ! condition_dominates_p (condition
, XVECEXP (seq
, 0, 0))
1137 || ! single_set (XVECEXP (seq
, 0, 0)))
1140 #ifdef MD_CAN_REDIRECT_BRANCH
1141 /* On some targets, branches with delay slots can have a limited
1142 displacement. Give the back end a chance to tell us we can't do
1144 if (! MD_CAN_REDIRECT_BRANCH (insn
, XVECEXP (seq
, 0, 0)))
1148 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1150 rtx trial
= XVECEXP (seq
, 0, i
);
1153 if (insn_references_resource_p (trial
, sets
, false)
1154 || insn_sets_resource_p (trial
, needed
, false)
1155 || insn_sets_resource_p (trial
, sets
, false)
1157 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1159 || find_reg_note (trial
, REG_CC_USER
, NULL_RTX
)
1161 /* If TRIAL is from the fallthrough code of an annulled branch insn
1162 in SEQ, we cannot use it. */
1163 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq
, 0, 0))
1164 && ! INSN_FROM_TARGET_P (trial
)))
1167 /* If this insn was already done (usually in a previous delay slot),
1168 pretend we put it in our delay slot. */
1169 if (redundant_insn (trial
, insn
, new_delay_list
))
1172 /* We will end up re-vectoring this branch, so compute flags
1173 based on jumping to the new label. */
1174 flags
= get_jump_flags (insn
, JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1177 && ((condition
== const_true_rtx
1178 || (! insn_sets_resource_p (trial
, other_needed
, false)
1179 && ! may_trap_or_fault_p (PATTERN (trial
)))))
1180 ? eligible_for_delay (insn
, total_slots_filled
, trial
, flags
)
1181 : (must_annul
|| (delay_list
== NULL
&& new_delay_list
== NULL
))
1183 check_annul_list_true_false (0, delay_list
)
1184 && check_annul_list_true_false (0, new_delay_list
)
1185 && eligible_for_annul_false (insn
, total_slots_filled
,
1190 temp
= copy_delay_slot_insn (trial
);
1191 INSN_FROM_TARGET_P (temp
) = 1;
1192 new_delay_list
= add_to_delay_list (temp
, new_delay_list
);
1193 total_slots_filled
++;
1195 if (--slots_remaining
== 0)
1202 /* Show the place to which we will be branching. */
1203 *pnew_thread
= first_active_target_insn (JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1205 /* Add any new insns to the delay list and update the count of the
1206 number of slots filled. */
1207 *pslots_filled
= total_slots_filled
;
1211 if (delay_list
== 0)
1212 return new_delay_list
;
1214 for (temp
= new_delay_list
; temp
; temp
= XEXP (temp
, 1))
1215 delay_list
= add_to_delay_list (XEXP (temp
, 0), delay_list
);
1220 /* Similar to steal_delay_list_from_target except that SEQ is on the
1221 fallthrough path of INSN. Here we only do something if the delay insn
1222 of SEQ is an unconditional branch. In that case we steal its delay slot
1223 for INSN since unconditional branches are much easier to fill. */
1226 steal_delay_list_from_fallthrough (rtx insn
, rtx condition
, rtx seq
,
1227 rtx delay_list
, struct resources
*sets
,
1228 struct resources
*needed
,
1229 struct resources
*other_needed
,
1230 int slots_to_fill
, int *pslots_filled
,
1235 int must_annul
= *pannul_p
;
1238 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
1240 /* We can't do anything if SEQ's delay insn isn't an
1241 unconditional branch. */
1243 if (! simplejump_or_return_p (XVECEXP (seq
, 0, 0)))
1246 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1248 rtx trial
= XVECEXP (seq
, 0, i
);
1250 /* If TRIAL sets CC0, stealing it will move it too far from the use
1252 if (insn_references_resource_p (trial
, sets
, false)
1253 || insn_sets_resource_p (trial
, needed
, false)
1254 || insn_sets_resource_p (trial
, sets
, false)
1256 || sets_cc0_p (PATTERN (trial
))
1262 /* If this insn was already done, we don't need it. */
1263 if (redundant_insn (trial
, insn
, delay_list
))
1265 delete_from_delay_slot (trial
);
1270 && ((condition
== const_true_rtx
1271 || (! insn_sets_resource_p (trial
, other_needed
, false)
1272 && ! may_trap_or_fault_p (PATTERN (trial
)))))
1273 ? eligible_for_delay (insn
, *pslots_filled
, trial
, flags
)
1274 : (must_annul
|| delay_list
== NULL
) && (must_annul
= 1,
1275 check_annul_list_true_false (1, delay_list
)
1276 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
1280 delete_from_delay_slot (trial
);
1281 delay_list
= add_to_delay_list (trial
, delay_list
);
1283 if (++(*pslots_filled
) == slots_to_fill
)
1295 /* Try merging insns starting at THREAD which match exactly the insns in
1298 If all insns were matched and the insn was previously annulling, the
1299 annul bit will be cleared.
1301 For each insn that is merged, if the branch is or will be non-annulling,
1302 we delete the merged insn. */
1305 try_merge_delay_insns (rtx insn
, rtx thread
)
1307 rtx trial
, next_trial
;
1308 rtx delay_insn
= XVECEXP (PATTERN (insn
), 0, 0);
1309 int annul_p
= JUMP_P (delay_insn
) && INSN_ANNULLED_BRANCH_P (delay_insn
);
1310 int slot_number
= 1;
1311 int num_slots
= XVECLEN (PATTERN (insn
), 0);
1312 rtx next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1313 struct resources set
, needed
;
1314 rtx merged_insns
= 0;
1318 flags
= get_jump_flags (delay_insn
, JUMP_LABEL (delay_insn
));
1320 CLEAR_RESOURCE (&needed
);
1321 CLEAR_RESOURCE (&set
);
1323 /* If this is not an annulling branch, take into account anything needed in
1324 INSN's delay slot. This prevents two increments from being incorrectly
1325 folded into one. If we are annulling, this would be the correct
1326 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1327 will essentially disable this optimization. This method is somewhat of
1328 a kludge, but I don't see a better way.) */
1330 for (i
= 1 ; i
< num_slots
; i
++)
1331 if (XVECEXP (PATTERN (insn
), 0, i
))
1332 mark_referenced_resources (XVECEXP (PATTERN (insn
), 0, i
), &needed
,
1335 for (trial
= thread
; !stop_search_p (trial
, 1); trial
= next_trial
)
1337 rtx pat
= PATTERN (trial
);
1338 rtx oldtrial
= trial
;
1340 next_trial
= next_nonnote_insn (trial
);
1342 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1343 if (NONJUMP_INSN_P (trial
)
1344 && (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
))
1347 if (GET_CODE (next_to_match
) == GET_CODE (trial
)
1349 /* We can't share an insn that sets cc0. */
1350 && ! sets_cc0_p (pat
)
1352 && ! insn_references_resource_p (trial
, &set
, true)
1353 && ! insn_sets_resource_p (trial
, &set
, true)
1354 && ! insn_sets_resource_p (trial
, &needed
, true)
1355 && (trial
= try_split (pat
, trial
, 0)) != 0
1356 /* Update next_trial, in case try_split succeeded. */
1357 && (next_trial
= next_nonnote_insn (trial
))
1358 /* Likewise THREAD. */
1359 && (thread
= oldtrial
== thread
? trial
: thread
)
1360 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (trial
))
1361 /* Have to test this condition if annul condition is different
1362 from (and less restrictive than) non-annulling one. */
1363 && eligible_for_delay (delay_insn
, slot_number
- 1, trial
, flags
))
1368 update_block (trial
, thread
);
1369 if (trial
== thread
)
1370 thread
= next_active_insn (thread
);
1372 delete_related_insns (trial
);
1373 INSN_FROM_TARGET_P (next_to_match
) = 0;
1376 merged_insns
= gen_rtx_INSN_LIST (VOIDmode
, trial
, merged_insns
);
1378 if (++slot_number
== num_slots
)
1381 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1384 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
1385 mark_referenced_resources (trial
, &needed
, true);
1388 /* See if we stopped on a filled insn. If we did, try to see if its
1389 delay slots match. */
1390 if (slot_number
!= num_slots
1391 && trial
&& NONJUMP_INSN_P (trial
)
1392 && GET_CODE (PATTERN (trial
)) == SEQUENCE
1393 && !(JUMP_P (XVECEXP (PATTERN (trial
), 0, 0))
1394 && INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial
), 0, 0))))
1396 rtx pat
= PATTERN (trial
);
1397 rtx filled_insn
= XVECEXP (pat
, 0, 0);
1399 /* Account for resources set/needed by the filled insn. */
1400 mark_set_resources (filled_insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1401 mark_referenced_resources (filled_insn
, &needed
, true);
1403 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1405 rtx dtrial
= XVECEXP (pat
, 0, i
);
1407 if (! insn_references_resource_p (dtrial
, &set
, true)
1408 && ! insn_sets_resource_p (dtrial
, &set
, true)
1409 && ! insn_sets_resource_p (dtrial
, &needed
, true)
1411 && ! sets_cc0_p (PATTERN (dtrial
))
1413 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (dtrial
))
1414 && eligible_for_delay (delay_insn
, slot_number
- 1, dtrial
, flags
))
1420 update_block (dtrial
, thread
);
1421 new_rtx
= delete_from_delay_slot (dtrial
);
1422 if (INSN_DELETED_P (thread
))
1424 INSN_FROM_TARGET_P (next_to_match
) = 0;
1427 merged_insns
= gen_rtx_INSN_LIST (SImode
, dtrial
,
1430 if (++slot_number
== num_slots
)
1433 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1437 /* Keep track of the set/referenced resources for the delay
1438 slots of any trial insns we encounter. */
1439 mark_set_resources (dtrial
, &set
, 0, MARK_SRC_DEST_CALL
);
1440 mark_referenced_resources (dtrial
, &needed
, true);
1445 /* If all insns in the delay slot have been matched and we were previously
1446 annulling the branch, we need not any more. In that case delete all the
1447 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1448 the delay list so that we know that it isn't only being used at the
1450 if (slot_number
== num_slots
&& annul_p
)
1452 for (; merged_insns
; merged_insns
= XEXP (merged_insns
, 1))
1454 if (GET_MODE (merged_insns
) == SImode
)
1458 update_block (XEXP (merged_insns
, 0), thread
);
1459 new_rtx
= delete_from_delay_slot (XEXP (merged_insns
, 0));
1460 if (INSN_DELETED_P (thread
))
1465 update_block (XEXP (merged_insns
, 0), thread
);
1466 delete_related_insns (XEXP (merged_insns
, 0));
1470 INSN_ANNULLED_BRANCH_P (delay_insn
) = 0;
1472 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1473 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
)) = 0;
1477 /* See if INSN is redundant with an insn in front of TARGET. Often this
1478 is called when INSN is a candidate for a delay slot of TARGET.
1479 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1480 of INSN. Often INSN will be redundant with an insn in a delay slot of
1481 some previous insn. This happens when we have a series of branches to the
1482 same label; in that case the first insn at the target might want to go
1483 into each of the delay slots.
1485 If we are not careful, this routine can take up a significant fraction
1486 of the total compilation time (4%), but only wins rarely. Hence we
1487 speed this routine up by making two passes. The first pass goes back
1488 until it hits a label and sees if it finds an insn with an identical
1489 pattern. Only in this (relatively rare) event does it check for
1492 We do not split insns we encounter. This could cause us not to find a
1493 redundant insn, but the cost of splitting seems greater than the possible
1494 gain in rare cases. */
1497 redundant_insn (rtx insn
, rtx target
, rtx delay_list
)
1499 rtx target_main
= target
;
1500 rtx ipat
= PATTERN (insn
);
1502 struct resources needed
, set
;
1504 unsigned insns_to_search
;
1506 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1507 are allowed to not actually assign to such a register. */
1508 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
) != 0)
1511 /* Scan backwards looking for a match. */
1512 for (trial
= PREV_INSN (target
),
1513 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1514 trial
&& insns_to_search
> 0;
1515 trial
= PREV_INSN (trial
))
1517 if (LABEL_P (trial
))
1520 if (!INSN_P (trial
))
1524 pat
= PATTERN (trial
);
1525 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1528 if (GET_CODE (pat
) == SEQUENCE
)
1530 /* Stop for a CALL and its delay slots because it is difficult to
1531 track its resource needs correctly. */
1532 if (CALL_P (XVECEXP (pat
, 0, 0)))
1535 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1536 slots because it is difficult to track its resource needs
1539 #ifdef INSN_SETS_ARE_DELAYED
1540 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1544 #ifdef INSN_REFERENCES_ARE_DELAYED
1545 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1549 /* See if any of the insns in the delay slot match, updating
1550 resource requirements as we go. */
1551 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1552 if (GET_CODE (XVECEXP (pat
, 0, i
)) == GET_CODE (insn
)
1553 && rtx_equal_p (PATTERN (XVECEXP (pat
, 0, i
)), ipat
)
1554 && ! find_reg_note (XVECEXP (pat
, 0, i
), REG_UNUSED
, NULL_RTX
))
1557 /* If found a match, exit this loop early. */
1562 else if (GET_CODE (trial
) == GET_CODE (insn
) && rtx_equal_p (pat
, ipat
)
1563 && ! find_reg_note (trial
, REG_UNUSED
, NULL_RTX
))
1567 /* If we didn't find an insn that matches, return 0. */
1571 /* See what resources this insn sets and needs. If they overlap, or
1572 if this insn references CC0, it can't be redundant. */
1574 CLEAR_RESOURCE (&needed
);
1575 CLEAR_RESOURCE (&set
);
1576 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1577 mark_referenced_resources (insn
, &needed
, true);
1579 /* If TARGET is a SEQUENCE, get the main insn. */
1580 if (NONJUMP_INSN_P (target
) && GET_CODE (PATTERN (target
)) == SEQUENCE
)
1581 target_main
= XVECEXP (PATTERN (target
), 0, 0);
1583 if (resource_conflicts_p (&needed
, &set
)
1585 || reg_mentioned_p (cc0_rtx
, ipat
)
1587 /* The insn requiring the delay may not set anything needed or set by
1589 || insn_sets_resource_p (target_main
, &needed
, true)
1590 || insn_sets_resource_p (target_main
, &set
, true))
1593 /* Insns we pass may not set either NEEDED or SET, so merge them for
1595 needed
.memory
|= set
.memory
;
1596 needed
.unch_memory
|= set
.unch_memory
;
1597 IOR_HARD_REG_SET (needed
.regs
, set
.regs
);
1599 /* This insn isn't redundant if it conflicts with an insn that either is
1600 or will be in a delay slot of TARGET. */
1604 if (insn_sets_resource_p (XEXP (delay_list
, 0), &needed
, true))
1606 delay_list
= XEXP (delay_list
, 1);
1609 if (NONJUMP_INSN_P (target
) && GET_CODE (PATTERN (target
)) == SEQUENCE
)
1610 for (i
= 1; i
< XVECLEN (PATTERN (target
), 0); i
++)
1611 if (insn_sets_resource_p (XVECEXP (PATTERN (target
), 0, i
), &needed
,
1615 /* Scan backwards until we reach a label or an insn that uses something
1616 INSN sets or sets something insn uses or sets. */
1618 for (trial
= PREV_INSN (target
),
1619 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1620 trial
&& !LABEL_P (trial
) && insns_to_search
> 0;
1621 trial
= PREV_INSN (trial
))
1623 if (!INSN_P (trial
))
1627 pat
= PATTERN (trial
);
1628 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1631 if (GET_CODE (pat
) == SEQUENCE
)
1633 bool annul_p
= false;
1634 rtx control
= XVECEXP (pat
, 0, 0);
1636 /* If this is a CALL_INSN and its delay slots, it is hard to track
1637 the resource needs properly, so give up. */
1638 if (CALL_P (control
))
1641 /* If this is an INSN or JUMP_INSN with delayed effects, it
1642 is hard to track the resource needs properly, so give up. */
1644 #ifdef INSN_SETS_ARE_DELAYED
1645 if (INSN_SETS_ARE_DELAYED (control
))
1649 #ifdef INSN_REFERENCES_ARE_DELAYED
1650 if (INSN_REFERENCES_ARE_DELAYED (control
))
1654 if (JUMP_P (control
))
1655 annul_p
= INSN_ANNULLED_BRANCH_P (control
);
1657 /* See if any of the insns in the delay slot match, updating
1658 resource requirements as we go. */
1659 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1661 rtx candidate
= XVECEXP (pat
, 0, i
);
1663 /* If an insn will be annulled if the branch is false, it isn't
1664 considered as a possible duplicate insn. */
1665 if (rtx_equal_p (PATTERN (candidate
), ipat
)
1666 && ! (annul_p
&& INSN_FROM_TARGET_P (candidate
)))
1668 /* Show that this insn will be used in the sequel. */
1669 INSN_FROM_TARGET_P (candidate
) = 0;
1673 /* Unless this is an annulled insn from the target of a branch,
1674 we must stop if it sets anything needed or set by INSN. */
1675 if ((!annul_p
|| !INSN_FROM_TARGET_P (candidate
))
1676 && insn_sets_resource_p (candidate
, &needed
, true))
1680 /* If the insn requiring the delay slot conflicts with INSN, we
1682 if (insn_sets_resource_p (control
, &needed
, true))
1687 /* See if TRIAL is the same as INSN. */
1688 pat
= PATTERN (trial
);
1689 if (rtx_equal_p (pat
, ipat
))
1692 /* Can't go any further if TRIAL conflicts with INSN. */
1693 if (insn_sets_resource_p (trial
, &needed
, true))
1701 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1702 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1703 is nonzero, we are allowed to fall into this thread; otherwise, we are
1706 If LABEL is used more than one or we pass a label other than LABEL before
1707 finding an active insn, we do not own this thread. */
1710 own_thread_p (rtx thread
, rtx label
, int allow_fallthrough
)
1715 /* We don't own the function end. */
1716 if (thread
== 0 || ANY_RETURN_P (thread
))
1719 /* Get the first active insn, or THREAD, if it is an active insn. */
1720 active_insn
= next_active_insn (PREV_INSN (thread
));
1722 for (insn
= thread
; insn
!= active_insn
; insn
= NEXT_INSN (insn
))
1724 && (insn
!= label
|| LABEL_NUSES (insn
) != 1))
1727 if (allow_fallthrough
)
1730 /* Ensure that we reach a BARRIER before any insn or label. */
1731 for (insn
= prev_nonnote_insn (thread
);
1732 insn
== 0 || !BARRIER_P (insn
);
1733 insn
= prev_nonnote_insn (insn
))
1736 || (NONJUMP_INSN_P (insn
)
1737 && GET_CODE (PATTERN (insn
)) != USE
1738 && GET_CODE (PATTERN (insn
)) != CLOBBER
))
1744 /* Called when INSN is being moved from a location near the target of a jump.
1745 We leave a marker of the form (use (INSN)) immediately in front
1746 of WHERE for mark_target_live_regs. These markers will be deleted when
1749 We used to try to update the live status of registers if WHERE is at
1750 the start of a basic block, but that can't work since we may remove a
1751 BARRIER in relax_delay_slots. */
1754 update_block (rtx insn
, rtx where
)
1756 /* Ignore if this was in a delay slot and it came from the target of
1758 if (INSN_FROM_TARGET_P (insn
))
1761 emit_insn_before (gen_rtx_USE (VOIDmode
, insn
), where
);
1763 /* INSN might be making a value live in a block where it didn't use to
1764 be. So recompute liveness information for this block. */
1766 incr_ticks_for_insn (insn
);
1769 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1770 the basic block containing the jump. */
1773 reorg_redirect_jump (rtx jump
, rtx nlabel
)
1775 incr_ticks_for_insn (jump
);
1776 return redirect_jump (jump
, nlabel
, 1);
1779 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1780 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1781 that reference values used in INSN. If we find one, then we move the
1782 REG_DEAD note to INSN.
1784 This is needed to handle the case where a later insn (after INSN) has a
1785 REG_DEAD note for a register used by INSN, and this later insn subsequently
1786 gets moved before a CODE_LABEL because it is a redundant insn. In this
1787 case, mark_target_live_regs may be confused into thinking the register
1788 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1791 update_reg_dead_notes (rtx insn
, rtx delayed_insn
)
1795 for (p
= next_nonnote_insn (insn
); p
!= delayed_insn
;
1796 p
= next_nonnote_insn (p
))
1797 for (link
= REG_NOTES (p
); link
; link
= next
)
1799 next
= XEXP (link
, 1);
1801 if (REG_NOTE_KIND (link
) != REG_DEAD
1802 || !REG_P (XEXP (link
, 0)))
1805 if (reg_referenced_p (XEXP (link
, 0), PATTERN (insn
)))
1807 /* Move the REG_DEAD note from P to INSN. */
1808 remove_note (p
, link
);
1809 XEXP (link
, 1) = REG_NOTES (insn
);
1810 REG_NOTES (insn
) = link
;
1815 /* Called when an insn redundant with start_insn is deleted. If there
1816 is a REG_DEAD note for the target of start_insn between start_insn
1817 and stop_insn, then the REG_DEAD note needs to be deleted since the
1818 value no longer dies there.
1820 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1821 confused into thinking the register is dead. */
1824 fix_reg_dead_note (rtx start_insn
, rtx stop_insn
)
1828 for (p
= next_nonnote_insn (start_insn
); p
!= stop_insn
;
1829 p
= next_nonnote_insn (p
))
1830 for (link
= REG_NOTES (p
); link
; link
= next
)
1832 next
= XEXP (link
, 1);
1834 if (REG_NOTE_KIND (link
) != REG_DEAD
1835 || !REG_P (XEXP (link
, 0)))
1838 if (reg_set_p (XEXP (link
, 0), PATTERN (start_insn
)))
1840 remove_note (p
, link
);
1846 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1848 This handles the case of udivmodXi4 instructions which optimize their
1849 output depending on whether any REG_UNUSED notes are present.
1850 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1854 update_reg_unused_notes (rtx insn
, rtx redundant_insn
)
1858 for (link
= REG_NOTES (insn
); link
; link
= next
)
1860 next
= XEXP (link
, 1);
1862 if (REG_NOTE_KIND (link
) != REG_UNUSED
1863 || !REG_P (XEXP (link
, 0)))
1866 if (! find_regno_note (redundant_insn
, REG_UNUSED
,
1867 REGNO (XEXP (link
, 0))))
1868 remove_note (insn
, link
);
1872 /* Return the label before INSN, or put a new label there. */
1875 get_label_before (rtx insn
)
1879 /* Find an existing label at this point
1880 or make a new one if there is none. */
1881 label
= prev_nonnote_insn (insn
);
1883 if (label
== 0 || !LABEL_P (label
))
1885 rtx prev
= PREV_INSN (insn
);
1887 label
= gen_label_rtx ();
1888 emit_label_after (label
, prev
);
1889 LABEL_NUSES (label
) = 0;
1894 /* Scan a function looking for insns that need a delay slot and find insns to
1895 put into the delay slot.
1897 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
1898 as calls). We do these first since we don't want jump insns (that are
1899 easier to fill) to get the only insns that could be used for non-jump insns.
1900 When it is zero, only try to fill JUMP_INSNs.
1902 When slots are filled in this manner, the insns (including the
1903 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
1904 it is possible to tell whether a delay slot has really been filled
1905 or not. `final' knows how to deal with this, by communicating
1906 through FINAL_SEQUENCE. */
1909 fill_simple_delay_slots (int non_jumps_p
)
1911 rtx insn
, pat
, trial
, next_trial
;
1913 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
1914 struct resources needed
, set
;
1915 int slots_to_fill
, slots_filled
;
1918 for (i
= 0; i
< num_unfilled_slots
; i
++)
1921 /* Get the next insn to fill. If it has already had any slots assigned,
1922 we can't do anything with it. Maybe we'll improve this later. */
1924 insn
= unfilled_slots_base
[i
];
1926 || INSN_DELETED_P (insn
)
1927 || (NONJUMP_INSN_P (insn
)
1928 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1929 || (JUMP_P (insn
) && non_jumps_p
)
1930 || (!JUMP_P (insn
) && ! non_jumps_p
))
1933 /* It may have been that this insn used to need delay slots, but
1934 now doesn't; ignore in that case. This can happen, for example,
1935 on the HP PA RISC, where the number of delay slots depends on
1936 what insns are nearby. */
1937 slots_to_fill
= num_delay_slots (insn
);
1939 /* Some machine description have defined instructions to have
1940 delay slots only in certain circumstances which may depend on
1941 nearby insns (which change due to reorg's actions).
1943 For example, the PA port normally has delay slots for unconditional
1946 However, the PA port claims such jumps do not have a delay slot
1947 if they are immediate successors of certain CALL_INSNs. This
1948 allows the port to favor filling the delay slot of the call with
1949 the unconditional jump. */
1950 if (slots_to_fill
== 0)
1953 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
1954 says how many. After initialization, first try optimizing
1957 nop add %o7,.-L1,%o7
1961 If this case applies, the delay slot of the call is filled with
1962 the unconditional jump. This is done first to avoid having the
1963 delay slot of the call filled in the backward scan. Also, since
1964 the unconditional jump is likely to also have a delay slot, that
1965 insn must exist when it is subsequently scanned.
1967 This is tried on each insn with delay slots as some machines
1968 have insns which perform calls, but are not represented as
1975 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
1977 flags
= get_jump_flags (insn
, NULL_RTX
);
1979 if ((trial
= next_active_insn (insn
))
1981 && simplejump_p (trial
)
1982 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
1983 && no_labels_between_p (insn
, trial
)
1984 && ! can_throw_internal (trial
))
1988 delay_list
= add_to_delay_list (trial
, delay_list
);
1990 /* TRIAL may have had its delay slot filled, then unfilled. When
1991 the delay slot is unfilled, TRIAL is placed back on the unfilled
1992 slots obstack. Unfortunately, it is placed on the end of the
1993 obstack, not in its original location. Therefore, we must search
1994 from entry i + 1 to the end of the unfilled slots obstack to
1995 try and find TRIAL. */
1996 tmp
= &unfilled_slots_base
[i
+ 1];
1997 while (*tmp
!= trial
&& tmp
!= unfilled_slots_next
)
2000 /* Remove the unconditional jump from consideration for delay slot
2001 filling and unthread it. */
2005 rtx next
= NEXT_INSN (trial
);
2006 rtx prev
= PREV_INSN (trial
);
2008 NEXT_INSN (prev
) = next
;
2010 PREV_INSN (next
) = prev
;
2014 /* Now, scan backwards from the insn to search for a potential
2015 delay-slot candidate. Stop searching when a label or jump is hit.
2017 For each candidate, if it is to go into the delay slot (moved
2018 forward in execution sequence), it must not need or set any resources
2019 that were set by later insns and must not set any resources that
2020 are needed for those insns.
2022 The delay slot insn itself sets resources unless it is a call
2023 (in which case the called routine, not the insn itself, is doing
2026 if (slots_filled
< slots_to_fill
)
2028 CLEAR_RESOURCE (&needed
);
2029 CLEAR_RESOURCE (&set
);
2030 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST
);
2031 mark_referenced_resources (insn
, &needed
, false);
2033 for (trial
= prev_nonnote_insn (insn
); ! stop_search_p (trial
, 1);
2036 next_trial
= prev_nonnote_insn (trial
);
2038 /* This must be an INSN or CALL_INSN. */
2039 pat
= PATTERN (trial
);
2041 /* Stand-alone USE and CLOBBER are just for flow. */
2042 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2045 /* Check for resource conflict first, to avoid unnecessary
2047 if (! insn_references_resource_p (trial
, &set
, true)
2048 && ! insn_sets_resource_p (trial
, &set
, true)
2049 && ! insn_sets_resource_p (trial
, &needed
, true)
2051 /* Can't separate set of cc0 from its use. */
2052 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2054 && ! can_throw_internal (trial
))
2056 trial
= try_split (pat
, trial
, 1);
2057 next_trial
= prev_nonnote_insn (trial
);
2058 if (eligible_for_delay (insn
, slots_filled
, trial
, flags
))
2060 /* In this case, we are searching backward, so if we
2061 find insns to put on the delay list, we want
2062 to put them at the head, rather than the
2063 tail, of the list. */
2065 update_reg_dead_notes (trial
, insn
);
2066 delay_list
= gen_rtx_INSN_LIST (VOIDmode
,
2068 update_block (trial
, trial
);
2069 delete_related_insns (trial
);
2070 if (slots_to_fill
== ++slots_filled
)
2076 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2077 mark_referenced_resources (trial
, &needed
, true);
2081 /* If all needed slots haven't been filled, we come here. */
2083 /* Try to optimize case of jumping around a single insn. */
2084 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2085 if (slots_filled
!= slots_to_fill
2088 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
2089 && !ANY_RETURN_P (JUMP_LABEL (insn
)))
2091 delay_list
= optimize_skip (insn
);
2097 /* Try to get insns from beyond the insn needing the delay slot.
2098 These insns can neither set or reference resources set in insns being
2099 skipped, cannot set resources in the insn being skipped, and, if this
2100 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2101 call might not return).
2103 There used to be code which continued past the target label if
2104 we saw all uses of the target label. This code did not work,
2105 because it failed to account for some instructions which were
2106 both annulled and marked as from the target. This can happen as a
2107 result of optimize_skip. Since this code was redundant with
2108 fill_eager_delay_slots anyways, it was just deleted. */
2110 if (slots_filled
!= slots_to_fill
2111 /* If this instruction could throw an exception which is
2112 caught in the same function, then it's not safe to fill
2113 the delay slot with an instruction from beyond this
2114 point. For example, consider:
2125 Even though `i' is a local variable, we must be sure not
2126 to put `i = 3' in the delay slot if `f' might throw an
2129 Presumably, we should also check to see if we could get
2130 back to this function via `setjmp'. */
2131 && ! can_throw_internal (insn
)
2133 || ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
2134 && ! simplejump_p (insn
)
2135 && !ANY_RETURN_P (JUMP_LABEL (insn
)))))
2137 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2138 label. Otherwise, zero. */
2140 int maybe_never
= 0;
2141 rtx pat
, trial_delay
;
2143 CLEAR_RESOURCE (&needed
);
2144 CLEAR_RESOURCE (&set
);
2148 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2149 mark_referenced_resources (insn
, &needed
, true);
2154 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2155 mark_referenced_resources (insn
, &needed
, true);
2157 target
= JUMP_LABEL (insn
);
2160 if (target
== 0 || ANY_RETURN_P (target
))
2161 for (trial
= next_nonnote_insn (insn
); !stop_search_p (trial
, 1);
2164 next_trial
= next_nonnote_insn (trial
);
2166 /* This must be an INSN or CALL_INSN. */
2167 pat
= PATTERN (trial
);
2169 /* Stand-alone USE and CLOBBER are just for flow. */
2170 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2173 /* If this already has filled delay slots, get the insn needing
2175 if (GET_CODE (pat
) == SEQUENCE
)
2176 trial_delay
= XVECEXP (pat
, 0, 0);
2178 trial_delay
= trial
;
2180 /* Stop our search when seeing a jump. */
2181 if (JUMP_P (trial_delay
))
2184 /* See if we have a resource problem before we try to
2186 if (GET_CODE (pat
) != SEQUENCE
2187 && ! insn_references_resource_p (trial
, &set
, true)
2188 && ! insn_sets_resource_p (trial
, &set
, true)
2189 && ! insn_sets_resource_p (trial
, &needed
, true)
2191 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2193 && ! (maybe_never
&& may_trap_or_fault_p (pat
))
2194 && (trial
= try_split (pat
, trial
, 0))
2195 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2196 && ! can_throw_internal(trial
))
2198 next_trial
= next_nonnote_insn (trial
);
2199 delay_list
= add_to_delay_list (trial
, delay_list
);
2202 if (reg_mentioned_p (cc0_rtx
, pat
))
2203 link_cc0_insns (trial
);
2206 delete_related_insns (trial
);
2207 if (slots_to_fill
== ++slots_filled
)
2212 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2213 mark_referenced_resources (trial
, &needed
, true);
2215 /* Ensure we don't put insns between the setting of cc and the
2216 comparison by moving a setting of cc into an earlier delay
2217 slot since these insns could clobber the condition code. */
2220 /* If this is a call or jump, we might not get here. */
2221 if (CALL_P (trial_delay
)
2222 || JUMP_P (trial_delay
))
2226 /* If there are slots left to fill and our search was stopped by an
2227 unconditional branch, try the insn at the branch target. We can
2228 redirect the branch if it works.
2230 Don't do this if the insn at the branch target is a branch. */
2231 if (slots_to_fill
!= slots_filled
2233 && jump_to_label_p (trial
)
2234 && simplejump_p (trial
)
2235 && (target
== 0 || JUMP_LABEL (trial
) == target
)
2236 && (next_trial
= next_active_insn (JUMP_LABEL (trial
))) != 0
2237 && ! (NONJUMP_INSN_P (next_trial
)
2238 && GET_CODE (PATTERN (next_trial
)) == SEQUENCE
)
2239 && !JUMP_P (next_trial
)
2240 && ! insn_references_resource_p (next_trial
, &set
, true)
2241 && ! insn_sets_resource_p (next_trial
, &set
, true)
2242 && ! insn_sets_resource_p (next_trial
, &needed
, true)
2244 && ! reg_mentioned_p (cc0_rtx
, PATTERN (next_trial
))
2246 && ! (maybe_never
&& may_trap_or_fault_p (PATTERN (next_trial
)))
2247 && (next_trial
= try_split (PATTERN (next_trial
), next_trial
, 0))
2248 && eligible_for_delay (insn
, slots_filled
, next_trial
, flags
)
2249 && ! can_throw_internal (trial
))
2251 /* See comment in relax_delay_slots about necessity of using
2252 next_real_insn here. */
2253 rtx new_label
= next_real_insn (next_trial
);
2256 new_label
= get_label_before (new_label
);
2258 new_label
= find_end_label (simple_return_rtx
);
2263 = add_to_delay_list (copy_delay_slot_insn (next_trial
),
2266 reorg_redirect_jump (trial
, new_label
);
2268 /* If we merged because we both jumped to the same place,
2269 redirect the original insn also. */
2271 reorg_redirect_jump (insn
, new_label
);
2276 /* If this is an unconditional jump, then try to get insns from the
2277 target of the jump. */
2279 && simplejump_p (insn
)
2280 && slots_filled
!= slots_to_fill
)
2282 = fill_slots_from_thread (insn
, const_true_rtx
,
2283 next_active_insn (JUMP_LABEL (insn
)),
2285 own_thread_p (JUMP_LABEL (insn
),
2286 JUMP_LABEL (insn
), 0),
2287 slots_to_fill
, &slots_filled
,
2291 unfilled_slots_base
[i
]
2292 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
2294 if (slots_to_fill
== slots_filled
)
2295 unfilled_slots_base
[i
] = 0;
2297 note_delay_statistics (slots_filled
, 0);
2301 /* Follow any unconditional jump at LABEL, for the purpose of redirecting JUMP;
2302 return the ultimate label reached by any such chain of jumps.
2303 Return a suitable return rtx if the chain ultimately leads to a
2305 If LABEL is not followed by a jump, return LABEL.
2306 If the chain loops or we can't find end, return LABEL,
2307 since that tells caller to avoid changing the insn.
2308 If the returned label is obtained by following a REG_CROSSING_JUMP
2309 jump, set *CROSSING to true, otherwise set it to false. */
2312 follow_jumps (rtx label
, rtx jump
, bool *crossing
)
2320 if (ANY_RETURN_P (label
))
2324 && (insn
= next_active_insn (value
)) != 0
2326 && JUMP_LABEL (insn
) != NULL_RTX
2327 && ((any_uncondjump_p (insn
) && onlyjump_p (insn
))
2328 || ANY_RETURN_P (PATTERN (insn
)))
2329 && (next
= NEXT_INSN (insn
))
2330 && BARRIER_P (next
));
2333 rtx this_label
= JUMP_LABEL (insn
);
2336 /* If we have found a cycle, make the insn jump to itself. */
2337 if (this_label
== label
)
2339 if (ANY_RETURN_P (this_label
))
2341 tem
= next_active_insn (this_label
);
2343 && (GET_CODE (PATTERN (tem
)) == ADDR_VEC
2344 || GET_CODE (PATTERN (tem
)) == ADDR_DIFF_VEC
))
2347 if (!targetm
.can_follow_jump (jump
, insn
))
2351 = find_reg_note (insn
, REG_CROSSING_JUMP
, NULL_RTX
) != NULL_RTX
;
2359 /* Try to find insns to place in delay slots.
2361 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2362 or is an unconditional branch if CONDITION is const_true_rtx.
2363 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2365 THREAD is a flow-of-control, either the insns to be executed if the
2366 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2368 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2369 to see if any potential delay slot insns set things needed there.
2371 LIKELY is nonzero if it is extremely likely that the branch will be
2372 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2373 end of a loop back up to the top.
2375 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2376 thread. I.e., it is the fallthrough code of our jump or the target of the
2377 jump when we are the only jump going there.
2379 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2380 case, we can only take insns from the head of the thread for our delay
2381 slot. We then adjust the jump to point after the insns we have taken. */
2384 fill_slots_from_thread (rtx insn
, rtx condition
, rtx thread
,
2385 rtx opposite_thread
, int likely
, int thread_if_true
,
2386 int own_thread
, int slots_to_fill
,
2387 int *pslots_filled
, rtx delay_list
)
2390 struct resources opposite_needed
, set
, needed
;
2396 /* Validate our arguments. */
2397 gcc_assert(condition
!= const_true_rtx
|| thread_if_true
);
2398 gcc_assert(own_thread
|| thread_if_true
);
2400 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2402 /* If our thread is the end of subroutine, we can't get any delay
2404 if (thread
== NULL_RTX
|| ANY_RETURN_P (thread
))
2407 /* If this is an unconditional branch, nothing is needed at the
2408 opposite thread. Otherwise, compute what is needed there. */
2409 if (condition
== const_true_rtx
)
2410 CLEAR_RESOURCE (&opposite_needed
);
2412 mark_target_live_regs (get_insns (), opposite_thread
, &opposite_needed
);
2414 /* If the insn at THREAD can be split, do it here to avoid having to
2415 update THREAD and NEW_THREAD if it is done in the loop below. Also
2416 initialize NEW_THREAD. */
2418 new_thread
= thread
= try_split (PATTERN (thread
), thread
, 0);
2420 /* Scan insns at THREAD. We are looking for an insn that can be removed
2421 from THREAD (it neither sets nor references resources that were set
2422 ahead of it and it doesn't set anything needs by the insns ahead of
2423 it) and that either can be placed in an annulling insn or aren't
2424 needed at OPPOSITE_THREAD. */
2426 CLEAR_RESOURCE (&needed
);
2427 CLEAR_RESOURCE (&set
);
2429 /* If we do not own this thread, we must stop as soon as we find
2430 something that we can't put in a delay slot, since all we can do
2431 is branch into THREAD at a later point. Therefore, labels stop
2432 the search if this is not the `true' thread. */
2434 for (trial
= thread
;
2435 ! stop_search_p (trial
, ! thread_if_true
) && (! lose
|| own_thread
);
2436 trial
= next_nonnote_insn (trial
))
2440 /* If we have passed a label, we no longer own this thread. */
2441 if (LABEL_P (trial
))
2447 pat
= PATTERN (trial
);
2448 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2451 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2452 don't separate or copy insns that set and use CC0. */
2453 if (! insn_references_resource_p (trial
, &set
, true)
2454 && ! insn_sets_resource_p (trial
, &set
, true)
2455 && ! insn_sets_resource_p (trial
, &needed
, true)
2457 && ! (reg_mentioned_p (cc0_rtx
, pat
)
2458 && (! own_thread
|| ! sets_cc0_p (pat
)))
2460 && ! can_throw_internal (trial
))
2464 /* If TRIAL is redundant with some insn before INSN, we don't
2465 actually need to add it to the delay list; we can merely pretend
2467 if ((prior_insn
= redundant_insn (trial
, insn
, delay_list
)))
2469 fix_reg_dead_note (prior_insn
, insn
);
2472 update_block (trial
, thread
);
2473 if (trial
== thread
)
2475 thread
= next_active_insn (thread
);
2476 if (new_thread
== trial
)
2477 new_thread
= thread
;
2480 delete_related_insns (trial
);
2484 update_reg_unused_notes (prior_insn
, trial
);
2485 new_thread
= next_active_insn (trial
);
2491 /* There are two ways we can win: If TRIAL doesn't set anything
2492 needed at the opposite thread and can't trap, or if it can
2493 go into an annulled delay slot. */
2495 && (condition
== const_true_rtx
2496 || (! insn_sets_resource_p (trial
, &opposite_needed
, true)
2497 && ! may_trap_or_fault_p (pat
)
2498 && ! RTX_FRAME_RELATED_P (trial
))))
2501 trial
= try_split (pat
, trial
, 0);
2502 if (new_thread
== old_trial
)
2504 if (thread
== old_trial
)
2506 pat
= PATTERN (trial
);
2507 if (eligible_for_delay (insn
, *pslots_filled
, trial
, flags
))
2511 #ifdef ANNUL_IFTRUE_SLOTS
2514 #ifdef ANNUL_IFFALSE_SLOTS
2520 trial
= try_split (pat
, trial
, 0);
2521 if (new_thread
== old_trial
)
2523 if (thread
== old_trial
)
2525 pat
= PATTERN (trial
);
2526 if ((must_annul
|| delay_list
== NULL
) && (thread_if_true
2527 ? check_annul_list_true_false (0, delay_list
)
2528 && eligible_for_annul_false (insn
, *pslots_filled
, trial
, flags
)
2529 : check_annul_list_true_false (1, delay_list
)
2530 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
2538 if (reg_mentioned_p (cc0_rtx
, pat
))
2539 link_cc0_insns (trial
);
2542 /* If we own this thread, delete the insn. If this is the
2543 destination of a branch, show that a basic block status
2544 may have been updated. In any case, mark the new
2545 starting point of this thread. */
2550 update_block (trial
, thread
);
2551 if (trial
== thread
)
2553 thread
= next_active_insn (thread
);
2554 if (new_thread
== trial
)
2555 new_thread
= thread
;
2558 /* We are moving this insn, not deleting it. We must
2559 temporarily increment the use count on any referenced
2560 label lest it be deleted by delete_related_insns. */
2561 for (note
= REG_NOTES (trial
);
2563 note
= XEXP (note
, 1))
2564 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
2565 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
2567 /* REG_LABEL_OPERAND could be
2568 NOTE_INSN_DELETED_LABEL too. */
2569 if (LABEL_P (XEXP (note
, 0)))
2570 LABEL_NUSES (XEXP (note
, 0))++;
2572 gcc_assert (REG_NOTE_KIND (note
)
2573 == REG_LABEL_OPERAND
);
2575 if (jump_to_label_p (trial
))
2576 LABEL_NUSES (JUMP_LABEL (trial
))++;
2578 delete_related_insns (trial
);
2580 for (note
= REG_NOTES (trial
);
2582 note
= XEXP (note
, 1))
2583 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
2584 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
2586 /* REG_LABEL_OPERAND could be
2587 NOTE_INSN_DELETED_LABEL too. */
2588 if (LABEL_P (XEXP (note
, 0)))
2589 LABEL_NUSES (XEXP (note
, 0))--;
2591 gcc_assert (REG_NOTE_KIND (note
)
2592 == REG_LABEL_OPERAND
);
2594 if (jump_to_label_p (trial
))
2595 LABEL_NUSES (JUMP_LABEL (trial
))--;
2598 new_thread
= next_active_insn (trial
);
2600 temp
= own_thread
? trial
: copy_delay_slot_insn (trial
);
2602 INSN_FROM_TARGET_P (temp
) = 1;
2604 delay_list
= add_to_delay_list (temp
, delay_list
);
2606 if (slots_to_fill
== ++(*pslots_filled
))
2608 /* Even though we have filled all the slots, we
2609 may be branching to a location that has a
2610 redundant insn. Skip any if so. */
2611 while (new_thread
&& ! own_thread
2612 && ! insn_sets_resource_p (new_thread
, &set
, true)
2613 && ! insn_sets_resource_p (new_thread
, &needed
,
2615 && ! insn_references_resource_p (new_thread
,
2618 = redundant_insn (new_thread
, insn
,
2621 /* We know we do not own the thread, so no need
2622 to call update_block and delete_insn. */
2623 fix_reg_dead_note (prior_insn
, insn
);
2624 update_reg_unused_notes (prior_insn
, new_thread
);
2625 new_thread
= next_active_insn (new_thread
);
2635 /* This insn can't go into a delay slot. */
2637 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2638 mark_referenced_resources (trial
, &needed
, true);
2640 /* Ensure we don't put insns between the setting of cc and the comparison
2641 by moving a setting of cc into an earlier delay slot since these insns
2642 could clobber the condition code. */
2645 /* If this insn is a register-register copy and the next insn has
2646 a use of our destination, change it to use our source. That way,
2647 it will become a candidate for our delay slot the next time
2648 through this loop. This case occurs commonly in loops that
2651 We could check for more complex cases than those tested below,
2652 but it doesn't seem worth it. It might also be a good idea to try
2653 to swap the two insns. That might do better.
2655 We can't do this if the next insn modifies our destination, because
2656 that would make the replacement into the insn invalid. We also can't
2657 do this if it modifies our source, because it might be an earlyclobber
2658 operand. This latter test also prevents updating the contents of
2659 a PRE_INC. We also can't do this if there's overlap of source and
2660 destination. Overlap may happen for larger-than-register-size modes. */
2662 if (NONJUMP_INSN_P (trial
) && GET_CODE (pat
) == SET
2663 && REG_P (SET_SRC (pat
))
2664 && REG_P (SET_DEST (pat
))
2665 && !reg_overlap_mentioned_p (SET_DEST (pat
), SET_SRC (pat
)))
2667 rtx next
= next_nonnote_insn (trial
);
2669 if (next
&& NONJUMP_INSN_P (next
)
2670 && GET_CODE (PATTERN (next
)) != USE
2671 && ! reg_set_p (SET_DEST (pat
), next
)
2672 && ! reg_set_p (SET_SRC (pat
), next
)
2673 && reg_referenced_p (SET_DEST (pat
), PATTERN (next
))
2674 && ! modified_in_p (SET_DEST (pat
), next
))
2675 validate_replace_rtx (SET_DEST (pat
), SET_SRC (pat
), next
);
2679 /* If we stopped on a branch insn that has delay slots, see if we can
2680 steal some of the insns in those slots. */
2681 if (trial
&& NONJUMP_INSN_P (trial
)
2682 && GET_CODE (PATTERN (trial
)) == SEQUENCE
2683 && JUMP_P (XVECEXP (PATTERN (trial
), 0, 0)))
2685 /* If this is the `true' thread, we will want to follow the jump,
2686 so we can only do this if we have taken everything up to here. */
2687 if (thread_if_true
&& trial
== new_thread
)
2690 = steal_delay_list_from_target (insn
, condition
, PATTERN (trial
),
2691 delay_list
, &set
, &needed
,
2692 &opposite_needed
, slots_to_fill
,
2693 pslots_filled
, &must_annul
,
2695 /* If we owned the thread and are told that it branched
2696 elsewhere, make sure we own the thread at the new location. */
2697 if (own_thread
&& trial
!= new_thread
)
2698 own_thread
= own_thread_p (new_thread
, new_thread
, 0);
2700 else if (! thread_if_true
)
2702 = steal_delay_list_from_fallthrough (insn
, condition
,
2704 delay_list
, &set
, &needed
,
2705 &opposite_needed
, slots_to_fill
,
2706 pslots_filled
, &must_annul
);
2709 /* If we haven't found anything for this delay slot and it is very
2710 likely that the branch will be taken, see if the insn at our target
2711 increments or decrements a register with an increment that does not
2712 depend on the destination register. If so, try to place the opposite
2713 arithmetic insn after the jump insn and put the arithmetic insn in the
2714 delay slot. If we can't do this, return. */
2715 if (delay_list
== 0 && likely
2716 && new_thread
&& !ANY_RETURN_P (new_thread
)
2717 && NONJUMP_INSN_P (new_thread
)
2718 && !RTX_FRAME_RELATED_P (new_thread
)
2719 && GET_CODE (PATTERN (new_thread
)) != ASM_INPUT
2720 && asm_noperands (PATTERN (new_thread
)) < 0)
2722 rtx pat
= PATTERN (new_thread
);
2727 pat
= PATTERN (trial
);
2729 if (!NONJUMP_INSN_P (trial
)
2730 || GET_CODE (pat
) != SET
2731 || ! eligible_for_delay (insn
, 0, trial
, flags
)
2732 || can_throw_internal (trial
))
2735 dest
= SET_DEST (pat
), src
= SET_SRC (pat
);
2736 if ((GET_CODE (src
) == PLUS
|| GET_CODE (src
) == MINUS
)
2737 && rtx_equal_p (XEXP (src
, 0), dest
)
2738 && (!FLOAT_MODE_P (GET_MODE (src
))
2739 || flag_unsafe_math_optimizations
)
2740 && ! reg_overlap_mentioned_p (dest
, XEXP (src
, 1))
2741 && ! side_effects_p (pat
))
2743 rtx other
= XEXP (src
, 1);
2747 /* If this is a constant adjustment, use the same code with
2748 the negated constant. Otherwise, reverse the sense of the
2750 if (CONST_INT_P (other
))
2751 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
), GET_MODE (src
), dest
,
2752 negate_rtx (GET_MODE (src
), other
));
2754 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
) == PLUS
? MINUS
: PLUS
,
2755 GET_MODE (src
), dest
, other
);
2757 ninsn
= emit_insn_after (gen_rtx_SET (VOIDmode
, dest
, new_arith
),
2760 if (recog_memoized (ninsn
) < 0
2761 || (extract_insn (ninsn
), ! constrain_operands (1)))
2763 delete_related_insns (ninsn
);
2769 update_block (trial
, thread
);
2770 if (trial
== thread
)
2772 thread
= next_active_insn (thread
);
2773 if (new_thread
== trial
)
2774 new_thread
= thread
;
2776 delete_related_insns (trial
);
2779 new_thread
= next_active_insn (trial
);
2781 ninsn
= own_thread
? trial
: copy_delay_slot_insn (trial
);
2783 INSN_FROM_TARGET_P (ninsn
) = 1;
2785 delay_list
= add_to_delay_list (ninsn
, NULL_RTX
);
2790 if (delay_list
&& must_annul
)
2791 INSN_ANNULLED_BRANCH_P (insn
) = 1;
2793 /* If we are to branch into the middle of this thread, find an appropriate
2794 label or make a new one if none, and redirect INSN to it. If we hit the
2795 end of the function, use the end-of-function label. */
2796 if (new_thread
!= thread
)
2799 bool crossing
= false;
2801 gcc_assert (thread_if_true
);
2803 if (new_thread
&& simplejump_or_return_p (new_thread
)
2804 && redirect_with_delay_list_safe_p (insn
,
2805 JUMP_LABEL (new_thread
),
2807 new_thread
= follow_jumps (JUMP_LABEL (new_thread
), insn
, &crossing
);
2809 if (ANY_RETURN_P (new_thread
))
2810 label
= find_end_label (new_thread
);
2811 else if (LABEL_P (new_thread
))
2814 label
= get_label_before (new_thread
);
2818 reorg_redirect_jump (insn
, label
);
2820 set_unique_reg_note (insn
, REG_CROSSING_JUMP
, NULL_RTX
);
2827 /* Make another attempt to find insns to place in delay slots.
2829 We previously looked for insns located in front of the delay insn
2830 and, for non-jump delay insns, located behind the delay insn.
2832 Here only try to schedule jump insns and try to move insns from either
2833 the target or the following insns into the delay slot. If annulling is
2834 supported, we will be likely to do this. Otherwise, we can do this only
2838 fill_eager_delay_slots (void)
2842 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2844 for (i
= 0; i
< num_unfilled_slots
; i
++)
2847 rtx target_label
, insn_at_target
, fallthrough_insn
;
2850 int own_fallthrough
;
2851 int prediction
, slots_to_fill
, slots_filled
;
2853 insn
= unfilled_slots_base
[i
];
2855 || INSN_DELETED_P (insn
)
2857 || ! (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2860 slots_to_fill
= num_delay_slots (insn
);
2861 /* Some machine description have defined instructions to have
2862 delay slots only in certain circumstances which may depend on
2863 nearby insns (which change due to reorg's actions).
2865 For example, the PA port normally has delay slots for unconditional
2868 However, the PA port claims such jumps do not have a delay slot
2869 if they are immediate successors of certain CALL_INSNs. This
2870 allows the port to favor filling the delay slot of the call with
2871 the unconditional jump. */
2872 if (slots_to_fill
== 0)
2876 target_label
= JUMP_LABEL (insn
);
2877 condition
= get_branch_condition (insn
, target_label
);
2882 /* Get the next active fallthrough and target insns and see if we own
2883 them. Then see whether the branch is likely true. We don't need
2884 to do a lot of this for unconditional branches. */
2886 insn_at_target
= first_active_target_insn (target_label
);
2887 own_target
= own_thread_p (target_label
, target_label
, 0);
2889 if (condition
== const_true_rtx
)
2891 own_fallthrough
= 0;
2892 fallthrough_insn
= 0;
2897 fallthrough_insn
= next_active_insn (insn
);
2898 own_fallthrough
= own_thread_p (NEXT_INSN (insn
), NULL_RTX
, 1);
2899 prediction
= mostly_true_jump (insn
);
2902 /* If this insn is expected to branch, first try to get insns from our
2903 target, then our fallthrough insns. If it is not expected to branch,
2904 try the other order. */
2909 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
2910 fallthrough_insn
, prediction
== 2, 1,
2912 slots_to_fill
, &slots_filled
, delay_list
);
2914 if (delay_list
== 0 && own_fallthrough
)
2916 /* Even though we didn't find anything for delay slots,
2917 we might have found a redundant insn which we deleted
2918 from the thread that was filled. So we have to recompute
2919 the next insn at the target. */
2920 target_label
= JUMP_LABEL (insn
);
2921 insn_at_target
= first_active_target_insn (target_label
);
2924 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
2925 insn_at_target
, 0, 0,
2927 slots_to_fill
, &slots_filled
,
2933 if (own_fallthrough
)
2935 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
2936 insn_at_target
, 0, 0,
2938 slots_to_fill
, &slots_filled
,
2941 if (delay_list
== 0)
2943 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
2944 next_active_insn (insn
), 0, 1,
2946 slots_to_fill
, &slots_filled
,
2951 unfilled_slots_base
[i
]
2952 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
2954 if (slots_to_fill
== slots_filled
)
2955 unfilled_slots_base
[i
] = 0;
2957 note_delay_statistics (slots_filled
, 1);
2961 static void delete_computation (rtx insn
);
2963 /* Recursively delete prior insns that compute the value (used only by INSN
2964 which the caller is deleting) stored in the register mentioned by NOTE
2965 which is a REG_DEAD note associated with INSN. */
2968 delete_prior_computation (rtx note
, rtx insn
)
2971 rtx reg
= XEXP (note
, 0);
2973 for (our_prev
= prev_nonnote_insn (insn
);
2974 our_prev
&& (NONJUMP_INSN_P (our_prev
)
2975 || CALL_P (our_prev
));
2976 our_prev
= prev_nonnote_insn (our_prev
))
2978 rtx pat
= PATTERN (our_prev
);
2980 /* If we reach a CALL which is not calling a const function
2981 or the callee pops the arguments, then give up. */
2982 if (CALL_P (our_prev
)
2983 && (! RTL_CONST_CALL_P (our_prev
)
2984 || GET_CODE (pat
) != SET
|| GET_CODE (SET_SRC (pat
)) != CALL
))
2987 /* If we reach a SEQUENCE, it is too complex to try to
2988 do anything with it, so give up. We can be run during
2989 and after reorg, so SEQUENCE rtl can legitimately show
2991 if (GET_CODE (pat
) == SEQUENCE
)
2994 if (GET_CODE (pat
) == USE
2995 && NONJUMP_INSN_P (XEXP (pat
, 0)))
2996 /* reorg creates USEs that look like this. We leave them
2997 alone because reorg needs them for its own purposes. */
3000 if (reg_set_p (reg
, pat
))
3002 if (side_effects_p (pat
) && !CALL_P (our_prev
))
3005 if (GET_CODE (pat
) == PARALLEL
)
3007 /* If we find a SET of something else, we can't
3012 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3014 rtx part
= XVECEXP (pat
, 0, i
);
3016 if (GET_CODE (part
) == SET
3017 && SET_DEST (part
) != reg
)
3021 if (i
== XVECLEN (pat
, 0))
3022 delete_computation (our_prev
);
3024 else if (GET_CODE (pat
) == SET
3025 && REG_P (SET_DEST (pat
)))
3027 int dest_regno
= REGNO (SET_DEST (pat
));
3028 int dest_endregno
= END_REGNO (SET_DEST (pat
));
3029 int regno
= REGNO (reg
);
3030 int endregno
= END_REGNO (reg
);
3032 if (dest_regno
>= regno
3033 && dest_endregno
<= endregno
)
3034 delete_computation (our_prev
);
3036 /* We may have a multi-word hard register and some, but not
3037 all, of the words of the register are needed in subsequent
3038 insns. Write REG_UNUSED notes for those parts that were not
3040 else if (dest_regno
<= regno
3041 && dest_endregno
>= endregno
)
3045 add_reg_note (our_prev
, REG_UNUSED
, reg
);
3047 for (i
= dest_regno
; i
< dest_endregno
; i
++)
3048 if (! find_regno_note (our_prev
, REG_UNUSED
, i
))
3051 if (i
== dest_endregno
)
3052 delete_computation (our_prev
);
3059 /* If PAT references the register that dies here, it is an
3060 additional use. Hence any prior SET isn't dead. However, this
3061 insn becomes the new place for the REG_DEAD note. */
3062 if (reg_overlap_mentioned_p (reg
, pat
))
3064 XEXP (note
, 1) = REG_NOTES (our_prev
);
3065 REG_NOTES (our_prev
) = note
;
3071 /* Delete INSN and recursively delete insns that compute values used only
3072 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3074 Look at all our REG_DEAD notes. If a previous insn does nothing other
3075 than set a register that dies in this insn, we can delete that insn
3078 On machines with CC0, if CC0 is used in this insn, we may be able to
3079 delete the insn that set it. */
3082 delete_computation (rtx insn
)
3087 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
3089 rtx prev
= prev_nonnote_insn (insn
);
3090 /* We assume that at this stage
3091 CC's are always set explicitly
3092 and always immediately before the jump that
3093 will use them. So if the previous insn
3094 exists to set the CC's, delete it
3095 (unless it performs auto-increments, etc.). */
3096 if (prev
&& NONJUMP_INSN_P (prev
)
3097 && sets_cc0_p (PATTERN (prev
)))
3099 if (sets_cc0_p (PATTERN (prev
)) > 0
3100 && ! side_effects_p (PATTERN (prev
)))
3101 delete_computation (prev
);
3103 /* Otherwise, show that cc0 won't be used. */
3104 add_reg_note (prev
, REG_UNUSED
, cc0_rtx
);
3109 for (note
= REG_NOTES (insn
); note
; note
= next
)
3111 next
= XEXP (note
, 1);
3113 if (REG_NOTE_KIND (note
) != REG_DEAD
3114 /* Verify that the REG_NOTE is legitimate. */
3115 || !REG_P (XEXP (note
, 0)))
3118 delete_prior_computation (note
, insn
);
3121 delete_related_insns (insn
);
3124 /* If all INSN does is set the pc, delete it,
3125 and delete the insn that set the condition codes for it
3126 if that's what the previous thing was. */
3129 delete_jump (rtx insn
)
3131 rtx set
= single_set (insn
);
3133 if (set
&& GET_CODE (SET_DEST (set
)) == PC
)
3134 delete_computation (insn
);
3138 label_before_next_insn (rtx x
, rtx scan_limit
)
3140 rtx insn
= next_active_insn (x
);
3143 insn
= PREV_INSN (insn
);
3144 if (insn
== scan_limit
|| insn
== NULL_RTX
)
3153 /* Once we have tried two ways to fill a delay slot, make a pass over the
3154 code to try to improve the results and to do such things as more jump
3158 relax_delay_slots (rtx first
)
3160 rtx insn
, next
, pat
;
3161 rtx trial
, delay_insn
, target_label
;
3163 /* Look at every JUMP_INSN and see if we can improve it. */
3164 for (insn
= first
; insn
; insn
= next
)
3169 next
= next_active_insn (insn
);
3171 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3172 the next insn, or jumps to a label that is not the last of a
3173 group of consecutive labels. */
3175 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3176 && !ANY_RETURN_P (target_label
= JUMP_LABEL (insn
)))
3179 = skip_consecutive_labels (follow_jumps (target_label
, insn
,
3181 if (ANY_RETURN_P (target_label
))
3182 target_label
= find_end_label (target_label
);
3184 if (target_label
&& next_active_insn (target_label
) == next
3185 && ! condjump_in_parallel_p (insn
))
3191 if (target_label
&& target_label
!= JUMP_LABEL (insn
))
3193 reorg_redirect_jump (insn
, target_label
);
3195 set_unique_reg_note (insn
, REG_CROSSING_JUMP
, NULL_RTX
);
3198 /* See if this jump conditionally branches around an unconditional
3199 jump. If so, invert this jump and point it to the target of the
3201 if (next
&& simplejump_or_return_p (next
)
3202 && any_condjump_p (insn
)
3204 && next_active_insn (target_label
) == next_active_insn (next
)
3205 && no_labels_between_p (insn
, next
))
3207 rtx label
= JUMP_LABEL (next
);
3209 /* Be careful how we do this to avoid deleting code or
3210 labels that are momentarily dead. See similar optimization
3213 We also need to ensure we properly handle the case when
3214 invert_jump fails. */
3216 ++LABEL_NUSES (target_label
);
3217 if (!ANY_RETURN_P (label
))
3218 ++LABEL_NUSES (label
);
3220 if (invert_jump (insn
, label
, 1))
3222 delete_related_insns (next
);
3226 if (!ANY_RETURN_P (label
))
3227 --LABEL_NUSES (label
);
3229 if (--LABEL_NUSES (target_label
) == 0)
3230 delete_related_insns (target_label
);
3236 /* If this is an unconditional jump and the previous insn is a
3237 conditional jump, try reversing the condition of the previous
3238 insn and swapping our targets. The next pass might be able to
3241 Don't do this if we expect the conditional branch to be true, because
3242 we would then be making the more common case longer. */
3244 if (simplejump_or_return_p (insn
)
3245 && (other
= prev_active_insn (insn
)) != 0
3246 && any_condjump_p (other
)
3247 && no_labels_between_p (other
, insn
)
3248 && 0 > mostly_true_jump (other
))
3250 rtx other_target
= JUMP_LABEL (other
);
3251 target_label
= JUMP_LABEL (insn
);
3253 if (invert_jump (other
, target_label
, 0))
3254 reorg_redirect_jump (insn
, other_target
);
3257 /* Now look only at cases where we have a filled delay slot. */
3258 if (!NONJUMP_INSN_P (insn
) || GET_CODE (PATTERN (insn
)) != SEQUENCE
)
3261 pat
= PATTERN (insn
);
3262 delay_insn
= XVECEXP (pat
, 0, 0);
3264 /* See if the first insn in the delay slot is redundant with some
3265 previous insn. Remove it from the delay slot if so; then set up
3266 to reprocess this insn. */
3267 if (redundant_insn (XVECEXP (pat
, 0, 1), delay_insn
, 0))
3269 delete_from_delay_slot (XVECEXP (pat
, 0, 1));
3270 next
= prev_active_insn (next
);
3274 /* See if we have a RETURN insn with a filled delay slot followed
3275 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3276 the first RETURN (but not its delay insn). This gives the same
3277 effect in fewer instructions.
3279 Only do so if optimizing for size since this results in slower, but
3281 if (optimize_function_for_size_p (cfun
)
3282 && ANY_RETURN_P (PATTERN (delay_insn
))
3285 && PATTERN (next
) == PATTERN (delay_insn
))
3290 /* Delete the RETURN and just execute the delay list insns.
3292 We do this by deleting the INSN containing the SEQUENCE, then
3293 re-emitting the insns separately, and then deleting the RETURN.
3294 This allows the count of the jump target to be properly
3297 Note that we need to change the INSN_UID of the re-emitted insns
3298 since it is used to hash the insns for mark_target_live_regs and
3299 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3301 Clear the from target bit, since these insns are no longer
3303 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3304 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3306 trial
= PREV_INSN (insn
);
3307 delete_related_insns (insn
);
3308 gcc_assert (GET_CODE (pat
) == SEQUENCE
);
3309 add_insn_after (delay_insn
, trial
, NULL
);
3311 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3312 after
= emit_copy_of_insn_after (XVECEXP (pat
, 0, i
), after
);
3313 delete_scheduled_jump (delay_insn
);
3317 /* Now look only at the cases where we have a filled JUMP_INSN. */
3318 if (!JUMP_P (delay_insn
)
3319 || !(condjump_p (delay_insn
) || condjump_in_parallel_p (delay_insn
)))
3322 target_label
= JUMP_LABEL (delay_insn
);
3323 if (target_label
&& ANY_RETURN_P (target_label
))
3326 /* If this jump goes to another unconditional jump, thread it, but
3327 don't convert a jump into a RETURN here. */
3328 trial
= skip_consecutive_labels (follow_jumps (target_label
, delay_insn
,
3330 if (ANY_RETURN_P (trial
))
3331 trial
= find_end_label (trial
);
3333 if (trial
&& trial
!= target_label
3334 && redirect_with_delay_slots_safe_p (delay_insn
, trial
, insn
))
3336 reorg_redirect_jump (delay_insn
, trial
);
3337 target_label
= trial
;
3339 set_unique_reg_note (insn
, REG_CROSSING_JUMP
, NULL_RTX
);
3342 /* If the first insn at TARGET_LABEL is redundant with a previous
3343 insn, redirect the jump to the following insn and process again.
3344 We use next_real_insn instead of next_active_insn so we
3345 don't skip USE-markers, or we'll end up with incorrect
3347 trial
= next_real_insn (target_label
);
3348 if (trial
&& GET_CODE (PATTERN (trial
)) != SEQUENCE
3349 && redundant_insn (trial
, insn
, 0)
3350 && ! can_throw_internal (trial
))
3352 /* Figure out where to emit the special USE insn so we don't
3353 later incorrectly compute register live/death info. */
3354 rtx tmp
= next_active_insn (trial
);
3356 tmp
= find_end_label (simple_return_rtx
);
3360 /* Insert the special USE insn and update dataflow info. */
3361 update_block (trial
, tmp
);
3363 /* Now emit a label before the special USE insn, and
3364 redirect our jump to the new label. */
3365 target_label
= get_label_before (PREV_INSN (tmp
));
3366 reorg_redirect_jump (delay_insn
, target_label
);
3372 /* Similarly, if it is an unconditional jump with one insn in its
3373 delay list and that insn is redundant, thread the jump. */
3374 if (trial
&& GET_CODE (PATTERN (trial
)) == SEQUENCE
3375 && XVECLEN (PATTERN (trial
), 0) == 2
3376 && JUMP_P (XVECEXP (PATTERN (trial
), 0, 0))
3377 && simplejump_or_return_p (XVECEXP (PATTERN (trial
), 0, 0))
3378 && redundant_insn (XVECEXP (PATTERN (trial
), 0, 1), insn
, 0))
3380 target_label
= JUMP_LABEL (XVECEXP (PATTERN (trial
), 0, 0));
3381 if (ANY_RETURN_P (target_label
))
3382 target_label
= find_end_label (target_label
);
3385 && redirect_with_delay_slots_safe_p (delay_insn
, target_label
,
3388 reorg_redirect_jump (delay_insn
, target_label
);
3394 /* See if we have a simple (conditional) jump that is useless. */
3395 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3396 && ! condjump_in_parallel_p (delay_insn
)
3397 && prev_active_insn (target_label
) == insn
3398 && ! BARRIER_P (prev_nonnote_insn (target_label
))
3400 /* If the last insn in the delay slot sets CC0 for some insn,
3401 various code assumes that it is in a delay slot. We could
3402 put it back where it belonged and delete the register notes,
3403 but it doesn't seem worthwhile in this uncommon case. */
3404 && ! find_reg_note (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1),
3405 REG_CC_USER
, NULL_RTX
)
3412 /* All this insn does is execute its delay list and jump to the
3413 following insn. So delete the jump and just execute the delay
3416 We do this by deleting the INSN containing the SEQUENCE, then
3417 re-emitting the insns separately, and then deleting the jump.
3418 This allows the count of the jump target to be properly
3421 Note that we need to change the INSN_UID of the re-emitted insns
3422 since it is used to hash the insns for mark_target_live_regs and
3423 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3425 Clear the from target bit, since these insns are no longer
3427 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3428 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3430 trial
= PREV_INSN (insn
);
3431 delete_related_insns (insn
);
3432 gcc_assert (GET_CODE (pat
) == SEQUENCE
);
3433 add_insn_after (delay_insn
, trial
, NULL
);
3435 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3436 after
= emit_copy_of_insn_after (XVECEXP (pat
, 0, i
), after
);
3437 delete_scheduled_jump (delay_insn
);
3441 /* See if this is an unconditional jump around a single insn which is
3442 identical to the one in its delay slot. In this case, we can just
3443 delete the branch and the insn in its delay slot. */
3444 if (next
&& NONJUMP_INSN_P (next
)
3445 && label_before_next_insn (next
, insn
) == target_label
3446 && simplejump_p (insn
)
3447 && XVECLEN (pat
, 0) == 2
3448 && rtx_equal_p (PATTERN (next
), PATTERN (XVECEXP (pat
, 0, 1))))
3450 delete_related_insns (insn
);
3454 /* See if this jump (with its delay slots) conditionally branches
3455 around an unconditional jump (without delay slots). If so, invert
3456 this jump and point it to the target of the second jump. We cannot
3457 do this for annulled jumps, though. Again, don't convert a jump to
3459 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3460 && any_condjump_p (delay_insn
)
3461 && next
&& simplejump_or_return_p (next
)
3462 && next_active_insn (target_label
) == next_active_insn (next
)
3463 && no_labels_between_p (insn
, next
))
3465 rtx label
= JUMP_LABEL (next
);
3466 rtx old_label
= JUMP_LABEL (delay_insn
);
3468 if (ANY_RETURN_P (label
))
3469 label
= find_end_label (label
);
3471 /* find_end_label can generate a new label. Check this first. */
3473 && no_labels_between_p (insn
, next
)
3474 && redirect_with_delay_slots_safe_p (delay_insn
, label
, insn
))
3476 /* Be careful how we do this to avoid deleting code or labels
3477 that are momentarily dead. See similar optimization in
3480 ++LABEL_NUSES (old_label
);
3482 if (invert_jump (delay_insn
, label
, 1))
3486 /* Must update the INSN_FROM_TARGET_P bits now that
3487 the branch is reversed, so that mark_target_live_regs
3488 will handle the delay slot insn correctly. */
3489 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
3491 rtx slot
= XVECEXP (PATTERN (insn
), 0, i
);
3492 INSN_FROM_TARGET_P (slot
) = ! INSN_FROM_TARGET_P (slot
);
3495 delete_related_insns (next
);
3499 if (old_label
&& --LABEL_NUSES (old_label
) == 0)
3500 delete_related_insns (old_label
);
3505 /* If we own the thread opposite the way this insn branches, see if we
3506 can merge its delay slots with following insns. */
3507 if (INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3508 && own_thread_p (NEXT_INSN (insn
), 0, 1))
3509 try_merge_delay_insns (insn
, next
);
3510 else if (! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3511 && own_thread_p (target_label
, target_label
, 0))
3512 try_merge_delay_insns (insn
, next_active_insn (target_label
));
3514 /* If we get here, we haven't deleted INSN. But we may have deleted
3515 NEXT, so recompute it. */
3516 next
= next_active_insn (insn
);
3521 /* Look for filled jumps to the end of function label. We can try to convert
3522 them into RETURN insns if the insns in the delay slot are valid for the
3526 make_return_insns (rtx first
)
3528 rtx insn
, jump_insn
, pat
;
3529 rtx real_return_label
= function_return_label
;
3530 rtx real_simple_return_label
= function_simple_return_label
;
3533 /* See if there is a RETURN insn in the function other than the one we
3534 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3535 into a RETURN to jump to it. */
3536 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3537 if (JUMP_P (insn
) && ANY_RETURN_P (PATTERN (insn
)))
3539 rtx t
= get_label_before (insn
);
3540 if (PATTERN (insn
) == ret_rtx
)
3541 real_return_label
= t
;
3543 real_simple_return_label
= t
;
3547 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3548 was equal to END_OF_FUNCTION_LABEL. */
3549 if (real_return_label
)
3550 LABEL_NUSES (real_return_label
)++;
3551 if (real_simple_return_label
)
3552 LABEL_NUSES (real_simple_return_label
)++;
3554 /* Clear the list of insns to fill so we can use it. */
3555 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3557 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3560 rtx kind
, real_label
;
3562 /* Only look at filled JUMP_INSNs that go to the end of function
3564 if (!NONJUMP_INSN_P (insn
)
3565 || GET_CODE (PATTERN (insn
)) != SEQUENCE
3566 || !jump_to_label_p (XVECEXP (PATTERN (insn
), 0, 0)))
3569 if (JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0)) == function_return_label
)
3572 real_label
= real_return_label
;
3574 else if (JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0))
3575 == function_simple_return_label
)
3577 kind
= simple_return_rtx
;
3578 real_label
= real_simple_return_label
;
3583 pat
= PATTERN (insn
);
3584 jump_insn
= XVECEXP (pat
, 0, 0);
3586 /* If we can't make the jump into a RETURN, try to redirect it to the best
3587 RETURN and go on to the next insn. */
3588 if (!reorg_redirect_jump (jump_insn
, kind
))
3590 /* Make sure redirecting the jump will not invalidate the delay
3592 if (redirect_with_delay_slots_safe_p (jump_insn
, real_label
, insn
))
3593 reorg_redirect_jump (jump_insn
, real_label
);
3597 /* See if this RETURN can accept the insns current in its delay slot.
3598 It can if it has more or an equal number of slots and the contents
3599 of each is valid. */
3601 flags
= get_jump_flags (jump_insn
, JUMP_LABEL (jump_insn
));
3602 slots
= num_delay_slots (jump_insn
);
3603 if (slots
>= XVECLEN (pat
, 0) - 1)
3605 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3607 #ifdef ANNUL_IFFALSE_SLOTS
3608 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3609 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3610 ? eligible_for_annul_false (jump_insn
, i
- 1,
3611 XVECEXP (pat
, 0, i
), flags
) :
3613 #ifdef ANNUL_IFTRUE_SLOTS
3614 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3615 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3616 ? eligible_for_annul_true (jump_insn
, i
- 1,
3617 XVECEXP (pat
, 0, i
), flags
) :
3619 eligible_for_delay (jump_insn
, i
- 1,
3620 XVECEXP (pat
, 0, i
), flags
)))
3626 if (i
== XVECLEN (pat
, 0))
3629 /* We have to do something with this insn. If it is an unconditional
3630 RETURN, delete the SEQUENCE and output the individual insns,
3631 followed by the RETURN. Then set things up so we try to find
3632 insns for its delay slots, if it needs some. */
3633 if (ANY_RETURN_P (PATTERN (jump_insn
)))
3635 rtx prev
= PREV_INSN (insn
);
3637 delete_related_insns (insn
);
3638 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3639 prev
= emit_insn_after (PATTERN (XVECEXP (pat
, 0, i
)), prev
);
3641 insn
= emit_jump_insn_after (PATTERN (jump_insn
), prev
);
3642 emit_barrier_after (insn
);
3645 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3648 /* It is probably more efficient to keep this with its current
3649 delay slot as a branch to a RETURN. */
3650 reorg_redirect_jump (jump_insn
, real_label
);
3653 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3654 new delay slots we have created. */
3655 if (real_return_label
!= NULL_RTX
&& --LABEL_NUSES (real_return_label
) == 0)
3656 delete_related_insns (real_return_label
);
3657 if (real_simple_return_label
!= NULL_RTX
3658 && --LABEL_NUSES (real_simple_return_label
) == 0)
3659 delete_related_insns (real_simple_return_label
);
3661 fill_simple_delay_slots (1);
3662 fill_simple_delay_slots (0);
3665 /* Try to find insns to place in delay slots. */
3668 dbr_schedule (rtx first
)
3670 rtx insn
, next
, epilogue_insn
= 0;
3672 bool need_return_insns
;
3674 /* If the current function has no insns other than the prologue and
3675 epilogue, then do not try to fill any delay slots. */
3676 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
3679 /* Find the highest INSN_UID and allocate and initialize our map from
3680 INSN_UID's to position in code. */
3681 for (max_uid
= 0, insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3683 if (INSN_UID (insn
) > max_uid
)
3684 max_uid
= INSN_UID (insn
);
3686 && NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
3687 epilogue_insn
= insn
;
3690 uid_to_ruid
= XNEWVEC (int, max_uid
+ 1);
3691 for (i
= 0, insn
= first
; insn
; i
++, insn
= NEXT_INSN (insn
))
3692 uid_to_ruid
[INSN_UID (insn
)] = i
;
3694 /* Initialize the list of insns that need filling. */
3695 if (unfilled_firstobj
== 0)
3697 gcc_obstack_init (&unfilled_slots_obstack
);
3698 unfilled_firstobj
= XOBNEWVAR (&unfilled_slots_obstack
, rtx
, 0);
3701 for (insn
= next_active_insn (first
); insn
; insn
= next_active_insn (insn
))
3706 INSN_ANNULLED_BRANCH_P (insn
) = 0;
3707 INSN_FROM_TARGET_P (insn
) = 0;
3709 /* Skip vector tables. We can't get attributes for them. */
3710 if (JUMP_TABLE_DATA_P (insn
))
3713 if (num_delay_slots (insn
) > 0)
3714 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3716 /* Ensure all jumps go to the last of a set of consecutive labels. */
3718 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3719 && !ANY_RETURN_P (JUMP_LABEL (insn
))
3720 && ((target
= skip_consecutive_labels (JUMP_LABEL (insn
)))
3721 != JUMP_LABEL (insn
)))
3722 redirect_jump (insn
, target
, 1);
3725 init_resource_info (epilogue_insn
);
3727 /* Show we haven't computed an end-of-function label yet. */
3728 function_return_label
= function_simple_return_label
= NULL_RTX
;
3730 /* Initialize the statistics for this function. */
3731 memset (num_insns_needing_delays
, 0, sizeof num_insns_needing_delays
);
3732 memset (num_filled_delays
, 0, sizeof num_filled_delays
);
3734 /* Now do the delay slot filling. Try everything twice in case earlier
3735 changes make more slots fillable. */
3737 for (reorg_pass_number
= 0;
3738 reorg_pass_number
< MAX_REORG_PASSES
;
3739 reorg_pass_number
++)
3741 fill_simple_delay_slots (1);
3742 fill_simple_delay_slots (0);
3743 fill_eager_delay_slots ();
3744 relax_delay_slots (first
);
3747 /* If we made an end of function label, indicate that it is now
3748 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3749 If it is now unused, delete it. */
3750 if (function_return_label
&& --LABEL_NUSES (function_return_label
) == 0)
3751 delete_related_insns (function_return_label
);
3752 if (function_simple_return_label
3753 && --LABEL_NUSES (function_simple_return_label
) == 0)
3754 delete_related_insns (function_simple_return_label
);
3756 need_return_insns
= false;
3758 need_return_insns
|= HAVE_return
&& function_return_label
!= 0;
3760 #ifdef HAVE_simple_return
3761 need_return_insns
|= HAVE_simple_return
&& function_simple_return_label
!= 0;
3763 if (need_return_insns
)
3764 make_return_insns (first
);
3766 /* Delete any USE insns made by update_block; subsequent passes don't need
3767 them or know how to deal with them. */
3768 for (insn
= first
; insn
; insn
= next
)
3770 next
= NEXT_INSN (insn
);
3772 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == USE
3773 && INSN_P (XEXP (PATTERN (insn
), 0)))
3774 next
= delete_related_insns (insn
);
3777 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3779 /* It is not clear why the line below is needed, but it does seem to be. */
3780 unfilled_firstobj
= XOBNEWVAR (&unfilled_slots_obstack
, rtx
, 0);
3784 int i
, j
, need_comma
;
3785 int total_delay_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3786 int total_annul_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3788 for (reorg_pass_number
= 0;
3789 reorg_pass_number
< MAX_REORG_PASSES
;
3790 reorg_pass_number
++)
3792 fprintf (dump_file
, ";; Reorg pass #%d:\n", reorg_pass_number
+ 1);
3793 for (i
= 0; i
< NUM_REORG_FUNCTIONS
; i
++)
3796 fprintf (dump_file
, ";; Reorg function #%d\n", i
);
3798 fprintf (dump_file
, ";; %d insns needing delay slots\n;; ",
3799 num_insns_needing_delays
[i
][reorg_pass_number
]);
3801 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3802 if (num_filled_delays
[i
][j
][reorg_pass_number
])
3805 fprintf (dump_file
, ", ");
3807 fprintf (dump_file
, "%d got %d delays",
3808 num_filled_delays
[i
][j
][reorg_pass_number
], j
);
3810 fprintf (dump_file
, "\n");
3813 memset (total_delay_slots
, 0, sizeof total_delay_slots
);
3814 memset (total_annul_slots
, 0, sizeof total_annul_slots
);
3815 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3817 if (! INSN_DELETED_P (insn
)
3818 && NONJUMP_INSN_P (insn
)
3819 && GET_CODE (PATTERN (insn
)) != USE
3820 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3822 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3825 j
= XVECLEN (PATTERN (insn
), 0) - 1;
3826 if (j
> MAX_DELAY_HISTOGRAM
)
3827 j
= MAX_DELAY_HISTOGRAM
;
3828 control
= XVECEXP (PATTERN (insn
), 0, 0);
3829 if (JUMP_P (control
) && INSN_ANNULLED_BRANCH_P (control
))
3830 total_annul_slots
[j
]++;
3832 total_delay_slots
[j
]++;
3834 else if (num_delay_slots (insn
) > 0)
3835 total_delay_slots
[0]++;
3838 fprintf (dump_file
, ";; Reorg totals: ");
3840 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3842 if (total_delay_slots
[j
])
3845 fprintf (dump_file
, ", ");
3847 fprintf (dump_file
, "%d got %d delays", total_delay_slots
[j
], j
);
3850 fprintf (dump_file
, "\n");
3851 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3852 fprintf (dump_file
, ";; Reorg annuls: ");
3854 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3856 if (total_annul_slots
[j
])
3859 fprintf (dump_file
, ", ");
3861 fprintf (dump_file
, "%d got %d delays", total_annul_slots
[j
], j
);
3864 fprintf (dump_file
, "\n");
3866 fprintf (dump_file
, "\n");
3869 free_resource_info ();
3871 crtl
->dbr_scheduled_p
= true;
3873 #endif /* DELAY_SLOTS */
3876 gate_handle_delay_slots (void)
3879 /* At -O0 dataflow info isn't updated after RA. */
3880 return optimize
> 0 && flag_delayed_branch
&& !crtl
->dbr_scheduled_p
;
3886 /* Run delay slot optimization. */
3888 rest_of_handle_delay_slots (void)
3891 dbr_schedule (get_insns ());
3896 struct rtl_opt_pass pass_delay_slots
=
3901 OPTGROUP_NONE
, /* optinfo_flags */
3902 gate_handle_delay_slots
, /* gate */
3903 rest_of_handle_delay_slots
, /* execute */
3906 0, /* static_pass_number */
3907 TV_DBR_SCHED
, /* tv_id */
3908 0, /* properties_required */
3909 0, /* properties_provided */
3910 0, /* properties_destroyed */
3911 0, /* todo_flags_start */
3912 TODO_ggc_collect
/* todo_flags_finish */
3916 /* Machine dependent reorg pass. */
3918 gate_handle_machine_reorg (void)
3920 return targetm
.machine_dependent_reorg
!= 0;
3925 rest_of_handle_machine_reorg (void)
3927 targetm
.machine_dependent_reorg ();
3931 struct rtl_opt_pass pass_machine_reorg
=
3936 OPTGROUP_NONE
, /* optinfo_flags */
3937 gate_handle_machine_reorg
, /* gate */
3938 rest_of_handle_machine_reorg
, /* execute */
3941 0, /* static_pass_number */
3942 TV_MACH_DEP
, /* tv_id */
3943 0, /* properties_required */
3944 0, /* properties_provided */
3945 0, /* properties_destroyed */
3946 0, /* todo_flags_start */
3947 TODO_ggc_collect
/* todo_flags_finish */