2010-11-25 Joern Rennecke <amylaar@spamcop.net>
[official-gcc.git] / gcc / postreload.c
blob6bbdf3adeff401291d02cb8abca6517a2d0ae39e
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "diagnostic-core.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "target.h"
48 #include "timevar.h"
49 #include "tree-pass.h"
50 #include "df.h"
51 #include "dbgcnt.h"
53 static int reload_cse_noop_set_p (rtx);
54 static void reload_cse_simplify (rtx, rtx);
55 static void reload_cse_regs_1 (rtx);
56 static int reload_cse_simplify_set (rtx, rtx);
57 static int reload_cse_simplify_operands (rtx, rtx);
59 static void reload_combine (void);
60 static void reload_combine_note_use (rtx *, rtx, int, rtx);
61 static void reload_combine_note_store (rtx, const_rtx, void *);
63 static bool reload_cse_move2add (rtx);
64 static void move2add_note_store (rtx, const_rtx, void *);
66 /* Call cse / combine like post-reload optimization phases.
67 FIRST is the first instruction. */
68 void
69 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
71 bool moves_converted;
72 reload_cse_regs_1 (first);
73 reload_combine ();
74 moves_converted = reload_cse_move2add (first);
75 if (flag_expensive_optimizations)
77 if (moves_converted)
78 reload_combine ();
79 reload_cse_regs_1 (first);
83 /* See whether a single set SET is a noop. */
84 static int
85 reload_cse_noop_set_p (rtx set)
87 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
88 return 0;
90 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
93 /* Try to simplify INSN. */
94 static void
95 reload_cse_simplify (rtx insn, rtx testreg)
97 rtx body = PATTERN (insn);
99 if (GET_CODE (body) == SET)
101 int count = 0;
103 /* Simplify even if we may think it is a no-op.
104 We may think a memory load of a value smaller than WORD_SIZE
105 is redundant because we haven't taken into account possible
106 implicit extension. reload_cse_simplify_set() will bring
107 this out, so it's safer to simplify before we delete. */
108 count += reload_cse_simplify_set (body, insn);
110 if (!count && reload_cse_noop_set_p (body))
112 rtx value = SET_DEST (body);
113 if (REG_P (value)
114 && ! REG_FUNCTION_VALUE_P (value))
115 value = 0;
116 delete_insn_and_edges (insn);
117 return;
120 if (count > 0)
121 apply_change_group ();
122 else
123 reload_cse_simplify_operands (insn, testreg);
125 else if (GET_CODE (body) == PARALLEL)
127 int i;
128 int count = 0;
129 rtx value = NULL_RTX;
131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body) >= 0)
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
140 cselib_invalidate_rtx (XEXP (part, 0));
144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
148 rtx part = XVECEXP (body, 0, i);
149 if (GET_CODE (part) == SET)
151 if (! reload_cse_noop_set_p (part))
152 break;
153 if (REG_P (SET_DEST (part))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
156 if (value)
157 break;
158 value = SET_DEST (part);
161 else if (GET_CODE (part) != CLOBBER)
162 break;
165 if (i < 0)
167 delete_insn_and_edges (insn);
168 /* We're done with this insn. */
169 return;
172 /* It's not a no-op, but we can try to simplify it. */
173 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
174 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
175 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
177 if (count > 0)
178 apply_change_group ();
179 else
180 reload_cse_simplify_operands (insn, testreg);
184 /* Do a very simple CSE pass over the hard registers.
186 This function detects no-op moves where we happened to assign two
187 different pseudo-registers to the same hard register, and then
188 copied one to the other. Reload will generate a useless
189 instruction copying a register to itself.
191 This function also detects cases where we load a value from memory
192 into two different registers, and (if memory is more expensive than
193 registers) changes it to simply copy the first register into the
194 second register.
196 Another optimization is performed that scans the operands of each
197 instruction to see whether the value is already available in a
198 hard register. It then replaces the operand with the hard register
199 if possible, much like an optional reload would. */
201 static void
202 reload_cse_regs_1 (rtx first)
204 rtx insn;
205 rtx testreg = gen_rtx_REG (VOIDmode, -1);
207 cselib_init (CSELIB_RECORD_MEMORY);
208 init_alias_analysis ();
210 for (insn = first; insn; insn = NEXT_INSN (insn))
212 if (INSN_P (insn))
213 reload_cse_simplify (insn, testreg);
215 cselib_process_insn (insn);
218 /* Clean up. */
219 end_alias_analysis ();
220 cselib_finish ();
223 /* Try to simplify a single SET instruction. SET is the set pattern.
224 INSN is the instruction it came from.
225 This function only handles one case: if we set a register to a value
226 which is not a register, we try to find that value in some other register
227 and change the set into a register copy. */
229 static int
230 reload_cse_simplify_set (rtx set, rtx insn)
232 int did_change = 0;
233 int dreg;
234 rtx src;
235 enum reg_class dclass;
236 int old_cost;
237 cselib_val *val;
238 struct elt_loc_list *l;
239 #ifdef LOAD_EXTEND_OP
240 enum rtx_code extend_op = UNKNOWN;
241 #endif
242 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
244 dreg = true_regnum (SET_DEST (set));
245 if (dreg < 0)
246 return 0;
248 src = SET_SRC (set);
249 if (side_effects_p (src) || true_regnum (src) >= 0)
250 return 0;
252 dclass = REGNO_REG_CLASS (dreg);
254 #ifdef LOAD_EXTEND_OP
255 /* When replacing a memory with a register, we need to honor assumptions
256 that combine made wrt the contents of sign bits. We'll do this by
257 generating an extend instruction instead of a reg->reg copy. Thus
258 the destination must be a register that we can widen. */
259 if (MEM_P (src)
260 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
261 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
262 && !REG_P (SET_DEST (set)))
263 return 0;
264 #endif
266 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
267 if (! val)
268 return 0;
270 /* If memory loads are cheaper than register copies, don't change them. */
271 if (MEM_P (src))
272 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
273 else if (REG_P (src))
274 old_cost = register_move_cost (GET_MODE (src),
275 REGNO_REG_CLASS (REGNO (src)), dclass);
276 else
277 old_cost = rtx_cost (src, SET, speed);
279 for (l = val->locs; l; l = l->next)
281 rtx this_rtx = l->loc;
282 int this_cost;
284 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
286 #ifdef LOAD_EXTEND_OP
287 if (extend_op != UNKNOWN)
289 HOST_WIDE_INT this_val;
291 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
292 constants, such as SYMBOL_REF, cannot be extended. */
293 if (!CONST_INT_P (this_rtx))
294 continue;
296 this_val = INTVAL (this_rtx);
297 switch (extend_op)
299 case ZERO_EXTEND:
300 this_val &= GET_MODE_MASK (GET_MODE (src));
301 break;
302 case SIGN_EXTEND:
303 /* ??? In theory we're already extended. */
304 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
305 break;
306 default:
307 gcc_unreachable ();
309 this_rtx = GEN_INT (this_val);
311 #endif
312 this_cost = rtx_cost (this_rtx, SET, speed);
314 else if (REG_P (this_rtx))
316 #ifdef LOAD_EXTEND_OP
317 if (extend_op != UNKNOWN)
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 this_cost = rtx_cost (this_rtx, SET, speed);
322 else
323 #endif
324 this_cost = register_move_cost (GET_MODE (this_rtx),
325 REGNO_REG_CLASS (REGNO (this_rtx)),
326 dclass);
328 else
329 continue;
331 /* If equal costs, prefer registers over anything else. That
332 tends to lead to smaller instructions on some machines. */
333 if (this_cost < old_cost
334 || (this_cost == old_cost
335 && REG_P (this_rtx)
336 && !REG_P (SET_SRC (set))))
338 #ifdef LOAD_EXTEND_OP
339 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
340 && extend_op != UNKNOWN
341 #ifdef CANNOT_CHANGE_MODE_CLASS
342 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
343 word_mode,
344 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
345 #endif
348 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
349 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
350 validate_change (insn, &SET_DEST (set), wide_dest, 1);
352 #endif
354 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
355 old_cost = this_cost, did_change = 1;
359 return did_change;
362 /* Try to replace operands in INSN with equivalent values that are already
363 in registers. This can be viewed as optional reloading.
365 For each non-register operand in the insn, see if any hard regs are
366 known to be equivalent to that operand. Record the alternatives which
367 can accept these hard registers. Among all alternatives, select the
368 ones which are better or equal to the one currently matching, where
369 "better" is in terms of '?' and '!' constraints. Among the remaining
370 alternatives, select the one which replaces most operands with
371 hard registers. */
373 static int
374 reload_cse_simplify_operands (rtx insn, rtx testreg)
376 int i, j;
378 /* For each operand, all registers that are equivalent to it. */
379 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
381 const char *constraints[MAX_RECOG_OPERANDS];
383 /* Vector recording how bad an alternative is. */
384 int *alternative_reject;
385 /* Vector recording how many registers can be introduced by choosing
386 this alternative. */
387 int *alternative_nregs;
388 /* Array of vectors recording, for each operand and each alternative,
389 which hard register to substitute, or -1 if the operand should be
390 left as it is. */
391 int *op_alt_regno[MAX_RECOG_OPERANDS];
392 /* Array of alternatives, sorted in order of decreasing desirability. */
393 int *alternative_order;
395 extract_insn (insn);
397 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
398 return 0;
400 /* Figure out which alternative currently matches. */
401 if (! constrain_operands (1))
402 fatal_insn_not_found (insn);
404 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
405 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
406 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
407 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
408 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
410 /* For each operand, find out which regs are equivalent. */
411 for (i = 0; i < recog_data.n_operands; i++)
413 cselib_val *v;
414 struct elt_loc_list *l;
415 rtx op;
417 CLEAR_HARD_REG_SET (equiv_regs[i]);
419 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
420 right, so avoid the problem here. Likewise if we have a constant
421 and the insn pattern doesn't tell us the mode we need. */
422 if (LABEL_P (recog_data.operand[i])
423 || (CONSTANT_P (recog_data.operand[i])
424 && recog_data.operand_mode[i] == VOIDmode))
425 continue;
427 op = recog_data.operand[i];
428 #ifdef LOAD_EXTEND_OP
429 if (MEM_P (op)
430 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
431 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
433 rtx set = single_set (insn);
435 /* We might have multiple sets, some of which do implicit
436 extension. Punt on this for now. */
437 if (! set)
438 continue;
439 /* If the destination is also a MEM or a STRICT_LOW_PART, no
440 extension applies.
441 Also, if there is an explicit extension, we don't have to
442 worry about an implicit one. */
443 else if (MEM_P (SET_DEST (set))
444 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
445 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
446 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
447 ; /* Continue ordinary processing. */
448 #ifdef CANNOT_CHANGE_MODE_CLASS
449 /* If the register cannot change mode to word_mode, it follows that
450 it cannot have been used in word_mode. */
451 else if (REG_P (SET_DEST (set))
452 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
453 word_mode,
454 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
455 ; /* Continue ordinary processing. */
456 #endif
457 /* If this is a straight load, make the extension explicit. */
458 else if (REG_P (SET_DEST (set))
459 && recog_data.n_operands == 2
460 && SET_SRC (set) == op
461 && SET_DEST (set) == recog_data.operand[1-i])
463 validate_change (insn, recog_data.operand_loc[i],
464 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
465 word_mode, op),
467 validate_change (insn, recog_data.operand_loc[1-i],
468 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
470 if (! apply_change_group ())
471 return 0;
472 return reload_cse_simplify_operands (insn, testreg);
474 else
475 /* ??? There might be arithmetic operations with memory that are
476 safe to optimize, but is it worth the trouble? */
477 continue;
479 #endif /* LOAD_EXTEND_OP */
480 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
481 if (! v)
482 continue;
484 for (l = v->locs; l; l = l->next)
485 if (REG_P (l->loc))
486 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
489 for (i = 0; i < recog_data.n_operands; i++)
491 enum machine_mode mode;
492 int regno;
493 const char *p;
495 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
496 for (j = 0; j < recog_data.n_alternatives; j++)
497 op_alt_regno[i][j] = -1;
499 p = constraints[i] = recog_data.constraints[i];
500 mode = recog_data.operand_mode[i];
502 /* Add the reject values for each alternative given by the constraints
503 for this operand. */
504 j = 0;
505 while (*p != '\0')
507 char c = *p++;
508 if (c == ',')
509 j++;
510 else if (c == '?')
511 alternative_reject[j] += 3;
512 else if (c == '!')
513 alternative_reject[j] += 300;
516 /* We won't change operands which are already registers. We
517 also don't want to modify output operands. */
518 regno = true_regnum (recog_data.operand[i]);
519 if (regno >= 0
520 || constraints[i][0] == '='
521 || constraints[i][0] == '+')
522 continue;
524 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
526 enum reg_class rclass = NO_REGS;
528 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
529 continue;
531 SET_REGNO_RAW (testreg, regno);
532 PUT_MODE (testreg, mode);
534 /* We found a register equal to this operand. Now look for all
535 alternatives that can accept this register and have not been
536 assigned a register they can use yet. */
537 j = 0;
538 p = constraints[i];
539 for (;;)
541 char c = *p;
543 switch (c)
545 case '=': case '+': case '?':
546 case '#': case '&': case '!':
547 case '*': case '%':
548 case '0': case '1': case '2': case '3': case '4':
549 case '5': case '6': case '7': case '8': case '9':
550 case '<': case '>': case 'V': case 'o':
551 case 'E': case 'F': case 'G': case 'H':
552 case 's': case 'i': case 'n':
553 case 'I': case 'J': case 'K': case 'L':
554 case 'M': case 'N': case 'O': case 'P':
555 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
556 /* These don't say anything we care about. */
557 break;
559 case 'g': case 'r':
560 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
561 break;
563 default:
564 rclass
565 = (reg_class_subunion
566 [(int) rclass]
567 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
568 break;
570 case ',': case '\0':
571 /* See if REGNO fits this alternative, and set it up as the
572 replacement register if we don't have one for this
573 alternative yet and the operand being replaced is not
574 a cheap CONST_INT. */
575 if (op_alt_regno[i][j] == -1
576 && recog_data.alternative_enabled_p[j]
577 && reg_fits_class_p (testreg, rclass, 0, mode)
578 && (!CONST_INT_P (recog_data.operand[i])
579 || (rtx_cost (recog_data.operand[i], SET,
580 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
581 > rtx_cost (testreg, SET,
582 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn))))))
584 alternative_nregs[j]++;
585 op_alt_regno[i][j] = regno;
587 j++;
588 rclass = NO_REGS;
589 break;
591 p += CONSTRAINT_LEN (c, p);
593 if (c == '\0')
594 break;
599 /* Record all alternatives which are better or equal to the currently
600 matching one in the alternative_order array. */
601 for (i = j = 0; i < recog_data.n_alternatives; i++)
602 if (alternative_reject[i] <= alternative_reject[which_alternative])
603 alternative_order[j++] = i;
604 recog_data.n_alternatives = j;
606 /* Sort it. Given a small number of alternatives, a dumb algorithm
607 won't hurt too much. */
608 for (i = 0; i < recog_data.n_alternatives - 1; i++)
610 int best = i;
611 int best_reject = alternative_reject[alternative_order[i]];
612 int best_nregs = alternative_nregs[alternative_order[i]];
613 int tmp;
615 for (j = i + 1; j < recog_data.n_alternatives; j++)
617 int this_reject = alternative_reject[alternative_order[j]];
618 int this_nregs = alternative_nregs[alternative_order[j]];
620 if (this_reject < best_reject
621 || (this_reject == best_reject && this_nregs > best_nregs))
623 best = j;
624 best_reject = this_reject;
625 best_nregs = this_nregs;
629 tmp = alternative_order[best];
630 alternative_order[best] = alternative_order[i];
631 alternative_order[i] = tmp;
634 /* Substitute the operands as determined by op_alt_regno for the best
635 alternative. */
636 j = alternative_order[0];
638 for (i = 0; i < recog_data.n_operands; i++)
640 enum machine_mode mode = recog_data.operand_mode[i];
641 if (op_alt_regno[i][j] == -1)
642 continue;
644 validate_change (insn, recog_data.operand_loc[i],
645 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
648 for (i = recog_data.n_dups - 1; i >= 0; i--)
650 int op = recog_data.dup_num[i];
651 enum machine_mode mode = recog_data.operand_mode[op];
653 if (op_alt_regno[op][j] == -1)
654 continue;
656 validate_change (insn, recog_data.dup_loc[i],
657 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
660 return apply_change_group ();
663 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
664 addressing now.
665 This code might also be useful when reload gave up on reg+reg addressing
666 because of clashes between the return register and INDEX_REG_CLASS. */
668 /* The maximum number of uses of a register we can keep track of to
669 replace them with reg+reg addressing. */
670 #define RELOAD_COMBINE_MAX_USES 16
672 /* Describes a recorded use of a register. */
673 struct reg_use
675 /* The insn where a register has been used. */
676 rtx insn;
677 /* Points to the memory reference enclosing the use, if any, NULL_RTX
678 otherwise. */
679 rtx containing_mem;
680 /* Location of the register withing INSN. */
681 rtx *usep;
682 /* The reverse uid of the insn. */
683 int ruid;
686 /* If the register is used in some unknown fashion, USE_INDEX is negative.
687 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
688 indicates where it is first set or clobbered.
689 Otherwise, USE_INDEX is the index of the last encountered use of the
690 register (which is first among these we have seen since we scan backwards).
691 USE_RUID indicates the first encountered, i.e. last, of these uses.
692 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
693 with a constant offset; OFFSET contains this constant in that case.
694 STORE_RUID is always meaningful if we only want to use a value in a
695 register in a different place: it denotes the next insn in the insn
696 stream (i.e. the last encountered) that sets or clobbers the register.
697 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
698 static struct
700 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
701 rtx offset;
702 int use_index;
703 int store_ruid;
704 int real_store_ruid;
705 int use_ruid;
706 bool all_offsets_match;
707 } reg_state[FIRST_PSEUDO_REGISTER];
709 /* Reverse linear uid. This is increased in reload_combine while scanning
710 the instructions from last to first. It is used to set last_label_ruid
711 and the store_ruid / use_ruid fields in reg_state. */
712 static int reload_combine_ruid;
714 /* The RUID of the last label we encountered in reload_combine. */
715 static int last_label_ruid;
717 /* The RUID of the last jump we encountered in reload_combine. */
718 static int last_jump_ruid;
720 /* The register numbers of the first and last index register. A value of
721 -1 in LAST_INDEX_REG indicates that we've previously computed these
722 values and found no suitable index registers. */
723 static int first_index_reg = -1;
724 static int last_index_reg;
726 #define LABEL_LIVE(LABEL) \
727 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
729 /* Subroutine of reload_combine_split_ruids, called to fix up a single
730 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
732 static inline void
733 reload_combine_split_one_ruid (int *pruid, int split_ruid)
735 if (*pruid > split_ruid)
736 (*pruid)++;
739 /* Called when we insert a new insn in a position we've already passed in
740 the scan. Examine all our state, increasing all ruids that are higher
741 than SPLIT_RUID by one in order to make room for a new insn. */
743 static void
744 reload_combine_split_ruids (int split_ruid)
746 unsigned i;
748 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
749 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
750 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
754 int j, idx = reg_state[i].use_index;
755 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
756 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
757 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
758 split_ruid);
759 if (idx < 0)
760 continue;
761 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
763 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
764 split_ruid);
769 /* Called when we are about to rescan a previously encountered insn with
770 reload_combine_note_use after modifying some part of it. This clears all
771 information about uses in that particular insn. */
773 static void
774 reload_combine_purge_insn_uses (rtx insn)
776 unsigned i;
778 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
780 int j, k, idx = reg_state[i].use_index;
781 if (idx < 0)
782 continue;
783 j = k = RELOAD_COMBINE_MAX_USES;
784 while (j-- > idx)
786 if (reg_state[i].reg_use[j].insn != insn)
788 k--;
789 if (k != j)
790 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
793 reg_state[i].use_index = k;
797 /* Called when we need to forget about all uses of REGNO after an insn
798 which is identified by RUID. */
800 static void
801 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
803 int j, k, idx = reg_state[regno].use_index;
804 if (idx < 0)
805 return;
806 j = k = RELOAD_COMBINE_MAX_USES;
807 while (j-- > idx)
809 if (reg_state[regno].reg_use[j].ruid >= ruid)
811 k--;
812 if (k != j)
813 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
816 reg_state[regno].use_index = k;
819 /* Find the use of REGNO with the ruid that is highest among those
820 lower than RUID_LIMIT, and return it if it is the only use of this
821 reg in the insn. Return NULL otherwise. */
823 static struct reg_use *
824 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
826 int i, best_ruid = 0;
827 int use_idx = reg_state[regno].use_index;
828 struct reg_use *retval;
830 if (use_idx < 0)
831 return NULL;
832 retval = NULL;
833 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
835 struct reg_use *use = reg_state[regno].reg_use + i;
836 int this_ruid = use->ruid;
837 if (this_ruid >= ruid_limit)
838 continue;
839 if (this_ruid > best_ruid)
841 best_ruid = this_ruid;
842 retval = use;
844 else if (this_ruid == best_ruid)
845 retval = NULL;
847 if (last_label_ruid >= best_ruid)
848 return NULL;
849 return retval;
852 /* After we've moved an add insn, fix up any debug insns that occur
853 between the old location of the add and the new location. REG is
854 the destination register of the add insn; REPLACEMENT is the
855 SET_SRC of the add. FROM and TO specify the range in which we
856 should make this change on debug insns. */
858 static void
859 fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
861 rtx insn;
862 for (insn = from; insn != to; insn = NEXT_INSN (insn))
864 rtx t;
866 if (!DEBUG_INSN_P (insn))
867 continue;
869 t = INSN_VAR_LOCATION_LOC (insn);
870 t = simplify_replace_rtx (t, reg, replacement);
871 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
875 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
876 with SRC in the insn described by USE, taking costs into account. Return
877 true if we made the replacement. */
879 static bool
880 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
882 rtx use_insn = use->insn;
883 rtx mem = use->containing_mem;
884 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
886 if (mem != NULL_RTX)
888 addr_space_t as = MEM_ADDR_SPACE (mem);
889 rtx oldaddr = XEXP (mem, 0);
890 rtx newaddr = NULL_RTX;
891 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
892 int new_cost;
894 newaddr = simplify_replace_rtx (oldaddr, reg, src);
895 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
897 XEXP (mem, 0) = newaddr;
898 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
899 XEXP (mem, 0) = oldaddr;
900 if (new_cost <= old_cost
901 && validate_change (use_insn,
902 &XEXP (mem, 0), newaddr, 0))
903 return true;
906 else
908 rtx new_set = single_set (use_insn);
909 if (new_set
910 && REG_P (SET_DEST (new_set))
911 && GET_CODE (SET_SRC (new_set)) == PLUS
912 && REG_P (XEXP (SET_SRC (new_set), 0))
913 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
915 rtx new_src;
916 int old_cost = rtx_cost (SET_SRC (new_set), SET, speed);
918 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
919 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
921 if (rtx_cost (new_src, SET, speed) <= old_cost
922 && validate_change (use_insn, &SET_SRC (new_set),
923 new_src, 0))
924 return true;
927 return false;
930 /* Called by reload_combine when scanning INSN. This function tries to detect
931 patterns where a constant is added to a register, and the result is used
932 in an address.
933 Return true if no further processing is needed on INSN; false if it wasn't
934 recognized and should be handled normally. */
936 static bool
937 reload_combine_recognize_const_pattern (rtx insn)
939 int from_ruid = reload_combine_ruid;
940 rtx set, pat, reg, src, addreg;
941 unsigned int regno;
942 struct reg_use *use;
943 bool must_move_add;
944 rtx add_moved_after_insn = NULL_RTX;
945 int add_moved_after_ruid = 0;
946 int clobbered_regno = -1;
948 set = single_set (insn);
949 if (set == NULL_RTX)
950 return false;
952 reg = SET_DEST (set);
953 src = SET_SRC (set);
954 if (!REG_P (reg)
955 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
956 || GET_MODE (reg) != Pmode
957 || reg == stack_pointer_rtx)
958 return false;
960 regno = REGNO (reg);
962 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
963 uses of REG1 inside an address, or inside another add insn. If
964 possible and profitable, merge the addition into subsequent
965 uses. */
966 if (GET_CODE (src) != PLUS
967 || !REG_P (XEXP (src, 0))
968 || !CONSTANT_P (XEXP (src, 1)))
969 return false;
971 addreg = XEXP (src, 0);
972 must_move_add = rtx_equal_p (reg, addreg);
974 pat = PATTERN (insn);
975 if (must_move_add && set != pat)
977 /* We have to be careful when moving the add; apart from the
978 single_set there may also be clobbers. Recognize one special
979 case, that of one clobber alongside the set (likely a clobber
980 of the CC register). */
981 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
982 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
983 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
984 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
985 return false;
986 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
991 use = reload_combine_closest_single_use (regno, from_ruid);
993 if (use)
994 /* Start the search for the next use from here. */
995 from_ruid = use->ruid;
997 if (use && GET_MODE (*use->usep) == Pmode)
999 bool delete_add = false;
1000 rtx use_insn = use->insn;
1001 int use_ruid = use->ruid;
1003 /* Avoid moving the add insn past a jump. */
1004 if (must_move_add && use_ruid <= last_jump_ruid)
1005 break;
1007 /* If the add clobbers another hard reg in parallel, don't move
1008 it past a real set of this hard reg. */
1009 if (must_move_add && clobbered_regno >= 0
1010 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1011 break;
1013 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1014 /* Avoid moving a use of ADDREG past a point where it is stored. */
1015 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1016 break;
1018 /* We also must not move the addition past an insn that sets
1019 the same register, unless we can combine two add insns. */
1020 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1022 if (use->containing_mem == NULL_RTX)
1023 delete_add = true;
1024 else
1025 break;
1028 if (try_replace_in_use (use, reg, src))
1030 reload_combine_purge_insn_uses (use_insn);
1031 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1032 use_ruid, NULL_RTX);
1034 if (delete_add)
1036 fixup_debug_insns (reg, src, insn, use_insn);
1037 delete_insn (insn);
1038 return true;
1040 if (must_move_add)
1042 add_moved_after_insn = use_insn;
1043 add_moved_after_ruid = use_ruid;
1045 continue;
1048 /* If we get here, we couldn't handle this use. */
1049 if (must_move_add)
1050 break;
1052 while (use);
1054 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1055 /* Process the add normally. */
1056 return false;
1058 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1060 reorder_insns (insn, insn, add_moved_after_insn);
1061 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1062 reload_combine_split_ruids (add_moved_after_ruid - 1);
1063 reload_combine_note_use (&PATTERN (insn), insn,
1064 add_moved_after_ruid, NULL_RTX);
1065 reg_state[regno].store_ruid = add_moved_after_ruid;
1067 return true;
1070 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1071 can handle and improve. Return true if no further processing is needed on
1072 INSN; false if it wasn't recognized and should be handled normally. */
1074 static bool
1075 reload_combine_recognize_pattern (rtx insn)
1077 rtx set, reg, src;
1078 unsigned int regno;
1080 set = single_set (insn);
1081 if (set == NULL_RTX)
1082 return false;
1084 reg = SET_DEST (set);
1085 src = SET_SRC (set);
1086 if (!REG_P (reg)
1087 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1088 return false;
1090 regno = REGNO (reg);
1092 /* Look for (set (REGX) (CONST_INT))
1093 (set (REGX) (PLUS (REGX) (REGY)))
1095 ... (MEM (REGX)) ...
1096 and convert it to
1097 (set (REGZ) (CONST_INT))
1099 ... (MEM (PLUS (REGZ) (REGY)))... .
1101 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1102 and that we know all uses of REGX before it dies.
1103 Also, explicitly check that REGX != REGY; our life information
1104 does not yet show whether REGY changes in this insn. */
1106 if (GET_CODE (src) == PLUS
1107 && reg_state[regno].all_offsets_match
1108 && last_index_reg != -1
1109 && REG_P (XEXP (src, 1))
1110 && rtx_equal_p (XEXP (src, 0), reg)
1111 && !rtx_equal_p (XEXP (src, 1), reg)
1112 && reg_state[regno].use_index >= 0
1113 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1114 && last_label_ruid < reg_state[regno].use_ruid)
1116 rtx base = XEXP (src, 1);
1117 rtx prev = prev_nonnote_nondebug_insn (insn);
1118 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1119 rtx index_reg = NULL_RTX;
1120 rtx reg_sum = NULL_RTX;
1121 int i;
1123 /* Now we need to set INDEX_REG to an index register (denoted as
1124 REGZ in the illustration above) and REG_SUM to the expression
1125 register+register that we want to use to substitute uses of REG
1126 (typically in MEMs) with. First check REG and BASE for being
1127 index registers; we can use them even if they are not dead. */
1128 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1129 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1130 REGNO (base)))
1132 index_reg = reg;
1133 reg_sum = src;
1135 else
1137 /* Otherwise, look for a free index register. Since we have
1138 checked above that neither REG nor BASE are index registers,
1139 if we find anything at all, it will be different from these
1140 two registers. */
1141 for (i = first_index_reg; i <= last_index_reg; i++)
1143 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1144 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1145 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1146 && (call_used_regs[i] || df_regs_ever_live_p (i))
1147 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1148 && !fixed_regs[i] && !global_regs[i]
1149 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1150 && targetm.hard_regno_scratch_ok (i))
1152 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1153 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1154 break;
1159 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1160 (REGY), i.e. BASE, is not clobbered before the last use we'll
1161 create. */
1162 if (reg_sum
1163 && prev_set
1164 && CONST_INT_P (SET_SRC (prev_set))
1165 && rtx_equal_p (SET_DEST (prev_set), reg)
1166 && (reg_state[REGNO (base)].store_ruid
1167 <= reg_state[regno].use_ruid))
1169 /* Change destination register and, if necessary, the constant
1170 value in PREV, the constant loading instruction. */
1171 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1172 if (reg_state[regno].offset != const0_rtx)
1173 validate_change (prev,
1174 &SET_SRC (prev_set),
1175 GEN_INT (INTVAL (SET_SRC (prev_set))
1176 + INTVAL (reg_state[regno].offset)),
1179 /* Now for every use of REG that we have recorded, replace REG
1180 with REG_SUM. */
1181 for (i = reg_state[regno].use_index;
1182 i < RELOAD_COMBINE_MAX_USES; i++)
1183 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1184 reg_state[regno].reg_use[i].usep,
1185 /* Each change must have its own
1186 replacement. */
1187 reg_sum, 1);
1189 if (apply_change_group ())
1191 struct reg_use *lowest_ruid = NULL;
1193 /* For every new use of REG_SUM, we have to record the use
1194 of BASE therein, i.e. operand 1. */
1195 for (i = reg_state[regno].use_index;
1196 i < RELOAD_COMBINE_MAX_USES; i++)
1198 struct reg_use *use = reg_state[regno].reg_use + i;
1199 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1200 use->ruid, use->containing_mem);
1201 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1202 lowest_ruid = use;
1205 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1207 /* Delete the reg-reg addition. */
1208 delete_insn (insn);
1210 if (reg_state[regno].offset != const0_rtx)
1211 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1212 are now invalid. */
1213 remove_reg_equal_equiv_notes (prev);
1215 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1216 return true;
1220 return false;
1223 static void
1224 reload_combine (void)
1226 rtx insn, prev;
1227 basic_block bb;
1228 unsigned int r;
1229 int min_labelno, n_labels;
1230 HARD_REG_SET ever_live_at_start, *label_live;
1232 /* To avoid wasting too much time later searching for an index register,
1233 determine the minimum and maximum index register numbers. */
1234 if (INDEX_REG_CLASS == NO_REGS)
1235 last_index_reg = -1;
1236 else if (first_index_reg == -1 && last_index_reg == 0)
1238 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1239 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1241 if (first_index_reg == -1)
1242 first_index_reg = r;
1244 last_index_reg = r;
1247 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1248 to -1 so we'll know to quit early the next time we get here. */
1249 if (first_index_reg == -1)
1251 last_index_reg = -1;
1252 return;
1256 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1257 information is a bit fuzzy immediately after reload, but it's
1258 still good enough to determine which registers are live at a jump
1259 destination. */
1260 min_labelno = get_first_label_num ();
1261 n_labels = max_label_num () - min_labelno;
1262 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1263 CLEAR_HARD_REG_SET (ever_live_at_start);
1265 FOR_EACH_BB_REVERSE (bb)
1267 insn = BB_HEAD (bb);
1268 if (LABEL_P (insn))
1270 HARD_REG_SET live;
1271 bitmap live_in = df_get_live_in (bb);
1273 REG_SET_TO_HARD_REG_SET (live, live_in);
1274 compute_use_by_pseudos (&live, live_in);
1275 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1276 IOR_HARD_REG_SET (ever_live_at_start, live);
1280 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1281 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1282 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1284 reg_state[r].store_ruid = 0;
1285 reg_state[r].real_store_ruid = 0;
1286 if (fixed_regs[r])
1287 reg_state[r].use_index = -1;
1288 else
1289 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1292 for (insn = get_last_insn (); insn; insn = prev)
1294 bool control_flow_insn;
1295 rtx note;
1297 prev = PREV_INSN (insn);
1299 /* We cannot do our optimization across labels. Invalidating all the use
1300 information we have would be costly, so we just note where the label
1301 is and then later disable any optimization that would cross it. */
1302 if (LABEL_P (insn))
1303 last_label_ruid = reload_combine_ruid;
1304 else if (BARRIER_P (insn))
1305 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1306 if (! fixed_regs[r])
1307 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1309 if (! NONDEBUG_INSN_P (insn))
1310 continue;
1312 reload_combine_ruid++;
1314 control_flow_insn = control_flow_insn_p (insn);
1315 if (control_flow_insn)
1316 last_jump_ruid = reload_combine_ruid;
1318 if (reload_combine_recognize_const_pattern (insn)
1319 || reload_combine_recognize_pattern (insn))
1320 continue;
1322 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1324 if (CALL_P (insn))
1326 rtx link;
1328 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1329 if (call_used_regs[r])
1331 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1332 reg_state[r].store_ruid = reload_combine_ruid;
1335 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1336 link = XEXP (link, 1))
1338 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
1339 if (REG_P (usage_rtx))
1341 unsigned int i;
1342 unsigned int start_reg = REGNO (usage_rtx);
1343 unsigned int num_regs
1344 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1345 unsigned int end_reg = start_reg + num_regs - 1;
1346 for (i = start_reg; i <= end_reg; i++)
1347 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1349 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1350 reg_state[i].store_ruid = reload_combine_ruid;
1352 else
1353 reg_state[i].use_index = -1;
1358 if (control_flow_insn && GET_CODE (PATTERN (insn)) != RETURN)
1360 /* Non-spill registers might be used at the call destination in
1361 some unknown fashion, so we have to mark the unknown use. */
1362 HARD_REG_SET *live;
1364 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1365 && JUMP_LABEL (insn))
1366 live = &LABEL_LIVE (JUMP_LABEL (insn));
1367 else
1368 live = &ever_live_at_start;
1370 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1371 if (TEST_HARD_REG_BIT (*live, r))
1372 reg_state[r].use_index = -1;
1375 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1376 NULL_RTX);
1378 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1380 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1382 int regno = REGNO (XEXP (note, 0));
1383 reg_state[regno].store_ruid = reload_combine_ruid;
1384 reg_state[regno].real_store_ruid = reload_combine_ruid;
1385 reg_state[regno].use_index = -1;
1390 free (label_live);
1393 /* Check if DST is a register or a subreg of a register; if it is,
1394 update store_ruid, real_store_ruid and use_index in the reg_state
1395 structure accordingly. Called via note_stores from reload_combine. */
1397 static void
1398 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1400 int regno = 0;
1401 int i;
1402 enum machine_mode mode = GET_MODE (dst);
1404 if (GET_CODE (dst) == SUBREG)
1406 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1407 GET_MODE (SUBREG_REG (dst)),
1408 SUBREG_BYTE (dst),
1409 GET_MODE (dst));
1410 dst = SUBREG_REG (dst);
1413 /* Some targets do argument pushes without adding REG_INC notes. */
1415 if (MEM_P (dst))
1417 dst = XEXP (dst, 0);
1418 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1419 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1421 regno = REGNO (XEXP (dst, 0));
1422 mode = GET_MODE (XEXP (dst, 0));
1423 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1425 /* We could probably do better, but for now mark the register
1426 as used in an unknown fashion and set/clobbered at this
1427 insn. */
1428 reg_state[i].use_index = -1;
1429 reg_state[i].store_ruid = reload_combine_ruid;
1430 reg_state[i].real_store_ruid = reload_combine_ruid;
1433 else
1434 return;
1437 if (!REG_P (dst))
1438 return;
1439 regno += REGNO (dst);
1441 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1442 careful with registers / register parts that are not full words.
1443 Similarly for ZERO_EXTRACT. */
1444 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1445 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1447 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1449 reg_state[i].use_index = -1;
1450 reg_state[i].store_ruid = reload_combine_ruid;
1451 reg_state[i].real_store_ruid = reload_combine_ruid;
1454 else
1456 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1458 reg_state[i].store_ruid = reload_combine_ruid;
1459 if (GET_CODE (set) == SET)
1460 reg_state[i].real_store_ruid = reload_combine_ruid;
1461 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1466 /* XP points to a piece of rtl that has to be checked for any uses of
1467 registers.
1468 *XP is the pattern of INSN, or a part of it.
1469 Called from reload_combine, and recursively by itself. */
1470 static void
1471 reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
1473 rtx x = *xp;
1474 enum rtx_code code = x->code;
1475 const char *fmt;
1476 int i, j;
1477 rtx offset = const0_rtx; /* For the REG case below. */
1479 switch (code)
1481 case SET:
1482 if (REG_P (SET_DEST (x)))
1484 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1485 return;
1487 break;
1489 case USE:
1490 /* If this is the USE of a return value, we can't change it. */
1491 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1493 /* Mark the return register as used in an unknown fashion. */
1494 rtx reg = XEXP (x, 0);
1495 int regno = REGNO (reg);
1496 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1498 while (--nregs >= 0)
1499 reg_state[regno + nregs].use_index = -1;
1500 return;
1502 break;
1504 case CLOBBER:
1505 if (REG_P (SET_DEST (x)))
1507 /* No spurious CLOBBERs of pseudo registers may remain. */
1508 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1509 return;
1511 break;
1513 case PLUS:
1514 /* We are interested in (plus (reg) (const_int)) . */
1515 if (!REG_P (XEXP (x, 0))
1516 || !CONST_INT_P (XEXP (x, 1)))
1517 break;
1518 offset = XEXP (x, 1);
1519 x = XEXP (x, 0);
1520 /* Fall through. */
1521 case REG:
1523 int regno = REGNO (x);
1524 int use_index;
1525 int nregs;
1527 /* No spurious USEs of pseudo registers may remain. */
1528 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1530 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1532 /* We can't substitute into multi-hard-reg uses. */
1533 if (nregs > 1)
1535 while (--nregs >= 0)
1536 reg_state[regno + nregs].use_index = -1;
1537 return;
1540 /* We may be called to update uses in previously seen insns.
1541 Don't add uses beyond the last store we saw. */
1542 if (ruid < reg_state[regno].store_ruid)
1543 return;
1545 /* If this register is already used in some unknown fashion, we
1546 can't do anything.
1547 If we decrement the index from zero to -1, we can't store more
1548 uses, so this register becomes used in an unknown fashion. */
1549 use_index = --reg_state[regno].use_index;
1550 if (use_index < 0)
1551 return;
1553 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1555 /* This is the first use of this register we have seen since we
1556 marked it as dead. */
1557 reg_state[regno].offset = offset;
1558 reg_state[regno].all_offsets_match = true;
1559 reg_state[regno].use_ruid = ruid;
1561 else
1563 if (reg_state[regno].use_ruid > ruid)
1564 reg_state[regno].use_ruid = ruid;
1566 if (! rtx_equal_p (offset, reg_state[regno].offset))
1567 reg_state[regno].all_offsets_match = false;
1570 reg_state[regno].reg_use[use_index].insn = insn;
1571 reg_state[regno].reg_use[use_index].ruid = ruid;
1572 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1573 reg_state[regno].reg_use[use_index].usep = xp;
1574 return;
1577 case MEM:
1578 containing_mem = x;
1579 break;
1581 default:
1582 break;
1585 /* Recursively process the components of X. */
1586 fmt = GET_RTX_FORMAT (code);
1587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1589 if (fmt[i] == 'e')
1590 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1591 else if (fmt[i] == 'E')
1593 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1594 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1595 containing_mem);
1600 /* See if we can reduce the cost of a constant by replacing a move
1601 with an add. We track situations in which a register is set to a
1602 constant or to a register plus a constant. */
1603 /* We cannot do our optimization across labels. Invalidating all the
1604 information about register contents we have would be costly, so we
1605 use move2add_last_label_luid to note where the label is and then
1606 later disable any optimization that would cross it.
1607 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1608 are only valid if reg_set_luid[n] is greater than
1609 move2add_last_label_luid. */
1610 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1612 /* If reg_base_reg[n] is negative, register n has been set to
1613 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1614 If reg_base_reg[n] is non-negative, register n has been set to the
1615 sum of reg_offset[n] and the value of register reg_base_reg[n]
1616 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1617 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1618 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1619 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1620 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1622 /* move2add_luid is linearly increased while scanning the instructions
1623 from first to last. It is used to set reg_set_luid in
1624 reload_cse_move2add and move2add_note_store. */
1625 static int move2add_luid;
1627 /* move2add_last_label_luid is set whenever a label is found. Labels
1628 invalidate all previously collected reg_offset data. */
1629 static int move2add_last_label_luid;
1631 /* ??? We don't know how zero / sign extension is handled, hence we
1632 can't go from a narrower to a wider mode. */
1633 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1634 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1635 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1636 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1637 GET_MODE_BITSIZE (INMODE))))
1639 /* This function is called with INSN that sets REG to (SYM + OFF),
1640 while REG is known to already have value (SYM + offset).
1641 This function tries to change INSN into an add instruction
1642 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1643 It also updates the information about REG's known value.
1644 Return true if we made a change. */
1646 static bool
1647 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1649 rtx pat = PATTERN (insn);
1650 rtx src = SET_SRC (pat);
1651 int regno = REGNO (reg);
1652 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1653 GET_MODE (reg));
1654 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1655 bool changed = false;
1657 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1658 use (set (reg) (reg)) instead.
1659 We don't delete this insn, nor do we convert it into a
1660 note, to avoid losing register notes or the return
1661 value flag. jump2 already knows how to get rid of
1662 no-op moves. */
1663 if (new_src == const0_rtx)
1665 /* If the constants are different, this is a
1666 truncation, that, if turned into (set (reg)
1667 (reg)), would be discarded. Maybe we should
1668 try a truncMN pattern? */
1669 if (INTVAL (off) == reg_offset [regno])
1670 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1672 else
1674 struct full_rtx_costs oldcst, newcst;
1675 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1677 get_full_rtx_cost (pat, SET, &oldcst);
1678 SET_SRC (pat) = tem;
1679 get_full_rtx_cost (pat, SET, &newcst);
1680 SET_SRC (pat) = src;
1682 if (costs_lt_p (&newcst, &oldcst, speed)
1683 && have_add2_insn (reg, new_src))
1684 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1685 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1687 enum machine_mode narrow_mode;
1688 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1689 narrow_mode != VOIDmode
1690 && narrow_mode != GET_MODE (reg);
1691 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1693 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1694 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1695 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1697 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1698 REGNO (reg));
1699 rtx narrow_src = gen_int_mode (INTVAL (off),
1700 narrow_mode);
1701 rtx new_set
1702 = gen_rtx_SET (VOIDmode,
1703 gen_rtx_STRICT_LOW_PART (VOIDmode,
1704 narrow_reg),
1705 narrow_src);
1706 changed = validate_change (insn, &PATTERN (insn),
1707 new_set, 0);
1708 if (changed)
1709 break;
1714 reg_set_luid[regno] = move2add_luid;
1715 reg_base_reg[regno] = -1;
1716 reg_mode[regno] = GET_MODE (reg);
1717 reg_symbol_ref[regno] = sym;
1718 reg_offset[regno] = INTVAL (off);
1719 return changed;
1723 /* This function is called with INSN that sets REG to (SYM + OFF),
1724 but REG doesn't have known value (SYM + offset). This function
1725 tries to find another register which is known to already have
1726 value (SYM + offset) and change INSN into an add instruction
1727 (set (REG) (plus (the found register) (OFF - offset))) if such
1728 a register is found. It also updates the information about
1729 REG's known value.
1730 Return true iff we made a change. */
1732 static bool
1733 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1735 rtx pat = PATTERN (insn);
1736 rtx src = SET_SRC (pat);
1737 int regno = REGNO (reg);
1738 int min_regno = 0;
1739 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1740 int i;
1741 bool changed = false;
1742 struct full_rtx_costs oldcst, newcst, mincst;
1743 rtx plus_expr;
1745 init_costs_to_max (&mincst);
1746 get_full_rtx_cost (pat, SET, &oldcst);
1748 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1749 SET_SRC (pat) = plus_expr;
1751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1752 if (reg_set_luid[i] > move2add_last_label_luid
1753 && reg_mode[i] == GET_MODE (reg)
1754 && reg_base_reg[i] < 0
1755 && reg_symbol_ref[i] != NULL_RTX
1756 && rtx_equal_p (sym, reg_symbol_ref[i]))
1758 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1759 GET_MODE (reg));
1760 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1761 use (set (reg) (reg)) instead.
1762 We don't delete this insn, nor do we convert it into a
1763 note, to avoid losing register notes or the return
1764 value flag. jump2 already knows how to get rid of
1765 no-op moves. */
1766 if (new_src == const0_rtx)
1768 init_costs_to_zero (&mincst);
1769 min_regno = i;
1770 break;
1772 else
1774 XEXP (plus_expr, 1) = new_src;
1775 get_full_rtx_cost (pat, SET, &newcst);
1777 if (costs_lt_p (&newcst, &mincst, speed))
1779 mincst = newcst;
1780 min_regno = i;
1784 SET_SRC (pat) = src;
1786 if (costs_lt_p (&mincst, &oldcst, speed))
1788 rtx tem;
1790 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1791 if (i != min_regno)
1793 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1794 GET_MODE (reg));
1795 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1797 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1798 changed = true;
1800 reg_set_luid[regno] = move2add_luid;
1801 reg_base_reg[regno] = -1;
1802 reg_mode[regno] = GET_MODE (reg);
1803 reg_symbol_ref[regno] = sym;
1804 reg_offset[regno] = INTVAL (off);
1805 return changed;
1808 /* Convert move insns with constant inputs to additions if they are cheaper.
1809 Return true if any changes were made. */
1810 static bool
1811 reload_cse_move2add (rtx first)
1813 int i;
1814 rtx insn;
1815 bool changed = false;
1817 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1819 reg_set_luid[i] = 0;
1820 reg_offset[i] = 0;
1821 reg_base_reg[i] = 0;
1822 reg_symbol_ref[i] = NULL_RTX;
1823 reg_mode[i] = VOIDmode;
1826 move2add_last_label_luid = 0;
1827 move2add_luid = 2;
1828 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1830 rtx pat, note;
1832 if (LABEL_P (insn))
1834 move2add_last_label_luid = move2add_luid;
1835 /* We're going to increment move2add_luid twice after a
1836 label, so that we can use move2add_last_label_luid + 1 as
1837 the luid for constants. */
1838 move2add_luid++;
1839 continue;
1841 if (! INSN_P (insn))
1842 continue;
1843 pat = PATTERN (insn);
1844 /* For simplicity, we only perform this optimization on
1845 straightforward SETs. */
1846 if (GET_CODE (pat) == SET
1847 && REG_P (SET_DEST (pat)))
1849 rtx reg = SET_DEST (pat);
1850 int regno = REGNO (reg);
1851 rtx src = SET_SRC (pat);
1853 /* Check if we have valid information on the contents of this
1854 register in the mode of REG. */
1855 if (reg_set_luid[regno] > move2add_last_label_luid
1856 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1857 && dbg_cnt (cse2_move2add))
1859 /* Try to transform (set (REGX) (CONST_INT A))
1861 (set (REGX) (CONST_INT B))
1863 (set (REGX) (CONST_INT A))
1865 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1867 (set (REGX) (CONST_INT A))
1869 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1872 if (CONST_INT_P (src)
1873 && reg_base_reg[regno] < 0
1874 && reg_symbol_ref[regno] == NULL_RTX)
1876 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1877 continue;
1880 /* Try to transform (set (REGX) (REGY))
1881 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1883 (set (REGX) (REGY))
1884 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1886 (set (REGX) (REGY))
1887 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1889 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1890 else if (REG_P (src)
1891 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1892 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1893 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1894 reg_mode[REGNO (src)]))
1896 rtx next = next_nonnote_nondebug_insn (insn);
1897 rtx set = NULL_RTX;
1898 if (next)
1899 set = single_set (next);
1900 if (set
1901 && SET_DEST (set) == reg
1902 && GET_CODE (SET_SRC (set)) == PLUS
1903 && XEXP (SET_SRC (set), 0) == reg
1904 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1906 rtx src3 = XEXP (SET_SRC (set), 1);
1907 HOST_WIDE_INT added_offset = INTVAL (src3);
1908 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1909 HOST_WIDE_INT regno_offset = reg_offset[regno];
1910 rtx new_src =
1911 gen_int_mode (added_offset
1912 + base_offset
1913 - regno_offset,
1914 GET_MODE (reg));
1915 bool success = false;
1916 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1918 if (new_src == const0_rtx)
1919 /* See above why we create (set (reg) (reg)) here. */
1920 success
1921 = validate_change (next, &SET_SRC (set), reg, 0);
1922 else
1924 rtx old_src = SET_SRC (set);
1925 struct full_rtx_costs oldcst, newcst;
1926 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1928 get_full_rtx_cost (set, SET, &oldcst);
1929 SET_SRC (set) = tem;
1930 get_full_rtx_cost (tem, SET, &newcst);
1931 SET_SRC (set) = old_src;
1932 costs_add_n_insns (&oldcst, 1);
1934 if (costs_lt_p (&newcst, &oldcst, speed)
1935 && have_add2_insn (reg, new_src))
1937 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
1938 success
1939 = validate_change (next, &PATTERN (next),
1940 newpat, 0);
1943 if (success)
1944 delete_insn (insn);
1945 changed |= success;
1946 insn = next;
1947 reg_mode[regno] = GET_MODE (reg);
1948 reg_offset[regno] =
1949 trunc_int_for_mode (added_offset + base_offset,
1950 GET_MODE (reg));
1951 continue;
1956 /* Try to transform
1957 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1959 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1961 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1963 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1964 if ((GET_CODE (src) == SYMBOL_REF
1965 || (GET_CODE (src) == CONST
1966 && GET_CODE (XEXP (src, 0)) == PLUS
1967 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
1968 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
1969 && dbg_cnt (cse2_move2add))
1971 rtx sym, off;
1973 if (GET_CODE (src) == SYMBOL_REF)
1975 sym = src;
1976 off = const0_rtx;
1978 else
1980 sym = XEXP (XEXP (src, 0), 0);
1981 off = XEXP (XEXP (src, 0), 1);
1984 /* If the reg already contains the value which is sum of
1985 sym and some constant value, we can use an add2 insn. */
1986 if (reg_set_luid[regno] > move2add_last_label_luid
1987 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1988 && reg_base_reg[regno] < 0
1989 && reg_symbol_ref[regno] != NULL_RTX
1990 && rtx_equal_p (sym, reg_symbol_ref[regno]))
1991 changed |= move2add_use_add2_insn (reg, sym, off, insn);
1993 /* Otherwise, we have to find a register whose value is sum
1994 of sym and some constant value. */
1995 else
1996 changed |= move2add_use_add3_insn (reg, sym, off, insn);
1998 continue;
2002 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2004 if (REG_NOTE_KIND (note) == REG_INC
2005 && REG_P (XEXP (note, 0)))
2007 /* Reset the information about this register. */
2008 int regno = REGNO (XEXP (note, 0));
2009 if (regno < FIRST_PSEUDO_REGISTER)
2010 reg_set_luid[regno] = 0;
2013 note_stores (PATTERN (insn), move2add_note_store, insn);
2015 /* If INSN is a conditional branch, we try to extract an
2016 implicit set out of it. */
2017 if (any_condjump_p (insn))
2019 rtx cnd = fis_get_condition (insn);
2021 if (cnd != NULL_RTX
2022 && GET_CODE (cnd) == NE
2023 && REG_P (XEXP (cnd, 0))
2024 && !reg_set_p (XEXP (cnd, 0), insn)
2025 /* The following two checks, which are also in
2026 move2add_note_store, are intended to reduce the
2027 number of calls to gen_rtx_SET to avoid memory
2028 allocation if possible. */
2029 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2030 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2031 && CONST_INT_P (XEXP (cnd, 1)))
2033 rtx implicit_set =
2034 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2035 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2039 /* If this is a CALL_INSN, all call used registers are stored with
2040 unknown values. */
2041 if (CALL_P (insn))
2043 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2045 if (call_used_regs[i])
2046 /* Reset the information about this register. */
2047 reg_set_luid[i] = 0;
2051 return changed;
2054 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2055 contains SET.
2056 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2057 Called from reload_cse_move2add via note_stores. */
2059 static void
2060 move2add_note_store (rtx dst, const_rtx set, void *data)
2062 rtx insn = (rtx) data;
2063 unsigned int regno = 0;
2064 unsigned int nregs = 0;
2065 unsigned int i;
2066 enum machine_mode mode = GET_MODE (dst);
2068 if (GET_CODE (dst) == SUBREG)
2070 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
2071 GET_MODE (SUBREG_REG (dst)),
2072 SUBREG_BYTE (dst),
2073 GET_MODE (dst));
2074 nregs = subreg_nregs (dst);
2075 dst = SUBREG_REG (dst);
2078 /* Some targets do argument pushes without adding REG_INC notes. */
2080 if (MEM_P (dst))
2082 dst = XEXP (dst, 0);
2083 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2084 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2085 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
2086 return;
2088 if (!REG_P (dst))
2089 return;
2091 regno += REGNO (dst);
2092 if (!nregs)
2093 nregs = hard_regno_nregs[regno][mode];
2095 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2096 && nregs == 1 && GET_CODE (set) == SET)
2098 rtx note, sym = NULL_RTX;
2099 HOST_WIDE_INT off;
2101 note = find_reg_equal_equiv_note (insn);
2102 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2104 sym = XEXP (note, 0);
2105 off = 0;
2107 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2108 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2109 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2110 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2112 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2113 off = INTVAL (XEXP (XEXP (XEXP (note, 0), 0), 1));
2116 if (sym != NULL_RTX)
2118 reg_base_reg[regno] = -1;
2119 reg_symbol_ref[regno] = sym;
2120 reg_offset[regno] = off;
2121 reg_mode[regno] = mode;
2122 reg_set_luid[regno] = move2add_luid;
2123 return;
2127 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2128 && nregs == 1 && GET_CODE (set) == SET
2129 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2130 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2132 rtx src = SET_SRC (set);
2133 rtx base_reg;
2134 HOST_WIDE_INT offset;
2135 int base_regno;
2136 /* This may be different from mode, if SET_DEST (set) is a
2137 SUBREG. */
2138 enum machine_mode dst_mode = GET_MODE (dst);
2140 switch (GET_CODE (src))
2142 case PLUS:
2143 if (REG_P (XEXP (src, 0)))
2145 base_reg = XEXP (src, 0);
2147 if (CONST_INT_P (XEXP (src, 1)))
2148 offset = INTVAL (XEXP (src, 1));
2149 else if (REG_P (XEXP (src, 1))
2150 && (reg_set_luid[REGNO (XEXP (src, 1))]
2151 > move2add_last_label_luid)
2152 && (MODES_OK_FOR_MOVE2ADD
2153 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
2155 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2156 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2157 offset = reg_offset[REGNO (XEXP (src, 1))];
2158 /* Maybe the first register is known to be a
2159 constant. */
2160 else if (reg_set_luid[REGNO (base_reg)]
2161 > move2add_last_label_luid
2162 && (MODES_OK_FOR_MOVE2ADD
2163 (dst_mode, reg_mode[REGNO (base_reg)]))
2164 && reg_base_reg[REGNO (base_reg)] < 0
2165 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2167 offset = reg_offset[REGNO (base_reg)];
2168 base_reg = XEXP (src, 1);
2170 else
2171 goto invalidate;
2173 else
2174 goto invalidate;
2176 break;
2179 goto invalidate;
2181 case REG:
2182 base_reg = src;
2183 offset = 0;
2184 break;
2186 case CONST_INT:
2187 /* Start tracking the register as a constant. */
2188 reg_base_reg[regno] = -1;
2189 reg_symbol_ref[regno] = NULL_RTX;
2190 reg_offset[regno] = INTVAL (SET_SRC (set));
2191 /* We assign the same luid to all registers set to constants. */
2192 reg_set_luid[regno] = move2add_last_label_luid + 1;
2193 reg_mode[regno] = mode;
2194 return;
2196 default:
2197 invalidate:
2198 /* Invalidate the contents of the register. */
2199 reg_set_luid[regno] = 0;
2200 return;
2203 base_regno = REGNO (base_reg);
2204 /* If information about the base register is not valid, set it
2205 up as a new base register, pretending its value is known
2206 starting from the current insn. */
2207 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
2209 reg_base_reg[base_regno] = base_regno;
2210 reg_symbol_ref[base_regno] = NULL_RTX;
2211 reg_offset[base_regno] = 0;
2212 reg_set_luid[base_regno] = move2add_luid;
2213 reg_mode[base_regno] = mode;
2215 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
2216 reg_mode[base_regno]))
2217 goto invalidate;
2219 reg_mode[regno] = mode;
2221 /* Copy base information from our base register. */
2222 reg_set_luid[regno] = reg_set_luid[base_regno];
2223 reg_base_reg[regno] = reg_base_reg[base_regno];
2224 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2226 /* Compute the sum of the offsets or constants. */
2227 reg_offset[regno] = trunc_int_for_mode (offset
2228 + reg_offset[base_regno],
2229 dst_mode);
2231 else
2233 unsigned int endregno = regno + nregs;
2235 for (i = regno; i < endregno; i++)
2236 /* Reset the information about this register. */
2237 reg_set_luid[i] = 0;
2241 static bool
2242 gate_handle_postreload (void)
2244 return (optimize > 0 && reload_completed);
2248 static unsigned int
2249 rest_of_handle_postreload (void)
2251 if (!dbg_cnt (postreload_cse))
2252 return 0;
2254 /* Do a very simple CSE pass over just the hard registers. */
2255 reload_cse_regs (get_insns ());
2256 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2257 Remove any EH edges associated with them. */
2258 if (cfun->can_throw_non_call_exceptions)
2259 purge_all_dead_edges ();
2261 return 0;
2264 struct rtl_opt_pass pass_postreload_cse =
2267 RTL_PASS,
2268 "postreload", /* name */
2269 gate_handle_postreload, /* gate */
2270 rest_of_handle_postreload, /* execute */
2271 NULL, /* sub */
2272 NULL, /* next */
2273 0, /* static_pass_number */
2274 TV_RELOAD_CSE_REGS, /* tv_id */
2275 0, /* properties_required */
2276 0, /* properties_provided */
2277 0, /* properties_destroyed */
2278 0, /* todo_flags_start */
2279 TODO_df_finish | TODO_verify_rtl_sharing |
2280 TODO_dump_func /* todo_flags_finish */