Merged revisions 195901,195904,196012 via svnmerge from
[official-gcc.git] / main / gcc / tree-vect-data-refs.c
blob74d8c3a41fa97dc230a3cd5e5bb564afe297a284
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "target.h"
31 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "dumpfile.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "diagnostic-core.h"
41 /* Need to include rtl.h, expr.h, etc. for optabs. */
42 #include "expr.h"
43 #include "optabs.h"
45 /* Return true if load- or store-lanes optab OPTAB is implemented for
46 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
48 static bool
49 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
50 tree vectype, unsigned HOST_WIDE_INT count)
52 enum machine_mode mode, array_mode;
53 bool limit_p;
55 mode = TYPE_MODE (vectype);
56 limit_p = !targetm.array_mode_supported_p (mode, count);
57 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
58 MODE_INT, limit_p);
60 if (array_mode == BLKmode)
62 if (dump_enabled_p ())
63 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
64 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]",
65 GET_MODE_NAME (mode), count);
66 return false;
69 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
71 if (dump_enabled_p ())
72 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
73 "cannot use %s<%s><%s>", name,
74 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
75 return false;
78 if (dump_enabled_p ())
79 dump_printf_loc (MSG_NOTE, vect_location,
80 "can use %s<%s><%s>", name, GET_MODE_NAME (array_mode),
81 GET_MODE_NAME (mode));
83 return true;
87 /* Return the smallest scalar part of STMT.
88 This is used to determine the vectype of the stmt. We generally set the
89 vectype according to the type of the result (lhs). For stmts whose
90 result-type is different than the type of the arguments (e.g., demotion,
91 promotion), vectype will be reset appropriately (later). Note that we have
92 to visit the smallest datatype in this function, because that determines the
93 VF. If the smallest datatype in the loop is present only as the rhs of a
94 promotion operation - we'd miss it.
95 Such a case, where a variable of this datatype does not appear in the lhs
96 anywhere in the loop, can only occur if it's an invariant: e.g.:
97 'int_x = (int) short_inv', which we'd expect to have been optimized away by
98 invariant motion. However, we cannot rely on invariant motion to always
99 take invariants out of the loop, and so in the case of promotion we also
100 have to check the rhs.
101 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
102 types. */
104 tree
105 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
106 HOST_WIDE_INT *rhs_size_unit)
108 tree scalar_type = gimple_expr_type (stmt);
109 HOST_WIDE_INT lhs, rhs;
111 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
113 if (is_gimple_assign (stmt)
114 && (gimple_assign_cast_p (stmt)
115 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
116 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
117 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
119 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
121 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
122 if (rhs < lhs)
123 scalar_type = rhs_type;
126 *lhs_size_unit = lhs;
127 *rhs_size_unit = rhs;
128 return scalar_type;
132 /* Find the place of the data-ref in STMT in the interleaving chain that starts
133 from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
136 vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
138 gimple next_stmt = first_stmt;
139 int result = 0;
141 if (first_stmt != GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
142 return -1;
144 while (next_stmt && next_stmt != stmt)
146 result++;
147 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
150 if (next_stmt)
151 return result;
152 else
153 return -1;
157 /* Function vect_insert_into_interleaving_chain.
159 Insert DRA into the interleaving chain of DRB according to DRA's INIT. */
161 static void
162 vect_insert_into_interleaving_chain (struct data_reference *dra,
163 struct data_reference *drb)
165 gimple prev, next;
166 tree next_init;
167 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
168 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
170 prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
171 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
172 while (next)
174 next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
175 if (tree_int_cst_compare (next_init, DR_INIT (dra)) > 0)
177 /* Insert here. */
178 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
179 GROUP_NEXT_ELEMENT (stmtinfo_a) = next;
180 return;
182 prev = next;
183 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
186 /* We got to the end of the list. Insert here. */
187 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
188 GROUP_NEXT_ELEMENT (stmtinfo_a) = NULL;
192 /* Function vect_update_interleaving_chain.
194 For two data-refs DRA and DRB that are a part of a chain interleaved data
195 accesses, update the interleaving chain. DRB's INIT is smaller than DRA's.
197 There are four possible cases:
198 1. New stmts - both DRA and DRB are not a part of any chain:
199 FIRST_DR = DRB
200 NEXT_DR (DRB) = DRA
201 2. DRB is a part of a chain and DRA is not:
202 no need to update FIRST_DR
203 no need to insert DRB
204 insert DRA according to init
205 3. DRA is a part of a chain and DRB is not:
206 if (init of FIRST_DR > init of DRB)
207 FIRST_DR = DRB
208 NEXT(FIRST_DR) = previous FIRST_DR
209 else
210 insert DRB according to its init
211 4. both DRA and DRB are in some interleaving chains:
212 choose the chain with the smallest init of FIRST_DR
213 insert the nodes of the second chain into the first one. */
215 static void
216 vect_update_interleaving_chain (struct data_reference *drb,
217 struct data_reference *dra)
219 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
220 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
221 tree next_init, init_dra_chain, init_drb_chain;
222 gimple first_a, first_b;
223 tree node_init;
224 gimple node, prev, next, first_stmt;
226 /* 1. New stmts - both DRA and DRB are not a part of any chain. */
227 if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
229 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (drb);
230 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
231 GROUP_NEXT_ELEMENT (stmtinfo_b) = DR_STMT (dra);
232 return;
235 /* 2. DRB is a part of a chain and DRA is not. */
236 if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && GROUP_FIRST_ELEMENT (stmtinfo_b))
238 GROUP_FIRST_ELEMENT (stmtinfo_a) = GROUP_FIRST_ELEMENT (stmtinfo_b);
239 /* Insert DRA into the chain of DRB. */
240 vect_insert_into_interleaving_chain (dra, drb);
241 return;
244 /* 3. DRA is a part of a chain and DRB is not. */
245 if (GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
247 gimple old_first_stmt = GROUP_FIRST_ELEMENT (stmtinfo_a);
248 tree init_old = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (
249 old_first_stmt)));
250 gimple tmp;
252 if (tree_int_cst_compare (init_old, DR_INIT (drb)) > 0)
254 /* DRB's init is smaller than the init of the stmt previously marked
255 as the first stmt of the interleaving chain of DRA. Therefore, we
256 update FIRST_STMT and put DRB in the head of the list. */
257 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
258 GROUP_NEXT_ELEMENT (stmtinfo_b) = old_first_stmt;
260 /* Update all the stmts in the list to point to the new FIRST_STMT. */
261 tmp = old_first_stmt;
262 while (tmp)
264 GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) = DR_STMT (drb);
265 tmp = GROUP_NEXT_ELEMENT (vinfo_for_stmt (tmp));
268 else
270 /* Insert DRB in the list of DRA. */
271 vect_insert_into_interleaving_chain (drb, dra);
272 GROUP_FIRST_ELEMENT (stmtinfo_b) = GROUP_FIRST_ELEMENT (stmtinfo_a);
274 return;
277 /* 4. both DRA and DRB are in some interleaving chains. */
278 first_a = GROUP_FIRST_ELEMENT (stmtinfo_a);
279 first_b = GROUP_FIRST_ELEMENT (stmtinfo_b);
280 if (first_a == first_b)
281 return;
282 init_dra_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_a)));
283 init_drb_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_b)));
285 if (tree_int_cst_compare (init_dra_chain, init_drb_chain) > 0)
287 /* Insert the nodes of DRA chain into the DRB chain.
288 After inserting a node, continue from this node of the DRB chain (don't
289 start from the beginning. */
290 node = GROUP_FIRST_ELEMENT (stmtinfo_a);
291 prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
292 first_stmt = first_b;
294 else
296 /* Insert the nodes of DRB chain into the DRA chain.
297 After inserting a node, continue from this node of the DRA chain (don't
298 start from the beginning. */
299 node = GROUP_FIRST_ELEMENT (stmtinfo_b);
300 prev = GROUP_FIRST_ELEMENT (stmtinfo_a);
301 first_stmt = first_a;
304 while (node)
306 node_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (node)));
307 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
308 while (next)
310 next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
311 if (tree_int_cst_compare (next_init, node_init) > 0)
313 /* Insert here. */
314 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
315 GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = next;
316 prev = node;
317 break;
319 prev = next;
320 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
322 if (!next)
324 /* We got to the end of the list. Insert here. */
325 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
326 GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = NULL;
327 prev = node;
329 GROUP_FIRST_ELEMENT (vinfo_for_stmt (node)) = first_stmt;
330 node = GROUP_NEXT_ELEMENT (vinfo_for_stmt (node));
334 /* Check dependence between DRA and DRB for basic block vectorization.
335 If the accesses share same bases and offsets, we can compare their initial
336 constant offsets to decide whether they differ or not. In case of a read-
337 write dependence we check that the load is before the store to ensure that
338 vectorization will not change the order of the accesses. */
340 static bool
341 vect_drs_dependent_in_basic_block (struct data_reference *dra,
342 struct data_reference *drb)
344 HOST_WIDE_INT type_size_a, type_size_b, init_a, init_b;
345 gimple earlier_stmt;
347 /* We only call this function for pairs of loads and stores, but we verify
348 it here. */
349 if (DR_IS_READ (dra) == DR_IS_READ (drb))
351 if (DR_IS_READ (dra))
352 return false;
353 else
354 return true;
357 /* Check that the data-refs have same bases and offsets. If not, we can't
358 determine if they are dependent. */
359 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
360 || !dr_equal_offsets_p (dra, drb))
361 return true;
363 /* Check the types. */
364 type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
365 type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
367 if (type_size_a != type_size_b
368 || !types_compatible_p (TREE_TYPE (DR_REF (dra)),
369 TREE_TYPE (DR_REF (drb))))
370 return true;
372 init_a = TREE_INT_CST_LOW (DR_INIT (dra));
373 init_b = TREE_INT_CST_LOW (DR_INIT (drb));
375 /* Two different locations - no dependence. */
376 if (init_a != init_b)
377 return false;
379 /* We have a read-write dependence. Check that the load is before the store.
380 When we vectorize basic blocks, vector load can be only before
381 corresponding scalar load, and vector store can be only after its
382 corresponding scalar store. So the order of the acceses is preserved in
383 case the load is before the store. */
384 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
385 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
386 return false;
388 return true;
392 /* Function vect_check_interleaving.
394 Check if DRA and DRB are a part of interleaving. In case they are, insert
395 DRA and DRB in an interleaving chain. */
397 static bool
398 vect_check_interleaving (struct data_reference *dra,
399 struct data_reference *drb)
401 HOST_WIDE_INT type_size_a, type_size_b, diff_mod_size, step, init_a, init_b;
403 /* Check that the data-refs have same first location (except init) and they
404 are both either store or load (not load and store). */
405 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
406 || !dr_equal_offsets_p (dra, drb)
407 || !tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb))
408 || DR_IS_READ (dra) != DR_IS_READ (drb))
409 return false;
411 /* Check:
412 1. data-refs are of the same type
413 2. their steps are equal
414 3. the step (if greater than zero) is greater than the difference between
415 data-refs' inits. */
416 type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
417 type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
419 if (type_size_a != type_size_b
420 || tree_int_cst_compare (DR_STEP (dra), DR_STEP (drb))
421 || !types_compatible_p (TREE_TYPE (DR_REF (dra)),
422 TREE_TYPE (DR_REF (drb))))
423 return false;
425 init_a = TREE_INT_CST_LOW (DR_INIT (dra));
426 init_b = TREE_INT_CST_LOW (DR_INIT (drb));
427 step = TREE_INT_CST_LOW (DR_STEP (dra));
429 if (init_a > init_b)
431 /* If init_a == init_b + the size of the type * k, we have an interleaving,
432 and DRB is accessed before DRA. */
433 diff_mod_size = (init_a - init_b) % type_size_a;
435 if (step && (init_a - init_b) > step)
436 return false;
438 if (diff_mod_size == 0)
440 vect_update_interleaving_chain (drb, dra);
441 if (dump_enabled_p ())
443 dump_printf_loc (MSG_NOTE, vect_location,
444 "Detected interleaving ");
445 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
446 dump_printf (MSG_NOTE, " and ");
447 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
449 return true;
452 else
454 /* If init_b == init_a + the size of the type * k, we have an
455 interleaving, and DRA is accessed before DRB. */
456 diff_mod_size = (init_b - init_a) % type_size_a;
458 if (step && (init_b - init_a) > step)
459 return false;
461 if (diff_mod_size == 0)
463 vect_update_interleaving_chain (dra, drb);
464 if (dump_enabled_p ())
466 dump_printf_loc (MSG_NOTE, vect_location,
467 "Detected interleaving ");
468 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
469 dump_printf (MSG_NOTE, " and ");
470 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
472 return true;
476 return false;
479 /* Check if data references pointed by DR_I and DR_J are same or
480 belong to same interleaving group. Return FALSE if drs are
481 different, otherwise return TRUE. */
483 static bool
484 vect_same_range_drs (data_reference_p dr_i, data_reference_p dr_j)
486 gimple stmt_i = DR_STMT (dr_i);
487 gimple stmt_j = DR_STMT (dr_j);
489 if (operand_equal_p (DR_REF (dr_i), DR_REF (dr_j), 0)
490 || (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
491 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j))
492 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
493 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j)))))
494 return true;
495 else
496 return false;
499 /* If address ranges represented by DDR_I and DDR_J are equal,
500 return TRUE, otherwise return FALSE. */
502 static bool
503 vect_vfa_range_equal (ddr_p ddr_i, ddr_p ddr_j)
505 if ((vect_same_range_drs (DDR_A (ddr_i), DDR_A (ddr_j))
506 && vect_same_range_drs (DDR_B (ddr_i), DDR_B (ddr_j)))
507 || (vect_same_range_drs (DDR_A (ddr_i), DDR_B (ddr_j))
508 && vect_same_range_drs (DDR_B (ddr_i), DDR_A (ddr_j))))
509 return true;
510 else
511 return false;
514 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
515 tested at run-time. Return TRUE if DDR was successfully inserted.
516 Return false if versioning is not supported. */
518 static bool
519 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
521 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
523 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
524 return false;
526 if (dump_enabled_p ())
528 dump_printf_loc (MSG_NOTE, vect_location,
529 "mark for run-time aliasing test between ");
530 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
531 dump_printf (MSG_NOTE, " and ");
532 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
535 if (optimize_loop_nest_for_size_p (loop))
537 if (dump_enabled_p ())
538 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
539 "versioning not supported when optimizing for size.");
540 return false;
543 /* FORNOW: We don't support versioning with outer-loop vectorization. */
544 if (loop->inner)
546 if (dump_enabled_p ())
547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
548 "versioning not yet supported for outer-loops.");
549 return false;
552 /* FORNOW: We don't support creating runtime alias tests for non-constant
553 step. */
554 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
555 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
557 if (dump_enabled_p ())
558 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
559 "versioning not yet supported for non-constant "
560 "step");
561 return false;
564 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
565 return true;
569 /* Function vect_analyze_data_ref_dependence.
571 Return TRUE if there (might) exist a dependence between a memory-reference
572 DRA and a memory-reference DRB. When versioning for alias may check a
573 dependence at run-time, return FALSE. Adjust *MAX_VF according to
574 the data dependence. */
576 static bool
577 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
578 loop_vec_info loop_vinfo, int *max_vf)
580 unsigned int i;
581 struct loop *loop = NULL;
582 struct data_reference *dra = DDR_A (ddr);
583 struct data_reference *drb = DDR_B (ddr);
584 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
585 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
586 lambda_vector dist_v;
587 unsigned int loop_depth;
589 /* Don't bother to analyze statements marked as unvectorizable. */
590 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
591 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
592 return false;
594 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
596 /* Independent data accesses. */
597 vect_check_interleaving (dra, drb);
598 return false;
601 if (loop_vinfo)
602 loop = LOOP_VINFO_LOOP (loop_vinfo);
604 if ((DR_IS_READ (dra) && DR_IS_READ (drb) && loop_vinfo) || dra == drb)
605 return false;
607 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
609 gimple earlier_stmt;
611 if (loop_vinfo)
613 if (dump_enabled_p ())
615 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
616 "versioning for alias required: "
617 "can't determine dependence between ");
618 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
619 DR_REF (dra));
620 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
621 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
622 DR_REF (drb));
625 /* Add to list of ddrs that need to be tested at run-time. */
626 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
629 /* When vectorizing a basic block unknown depnedence can still mean
630 grouped access. */
631 if (vect_check_interleaving (dra, drb))
632 return false;
634 /* Read-read is OK (we need this check here, after checking for
635 interleaving). */
636 if (DR_IS_READ (dra) && DR_IS_READ (drb))
637 return false;
639 if (dump_enabled_p ())
641 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
642 "can't determine dependence between ");
643 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
648 /* We do not vectorize basic blocks with write-write dependencies. */
649 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
650 return true;
652 /* Check that it's not a load-after-store dependence. */
653 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
654 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
655 return true;
657 return false;
660 /* Versioning for alias is not yet supported for basic block SLP, and
661 dependence distance is unapplicable, hence, in case of known data
662 dependence, basic block vectorization is impossible for now. */
663 if (!loop_vinfo)
665 if (dra != drb && vect_check_interleaving (dra, drb))
666 return false;
668 if (dump_enabled_p ())
670 dump_printf_loc (MSG_NOTE, vect_location,
671 "determined dependence between ");
672 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
673 dump_printf (MSG_NOTE, " and ");
674 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
677 /* Do not vectorize basic blcoks with write-write dependences. */
678 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
679 return true;
681 /* Check if this dependence is allowed in basic block vectorization. */
682 return vect_drs_dependent_in_basic_block (dra, drb);
685 /* Loop-based vectorization and known data dependence. */
686 if (DDR_NUM_DIST_VECTS (ddr) == 0)
688 if (dump_enabled_p ())
690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
691 "versioning for alias required: "
692 "bad dist vector for ");
693 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
694 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
695 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
697 /* Add to list of ddrs that need to be tested at run-time. */
698 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
701 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
702 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
704 int dist = dist_v[loop_depth];
706 if (dump_enabled_p ())
707 dump_printf_loc (MSG_NOTE, vect_location,
708 "dependence distance = %d.", dist);
710 if (dist == 0)
712 if (dump_enabled_p ())
714 dump_printf_loc (MSG_NOTE, vect_location,
715 "dependence distance == 0 between ");
716 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
717 dump_printf (MSG_NOTE, " and ");
718 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
721 /* For interleaving, mark that there is a read-write dependency if
722 necessary. We check before that one of the data-refs is store. */
723 if (DR_IS_READ (dra))
724 GROUP_READ_WRITE_DEPENDENCE (stmtinfo_a) = true;
725 else
727 if (DR_IS_READ (drb))
728 GROUP_READ_WRITE_DEPENDENCE (stmtinfo_b) = true;
731 continue;
734 if (dist > 0 && DDR_REVERSED_P (ddr))
736 /* If DDR_REVERSED_P the order of the data-refs in DDR was
737 reversed (to make distance vector positive), and the actual
738 distance is negative. */
739 if (dump_enabled_p ())
740 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
741 "dependence distance negative.");
742 continue;
745 if (abs (dist) >= 2
746 && abs (dist) < *max_vf)
748 /* The dependence distance requires reduction of the maximal
749 vectorization factor. */
750 *max_vf = abs (dist);
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_NOTE, vect_location,
753 "adjusting maximal vectorization factor to %i",
754 *max_vf);
757 if (abs (dist) >= *max_vf)
759 /* Dependence distance does not create dependence, as far as
760 vectorization is concerned, in this case. */
761 if (dump_enabled_p ())
762 dump_printf_loc (MSG_NOTE, vect_location,
763 "dependence distance >= VF.");
764 continue;
767 if (dump_enabled_p ())
769 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
770 "not vectorized, possible dependence "
771 "between data-refs ");
772 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
773 dump_printf (MSG_NOTE, " and ");
774 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
777 return true;
780 return false;
783 /* Function vect_analyze_data_ref_dependences.
785 Examine all the data references in the loop, and make sure there do not
786 exist any data dependences between them. Set *MAX_VF according to
787 the maximum vectorization factor the data dependences allow. */
789 bool
790 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
791 bb_vec_info bb_vinfo, int *max_vf)
793 unsigned int i;
794 vec<ddr_p> ddrs = vNULL;
795 struct data_dependence_relation *ddr;
797 if (dump_enabled_p ())
798 dump_printf_loc (MSG_NOTE, vect_location,
799 "=== vect_analyze_dependences ===");
800 if (loop_vinfo)
801 ddrs = LOOP_VINFO_DDRS (loop_vinfo);
802 else
803 ddrs = BB_VINFO_DDRS (bb_vinfo);
805 FOR_EACH_VEC_ELT (ddrs, i, ddr)
806 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
807 return false;
809 return true;
813 /* Function vect_compute_data_ref_alignment
815 Compute the misalignment of the data reference DR.
817 Output:
818 1. If during the misalignment computation it is found that the data reference
819 cannot be vectorized then false is returned.
820 2. DR_MISALIGNMENT (DR) is defined.
822 FOR NOW: No analysis is actually performed. Misalignment is calculated
823 only for trivial cases. TODO. */
825 static bool
826 vect_compute_data_ref_alignment (struct data_reference *dr)
828 gimple stmt = DR_STMT (dr);
829 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
830 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
831 struct loop *loop = NULL;
832 tree ref = DR_REF (dr);
833 tree vectype;
834 tree base, base_addr;
835 bool base_aligned;
836 tree misalign;
837 tree aligned_to, alignment;
839 if (dump_enabled_p ())
840 dump_printf_loc (MSG_NOTE, vect_location,
841 "vect_compute_data_ref_alignment:");
843 if (loop_vinfo)
844 loop = LOOP_VINFO_LOOP (loop_vinfo);
846 /* Initialize misalignment to unknown. */
847 SET_DR_MISALIGNMENT (dr, -1);
849 /* Strided loads perform only component accesses, misalignment information
850 is irrelevant for them. */
851 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
852 return true;
854 misalign = DR_INIT (dr);
855 aligned_to = DR_ALIGNED_TO (dr);
856 base_addr = DR_BASE_ADDRESS (dr);
857 vectype = STMT_VINFO_VECTYPE (stmt_info);
859 /* In case the dataref is in an inner-loop of the loop that is being
860 vectorized (LOOP), we use the base and misalignment information
861 relative to the outer-loop (LOOP). This is ok only if the misalignment
862 stays the same throughout the execution of the inner-loop, which is why
863 we have to check that the stride of the dataref in the inner-loop evenly
864 divides by the vector size. */
865 if (loop && nested_in_vect_loop_p (loop, stmt))
867 tree step = DR_STEP (dr);
868 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
870 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
872 if (dump_enabled_p ())
873 dump_printf_loc (MSG_NOTE, vect_location,
874 "inner step divides the vector-size.");
875 misalign = STMT_VINFO_DR_INIT (stmt_info);
876 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
877 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
879 else
881 if (dump_enabled_p ())
882 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
883 "inner step doesn't divide the vector-size.");
884 misalign = NULL_TREE;
888 /* Similarly, if we're doing basic-block vectorization, we can only use
889 base and misalignment information relative to an innermost loop if the
890 misalignment stays the same throughout the execution of the loop.
891 As above, this is the case if the stride of the dataref evenly divides
892 by the vector size. */
893 if (!loop)
895 tree step = DR_STEP (dr);
896 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
898 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
900 if (dump_enabled_p ())
901 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
902 "SLP: step doesn't divide the vector-size.");
903 misalign = NULL_TREE;
907 base = build_fold_indirect_ref (base_addr);
908 alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
910 if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
911 || !misalign)
913 if (dump_enabled_p ())
915 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
916 "Unknown alignment for access: ");
917 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
919 return true;
922 if ((DECL_P (base)
923 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
924 alignment) >= 0)
925 || (TREE_CODE (base_addr) == SSA_NAME
926 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
927 TREE_TYPE (base_addr)))),
928 alignment) >= 0)
929 || (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
930 base_aligned = true;
931 else
932 base_aligned = false;
934 if (!base_aligned)
936 /* Do not change the alignment of global variables here if
937 flag_section_anchors is enabled as we already generated
938 RTL for other functions. Most global variables should
939 have been aligned during the IPA increase_alignment pass. */
940 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
941 || (TREE_STATIC (base) && flag_section_anchors))
943 if (dump_enabled_p ())
945 dump_printf_loc (MSG_NOTE, vect_location,
946 "can't force alignment of ref: ");
947 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
949 return true;
952 /* Force the alignment of the decl.
953 NOTE: This is the only change to the code we make during
954 the analysis phase, before deciding to vectorize the loop. */
955 if (dump_enabled_p ())
957 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
958 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
961 DECL_ALIGN (base) = TYPE_ALIGN (vectype);
962 DECL_USER_ALIGN (base) = 1;
965 /* At this point we assume that the base is aligned. */
966 gcc_assert (base_aligned
967 || (TREE_CODE (base) == VAR_DECL
968 && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
970 /* If this is a backward running DR then first access in the larger
971 vectype actually is N-1 elements before the address in the DR.
972 Adjust misalign accordingly. */
973 if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
975 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
976 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
977 otherwise we wouldn't be here. */
978 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
979 /* PLUS because DR_STEP was negative. */
980 misalign = size_binop (PLUS_EXPR, misalign, offset);
983 /* Modulo alignment. */
984 misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
986 if (!host_integerp (misalign, 1))
988 /* Negative or overflowed misalignment value. */
989 if (dump_enabled_p ())
990 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
991 "unexpected misalign value");
992 return false;
995 SET_DR_MISALIGNMENT (dr, TREE_INT_CST_LOW (misalign));
997 if (dump_enabled_p ())
999 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1000 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
1001 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
1004 return true;
1008 /* Function vect_compute_data_refs_alignment
1010 Compute the misalignment of data references in the loop.
1011 Return FALSE if a data reference is found that cannot be vectorized. */
1013 static bool
1014 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
1015 bb_vec_info bb_vinfo)
1017 vec<data_reference_p> datarefs;
1018 struct data_reference *dr;
1019 unsigned int i;
1021 if (loop_vinfo)
1022 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1023 else
1024 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
1026 FOR_EACH_VEC_ELT (datarefs, i, dr)
1027 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
1028 && !vect_compute_data_ref_alignment (dr))
1030 if (bb_vinfo)
1032 /* Mark unsupported statement as unvectorizable. */
1033 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
1034 continue;
1036 else
1037 return false;
1040 return true;
1044 /* Function vect_update_misalignment_for_peel
1046 DR - the data reference whose misalignment is to be adjusted.
1047 DR_PEEL - the data reference whose misalignment is being made
1048 zero in the vector loop by the peel.
1049 NPEEL - the number of iterations in the peel loop if the misalignment
1050 of DR_PEEL is known at compile time. */
1052 static void
1053 vect_update_misalignment_for_peel (struct data_reference *dr,
1054 struct data_reference *dr_peel, int npeel)
1056 unsigned int i;
1057 vec<dr_p> same_align_drs;
1058 struct data_reference *current_dr;
1059 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
1060 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
1061 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
1062 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
1064 /* For interleaved data accesses the step in the loop must be multiplied by
1065 the size of the interleaving group. */
1066 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1067 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
1068 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
1069 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
1071 /* It can be assumed that the data refs with the same alignment as dr_peel
1072 are aligned in the vector loop. */
1073 same_align_drs
1074 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
1075 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
1077 if (current_dr != dr)
1078 continue;
1079 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
1080 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
1081 SET_DR_MISALIGNMENT (dr, 0);
1082 return;
1085 if (known_alignment_for_access_p (dr)
1086 && known_alignment_for_access_p (dr_peel))
1088 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1089 int misal = DR_MISALIGNMENT (dr);
1090 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1091 misal += negative ? -npeel * dr_size : npeel * dr_size;
1092 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
1093 SET_DR_MISALIGNMENT (dr, misal);
1094 return;
1097 if (dump_enabled_p ())
1098 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.");
1099 SET_DR_MISALIGNMENT (dr, -1);
1103 /* Function vect_verify_datarefs_alignment
1105 Return TRUE if all data references in the loop can be
1106 handled with respect to alignment. */
1108 bool
1109 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
1111 vec<data_reference_p> datarefs;
1112 struct data_reference *dr;
1113 enum dr_alignment_support supportable_dr_alignment;
1114 unsigned int i;
1116 if (loop_vinfo)
1117 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1118 else
1119 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
1121 FOR_EACH_VEC_ELT (datarefs, i, dr)
1123 gimple stmt = DR_STMT (dr);
1124 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1126 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1127 continue;
1129 /* For interleaving, only the alignment of the first access matters.
1130 Skip statements marked as not vectorizable. */
1131 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
1132 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1133 || !STMT_VINFO_VECTORIZABLE (stmt_info))
1134 continue;
1136 /* Strided loads perform only component accesses, alignment is
1137 irrelevant for them. */
1138 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1139 continue;
1141 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1142 if (!supportable_dr_alignment)
1144 if (dump_enabled_p ())
1146 if (DR_IS_READ (dr))
1147 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1148 "not vectorized: unsupported unaligned load.");
1149 else
1150 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1151 "not vectorized: unsupported unaligned "
1152 "store.");
1154 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
1155 DR_REF (dr));
1157 return false;
1159 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
1160 dump_printf_loc (MSG_NOTE, vect_location,
1161 "Vectorizing an unaligned access.");
1163 return true;
1166 /* Given an memory reference EXP return whether its alignment is less
1167 than its size. */
1169 static bool
1170 not_size_aligned (tree exp)
1172 if (!host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1))
1173 return true;
1175 return (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))
1176 > get_object_alignment (exp));
1179 /* Function vector_alignment_reachable_p
1181 Return true if vector alignment for DR is reachable by peeling
1182 a few loop iterations. Return false otherwise. */
1184 static bool
1185 vector_alignment_reachable_p (struct data_reference *dr)
1187 gimple stmt = DR_STMT (dr);
1188 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1189 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1191 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1193 /* For interleaved access we peel only if number of iterations in
1194 the prolog loop ({VF - misalignment}), is a multiple of the
1195 number of the interleaved accesses. */
1196 int elem_size, mis_in_elements;
1197 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1199 /* FORNOW: handle only known alignment. */
1200 if (!known_alignment_for_access_p (dr))
1201 return false;
1203 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1204 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1206 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1207 return false;
1210 /* If misalignment is known at the compile time then allow peeling
1211 only if natural alignment is reachable through peeling. */
1212 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1214 HOST_WIDE_INT elmsize =
1215 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1216 if (dump_enabled_p ())
1218 dump_printf_loc (MSG_NOTE, vect_location,
1219 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1220 dump_printf (MSG_NOTE,
1221 ". misalignment = %d. ", DR_MISALIGNMENT (dr));
1223 if (DR_MISALIGNMENT (dr) % elmsize)
1225 if (dump_enabled_p ())
1226 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1227 "data size does not divide the misalignment.\n");
1228 return false;
1232 if (!known_alignment_for_access_p (dr))
1234 tree type = TREE_TYPE (DR_REF (dr));
1235 bool is_packed = not_size_aligned (DR_REF (dr));
1236 if (dump_enabled_p ())
1237 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1238 "Unknown misalignment, is_packed = %d",is_packed);
1239 if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
1240 return true;
1241 else
1242 return false;
1245 return true;
1249 /* Calculate the cost of the memory access represented by DR. */
1251 static void
1252 vect_get_data_access_cost (struct data_reference *dr,
1253 unsigned int *inside_cost,
1254 unsigned int *outside_cost,
1255 stmt_vector_for_cost *body_cost_vec)
1257 gimple stmt = DR_STMT (dr);
1258 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1259 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1260 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1261 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1262 int ncopies = vf / nunits;
1264 if (DR_IS_READ (dr))
1265 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1266 NULL, body_cost_vec, false);
1267 else
1268 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1270 if (dump_enabled_p ())
1271 dump_printf_loc (MSG_NOTE, vect_location,
1272 "vect_get_data_access_cost: inside_cost = %d, "
1273 "outside_cost = %d.", *inside_cost, *outside_cost);
1277 static hashval_t
1278 vect_peeling_hash (const void *elem)
1280 const struct _vect_peel_info *peel_info;
1282 peel_info = (const struct _vect_peel_info *) elem;
1283 return (hashval_t) peel_info->npeel;
1287 static int
1288 vect_peeling_hash_eq (const void *elem1, const void *elem2)
1290 const struct _vect_peel_info *a, *b;
1292 a = (const struct _vect_peel_info *) elem1;
1293 b = (const struct _vect_peel_info *) elem2;
1294 return (a->npeel == b->npeel);
1298 /* Insert DR into peeling hash table with NPEEL as key. */
1300 static void
1301 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1302 int npeel)
1304 struct _vect_peel_info elem, *slot;
1305 void **new_slot;
1306 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1308 elem.npeel = npeel;
1309 slot = (vect_peel_info) htab_find (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1310 &elem);
1311 if (slot)
1312 slot->count++;
1313 else
1315 slot = XNEW (struct _vect_peel_info);
1316 slot->npeel = npeel;
1317 slot->dr = dr;
1318 slot->count = 1;
1319 new_slot = htab_find_slot (LOOP_VINFO_PEELING_HTAB (loop_vinfo), slot,
1320 INSERT);
1321 *new_slot = slot;
1324 if (!supportable_dr_alignment && !flag_vect_cost_model)
1325 slot->count += VECT_MAX_COST;
1329 /* Traverse peeling hash table to find peeling option that aligns maximum
1330 number of data accesses. */
1332 static int
1333 vect_peeling_hash_get_most_frequent (void **slot, void *data)
1335 vect_peel_info elem = (vect_peel_info) *slot;
1336 vect_peel_extended_info max = (vect_peel_extended_info) data;
1338 if (elem->count > max->peel_info.count
1339 || (elem->count == max->peel_info.count
1340 && max->peel_info.npeel > elem->npeel))
1342 max->peel_info.npeel = elem->npeel;
1343 max->peel_info.count = elem->count;
1344 max->peel_info.dr = elem->dr;
1347 return 1;
1351 /* Traverse peeling hash table and calculate cost for each peeling option.
1352 Find the one with the lowest cost. */
1354 static int
1355 vect_peeling_hash_get_lowest_cost (void **slot, void *data)
1357 vect_peel_info elem = (vect_peel_info) *slot;
1358 vect_peel_extended_info min = (vect_peel_extended_info) data;
1359 int save_misalignment, dummy;
1360 unsigned int inside_cost = 0, outside_cost = 0, i;
1361 gimple stmt = DR_STMT (elem->dr);
1362 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1363 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1364 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1365 struct data_reference *dr;
1366 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1367 int single_iter_cost;
1369 prologue_cost_vec.create (2);
1370 body_cost_vec.create (2);
1371 epilogue_cost_vec.create (2);
1373 FOR_EACH_VEC_ELT (datarefs, i, dr)
1375 stmt = DR_STMT (dr);
1376 stmt_info = vinfo_for_stmt (stmt);
1377 /* For interleaving, only the alignment of the first access
1378 matters. */
1379 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1380 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1381 continue;
1383 save_misalignment = DR_MISALIGNMENT (dr);
1384 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1385 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1386 &body_cost_vec);
1387 SET_DR_MISALIGNMENT (dr, save_misalignment);
1390 single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
1391 outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
1392 &dummy, single_iter_cost,
1393 &prologue_cost_vec,
1394 &epilogue_cost_vec);
1396 /* Prologue and epilogue costs are added to the target model later.
1397 These costs depend only on the scalar iteration cost, the
1398 number of peeling iterations finally chosen, and the number of
1399 misaligned statements. So discard the information found here. */
1400 prologue_cost_vec.release ();
1401 epilogue_cost_vec.release ();
1403 if (inside_cost < min->inside_cost
1404 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1406 min->inside_cost = inside_cost;
1407 min->outside_cost = outside_cost;
1408 min->body_cost_vec.release ();
1409 min->body_cost_vec = body_cost_vec;
1410 min->peel_info.dr = elem->dr;
1411 min->peel_info.npeel = elem->npeel;
1413 else
1414 body_cost_vec.release ();
1416 return 1;
1420 /* Choose best peeling option by traversing peeling hash table and either
1421 choosing an option with the lowest cost (if cost model is enabled) or the
1422 option that aligns as many accesses as possible. */
1424 static struct data_reference *
1425 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1426 unsigned int *npeel,
1427 stmt_vector_for_cost *body_cost_vec)
1429 struct _vect_peel_extended_info res;
1431 res.peel_info.dr = NULL;
1432 res.body_cost_vec = stmt_vector_for_cost();
1434 if (flag_vect_cost_model)
1436 res.inside_cost = INT_MAX;
1437 res.outside_cost = INT_MAX;
1438 htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1439 vect_peeling_hash_get_lowest_cost, &res);
1441 else
1443 res.peel_info.count = 0;
1444 htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1445 vect_peeling_hash_get_most_frequent, &res);
1448 *npeel = res.peel_info.npeel;
1449 *body_cost_vec = res.body_cost_vec;
1450 return res.peel_info.dr;
1454 /* Function vect_enhance_data_refs_alignment
1456 This pass will use loop versioning and loop peeling in order to enhance
1457 the alignment of data references in the loop.
1459 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1460 original loop is to be vectorized. Any other loops that are created by
1461 the transformations performed in this pass - are not supposed to be
1462 vectorized. This restriction will be relaxed.
1464 This pass will require a cost model to guide it whether to apply peeling
1465 or versioning or a combination of the two. For example, the scheme that
1466 intel uses when given a loop with several memory accesses, is as follows:
1467 choose one memory access ('p') which alignment you want to force by doing
1468 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1469 other accesses are not necessarily aligned, or (2) use loop versioning to
1470 generate one loop in which all accesses are aligned, and another loop in
1471 which only 'p' is necessarily aligned.
1473 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1474 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1475 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1477 Devising a cost model is the most critical aspect of this work. It will
1478 guide us on which access to peel for, whether to use loop versioning, how
1479 many versions to create, etc. The cost model will probably consist of
1480 generic considerations as well as target specific considerations (on
1481 powerpc for example, misaligned stores are more painful than misaligned
1482 loads).
1484 Here are the general steps involved in alignment enhancements:
1486 -- original loop, before alignment analysis:
1487 for (i=0; i<N; i++){
1488 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1489 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1492 -- After vect_compute_data_refs_alignment:
1493 for (i=0; i<N; i++){
1494 x = q[i]; # DR_MISALIGNMENT(q) = 3
1495 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1498 -- Possibility 1: we do loop versioning:
1499 if (p is aligned) {
1500 for (i=0; i<N; i++){ # loop 1A
1501 x = q[i]; # DR_MISALIGNMENT(q) = 3
1502 p[i] = y; # DR_MISALIGNMENT(p) = 0
1505 else {
1506 for (i=0; i<N; i++){ # loop 1B
1507 x = q[i]; # DR_MISALIGNMENT(q) = 3
1508 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1512 -- Possibility 2: we do loop peeling:
1513 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1514 x = q[i];
1515 p[i] = y;
1517 for (i = 3; i < N; i++){ # loop 2A
1518 x = q[i]; # DR_MISALIGNMENT(q) = 0
1519 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1522 -- Possibility 3: combination of loop peeling and versioning:
1523 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1524 x = q[i];
1525 p[i] = y;
1527 if (p is aligned) {
1528 for (i = 3; i<N; i++){ # loop 3A
1529 x = q[i]; # DR_MISALIGNMENT(q) = 0
1530 p[i] = y; # DR_MISALIGNMENT(p) = 0
1533 else {
1534 for (i = 3; i<N; i++){ # loop 3B
1535 x = q[i]; # DR_MISALIGNMENT(q) = 0
1536 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1540 These loops are later passed to loop_transform to be vectorized. The
1541 vectorizer will use the alignment information to guide the transformation
1542 (whether to generate regular loads/stores, or with special handling for
1543 misalignment). */
1545 bool
1546 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1548 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1549 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1550 enum dr_alignment_support supportable_dr_alignment;
1551 struct data_reference *dr0 = NULL, *first_store = NULL;
1552 struct data_reference *dr;
1553 unsigned int i, j;
1554 bool do_peeling = false;
1555 bool do_versioning = false;
1556 bool stat;
1557 gimple stmt;
1558 stmt_vec_info stmt_info;
1559 int vect_versioning_for_alias_required;
1560 unsigned int npeel = 0;
1561 bool all_misalignments_unknown = true;
1562 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1563 unsigned possible_npeel_number = 1;
1564 tree vectype;
1565 unsigned int nelements, mis, same_align_drs_max = 0;
1566 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost();
1568 if (dump_enabled_p ())
1569 dump_printf_loc (MSG_NOTE, vect_location,
1570 "=== vect_enhance_data_refs_alignment ===");
1572 /* While cost model enhancements are expected in the future, the high level
1573 view of the code at this time is as follows:
1575 A) If there is a misaligned access then see if peeling to align
1576 this access can make all data references satisfy
1577 vect_supportable_dr_alignment. If so, update data structures
1578 as needed and return true.
1580 B) If peeling wasn't possible and there is a data reference with an
1581 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1582 then see if loop versioning checks can be used to make all data
1583 references satisfy vect_supportable_dr_alignment. If so, update
1584 data structures as needed and return true.
1586 C) If neither peeling nor versioning were successful then return false if
1587 any data reference does not satisfy vect_supportable_dr_alignment.
1589 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1591 Note, Possibility 3 above (which is peeling and versioning together) is not
1592 being done at this time. */
1594 /* (1) Peeling to force alignment. */
1596 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1597 Considerations:
1598 + How many accesses will become aligned due to the peeling
1599 - How many accesses will become unaligned due to the peeling,
1600 and the cost of misaligned accesses.
1601 - The cost of peeling (the extra runtime checks, the increase
1602 in code size). */
1604 FOR_EACH_VEC_ELT (datarefs, i, dr)
1606 stmt = DR_STMT (dr);
1607 stmt_info = vinfo_for_stmt (stmt);
1609 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1610 continue;
1612 /* For interleaving, only the alignment of the first access
1613 matters. */
1614 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1615 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1616 continue;
1618 /* For invariant accesses there is nothing to enhance. */
1619 if (integer_zerop (DR_STEP (dr)))
1620 continue;
1622 /* Strided loads perform only component accesses, alignment is
1623 irrelevant for them. */
1624 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1625 continue;
1627 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1628 do_peeling = vector_alignment_reachable_p (dr);
1629 if (do_peeling)
1631 if (known_alignment_for_access_p (dr))
1633 unsigned int npeel_tmp;
1634 bool negative = tree_int_cst_compare (DR_STEP (dr),
1635 size_zero_node) < 0;
1637 /* Save info about DR in the hash table. */
1638 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1639 LOOP_VINFO_PEELING_HTAB (loop_vinfo) =
1640 htab_create (1, vect_peeling_hash,
1641 vect_peeling_hash_eq, free);
1643 vectype = STMT_VINFO_VECTYPE (stmt_info);
1644 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1645 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1646 TREE_TYPE (DR_REF (dr))));
1647 npeel_tmp = (negative
1648 ? (mis - nelements) : (nelements - mis))
1649 & (nelements - 1);
1651 /* For multiple types, it is possible that the bigger type access
1652 will have more than one peeling option. E.g., a loop with two
1653 types: one of size (vector size / 4), and the other one of
1654 size (vector size / 8). Vectorization factor will 8. If both
1655 access are misaligned by 3, the first one needs one scalar
1656 iteration to be aligned, and the second one needs 5. But the
1657 the first one will be aligned also by peeling 5 scalar
1658 iterations, and in that case both accesses will be aligned.
1659 Hence, except for the immediate peeling amount, we also want
1660 to try to add full vector size, while we don't exceed
1661 vectorization factor.
1662 We do this automtically for cost model, since we calculate cost
1663 for every peeling option. */
1664 if (!flag_vect_cost_model)
1665 possible_npeel_number = vf /nelements;
1667 /* Handle the aligned case. We may decide to align some other
1668 access, making DR unaligned. */
1669 if (DR_MISALIGNMENT (dr) == 0)
1671 npeel_tmp = 0;
1672 if (!flag_vect_cost_model)
1673 possible_npeel_number++;
1676 for (j = 0; j < possible_npeel_number; j++)
1678 gcc_assert (npeel_tmp <= vf);
1679 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1680 npeel_tmp += nelements;
1683 all_misalignments_unknown = false;
1684 /* Data-ref that was chosen for the case that all the
1685 misalignments are unknown is not relevant anymore, since we
1686 have a data-ref with known alignment. */
1687 dr0 = NULL;
1689 else
1691 /* If we don't know all the misalignment values, we prefer
1692 peeling for data-ref that has maximum number of data-refs
1693 with the same alignment, unless the target prefers to align
1694 stores over load. */
1695 if (all_misalignments_unknown)
1697 if (same_align_drs_max
1698 < STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ()
1699 || !dr0)
1701 same_align_drs_max
1702 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1703 dr0 = dr;
1706 if (!first_store && DR_IS_WRITE (dr))
1707 first_store = dr;
1710 /* If there are both known and unknown misaligned accesses in the
1711 loop, we choose peeling amount according to the known
1712 accesses. */
1715 if (!supportable_dr_alignment)
1717 dr0 = dr;
1718 if (!first_store && DR_IS_WRITE (dr))
1719 first_store = dr;
1723 else
1725 if (!aligned_access_p (dr))
1727 if (dump_enabled_p ())
1728 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1729 "vector alignment may not be reachable");
1730 break;
1735 vect_versioning_for_alias_required
1736 = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
1738 /* Temporarily, if versioning for alias is required, we disable peeling
1739 until we support peeling and versioning. Often peeling for alignment
1740 will require peeling for loop-bound, which in turn requires that we
1741 know how to adjust the loop ivs after the loop. */
1742 if (vect_versioning_for_alias_required
1743 || !vect_can_advance_ivs_p (loop_vinfo)
1744 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1745 do_peeling = false;
1747 if (do_peeling && all_misalignments_unknown
1748 && vect_supportable_dr_alignment (dr0, false))
1751 /* Check if the target requires to prefer stores over loads, i.e., if
1752 misaligned stores are more expensive than misaligned loads (taking
1753 drs with same alignment into account). */
1754 if (first_store && DR_IS_READ (dr0))
1756 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1757 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1758 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1759 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1760 stmt_vector_for_cost dummy;
1761 dummy.create (2);
1763 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1764 &dummy);
1765 vect_get_data_access_cost (first_store, &store_inside_cost,
1766 &store_outside_cost, &dummy);
1768 dummy.release ();
1770 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1771 aligning the load DR0). */
1772 load_inside_penalty = store_inside_cost;
1773 load_outside_penalty = store_outside_cost;
1774 for (i = 0;
1775 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1776 DR_STMT (first_store))).iterate (i, &dr);
1777 i++)
1778 if (DR_IS_READ (dr))
1780 load_inside_penalty += load_inside_cost;
1781 load_outside_penalty += load_outside_cost;
1783 else
1785 load_inside_penalty += store_inside_cost;
1786 load_outside_penalty += store_outside_cost;
1789 /* Calculate the penalty for leaving DR0 unaligned (by
1790 aligning the FIRST_STORE). */
1791 store_inside_penalty = load_inside_cost;
1792 store_outside_penalty = load_outside_cost;
1793 for (i = 0;
1794 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1795 DR_STMT (dr0))).iterate (i, &dr);
1796 i++)
1797 if (DR_IS_READ (dr))
1799 store_inside_penalty += load_inside_cost;
1800 store_outside_penalty += load_outside_cost;
1802 else
1804 store_inside_penalty += store_inside_cost;
1805 store_outside_penalty += store_outside_cost;
1808 if (load_inside_penalty > store_inside_penalty
1809 || (load_inside_penalty == store_inside_penalty
1810 && load_outside_penalty > store_outside_penalty))
1811 dr0 = first_store;
1814 /* In case there are only loads with different unknown misalignments, use
1815 peeling only if it may help to align other accesses in the loop. */
1816 if (!first_store
1817 && !STMT_VINFO_SAME_ALIGN_REFS (
1818 vinfo_for_stmt (DR_STMT (dr0))).length ()
1819 && vect_supportable_dr_alignment (dr0, false)
1820 != dr_unaligned_supported)
1821 do_peeling = false;
1824 if (do_peeling && !dr0)
1826 /* Peeling is possible, but there is no data access that is not supported
1827 unless aligned. So we try to choose the best possible peeling. */
1829 /* We should get here only if there are drs with known misalignment. */
1830 gcc_assert (!all_misalignments_unknown);
1832 /* Choose the best peeling from the hash table. */
1833 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1834 &body_cost_vec);
1835 if (!dr0 || !npeel)
1836 do_peeling = false;
1839 if (do_peeling)
1841 stmt = DR_STMT (dr0);
1842 stmt_info = vinfo_for_stmt (stmt);
1843 vectype = STMT_VINFO_VECTYPE (stmt_info);
1844 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1846 if (known_alignment_for_access_p (dr0))
1848 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1849 size_zero_node) < 0;
1850 if (!npeel)
1852 /* Since it's known at compile time, compute the number of
1853 iterations in the peeled loop (the peeling factor) for use in
1854 updating DR_MISALIGNMENT values. The peeling factor is the
1855 vectorization factor minus the misalignment as an element
1856 count. */
1857 mis = DR_MISALIGNMENT (dr0);
1858 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1859 npeel = ((negative ? mis - nelements : nelements - mis)
1860 & (nelements - 1));
1863 /* For interleaved data access every iteration accesses all the
1864 members of the group, therefore we divide the number of iterations
1865 by the group size. */
1866 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1867 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1868 npeel /= GROUP_SIZE (stmt_info);
1870 if (dump_enabled_p ())
1871 dump_printf_loc (MSG_NOTE, vect_location,
1872 "Try peeling by %d", npeel);
1875 /* Ensure that all data refs can be vectorized after the peel. */
1876 FOR_EACH_VEC_ELT (datarefs, i, dr)
1878 int save_misalignment;
1880 if (dr == dr0)
1881 continue;
1883 stmt = DR_STMT (dr);
1884 stmt_info = vinfo_for_stmt (stmt);
1885 /* For interleaving, only the alignment of the first access
1886 matters. */
1887 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1888 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1889 continue;
1891 /* Strided loads perform only component accesses, alignment is
1892 irrelevant for them. */
1893 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1894 continue;
1896 save_misalignment = DR_MISALIGNMENT (dr);
1897 vect_update_misalignment_for_peel (dr, dr0, npeel);
1898 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1899 SET_DR_MISALIGNMENT (dr, save_misalignment);
1901 if (!supportable_dr_alignment)
1903 do_peeling = false;
1904 break;
1908 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1910 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1911 if (!stat)
1912 do_peeling = false;
1913 else
1915 body_cost_vec.release ();
1916 return stat;
1920 if (do_peeling)
1922 stmt_info_for_cost *si;
1923 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
1925 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1926 If the misalignment of DR_i is identical to that of dr0 then set
1927 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1928 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1929 by the peeling factor times the element size of DR_i (MOD the
1930 vectorization factor times the size). Otherwise, the
1931 misalignment of DR_i must be set to unknown. */
1932 FOR_EACH_VEC_ELT (datarefs, i, dr)
1933 if (dr != dr0)
1934 vect_update_misalignment_for_peel (dr, dr0, npeel);
1936 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1937 if (npeel)
1938 LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1939 else
1940 LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
1941 SET_DR_MISALIGNMENT (dr0, 0);
1942 if (dump_enabled_p ())
1944 dump_printf_loc (MSG_NOTE, vect_location,
1945 "Alignment of access forced using peeling.");
1946 dump_printf_loc (MSG_NOTE, vect_location,
1947 "Peeling for alignment will be applied.");
1949 /* We've delayed passing the inside-loop peeling costs to the
1950 target cost model until we were sure peeling would happen.
1951 Do so now. */
1952 if (body_cost_vec.exists ())
1954 FOR_EACH_VEC_ELT (body_cost_vec, i, si)
1956 struct _stmt_vec_info *stmt_info
1957 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1958 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1959 si->misalign, vect_body);
1961 body_cost_vec.release ();
1964 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1965 gcc_assert (stat);
1966 return stat;
1970 body_cost_vec.release ();
1972 /* (2) Versioning to force alignment. */
1974 /* Try versioning if:
1975 1) flag_tree_vect_loop_version is TRUE
1976 2) optimize loop for speed
1977 3) there is at least one unsupported misaligned data ref with an unknown
1978 misalignment, and
1979 4) all misaligned data refs with a known misalignment are supported, and
1980 5) the number of runtime alignment checks is within reason. */
1982 do_versioning =
1983 flag_tree_vect_loop_version
1984 && optimize_loop_nest_for_speed_p (loop)
1985 && (!loop->inner); /* FORNOW */
1987 if (do_versioning)
1989 FOR_EACH_VEC_ELT (datarefs, i, dr)
1991 stmt = DR_STMT (dr);
1992 stmt_info = vinfo_for_stmt (stmt);
1994 /* For interleaving, only the alignment of the first access
1995 matters. */
1996 if (aligned_access_p (dr)
1997 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1998 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
1999 continue;
2001 /* Strided loads perform only component accesses, alignment is
2002 irrelevant for them. */
2003 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
2004 continue;
2006 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
2008 if (!supportable_dr_alignment)
2010 gimple stmt;
2011 int mask;
2012 tree vectype;
2014 if (known_alignment_for_access_p (dr)
2015 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
2016 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
2018 do_versioning = false;
2019 break;
2022 stmt = DR_STMT (dr);
2023 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
2024 gcc_assert (vectype);
2026 /* The rightmost bits of an aligned address must be zeros.
2027 Construct the mask needed for this test. For example,
2028 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
2029 mask must be 15 = 0xf. */
2030 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
2032 /* FORNOW: use the same mask to test all potentially unaligned
2033 references in the loop. The vectorizer currently supports
2034 a single vector size, see the reference to
2035 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
2036 vectorization factor is computed. */
2037 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
2038 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
2039 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
2040 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
2041 DR_STMT (dr));
2045 /* Versioning requires at least one misaligned data reference. */
2046 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2047 do_versioning = false;
2048 else if (!do_versioning)
2049 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
2052 if (do_versioning)
2054 vec<gimple> may_misalign_stmts
2055 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2056 gimple stmt;
2058 /* It can now be assumed that the data references in the statements
2059 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
2060 of the loop being vectorized. */
2061 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
2063 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2064 dr = STMT_VINFO_DATA_REF (stmt_info);
2065 SET_DR_MISALIGNMENT (dr, 0);
2066 if (dump_enabled_p ())
2067 dump_printf_loc (MSG_NOTE, vect_location,
2068 "Alignment of access forced using versioning.");
2071 if (dump_enabled_p ())
2072 dump_printf_loc (MSG_NOTE, vect_location,
2073 "Versioning for alignment will be applied.");
2075 /* Peeling and versioning can't be done together at this time. */
2076 gcc_assert (! (do_peeling && do_versioning));
2078 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
2079 gcc_assert (stat);
2080 return stat;
2083 /* This point is reached if neither peeling nor versioning is being done. */
2084 gcc_assert (! (do_peeling || do_versioning));
2086 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
2087 return stat;
2091 /* Function vect_find_same_alignment_drs.
2093 Update group and alignment relations according to the chosen
2094 vectorization factor. */
2096 static void
2097 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
2098 loop_vec_info loop_vinfo)
2100 unsigned int i;
2101 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2102 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2103 struct data_reference *dra = DDR_A (ddr);
2104 struct data_reference *drb = DDR_B (ddr);
2105 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2106 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2107 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
2108 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
2109 lambda_vector dist_v;
2110 unsigned int loop_depth;
2112 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
2113 return;
2115 if (dra == drb)
2116 return;
2118 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2119 return;
2121 /* Loop-based vectorization and known data dependence. */
2122 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2123 return;
2125 /* Data-dependence analysis reports a distance vector of zero
2126 for data-references that overlap only in the first iteration
2127 but have different sign step (see PR45764).
2128 So as a sanity check require equal DR_STEP. */
2129 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2130 return;
2132 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
2133 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
2135 int dist = dist_v[loop_depth];
2137 if (dump_enabled_p ())
2138 dump_printf_loc (MSG_NOTE, vect_location,
2139 "dependence distance = %d.", dist);
2141 /* Same loop iteration. */
2142 if (dist == 0
2143 || (dist % vectorization_factor == 0 && dra_size == drb_size))
2145 /* Two references with distance zero have the same alignment. */
2146 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
2147 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
2148 if (dump_enabled_p ())
2150 dump_printf_loc (MSG_NOTE, vect_location,
2151 "accesses have the same alignment.");
2152 dump_printf (MSG_NOTE,
2153 "dependence distance modulo vf == 0 between ");
2154 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2155 dump_printf (MSG_NOTE, " and ");
2156 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2163 /* Function vect_analyze_data_refs_alignment
2165 Analyze the alignment of the data-references in the loop.
2166 Return FALSE if a data reference is found that cannot be vectorized. */
2168 bool
2169 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
2170 bb_vec_info bb_vinfo)
2172 if (dump_enabled_p ())
2173 dump_printf_loc (MSG_NOTE, vect_location,
2174 "=== vect_analyze_data_refs_alignment ===");
2176 /* Mark groups of data references with same alignment using
2177 data dependence information. */
2178 if (loop_vinfo)
2180 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
2181 struct data_dependence_relation *ddr;
2182 unsigned int i;
2184 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2185 vect_find_same_alignment_drs (ddr, loop_vinfo);
2188 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
2190 if (dump_enabled_p ())
2191 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2192 "not vectorized: can't calculate alignment "
2193 "for data ref.");
2194 return false;
2197 return true;
2201 /* Analyze groups of accesses: check that DR belongs to a group of
2202 accesses of legal size, step, etc. Detect gaps, single element
2203 interleaving, and other special cases. Set grouped access info.
2204 Collect groups of strided stores for further use in SLP analysis. */
2206 static bool
2207 vect_analyze_group_access (struct data_reference *dr)
2209 tree step = DR_STEP (dr);
2210 tree scalar_type = TREE_TYPE (DR_REF (dr));
2211 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2212 gimple stmt = DR_STMT (dr);
2213 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2214 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2215 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2216 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2217 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2218 bool slp_impossible = false;
2219 struct loop *loop = NULL;
2221 if (loop_vinfo)
2222 loop = LOOP_VINFO_LOOP (loop_vinfo);
2224 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2225 size of the interleaving group (including gaps). */
2226 groupsize = dr_step / type_size;
2228 /* Not consecutive access is possible only if it is a part of interleaving. */
2229 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2231 /* Check if it this DR is a part of interleaving, and is a single
2232 element of the group that is accessed in the loop. */
2234 /* Gaps are supported only for loads. STEP must be a multiple of the type
2235 size. The size of the group must be a power of 2. */
2236 if (DR_IS_READ (dr)
2237 && (dr_step % type_size) == 0
2238 && groupsize > 0
2239 && exact_log2 (groupsize) != -1)
2241 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2242 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2243 if (dump_enabled_p ())
2245 dump_printf_loc (MSG_NOTE, vect_location,
2246 "Detected single element interleaving ");
2247 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2248 dump_printf (MSG_NOTE, " step ");
2249 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2252 if (loop_vinfo)
2254 if (dump_enabled_p ())
2255 dump_printf_loc (MSG_NOTE, vect_location,
2256 "Data access with gaps requires scalar "
2257 "epilogue loop");
2258 if (loop->inner)
2260 if (dump_enabled_p ())
2261 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2262 "Peeling for outer loop is not"
2263 " supported");
2264 return false;
2267 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2270 return true;
2273 if (dump_enabled_p ())
2275 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2276 "not consecutive access ");
2277 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2280 if (bb_vinfo)
2282 /* Mark the statement as unvectorizable. */
2283 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2284 return true;
2287 return false;
2290 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2292 /* First stmt in the interleaving chain. Check the chain. */
2293 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2294 struct data_reference *data_ref = dr;
2295 unsigned int count = 1;
2296 tree next_step;
2297 tree prev_init = DR_INIT (data_ref);
2298 gimple prev = stmt;
2299 HOST_WIDE_INT diff, count_in_bytes, gaps = 0;
2301 while (next)
2303 /* Skip same data-refs. In case that two or more stmts share
2304 data-ref (supported only for loads), we vectorize only the first
2305 stmt, and the rest get their vectorized loads from the first
2306 one. */
2307 if (!tree_int_cst_compare (DR_INIT (data_ref),
2308 DR_INIT (STMT_VINFO_DATA_REF (
2309 vinfo_for_stmt (next)))))
2311 if (DR_IS_WRITE (data_ref))
2313 if (dump_enabled_p ())
2314 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2315 "Two store stmts share the same dr.");
2316 return false;
2319 /* Check that there is no load-store dependencies for this loads
2320 to prevent a case of load-store-load to the same location. */
2321 if (GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (next))
2322 || GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (prev)))
2324 if (dump_enabled_p ())
2325 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2326 "READ_WRITE dependence in interleaving.");
2327 return false;
2330 /* For load use the same data-ref load. */
2331 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2333 prev = next;
2334 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2335 continue;
2338 prev = next;
2340 /* Check that all the accesses have the same STEP. */
2341 next_step = DR_STEP (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
2342 if (tree_int_cst_compare (step, next_step))
2344 if (dump_enabled_p ())
2345 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2346 "not consecutive access in interleaving");
2347 return false;
2350 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2351 /* Check that the distance between two accesses is equal to the type
2352 size. Otherwise, we have gaps. */
2353 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2354 - TREE_INT_CST_LOW (prev_init)) / type_size;
2355 if (diff != 1)
2357 /* FORNOW: SLP of accesses with gaps is not supported. */
2358 slp_impossible = true;
2359 if (DR_IS_WRITE (data_ref))
2361 if (dump_enabled_p ())
2362 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2363 "interleaved store with gaps");
2364 return false;
2367 gaps += diff - 1;
2370 last_accessed_element += diff;
2372 /* Store the gap from the previous member of the group. If there is no
2373 gap in the access, GROUP_GAP is always 1. */
2374 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2376 prev_init = DR_INIT (data_ref);
2377 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2378 /* Count the number of data-refs in the chain. */
2379 count++;
2382 /* COUNT is the number of accesses found, we multiply it by the size of
2383 the type to get COUNT_IN_BYTES. */
2384 count_in_bytes = type_size * count;
2386 /* Check that the size of the interleaving (including gaps) is not
2387 greater than STEP. */
2388 if (dr_step && dr_step < count_in_bytes + gaps * type_size)
2390 if (dump_enabled_p ())
2392 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2393 "interleaving size is greater than step for ");
2394 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dr));
2396 return false;
2399 /* Check that the size of the interleaving is equal to STEP for stores,
2400 i.e., that there are no gaps. */
2401 if (dr_step && dr_step != count_in_bytes)
2403 if (DR_IS_READ (dr))
2405 slp_impossible = true;
2406 /* There is a gap after the last load in the group. This gap is a
2407 difference between the groupsize and the number of elements.
2408 When there is no gap, this difference should be 0. */
2409 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
2411 else
2413 if (dump_enabled_p ())
2414 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2415 "interleaved store with gaps");
2416 return false;
2420 /* Check that STEP is a multiple of type size. */
2421 if (dr_step && (dr_step % type_size) != 0)
2423 if (dump_enabled_p ())
2425 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2426 "step is not a multiple of type size: step ");
2427 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
2428 dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
2429 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2430 TYPE_SIZE_UNIT (scalar_type));
2432 return false;
2435 if (groupsize == 0)
2436 groupsize = count;
2438 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2439 if (dump_enabled_p ())
2440 dump_printf_loc (MSG_NOTE, vect_location,
2441 "Detected interleaving of size %d", (int)groupsize);
2443 /* SLP: create an SLP data structure for every interleaving group of
2444 stores for further analysis in vect_analyse_slp. */
2445 if (DR_IS_WRITE (dr) && !slp_impossible)
2447 if (loop_vinfo)
2448 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2449 if (bb_vinfo)
2450 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2453 /* There is a gap in the end of the group. */
2454 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2456 if (dump_enabled_p ())
2457 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2458 "Data access with gaps requires scalar "
2459 "epilogue loop");
2460 if (loop->inner)
2462 if (dump_enabled_p ())
2463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2464 "Peeling for outer loop is not supported");
2465 return false;
2468 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2472 return true;
2476 /* Analyze the access pattern of the data-reference DR.
2477 In case of non-consecutive accesses call vect_analyze_group_access() to
2478 analyze groups of accesses. */
2480 static bool
2481 vect_analyze_data_ref_access (struct data_reference *dr)
2483 tree step = DR_STEP (dr);
2484 tree scalar_type = TREE_TYPE (DR_REF (dr));
2485 gimple stmt = DR_STMT (dr);
2486 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2487 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2488 struct loop *loop = NULL;
2490 if (loop_vinfo)
2491 loop = LOOP_VINFO_LOOP (loop_vinfo);
2493 if (loop_vinfo && !step)
2495 if (dump_enabled_p ())
2496 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2497 "bad data-ref access in loop");
2498 return false;
2501 /* Allow invariant loads in loops. */
2502 if (loop_vinfo && integer_zerop (step))
2504 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2505 return DR_IS_READ (dr);
2508 if (loop && nested_in_vect_loop_p (loop, stmt))
2510 /* Interleaved accesses are not yet supported within outer-loop
2511 vectorization for references in the inner-loop. */
2512 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2514 /* For the rest of the analysis we use the outer-loop step. */
2515 step = STMT_VINFO_DR_STEP (stmt_info);
2516 if (integer_zerop (step))
2518 if (dump_enabled_p ())
2519 dump_printf_loc (MSG_NOTE, vect_location,
2520 "zero step in outer loop.");
2521 if (DR_IS_READ (dr))
2522 return true;
2523 else
2524 return false;
2528 /* Consecutive? */
2529 if (TREE_CODE (step) == INTEGER_CST)
2531 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2532 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2533 || (dr_step < 0
2534 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2536 /* Mark that it is not interleaving. */
2537 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2538 return true;
2542 if (loop && nested_in_vect_loop_p (loop, stmt))
2544 if (dump_enabled_p ())
2545 dump_printf_loc (MSG_NOTE, vect_location,
2546 "grouped access in outer loop.");
2547 return false;
2550 /* Assume this is a DR handled by non-constant strided load case. */
2551 if (TREE_CODE (step) != INTEGER_CST)
2552 return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
2554 /* Not consecutive access - check if it's a part of interleaving group. */
2555 return vect_analyze_group_access (dr);
2559 /* Function vect_analyze_data_ref_accesses.
2561 Analyze the access pattern of all the data references in the loop.
2563 FORNOW: the only access pattern that is considered vectorizable is a
2564 simple step 1 (consecutive) access.
2566 FORNOW: handle only arrays and pointer accesses. */
2568 bool
2569 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2571 unsigned int i;
2572 vec<data_reference_p> datarefs;
2573 struct data_reference *dr;
2575 if (dump_enabled_p ())
2576 dump_printf_loc (MSG_NOTE, vect_location,
2577 "=== vect_analyze_data_ref_accesses ===");
2579 if (loop_vinfo)
2580 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2581 else
2582 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2584 FOR_EACH_VEC_ELT (datarefs, i, dr)
2585 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2586 && !vect_analyze_data_ref_access (dr))
2588 if (dump_enabled_p ())
2589 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2590 "not vectorized: complicated access pattern.");
2592 if (bb_vinfo)
2594 /* Mark the statement as not vectorizable. */
2595 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2596 continue;
2598 else
2599 return false;
2602 return true;
2605 /* Function vect_prune_runtime_alias_test_list.
2607 Prune a list of ddrs to be tested at run-time by versioning for alias.
2608 Return FALSE if resulting list of ddrs is longer then allowed by
2609 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2611 bool
2612 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2614 vec<ddr_p> ddrs =
2615 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2616 unsigned i, j;
2618 if (dump_enabled_p ())
2619 dump_printf_loc (MSG_NOTE, vect_location,
2620 "=== vect_prune_runtime_alias_test_list ===");
2622 for (i = 0; i < ddrs.length (); )
2624 bool found;
2625 ddr_p ddr_i;
2627 ddr_i = ddrs[i];
2628 found = false;
2630 for (j = 0; j < i; j++)
2632 ddr_p ddr_j = ddrs[j];
2634 if (vect_vfa_range_equal (ddr_i, ddr_j))
2636 if (dump_enabled_p ())
2638 dump_printf_loc (MSG_NOTE, vect_location,
2639 "found equal ranges ");
2640 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr_i)));
2641 dump_printf (MSG_NOTE, ", ");
2642 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr_i)));
2643 dump_printf (MSG_NOTE, " and ");
2644 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr_j)));
2645 dump_printf (MSG_NOTE, ", ");
2646 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr_j)));
2648 found = true;
2649 break;
2653 if (found)
2655 ddrs.ordered_remove (i);
2656 continue;
2658 i++;
2661 if (ddrs.length () >
2662 (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2664 if (dump_enabled_p ())
2666 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2667 "disable versioning for alias - max number of "
2668 "generated checks exceeded.");
2671 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0);
2673 return false;
2676 return true;
2679 /* Check whether a non-affine read in stmt is suitable for gather load
2680 and if so, return a builtin decl for that operation. */
2682 tree
2683 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2684 tree *offp, int *scalep)
2686 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2687 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2688 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2689 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2690 tree offtype = NULL_TREE;
2691 tree decl, base, off;
2692 enum machine_mode pmode;
2693 int punsignedp, pvolatilep;
2695 /* The gather builtins need address of the form
2696 loop_invariant + vector * {1, 2, 4, 8}
2698 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
2699 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
2700 of loop invariants/SSA_NAMEs defined in the loop, with casts,
2701 multiplications and additions in it. To get a vector, we need
2702 a single SSA_NAME that will be defined in the loop and will
2703 contain everything that is not loop invariant and that can be
2704 vectorized. The following code attempts to find such a preexistng
2705 SSA_NAME OFF and put the loop invariants into a tree BASE
2706 that can be gimplified before the loop. */
2707 base = get_inner_reference (DR_REF (dr), &pbitsize, &pbitpos, &off,
2708 &pmode, &punsignedp, &pvolatilep, false);
2709 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
2711 if (TREE_CODE (base) == MEM_REF)
2713 if (!integer_zerop (TREE_OPERAND (base, 1)))
2715 if (off == NULL_TREE)
2717 double_int moff = mem_ref_offset (base);
2718 off = double_int_to_tree (sizetype, moff);
2720 else
2721 off = size_binop (PLUS_EXPR, off,
2722 fold_convert (sizetype, TREE_OPERAND (base, 1)));
2724 base = TREE_OPERAND (base, 0);
2726 else
2727 base = build_fold_addr_expr (base);
2729 if (off == NULL_TREE)
2730 off = size_zero_node;
2732 /* If base is not loop invariant, either off is 0, then we start with just
2733 the constant offset in the loop invariant BASE and continue with base
2734 as OFF, otherwise give up.
2735 We could handle that case by gimplifying the addition of base + off
2736 into some SSA_NAME and use that as off, but for now punt. */
2737 if (!expr_invariant_in_loop_p (loop, base))
2739 if (!integer_zerop (off))
2740 return NULL_TREE;
2741 off = base;
2742 base = size_int (pbitpos / BITS_PER_UNIT);
2744 /* Otherwise put base + constant offset into the loop invariant BASE
2745 and continue with OFF. */
2746 else
2748 base = fold_convert (sizetype, base);
2749 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
2752 /* OFF at this point may be either a SSA_NAME or some tree expression
2753 from get_inner_reference. Try to peel off loop invariants from it
2754 into BASE as long as possible. */
2755 STRIP_NOPS (off);
2756 while (offtype == NULL_TREE)
2758 enum tree_code code;
2759 tree op0, op1, add = NULL_TREE;
2761 if (TREE_CODE (off) == SSA_NAME)
2763 gimple def_stmt = SSA_NAME_DEF_STMT (off);
2765 if (expr_invariant_in_loop_p (loop, off))
2766 return NULL_TREE;
2768 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2769 break;
2771 op0 = gimple_assign_rhs1 (def_stmt);
2772 code = gimple_assign_rhs_code (def_stmt);
2773 op1 = gimple_assign_rhs2 (def_stmt);
2775 else
2777 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
2778 return NULL_TREE;
2779 code = TREE_CODE (off);
2780 extract_ops_from_tree (off, &code, &op0, &op1);
2782 switch (code)
2784 case POINTER_PLUS_EXPR:
2785 case PLUS_EXPR:
2786 if (expr_invariant_in_loop_p (loop, op0))
2788 add = op0;
2789 off = op1;
2790 do_add:
2791 add = fold_convert (sizetype, add);
2792 if (scale != 1)
2793 add = size_binop (MULT_EXPR, add, size_int (scale));
2794 base = size_binop (PLUS_EXPR, base, add);
2795 continue;
2797 if (expr_invariant_in_loop_p (loop, op1))
2799 add = op1;
2800 off = op0;
2801 goto do_add;
2803 break;
2804 case MINUS_EXPR:
2805 if (expr_invariant_in_loop_p (loop, op1))
2807 add = fold_convert (sizetype, op1);
2808 add = size_binop (MINUS_EXPR, size_zero_node, add);
2809 off = op0;
2810 goto do_add;
2812 break;
2813 case MULT_EXPR:
2814 if (scale == 1 && host_integerp (op1, 0))
2816 scale = tree_low_cst (op1, 0);
2817 off = op0;
2818 continue;
2820 break;
2821 case SSA_NAME:
2822 off = op0;
2823 continue;
2824 CASE_CONVERT:
2825 if (!POINTER_TYPE_P (TREE_TYPE (op0))
2826 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2827 break;
2828 if (TYPE_PRECISION (TREE_TYPE (op0))
2829 == TYPE_PRECISION (TREE_TYPE (off)))
2831 off = op0;
2832 continue;
2834 if (TYPE_PRECISION (TREE_TYPE (op0))
2835 < TYPE_PRECISION (TREE_TYPE (off)))
2837 off = op0;
2838 offtype = TREE_TYPE (off);
2839 STRIP_NOPS (off);
2840 continue;
2842 break;
2843 default:
2844 break;
2846 break;
2849 /* If at the end OFF still isn't a SSA_NAME or isn't
2850 defined in the loop, punt. */
2851 if (TREE_CODE (off) != SSA_NAME
2852 || expr_invariant_in_loop_p (loop, off))
2853 return NULL_TREE;
2855 if (offtype == NULL_TREE)
2856 offtype = TREE_TYPE (off);
2858 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
2859 offtype, scale);
2860 if (decl == NULL_TREE)
2861 return NULL_TREE;
2863 if (basep)
2864 *basep = base;
2865 if (offp)
2866 *offp = off;
2867 if (scalep)
2868 *scalep = scale;
2869 return decl;
2872 /* Check wether a non-affine load in STMT (being in the loop referred to
2873 in LOOP_VINFO) is suitable for handling as strided load. That is the case
2874 if its address is a simple induction variable. If so return the base
2875 of that induction variable in *BASEP and the (loop-invariant) step
2876 in *STEPP, both only when that pointer is non-zero.
2878 This handles ARRAY_REFs (with variant index) and MEM_REFs (with variant
2879 base pointer) only. */
2881 static bool
2882 vect_check_strided_load (gimple stmt, loop_vec_info loop_vinfo)
2884 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2885 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2886 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2887 tree base, off;
2888 affine_iv iv;
2890 if (!DR_IS_READ (dr))
2891 return false;
2893 base = DR_REF (dr);
2895 if (TREE_CODE (base) == ARRAY_REF)
2897 off = TREE_OPERAND (base, 1);
2898 base = TREE_OPERAND (base, 0);
2900 else if (TREE_CODE (base) == MEM_REF)
2902 off = TREE_OPERAND (base, 0);
2903 base = TREE_OPERAND (base, 1);
2905 else
2906 return false;
2908 if (TREE_CODE (off) != SSA_NAME)
2909 return false;
2911 if (!expr_invariant_in_loop_p (loop, base)
2912 || !simple_iv (loop, loop_containing_stmt (stmt), off, &iv, true))
2913 return false;
2915 return true;
2918 /* Function vect_analyze_data_refs.
2920 Find all the data references in the loop or basic block.
2922 The general structure of the analysis of data refs in the vectorizer is as
2923 follows:
2924 1- vect_analyze_data_refs(loop/bb): call
2925 compute_data_dependences_for_loop/bb to find and analyze all data-refs
2926 in the loop/bb and their dependences.
2927 2- vect_analyze_dependences(): apply dependence testing using ddrs.
2928 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
2929 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
2933 bool
2934 vect_analyze_data_refs (loop_vec_info loop_vinfo,
2935 bb_vec_info bb_vinfo,
2936 int *min_vf)
2938 struct loop *loop = NULL;
2939 basic_block bb = NULL;
2940 unsigned int i;
2941 vec<data_reference_p> datarefs;
2942 struct data_reference *dr;
2943 tree scalar_type;
2944 bool res, stop_bb_analysis = false;
2946 if (dump_enabled_p ())
2947 dump_printf_loc (MSG_NOTE, vect_location,
2948 "=== vect_analyze_data_refs ===\n");
2950 if (loop_vinfo)
2952 loop = LOOP_VINFO_LOOP (loop_vinfo);
2953 res = compute_data_dependences_for_loop
2954 (loop, true,
2955 &LOOP_VINFO_LOOP_NEST (loop_vinfo),
2956 &LOOP_VINFO_DATAREFS (loop_vinfo),
2957 &LOOP_VINFO_DDRS (loop_vinfo));
2959 if (!res)
2961 if (dump_enabled_p ())
2962 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2963 "not vectorized: loop contains function calls"
2964 " or data references that cannot be analyzed");
2965 return false;
2968 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2970 else
2972 gimple_stmt_iterator gsi;
2974 bb = BB_VINFO_BB (bb_vinfo);
2975 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2977 gimple stmt = gsi_stmt (gsi);
2978 if (!find_data_references_in_stmt (NULL, stmt,
2979 &BB_VINFO_DATAREFS (bb_vinfo)))
2981 /* Mark the rest of the basic-block as unvectorizable. */
2982 for (; !gsi_end_p (gsi); gsi_next (&gsi))
2984 stmt = gsi_stmt (gsi);
2985 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
2987 break;
2990 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
2991 &BB_VINFO_DDRS (bb_vinfo),
2992 vNULL, true))
2994 if (dump_enabled_p ())
2995 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2996 "not vectorized: basic block contains function"
2997 " calls or data references that cannot be"
2998 " analyzed");
2999 return false;
3002 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3005 /* Go through the data-refs, check that the analysis succeeded. Update
3006 pointer from stmt_vec_info struct to DR and vectype. */
3008 FOR_EACH_VEC_ELT (datarefs, i, dr)
3010 gimple stmt;
3011 stmt_vec_info stmt_info;
3012 tree base, offset, init;
3013 bool gather = false;
3014 int vf;
3016 if (!dr || !DR_REF (dr))
3018 if (dump_enabled_p ())
3019 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3020 "not vectorized: unhandled data-ref ");
3021 return false;
3024 stmt = DR_STMT (dr);
3025 stmt_info = vinfo_for_stmt (stmt);
3027 if (stop_bb_analysis)
3029 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3030 continue;
3033 /* Check that analysis of the data-ref succeeded. */
3034 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3035 || !DR_STEP (dr))
3037 /* If target supports vector gather loads, see if they can't
3038 be used. */
3039 if (loop_vinfo
3040 && DR_IS_READ (dr)
3041 && !TREE_THIS_VOLATILE (DR_REF (dr))
3042 && targetm.vectorize.builtin_gather != NULL
3043 && !nested_in_vect_loop_p (loop, stmt))
3045 struct data_reference *newdr
3046 = create_data_ref (NULL, loop_containing_stmt (stmt),
3047 DR_REF (dr), stmt, true);
3048 gcc_assert (newdr != NULL && DR_REF (newdr));
3049 if (DR_BASE_ADDRESS (newdr)
3050 && DR_OFFSET (newdr)
3051 && DR_INIT (newdr)
3052 && DR_STEP (newdr)
3053 && integer_zerop (DR_STEP (newdr)))
3055 dr = newdr;
3056 gather = true;
3058 else
3059 free_data_ref (newdr);
3062 if (!gather)
3064 if (dump_enabled_p ())
3066 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3067 "not vectorized: data ref analysis "
3068 "failed ");
3069 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3072 if (bb_vinfo)
3074 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3075 stop_bb_analysis = true;
3076 continue;
3079 return false;
3083 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3085 if (dump_enabled_p ())
3086 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3087 "not vectorized: base addr of dr is a "
3088 "constant");
3090 if (bb_vinfo)
3092 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3093 stop_bb_analysis = true;
3094 continue;
3097 if (gather)
3098 free_data_ref (dr);
3099 return false;
3102 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3104 if (dump_enabled_p ())
3106 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3107 "not vectorized: volatile type ");
3108 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3111 if (bb_vinfo)
3113 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3114 stop_bb_analysis = true;
3115 continue;
3118 return false;
3121 if (stmt_can_throw_internal (stmt))
3123 if (dump_enabled_p ())
3125 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3126 "not vectorized: statement can throw an "
3127 "exception ");
3128 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3131 if (bb_vinfo)
3133 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3134 stop_bb_analysis = true;
3135 continue;
3138 if (gather)
3139 free_data_ref (dr);
3140 return false;
3143 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3144 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3146 if (dump_enabled_p ())
3148 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3149 "not vectorized: statement is bitfield "
3150 "access ");
3151 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3154 if (bb_vinfo)
3156 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3157 stop_bb_analysis = true;
3158 continue;
3161 if (gather)
3162 free_data_ref (dr);
3163 return false;
3166 base = unshare_expr (DR_BASE_ADDRESS (dr));
3167 offset = unshare_expr (DR_OFFSET (dr));
3168 init = unshare_expr (DR_INIT (dr));
3170 if (is_gimple_call (stmt))
3172 if (dump_enabled_p ())
3174 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3175 "not vectorized: dr in a call ");
3176 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3179 if (bb_vinfo)
3181 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3182 stop_bb_analysis = true;
3183 continue;
3186 if (gather)
3187 free_data_ref (dr);
3188 return false;
3191 /* Update DR field in stmt_vec_info struct. */
3193 /* If the dataref is in an inner-loop of the loop that is considered for
3194 for vectorization, we also want to analyze the access relative to
3195 the outer-loop (DR contains information only relative to the
3196 inner-most enclosing loop). We do that by building a reference to the
3197 first location accessed by the inner-loop, and analyze it relative to
3198 the outer-loop. */
3199 if (loop && nested_in_vect_loop_p (loop, stmt))
3201 tree outer_step, outer_base, outer_init;
3202 HOST_WIDE_INT pbitsize, pbitpos;
3203 tree poffset;
3204 enum machine_mode pmode;
3205 int punsignedp, pvolatilep;
3206 affine_iv base_iv, offset_iv;
3207 tree dinit;
3209 /* Build a reference to the first location accessed by the
3210 inner-loop: *(BASE+INIT). (The first location is actually
3211 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3212 tree inner_base = build_fold_indirect_ref
3213 (fold_build_pointer_plus (base, init));
3215 if (dump_enabled_p ())
3217 dump_printf_loc (MSG_NOTE, vect_location,
3218 "analyze in outer-loop: ");
3219 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3222 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3223 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3224 gcc_assert (outer_base != NULL_TREE);
3226 if (pbitpos % BITS_PER_UNIT != 0)
3228 if (dump_enabled_p ())
3229 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3230 "failed: bit offset alignment.\n");
3231 return false;
3234 outer_base = build_fold_addr_expr (outer_base);
3235 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3236 &base_iv, false))
3238 if (dump_enabled_p ())
3239 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3240 "failed: evolution of base is not affine.\n");
3241 return false;
3244 if (offset)
3246 if (poffset)
3247 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3248 poffset);
3249 else
3250 poffset = offset;
3253 if (!poffset)
3255 offset_iv.base = ssize_int (0);
3256 offset_iv.step = ssize_int (0);
3258 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3259 &offset_iv, false))
3261 if (dump_enabled_p ())
3262 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3263 "evolution of offset is not affine.\n");
3264 return false;
3267 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3268 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3269 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3270 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3271 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3273 outer_step = size_binop (PLUS_EXPR,
3274 fold_convert (ssizetype, base_iv.step),
3275 fold_convert (ssizetype, offset_iv.step));
3277 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3278 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3279 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3280 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3281 STMT_VINFO_DR_OFFSET (stmt_info) =
3282 fold_convert (ssizetype, offset_iv.base);
3283 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3284 size_int (highest_pow2_factor (offset_iv.base));
3286 if (dump_enabled_p ())
3288 dump_printf_loc (MSG_NOTE, vect_location,
3289 "\touter base_address: ");
3290 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3291 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3292 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3293 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3294 STMT_VINFO_DR_OFFSET (stmt_info));
3295 dump_printf (MSG_NOTE,
3296 "\n\touter constant offset from base address: ");
3297 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3298 STMT_VINFO_DR_INIT (stmt_info));
3299 dump_printf (MSG_NOTE, "\n\touter step: ");
3300 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3301 STMT_VINFO_DR_STEP (stmt_info));
3302 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3303 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3304 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3308 if (STMT_VINFO_DATA_REF (stmt_info))
3310 if (dump_enabled_p ())
3312 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3313 "not vectorized: more than one data ref "
3314 "in stmt: ");
3315 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3318 if (bb_vinfo)
3320 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3321 stop_bb_analysis = true;
3322 continue;
3325 if (gather)
3326 free_data_ref (dr);
3327 return false;
3330 STMT_VINFO_DATA_REF (stmt_info) = dr;
3332 /* Set vectype for STMT. */
3333 scalar_type = TREE_TYPE (DR_REF (dr));
3334 STMT_VINFO_VECTYPE (stmt_info) =
3335 get_vectype_for_scalar_type (scalar_type);
3336 if (!STMT_VINFO_VECTYPE (stmt_info))
3338 if (dump_enabled_p ())
3340 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3341 "not vectorized: no vectype for stmt: ");
3342 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3343 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3344 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3345 scalar_type);
3348 if (bb_vinfo)
3350 /* Mark the statement as not vectorizable. */
3351 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3352 stop_bb_analysis = true;
3353 continue;
3356 if (gather)
3358 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3359 free_data_ref (dr);
3361 return false;
3364 /* Adjust the minimal vectorization factor according to the
3365 vector type. */
3366 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3367 if (vf > *min_vf)
3368 *min_vf = vf;
3370 if (gather)
3372 unsigned int j, k, n;
3373 struct data_reference *olddr
3374 = datarefs[i];
3375 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
3376 struct data_dependence_relation *ddr, *newddr;
3377 bool bad = false;
3378 tree off;
3379 vec<loop_p> nest = LOOP_VINFO_LOOP_NEST (loop_vinfo);
3381 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3382 if (gather
3383 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3384 gather = false;
3385 if (!gather)
3387 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3388 free_data_ref (dr);
3389 if (dump_enabled_p ())
3391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3392 "not vectorized: not suitable for gather "
3393 "load ");
3394 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3396 return false;
3399 n = datarefs.length () - 1;
3400 for (j = 0, k = i - 1; j < i; j++)
3402 ddr = ddrs[k];
3403 gcc_assert (DDR_B (ddr) == olddr);
3404 newddr = initialize_data_dependence_relation (DDR_A (ddr), dr,
3405 nest);
3406 ddrs[k] = newddr;
3407 free_dependence_relation (ddr);
3408 if (!bad
3409 && DR_IS_WRITE (DDR_A (newddr))
3410 && DDR_ARE_DEPENDENT (newddr) != chrec_known)
3411 bad = true;
3412 k += --n;
3415 k++;
3416 n = k + datarefs.length () - i - 1;
3417 for (; k < n; k++)
3419 ddr = ddrs[k];
3420 gcc_assert (DDR_A (ddr) == olddr);
3421 newddr = initialize_data_dependence_relation (dr, DDR_B (ddr),
3422 nest);
3423 ddrs[k] = newddr;
3424 free_dependence_relation (ddr);
3425 if (!bad
3426 && DR_IS_WRITE (DDR_B (newddr))
3427 && DDR_ARE_DEPENDENT (newddr) != chrec_known)
3428 bad = true;
3431 k = ddrs.length ()
3432 - datarefs.length () + i;
3433 ddr = ddrs[k];
3434 gcc_assert (DDR_A (ddr) == olddr && DDR_B (ddr) == olddr);
3435 newddr = initialize_data_dependence_relation (dr, dr, nest);
3436 ddrs[k] = newddr;
3437 free_dependence_relation (ddr);
3438 datarefs[i] = dr;
3440 if (bad)
3442 if (dump_enabled_p ())
3444 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3445 "not vectorized: data dependence conflict"
3446 " prevents gather load");
3447 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3449 return false;
3452 STMT_VINFO_GATHER_P (stmt_info) = true;
3454 else if (loop_vinfo
3455 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3457 bool strided_load = false;
3458 if (!nested_in_vect_loop_p (loop, stmt))
3459 strided_load = vect_check_strided_load (stmt, loop_vinfo);
3460 if (!strided_load)
3462 if (dump_enabled_p ())
3464 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3465 "not vectorized: not suitable for strided "
3466 "load ");
3467 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3469 return false;
3471 STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
3475 return true;
3479 /* Function vect_get_new_vect_var.
3481 Returns a name for a new variable. The current naming scheme appends the
3482 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3483 the name of vectorizer generated variables, and appends that to NAME if
3484 provided. */
3486 tree
3487 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3489 const char *prefix;
3490 tree new_vect_var;
3492 switch (var_kind)
3494 case vect_simple_var:
3495 prefix = "vect_";
3496 break;
3497 case vect_scalar_var:
3498 prefix = "stmp_";
3499 break;
3500 case vect_pointer_var:
3501 prefix = "vect_p";
3502 break;
3503 default:
3504 gcc_unreachable ();
3507 if (name)
3509 char* tmp = concat (prefix, name, NULL);
3510 new_vect_var = create_tmp_reg (type, tmp);
3511 free (tmp);
3513 else
3514 new_vect_var = create_tmp_reg (type, prefix);
3516 return new_vect_var;
3520 /* Function vect_create_addr_base_for_vector_ref.
3522 Create an expression that computes the address of the first memory location
3523 that will be accessed for a data reference.
3525 Input:
3526 STMT: The statement containing the data reference.
3527 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3528 OFFSET: Optional. If supplied, it is be added to the initial address.
3529 LOOP: Specify relative to which loop-nest should the address be computed.
3530 For example, when the dataref is in an inner-loop nested in an
3531 outer-loop that is now being vectorized, LOOP can be either the
3532 outer-loop, or the inner-loop. The first memory location accessed
3533 by the following dataref ('in' points to short):
3535 for (i=0; i<N; i++)
3536 for (j=0; j<M; j++)
3537 s += in[i+j]
3539 is as follows:
3540 if LOOP=i_loop: &in (relative to i_loop)
3541 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3543 Output:
3544 1. Return an SSA_NAME whose value is the address of the memory location of
3545 the first vector of the data reference.
3546 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3547 these statement(s) which define the returned SSA_NAME.
3549 FORNOW: We are only handling array accesses with step 1. */
3551 tree
3552 vect_create_addr_base_for_vector_ref (gimple stmt,
3553 gimple_seq *new_stmt_list,
3554 tree offset,
3555 struct loop *loop)
3557 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3558 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3559 tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3560 const char *base_name;
3561 tree data_ref_base_var;
3562 tree vec_stmt;
3563 tree addr_base, addr_expr;
3564 tree dest;
3565 gimple_seq seq = NULL;
3566 tree base_offset = unshare_expr (DR_OFFSET (dr));
3567 tree init = unshare_expr (DR_INIT (dr));
3568 tree vect_ptr_type;
3569 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3570 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3571 tree base;
3573 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3575 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3577 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3579 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3580 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3581 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3584 if (loop_vinfo)
3585 base_name = get_name (data_ref_base);
3586 else
3588 base_offset = ssize_int (0);
3589 init = ssize_int (0);
3590 base_name = get_name (DR_REF (dr));
3593 data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
3594 data_ref_base = force_gimple_operand (data_ref_base, &seq, true,
3595 data_ref_base_var);
3596 gimple_seq_add_seq (new_stmt_list, seq);
3598 /* Create base_offset */
3599 base_offset = size_binop (PLUS_EXPR,
3600 fold_convert (sizetype, base_offset),
3601 fold_convert (sizetype, init));
3602 dest = create_tmp_var (sizetype, "base_off");
3603 base_offset = force_gimple_operand (base_offset, &seq, true, dest);
3604 gimple_seq_add_seq (new_stmt_list, seq);
3606 if (offset)
3608 tree tmp = create_tmp_var (sizetype, "offset");
3610 offset = fold_build2 (MULT_EXPR, sizetype,
3611 fold_convert (sizetype, offset), step);
3612 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3613 base_offset, offset);
3614 base_offset = force_gimple_operand (base_offset, &seq, false, tmp);
3615 gimple_seq_add_seq (new_stmt_list, seq);
3618 /* base + base_offset */
3619 if (loop_vinfo)
3620 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3621 else
3623 addr_base = build1 (ADDR_EXPR,
3624 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3625 unshare_expr (DR_REF (dr)));
3628 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3629 base = get_base_address (DR_REF (dr));
3630 if (base
3631 && TREE_CODE (base) == MEM_REF)
3632 vect_ptr_type
3633 = build_qualified_type (vect_ptr_type,
3634 TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
3636 vec_stmt = fold_convert (vect_ptr_type, addr_base);
3637 addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
3638 base_name);
3639 vec_stmt = force_gimple_operand (vec_stmt, &seq, false, addr_expr);
3640 gimple_seq_add_seq (new_stmt_list, seq);
3642 if (DR_PTR_INFO (dr)
3643 && TREE_CODE (vec_stmt) == SSA_NAME)
3645 duplicate_ssa_name_ptr_info (vec_stmt, DR_PTR_INFO (dr));
3646 if (offset)
3647 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (vec_stmt));
3650 if (dump_enabled_p ())
3652 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3653 dump_generic_expr (MSG_NOTE, TDF_SLIM, vec_stmt);
3656 return vec_stmt;
3660 /* Function vect_create_data_ref_ptr.
3662 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3663 location accessed in the loop by STMT, along with the def-use update
3664 chain to appropriately advance the pointer through the loop iterations.
3665 Also set aliasing information for the pointer. This pointer is used by
3666 the callers to this function to create a memory reference expression for
3667 vector load/store access.
3669 Input:
3670 1. STMT: a stmt that references memory. Expected to be of the form
3671 GIMPLE_ASSIGN <name, data-ref> or
3672 GIMPLE_ASSIGN <data-ref, name>.
3673 2. AGGR_TYPE: the type of the reference, which should be either a vector
3674 or an array.
3675 3. AT_LOOP: the loop where the vector memref is to be created.
3676 4. OFFSET (optional): an offset to be added to the initial address accessed
3677 by the data-ref in STMT.
3678 5. BSI: location where the new stmts are to be placed if there is no loop
3679 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
3680 pointing to the initial address.
3682 Output:
3683 1. Declare a new ptr to vector_type, and have it point to the base of the
3684 data reference (initial addressed accessed by the data reference).
3685 For example, for vector of type V8HI, the following code is generated:
3687 v8hi *ap;
3688 ap = (v8hi *)initial_address;
3690 if OFFSET is not supplied:
3691 initial_address = &a[init];
3692 if OFFSET is supplied:
3693 initial_address = &a[init + OFFSET];
3695 Return the initial_address in INITIAL_ADDRESS.
3697 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
3698 update the pointer in each iteration of the loop.
3700 Return the increment stmt that updates the pointer in PTR_INCR.
3702 3. Set INV_P to true if the access pattern of the data reference in the
3703 vectorized loop is invariant. Set it to false otherwise.
3705 4. Return the pointer. */
3707 tree
3708 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
3709 tree offset, tree *initial_address,
3710 gimple_stmt_iterator *gsi, gimple *ptr_incr,
3711 bool only_init, bool *inv_p)
3713 const char *base_name;
3714 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3715 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3716 struct loop *loop = NULL;
3717 bool nested_in_vect_loop = false;
3718 struct loop *containing_loop = NULL;
3719 tree aggr_ptr_type;
3720 tree aggr_ptr;
3721 tree new_temp;
3722 gimple vec_stmt;
3723 gimple_seq new_stmt_list = NULL;
3724 edge pe = NULL;
3725 basic_block new_bb;
3726 tree aggr_ptr_init;
3727 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3728 tree aptr;
3729 gimple_stmt_iterator incr_gsi;
3730 bool insert_after;
3731 bool negative;
3732 tree indx_before_incr, indx_after_incr;
3733 gimple incr;
3734 tree step;
3735 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3736 tree base;
3738 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
3739 || TREE_CODE (aggr_type) == VECTOR_TYPE);
3741 if (loop_vinfo)
3743 loop = LOOP_VINFO_LOOP (loop_vinfo);
3744 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
3745 containing_loop = (gimple_bb (stmt))->loop_father;
3746 pe = loop_preheader_edge (loop);
3748 else
3750 gcc_assert (bb_vinfo);
3751 only_init = true;
3752 *ptr_incr = NULL;
3755 /* Check the step (evolution) of the load in LOOP, and record
3756 whether it's invariant. */
3757 if (nested_in_vect_loop)
3758 step = STMT_VINFO_DR_STEP (stmt_info);
3759 else
3760 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
3762 if (tree_int_cst_compare (step, size_zero_node) == 0)
3763 *inv_p = true;
3764 else
3765 *inv_p = false;
3766 negative = tree_int_cst_compare (step, size_zero_node) < 0;
3768 /* Create an expression for the first address accessed by this load
3769 in LOOP. */
3770 base_name = get_name (DR_BASE_ADDRESS (dr));
3772 if (dump_enabled_p ())
3774 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
3775 dump_printf_loc (MSG_NOTE, vect_location,
3776 "create %s-pointer variable to type: ",
3777 tree_code_name[(int) TREE_CODE (aggr_type)]);
3778 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
3779 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
3780 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
3781 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
3782 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
3783 else
3784 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
3785 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
3788 /* (1) Create the new aggregate-pointer variable. */
3789 aggr_ptr_type = build_pointer_type (aggr_type);
3790 base = get_base_address (DR_REF (dr));
3791 if (base
3792 && TREE_CODE (base) == MEM_REF)
3793 aggr_ptr_type
3794 = build_qualified_type (aggr_ptr_type,
3795 TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
3796 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
3798 /* Vector and array types inherit the alias set of their component
3799 type by default so we need to use a ref-all pointer if the data
3800 reference does not conflict with the created aggregated data
3801 reference because it is not addressable. */
3802 if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
3803 get_alias_set (DR_REF (dr))))
3805 aggr_ptr_type
3806 = build_pointer_type_for_mode (aggr_type,
3807 TYPE_MODE (aggr_ptr_type), true);
3808 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
3809 base_name);
3812 /* Likewise for any of the data references in the stmt group. */
3813 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
3815 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
3818 tree lhs = gimple_assign_lhs (orig_stmt);
3819 if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
3820 get_alias_set (lhs)))
3822 aggr_ptr_type
3823 = build_pointer_type_for_mode (aggr_type,
3824 TYPE_MODE (aggr_ptr_type), true);
3825 aggr_ptr
3826 = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
3827 base_name);
3828 break;
3831 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo_for_stmt (orig_stmt));
3833 while (orig_stmt);
3836 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
3837 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
3838 def-use update cycles for the pointer: one relative to the outer-loop
3839 (LOOP), which is what steps (3) and (4) below do. The other is relative
3840 to the inner-loop (which is the inner-most loop containing the dataref),
3841 and this is done be step (5) below.
3843 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
3844 inner-most loop, and so steps (3),(4) work the same, and step (5) is
3845 redundant. Steps (3),(4) create the following:
3847 vp0 = &base_addr;
3848 LOOP: vp1 = phi(vp0,vp2)
3851 vp2 = vp1 + step
3852 goto LOOP
3854 If there is an inner-loop nested in loop, then step (5) will also be
3855 applied, and an additional update in the inner-loop will be created:
3857 vp0 = &base_addr;
3858 LOOP: vp1 = phi(vp0,vp2)
3860 inner: vp3 = phi(vp1,vp4)
3861 vp4 = vp3 + inner_step
3862 if () goto inner
3864 vp2 = vp1 + step
3865 if () goto LOOP */
3867 /* (2) Calculate the initial address of the aggregate-pointer, and set
3868 the aggregate-pointer to point to it before the loop. */
3870 /* Create: (&(base[init_val+offset]) in the loop preheader. */
3872 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
3873 offset, loop);
3874 if (new_stmt_list)
3876 if (pe)
3878 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
3879 gcc_assert (!new_bb);
3881 else
3882 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
3885 *initial_address = new_temp;
3887 /* Create: p = (aggr_type *) initial_base */
3888 if (TREE_CODE (new_temp) != SSA_NAME
3889 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
3891 vec_stmt = gimple_build_assign (aggr_ptr,
3892 fold_convert (aggr_ptr_type, new_temp));
3893 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
3894 /* Copy the points-to information if it exists. */
3895 if (DR_PTR_INFO (dr))
3896 duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
3897 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
3898 if (pe)
3900 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
3901 gcc_assert (!new_bb);
3903 else
3904 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
3906 else
3907 aggr_ptr_init = new_temp;
3909 /* (3) Handle the updating of the aggregate-pointer inside the loop.
3910 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
3911 inner-loop nested in LOOP (during outer-loop vectorization). */
3913 /* No update in loop is required. */
3914 if (only_init && (!loop_vinfo || at_loop == loop))
3915 aptr = aggr_ptr_init;
3916 else
3918 /* The step of the aggregate pointer is the type size. */
3919 tree step = TYPE_SIZE_UNIT (aggr_type);
3920 /* One exception to the above is when the scalar step of the load in
3921 LOOP is zero. In this case the step here is also zero. */
3922 if (*inv_p)
3923 step = size_zero_node;
3924 else if (negative)
3925 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
3927 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
3929 create_iv (aggr_ptr_init,
3930 fold_convert (aggr_ptr_type, step),
3931 aggr_ptr, loop, &incr_gsi, insert_after,
3932 &indx_before_incr, &indx_after_incr);
3933 incr = gsi_stmt (incr_gsi);
3934 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
3936 /* Copy the points-to information if it exists. */
3937 if (DR_PTR_INFO (dr))
3939 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
3940 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
3942 if (ptr_incr)
3943 *ptr_incr = incr;
3945 aptr = indx_before_incr;
3948 if (!nested_in_vect_loop || only_init)
3949 return aptr;
3952 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
3953 nested in LOOP, if exists. */
3955 gcc_assert (nested_in_vect_loop);
3956 if (!only_init)
3958 standard_iv_increment_position (containing_loop, &incr_gsi,
3959 &insert_after);
3960 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
3961 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
3962 &indx_after_incr);
3963 incr = gsi_stmt (incr_gsi);
3964 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
3966 /* Copy the points-to information if it exists. */
3967 if (DR_PTR_INFO (dr))
3969 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
3970 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
3972 if (ptr_incr)
3973 *ptr_incr = incr;
3975 return indx_before_incr;
3977 else
3978 gcc_unreachable ();
3982 /* Function bump_vector_ptr
3984 Increment a pointer (to a vector type) by vector-size. If requested,
3985 i.e. if PTR-INCR is given, then also connect the new increment stmt
3986 to the existing def-use update-chain of the pointer, by modifying
3987 the PTR_INCR as illustrated below:
3989 The pointer def-use update-chain before this function:
3990 DATAREF_PTR = phi (p_0, p_2)
3991 ....
3992 PTR_INCR: p_2 = DATAREF_PTR + step
3994 The pointer def-use update-chain after this function:
3995 DATAREF_PTR = phi (p_0, p_2)
3996 ....
3997 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
3998 ....
3999 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4001 Input:
4002 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4003 in the loop.
4004 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4005 the loop. The increment amount across iterations is expected
4006 to be vector_size.
4007 BSI - location where the new update stmt is to be placed.
4008 STMT - the original scalar memory-access stmt that is being vectorized.
4009 BUMP - optional. The offset by which to bump the pointer. If not given,
4010 the offset is assumed to be vector_size.
4012 Output: Return NEW_DATAREF_PTR as illustrated above.
4016 tree
4017 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4018 gimple stmt, tree bump)
4020 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4021 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4022 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4023 tree update = TYPE_SIZE_UNIT (vectype);
4024 gimple incr_stmt;
4025 ssa_op_iter iter;
4026 use_operand_p use_p;
4027 tree new_dataref_ptr;
4029 if (bump)
4030 update = bump;
4032 new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
4033 incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
4034 dataref_ptr, update);
4035 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4037 /* Copy the points-to information if it exists. */
4038 if (DR_PTR_INFO (dr))
4040 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4041 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4044 if (!ptr_incr)
4045 return new_dataref_ptr;
4047 /* Update the vector-pointer's cross-iteration increment. */
4048 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4050 tree use = USE_FROM_PTR (use_p);
4052 if (use == dataref_ptr)
4053 SET_USE (use_p, new_dataref_ptr);
4054 else
4055 gcc_assert (tree_int_cst_compare (use, update) == 0);
4058 return new_dataref_ptr;
4062 /* Function vect_create_destination_var.
4064 Create a new temporary of type VECTYPE. */
4066 tree
4067 vect_create_destination_var (tree scalar_dest, tree vectype)
4069 tree vec_dest;
4070 const char *new_name;
4071 tree type;
4072 enum vect_var_kind kind;
4074 kind = vectype ? vect_simple_var : vect_scalar_var;
4075 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4077 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4079 new_name = get_name (scalar_dest);
4080 if (!new_name)
4081 new_name = "var_";
4082 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4084 return vec_dest;
4087 /* Function vect_grouped_store_supported.
4089 Returns TRUE if interleave high and interleave low permutations
4090 are supported, and FALSE otherwise. */
4092 bool
4093 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4095 enum machine_mode mode = TYPE_MODE (vectype);
4097 /* vect_permute_store_chain requires the group size to be a power of two. */
4098 if (exact_log2 (count) == -1)
4100 if (dump_enabled_p ())
4101 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4102 "the size of the group of accesses"
4103 " is not a power of 2");
4104 return false;
4107 /* Check that the permutation is supported. */
4108 if (VECTOR_MODE_P (mode))
4110 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4111 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4112 for (i = 0; i < nelt / 2; i++)
4114 sel[i * 2] = i;
4115 sel[i * 2 + 1] = i + nelt;
4117 if (can_vec_perm_p (mode, false, sel))
4119 for (i = 0; i < nelt; i++)
4120 sel[i] += nelt / 2;
4121 if (can_vec_perm_p (mode, false, sel))
4122 return true;
4126 if (dump_enabled_p ())
4127 dump_printf (MSG_MISSED_OPTIMIZATION,
4128 "interleave op not supported by target.");
4129 return false;
4133 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4134 type VECTYPE. */
4136 bool
4137 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4139 return vect_lanes_optab_supported_p ("vec_store_lanes",
4140 vec_store_lanes_optab,
4141 vectype, count);
4145 /* Function vect_permute_store_chain.
4147 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4148 a power of 2, generate interleave_high/low stmts to reorder the data
4149 correctly for the stores. Return the final references for stores in
4150 RESULT_CHAIN.
4152 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4153 The input is 4 vectors each containing 8 elements. We assign a number to
4154 each element, the input sequence is:
4156 1st vec: 0 1 2 3 4 5 6 7
4157 2nd vec: 8 9 10 11 12 13 14 15
4158 3rd vec: 16 17 18 19 20 21 22 23
4159 4th vec: 24 25 26 27 28 29 30 31
4161 The output sequence should be:
4163 1st vec: 0 8 16 24 1 9 17 25
4164 2nd vec: 2 10 18 26 3 11 19 27
4165 3rd vec: 4 12 20 28 5 13 21 30
4166 4th vec: 6 14 22 30 7 15 23 31
4168 i.e., we interleave the contents of the four vectors in their order.
4170 We use interleave_high/low instructions to create such output. The input of
4171 each interleave_high/low operation is two vectors:
4172 1st vec 2nd vec
4173 0 1 2 3 4 5 6 7
4174 the even elements of the result vector are obtained left-to-right from the
4175 high/low elements of the first vector. The odd elements of the result are
4176 obtained left-to-right from the high/low elements of the second vector.
4177 The output of interleave_high will be: 0 4 1 5
4178 and of interleave_low: 2 6 3 7
4181 The permutation is done in log LENGTH stages. In each stage interleave_high
4182 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4183 where the first argument is taken from the first half of DR_CHAIN and the
4184 second argument from it's second half.
4185 In our example,
4187 I1: interleave_high (1st vec, 3rd vec)
4188 I2: interleave_low (1st vec, 3rd vec)
4189 I3: interleave_high (2nd vec, 4th vec)
4190 I4: interleave_low (2nd vec, 4th vec)
4192 The output for the first stage is:
4194 I1: 0 16 1 17 2 18 3 19
4195 I2: 4 20 5 21 6 22 7 23
4196 I3: 8 24 9 25 10 26 11 27
4197 I4: 12 28 13 29 14 30 15 31
4199 The output of the second stage, i.e. the final result is:
4201 I1: 0 8 16 24 1 9 17 25
4202 I2: 2 10 18 26 3 11 19 27
4203 I3: 4 12 20 28 5 13 21 30
4204 I4: 6 14 22 30 7 15 23 31. */
4206 void
4207 vect_permute_store_chain (vec<tree> dr_chain,
4208 unsigned int length,
4209 gimple stmt,
4210 gimple_stmt_iterator *gsi,
4211 vec<tree> *result_chain)
4213 tree vect1, vect2, high, low;
4214 gimple perm_stmt;
4215 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4216 tree perm_mask_low, perm_mask_high;
4217 unsigned int i, n;
4218 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4219 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4221 *result_chain = dr_chain.copy ();
4223 for (i = 0, n = nelt / 2; i < n; i++)
4225 sel[i * 2] = i;
4226 sel[i * 2 + 1] = i + nelt;
4228 perm_mask_high = vect_gen_perm_mask (vectype, sel);
4229 gcc_assert (perm_mask_high != NULL);
4231 for (i = 0; i < nelt; i++)
4232 sel[i] += nelt / 2;
4233 perm_mask_low = vect_gen_perm_mask (vectype, sel);
4234 gcc_assert (perm_mask_low != NULL);
4236 for (i = 0, n = exact_log2 (length); i < n; i++)
4238 for (j = 0; j < length/2; j++)
4240 vect1 = dr_chain[j];
4241 vect2 = dr_chain[j+length/2];
4243 /* Create interleaving stmt:
4244 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1, ...}> */
4245 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4246 perm_stmt
4247 = gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
4248 vect1, vect2, perm_mask_high);
4249 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4250 (*result_chain)[2*j] = high;
4252 /* Create interleaving stmt:
4253 low = VEC_PERM_EXPR <vect1, vect2, {nelt/2, nelt*3/2, nelt/2+1,
4254 nelt*3/2+1, ...}> */
4255 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4256 perm_stmt
4257 = gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
4258 vect1, vect2, perm_mask_low);
4259 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4260 (*result_chain)[2*j+1] = low;
4262 dr_chain = result_chain->copy ();
4266 /* Function vect_setup_realignment
4268 This function is called when vectorizing an unaligned load using
4269 the dr_explicit_realign[_optimized] scheme.
4270 This function generates the following code at the loop prolog:
4272 p = initial_addr;
4273 x msq_init = *(floor(p)); # prolog load
4274 realignment_token = call target_builtin;
4275 loop:
4276 x msq = phi (msq_init, ---)
4278 The stmts marked with x are generated only for the case of
4279 dr_explicit_realign_optimized.
4281 The code above sets up a new (vector) pointer, pointing to the first
4282 location accessed by STMT, and a "floor-aligned" load using that pointer.
4283 It also generates code to compute the "realignment-token" (if the relevant
4284 target hook was defined), and creates a phi-node at the loop-header bb
4285 whose arguments are the result of the prolog-load (created by this
4286 function) and the result of a load that takes place in the loop (to be
4287 created by the caller to this function).
4289 For the case of dr_explicit_realign_optimized:
4290 The caller to this function uses the phi-result (msq) to create the
4291 realignment code inside the loop, and sets up the missing phi argument,
4292 as follows:
4293 loop:
4294 msq = phi (msq_init, lsq)
4295 lsq = *(floor(p')); # load in loop
4296 result = realign_load (msq, lsq, realignment_token);
4298 For the case of dr_explicit_realign:
4299 loop:
4300 msq = *(floor(p)); # load in loop
4301 p' = p + (VS-1);
4302 lsq = *(floor(p')); # load in loop
4303 result = realign_load (msq, lsq, realignment_token);
4305 Input:
4306 STMT - (scalar) load stmt to be vectorized. This load accesses
4307 a memory location that may be unaligned.
4308 BSI - place where new code is to be inserted.
4309 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4310 is used.
4312 Output:
4313 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4314 target hook, if defined.
4315 Return value - the result of the loop-header phi node. */
4317 tree
4318 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4319 tree *realignment_token,
4320 enum dr_alignment_support alignment_support_scheme,
4321 tree init_addr,
4322 struct loop **at_loop)
4324 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4325 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4326 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4327 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4328 struct loop *loop = NULL;
4329 edge pe = NULL;
4330 tree scalar_dest = gimple_assign_lhs (stmt);
4331 tree vec_dest;
4332 gimple inc;
4333 tree ptr;
4334 tree data_ref;
4335 gimple new_stmt;
4336 basic_block new_bb;
4337 tree msq_init = NULL_TREE;
4338 tree new_temp;
4339 gimple phi_stmt;
4340 tree msq = NULL_TREE;
4341 gimple_seq stmts = NULL;
4342 bool inv_p;
4343 bool compute_in_loop = false;
4344 bool nested_in_vect_loop = false;
4345 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4346 struct loop *loop_for_initial_load = NULL;
4348 if (loop_vinfo)
4350 loop = LOOP_VINFO_LOOP (loop_vinfo);
4351 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4354 gcc_assert (alignment_support_scheme == dr_explicit_realign
4355 || alignment_support_scheme == dr_explicit_realign_optimized);
4357 /* We need to generate three things:
4358 1. the misalignment computation
4359 2. the extra vector load (for the optimized realignment scheme).
4360 3. the phi node for the two vectors from which the realignment is
4361 done (for the optimized realignment scheme). */
4363 /* 1. Determine where to generate the misalignment computation.
4365 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4366 calculation will be generated by this function, outside the loop (in the
4367 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4368 caller, inside the loop.
4370 Background: If the misalignment remains fixed throughout the iterations of
4371 the loop, then both realignment schemes are applicable, and also the
4372 misalignment computation can be done outside LOOP. This is because we are
4373 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4374 are a multiple of VS (the Vector Size), and therefore the misalignment in
4375 different vectorized LOOP iterations is always the same.
4376 The problem arises only if the memory access is in an inner-loop nested
4377 inside LOOP, which is now being vectorized using outer-loop vectorization.
4378 This is the only case when the misalignment of the memory access may not
4379 remain fixed throughout the iterations of the inner-loop (as explained in
4380 detail in vect_supportable_dr_alignment). In this case, not only is the
4381 optimized realignment scheme not applicable, but also the misalignment
4382 computation (and generation of the realignment token that is passed to
4383 REALIGN_LOAD) have to be done inside the loop.
4385 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4386 or not, which in turn determines if the misalignment is computed inside
4387 the inner-loop, or outside LOOP. */
4389 if (init_addr != NULL_TREE || !loop_vinfo)
4391 compute_in_loop = true;
4392 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4396 /* 2. Determine where to generate the extra vector load.
4398 For the optimized realignment scheme, instead of generating two vector
4399 loads in each iteration, we generate a single extra vector load in the
4400 preheader of the loop, and in each iteration reuse the result of the
4401 vector load from the previous iteration. In case the memory access is in
4402 an inner-loop nested inside LOOP, which is now being vectorized using
4403 outer-loop vectorization, we need to determine whether this initial vector
4404 load should be generated at the preheader of the inner-loop, or can be
4405 generated at the preheader of LOOP. If the memory access has no evolution
4406 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4407 to be generated inside LOOP (in the preheader of the inner-loop). */
4409 if (nested_in_vect_loop)
4411 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4412 bool invariant_in_outerloop =
4413 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4414 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4416 else
4417 loop_for_initial_load = loop;
4418 if (at_loop)
4419 *at_loop = loop_for_initial_load;
4421 if (loop_for_initial_load)
4422 pe = loop_preheader_edge (loop_for_initial_load);
4424 /* 3. For the case of the optimized realignment, create the first vector
4425 load at the loop preheader. */
4427 if (alignment_support_scheme == dr_explicit_realign_optimized)
4429 /* Create msq_init = *(floor(p1)) in the loop preheader */
4431 gcc_assert (!compute_in_loop);
4432 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4433 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4434 NULL_TREE, &init_addr, NULL, &inc,
4435 true, &inv_p);
4436 new_temp = copy_ssa_name (ptr, NULL);
4437 new_stmt = gimple_build_assign_with_ops
4438 (BIT_AND_EXPR, new_temp, ptr,
4439 build_int_cst (TREE_TYPE (ptr),
4440 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4441 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4442 gcc_assert (!new_bb);
4443 data_ref
4444 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4445 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4446 new_stmt = gimple_build_assign (vec_dest, data_ref);
4447 new_temp = make_ssa_name (vec_dest, new_stmt);
4448 gimple_assign_set_lhs (new_stmt, new_temp);
4449 if (pe)
4451 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4452 gcc_assert (!new_bb);
4454 else
4455 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4457 msq_init = gimple_assign_lhs (new_stmt);
4460 /* 4. Create realignment token using a target builtin, if available.
4461 It is done either inside the containing loop, or before LOOP (as
4462 determined above). */
4464 if (targetm.vectorize.builtin_mask_for_load)
4466 tree builtin_decl;
4468 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4469 if (!init_addr)
4471 /* Generate the INIT_ADDR computation outside LOOP. */
4472 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4473 NULL_TREE, loop);
4474 if (loop)
4476 pe = loop_preheader_edge (loop);
4477 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4478 gcc_assert (!new_bb);
4480 else
4481 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4484 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4485 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4486 vec_dest =
4487 vect_create_destination_var (scalar_dest,
4488 gimple_call_return_type (new_stmt));
4489 new_temp = make_ssa_name (vec_dest, new_stmt);
4490 gimple_call_set_lhs (new_stmt, new_temp);
4492 if (compute_in_loop)
4493 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4494 else
4496 /* Generate the misalignment computation outside LOOP. */
4497 pe = loop_preheader_edge (loop);
4498 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4499 gcc_assert (!new_bb);
4502 *realignment_token = gimple_call_lhs (new_stmt);
4504 /* The result of the CALL_EXPR to this builtin is determined from
4505 the value of the parameter and no global variables are touched
4506 which makes the builtin a "const" function. Requiring the
4507 builtin to have the "const" attribute makes it unnecessary
4508 to call mark_call_clobbered. */
4509 gcc_assert (TREE_READONLY (builtin_decl));
4512 if (alignment_support_scheme == dr_explicit_realign)
4513 return msq;
4515 gcc_assert (!compute_in_loop);
4516 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4519 /* 5. Create msq = phi <msq_init, lsq> in loop */
4521 pe = loop_preheader_edge (containing_loop);
4522 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4523 msq = make_ssa_name (vec_dest, NULL);
4524 phi_stmt = create_phi_node (msq, containing_loop->header);
4525 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4527 return msq;
4531 /* Function vect_grouped_load_supported.
4533 Returns TRUE if even and odd permutations are supported,
4534 and FALSE otherwise. */
4536 bool
4537 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4539 enum machine_mode mode = TYPE_MODE (vectype);
4541 /* vect_permute_load_chain requires the group size to be a power of two. */
4542 if (exact_log2 (count) == -1)
4544 if (dump_enabled_p ())
4545 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4546 "the size of the group of accesses"
4547 " is not a power of 2");
4548 return false;
4551 /* Check that the permutation is supported. */
4552 if (VECTOR_MODE_P (mode))
4554 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4555 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4557 for (i = 0; i < nelt; i++)
4558 sel[i] = i * 2;
4559 if (can_vec_perm_p (mode, false, sel))
4561 for (i = 0; i < nelt; i++)
4562 sel[i] = i * 2 + 1;
4563 if (can_vec_perm_p (mode, false, sel))
4564 return true;
4568 if (dump_enabled_p ())
4569 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4570 "extract even/odd not supported by target");
4571 return false;
4574 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
4575 type VECTYPE. */
4577 bool
4578 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4580 return vect_lanes_optab_supported_p ("vec_load_lanes",
4581 vec_load_lanes_optab,
4582 vectype, count);
4585 /* Function vect_permute_load_chain.
4587 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
4588 a power of 2, generate extract_even/odd stmts to reorder the input data
4589 correctly. Return the final references for loads in RESULT_CHAIN.
4591 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4592 The input is 4 vectors each containing 8 elements. We assign a number to each
4593 element, the input sequence is:
4595 1st vec: 0 1 2 3 4 5 6 7
4596 2nd vec: 8 9 10 11 12 13 14 15
4597 3rd vec: 16 17 18 19 20 21 22 23
4598 4th vec: 24 25 26 27 28 29 30 31
4600 The output sequence should be:
4602 1st vec: 0 4 8 12 16 20 24 28
4603 2nd vec: 1 5 9 13 17 21 25 29
4604 3rd vec: 2 6 10 14 18 22 26 30
4605 4th vec: 3 7 11 15 19 23 27 31
4607 i.e., the first output vector should contain the first elements of each
4608 interleaving group, etc.
4610 We use extract_even/odd instructions to create such output. The input of
4611 each extract_even/odd operation is two vectors
4612 1st vec 2nd vec
4613 0 1 2 3 4 5 6 7
4615 and the output is the vector of extracted even/odd elements. The output of
4616 extract_even will be: 0 2 4 6
4617 and of extract_odd: 1 3 5 7
4620 The permutation is done in log LENGTH stages. In each stage extract_even
4621 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
4622 their order. In our example,
4624 E1: extract_even (1st vec, 2nd vec)
4625 E2: extract_odd (1st vec, 2nd vec)
4626 E3: extract_even (3rd vec, 4th vec)
4627 E4: extract_odd (3rd vec, 4th vec)
4629 The output for the first stage will be:
4631 E1: 0 2 4 6 8 10 12 14
4632 E2: 1 3 5 7 9 11 13 15
4633 E3: 16 18 20 22 24 26 28 30
4634 E4: 17 19 21 23 25 27 29 31
4636 In order to proceed and create the correct sequence for the next stage (or
4637 for the correct output, if the second stage is the last one, as in our
4638 example), we first put the output of extract_even operation and then the
4639 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
4640 The input for the second stage is:
4642 1st vec (E1): 0 2 4 6 8 10 12 14
4643 2nd vec (E3): 16 18 20 22 24 26 28 30
4644 3rd vec (E2): 1 3 5 7 9 11 13 15
4645 4th vec (E4): 17 19 21 23 25 27 29 31
4647 The output of the second stage:
4649 E1: 0 4 8 12 16 20 24 28
4650 E2: 2 6 10 14 18 22 26 30
4651 E3: 1 5 9 13 17 21 25 29
4652 E4: 3 7 11 15 19 23 27 31
4654 And RESULT_CHAIN after reordering:
4656 1st vec (E1): 0 4 8 12 16 20 24 28
4657 2nd vec (E3): 1 5 9 13 17 21 25 29
4658 3rd vec (E2): 2 6 10 14 18 22 26 30
4659 4th vec (E4): 3 7 11 15 19 23 27 31. */
4661 static void
4662 vect_permute_load_chain (vec<tree> dr_chain,
4663 unsigned int length,
4664 gimple stmt,
4665 gimple_stmt_iterator *gsi,
4666 vec<tree> *result_chain)
4668 tree data_ref, first_vect, second_vect;
4669 tree perm_mask_even, perm_mask_odd;
4670 gimple perm_stmt;
4671 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4672 unsigned int i, j, log_length = exact_log2 (length);
4673 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
4674 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4676 *result_chain = dr_chain.copy ();
4678 for (i = 0; i < nelt; ++i)
4679 sel[i] = i * 2;
4680 perm_mask_even = vect_gen_perm_mask (vectype, sel);
4681 gcc_assert (perm_mask_even != NULL);
4683 for (i = 0; i < nelt; ++i)
4684 sel[i] = i * 2 + 1;
4685 perm_mask_odd = vect_gen_perm_mask (vectype, sel);
4686 gcc_assert (perm_mask_odd != NULL);
4688 for (i = 0; i < log_length; i++)
4690 for (j = 0; j < length; j += 2)
4692 first_vect = dr_chain[j];
4693 second_vect = dr_chain[j+1];
4695 /* data_ref = permute_even (first_data_ref, second_data_ref); */
4696 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
4697 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4698 first_vect, second_vect,
4699 perm_mask_even);
4700 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4701 (*result_chain)[j/2] = data_ref;
4703 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
4704 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
4705 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4706 first_vect, second_vect,
4707 perm_mask_odd);
4708 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4709 (*result_chain)[j/2+length/2] = data_ref;
4711 dr_chain = result_chain->copy ();
4716 /* Function vect_transform_grouped_load.
4718 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
4719 to perform their permutation and ascribe the result vectorized statements to
4720 the scalar statements.
4723 void
4724 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
4725 gimple_stmt_iterator *gsi)
4727 vec<tree> result_chain = vNULL;
4729 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
4730 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
4731 vectors, that are ready for vector computation. */
4732 result_chain.create (size);
4733 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
4734 vect_record_grouped_load_vectors (stmt, result_chain);
4735 result_chain.release ();
4738 /* RESULT_CHAIN contains the output of a group of grouped loads that were
4739 generated as part of the vectorization of STMT. Assign the statement
4740 for each vector to the associated scalar statement. */
4742 void
4743 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
4745 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
4746 gimple next_stmt, new_stmt;
4747 unsigned int i, gap_count;
4748 tree tmp_data_ref;
4750 /* Put a permuted data-ref in the VECTORIZED_STMT field.
4751 Since we scan the chain starting from it's first node, their order
4752 corresponds the order of data-refs in RESULT_CHAIN. */
4753 next_stmt = first_stmt;
4754 gap_count = 1;
4755 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
4757 if (!next_stmt)
4758 break;
4760 /* Skip the gaps. Loads created for the gaps will be removed by dead
4761 code elimination pass later. No need to check for the first stmt in
4762 the group, since it always exists.
4763 GROUP_GAP is the number of steps in elements from the previous
4764 access (if there is no gap GROUP_GAP is 1). We skip loads that
4765 correspond to the gaps. */
4766 if (next_stmt != first_stmt
4767 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
4769 gap_count++;
4770 continue;
4773 while (next_stmt)
4775 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
4776 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
4777 copies, and we put the new vector statement in the first available
4778 RELATED_STMT. */
4779 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
4780 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
4781 else
4783 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
4785 gimple prev_stmt =
4786 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
4787 gimple rel_stmt =
4788 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
4789 while (rel_stmt)
4791 prev_stmt = rel_stmt;
4792 rel_stmt =
4793 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
4796 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
4797 new_stmt;
4801 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
4802 gap_count = 1;
4803 /* If NEXT_STMT accesses the same DR as the previous statement,
4804 put the same TMP_DATA_REF as its vectorized statement; otherwise
4805 get the next data-ref from RESULT_CHAIN. */
4806 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
4807 break;
4812 /* Function vect_force_dr_alignment_p.
4814 Returns whether the alignment of a DECL can be forced to be aligned
4815 on ALIGNMENT bit boundary. */
4817 bool
4818 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
4820 if (TREE_CODE (decl) != VAR_DECL)
4821 return false;
4823 /* We cannot change alignment of common or external symbols as another
4824 translation unit may contain a definition with lower alignment.
4825 The rules of common symbol linking mean that the definition
4826 will override the common symbol. */
4827 if (DECL_EXTERNAL (decl)
4828 || DECL_COMMON (decl))
4829 return false;
4831 if (TREE_ASM_WRITTEN (decl))
4832 return false;
4834 /* Do not override the alignment as specified by the ABI when the used
4835 attribute is set. */
4836 if (DECL_PRESERVE_P (decl))
4837 return false;
4839 /* Do not override explicit alignment set by the user when an explicit
4840 section name is also used. This is a common idiom used by many
4841 software projects. */
4842 if (DECL_SECTION_NAME (decl) != NULL_TREE
4843 && !DECL_HAS_IMPLICIT_SECTION_NAME_P (decl))
4844 return false;
4846 if (TREE_STATIC (decl))
4847 return (alignment <= MAX_OFILE_ALIGNMENT);
4848 else
4849 return (alignment <= MAX_STACK_ALIGNMENT);
4853 /* Return whether the data reference DR is supported with respect to its
4854 alignment.
4855 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
4856 it is aligned, i.e., check if it is possible to vectorize it with different
4857 alignment. */
4859 enum dr_alignment_support
4860 vect_supportable_dr_alignment (struct data_reference *dr,
4861 bool check_aligned_accesses)
4863 gimple stmt = DR_STMT (dr);
4864 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4865 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4866 enum machine_mode mode = TYPE_MODE (vectype);
4867 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4868 struct loop *vect_loop = NULL;
4869 bool nested_in_vect_loop = false;
4871 if (aligned_access_p (dr) && !check_aligned_accesses)
4872 return dr_aligned;
4874 if (loop_vinfo)
4876 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
4877 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
4880 /* Possibly unaligned access. */
4882 /* We can choose between using the implicit realignment scheme (generating
4883 a misaligned_move stmt) and the explicit realignment scheme (generating
4884 aligned loads with a REALIGN_LOAD). There are two variants to the
4885 explicit realignment scheme: optimized, and unoptimized.
4886 We can optimize the realignment only if the step between consecutive
4887 vector loads is equal to the vector size. Since the vector memory
4888 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
4889 is guaranteed that the misalignment amount remains the same throughout the
4890 execution of the vectorized loop. Therefore, we can create the
4891 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
4892 at the loop preheader.
4894 However, in the case of outer-loop vectorization, when vectorizing a
4895 memory access in the inner-loop nested within the LOOP that is now being
4896 vectorized, while it is guaranteed that the misalignment of the
4897 vectorized memory access will remain the same in different outer-loop
4898 iterations, it is *not* guaranteed that is will remain the same throughout
4899 the execution of the inner-loop. This is because the inner-loop advances
4900 with the original scalar step (and not in steps of VS). If the inner-loop
4901 step happens to be a multiple of VS, then the misalignment remains fixed
4902 and we can use the optimized realignment scheme. For example:
4904 for (i=0; i<N; i++)
4905 for (j=0; j<M; j++)
4906 s += a[i+j];
4908 When vectorizing the i-loop in the above example, the step between
4909 consecutive vector loads is 1, and so the misalignment does not remain
4910 fixed across the execution of the inner-loop, and the realignment cannot
4911 be optimized (as illustrated in the following pseudo vectorized loop):
4913 for (i=0; i<N; i+=4)
4914 for (j=0; j<M; j++){
4915 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
4916 // when j is {0,1,2,3,4,5,6,7,...} respectively.
4917 // (assuming that we start from an aligned address).
4920 We therefore have to use the unoptimized realignment scheme:
4922 for (i=0; i<N; i+=4)
4923 for (j=k; j<M; j+=4)
4924 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
4925 // that the misalignment of the initial address is
4926 // 0).
4928 The loop can then be vectorized as follows:
4930 for (k=0; k<4; k++){
4931 rt = get_realignment_token (&vp[k]);
4932 for (i=0; i<N; i+=4){
4933 v1 = vp[i+k];
4934 for (j=k; j<M; j+=4){
4935 v2 = vp[i+j+VS-1];
4936 va = REALIGN_LOAD <v1,v2,rt>;
4937 vs += va;
4938 v1 = v2;
4941 } */
4943 if (DR_IS_READ (dr))
4945 bool is_packed = false;
4946 tree type = (TREE_TYPE (DR_REF (dr)));
4948 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
4949 && (!targetm.vectorize.builtin_mask_for_load
4950 || targetm.vectorize.builtin_mask_for_load ()))
4952 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4953 if ((nested_in_vect_loop
4954 && (TREE_INT_CST_LOW (DR_STEP (dr))
4955 != GET_MODE_SIZE (TYPE_MODE (vectype))))
4956 || !loop_vinfo)
4957 return dr_explicit_realign;
4958 else
4959 return dr_explicit_realign_optimized;
4961 if (!known_alignment_for_access_p (dr))
4962 is_packed = not_size_aligned (DR_REF (dr));
4964 if (targetm.vectorize.
4965 support_vector_misalignment (mode, type,
4966 DR_MISALIGNMENT (dr), is_packed))
4967 /* Can't software pipeline the loads, but can at least do them. */
4968 return dr_unaligned_supported;
4970 else
4972 bool is_packed = false;
4973 tree type = (TREE_TYPE (DR_REF (dr)));
4975 if (!known_alignment_for_access_p (dr))
4976 is_packed = not_size_aligned (DR_REF (dr));
4978 if (targetm.vectorize.
4979 support_vector_misalignment (mode, type,
4980 DR_MISALIGNMENT (dr), is_packed))
4981 return dr_unaligned_supported;
4984 /* Unsupported. */
4985 return dr_unaligned_unsupported;