2014-02-01 Christophe Lyon <christophe.lyon@linaro.org>
[official-gcc.git] / gcc-4_8-branch / gcc / tree-vect-loop.c
blobc12004d2ce8bfc457608c8e57d24c526da1ff20f
1 /* Loop Vectorization
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "cfgloop.h"
34 #include "expr.h"
35 #include "recog.h"
36 #include "optabs.h"
37 #include "params.h"
38 #include "diagnostic-core.h"
39 #include "tree-chrec.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-vectorizer.h"
42 #include "target.h"
44 /* Loop Vectorization Pass.
46 This pass tries to vectorize loops.
48 For example, the vectorizer transforms the following simple loop:
50 short a[N]; short b[N]; short c[N]; int i;
52 for (i=0; i<N; i++){
53 a[i] = b[i] + c[i];
56 as if it was manually vectorized by rewriting the source code into:
58 typedef int __attribute__((mode(V8HI))) v8hi;
59 short a[N]; short b[N]; short c[N]; int i;
60 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
61 v8hi va, vb, vc;
63 for (i=0; i<N/8; i++){
64 vb = pb[i];
65 vc = pc[i];
66 va = vb + vc;
67 pa[i] = va;
70 The main entry to this pass is vectorize_loops(), in which
71 the vectorizer applies a set of analyses on a given set of loops,
72 followed by the actual vectorization transformation for the loops that
73 had successfully passed the analysis phase.
74 Throughout this pass we make a distinction between two types of
75 data: scalars (which are represented by SSA_NAMES), and memory references
76 ("data-refs"). These two types of data require different handling both
77 during analysis and transformation. The types of data-refs that the
78 vectorizer currently supports are ARRAY_REFS which base is an array DECL
79 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
80 accesses are required to have a simple (consecutive) access pattern.
82 Analysis phase:
83 ===============
84 The driver for the analysis phase is vect_analyze_loop().
85 It applies a set of analyses, some of which rely on the scalar evolution
86 analyzer (scev) developed by Sebastian Pop.
88 During the analysis phase the vectorizer records some information
89 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
90 loop, as well as general information about the loop as a whole, which is
91 recorded in a "loop_vec_info" struct attached to each loop.
93 Transformation phase:
94 =====================
95 The loop transformation phase scans all the stmts in the loop, and
96 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
97 the loop that needs to be vectorized. It inserts the vector code sequence
98 just before the scalar stmt S, and records a pointer to the vector code
99 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
100 attached to S). This pointer will be used for the vectorization of following
101 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
102 otherwise, we rely on dead code elimination for removing it.
104 For example, say stmt S1 was vectorized into stmt VS1:
106 VS1: vb = px[i];
107 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
108 S2: a = b;
110 To vectorize stmt S2, the vectorizer first finds the stmt that defines
111 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
112 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
113 resulting sequence would be:
115 VS1: vb = px[i];
116 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
117 VS2: va = vb;
118 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
120 Operands that are not SSA_NAMEs, are data-refs that appear in
121 load/store operations (like 'x[i]' in S1), and are handled differently.
123 Target modeling:
124 =================
125 Currently the only target specific information that is used is the
126 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
127 Targets that can support different sizes of vectors, for now will need
128 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
129 flexibility will be added in the future.
131 Since we only vectorize operations which vector form can be
132 expressed using existing tree codes, to verify that an operation is
133 supported, the vectorizer checks the relevant optab at the relevant
134 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
135 the value found is CODE_FOR_nothing, then there's no target support, and
136 we can't vectorize the stmt.
138 For additional information on this project see:
139 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
142 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
184 gimple stmt, pattern_stmt = NULL;
185 gimple_seq pattern_def_seq = NULL;
186 gimple_stmt_iterator pattern_def_si = gsi_none ();
187 bool analyze_pattern_stmt = false;
189 if (dump_enabled_p ())
190 dump_printf_loc (MSG_NOTE, vect_location,
191 "=== vect_determine_vectorization_factor ===");
193 for (i = 0; i < nbbs; i++)
195 basic_block bb = bbs[i];
197 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
199 phi = gsi_stmt (si);
200 stmt_info = vinfo_for_stmt (phi);
201 if (dump_enabled_p ())
203 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
204 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
207 gcc_assert (stmt_info);
209 if (STMT_VINFO_RELEVANT_P (stmt_info))
211 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
212 scalar_type = TREE_TYPE (PHI_RESULT (phi));
214 if (dump_enabled_p ())
216 dump_printf_loc (MSG_NOTE, vect_location,
217 "get vectype for scalar type: ");
218 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
221 vectype = get_vectype_for_scalar_type (scalar_type);
222 if (!vectype)
224 if (dump_enabled_p ())
226 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
227 "not vectorized: unsupported "
228 "data-type ");
229 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
230 scalar_type);
232 return false;
234 STMT_VINFO_VECTYPE (stmt_info) = vectype;
236 if (dump_enabled_p ())
238 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
239 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
242 nunits = TYPE_VECTOR_SUBPARTS (vectype);
243 if (dump_enabled_p ())
244 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
246 if (!vectorization_factor
247 || (nunits > vectorization_factor))
248 vectorization_factor = nunits;
252 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
254 tree vf_vectype;
256 if (analyze_pattern_stmt)
257 stmt = pattern_stmt;
258 else
259 stmt = gsi_stmt (si);
261 stmt_info = vinfo_for_stmt (stmt);
263 if (dump_enabled_p ())
265 dump_printf_loc (MSG_NOTE, vect_location,
266 "==> examining statement: ");
267 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
270 gcc_assert (stmt_info);
272 /* Skip stmts which do not need to be vectorized. */
273 if (!STMT_VINFO_RELEVANT_P (stmt_info)
274 && !STMT_VINFO_LIVE_P (stmt_info))
276 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
277 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
278 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
279 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
281 stmt = pattern_stmt;
282 stmt_info = vinfo_for_stmt (pattern_stmt);
283 if (dump_enabled_p ())
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining pattern statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
290 else
292 if (dump_enabled_p ())
293 dump_printf_loc (MSG_NOTE, vect_location, "skip.");
294 gsi_next (&si);
295 continue;
298 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
299 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
302 analyze_pattern_stmt = true;
304 /* If a pattern statement has def stmts, analyze them too. */
305 if (is_pattern_stmt_p (stmt_info))
307 if (pattern_def_seq == NULL)
309 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
310 pattern_def_si = gsi_start (pattern_def_seq);
312 else if (!gsi_end_p (pattern_def_si))
313 gsi_next (&pattern_def_si);
314 if (pattern_def_seq != NULL)
316 gimple pattern_def_stmt = NULL;
317 stmt_vec_info pattern_def_stmt_info = NULL;
319 while (!gsi_end_p (pattern_def_si))
321 pattern_def_stmt = gsi_stmt (pattern_def_si);
322 pattern_def_stmt_info
323 = vinfo_for_stmt (pattern_def_stmt);
324 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
325 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
326 break;
327 gsi_next (&pattern_def_si);
330 if (!gsi_end_p (pattern_def_si))
332 if (dump_enabled_p ())
334 dump_printf_loc (MSG_NOTE, vect_location,
335 "==> examining pattern def stmt: ");
336 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
337 pattern_def_stmt, 0);
340 stmt = pattern_def_stmt;
341 stmt_info = pattern_def_stmt_info;
343 else
345 pattern_def_si = gsi_none ();
346 analyze_pattern_stmt = false;
349 else
350 analyze_pattern_stmt = false;
353 if (gimple_get_lhs (stmt) == NULL_TREE)
355 if (dump_enabled_p ())
357 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
358 "not vectorized: irregular stmt.");
359 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
362 return false;
365 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
367 if (dump_enabled_p ())
369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
370 "not vectorized: vector stmt in loop:");
371 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
373 return false;
376 if (STMT_VINFO_VECTYPE (stmt_info))
378 /* The only case when a vectype had been already set is for stmts
379 that contain a dataref, or for "pattern-stmts" (stmts
380 generated by the vectorizer to represent/replace a certain
381 idiom). */
382 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
383 || is_pattern_stmt_p (stmt_info)
384 || !gsi_end_p (pattern_def_si));
385 vectype = STMT_VINFO_VECTYPE (stmt_info);
387 else
389 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
390 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_NOTE, vect_location,
394 "get vectype for scalar type: ");
395 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
397 vectype = get_vectype_for_scalar_type (scalar_type);
398 if (!vectype)
400 if (dump_enabled_p ())
402 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
403 "not vectorized: unsupported "
404 "data-type ");
405 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
406 scalar_type);
408 return false;
411 STMT_VINFO_VECTYPE (stmt_info) = vectype;
414 /* The vectorization factor is according to the smallest
415 scalar type (or the largest vector size, but we only
416 support one vector size per loop). */
417 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
418 &dummy);
419 if (dump_enabled_p ())
421 dump_printf_loc (MSG_NOTE, vect_location,
422 "get vectype for scalar type: ");
423 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
425 vf_vectype = get_vectype_for_scalar_type (scalar_type);
426 if (!vf_vectype)
428 if (dump_enabled_p ())
430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
431 "not vectorized: unsupported data-type ");
432 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
433 scalar_type);
435 return false;
438 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
439 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
441 if (dump_enabled_p ())
443 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
444 "not vectorized: different sized vector "
445 "types in statement, ");
446 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
447 vectype);
448 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
449 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
450 vf_vectype);
452 return false;
455 if (dump_enabled_p ())
457 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
458 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
461 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
462 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
464 if (!vectorization_factor
465 || (nunits > vectorization_factor))
466 vectorization_factor = nunits;
468 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
470 pattern_def_seq = NULL;
471 gsi_next (&si);
476 /* TODO: Analyze cost. Decide if worth while to vectorize. */
477 if (dump_enabled_p ())
478 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d",
479 vectorization_factor);
480 if (vectorization_factor <= 1)
482 if (dump_enabled_p ())
483 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
484 "not vectorized: unsupported data-type");
485 return false;
487 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
489 return true;
493 /* Function vect_is_simple_iv_evolution.
495 FORNOW: A simple evolution of an induction variables in the loop is
496 considered a polynomial evolution with constant step. */
498 static bool
499 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
500 tree * step)
502 tree init_expr;
503 tree step_expr;
504 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
506 /* When there is no evolution in this loop, the evolution function
507 is not "simple". */
508 if (evolution_part == NULL_TREE)
509 return false;
511 /* When the evolution is a polynomial of degree >= 2
512 the evolution function is not "simple". */
513 if (tree_is_chrec (evolution_part))
514 return false;
516 step_expr = evolution_part;
517 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
519 if (dump_enabled_p ())
521 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
522 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
523 dump_printf (MSG_NOTE, ", init: ");
524 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
527 *init = init_expr;
528 *step = step_expr;
530 if (TREE_CODE (step_expr) != INTEGER_CST)
532 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "step unknown.");
535 return false;
538 return true;
541 /* Function vect_analyze_scalar_cycles_1.
543 Examine the cross iteration def-use cycles of scalar variables
544 in LOOP. LOOP_VINFO represents the loop that is now being
545 considered for vectorization (can be LOOP, or an outer-loop
546 enclosing LOOP). */
548 static void
549 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
551 basic_block bb = loop->header;
552 tree dumy;
553 vec<gimple> worklist;
554 worklist.create (64);
555 gimple_stmt_iterator gsi;
556 bool double_reduc;
558 if (dump_enabled_p ())
559 dump_printf_loc (MSG_NOTE, vect_location,
560 "=== vect_analyze_scalar_cycles ===");
562 /* First - identify all inductions. Reduction detection assumes that all the
563 inductions have been identified, therefore, this order must not be
564 changed. */
565 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
567 gimple phi = gsi_stmt (gsi);
568 tree access_fn = NULL;
569 tree def = PHI_RESULT (phi);
570 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
572 if (dump_enabled_p ())
574 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
575 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
578 /* Skip virtual phi's. The data dependences that are associated with
579 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
580 if (virtual_operand_p (def))
581 continue;
583 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
585 /* Analyze the evolution function. */
586 access_fn = analyze_scalar_evolution (loop, def);
587 if (access_fn)
589 STRIP_NOPS (access_fn);
590 if (dump_enabled_p ())
592 dump_printf_loc (MSG_NOTE, vect_location,
593 "Access function of PHI: ");
594 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
596 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
597 = evolution_part_in_loop_num (access_fn, loop->num);
600 if (!access_fn
601 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
603 worklist.safe_push (phi);
604 continue;
607 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
609 if (dump_enabled_p ())
610 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.");
611 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
615 /* Second - identify all reductions and nested cycles. */
616 while (worklist.length () > 0)
618 gimple phi = worklist.pop ();
619 tree def = PHI_RESULT (phi);
620 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
621 gimple reduc_stmt;
622 bool nested_cycle;
624 if (dump_enabled_p ())
626 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
627 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
630 gcc_assert (!virtual_operand_p (def)
631 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
633 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
634 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
635 &double_reduc);
636 if (reduc_stmt)
638 if (double_reduc)
640 if (dump_enabled_p ())
641 dump_printf_loc (MSG_NOTE, vect_location,
642 "Detected double reduction.");
644 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
645 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
646 vect_double_reduction_def;
648 else
650 if (nested_cycle)
652 if (dump_enabled_p ())
653 dump_printf_loc (MSG_NOTE, vect_location,
654 "Detected vectorizable nested cycle.");
656 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
657 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
658 vect_nested_cycle;
660 else
662 if (dump_enabled_p ())
663 dump_printf_loc (MSG_NOTE, vect_location,
664 "Detected reduction.");
666 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
667 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
668 vect_reduction_def;
669 /* Store the reduction cycles for possible vectorization in
670 loop-aware SLP. */
671 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
675 else
676 if (dump_enabled_p ())
677 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
678 "Unknown def-use cycle pattern.");
681 worklist.release ();
685 /* Function vect_analyze_scalar_cycles.
687 Examine the cross iteration def-use cycles of scalar variables, by
688 analyzing the loop-header PHIs of scalar variables. Classify each
689 cycle as one of the following: invariant, induction, reduction, unknown.
690 We do that for the loop represented by LOOP_VINFO, and also to its
691 inner-loop, if exists.
692 Examples for scalar cycles:
694 Example1: reduction:
696 loop1:
697 for (i=0; i<N; i++)
698 sum += a[i];
700 Example2: induction:
702 loop2:
703 for (i=0; i<N; i++)
704 a[i] = i; */
706 static void
707 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
709 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
711 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
713 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
714 Reductions in such inner-loop therefore have different properties than
715 the reductions in the nest that gets vectorized:
716 1. When vectorized, they are executed in the same order as in the original
717 scalar loop, so we can't change the order of computation when
718 vectorizing them.
719 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
720 current checks are too strict. */
722 if (loop->inner)
723 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
726 /* Function vect_get_loop_niters.
728 Determine how many iterations the loop is executed.
729 If an expression that represents the number of iterations
730 can be constructed, place it in NUMBER_OF_ITERATIONS.
731 Return the loop exit condition. */
733 static gimple
734 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
736 tree niters;
738 if (dump_enabled_p ())
739 dump_printf_loc (MSG_NOTE, vect_location,
740 "=== get_loop_niters ===");
741 niters = number_of_exit_cond_executions (loop);
743 if (niters != NULL_TREE
744 && niters != chrec_dont_know)
746 *number_of_iterations = niters;
748 if (dump_enabled_p ())
750 dump_printf_loc (MSG_NOTE, vect_location, "==> get_loop_niters:");
751 dump_generic_expr (MSG_NOTE, TDF_SLIM, *number_of_iterations);
755 return get_loop_exit_condition (loop);
759 /* Function bb_in_loop_p
761 Used as predicate for dfs order traversal of the loop bbs. */
763 static bool
764 bb_in_loop_p (const_basic_block bb, const void *data)
766 const struct loop *const loop = (const struct loop *)data;
767 if (flow_bb_inside_loop_p (loop, bb))
768 return true;
769 return false;
773 /* Function new_loop_vec_info.
775 Create and initialize a new loop_vec_info struct for LOOP, as well as
776 stmt_vec_info structs for all the stmts in LOOP. */
778 static loop_vec_info
779 new_loop_vec_info (struct loop *loop)
781 loop_vec_info res;
782 basic_block *bbs;
783 gimple_stmt_iterator si;
784 unsigned int i, nbbs;
786 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
787 LOOP_VINFO_LOOP (res) = loop;
789 bbs = get_loop_body (loop);
791 /* Create/Update stmt_info for all stmts in the loop. */
792 for (i = 0; i < loop->num_nodes; i++)
794 basic_block bb = bbs[i];
796 /* BBs in a nested inner-loop will have been already processed (because
797 we will have called vect_analyze_loop_form for any nested inner-loop).
798 Therefore, for stmts in an inner-loop we just want to update the
799 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
800 loop_info of the outer-loop we are currently considering to vectorize
801 (instead of the loop_info of the inner-loop).
802 For stmts in other BBs we need to create a stmt_info from scratch. */
803 if (bb->loop_father != loop)
805 /* Inner-loop bb. */
806 gcc_assert (loop->inner && bb->loop_father == loop->inner);
807 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
809 gimple phi = gsi_stmt (si);
810 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
811 loop_vec_info inner_loop_vinfo =
812 STMT_VINFO_LOOP_VINFO (stmt_info);
813 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
814 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
816 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
818 gimple stmt = gsi_stmt (si);
819 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
820 loop_vec_info inner_loop_vinfo =
821 STMT_VINFO_LOOP_VINFO (stmt_info);
822 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
823 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
826 else
828 /* bb in current nest. */
829 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
831 gimple phi = gsi_stmt (si);
832 gimple_set_uid (phi, 0);
833 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
836 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
838 gimple stmt = gsi_stmt (si);
839 gimple_set_uid (stmt, 0);
840 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
845 /* CHECKME: We want to visit all BBs before their successors (except for
846 latch blocks, for which this assertion wouldn't hold). In the simple
847 case of the loop forms we allow, a dfs order of the BBs would the same
848 as reversed postorder traversal, so we are safe. */
850 free (bbs);
851 bbs = XCNEWVEC (basic_block, loop->num_nodes);
852 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
853 bbs, loop->num_nodes, loop);
854 gcc_assert (nbbs == loop->num_nodes);
856 LOOP_VINFO_BBS (res) = bbs;
857 LOOP_VINFO_NITERS (res) = NULL;
858 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
859 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
860 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
861 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
862 LOOP_VINFO_VECT_FACTOR (res) = 0;
863 LOOP_VINFO_LOOP_NEST (res).create (3);
864 LOOP_VINFO_DATAREFS (res).create (10);
865 LOOP_VINFO_DDRS (res).create (10 * 10);
866 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
867 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
868 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
869 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
870 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
871 LOOP_VINFO_GROUPED_STORES (res).create (10);
872 LOOP_VINFO_REDUCTIONS (res).create (10);
873 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
874 LOOP_VINFO_SLP_INSTANCES (res).create (10);
875 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
876 LOOP_VINFO_PEELING_HTAB (res) = NULL;
877 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
878 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
879 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
881 return res;
885 /* Function destroy_loop_vec_info.
887 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
888 stmts in the loop. */
890 void
891 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
893 struct loop *loop;
894 basic_block *bbs;
895 int nbbs;
896 gimple_stmt_iterator si;
897 int j;
898 vec<slp_instance> slp_instances;
899 slp_instance instance;
900 bool swapped;
902 if (!loop_vinfo)
903 return;
905 loop = LOOP_VINFO_LOOP (loop_vinfo);
907 bbs = LOOP_VINFO_BBS (loop_vinfo);
908 nbbs = clean_stmts ? loop->num_nodes : 0;
909 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
911 for (j = 0; j < nbbs; j++)
913 basic_block bb = bbs[j];
914 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
915 free_stmt_vec_info (gsi_stmt (si));
917 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
919 gimple stmt = gsi_stmt (si);
921 /* We may have broken canonical form by moving a constant
922 into RHS1 of a commutative op. Fix such occurrences. */
923 if (swapped && is_gimple_assign (stmt))
925 enum tree_code code = gimple_assign_rhs_code (stmt);
927 if ((code == PLUS_EXPR
928 || code == POINTER_PLUS_EXPR
929 || code == MULT_EXPR)
930 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
931 swap_tree_operands (stmt,
932 gimple_assign_rhs1_ptr (stmt),
933 gimple_assign_rhs2_ptr (stmt));
936 /* Free stmt_vec_info. */
937 free_stmt_vec_info (stmt);
938 gsi_next (&si);
942 free (LOOP_VINFO_BBS (loop_vinfo));
943 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
944 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
945 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
946 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
947 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
948 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
949 FOR_EACH_VEC_ELT (slp_instances, j, instance)
950 vect_free_slp_instance (instance);
952 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
953 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
954 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
955 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
957 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
958 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
960 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
962 free (loop_vinfo);
963 loop->aux = NULL;
967 /* Function vect_analyze_loop_1.
969 Apply a set of analyses on LOOP, and create a loop_vec_info struct
970 for it. The different analyses will record information in the
971 loop_vec_info struct. This is a subset of the analyses applied in
972 vect_analyze_loop, to be applied on an inner-loop nested in the loop
973 that is now considered for (outer-loop) vectorization. */
975 static loop_vec_info
976 vect_analyze_loop_1 (struct loop *loop)
978 loop_vec_info loop_vinfo;
980 if (dump_enabled_p ())
981 dump_printf_loc (MSG_NOTE, vect_location,
982 "===== analyze_loop_nest_1 =====");
984 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
986 loop_vinfo = vect_analyze_loop_form (loop);
987 if (!loop_vinfo)
989 if (dump_enabled_p ())
990 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
991 "bad inner-loop form.");
992 return NULL;
995 return loop_vinfo;
999 /* Function vect_analyze_loop_form.
1001 Verify that certain CFG restrictions hold, including:
1002 - the loop has a pre-header
1003 - the loop has a single entry and exit
1004 - the loop exit condition is simple enough, and the number of iterations
1005 can be analyzed (a countable loop). */
1007 loop_vec_info
1008 vect_analyze_loop_form (struct loop *loop)
1010 loop_vec_info loop_vinfo;
1011 gimple loop_cond;
1012 tree number_of_iterations = NULL;
1013 loop_vec_info inner_loop_vinfo = NULL;
1015 if (dump_enabled_p ())
1016 dump_printf_loc (MSG_NOTE, vect_location,
1017 "=== vect_analyze_loop_form ===");
1019 /* Different restrictions apply when we are considering an inner-most loop,
1020 vs. an outer (nested) loop.
1021 (FORNOW. May want to relax some of these restrictions in the future). */
1023 if (!loop->inner)
1025 /* Inner-most loop. We currently require that the number of BBs is
1026 exactly 2 (the header and latch). Vectorizable inner-most loops
1027 look like this:
1029 (pre-header)
1031 header <--------+
1032 | | |
1033 | +--> latch --+
1035 (exit-bb) */
1037 if (loop->num_nodes != 2)
1039 if (dump_enabled_p ())
1040 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1041 "not vectorized: control flow in loop.");
1042 return NULL;
1045 if (empty_block_p (loop->header))
1047 if (dump_enabled_p ())
1048 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1049 "not vectorized: empty loop.");
1050 return NULL;
1053 else
1055 struct loop *innerloop = loop->inner;
1056 edge entryedge;
1058 /* Nested loop. We currently require that the loop is doubly-nested,
1059 contains a single inner loop, and the number of BBs is exactly 5.
1060 Vectorizable outer-loops look like this:
1062 (pre-header)
1064 header <---+
1066 inner-loop |
1068 tail ------+
1070 (exit-bb)
1072 The inner-loop has the properties expected of inner-most loops
1073 as described above. */
1075 if ((loop->inner)->inner || (loop->inner)->next)
1077 if (dump_enabled_p ())
1078 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1079 "not vectorized: multiple nested loops.");
1080 return NULL;
1083 /* Analyze the inner-loop. */
1084 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1085 if (!inner_loop_vinfo)
1087 if (dump_enabled_p ())
1088 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1089 "not vectorized: Bad inner loop.");
1090 return NULL;
1093 if (!expr_invariant_in_loop_p (loop,
1094 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1096 if (dump_enabled_p ())
1097 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1098 "not vectorized: inner-loop count not invariant.");
1099 destroy_loop_vec_info (inner_loop_vinfo, true);
1100 return NULL;
1103 if (loop->num_nodes != 5)
1105 if (dump_enabled_p ())
1106 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1107 "not vectorized: control flow in loop.");
1108 destroy_loop_vec_info (inner_loop_vinfo, true);
1109 return NULL;
1112 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1113 entryedge = EDGE_PRED (innerloop->header, 0);
1114 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1115 entryedge = EDGE_PRED (innerloop->header, 1);
1117 if (entryedge->src != loop->header
1118 || !single_exit (innerloop)
1119 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1121 if (dump_enabled_p ())
1122 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1123 "not vectorized: unsupported outerloop form.");
1124 destroy_loop_vec_info (inner_loop_vinfo, true);
1125 return NULL;
1128 if (dump_enabled_p ())
1129 dump_printf_loc (MSG_NOTE, vect_location,
1130 "Considering outer-loop vectorization.");
1133 if (!single_exit (loop)
1134 || EDGE_COUNT (loop->header->preds) != 2)
1136 if (dump_enabled_p ())
1138 if (!single_exit (loop))
1139 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1140 "not vectorized: multiple exits.");
1141 else if (EDGE_COUNT (loop->header->preds) != 2)
1142 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1143 "not vectorized: too many incoming edges.");
1145 if (inner_loop_vinfo)
1146 destroy_loop_vec_info (inner_loop_vinfo, true);
1147 return NULL;
1150 /* We assume that the loop exit condition is at the end of the loop. i.e,
1151 that the loop is represented as a do-while (with a proper if-guard
1152 before the loop if needed), where the loop header contains all the
1153 executable statements, and the latch is empty. */
1154 if (!empty_block_p (loop->latch)
1155 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1157 if (dump_enabled_p ())
1158 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1159 "not vectorized: latch block not empty.");
1160 if (inner_loop_vinfo)
1161 destroy_loop_vec_info (inner_loop_vinfo, true);
1162 return NULL;
1165 /* Make sure there exists a single-predecessor exit bb: */
1166 if (!single_pred_p (single_exit (loop)->dest))
1168 edge e = single_exit (loop);
1169 if (!(e->flags & EDGE_ABNORMAL))
1171 split_loop_exit_edge (e);
1172 if (dump_enabled_p ())
1173 dump_printf (MSG_NOTE, "split exit edge.");
1175 else
1177 if (dump_enabled_p ())
1178 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1179 "not vectorized: abnormal loop exit edge.");
1180 if (inner_loop_vinfo)
1181 destroy_loop_vec_info (inner_loop_vinfo, true);
1182 return NULL;
1186 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1187 if (!loop_cond)
1189 if (dump_enabled_p ())
1190 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1191 "not vectorized: complicated exit condition.");
1192 if (inner_loop_vinfo)
1193 destroy_loop_vec_info (inner_loop_vinfo, true);
1194 return NULL;
1197 if (!number_of_iterations)
1199 if (dump_enabled_p ())
1200 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1201 "not vectorized: number of iterations cannot be "
1202 "computed.");
1203 if (inner_loop_vinfo)
1204 destroy_loop_vec_info (inner_loop_vinfo, true);
1205 return NULL;
1208 if (chrec_contains_undetermined (number_of_iterations))
1210 if (dump_enabled_p ())
1211 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1212 "Infinite number of iterations.");
1213 if (inner_loop_vinfo)
1214 destroy_loop_vec_info (inner_loop_vinfo, true);
1215 return NULL;
1218 if (!NITERS_KNOWN_P (number_of_iterations))
1220 if (dump_enabled_p ())
1222 dump_printf_loc (MSG_NOTE, vect_location,
1223 "Symbolic number of iterations is ");
1224 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1227 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1229 if (dump_enabled_p ())
1230 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1231 "not vectorized: number of iterations = 0.");
1232 if (inner_loop_vinfo)
1233 destroy_loop_vec_info (inner_loop_vinfo, true);
1234 return NULL;
1237 loop_vinfo = new_loop_vec_info (loop);
1238 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1239 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1241 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1243 /* CHECKME: May want to keep it around it in the future. */
1244 if (inner_loop_vinfo)
1245 destroy_loop_vec_info (inner_loop_vinfo, false);
1247 gcc_assert (!loop->aux);
1248 loop->aux = loop_vinfo;
1249 return loop_vinfo;
1253 /* Function vect_analyze_loop_operations.
1255 Scan the loop stmts and make sure they are all vectorizable. */
1257 static bool
1258 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1260 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1261 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1262 int nbbs = loop->num_nodes;
1263 gimple_stmt_iterator si;
1264 unsigned int vectorization_factor = 0;
1265 int i;
1266 gimple phi;
1267 stmt_vec_info stmt_info;
1268 bool need_to_vectorize = false;
1269 int min_profitable_iters;
1270 int min_scalar_loop_bound;
1271 unsigned int th;
1272 bool only_slp_in_loop = true, ok;
1273 HOST_WIDE_INT max_niter;
1274 HOST_WIDE_INT estimated_niter;
1275 int min_profitable_estimate;
1277 if (dump_enabled_p ())
1278 dump_printf_loc (MSG_NOTE, vect_location,
1279 "=== vect_analyze_loop_operations ===");
1281 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1282 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1283 if (slp)
1285 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1286 vectorization factor of the loop is the unrolling factor required by
1287 the SLP instances. If that unrolling factor is 1, we say, that we
1288 perform pure SLP on loop - cross iteration parallelism is not
1289 exploited. */
1290 for (i = 0; i < nbbs; i++)
1292 basic_block bb = bbs[i];
1293 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1295 gimple stmt = gsi_stmt (si);
1296 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1297 gcc_assert (stmt_info);
1298 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1299 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1300 && !PURE_SLP_STMT (stmt_info))
1301 /* STMT needs both SLP and loop-based vectorization. */
1302 only_slp_in_loop = false;
1306 if (only_slp_in_loop)
1307 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1308 else
1309 vectorization_factor = least_common_multiple (vectorization_factor,
1310 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1312 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1313 if (dump_enabled_p ())
1314 dump_printf_loc (MSG_NOTE, vect_location,
1315 "Updating vectorization factor to %d ",
1316 vectorization_factor);
1319 for (i = 0; i < nbbs; i++)
1321 basic_block bb = bbs[i];
1323 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1325 phi = gsi_stmt (si);
1326 ok = true;
1328 stmt_info = vinfo_for_stmt (phi);
1329 if (dump_enabled_p ())
1331 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1332 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1335 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1336 (i.e., a phi in the tail of the outer-loop). */
1337 if (! is_loop_header_bb_p (bb))
1339 /* FORNOW: we currently don't support the case that these phis
1340 are not used in the outerloop (unless it is double reduction,
1341 i.e., this phi is vect_reduction_def), cause this case
1342 requires to actually do something here. */
1343 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1344 || STMT_VINFO_LIVE_P (stmt_info))
1345 && STMT_VINFO_DEF_TYPE (stmt_info)
1346 != vect_double_reduction_def)
1348 if (dump_enabled_p ())
1349 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1350 "Unsupported loop-closed phi in "
1351 "outer-loop.");
1352 return false;
1355 /* If PHI is used in the outer loop, we check that its operand
1356 is defined in the inner loop. */
1357 if (STMT_VINFO_RELEVANT_P (stmt_info))
1359 tree phi_op;
1360 gimple op_def_stmt;
1362 if (gimple_phi_num_args (phi) != 1)
1363 return false;
1365 phi_op = PHI_ARG_DEF (phi, 0);
1366 if (TREE_CODE (phi_op) != SSA_NAME)
1367 return false;
1369 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1370 if (!op_def_stmt
1371 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1372 || !vinfo_for_stmt (op_def_stmt))
1373 return false;
1375 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1376 != vect_used_in_outer
1377 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1378 != vect_used_in_outer_by_reduction)
1379 return false;
1382 continue;
1385 gcc_assert (stmt_info);
1387 if (STMT_VINFO_LIVE_P (stmt_info))
1389 /* FORNOW: not yet supported. */
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "not vectorized: value used after loop.");
1393 return false;
1396 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1397 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1399 /* A scalar-dependence cycle that we don't support. */
1400 if (dump_enabled_p ())
1401 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1402 "not vectorized: scalar dependence cycle.");
1403 return false;
1406 if (STMT_VINFO_RELEVANT_P (stmt_info))
1408 need_to_vectorize = true;
1409 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1410 ok = vectorizable_induction (phi, NULL, NULL);
1413 if (!ok)
1415 if (dump_enabled_p ())
1417 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1418 "not vectorized: relevant phi not "
1419 "supported: ");
1420 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1422 return false;
1426 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1428 gimple stmt = gsi_stmt (si);
1429 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1430 return false;
1432 } /* bbs */
1434 /* All operations in the loop are either irrelevant (deal with loop
1435 control, or dead), or only used outside the loop and can be moved
1436 out of the loop (e.g. invariants, inductions). The loop can be
1437 optimized away by scalar optimizations. We're better off not
1438 touching this loop. */
1439 if (!need_to_vectorize)
1441 if (dump_enabled_p ())
1442 dump_printf_loc (MSG_NOTE, vect_location,
1443 "All the computation can be taken out of the loop.");
1444 if (dump_enabled_p ())
1445 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1446 "not vectorized: redundant loop. no profit to "
1447 "vectorize.");
1448 return false;
1451 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1452 dump_printf_loc (MSG_NOTE, vect_location,
1453 "vectorization_factor = %d, niters = "
1454 HOST_WIDE_INT_PRINT_DEC, vectorization_factor,
1455 LOOP_VINFO_INT_NITERS (loop_vinfo));
1457 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1458 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1459 || ((max_niter = max_stmt_executions_int (loop)) != -1
1460 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1462 if (dump_enabled_p ())
1463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1464 "not vectorized: iteration count too small.");
1465 if (dump_enabled_p ())
1466 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1467 "not vectorized: iteration count smaller than "
1468 "vectorization factor.");
1469 return false;
1472 /* Analyze cost. Decide if worth while to vectorize. */
1474 /* Once VF is set, SLP costs should be updated since the number of created
1475 vector stmts depends on VF. */
1476 vect_update_slp_costs_according_to_vf (loop_vinfo);
1478 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1479 &min_profitable_estimate);
1480 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1482 if (min_profitable_iters < 0)
1484 if (dump_enabled_p ())
1485 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1486 "not vectorized: vectorization not profitable.");
1487 if (dump_enabled_p ())
1488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1489 "not vectorized: vector version will never be "
1490 "profitable.");
1491 return false;
1494 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1495 * vectorization_factor) - 1);
1498 /* Use the cost model only if it is more conservative than user specified
1499 threshold. */
1501 th = (unsigned) min_scalar_loop_bound;
1502 if (min_profitable_iters
1503 && (!min_scalar_loop_bound
1504 || min_profitable_iters > min_scalar_loop_bound))
1505 th = (unsigned) min_profitable_iters;
1507 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1508 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1510 if (dump_enabled_p ())
1511 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1512 "not vectorized: vectorization not profitable.");
1513 if (dump_enabled_p ())
1514 dump_printf_loc (MSG_NOTE, vect_location,
1515 "not vectorized: iteration count smaller than user "
1516 "specified loop bound parameter or minimum profitable "
1517 "iterations (whichever is more conservative).");
1518 return false;
1521 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1522 && ((unsigned HOST_WIDE_INT) estimated_niter
1523 <= MAX (th, (unsigned)min_profitable_estimate)))
1525 if (dump_enabled_p ())
1526 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1527 "not vectorized: estimated iteration count too "
1528 "small.");
1529 if (dump_enabled_p ())
1530 dump_printf_loc (MSG_NOTE, vect_location,
1531 "not vectorized: estimated iteration count smaller "
1532 "than specified loop bound parameter or minimum "
1533 "profitable iterations (whichever is more "
1534 "conservative).");
1535 return false;
1538 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1539 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1540 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1542 if (dump_enabled_p ())
1543 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required.");
1544 if (!vect_can_advance_ivs_p (loop_vinfo))
1546 if (dump_enabled_p ())
1547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1548 "not vectorized: can't create epilog loop 1.");
1549 return false;
1551 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1553 if (dump_enabled_p ())
1554 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1555 "not vectorized: can't create epilog loop 2.");
1556 return false;
1560 return true;
1564 /* Function vect_analyze_loop_2.
1566 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1567 for it. The different analyses will record information in the
1568 loop_vec_info struct. */
1569 static bool
1570 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1572 bool ok, slp = false;
1573 int max_vf = MAX_VECTORIZATION_FACTOR;
1574 int min_vf = 2;
1576 /* Find all data references in the loop (which correspond to vdefs/vuses)
1577 and analyze their evolution in the loop. Also adjust the minimal
1578 vectorization factor according to the loads and stores.
1580 FORNOW: Handle only simple, array references, which
1581 alignment can be forced, and aligned pointer-references. */
1583 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1584 if (!ok)
1586 if (dump_enabled_p ())
1587 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1588 "bad data references.");
1589 return false;
1592 /* Classify all cross-iteration scalar data-flow cycles.
1593 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1595 vect_analyze_scalar_cycles (loop_vinfo);
1597 vect_pattern_recog (loop_vinfo, NULL);
1599 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1601 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1602 if (!ok)
1604 if (dump_enabled_p ())
1605 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1606 "unexpected pattern.");
1607 return false;
1610 /* Analyze data dependences between the data-refs in the loop
1611 and adjust the maximum vectorization factor according to
1612 the dependences.
1613 FORNOW: fail at the first data dependence that we encounter. */
1615 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf);
1616 if (!ok
1617 || max_vf < min_vf)
1619 if (dump_enabled_p ())
1620 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1621 "bad data dependence.");
1622 return false;
1625 ok = vect_determine_vectorization_factor (loop_vinfo);
1626 if (!ok)
1628 if (dump_enabled_p ())
1629 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1630 "can't determine vectorization factor.");
1631 return false;
1633 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1635 if (dump_enabled_p ())
1636 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1637 "bad data dependence.");
1638 return false;
1641 /* Analyze the alignment of the data-refs in the loop.
1642 Fail if a data reference is found that cannot be vectorized. */
1644 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1645 if (!ok)
1647 if (dump_enabled_p ())
1648 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1649 "bad data alignment.");
1650 return false;
1653 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1654 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1656 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1657 if (!ok)
1659 if (dump_enabled_p ())
1660 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1661 "bad data access.");
1662 return false;
1665 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1666 It is important to call pruning after vect_analyze_data_ref_accesses,
1667 since we use grouping information gathered by interleaving analysis. */
1668 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1669 if (!ok)
1671 if (dump_enabled_p ())
1672 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1673 "too long list of versioning for alias "
1674 "run-time tests.");
1675 return false;
1678 /* This pass will decide on using loop versioning and/or loop peeling in
1679 order to enhance the alignment of data references in the loop. */
1681 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1682 if (!ok)
1684 if (dump_enabled_p ())
1685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1686 "bad data alignment.");
1687 return false;
1690 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1691 ok = vect_analyze_slp (loop_vinfo, NULL);
1692 if (ok)
1694 /* Decide which possible SLP instances to SLP. */
1695 slp = vect_make_slp_decision (loop_vinfo);
1697 /* Find stmts that need to be both vectorized and SLPed. */
1698 vect_detect_hybrid_slp (loop_vinfo);
1700 else
1701 return false;
1703 /* Scan all the operations in the loop and make sure they are
1704 vectorizable. */
1706 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1707 if (!ok)
1709 if (dump_enabled_p ())
1710 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1711 "bad operation or unsupported loop bound.");
1712 return false;
1715 return true;
1718 /* Function vect_analyze_loop.
1720 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1721 for it. The different analyses will record information in the
1722 loop_vec_info struct. */
1723 loop_vec_info
1724 vect_analyze_loop (struct loop *loop)
1726 loop_vec_info loop_vinfo;
1727 unsigned int vector_sizes;
1729 /* Autodetect first vector size we try. */
1730 current_vector_size = 0;
1731 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1733 if (dump_enabled_p ())
1734 dump_printf_loc (MSG_NOTE, vect_location,
1735 "===== analyze_loop_nest =====");
1737 if (loop_outer (loop)
1738 && loop_vec_info_for_loop (loop_outer (loop))
1739 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1741 if (dump_enabled_p ())
1742 dump_printf_loc (MSG_NOTE, vect_location,
1743 "outer-loop already vectorized.");
1744 return NULL;
1747 while (1)
1749 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1750 loop_vinfo = vect_analyze_loop_form (loop);
1751 if (!loop_vinfo)
1753 if (dump_enabled_p ())
1754 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1755 "bad loop form.");
1756 return NULL;
1759 if (vect_analyze_loop_2 (loop_vinfo))
1761 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1763 return loop_vinfo;
1766 destroy_loop_vec_info (loop_vinfo, true);
1768 vector_sizes &= ~current_vector_size;
1769 if (vector_sizes == 0
1770 || current_vector_size == 0)
1771 return NULL;
1773 /* Try the next biggest vector size. */
1774 current_vector_size = 1 << floor_log2 (vector_sizes);
1775 if (dump_enabled_p ())
1776 dump_printf_loc (MSG_NOTE, vect_location,
1777 "***** Re-trying analysis with "
1778 "vector size %d\n", current_vector_size);
1783 /* Function reduction_code_for_scalar_code
1785 Input:
1786 CODE - tree_code of a reduction operations.
1788 Output:
1789 REDUC_CODE - the corresponding tree-code to be used to reduce the
1790 vector of partial results into a single scalar result (which
1791 will also reside in a vector) or ERROR_MARK if the operation is
1792 a supported reduction operation, but does not have such tree-code.
1794 Return FALSE if CODE currently cannot be vectorized as reduction. */
1796 static bool
1797 reduction_code_for_scalar_code (enum tree_code code,
1798 enum tree_code *reduc_code)
1800 switch (code)
1802 case MAX_EXPR:
1803 *reduc_code = REDUC_MAX_EXPR;
1804 return true;
1806 case MIN_EXPR:
1807 *reduc_code = REDUC_MIN_EXPR;
1808 return true;
1810 case PLUS_EXPR:
1811 *reduc_code = REDUC_PLUS_EXPR;
1812 return true;
1814 case MULT_EXPR:
1815 case MINUS_EXPR:
1816 case BIT_IOR_EXPR:
1817 case BIT_XOR_EXPR:
1818 case BIT_AND_EXPR:
1819 *reduc_code = ERROR_MARK;
1820 return true;
1822 default:
1823 return false;
1828 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1829 STMT is printed with a message MSG. */
1831 static void
1832 report_vect_op (int msg_type, gimple stmt, const char *msg)
1834 dump_printf_loc (msg_type, vect_location, "%s", msg);
1835 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1839 /* Detect SLP reduction of the form:
1841 #a1 = phi <a5, a0>
1842 a2 = operation (a1)
1843 a3 = operation (a2)
1844 a4 = operation (a3)
1845 a5 = operation (a4)
1847 #a = phi <a5>
1849 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1850 FIRST_STMT is the first reduction stmt in the chain
1851 (a2 = operation (a1)).
1853 Return TRUE if a reduction chain was detected. */
1855 static bool
1856 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1858 struct loop *loop = (gimple_bb (phi))->loop_father;
1859 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1860 enum tree_code code;
1861 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1862 stmt_vec_info use_stmt_info, current_stmt_info;
1863 tree lhs;
1864 imm_use_iterator imm_iter;
1865 use_operand_p use_p;
1866 int nloop_uses, size = 0, n_out_of_loop_uses;
1867 bool found = false;
1869 if (loop != vect_loop)
1870 return false;
1872 lhs = PHI_RESULT (phi);
1873 code = gimple_assign_rhs_code (first_stmt);
1874 while (1)
1876 nloop_uses = 0;
1877 n_out_of_loop_uses = 0;
1878 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1880 gimple use_stmt = USE_STMT (use_p);
1881 if (is_gimple_debug (use_stmt))
1882 continue;
1884 use_stmt = USE_STMT (use_p);
1886 /* Check if we got back to the reduction phi. */
1887 if (use_stmt == phi)
1889 loop_use_stmt = use_stmt;
1890 found = true;
1891 break;
1894 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1896 if (vinfo_for_stmt (use_stmt)
1897 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1899 loop_use_stmt = use_stmt;
1900 nloop_uses++;
1903 else
1904 n_out_of_loop_uses++;
1906 /* There are can be either a single use in the loop or two uses in
1907 phi nodes. */
1908 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1909 return false;
1912 if (found)
1913 break;
1915 /* We reached a statement with no loop uses. */
1916 if (nloop_uses == 0)
1917 return false;
1919 /* This is a loop exit phi, and we haven't reached the reduction phi. */
1920 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
1921 return false;
1923 if (!is_gimple_assign (loop_use_stmt)
1924 || code != gimple_assign_rhs_code (loop_use_stmt)
1925 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
1926 return false;
1928 /* Insert USE_STMT into reduction chain. */
1929 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
1930 if (current_stmt)
1932 current_stmt_info = vinfo_for_stmt (current_stmt);
1933 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
1934 GROUP_FIRST_ELEMENT (use_stmt_info)
1935 = GROUP_FIRST_ELEMENT (current_stmt_info);
1937 else
1938 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
1940 lhs = gimple_assign_lhs (loop_use_stmt);
1941 current_stmt = loop_use_stmt;
1942 size++;
1945 if (!found || loop_use_stmt != phi || size < 2)
1946 return false;
1948 /* Swap the operands, if needed, to make the reduction operand be the second
1949 operand. */
1950 lhs = PHI_RESULT (phi);
1951 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1952 while (next_stmt)
1954 if (gimple_assign_rhs2 (next_stmt) == lhs)
1956 tree op = gimple_assign_rhs1 (next_stmt);
1957 gimple def_stmt = NULL;
1959 if (TREE_CODE (op) == SSA_NAME)
1960 def_stmt = SSA_NAME_DEF_STMT (op);
1962 /* Check that the other def is either defined in the loop
1963 ("vect_internal_def"), or it's an induction (defined by a
1964 loop-header phi-node). */
1965 if (def_stmt
1966 && gimple_bb (def_stmt)
1967 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1968 && (is_gimple_assign (def_stmt)
1969 || is_gimple_call (def_stmt)
1970 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1971 == vect_induction_def
1972 || (gimple_code (def_stmt) == GIMPLE_PHI
1973 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1974 == vect_internal_def
1975 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
1977 lhs = gimple_assign_lhs (next_stmt);
1978 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1979 continue;
1982 return false;
1984 else
1986 tree op = gimple_assign_rhs2 (next_stmt);
1987 gimple def_stmt = NULL;
1989 if (TREE_CODE (op) == SSA_NAME)
1990 def_stmt = SSA_NAME_DEF_STMT (op);
1992 /* Check that the other def is either defined in the loop
1993 ("vect_internal_def"), or it's an induction (defined by a
1994 loop-header phi-node). */
1995 if (def_stmt
1996 && gimple_bb (def_stmt)
1997 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1998 && (is_gimple_assign (def_stmt)
1999 || is_gimple_call (def_stmt)
2000 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2001 == vect_induction_def
2002 || (gimple_code (def_stmt) == GIMPLE_PHI
2003 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2004 == vect_internal_def
2005 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2007 if (dump_enabled_p ())
2009 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2010 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2013 swap_tree_operands (next_stmt,
2014 gimple_assign_rhs1_ptr (next_stmt),
2015 gimple_assign_rhs2_ptr (next_stmt));
2016 update_stmt (next_stmt);
2018 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2019 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2021 else
2022 return false;
2025 lhs = gimple_assign_lhs (next_stmt);
2026 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2029 /* Save the chain for further analysis in SLP detection. */
2030 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2031 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2032 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2034 return true;
2038 /* Function vect_is_simple_reduction_1
2040 (1) Detect a cross-iteration def-use cycle that represents a simple
2041 reduction computation. We look for the following pattern:
2043 loop_header:
2044 a1 = phi < a0, a2 >
2045 a3 = ...
2046 a2 = operation (a3, a1)
2048 such that:
2049 1. operation is commutative and associative and it is safe to
2050 change the order of the computation (if CHECK_REDUCTION is true)
2051 2. no uses for a2 in the loop (a2 is used out of the loop)
2052 3. no uses of a1 in the loop besides the reduction operation
2053 4. no uses of a1 outside the loop.
2055 Conditions 1,4 are tested here.
2056 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2058 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2059 nested cycles, if CHECK_REDUCTION is false.
2061 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2062 reductions:
2064 a1 = phi < a0, a2 >
2065 inner loop (def of a3)
2066 a2 = phi < a3 >
2068 If MODIFY is true it tries also to rework the code in-place to enable
2069 detection of more reduction patterns. For the time being we rewrite
2070 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2073 static gimple
2074 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2075 bool check_reduction, bool *double_reduc,
2076 bool modify)
2078 struct loop *loop = (gimple_bb (phi))->loop_father;
2079 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2080 edge latch_e = loop_latch_edge (loop);
2081 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2082 gimple def_stmt, def1 = NULL, def2 = NULL;
2083 enum tree_code orig_code, code;
2084 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2085 tree type;
2086 int nloop_uses;
2087 tree name;
2088 imm_use_iterator imm_iter;
2089 use_operand_p use_p;
2090 bool phi_def;
2092 *double_reduc = false;
2094 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2095 otherwise, we assume outer loop vectorization. */
2096 gcc_assert ((check_reduction && loop == vect_loop)
2097 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2099 name = PHI_RESULT (phi);
2100 nloop_uses = 0;
2101 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2103 gimple use_stmt = USE_STMT (use_p);
2104 if (is_gimple_debug (use_stmt))
2105 continue;
2107 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2109 if (dump_enabled_p ())
2110 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2111 "intermediate value used outside loop.");
2113 return NULL;
2116 if (vinfo_for_stmt (use_stmt)
2117 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2118 nloop_uses++;
2119 if (nloop_uses > 1)
2121 if (dump_enabled_p ())
2122 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2123 "reduction used in loop.");
2124 return NULL;
2128 if (TREE_CODE (loop_arg) != SSA_NAME)
2130 if (dump_enabled_p ())
2132 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2133 "reduction: not ssa_name: ");
2134 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2136 return NULL;
2139 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2140 if (!def_stmt)
2142 if (dump_enabled_p ())
2143 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2144 "reduction: no def_stmt.");
2145 return NULL;
2148 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2150 if (dump_enabled_p ())
2151 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2152 return NULL;
2155 if (is_gimple_assign (def_stmt))
2157 name = gimple_assign_lhs (def_stmt);
2158 phi_def = false;
2160 else
2162 name = PHI_RESULT (def_stmt);
2163 phi_def = true;
2166 nloop_uses = 0;
2167 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2169 gimple use_stmt = USE_STMT (use_p);
2170 if (is_gimple_debug (use_stmt))
2171 continue;
2172 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2173 && vinfo_for_stmt (use_stmt)
2174 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2175 nloop_uses++;
2176 if (nloop_uses > 1)
2178 if (dump_enabled_p ())
2179 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2180 "reduction used in loop.");
2181 return NULL;
2185 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2186 defined in the inner loop. */
2187 if (phi_def)
2189 op1 = PHI_ARG_DEF (def_stmt, 0);
2191 if (gimple_phi_num_args (def_stmt) != 1
2192 || TREE_CODE (op1) != SSA_NAME)
2194 if (dump_enabled_p ())
2195 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2196 "unsupported phi node definition.");
2198 return NULL;
2201 def1 = SSA_NAME_DEF_STMT (op1);
2202 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2203 && loop->inner
2204 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2205 && is_gimple_assign (def1))
2207 if (dump_enabled_p ())
2208 report_vect_op (MSG_NOTE, def_stmt,
2209 "detected double reduction: ");
2211 *double_reduc = true;
2212 return def_stmt;
2215 return NULL;
2218 code = orig_code = gimple_assign_rhs_code (def_stmt);
2220 /* We can handle "res -= x[i]", which is non-associative by
2221 simply rewriting this into "res += -x[i]". Avoid changing
2222 gimple instruction for the first simple tests and only do this
2223 if we're allowed to change code at all. */
2224 if (code == MINUS_EXPR
2225 && modify
2226 && (op1 = gimple_assign_rhs1 (def_stmt))
2227 && TREE_CODE (op1) == SSA_NAME
2228 && SSA_NAME_DEF_STMT (op1) == phi)
2229 code = PLUS_EXPR;
2231 if (check_reduction
2232 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2234 if (dump_enabled_p ())
2235 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2236 "reduction: not commutative/associative: ");
2237 return NULL;
2240 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2242 if (code != COND_EXPR)
2244 if (dump_enabled_p ())
2245 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2246 "reduction: not binary operation: ");
2248 return NULL;
2251 op3 = gimple_assign_rhs1 (def_stmt);
2252 if (COMPARISON_CLASS_P (op3))
2254 op4 = TREE_OPERAND (op3, 1);
2255 op3 = TREE_OPERAND (op3, 0);
2258 op1 = gimple_assign_rhs2 (def_stmt);
2259 op2 = gimple_assign_rhs3 (def_stmt);
2261 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2263 if (dump_enabled_p ())
2264 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2265 "reduction: uses not ssa_names: ");
2267 return NULL;
2270 else
2272 op1 = gimple_assign_rhs1 (def_stmt);
2273 op2 = gimple_assign_rhs2 (def_stmt);
2275 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2277 if (dump_enabled_p ())
2278 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2279 "reduction: uses not ssa_names: ");
2281 return NULL;
2285 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2286 if ((TREE_CODE (op1) == SSA_NAME
2287 && !types_compatible_p (type,TREE_TYPE (op1)))
2288 || (TREE_CODE (op2) == SSA_NAME
2289 && !types_compatible_p (type, TREE_TYPE (op2)))
2290 || (op3 && TREE_CODE (op3) == SSA_NAME
2291 && !types_compatible_p (type, TREE_TYPE (op3)))
2292 || (op4 && TREE_CODE (op4) == SSA_NAME
2293 && !types_compatible_p (type, TREE_TYPE (op4))))
2295 if (dump_enabled_p ())
2297 dump_printf_loc (MSG_NOTE, vect_location,
2298 "reduction: multiple types: operation type: ");
2299 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2300 dump_printf (MSG_NOTE, ", operands types: ");
2301 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2302 TREE_TYPE (op1));
2303 dump_printf (MSG_NOTE, ",");
2304 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2305 TREE_TYPE (op2));
2306 if (op3)
2308 dump_printf (MSG_NOTE, ",");
2309 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2310 TREE_TYPE (op3));
2313 if (op4)
2315 dump_printf (MSG_NOTE, ",");
2316 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2317 TREE_TYPE (op4));
2321 return NULL;
2324 /* Check that it's ok to change the order of the computation.
2325 Generally, when vectorizing a reduction we change the order of the
2326 computation. This may change the behavior of the program in some
2327 cases, so we need to check that this is ok. One exception is when
2328 vectorizing an outer-loop: the inner-loop is executed sequentially,
2329 and therefore vectorizing reductions in the inner-loop during
2330 outer-loop vectorization is safe. */
2332 /* CHECKME: check for !flag_finite_math_only too? */
2333 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2334 && check_reduction)
2336 /* Changing the order of operations changes the semantics. */
2337 if (dump_enabled_p ())
2338 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2339 "reduction: unsafe fp math optimization: ");
2340 return NULL;
2342 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2343 && check_reduction)
2345 /* Changing the order of operations changes the semantics. */
2346 if (dump_enabled_p ())
2347 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2348 "reduction: unsafe int math optimization: ");
2349 return NULL;
2351 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2353 /* Changing the order of operations changes the semantics. */
2354 if (dump_enabled_p ())
2355 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2356 "reduction: unsafe fixed-point math optimization: ");
2357 return NULL;
2360 /* If we detected "res -= x[i]" earlier, rewrite it into
2361 "res += -x[i]" now. If this turns out to be useless reassoc
2362 will clean it up again. */
2363 if (orig_code == MINUS_EXPR)
2365 tree rhs = gimple_assign_rhs2 (def_stmt);
2366 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2367 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2368 rhs, NULL);
2369 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2370 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2371 loop_info, NULL));
2372 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2373 gimple_assign_set_rhs2 (def_stmt, negrhs);
2374 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2375 update_stmt (def_stmt);
2378 /* Reduction is safe. We're dealing with one of the following:
2379 1) integer arithmetic and no trapv
2380 2) floating point arithmetic, and special flags permit this optimization
2381 3) nested cycle (i.e., outer loop vectorization). */
2382 if (TREE_CODE (op1) == SSA_NAME)
2383 def1 = SSA_NAME_DEF_STMT (op1);
2385 if (TREE_CODE (op2) == SSA_NAME)
2386 def2 = SSA_NAME_DEF_STMT (op2);
2388 if (code != COND_EXPR
2389 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2391 if (dump_enabled_p ())
2392 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2393 return NULL;
2396 /* Check that one def is the reduction def, defined by PHI,
2397 the other def is either defined in the loop ("vect_internal_def"),
2398 or it's an induction (defined by a loop-header phi-node). */
2400 if (def2 && def2 == phi
2401 && (code == COND_EXPR
2402 || !def1 || gimple_nop_p (def1)
2403 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2404 && (is_gimple_assign (def1)
2405 || is_gimple_call (def1)
2406 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2407 == vect_induction_def
2408 || (gimple_code (def1) == GIMPLE_PHI
2409 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2410 == vect_internal_def
2411 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2413 if (dump_enabled_p ())
2414 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2415 return def_stmt;
2418 if (def1 && def1 == phi
2419 && (code == COND_EXPR
2420 || !def2 || gimple_nop_p (def2)
2421 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2422 && (is_gimple_assign (def2)
2423 || is_gimple_call (def2)
2424 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2425 == vect_induction_def
2426 || (gimple_code (def2) == GIMPLE_PHI
2427 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2428 == vect_internal_def
2429 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2431 if (check_reduction)
2433 /* Swap operands (just for simplicity - so that the rest of the code
2434 can assume that the reduction variable is always the last (second)
2435 argument). */
2436 if (dump_enabled_p ())
2437 report_vect_op (MSG_NOTE, def_stmt,
2438 "detected reduction: need to swap operands: ");
2440 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2441 gimple_assign_rhs2_ptr (def_stmt));
2443 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2444 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2446 else
2448 if (dump_enabled_p ())
2449 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2452 return def_stmt;
2455 /* Try to find SLP reduction chain. */
2456 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2458 if (dump_enabled_p ())
2459 report_vect_op (MSG_NOTE, def_stmt,
2460 "reduction: detected reduction chain: ");
2462 return def_stmt;
2465 if (dump_enabled_p ())
2466 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2467 "reduction: unknown pattern: ");
2469 return NULL;
2472 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2473 in-place. Arguments as there. */
2475 static gimple
2476 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2477 bool check_reduction, bool *double_reduc)
2479 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2480 double_reduc, false);
2483 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2484 in-place if it enables detection of more reductions. Arguments
2485 as there. */
2487 gimple
2488 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2489 bool check_reduction, bool *double_reduc)
2491 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2492 double_reduc, true);
2495 /* Calculate the cost of one scalar iteration of the loop. */
2497 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2499 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2500 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2501 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2502 int innerloop_iters, i, stmt_cost;
2504 /* Count statements in scalar loop. Using this as scalar cost for a single
2505 iteration for now.
2507 TODO: Add outer loop support.
2509 TODO: Consider assigning different costs to different scalar
2510 statements. */
2512 /* FORNOW. */
2513 innerloop_iters = 1;
2514 if (loop->inner)
2515 innerloop_iters = 50; /* FIXME */
2517 for (i = 0; i < nbbs; i++)
2519 gimple_stmt_iterator si;
2520 basic_block bb = bbs[i];
2522 if (bb->loop_father == loop->inner)
2523 factor = innerloop_iters;
2524 else
2525 factor = 1;
2527 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2529 gimple stmt = gsi_stmt (si);
2530 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2532 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2533 continue;
2535 /* Skip stmts that are not vectorized inside the loop. */
2536 if (stmt_info
2537 && !STMT_VINFO_RELEVANT_P (stmt_info)
2538 && (!STMT_VINFO_LIVE_P (stmt_info)
2539 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2540 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2541 continue;
2543 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2545 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2546 stmt_cost = vect_get_stmt_cost (scalar_load);
2547 else
2548 stmt_cost = vect_get_stmt_cost (scalar_store);
2550 else
2551 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2553 scalar_single_iter_cost += stmt_cost * factor;
2556 return scalar_single_iter_cost;
2559 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2561 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2562 int *peel_iters_epilogue,
2563 int scalar_single_iter_cost,
2564 stmt_vector_for_cost *prologue_cost_vec,
2565 stmt_vector_for_cost *epilogue_cost_vec)
2567 int retval = 0;
2568 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2570 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2572 *peel_iters_epilogue = vf/2;
2573 if (dump_enabled_p ())
2574 dump_printf_loc (MSG_NOTE, vect_location,
2575 "cost model: epilogue peel iters set to vf/2 "
2576 "because loop iterations are unknown .");
2578 /* If peeled iterations are known but number of scalar loop
2579 iterations are unknown, count a taken branch per peeled loop. */
2580 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2581 NULL, 0, vect_prologue);
2583 else
2585 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2586 peel_iters_prologue = niters < peel_iters_prologue ?
2587 niters : peel_iters_prologue;
2588 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2589 /* If we need to peel for gaps, but no peeling is required, we have to
2590 peel VF iterations. */
2591 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2592 *peel_iters_epilogue = vf;
2595 if (peel_iters_prologue)
2596 retval += record_stmt_cost (prologue_cost_vec,
2597 peel_iters_prologue * scalar_single_iter_cost,
2598 scalar_stmt, NULL, 0, vect_prologue);
2599 if (*peel_iters_epilogue)
2600 retval += record_stmt_cost (epilogue_cost_vec,
2601 *peel_iters_epilogue * scalar_single_iter_cost,
2602 scalar_stmt, NULL, 0, vect_epilogue);
2603 return retval;
2606 /* Function vect_estimate_min_profitable_iters
2608 Return the number of iterations required for the vector version of the
2609 loop to be profitable relative to the cost of the scalar version of the
2610 loop. */
2612 static void
2613 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2614 int *ret_min_profitable_niters,
2615 int *ret_min_profitable_estimate)
2617 int min_profitable_iters;
2618 int min_profitable_estimate;
2619 int peel_iters_prologue;
2620 int peel_iters_epilogue;
2621 unsigned vec_inside_cost = 0;
2622 int vec_outside_cost = 0;
2623 unsigned vec_prologue_cost = 0;
2624 unsigned vec_epilogue_cost = 0;
2625 int scalar_single_iter_cost = 0;
2626 int scalar_outside_cost = 0;
2627 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2628 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2629 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2631 /* Cost model disabled. */
2632 if (unlimited_cost_model ())
2634 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.");
2635 *ret_min_profitable_niters = 0;
2636 *ret_min_profitable_estimate = 0;
2637 return;
2640 /* Requires loop versioning tests to handle misalignment. */
2641 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2643 /* FIXME: Make cost depend on complexity of individual check. */
2644 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2645 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2646 vect_prologue);
2647 dump_printf (MSG_NOTE,
2648 "cost model: Adding cost of checks for loop "
2649 "versioning to treat misalignment.\n");
2652 /* Requires loop versioning with alias checks. */
2653 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2655 /* FIXME: Make cost depend on complexity of individual check. */
2656 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2657 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2658 vect_prologue);
2659 dump_printf (MSG_NOTE,
2660 "cost model: Adding cost of checks for loop "
2661 "versioning aliasing.\n");
2664 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2665 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2666 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2667 vect_prologue);
2669 /* Count statements in scalar loop. Using this as scalar cost for a single
2670 iteration for now.
2672 TODO: Add outer loop support.
2674 TODO: Consider assigning different costs to different scalar
2675 statements. */
2677 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2679 /* Add additional cost for the peeled instructions in prologue and epilogue
2680 loop.
2682 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2683 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2685 TODO: Build an expression that represents peel_iters for prologue and
2686 epilogue to be used in a run-time test. */
2688 if (npeel < 0)
2690 peel_iters_prologue = vf/2;
2691 dump_printf (MSG_NOTE, "cost model: "
2692 "prologue peel iters set to vf/2.");
2694 /* If peeling for alignment is unknown, loop bound of main loop becomes
2695 unknown. */
2696 peel_iters_epilogue = vf/2;
2697 dump_printf (MSG_NOTE, "cost model: "
2698 "epilogue peel iters set to vf/2 because "
2699 "peeling for alignment is unknown.");
2701 /* If peeled iterations are unknown, count a taken branch and a not taken
2702 branch per peeled loop. Even if scalar loop iterations are known,
2703 vector iterations are not known since peeled prologue iterations are
2704 not known. Hence guards remain the same. */
2705 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2706 NULL, 0, vect_prologue);
2707 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2708 NULL, 0, vect_prologue);
2709 /* FORNOW: Don't attempt to pass individual scalar instructions to
2710 the model; just assume linear cost for scalar iterations. */
2711 (void) add_stmt_cost (target_cost_data,
2712 peel_iters_prologue * scalar_single_iter_cost,
2713 scalar_stmt, NULL, 0, vect_prologue);
2714 (void) add_stmt_cost (target_cost_data,
2715 peel_iters_epilogue * scalar_single_iter_cost,
2716 scalar_stmt, NULL, 0, vect_epilogue);
2718 else
2720 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2721 stmt_info_for_cost *si;
2722 int j;
2723 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2725 prologue_cost_vec.create (2);
2726 epilogue_cost_vec.create (2);
2727 peel_iters_prologue = npeel;
2729 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2730 &peel_iters_epilogue,
2731 scalar_single_iter_cost,
2732 &prologue_cost_vec,
2733 &epilogue_cost_vec);
2735 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2737 struct _stmt_vec_info *stmt_info
2738 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2739 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2740 si->misalign, vect_prologue);
2743 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2745 struct _stmt_vec_info *stmt_info
2746 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2747 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2748 si->misalign, vect_epilogue);
2751 prologue_cost_vec.release ();
2752 epilogue_cost_vec.release ();
2755 /* FORNOW: The scalar outside cost is incremented in one of the
2756 following ways:
2758 1. The vectorizer checks for alignment and aliasing and generates
2759 a condition that allows dynamic vectorization. A cost model
2760 check is ANDED with the versioning condition. Hence scalar code
2761 path now has the added cost of the versioning check.
2763 if (cost > th & versioning_check)
2764 jmp to vector code
2766 Hence run-time scalar is incremented by not-taken branch cost.
2768 2. The vectorizer then checks if a prologue is required. If the
2769 cost model check was not done before during versioning, it has to
2770 be done before the prologue check.
2772 if (cost <= th)
2773 prologue = scalar_iters
2774 if (prologue == 0)
2775 jmp to vector code
2776 else
2777 execute prologue
2778 if (prologue == num_iters)
2779 go to exit
2781 Hence the run-time scalar cost is incremented by a taken branch,
2782 plus a not-taken branch, plus a taken branch cost.
2784 3. The vectorizer then checks if an epilogue is required. If the
2785 cost model check was not done before during prologue check, it
2786 has to be done with the epilogue check.
2788 if (prologue == 0)
2789 jmp to vector code
2790 else
2791 execute prologue
2792 if (prologue == num_iters)
2793 go to exit
2794 vector code:
2795 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2796 jmp to epilogue
2798 Hence the run-time scalar cost should be incremented by 2 taken
2799 branches.
2801 TODO: The back end may reorder the BBS's differently and reverse
2802 conditions/branch directions. Change the estimates below to
2803 something more reasonable. */
2805 /* If the number of iterations is known and we do not do versioning, we can
2806 decide whether to vectorize at compile time. Hence the scalar version
2807 do not carry cost model guard costs. */
2808 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2809 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2810 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2812 /* Cost model check occurs at versioning. */
2813 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2814 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2815 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2816 else
2818 /* Cost model check occurs at prologue generation. */
2819 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2820 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2821 + vect_get_stmt_cost (cond_branch_not_taken);
2822 /* Cost model check occurs at epilogue generation. */
2823 else
2824 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2828 /* Complete the target-specific cost calculations. */
2829 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2830 &vec_inside_cost, &vec_epilogue_cost);
2832 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2834 /* Calculate number of iterations required to make the vector version
2835 profitable, relative to the loop bodies only. The following condition
2836 must hold true:
2837 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2838 where
2839 SIC = scalar iteration cost, VIC = vector iteration cost,
2840 VOC = vector outside cost, VF = vectorization factor,
2841 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2842 SOC = scalar outside cost for run time cost model check. */
2844 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2846 if (vec_outside_cost <= 0)
2847 min_profitable_iters = 1;
2848 else
2850 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2851 - vec_inside_cost * peel_iters_prologue
2852 - vec_inside_cost * peel_iters_epilogue)
2853 / ((scalar_single_iter_cost * vf)
2854 - vec_inside_cost);
2856 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2857 <= (((int) vec_inside_cost * min_profitable_iters)
2858 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2859 min_profitable_iters++;
2862 /* vector version will never be profitable. */
2863 else
2865 if (dump_enabled_p ())
2866 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2867 "cost model: the vector iteration cost = %d "
2868 "divided by the scalar iteration cost = %d "
2869 "is greater or equal to the vectorization factor = %d.",
2870 vec_inside_cost, scalar_single_iter_cost, vf);
2871 *ret_min_profitable_niters = -1;
2872 *ret_min_profitable_estimate = -1;
2873 return;
2876 if (dump_enabled_p ())
2878 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2879 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
2880 vec_inside_cost);
2881 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
2882 vec_prologue_cost);
2883 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
2884 vec_epilogue_cost);
2885 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
2886 scalar_single_iter_cost);
2887 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
2888 scalar_outside_cost);
2889 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
2890 vec_outside_cost);
2891 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
2892 peel_iters_prologue);
2893 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
2894 peel_iters_epilogue);
2895 dump_printf (MSG_NOTE,
2896 " Calculated minimum iters for profitability: %d\n",
2897 min_profitable_iters);
2900 min_profitable_iters =
2901 min_profitable_iters < vf ? vf : min_profitable_iters;
2903 /* Because the condition we create is:
2904 if (niters <= min_profitable_iters)
2905 then skip the vectorized loop. */
2906 min_profitable_iters--;
2908 if (dump_enabled_p ())
2909 dump_printf_loc (MSG_NOTE, vect_location,
2910 " Runtime profitability threshold = %d\n", min_profitable_iters);
2912 *ret_min_profitable_niters = min_profitable_iters;
2914 /* Calculate number of iterations required to make the vector version
2915 profitable, relative to the loop bodies only.
2917 Non-vectorized variant is SIC * niters and it must win over vector
2918 variant on the expected loop trip count. The following condition must hold true:
2919 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
2921 if (vec_outside_cost <= 0)
2922 min_profitable_estimate = 1;
2923 else
2925 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
2926 - vec_inside_cost * peel_iters_prologue
2927 - vec_inside_cost * peel_iters_epilogue)
2928 / ((scalar_single_iter_cost * vf)
2929 - vec_inside_cost);
2931 min_profitable_estimate --;
2932 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
2933 if (dump_enabled_p ())
2934 dump_printf_loc (MSG_NOTE, vect_location,
2935 " Static estimate profitability threshold = %d\n",
2936 min_profitable_iters);
2938 *ret_min_profitable_estimate = min_profitable_estimate;
2942 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2943 functions. Design better to avoid maintenance issues. */
2945 /* Function vect_model_reduction_cost.
2947 Models cost for a reduction operation, including the vector ops
2948 generated within the strip-mine loop, the initial definition before
2949 the loop, and the epilogue code that must be generated. */
2951 static bool
2952 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2953 int ncopies)
2955 int prologue_cost = 0, epilogue_cost = 0;
2956 enum tree_code code;
2957 optab optab;
2958 tree vectype;
2959 gimple stmt, orig_stmt;
2960 tree reduction_op;
2961 enum machine_mode mode;
2962 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2963 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2964 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2966 /* Cost of reduction op inside loop. */
2967 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
2968 stmt_info, 0, vect_body);
2969 stmt = STMT_VINFO_STMT (stmt_info);
2971 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2973 case GIMPLE_SINGLE_RHS:
2974 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2975 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2976 break;
2977 case GIMPLE_UNARY_RHS:
2978 reduction_op = gimple_assign_rhs1 (stmt);
2979 break;
2980 case GIMPLE_BINARY_RHS:
2981 reduction_op = gimple_assign_rhs2 (stmt);
2982 break;
2983 case GIMPLE_TERNARY_RHS:
2984 reduction_op = gimple_assign_rhs3 (stmt);
2985 break;
2986 default:
2987 gcc_unreachable ();
2990 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2991 if (!vectype)
2993 if (dump_enabled_p ())
2995 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2996 "unsupported data-type ");
2997 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2998 TREE_TYPE (reduction_op));
3000 return false;
3003 mode = TYPE_MODE (vectype);
3004 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3006 if (!orig_stmt)
3007 orig_stmt = STMT_VINFO_STMT (stmt_info);
3009 code = gimple_assign_rhs_code (orig_stmt);
3011 /* Add in cost for initial definition. */
3012 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3013 stmt_info, 0, vect_prologue);
3015 /* Determine cost of epilogue code.
3017 We have a reduction operator that will reduce the vector in one statement.
3018 Also requires scalar extract. */
3020 if (!nested_in_vect_loop_p (loop, orig_stmt))
3022 if (reduc_code != ERROR_MARK)
3024 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3025 stmt_info, 0, vect_epilogue);
3026 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3027 stmt_info, 0, vect_epilogue);
3029 else
3031 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3032 tree bitsize =
3033 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3034 int element_bitsize = tree_low_cst (bitsize, 1);
3035 int nelements = vec_size_in_bits / element_bitsize;
3037 optab = optab_for_tree_code (code, vectype, optab_default);
3039 /* We have a whole vector shift available. */
3040 if (VECTOR_MODE_P (mode)
3041 && optab_handler (optab, mode) != CODE_FOR_nothing
3042 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3044 /* Final reduction via vector shifts and the reduction operator.
3045 Also requires scalar extract. */
3046 epilogue_cost += add_stmt_cost (target_cost_data,
3047 exact_log2 (nelements) * 2,
3048 vector_stmt, stmt_info, 0,
3049 vect_epilogue);
3050 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3051 vec_to_scalar, stmt_info, 0,
3052 vect_epilogue);
3054 else
3055 /* Use extracts and reduction op for final reduction. For N
3056 elements, we have N extracts and N-1 reduction ops. */
3057 epilogue_cost += add_stmt_cost (target_cost_data,
3058 nelements + nelements - 1,
3059 vector_stmt, stmt_info, 0,
3060 vect_epilogue);
3064 if (dump_enabled_p ())
3065 dump_printf (MSG_NOTE,
3066 "vect_model_reduction_cost: inside_cost = %d, "
3067 "prologue_cost = %d, epilogue_cost = %d .", inside_cost,
3068 prologue_cost, epilogue_cost);
3070 return true;
3074 /* Function vect_model_induction_cost.
3076 Models cost for induction operations. */
3078 static void
3079 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3081 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3082 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3083 unsigned inside_cost, prologue_cost;
3085 /* loop cost for vec_loop. */
3086 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3087 stmt_info, 0, vect_body);
3089 /* prologue cost for vec_init and vec_step. */
3090 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3091 stmt_info, 0, vect_prologue);
3093 if (dump_enabled_p ())
3094 dump_printf_loc (MSG_NOTE, vect_location,
3095 "vect_model_induction_cost: inside_cost = %d, "
3096 "prologue_cost = %d .", inside_cost, prologue_cost);
3100 /* Function get_initial_def_for_induction
3102 Input:
3103 STMT - a stmt that performs an induction operation in the loop.
3104 IV_PHI - the initial value of the induction variable
3106 Output:
3107 Return a vector variable, initialized with the first VF values of
3108 the induction variable. E.g., for an iv with IV_PHI='X' and
3109 evolution S, for a vector of 4 units, we want to return:
3110 [X, X + S, X + 2*S, X + 3*S]. */
3112 static tree
3113 get_initial_def_for_induction (gimple iv_phi)
3115 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3116 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3117 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3118 tree vectype;
3119 int nunits;
3120 edge pe = loop_preheader_edge (loop);
3121 struct loop *iv_loop;
3122 basic_block new_bb;
3123 tree new_vec, vec_init, vec_step, t;
3124 tree new_var;
3125 tree new_name;
3126 gimple init_stmt, induction_phi, new_stmt;
3127 tree induc_def, vec_def, vec_dest;
3128 tree init_expr, step_expr;
3129 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3130 int i;
3131 int ncopies;
3132 tree expr;
3133 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3134 bool nested_in_vect_loop = false;
3135 gimple_seq stmts = NULL;
3136 imm_use_iterator imm_iter;
3137 use_operand_p use_p;
3138 gimple exit_phi;
3139 edge latch_e;
3140 tree loop_arg;
3141 gimple_stmt_iterator si;
3142 basic_block bb = gimple_bb (iv_phi);
3143 tree stepvectype;
3144 tree resvectype;
3146 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3147 if (nested_in_vect_loop_p (loop, iv_phi))
3149 nested_in_vect_loop = true;
3150 iv_loop = loop->inner;
3152 else
3153 iv_loop = loop;
3154 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3156 latch_e = loop_latch_edge (iv_loop);
3157 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3159 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3160 gcc_assert (step_expr != NULL_TREE);
3162 pe = loop_preheader_edge (iv_loop);
3163 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3164 loop_preheader_edge (iv_loop));
3166 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3167 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3168 gcc_assert (vectype);
3169 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3170 ncopies = vf / nunits;
3172 gcc_assert (phi_info);
3173 gcc_assert (ncopies >= 1);
3175 /* Convert the step to the desired type. */
3176 step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3177 step_expr),
3178 &stmts, true, NULL_TREE);
3179 if (stmts)
3181 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3182 gcc_assert (!new_bb);
3185 /* Find the first insertion point in the BB. */
3186 si = gsi_after_labels (bb);
3188 /* Create the vector that holds the initial_value of the induction. */
3189 if (nested_in_vect_loop)
3191 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3192 been created during vectorization of previous stmts. We obtain it
3193 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3194 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
3195 /* If the initial value is not of proper type, convert it. */
3196 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3198 new_stmt = gimple_build_assign_with_ops
3199 (VIEW_CONVERT_EXPR,
3200 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3201 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3202 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3203 gimple_assign_set_lhs (new_stmt, vec_init);
3204 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3205 new_stmt);
3206 gcc_assert (!new_bb);
3207 set_vinfo_for_stmt (new_stmt,
3208 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3211 else
3213 vec<constructor_elt, va_gc> *v;
3215 /* iv_loop is the loop to be vectorized. Create:
3216 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3217 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3218 vect_scalar_var, "var_");
3219 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3220 init_expr),
3221 &stmts, false, new_var);
3222 if (stmts)
3224 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3225 gcc_assert (!new_bb);
3228 vec_alloc (v, nunits);
3229 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3230 for (i = 1; i < nunits; i++)
3232 /* Create: new_name_i = new_name + step_expr */
3233 init_stmt = gimple_build_assign_with_ops (PLUS_EXPR, new_var,
3234 new_name, step_expr);
3235 new_name = make_ssa_name (new_var, init_stmt);
3236 gimple_assign_set_lhs (init_stmt, new_name);
3238 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3239 gcc_assert (!new_bb);
3241 if (dump_enabled_p ())
3243 dump_printf_loc (MSG_NOTE, vect_location,
3244 "created new init_stmt: ");
3245 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3247 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3249 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3250 new_vec = build_constructor (vectype, v);
3251 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3255 /* Create the vector that holds the step of the induction. */
3256 if (nested_in_vect_loop)
3257 /* iv_loop is nested in the loop to be vectorized. Generate:
3258 vec_step = [S, S, S, S] */
3259 new_name = step_expr;
3260 else
3262 /* iv_loop is the loop to be vectorized. Generate:
3263 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3264 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3265 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3266 expr, step_expr);
3269 t = unshare_expr (new_name);
3270 gcc_assert (CONSTANT_CLASS_P (new_name));
3271 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3272 gcc_assert (stepvectype);
3273 new_vec = build_vector_from_val (stepvectype, t);
3274 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3277 /* Create the following def-use cycle:
3278 loop prolog:
3279 vec_init = ...
3280 vec_step = ...
3281 loop:
3282 vec_iv = PHI <vec_init, vec_loop>
3284 STMT
3286 vec_loop = vec_iv + vec_step; */
3288 /* Create the induction-phi that defines the induction-operand. */
3289 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3290 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3291 set_vinfo_for_stmt (induction_phi,
3292 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3293 induc_def = PHI_RESULT (induction_phi);
3295 /* Create the iv update inside the loop */
3296 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3297 induc_def, vec_step);
3298 vec_def = make_ssa_name (vec_dest, new_stmt);
3299 gimple_assign_set_lhs (new_stmt, vec_def);
3300 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3301 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3302 NULL));
3304 /* Set the arguments of the phi node: */
3305 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3306 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3307 UNKNOWN_LOCATION);
3310 /* In case that vectorization factor (VF) is bigger than the number
3311 of elements that we can fit in a vectype (nunits), we have to generate
3312 more than one vector stmt - i.e - we need to "unroll" the
3313 vector stmt by a factor VF/nunits. For more details see documentation
3314 in vectorizable_operation. */
3316 if (ncopies > 1)
3318 stmt_vec_info prev_stmt_vinfo;
3319 /* FORNOW. This restriction should be relaxed. */
3320 gcc_assert (!nested_in_vect_loop);
3322 /* Create the vector that holds the step of the induction. */
3323 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3324 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3325 expr, step_expr);
3326 t = unshare_expr (new_name);
3327 gcc_assert (CONSTANT_CLASS_P (new_name));
3328 new_vec = build_vector_from_val (stepvectype, t);
3329 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3331 vec_def = induc_def;
3332 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3333 for (i = 1; i < ncopies; i++)
3335 /* vec_i = vec_prev + vec_step */
3336 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3337 vec_def, vec_step);
3338 vec_def = make_ssa_name (vec_dest, new_stmt);
3339 gimple_assign_set_lhs (new_stmt, vec_def);
3341 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3342 if (!useless_type_conversion_p (resvectype, vectype))
3344 new_stmt = gimple_build_assign_with_ops
3345 (VIEW_CONVERT_EXPR,
3346 vect_get_new_vect_var (resvectype, vect_simple_var,
3347 "vec_iv_"),
3348 build1 (VIEW_CONVERT_EXPR, resvectype,
3349 gimple_assign_lhs (new_stmt)), NULL_TREE);
3350 gimple_assign_set_lhs (new_stmt,
3351 make_ssa_name
3352 (gimple_assign_lhs (new_stmt), new_stmt));
3353 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3355 set_vinfo_for_stmt (new_stmt,
3356 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3357 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3358 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3362 if (nested_in_vect_loop)
3364 /* Find the loop-closed exit-phi of the induction, and record
3365 the final vector of induction results: */
3366 exit_phi = NULL;
3367 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3369 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3371 exit_phi = USE_STMT (use_p);
3372 break;
3375 if (exit_phi)
3377 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3378 /* FORNOW. Currently not supporting the case that an inner-loop induction
3379 is not used in the outer-loop (i.e. only outside the outer-loop). */
3380 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3381 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3383 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3384 if (dump_enabled_p ())
3386 dump_printf_loc (MSG_NOTE, vect_location,
3387 "vector of inductions after inner-loop:");
3388 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3394 if (dump_enabled_p ())
3396 dump_printf_loc (MSG_NOTE, vect_location,
3397 "transform induction: created def-use cycle: ");
3398 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3399 dump_printf (MSG_NOTE, "\n");
3400 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3401 SSA_NAME_DEF_STMT (vec_def), 0);
3404 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3405 if (!useless_type_conversion_p (resvectype, vectype))
3407 new_stmt = gimple_build_assign_with_ops
3408 (VIEW_CONVERT_EXPR,
3409 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3410 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3411 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3412 gimple_assign_set_lhs (new_stmt, induc_def);
3413 si = gsi_after_labels (bb);
3414 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3415 set_vinfo_for_stmt (new_stmt,
3416 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3417 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3418 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3421 return induc_def;
3425 /* Function get_initial_def_for_reduction
3427 Input:
3428 STMT - a stmt that performs a reduction operation in the loop.
3429 INIT_VAL - the initial value of the reduction variable
3431 Output:
3432 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3433 of the reduction (used for adjusting the epilog - see below).
3434 Return a vector variable, initialized according to the operation that STMT
3435 performs. This vector will be used as the initial value of the
3436 vector of partial results.
3438 Option1 (adjust in epilog): Initialize the vector as follows:
3439 add/bit or/xor: [0,0,...,0,0]
3440 mult/bit and: [1,1,...,1,1]
3441 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3442 and when necessary (e.g. add/mult case) let the caller know
3443 that it needs to adjust the result by init_val.
3445 Option2: Initialize the vector as follows:
3446 add/bit or/xor: [init_val,0,0,...,0]
3447 mult/bit and: [init_val,1,1,...,1]
3448 min/max/cond_expr: [init_val,init_val,...,init_val]
3449 and no adjustments are needed.
3451 For example, for the following code:
3453 s = init_val;
3454 for (i=0;i<n;i++)
3455 s = s + a[i];
3457 STMT is 's = s + a[i]', and the reduction variable is 's'.
3458 For a vector of 4 units, we want to return either [0,0,0,init_val],
3459 or [0,0,0,0] and let the caller know that it needs to adjust
3460 the result at the end by 'init_val'.
3462 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3463 initialization vector is simpler (same element in all entries), if
3464 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3466 A cost model should help decide between these two schemes. */
3468 tree
3469 get_initial_def_for_reduction (gimple stmt, tree init_val,
3470 tree *adjustment_def)
3472 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3473 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3474 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3475 tree scalar_type = TREE_TYPE (init_val);
3476 tree vectype = get_vectype_for_scalar_type (scalar_type);
3477 int nunits;
3478 enum tree_code code = gimple_assign_rhs_code (stmt);
3479 tree def_for_init;
3480 tree init_def;
3481 tree *elts;
3482 int i;
3483 bool nested_in_vect_loop = false;
3484 tree init_value;
3485 REAL_VALUE_TYPE real_init_val = dconst0;
3486 int int_init_val = 0;
3487 gimple def_stmt = NULL;
3489 gcc_assert (vectype);
3490 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3492 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3493 || SCALAR_FLOAT_TYPE_P (scalar_type));
3495 if (nested_in_vect_loop_p (loop, stmt))
3496 nested_in_vect_loop = true;
3497 else
3498 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3500 /* In case of double reduction we only create a vector variable to be put
3501 in the reduction phi node. The actual statement creation is done in
3502 vect_create_epilog_for_reduction. */
3503 if (adjustment_def && nested_in_vect_loop
3504 && TREE_CODE (init_val) == SSA_NAME
3505 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3506 && gimple_code (def_stmt) == GIMPLE_PHI
3507 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3508 && vinfo_for_stmt (def_stmt)
3509 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3510 == vect_double_reduction_def)
3512 *adjustment_def = NULL;
3513 return vect_create_destination_var (init_val, vectype);
3516 if (TREE_CONSTANT (init_val))
3518 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3519 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3520 else
3521 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3523 else
3524 init_value = init_val;
3526 switch (code)
3528 case WIDEN_SUM_EXPR:
3529 case DOT_PROD_EXPR:
3530 case PLUS_EXPR:
3531 case MINUS_EXPR:
3532 case BIT_IOR_EXPR:
3533 case BIT_XOR_EXPR:
3534 case MULT_EXPR:
3535 case BIT_AND_EXPR:
3536 /* ADJUSMENT_DEF is NULL when called from
3537 vect_create_epilog_for_reduction to vectorize double reduction. */
3538 if (adjustment_def)
3540 if (nested_in_vect_loop)
3541 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3542 NULL);
3543 else
3544 *adjustment_def = init_val;
3547 if (code == MULT_EXPR)
3549 real_init_val = dconst1;
3550 int_init_val = 1;
3553 if (code == BIT_AND_EXPR)
3554 int_init_val = -1;
3556 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3557 def_for_init = build_real (scalar_type, real_init_val);
3558 else
3559 def_for_init = build_int_cst (scalar_type, int_init_val);
3561 /* Create a vector of '0' or '1' except the first element. */
3562 elts = XALLOCAVEC (tree, nunits);
3563 for (i = nunits - 2; i >= 0; --i)
3564 elts[i + 1] = def_for_init;
3566 /* Option1: the first element is '0' or '1' as well. */
3567 if (adjustment_def)
3569 elts[0] = def_for_init;
3570 init_def = build_vector (vectype, elts);
3571 break;
3574 /* Option2: the first element is INIT_VAL. */
3575 elts[0] = init_val;
3576 if (TREE_CONSTANT (init_val))
3577 init_def = build_vector (vectype, elts);
3578 else
3580 vec<constructor_elt, va_gc> *v;
3581 vec_alloc (v, nunits);
3582 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3583 for (i = 1; i < nunits; ++i)
3584 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3585 init_def = build_constructor (vectype, v);
3588 break;
3590 case MIN_EXPR:
3591 case MAX_EXPR:
3592 case COND_EXPR:
3593 if (adjustment_def)
3595 *adjustment_def = NULL_TREE;
3596 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3597 break;
3600 init_def = build_vector_from_val (vectype, init_value);
3601 break;
3603 default:
3604 gcc_unreachable ();
3607 return init_def;
3611 /* Function vect_create_epilog_for_reduction
3613 Create code at the loop-epilog to finalize the result of a reduction
3614 computation.
3616 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3617 reduction statements.
3618 STMT is the scalar reduction stmt that is being vectorized.
3619 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3620 number of elements that we can fit in a vectype (nunits). In this case
3621 we have to generate more than one vector stmt - i.e - we need to "unroll"
3622 the vector stmt by a factor VF/nunits. For more details see documentation
3623 in vectorizable_operation.
3624 REDUC_CODE is the tree-code for the epilog reduction.
3625 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3626 computation.
3627 REDUC_INDEX is the index of the operand in the right hand side of the
3628 statement that is defined by REDUCTION_PHI.
3629 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3630 SLP_NODE is an SLP node containing a group of reduction statements. The
3631 first one in this group is STMT.
3633 This function:
3634 1. Creates the reduction def-use cycles: sets the arguments for
3635 REDUCTION_PHIS:
3636 The loop-entry argument is the vectorized initial-value of the reduction.
3637 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3638 sums.
3639 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3640 by applying the operation specified by REDUC_CODE if available, or by
3641 other means (whole-vector shifts or a scalar loop).
3642 The function also creates a new phi node at the loop exit to preserve
3643 loop-closed form, as illustrated below.
3645 The flow at the entry to this function:
3647 loop:
3648 vec_def = phi <null, null> # REDUCTION_PHI
3649 VECT_DEF = vector_stmt # vectorized form of STMT
3650 s_loop = scalar_stmt # (scalar) STMT
3651 loop_exit:
3652 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3653 use <s_out0>
3654 use <s_out0>
3656 The above is transformed by this function into:
3658 loop:
3659 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3660 VECT_DEF = vector_stmt # vectorized form of STMT
3661 s_loop = scalar_stmt # (scalar) STMT
3662 loop_exit:
3663 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3664 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3665 v_out2 = reduce <v_out1>
3666 s_out3 = extract_field <v_out2, 0>
3667 s_out4 = adjust_result <s_out3>
3668 use <s_out4>
3669 use <s_out4>
3672 static void
3673 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3674 int ncopies, enum tree_code reduc_code,
3675 vec<gimple> reduction_phis,
3676 int reduc_index, bool double_reduc,
3677 slp_tree slp_node)
3679 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3680 stmt_vec_info prev_phi_info;
3681 tree vectype;
3682 enum machine_mode mode;
3683 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3684 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3685 basic_block exit_bb;
3686 tree scalar_dest;
3687 tree scalar_type;
3688 gimple new_phi = NULL, phi;
3689 gimple_stmt_iterator exit_gsi;
3690 tree vec_dest;
3691 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3692 gimple epilog_stmt = NULL;
3693 enum tree_code code = gimple_assign_rhs_code (stmt);
3694 gimple exit_phi;
3695 tree bitsize, bitpos;
3696 tree adjustment_def = NULL;
3697 tree vec_initial_def = NULL;
3698 tree reduction_op, expr, def;
3699 tree orig_name, scalar_result;
3700 imm_use_iterator imm_iter, phi_imm_iter;
3701 use_operand_p use_p, phi_use_p;
3702 bool extract_scalar_result = false;
3703 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3704 bool nested_in_vect_loop = false;
3705 vec<gimple> new_phis = vNULL;
3706 vec<gimple> inner_phis = vNULL;
3707 enum vect_def_type dt = vect_unknown_def_type;
3708 int j, i;
3709 vec<tree> scalar_results = vNULL;
3710 unsigned int group_size = 1, k, ratio;
3711 vec<tree> vec_initial_defs = vNULL;
3712 vec<gimple> phis;
3713 bool slp_reduc = false;
3714 tree new_phi_result;
3715 gimple inner_phi = NULL;
3717 if (slp_node)
3718 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3720 if (nested_in_vect_loop_p (loop, stmt))
3722 outer_loop = loop;
3723 loop = loop->inner;
3724 nested_in_vect_loop = true;
3725 gcc_assert (!slp_node);
3728 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3730 case GIMPLE_SINGLE_RHS:
3731 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3732 == ternary_op);
3733 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3734 break;
3735 case GIMPLE_UNARY_RHS:
3736 reduction_op = gimple_assign_rhs1 (stmt);
3737 break;
3738 case GIMPLE_BINARY_RHS:
3739 reduction_op = reduc_index ?
3740 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3741 break;
3742 case GIMPLE_TERNARY_RHS:
3743 reduction_op = gimple_op (stmt, reduc_index + 1);
3744 break;
3745 default:
3746 gcc_unreachable ();
3749 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3750 gcc_assert (vectype);
3751 mode = TYPE_MODE (vectype);
3753 /* 1. Create the reduction def-use cycle:
3754 Set the arguments of REDUCTION_PHIS, i.e., transform
3756 loop:
3757 vec_def = phi <null, null> # REDUCTION_PHI
3758 VECT_DEF = vector_stmt # vectorized form of STMT
3761 into:
3763 loop:
3764 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3765 VECT_DEF = vector_stmt # vectorized form of STMT
3768 (in case of SLP, do it for all the phis). */
3770 /* Get the loop-entry arguments. */
3771 if (slp_node)
3772 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3773 NULL, slp_node, reduc_index);
3774 else
3776 vec_initial_defs.create (1);
3777 /* For the case of reduction, vect_get_vec_def_for_operand returns
3778 the scalar def before the loop, that defines the initial value
3779 of the reduction variable. */
3780 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3781 &adjustment_def);
3782 vec_initial_defs.quick_push (vec_initial_def);
3785 /* Set phi nodes arguments. */
3786 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3788 tree vec_init_def = vec_initial_defs[i];
3789 tree def = vect_defs[i];
3790 for (j = 0; j < ncopies; j++)
3792 /* Set the loop-entry arg of the reduction-phi. */
3793 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3794 UNKNOWN_LOCATION);
3796 /* Set the loop-latch arg for the reduction-phi. */
3797 if (j > 0)
3798 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3800 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3802 if (dump_enabled_p ())
3804 dump_printf_loc (MSG_NOTE, vect_location,
3805 "transform reduction: created def-use cycle: ");
3806 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3807 dump_printf (MSG_NOTE, "\n");
3808 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3811 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3815 vec_initial_defs.release ();
3817 /* 2. Create epilog code.
3818 The reduction epilog code operates across the elements of the vector
3819 of partial results computed by the vectorized loop.
3820 The reduction epilog code consists of:
3822 step 1: compute the scalar result in a vector (v_out2)
3823 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3824 step 3: adjust the scalar result (s_out3) if needed.
3826 Step 1 can be accomplished using one the following three schemes:
3827 (scheme 1) using reduc_code, if available.
3828 (scheme 2) using whole-vector shifts, if available.
3829 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3830 combined.
3832 The overall epilog code looks like this:
3834 s_out0 = phi <s_loop> # original EXIT_PHI
3835 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3836 v_out2 = reduce <v_out1> # step 1
3837 s_out3 = extract_field <v_out2, 0> # step 2
3838 s_out4 = adjust_result <s_out3> # step 3
3840 (step 3 is optional, and steps 1 and 2 may be combined).
3841 Lastly, the uses of s_out0 are replaced by s_out4. */
3844 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3845 v_out1 = phi <VECT_DEF>
3846 Store them in NEW_PHIS. */
3848 exit_bb = single_exit (loop)->dest;
3849 prev_phi_info = NULL;
3850 new_phis.create (vect_defs.length ());
3851 FOR_EACH_VEC_ELT (vect_defs, i, def)
3853 for (j = 0; j < ncopies; j++)
3855 tree new_def = copy_ssa_name (def, NULL);
3856 phi = create_phi_node (new_def, exit_bb);
3857 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3858 if (j == 0)
3859 new_phis.quick_push (phi);
3860 else
3862 def = vect_get_vec_def_for_stmt_copy (dt, def);
3863 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3866 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3867 prev_phi_info = vinfo_for_stmt (phi);
3871 /* The epilogue is created for the outer-loop, i.e., for the loop being
3872 vectorized. Create exit phis for the outer loop. */
3873 if (double_reduc)
3875 loop = outer_loop;
3876 exit_bb = single_exit (loop)->dest;
3877 inner_phis.create (vect_defs.length ());
3878 FOR_EACH_VEC_ELT (new_phis, i, phi)
3880 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3881 gimple outer_phi = create_phi_node (new_result, exit_bb);
3882 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3883 PHI_RESULT (phi));
3884 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3885 loop_vinfo, NULL));
3886 inner_phis.quick_push (phi);
3887 new_phis[i] = outer_phi;
3888 prev_phi_info = vinfo_for_stmt (outer_phi);
3889 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
3891 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3892 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3893 outer_phi = create_phi_node (new_result, exit_bb);
3894 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3895 PHI_RESULT (phi));
3896 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3897 loop_vinfo, NULL));
3898 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
3899 prev_phi_info = vinfo_for_stmt (outer_phi);
3904 exit_gsi = gsi_after_labels (exit_bb);
3906 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3907 (i.e. when reduc_code is not available) and in the final adjustment
3908 code (if needed). Also get the original scalar reduction variable as
3909 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3910 represents a reduction pattern), the tree-code and scalar-def are
3911 taken from the original stmt that the pattern-stmt (STMT) replaces.
3912 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3913 are taken from STMT. */
3915 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3916 if (!orig_stmt)
3918 /* Regular reduction */
3919 orig_stmt = stmt;
3921 else
3923 /* Reduction pattern */
3924 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3925 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3926 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3929 code = gimple_assign_rhs_code (orig_stmt);
3930 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3931 partial results are added and not subtracted. */
3932 if (code == MINUS_EXPR)
3933 code = PLUS_EXPR;
3935 scalar_dest = gimple_assign_lhs (orig_stmt);
3936 scalar_type = TREE_TYPE (scalar_dest);
3937 scalar_results.create (group_size);
3938 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3939 bitsize = TYPE_SIZE (scalar_type);
3941 /* In case this is a reduction in an inner-loop while vectorizing an outer
3942 loop - we don't need to extract a single scalar result at the end of the
3943 inner-loop (unless it is double reduction, i.e., the use of reduction is
3944 outside the outer-loop). The final vector of partial results will be used
3945 in the vectorized outer-loop, or reduced to a scalar result at the end of
3946 the outer-loop. */
3947 if (nested_in_vect_loop && !double_reduc)
3948 goto vect_finalize_reduction;
3950 /* SLP reduction without reduction chain, e.g.,
3951 # a1 = phi <a2, a0>
3952 # b1 = phi <b2, b0>
3953 a2 = operation (a1)
3954 b2 = operation (b1) */
3955 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
3957 /* In case of reduction chain, e.g.,
3958 # a1 = phi <a3, a0>
3959 a2 = operation (a1)
3960 a3 = operation (a2),
3962 we may end up with more than one vector result. Here we reduce them to
3963 one vector. */
3964 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
3966 tree first_vect = PHI_RESULT (new_phis[0]);
3967 tree tmp;
3968 gimple new_vec_stmt = NULL;
3970 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3971 for (k = 1; k < new_phis.length (); k++)
3973 gimple next_phi = new_phis[k];
3974 tree second_vect = PHI_RESULT (next_phi);
3976 tmp = build2 (code, vectype, first_vect, second_vect);
3977 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
3978 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
3979 gimple_assign_set_lhs (new_vec_stmt, first_vect);
3980 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
3983 new_phi_result = first_vect;
3984 if (new_vec_stmt)
3986 new_phis.truncate (0);
3987 new_phis.safe_push (new_vec_stmt);
3990 else
3991 new_phi_result = PHI_RESULT (new_phis[0]);
3993 /* 2.3 Create the reduction code, using one of the three schemes described
3994 above. In SLP we simply need to extract all the elements from the
3995 vector (without reducing them), so we use scalar shifts. */
3996 if (reduc_code != ERROR_MARK && !slp_reduc)
3998 tree tmp;
4000 /*** Case 1: Create:
4001 v_out2 = reduc_expr <v_out1> */
4003 if (dump_enabled_p ())
4004 dump_printf_loc (MSG_NOTE, vect_location,
4005 "Reduce using direct vector reduction.");
4007 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4008 tmp = build1 (reduc_code, vectype, new_phi_result);
4009 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4010 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4011 gimple_assign_set_lhs (epilog_stmt, new_temp);
4012 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4014 extract_scalar_result = true;
4016 else
4018 enum tree_code shift_code = ERROR_MARK;
4019 bool have_whole_vector_shift = true;
4020 int bit_offset;
4021 int element_bitsize = tree_low_cst (bitsize, 1);
4022 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4023 tree vec_temp;
4025 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4026 shift_code = VEC_RSHIFT_EXPR;
4027 else
4028 have_whole_vector_shift = false;
4030 /* Regardless of whether we have a whole vector shift, if we're
4031 emulating the operation via tree-vect-generic, we don't want
4032 to use it. Only the first round of the reduction is likely
4033 to still be profitable via emulation. */
4034 /* ??? It might be better to emit a reduction tree code here, so that
4035 tree-vect-generic can expand the first round via bit tricks. */
4036 if (!VECTOR_MODE_P (mode))
4037 have_whole_vector_shift = false;
4038 else
4040 optab optab = optab_for_tree_code (code, vectype, optab_default);
4041 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4042 have_whole_vector_shift = false;
4045 if (have_whole_vector_shift && !slp_reduc)
4047 /*** Case 2: Create:
4048 for (offset = VS/2; offset >= element_size; offset/=2)
4050 Create: va' = vec_shift <va, offset>
4051 Create: va = vop <va, va'>
4052 } */
4054 if (dump_enabled_p ())
4055 dump_printf_loc (MSG_NOTE, vect_location,
4056 "Reduce using vector shifts");
4058 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4059 new_temp = new_phi_result;
4060 for (bit_offset = vec_size_in_bits/2;
4061 bit_offset >= element_bitsize;
4062 bit_offset /= 2)
4064 tree bitpos = size_int (bit_offset);
4066 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4067 vec_dest, new_temp, bitpos);
4068 new_name = make_ssa_name (vec_dest, epilog_stmt);
4069 gimple_assign_set_lhs (epilog_stmt, new_name);
4070 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4072 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4073 new_name, new_temp);
4074 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4075 gimple_assign_set_lhs (epilog_stmt, new_temp);
4076 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4079 extract_scalar_result = true;
4081 else
4083 tree rhs;
4085 /*** Case 3: Create:
4086 s = extract_field <v_out2, 0>
4087 for (offset = element_size;
4088 offset < vector_size;
4089 offset += element_size;)
4091 Create: s' = extract_field <v_out2, offset>
4092 Create: s = op <s, s'> // For non SLP cases
4093 } */
4095 if (dump_enabled_p ())
4096 dump_printf_loc (MSG_NOTE, vect_location,
4097 "Reduce using scalar code. ");
4099 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4100 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4102 if (gimple_code (new_phi) == GIMPLE_PHI)
4103 vec_temp = PHI_RESULT (new_phi);
4104 else
4105 vec_temp = gimple_assign_lhs (new_phi);
4106 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4107 bitsize_zero_node);
4108 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4109 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4110 gimple_assign_set_lhs (epilog_stmt, new_temp);
4111 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4113 /* In SLP we don't need to apply reduction operation, so we just
4114 collect s' values in SCALAR_RESULTS. */
4115 if (slp_reduc)
4116 scalar_results.safe_push (new_temp);
4118 for (bit_offset = element_bitsize;
4119 bit_offset < vec_size_in_bits;
4120 bit_offset += element_bitsize)
4122 tree bitpos = bitsize_int (bit_offset);
4123 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4124 bitsize, bitpos);
4126 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4127 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4128 gimple_assign_set_lhs (epilog_stmt, new_name);
4129 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4131 if (slp_reduc)
4133 /* In SLP we don't need to apply reduction operation, so
4134 we just collect s' values in SCALAR_RESULTS. */
4135 new_temp = new_name;
4136 scalar_results.safe_push (new_name);
4138 else
4140 epilog_stmt = gimple_build_assign_with_ops (code,
4141 new_scalar_dest, new_name, new_temp);
4142 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4143 gimple_assign_set_lhs (epilog_stmt, new_temp);
4144 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4149 /* The only case where we need to reduce scalar results in SLP, is
4150 unrolling. If the size of SCALAR_RESULTS is greater than
4151 GROUP_SIZE, we reduce them combining elements modulo
4152 GROUP_SIZE. */
4153 if (slp_reduc)
4155 tree res, first_res, new_res;
4156 gimple new_stmt;
4158 /* Reduce multiple scalar results in case of SLP unrolling. */
4159 for (j = group_size; scalar_results.iterate (j, &res);
4160 j++)
4162 first_res = scalar_results[j % group_size];
4163 new_stmt = gimple_build_assign_with_ops (code,
4164 new_scalar_dest, first_res, res);
4165 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4166 gimple_assign_set_lhs (new_stmt, new_res);
4167 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4168 scalar_results[j % group_size] = new_res;
4171 else
4172 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4173 scalar_results.safe_push (new_temp);
4175 extract_scalar_result = false;
4179 /* 2.4 Extract the final scalar result. Create:
4180 s_out3 = extract_field <v_out2, bitpos> */
4182 if (extract_scalar_result)
4184 tree rhs;
4186 if (dump_enabled_p ())
4187 dump_printf_loc (MSG_NOTE, vect_location,
4188 "extract scalar result");
4190 if (BYTES_BIG_ENDIAN)
4191 bitpos = size_binop (MULT_EXPR,
4192 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4193 TYPE_SIZE (scalar_type));
4194 else
4195 bitpos = bitsize_zero_node;
4197 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4198 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4199 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4200 gimple_assign_set_lhs (epilog_stmt, new_temp);
4201 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4202 scalar_results.safe_push (new_temp);
4205 vect_finalize_reduction:
4207 if (double_reduc)
4208 loop = loop->inner;
4210 /* 2.5 Adjust the final result by the initial value of the reduction
4211 variable. (When such adjustment is not needed, then
4212 'adjustment_def' is zero). For example, if code is PLUS we create:
4213 new_temp = loop_exit_def + adjustment_def */
4215 if (adjustment_def)
4217 gcc_assert (!slp_reduc);
4218 if (nested_in_vect_loop)
4220 new_phi = new_phis[0];
4221 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4222 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4223 new_dest = vect_create_destination_var (scalar_dest, vectype);
4225 else
4227 new_temp = scalar_results[0];
4228 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4229 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4230 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4233 epilog_stmt = gimple_build_assign (new_dest, expr);
4234 new_temp = make_ssa_name (new_dest, epilog_stmt);
4235 gimple_assign_set_lhs (epilog_stmt, new_temp);
4236 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
4237 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4238 if (nested_in_vect_loop)
4240 set_vinfo_for_stmt (epilog_stmt,
4241 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4242 NULL));
4243 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4244 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4246 if (!double_reduc)
4247 scalar_results.quick_push (new_temp);
4248 else
4249 scalar_results[0] = new_temp;
4251 else
4252 scalar_results[0] = new_temp;
4254 new_phis[0] = epilog_stmt;
4257 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4258 phis with new adjusted scalar results, i.e., replace use <s_out0>
4259 with use <s_out4>.
4261 Transform:
4262 loop_exit:
4263 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4264 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4265 v_out2 = reduce <v_out1>
4266 s_out3 = extract_field <v_out2, 0>
4267 s_out4 = adjust_result <s_out3>
4268 use <s_out0>
4269 use <s_out0>
4271 into:
4273 loop_exit:
4274 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4275 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4276 v_out2 = reduce <v_out1>
4277 s_out3 = extract_field <v_out2, 0>
4278 s_out4 = adjust_result <s_out3>
4279 use <s_out4>
4280 use <s_out4> */
4283 /* In SLP reduction chain we reduce vector results into one vector if
4284 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4285 the last stmt in the reduction chain, since we are looking for the loop
4286 exit phi node. */
4287 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4289 scalar_dest = gimple_assign_lhs (
4290 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4291 group_size = 1;
4294 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4295 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4296 need to match SCALAR_RESULTS with corresponding statements. The first
4297 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4298 the first vector stmt, etc.
4299 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4300 if (group_size > new_phis.length ())
4302 ratio = group_size / new_phis.length ();
4303 gcc_assert (!(group_size % new_phis.length ()));
4305 else
4306 ratio = 1;
4308 for (k = 0; k < group_size; k++)
4310 if (k % ratio == 0)
4312 epilog_stmt = new_phis[k / ratio];
4313 reduction_phi = reduction_phis[k / ratio];
4314 if (double_reduc)
4315 inner_phi = inner_phis[k / ratio];
4318 if (slp_reduc)
4320 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4322 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4323 /* SLP statements can't participate in patterns. */
4324 gcc_assert (!orig_stmt);
4325 scalar_dest = gimple_assign_lhs (current_stmt);
4328 phis.create (3);
4329 /* Find the loop-closed-use at the loop exit of the original scalar
4330 result. (The reduction result is expected to have two immediate uses -
4331 one at the latch block, and one at the loop exit). */
4332 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4333 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4334 && !is_gimple_debug (USE_STMT (use_p)))
4335 phis.safe_push (USE_STMT (use_p));
4337 /* While we expect to have found an exit_phi because of loop-closed-ssa
4338 form we can end up without one if the scalar cycle is dead. */
4340 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4342 if (outer_loop)
4344 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4345 gimple vect_phi;
4347 /* FORNOW. Currently not supporting the case that an inner-loop
4348 reduction is not used in the outer-loop (but only outside the
4349 outer-loop), unless it is double reduction. */
4350 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4351 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4352 || double_reduc);
4354 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4355 if (!double_reduc
4356 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4357 != vect_double_reduction_def)
4358 continue;
4360 /* Handle double reduction:
4362 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4363 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4364 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4365 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4367 At that point the regular reduction (stmt2 and stmt3) is
4368 already vectorized, as well as the exit phi node, stmt4.
4369 Here we vectorize the phi node of double reduction, stmt1, and
4370 update all relevant statements. */
4372 /* Go through all the uses of s2 to find double reduction phi
4373 node, i.e., stmt1 above. */
4374 orig_name = PHI_RESULT (exit_phi);
4375 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4377 stmt_vec_info use_stmt_vinfo;
4378 stmt_vec_info new_phi_vinfo;
4379 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4380 basic_block bb = gimple_bb (use_stmt);
4381 gimple use;
4383 /* Check that USE_STMT is really double reduction phi
4384 node. */
4385 if (gimple_code (use_stmt) != GIMPLE_PHI
4386 || gimple_phi_num_args (use_stmt) != 2
4387 || bb->loop_father != outer_loop)
4388 continue;
4389 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4390 if (!use_stmt_vinfo
4391 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4392 != vect_double_reduction_def)
4393 continue;
4395 /* Create vector phi node for double reduction:
4396 vs1 = phi <vs0, vs2>
4397 vs1 was created previously in this function by a call to
4398 vect_get_vec_def_for_operand and is stored in
4399 vec_initial_def;
4400 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4401 vs0 is created here. */
4403 /* Create vector phi node. */
4404 vect_phi = create_phi_node (vec_initial_def, bb);
4405 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4406 loop_vec_info_for_loop (outer_loop), NULL);
4407 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4409 /* Create vs0 - initial def of the double reduction phi. */
4410 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4411 loop_preheader_edge (outer_loop));
4412 init_def = get_initial_def_for_reduction (stmt,
4413 preheader_arg, NULL);
4414 vect_phi_init = vect_init_vector (use_stmt, init_def,
4415 vectype, NULL);
4417 /* Update phi node arguments with vs0 and vs2. */
4418 add_phi_arg (vect_phi, vect_phi_init,
4419 loop_preheader_edge (outer_loop),
4420 UNKNOWN_LOCATION);
4421 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4422 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4423 if (dump_enabled_p ())
4425 dump_printf_loc (MSG_NOTE, vect_location,
4426 "created double reduction phi node: ");
4427 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4430 vect_phi_res = PHI_RESULT (vect_phi);
4432 /* Replace the use, i.e., set the correct vs1 in the regular
4433 reduction phi node. FORNOW, NCOPIES is always 1, so the
4434 loop is redundant. */
4435 use = reduction_phi;
4436 for (j = 0; j < ncopies; j++)
4438 edge pr_edge = loop_preheader_edge (loop);
4439 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4440 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4446 phis.release ();
4447 if (nested_in_vect_loop)
4449 if (double_reduc)
4450 loop = outer_loop;
4451 else
4452 continue;
4455 phis.create (3);
4456 /* Find the loop-closed-use at the loop exit of the original scalar
4457 result. (The reduction result is expected to have two immediate uses,
4458 one at the latch block, and one at the loop exit). For double
4459 reductions we are looking for exit phis of the outer loop. */
4460 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4462 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4464 if (!is_gimple_debug (USE_STMT (use_p)))
4465 phis.safe_push (USE_STMT (use_p));
4467 else
4469 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4471 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4473 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4475 if (!flow_bb_inside_loop_p (loop,
4476 gimple_bb (USE_STMT (phi_use_p)))
4477 && !is_gimple_debug (USE_STMT (phi_use_p)))
4478 phis.safe_push (USE_STMT (phi_use_p));
4484 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4486 /* Replace the uses: */
4487 orig_name = PHI_RESULT (exit_phi);
4488 scalar_result = scalar_results[k];
4489 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4490 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4491 SET_USE (use_p, scalar_result);
4494 phis.release ();
4497 scalar_results.release ();
4498 inner_phis.release ();
4499 new_phis.release ();
4503 /* Function vectorizable_reduction.
4505 Check if STMT performs a reduction operation that can be vectorized.
4506 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4507 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4508 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4510 This function also handles reduction idioms (patterns) that have been
4511 recognized in advance during vect_pattern_recog. In this case, STMT may be
4512 of this form:
4513 X = pattern_expr (arg0, arg1, ..., X)
4514 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4515 sequence that had been detected and replaced by the pattern-stmt (STMT).
4517 In some cases of reduction patterns, the type of the reduction variable X is
4518 different than the type of the other arguments of STMT.
4519 In such cases, the vectype that is used when transforming STMT into a vector
4520 stmt is different than the vectype that is used to determine the
4521 vectorization factor, because it consists of a different number of elements
4522 than the actual number of elements that are being operated upon in parallel.
4524 For example, consider an accumulation of shorts into an int accumulator.
4525 On some targets it's possible to vectorize this pattern operating on 8
4526 shorts at a time (hence, the vectype for purposes of determining the
4527 vectorization factor should be V8HI); on the other hand, the vectype that
4528 is used to create the vector form is actually V4SI (the type of the result).
4530 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4531 indicates what is the actual level of parallelism (V8HI in the example), so
4532 that the right vectorization factor would be derived. This vectype
4533 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4534 be used to create the vectorized stmt. The right vectype for the vectorized
4535 stmt is obtained from the type of the result X:
4536 get_vectype_for_scalar_type (TREE_TYPE (X))
4538 This means that, contrary to "regular" reductions (or "regular" stmts in
4539 general), the following equation:
4540 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4541 does *NOT* necessarily hold for reduction patterns. */
4543 bool
4544 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4545 gimple *vec_stmt, slp_tree slp_node)
4547 tree vec_dest;
4548 tree scalar_dest;
4549 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4550 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4551 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4552 tree vectype_in = NULL_TREE;
4553 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4554 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4555 enum tree_code code, orig_code, epilog_reduc_code;
4556 enum machine_mode vec_mode;
4557 int op_type;
4558 optab optab, reduc_optab;
4559 tree new_temp = NULL_TREE;
4560 tree def;
4561 gimple def_stmt;
4562 enum vect_def_type dt;
4563 gimple new_phi = NULL;
4564 tree scalar_type;
4565 bool is_simple_use;
4566 gimple orig_stmt;
4567 stmt_vec_info orig_stmt_info;
4568 tree expr = NULL_TREE;
4569 int i;
4570 int ncopies;
4571 int epilog_copies;
4572 stmt_vec_info prev_stmt_info, prev_phi_info;
4573 bool single_defuse_cycle = false;
4574 tree reduc_def = NULL_TREE;
4575 gimple new_stmt = NULL;
4576 int j;
4577 tree ops[3];
4578 bool nested_cycle = false, found_nested_cycle_def = false;
4579 gimple reduc_def_stmt = NULL;
4580 /* The default is that the reduction variable is the last in statement. */
4581 int reduc_index = 2;
4582 bool double_reduc = false, dummy;
4583 basic_block def_bb;
4584 struct loop * def_stmt_loop, *outer_loop = NULL;
4585 tree def_arg;
4586 gimple def_arg_stmt;
4587 vec<tree> vec_oprnds0 = vNULL;
4588 vec<tree> vec_oprnds1 = vNULL;
4589 vec<tree> vect_defs = vNULL;
4590 vec<gimple> phis = vNULL;
4591 int vec_num;
4592 tree def0, def1, tem, op0, op1 = NULL_TREE;
4594 /* In case of reduction chain we switch to the first stmt in the chain, but
4595 we don't update STMT_INFO, since only the last stmt is marked as reduction
4596 and has reduction properties. */
4597 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4598 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4600 if (nested_in_vect_loop_p (loop, stmt))
4602 outer_loop = loop;
4603 loop = loop->inner;
4604 nested_cycle = true;
4607 /* 1. Is vectorizable reduction? */
4608 /* Not supportable if the reduction variable is used in the loop, unless
4609 it's a reduction chain. */
4610 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4611 && !GROUP_FIRST_ELEMENT (stmt_info))
4612 return false;
4614 /* Reductions that are not used even in an enclosing outer-loop,
4615 are expected to be "live" (used out of the loop). */
4616 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4617 && !STMT_VINFO_LIVE_P (stmt_info))
4618 return false;
4620 /* Make sure it was already recognized as a reduction computation. */
4621 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4622 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4623 return false;
4625 /* 2. Has this been recognized as a reduction pattern?
4627 Check if STMT represents a pattern that has been recognized
4628 in earlier analysis stages. For stmts that represent a pattern,
4629 the STMT_VINFO_RELATED_STMT field records the last stmt in
4630 the original sequence that constitutes the pattern. */
4632 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4633 if (orig_stmt)
4635 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4636 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4637 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4640 /* 3. Check the operands of the operation. The first operands are defined
4641 inside the loop body. The last operand is the reduction variable,
4642 which is defined by the loop-header-phi. */
4644 gcc_assert (is_gimple_assign (stmt));
4646 /* Flatten RHS. */
4647 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4649 case GIMPLE_SINGLE_RHS:
4650 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4651 if (op_type == ternary_op)
4653 tree rhs = gimple_assign_rhs1 (stmt);
4654 ops[0] = TREE_OPERAND (rhs, 0);
4655 ops[1] = TREE_OPERAND (rhs, 1);
4656 ops[2] = TREE_OPERAND (rhs, 2);
4657 code = TREE_CODE (rhs);
4659 else
4660 return false;
4661 break;
4663 case GIMPLE_BINARY_RHS:
4664 code = gimple_assign_rhs_code (stmt);
4665 op_type = TREE_CODE_LENGTH (code);
4666 gcc_assert (op_type == binary_op);
4667 ops[0] = gimple_assign_rhs1 (stmt);
4668 ops[1] = gimple_assign_rhs2 (stmt);
4669 break;
4671 case GIMPLE_TERNARY_RHS:
4672 code = gimple_assign_rhs_code (stmt);
4673 op_type = TREE_CODE_LENGTH (code);
4674 gcc_assert (op_type == ternary_op);
4675 ops[0] = gimple_assign_rhs1 (stmt);
4676 ops[1] = gimple_assign_rhs2 (stmt);
4677 ops[2] = gimple_assign_rhs3 (stmt);
4678 break;
4680 case GIMPLE_UNARY_RHS:
4681 return false;
4683 default:
4684 gcc_unreachable ();
4687 if (code == COND_EXPR && slp_node)
4688 return false;
4690 scalar_dest = gimple_assign_lhs (stmt);
4691 scalar_type = TREE_TYPE (scalar_dest);
4692 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4693 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4694 return false;
4696 /* Do not try to vectorize bit-precision reductions. */
4697 if ((TYPE_PRECISION (scalar_type)
4698 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4699 return false;
4701 /* All uses but the last are expected to be defined in the loop.
4702 The last use is the reduction variable. In case of nested cycle this
4703 assumption is not true: we use reduc_index to record the index of the
4704 reduction variable. */
4705 for (i = 0; i < op_type - 1; i++)
4707 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4708 if (i == 0 && code == COND_EXPR)
4709 continue;
4711 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4712 &def_stmt, &def, &dt, &tem);
4713 if (!vectype_in)
4714 vectype_in = tem;
4715 gcc_assert (is_simple_use);
4717 if (dt != vect_internal_def
4718 && dt != vect_external_def
4719 && dt != vect_constant_def
4720 && dt != vect_induction_def
4721 && !(dt == vect_nested_cycle && nested_cycle))
4722 return false;
4724 if (dt == vect_nested_cycle)
4726 found_nested_cycle_def = true;
4727 reduc_def_stmt = def_stmt;
4728 reduc_index = i;
4732 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4733 &def_stmt, &def, &dt, &tem);
4734 if (!vectype_in)
4735 vectype_in = tem;
4736 gcc_assert (is_simple_use);
4737 if (!(dt == vect_reduction_def
4738 || dt == vect_nested_cycle
4739 || ((dt == vect_internal_def || dt == vect_external_def
4740 || dt == vect_constant_def || dt == vect_induction_def)
4741 && nested_cycle && found_nested_cycle_def)))
4743 /* For pattern recognized stmts, orig_stmt might be a reduction,
4744 but some helper statements for the pattern might not, or
4745 might be COND_EXPRs with reduction uses in the condition. */
4746 gcc_assert (orig_stmt);
4747 return false;
4749 if (!found_nested_cycle_def)
4750 reduc_def_stmt = def_stmt;
4752 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4753 if (orig_stmt)
4754 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4755 reduc_def_stmt,
4756 !nested_cycle,
4757 &dummy));
4758 else
4760 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4761 !nested_cycle, &dummy);
4762 /* We changed STMT to be the first stmt in reduction chain, hence we
4763 check that in this case the first element in the chain is STMT. */
4764 gcc_assert (stmt == tmp
4765 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4768 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4769 return false;
4771 if (slp_node || PURE_SLP_STMT (stmt_info))
4772 ncopies = 1;
4773 else
4774 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4775 / TYPE_VECTOR_SUBPARTS (vectype_in));
4777 gcc_assert (ncopies >= 1);
4779 vec_mode = TYPE_MODE (vectype_in);
4781 if (code == COND_EXPR)
4783 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4785 if (dump_enabled_p ())
4786 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4787 "unsupported condition in reduction");
4789 return false;
4792 else
4794 /* 4. Supportable by target? */
4796 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4797 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4799 /* Shifts and rotates are only supported by vectorizable_shifts,
4800 not vectorizable_reduction. */
4801 if (dump_enabled_p ())
4802 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4803 "unsupported shift or rotation.");
4804 return false;
4807 /* 4.1. check support for the operation in the loop */
4808 optab = optab_for_tree_code (code, vectype_in, optab_default);
4809 if (!optab)
4811 if (dump_enabled_p ())
4812 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4813 "no optab.");
4815 return false;
4818 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4820 if (dump_enabled_p ())
4821 dump_printf (MSG_NOTE, "op not supported by target.");
4823 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4824 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4825 < vect_min_worthwhile_factor (code))
4826 return false;
4828 if (dump_enabled_p ())
4829 dump_printf (MSG_NOTE, "proceeding using word mode.");
4832 /* Worthwhile without SIMD support? */
4833 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4834 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4835 < vect_min_worthwhile_factor (code))
4837 if (dump_enabled_p ())
4838 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4839 "not worthwhile without SIMD support.");
4841 return false;
4845 /* 4.2. Check support for the epilog operation.
4847 If STMT represents a reduction pattern, then the type of the
4848 reduction variable may be different than the type of the rest
4849 of the arguments. For example, consider the case of accumulation
4850 of shorts into an int accumulator; The original code:
4851 S1: int_a = (int) short_a;
4852 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4854 was replaced with:
4855 STMT: int_acc = widen_sum <short_a, int_acc>
4857 This means that:
4858 1. The tree-code that is used to create the vector operation in the
4859 epilog code (that reduces the partial results) is not the
4860 tree-code of STMT, but is rather the tree-code of the original
4861 stmt from the pattern that STMT is replacing. I.e, in the example
4862 above we want to use 'widen_sum' in the loop, but 'plus' in the
4863 epilog.
4864 2. The type (mode) we use to check available target support
4865 for the vector operation to be created in the *epilog*, is
4866 determined by the type of the reduction variable (in the example
4867 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4868 However the type (mode) we use to check available target support
4869 for the vector operation to be created *inside the loop*, is
4870 determined by the type of the other arguments to STMT (in the
4871 example we'd check this: optab_handler (widen_sum_optab,
4872 vect_short_mode)).
4874 This is contrary to "regular" reductions, in which the types of all
4875 the arguments are the same as the type of the reduction variable.
4876 For "regular" reductions we can therefore use the same vector type
4877 (and also the same tree-code) when generating the epilog code and
4878 when generating the code inside the loop. */
4880 if (orig_stmt)
4882 /* This is a reduction pattern: get the vectype from the type of the
4883 reduction variable, and get the tree-code from orig_stmt. */
4884 orig_code = gimple_assign_rhs_code (orig_stmt);
4885 gcc_assert (vectype_out);
4886 vec_mode = TYPE_MODE (vectype_out);
4888 else
4890 /* Regular reduction: use the same vectype and tree-code as used for
4891 the vector code inside the loop can be used for the epilog code. */
4892 orig_code = code;
4895 if (nested_cycle)
4897 def_bb = gimple_bb (reduc_def_stmt);
4898 def_stmt_loop = def_bb->loop_father;
4899 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4900 loop_preheader_edge (def_stmt_loop));
4901 if (TREE_CODE (def_arg) == SSA_NAME
4902 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4903 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4904 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4905 && vinfo_for_stmt (def_arg_stmt)
4906 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4907 == vect_double_reduction_def)
4908 double_reduc = true;
4911 epilog_reduc_code = ERROR_MARK;
4912 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4914 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4915 optab_default);
4916 if (!reduc_optab)
4918 if (dump_enabled_p ())
4919 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4920 "no optab for reduction.");
4922 epilog_reduc_code = ERROR_MARK;
4925 if (reduc_optab
4926 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4928 if (dump_enabled_p ())
4929 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4930 "reduc op not supported by target.");
4932 epilog_reduc_code = ERROR_MARK;
4935 else
4937 if (!nested_cycle || double_reduc)
4939 if (dump_enabled_p ())
4940 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4941 "no reduc code for scalar code.");
4943 return false;
4947 if (double_reduc && ncopies > 1)
4949 if (dump_enabled_p ())
4950 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4951 "multiple types in double reduction");
4953 return false;
4956 /* In case of widenning multiplication by a constant, we update the type
4957 of the constant to be the type of the other operand. We check that the
4958 constant fits the type in the pattern recognition pass. */
4959 if (code == DOT_PROD_EXPR
4960 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
4962 if (TREE_CODE (ops[0]) == INTEGER_CST)
4963 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
4964 else if (TREE_CODE (ops[1]) == INTEGER_CST)
4965 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
4966 else
4968 if (dump_enabled_p ())
4969 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4970 "invalid types in dot-prod");
4972 return false;
4976 if (!vec_stmt) /* transformation not required. */
4978 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4979 return false;
4980 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4981 return true;
4984 /** Transform. **/
4986 if (dump_enabled_p ())
4987 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.");
4989 /* FORNOW: Multiple types are not supported for condition. */
4990 if (code == COND_EXPR)
4991 gcc_assert (ncopies == 1);
4993 /* Create the destination vector */
4994 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
4996 /* In case the vectorization factor (VF) is bigger than the number
4997 of elements that we can fit in a vectype (nunits), we have to generate
4998 more than one vector stmt - i.e - we need to "unroll" the
4999 vector stmt by a factor VF/nunits. For more details see documentation
5000 in vectorizable_operation. */
5002 /* If the reduction is used in an outer loop we need to generate
5003 VF intermediate results, like so (e.g. for ncopies=2):
5004 r0 = phi (init, r0)
5005 r1 = phi (init, r1)
5006 r0 = x0 + r0;
5007 r1 = x1 + r1;
5008 (i.e. we generate VF results in 2 registers).
5009 In this case we have a separate def-use cycle for each copy, and therefore
5010 for each copy we get the vector def for the reduction variable from the
5011 respective phi node created for this copy.
5013 Otherwise (the reduction is unused in the loop nest), we can combine
5014 together intermediate results, like so (e.g. for ncopies=2):
5015 r = phi (init, r)
5016 r = x0 + r;
5017 r = x1 + r;
5018 (i.e. we generate VF/2 results in a single register).
5019 In this case for each copy we get the vector def for the reduction variable
5020 from the vectorized reduction operation generated in the previous iteration.
5023 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5025 single_defuse_cycle = true;
5026 epilog_copies = 1;
5028 else
5029 epilog_copies = ncopies;
5031 prev_stmt_info = NULL;
5032 prev_phi_info = NULL;
5033 if (slp_node)
5035 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5036 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5037 == TYPE_VECTOR_SUBPARTS (vectype_in));
5039 else
5041 vec_num = 1;
5042 vec_oprnds0.create (1);
5043 if (op_type == ternary_op)
5044 vec_oprnds1.create (1);
5047 phis.create (vec_num);
5048 vect_defs.create (vec_num);
5049 if (!slp_node)
5050 vect_defs.quick_push (NULL_TREE);
5052 for (j = 0; j < ncopies; j++)
5054 if (j == 0 || !single_defuse_cycle)
5056 for (i = 0; i < vec_num; i++)
5058 /* Create the reduction-phi that defines the reduction
5059 operand. */
5060 new_phi = create_phi_node (vec_dest, loop->header);
5061 set_vinfo_for_stmt (new_phi,
5062 new_stmt_vec_info (new_phi, loop_vinfo,
5063 NULL));
5064 if (j == 0 || slp_node)
5065 phis.quick_push (new_phi);
5069 if (code == COND_EXPR)
5071 gcc_assert (!slp_node);
5072 vectorizable_condition (stmt, gsi, vec_stmt,
5073 PHI_RESULT (phis[0]),
5074 reduc_index, NULL);
5075 /* Multiple types are not supported for condition. */
5076 break;
5079 /* Handle uses. */
5080 if (j == 0)
5082 op0 = ops[!reduc_index];
5083 if (op_type == ternary_op)
5085 if (reduc_index == 0)
5086 op1 = ops[2];
5087 else
5088 op1 = ops[1];
5091 if (slp_node)
5092 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5093 slp_node, -1);
5094 else
5096 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5097 stmt, NULL);
5098 vec_oprnds0.quick_push (loop_vec_def0);
5099 if (op_type == ternary_op)
5101 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5102 NULL);
5103 vec_oprnds1.quick_push (loop_vec_def1);
5107 else
5109 if (!slp_node)
5111 enum vect_def_type dt;
5112 gimple dummy_stmt;
5113 tree dummy;
5115 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5116 &dummy_stmt, &dummy, &dt);
5117 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5118 loop_vec_def0);
5119 vec_oprnds0[0] = loop_vec_def0;
5120 if (op_type == ternary_op)
5122 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5123 &dummy, &dt);
5124 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5125 loop_vec_def1);
5126 vec_oprnds1[0] = loop_vec_def1;
5130 if (single_defuse_cycle)
5131 reduc_def = gimple_assign_lhs (new_stmt);
5133 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5136 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5138 if (slp_node)
5139 reduc_def = PHI_RESULT (phis[i]);
5140 else
5142 if (!single_defuse_cycle || j == 0)
5143 reduc_def = PHI_RESULT (new_phi);
5146 def1 = ((op_type == ternary_op)
5147 ? vec_oprnds1[i] : NULL);
5148 if (op_type == binary_op)
5150 if (reduc_index == 0)
5151 expr = build2 (code, vectype_out, reduc_def, def0);
5152 else
5153 expr = build2 (code, vectype_out, def0, reduc_def);
5155 else
5157 if (reduc_index == 0)
5158 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5159 else
5161 if (reduc_index == 1)
5162 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5163 else
5164 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5168 new_stmt = gimple_build_assign (vec_dest, expr);
5169 new_temp = make_ssa_name (vec_dest, new_stmt);
5170 gimple_assign_set_lhs (new_stmt, new_temp);
5171 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5173 if (slp_node)
5175 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5176 vect_defs.quick_push (new_temp);
5178 else
5179 vect_defs[0] = new_temp;
5182 if (slp_node)
5183 continue;
5185 if (j == 0)
5186 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5187 else
5188 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5190 prev_stmt_info = vinfo_for_stmt (new_stmt);
5191 prev_phi_info = vinfo_for_stmt (new_phi);
5194 /* Finalize the reduction-phi (set its arguments) and create the
5195 epilog reduction code. */
5196 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5198 new_temp = gimple_assign_lhs (*vec_stmt);
5199 vect_defs[0] = new_temp;
5202 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5203 epilog_reduc_code, phis, reduc_index,
5204 double_reduc, slp_node);
5206 phis.release ();
5207 vect_defs.release ();
5208 vec_oprnds0.release ();
5209 vec_oprnds1.release ();
5211 return true;
5214 /* Function vect_min_worthwhile_factor.
5216 For a loop where we could vectorize the operation indicated by CODE,
5217 return the minimum vectorization factor that makes it worthwhile
5218 to use generic vectors. */
5220 vect_min_worthwhile_factor (enum tree_code code)
5222 switch (code)
5224 case PLUS_EXPR:
5225 case MINUS_EXPR:
5226 case NEGATE_EXPR:
5227 return 4;
5229 case BIT_AND_EXPR:
5230 case BIT_IOR_EXPR:
5231 case BIT_XOR_EXPR:
5232 case BIT_NOT_EXPR:
5233 return 2;
5235 default:
5236 return INT_MAX;
5241 /* Function vectorizable_induction
5243 Check if PHI performs an induction computation that can be vectorized.
5244 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5245 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5246 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5248 bool
5249 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5250 gimple *vec_stmt)
5252 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5253 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5254 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5255 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5256 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5257 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5258 tree vec_def;
5260 gcc_assert (ncopies >= 1);
5261 /* FORNOW. These restrictions should be relaxed. */
5262 if (nested_in_vect_loop_p (loop, phi))
5264 imm_use_iterator imm_iter;
5265 use_operand_p use_p;
5266 gimple exit_phi;
5267 edge latch_e;
5268 tree loop_arg;
5270 if (ncopies > 1)
5272 if (dump_enabled_p ())
5273 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5274 "multiple types in nested loop.");
5275 return false;
5278 exit_phi = NULL;
5279 latch_e = loop_latch_edge (loop->inner);
5280 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5281 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5283 if (!flow_bb_inside_loop_p (loop->inner,
5284 gimple_bb (USE_STMT (use_p))))
5286 exit_phi = USE_STMT (use_p);
5287 break;
5290 if (exit_phi)
5292 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5293 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5294 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5296 if (dump_enabled_p ())
5297 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5298 "inner-loop induction only used outside "
5299 "of the outer vectorized loop.");
5300 return false;
5305 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5306 return false;
5308 /* FORNOW: SLP not supported. */
5309 if (STMT_SLP_TYPE (stmt_info))
5310 return false;
5312 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5314 if (gimple_code (phi) != GIMPLE_PHI)
5315 return false;
5317 if (!vec_stmt) /* transformation not required. */
5319 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5320 if (dump_enabled_p ())
5321 dump_printf_loc (MSG_NOTE, vect_location,
5322 "=== vectorizable_induction ===");
5323 vect_model_induction_cost (stmt_info, ncopies);
5324 return true;
5327 /** Transform. **/
5329 if (dump_enabled_p ())
5330 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.");
5332 vec_def = get_initial_def_for_induction (phi);
5333 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5334 return true;
5337 /* Function vectorizable_live_operation.
5339 STMT computes a value that is used outside the loop. Check if
5340 it can be supported. */
5342 bool
5343 vectorizable_live_operation (gimple stmt,
5344 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5345 gimple *vec_stmt ATTRIBUTE_UNUSED)
5347 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5348 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5349 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5350 int i;
5351 int op_type;
5352 tree op;
5353 tree def;
5354 gimple def_stmt;
5355 enum vect_def_type dt;
5356 enum tree_code code;
5357 enum gimple_rhs_class rhs_class;
5359 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5361 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5362 return false;
5364 if (!is_gimple_assign (stmt))
5365 return false;
5367 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5368 return false;
5370 /* FORNOW. CHECKME. */
5371 if (nested_in_vect_loop_p (loop, stmt))
5372 return false;
5374 code = gimple_assign_rhs_code (stmt);
5375 op_type = TREE_CODE_LENGTH (code);
5376 rhs_class = get_gimple_rhs_class (code);
5377 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5378 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5380 /* FORNOW: support only if all uses are invariant. This means
5381 that the scalar operations can remain in place, unvectorized.
5382 The original last scalar value that they compute will be used. */
5384 for (i = 0; i < op_type; i++)
5386 if (rhs_class == GIMPLE_SINGLE_RHS)
5387 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5388 else
5389 op = gimple_op (stmt, i + 1);
5390 if (op
5391 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5392 &dt))
5394 if (dump_enabled_p ())
5395 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5396 "use not simple.");
5397 return false;
5400 if (dt != vect_external_def && dt != vect_constant_def)
5401 return false;
5404 /* No transformation is required for the cases we currently support. */
5405 return true;
5408 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5410 static void
5411 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5413 ssa_op_iter op_iter;
5414 imm_use_iterator imm_iter;
5415 def_operand_p def_p;
5416 gimple ustmt;
5418 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5420 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5422 basic_block bb;
5424 if (!is_gimple_debug (ustmt))
5425 continue;
5427 bb = gimple_bb (ustmt);
5429 if (!flow_bb_inside_loop_p (loop, bb))
5431 if (gimple_debug_bind_p (ustmt))
5433 if (dump_enabled_p ())
5434 dump_printf_loc (MSG_NOTE, vect_location,
5435 "killing debug use");
5437 gimple_debug_bind_reset_value (ustmt);
5438 update_stmt (ustmt);
5440 else
5441 gcc_unreachable ();
5447 /* Function vect_transform_loop.
5449 The analysis phase has determined that the loop is vectorizable.
5450 Vectorize the loop - created vectorized stmts to replace the scalar
5451 stmts in the loop, and update the loop exit condition. */
5453 void
5454 vect_transform_loop (loop_vec_info loop_vinfo)
5456 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5457 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5458 int nbbs = loop->num_nodes;
5459 gimple_stmt_iterator si;
5460 int i;
5461 tree ratio = NULL;
5462 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5463 bool grouped_store;
5464 bool slp_scheduled = false;
5465 unsigned int nunits;
5466 gimple stmt, pattern_stmt;
5467 gimple_seq pattern_def_seq = NULL;
5468 gimple_stmt_iterator pattern_def_si = gsi_none ();
5469 bool transform_pattern_stmt = false;
5470 bool check_profitability = false;
5471 int th;
5472 /* Record number of iterations before we started tampering with the profile. */
5473 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5475 if (dump_enabled_p ())
5476 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===");
5478 /* If profile is inprecise, we have chance to fix it up. */
5479 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5480 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5482 /* Use the more conservative vectorization threshold. If the number
5483 of iterations is constant assume the cost check has been performed
5484 by our caller. If the threshold makes all loops profitable that
5485 run at least the vectorization factor number of times checking
5486 is pointless, too. */
5487 th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
5488 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
5489 th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
5490 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5491 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5493 if (dump_enabled_p ())
5494 dump_printf_loc (MSG_NOTE, vect_location,
5495 "Profitability threshold is %d loop iterations.", th);
5496 check_profitability = true;
5499 /* Peel the loop if there are data refs with unknown alignment.
5500 Only one data ref with unknown store is allowed. */
5502 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
5504 vect_do_peeling_for_alignment (loop_vinfo, th, check_profitability);
5505 check_profitability = false;
5508 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5509 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5511 vect_loop_versioning (loop_vinfo, th, check_profitability);
5512 check_profitability = false;
5515 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5516 compile time constant), or it is a constant that doesn't divide by the
5517 vectorization factor, then an epilog loop needs to be created.
5518 We therefore duplicate the loop: the original loop will be vectorized,
5519 and will compute the first (n/VF) iterations. The second copy of the loop
5520 will remain scalar and will compute the remaining (n%VF) iterations.
5521 (VF is the vectorization factor). */
5523 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5524 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5525 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
5526 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5527 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
5528 th, check_profitability);
5529 else
5530 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5531 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5533 /* 1) Make sure the loop header has exactly two entries
5534 2) Make sure we have a preheader basic block. */
5536 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5538 split_edge (loop_preheader_edge (loop));
5540 /* FORNOW: the vectorizer supports only loops which body consist
5541 of one basic block (header + empty latch). When the vectorizer will
5542 support more involved loop forms, the order by which the BBs are
5543 traversed need to be reconsidered. */
5545 for (i = 0; i < nbbs; i++)
5547 basic_block bb = bbs[i];
5548 stmt_vec_info stmt_info;
5549 gimple phi;
5551 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5553 phi = gsi_stmt (si);
5554 if (dump_enabled_p ())
5556 dump_printf_loc (MSG_NOTE, vect_location,
5557 "------>vectorizing phi: ");
5558 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5560 stmt_info = vinfo_for_stmt (phi);
5561 if (!stmt_info)
5562 continue;
5564 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5565 vect_loop_kill_debug_uses (loop, phi);
5567 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5568 && !STMT_VINFO_LIVE_P (stmt_info))
5569 continue;
5571 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5572 != (unsigned HOST_WIDE_INT) vectorization_factor)
5573 && dump_enabled_p ())
5574 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.");
5576 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5578 if (dump_enabled_p ())
5579 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.");
5580 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5584 pattern_stmt = NULL;
5585 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5587 bool is_store;
5589 if (transform_pattern_stmt)
5590 stmt = pattern_stmt;
5591 else
5592 stmt = gsi_stmt (si);
5594 if (dump_enabled_p ())
5596 dump_printf_loc (MSG_NOTE, vect_location,
5597 "------>vectorizing statement: ");
5598 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5601 stmt_info = vinfo_for_stmt (stmt);
5603 /* vector stmts created in the outer-loop during vectorization of
5604 stmts in an inner-loop may not have a stmt_info, and do not
5605 need to be vectorized. */
5606 if (!stmt_info)
5608 gsi_next (&si);
5609 continue;
5612 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5613 vect_loop_kill_debug_uses (loop, stmt);
5615 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5616 && !STMT_VINFO_LIVE_P (stmt_info))
5618 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5619 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5620 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5621 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5623 stmt = pattern_stmt;
5624 stmt_info = vinfo_for_stmt (stmt);
5626 else
5628 gsi_next (&si);
5629 continue;
5632 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5633 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5634 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5635 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5636 transform_pattern_stmt = true;
5638 /* If pattern statement has def stmts, vectorize them too. */
5639 if (is_pattern_stmt_p (stmt_info))
5641 if (pattern_def_seq == NULL)
5643 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5644 pattern_def_si = gsi_start (pattern_def_seq);
5646 else if (!gsi_end_p (pattern_def_si))
5647 gsi_next (&pattern_def_si);
5648 if (pattern_def_seq != NULL)
5650 gimple pattern_def_stmt = NULL;
5651 stmt_vec_info pattern_def_stmt_info = NULL;
5653 while (!gsi_end_p (pattern_def_si))
5655 pattern_def_stmt = gsi_stmt (pattern_def_si);
5656 pattern_def_stmt_info
5657 = vinfo_for_stmt (pattern_def_stmt);
5658 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5659 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5660 break;
5661 gsi_next (&pattern_def_si);
5664 if (!gsi_end_p (pattern_def_si))
5666 if (dump_enabled_p ())
5668 dump_printf_loc (MSG_NOTE, vect_location,
5669 "==> vectorizing pattern def "
5670 "stmt: ");
5671 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
5672 pattern_def_stmt, 0);
5675 stmt = pattern_def_stmt;
5676 stmt_info = pattern_def_stmt_info;
5678 else
5680 pattern_def_si = gsi_none ();
5681 transform_pattern_stmt = false;
5684 else
5685 transform_pattern_stmt = false;
5688 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5689 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
5690 STMT_VINFO_VECTYPE (stmt_info));
5691 if (!STMT_SLP_TYPE (stmt_info)
5692 && nunits != (unsigned int) vectorization_factor
5693 && dump_enabled_p ())
5694 /* For SLP VF is set according to unrolling factor, and not to
5695 vector size, hence for SLP this print is not valid. */
5696 dump_printf_loc (MSG_NOTE, vect_location,
5697 "multiple-types.");
5699 /* SLP. Schedule all the SLP instances when the first SLP stmt is
5700 reached. */
5701 if (STMT_SLP_TYPE (stmt_info))
5703 if (!slp_scheduled)
5705 slp_scheduled = true;
5707 if (dump_enabled_p ())
5708 dump_printf_loc (MSG_NOTE, vect_location,
5709 "=== scheduling SLP instances ===");
5711 vect_schedule_slp (loop_vinfo, NULL);
5714 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
5715 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
5717 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5719 pattern_def_seq = NULL;
5720 gsi_next (&si);
5722 continue;
5726 /* -------- vectorize statement ------------ */
5727 if (dump_enabled_p ())
5728 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.");
5730 grouped_store = false;
5731 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
5732 if (is_store)
5734 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
5736 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
5737 interleaving chain was completed - free all the stores in
5738 the chain. */
5739 gsi_next (&si);
5740 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
5741 continue;
5743 else
5745 /* Free the attached stmt_vec_info and remove the stmt. */
5746 gimple store = gsi_stmt (si);
5747 free_stmt_vec_info (store);
5748 unlink_stmt_vdef (store);
5749 gsi_remove (&si, true);
5750 release_defs (store);
5751 continue;
5755 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5757 pattern_def_seq = NULL;
5758 gsi_next (&si);
5760 } /* stmts in BB */
5761 } /* BBs in loop */
5763 slpeel_make_loop_iterate_ntimes (loop, ratio);
5765 /* Reduce loop iterations by the vectorization factor. */
5766 scale_loop_profile (loop, RDIV (REG_BR_PROB_BASE , vectorization_factor),
5767 expected_iterations / vectorization_factor);
5768 loop->nb_iterations_upper_bound
5769 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
5770 FLOOR_DIV_EXPR);
5771 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5772 && loop->nb_iterations_upper_bound != double_int_zero)
5773 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
5774 if (loop->any_estimate)
5776 loop->nb_iterations_estimate
5777 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
5778 FLOOR_DIV_EXPR);
5779 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5780 && loop->nb_iterations_estimate != double_int_zero)
5781 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
5784 /* The memory tags and pointers in vectorized statements need to
5785 have their SSA forms updated. FIXME, why can't this be delayed
5786 until all the loops have been transformed? */
5787 update_ssa (TODO_update_ssa);
5789 if (dump_enabled_p ())
5790 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location, "LOOP VECTORIZED.");
5791 if (loop->inner && dump_enabled_p ())
5792 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
5793 "OUTER LOOP VECTORIZED.");