2014-02-01 Christophe Lyon <christophe.lyon@linaro.org>
[official-gcc.git] / gcc-4_8-branch / gcc / tree-vect-data-refs.c
blob1780758386df8787d1b538d757e308578a051df8
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "target.h"
31 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "dumpfile.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "diagnostic-core.h"
41 /* Need to include rtl.h, expr.h, etc. for optabs. */
42 #include "expr.h"
43 #include "optabs.h"
45 /* Return true if load- or store-lanes optab OPTAB is implemented for
46 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
48 static bool
49 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
50 tree vectype, unsigned HOST_WIDE_INT count)
52 enum machine_mode mode, array_mode;
53 bool limit_p;
55 mode = TYPE_MODE (vectype);
56 limit_p = !targetm.array_mode_supported_p (mode, count);
57 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
58 MODE_INT, limit_p);
60 if (array_mode == BLKmode)
62 if (dump_enabled_p ())
63 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
64 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]",
65 GET_MODE_NAME (mode), count);
66 return false;
69 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
71 if (dump_enabled_p ())
72 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
73 "cannot use %s<%s><%s>", name,
74 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
75 return false;
78 if (dump_enabled_p ())
79 dump_printf_loc (MSG_NOTE, vect_location,
80 "can use %s<%s><%s>", name, GET_MODE_NAME (array_mode),
81 GET_MODE_NAME (mode));
83 return true;
87 /* Return the smallest scalar part of STMT.
88 This is used to determine the vectype of the stmt. We generally set the
89 vectype according to the type of the result (lhs). For stmts whose
90 result-type is different than the type of the arguments (e.g., demotion,
91 promotion), vectype will be reset appropriately (later). Note that we have
92 to visit the smallest datatype in this function, because that determines the
93 VF. If the smallest datatype in the loop is present only as the rhs of a
94 promotion operation - we'd miss it.
95 Such a case, where a variable of this datatype does not appear in the lhs
96 anywhere in the loop, can only occur if it's an invariant: e.g.:
97 'int_x = (int) short_inv', which we'd expect to have been optimized away by
98 invariant motion. However, we cannot rely on invariant motion to always
99 take invariants out of the loop, and so in the case of promotion we also
100 have to check the rhs.
101 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
102 types. */
104 tree
105 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
106 HOST_WIDE_INT *rhs_size_unit)
108 tree scalar_type = gimple_expr_type (stmt);
109 HOST_WIDE_INT lhs, rhs;
111 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
113 if (is_gimple_assign (stmt)
114 && (gimple_assign_cast_p (stmt)
115 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
116 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
117 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
119 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
121 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
122 if (rhs < lhs)
123 scalar_type = rhs_type;
126 *lhs_size_unit = lhs;
127 *rhs_size_unit = rhs;
128 return scalar_type;
132 /* Find the place of the data-ref in STMT in the interleaving chain that starts
133 from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
136 vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
138 gimple next_stmt = first_stmt;
139 int result = 0;
141 if (first_stmt != GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
142 return -1;
144 while (next_stmt && next_stmt != stmt)
146 result++;
147 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
150 if (next_stmt)
151 return result;
152 else
153 return -1;
157 /* Function vect_insert_into_interleaving_chain.
159 Insert DRA into the interleaving chain of DRB according to DRA's INIT. */
161 static void
162 vect_insert_into_interleaving_chain (struct data_reference *dra,
163 struct data_reference *drb)
165 gimple prev, next;
166 tree next_init;
167 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
168 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
170 prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
171 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
172 while (next)
174 next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
175 if (tree_int_cst_compare (next_init, DR_INIT (dra)) > 0)
177 /* Insert here. */
178 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
179 GROUP_NEXT_ELEMENT (stmtinfo_a) = next;
180 return;
182 prev = next;
183 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
186 /* We got to the end of the list. Insert here. */
187 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
188 GROUP_NEXT_ELEMENT (stmtinfo_a) = NULL;
192 /* Function vect_update_interleaving_chain.
194 For two data-refs DRA and DRB that are a part of a chain interleaved data
195 accesses, update the interleaving chain. DRB's INIT is smaller than DRA's.
197 There are four possible cases:
198 1. New stmts - both DRA and DRB are not a part of any chain:
199 FIRST_DR = DRB
200 NEXT_DR (DRB) = DRA
201 2. DRB is a part of a chain and DRA is not:
202 no need to update FIRST_DR
203 no need to insert DRB
204 insert DRA according to init
205 3. DRA is a part of a chain and DRB is not:
206 if (init of FIRST_DR > init of DRB)
207 FIRST_DR = DRB
208 NEXT(FIRST_DR) = previous FIRST_DR
209 else
210 insert DRB according to its init
211 4. both DRA and DRB are in some interleaving chains:
212 choose the chain with the smallest init of FIRST_DR
213 insert the nodes of the second chain into the first one. */
215 static void
216 vect_update_interleaving_chain (struct data_reference *drb,
217 struct data_reference *dra)
219 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
220 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
221 tree next_init, init_dra_chain, init_drb_chain;
222 gimple first_a, first_b;
223 tree node_init;
224 gimple node, prev, next, first_stmt;
226 /* 1. New stmts - both DRA and DRB are not a part of any chain. */
227 if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
229 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (drb);
230 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
231 GROUP_NEXT_ELEMENT (stmtinfo_b) = DR_STMT (dra);
232 return;
235 /* 2. DRB is a part of a chain and DRA is not. */
236 if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && GROUP_FIRST_ELEMENT (stmtinfo_b))
238 GROUP_FIRST_ELEMENT (stmtinfo_a) = GROUP_FIRST_ELEMENT (stmtinfo_b);
239 /* Insert DRA into the chain of DRB. */
240 vect_insert_into_interleaving_chain (dra, drb);
241 return;
244 /* 3. DRA is a part of a chain and DRB is not. */
245 if (GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
247 gimple old_first_stmt = GROUP_FIRST_ELEMENT (stmtinfo_a);
248 tree init_old = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (
249 old_first_stmt)));
250 gimple tmp;
252 if (tree_int_cst_compare (init_old, DR_INIT (drb)) > 0)
254 /* DRB's init is smaller than the init of the stmt previously marked
255 as the first stmt of the interleaving chain of DRA. Therefore, we
256 update FIRST_STMT and put DRB in the head of the list. */
257 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
258 GROUP_NEXT_ELEMENT (stmtinfo_b) = old_first_stmt;
260 /* Update all the stmts in the list to point to the new FIRST_STMT. */
261 tmp = old_first_stmt;
262 while (tmp)
264 GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) = DR_STMT (drb);
265 tmp = GROUP_NEXT_ELEMENT (vinfo_for_stmt (tmp));
268 else
270 /* Insert DRB in the list of DRA. */
271 vect_insert_into_interleaving_chain (drb, dra);
272 GROUP_FIRST_ELEMENT (stmtinfo_b) = GROUP_FIRST_ELEMENT (stmtinfo_a);
274 return;
277 /* 4. both DRA and DRB are in some interleaving chains. */
278 first_a = GROUP_FIRST_ELEMENT (stmtinfo_a);
279 first_b = GROUP_FIRST_ELEMENT (stmtinfo_b);
280 if (first_a == first_b)
281 return;
282 init_dra_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_a)));
283 init_drb_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_b)));
285 if (tree_int_cst_compare (init_dra_chain, init_drb_chain) > 0)
287 /* Insert the nodes of DRA chain into the DRB chain.
288 After inserting a node, continue from this node of the DRB chain (don't
289 start from the beginning. */
290 node = GROUP_FIRST_ELEMENT (stmtinfo_a);
291 prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
292 first_stmt = first_b;
294 else
296 /* Insert the nodes of DRB chain into the DRA chain.
297 After inserting a node, continue from this node of the DRA chain (don't
298 start from the beginning. */
299 node = GROUP_FIRST_ELEMENT (stmtinfo_b);
300 prev = GROUP_FIRST_ELEMENT (stmtinfo_a);
301 first_stmt = first_a;
304 while (node)
306 node_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (node)));
307 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
308 while (next)
310 next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
311 if (tree_int_cst_compare (next_init, node_init) > 0)
313 /* Insert here. */
314 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
315 GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = next;
316 prev = node;
317 break;
319 prev = next;
320 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
322 if (!next)
324 /* We got to the end of the list. Insert here. */
325 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
326 GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = NULL;
327 prev = node;
329 GROUP_FIRST_ELEMENT (vinfo_for_stmt (node)) = first_stmt;
330 node = GROUP_NEXT_ELEMENT (vinfo_for_stmt (node));
334 /* Check dependence between DRA and DRB for basic block vectorization.
335 If the accesses share same bases and offsets, we can compare their initial
336 constant offsets to decide whether they differ or not. In case of a read-
337 write dependence we check that the load is before the store to ensure that
338 vectorization will not change the order of the accesses. */
340 static bool
341 vect_drs_dependent_in_basic_block (struct data_reference *dra,
342 struct data_reference *drb)
344 HOST_WIDE_INT type_size_a, type_size_b, init_a, init_b;
345 gimple earlier_stmt;
347 /* We only call this function for pairs of loads and stores, but we verify
348 it here. */
349 if (DR_IS_READ (dra) == DR_IS_READ (drb))
351 if (DR_IS_READ (dra))
352 return false;
353 else
354 return true;
357 /* Check that the data-refs have same bases and offsets. If not, we can't
358 determine if they are dependent. */
359 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
360 || !dr_equal_offsets_p (dra, drb))
361 return true;
363 /* Check the types. */
364 type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
365 type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
367 if (type_size_a != type_size_b
368 || !types_compatible_p (TREE_TYPE (DR_REF (dra)),
369 TREE_TYPE (DR_REF (drb))))
370 return true;
372 init_a = TREE_INT_CST_LOW (DR_INIT (dra));
373 init_b = TREE_INT_CST_LOW (DR_INIT (drb));
375 /* Two different locations - no dependence. */
376 if (init_a != init_b)
377 return false;
379 /* We have a read-write dependence. Check that the load is before the store.
380 When we vectorize basic blocks, vector load can be only before
381 corresponding scalar load, and vector store can be only after its
382 corresponding scalar store. So the order of the acceses is preserved in
383 case the load is before the store. */
384 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
385 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
386 return false;
388 return true;
392 /* Function vect_check_interleaving.
394 Check if DRA and DRB are a part of interleaving. In case they are, insert
395 DRA and DRB in an interleaving chain. */
397 static bool
398 vect_check_interleaving (struct data_reference *dra,
399 struct data_reference *drb)
401 HOST_WIDE_INT type_size_a, type_size_b, diff_mod_size, step, init_a, init_b;
403 /* Check that the data-refs have same first location (except init) and they
404 are both either store or load (not load and store). */
405 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
406 || !dr_equal_offsets_p (dra, drb)
407 || !tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb))
408 || DR_IS_READ (dra) != DR_IS_READ (drb))
409 return false;
411 /* Check:
412 1. data-refs are of the same type
413 2. their steps are equal
414 3. the step (if greater than zero) is greater than the difference between
415 data-refs' inits. */
416 type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
417 type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
419 if (type_size_a != type_size_b
420 || tree_int_cst_compare (DR_STEP (dra), DR_STEP (drb))
421 || !types_compatible_p (TREE_TYPE (DR_REF (dra)),
422 TREE_TYPE (DR_REF (drb))))
423 return false;
425 init_a = TREE_INT_CST_LOW (DR_INIT (dra));
426 init_b = TREE_INT_CST_LOW (DR_INIT (drb));
427 step = TREE_INT_CST_LOW (DR_STEP (dra));
429 if (init_a > init_b)
431 /* If init_a == init_b + the size of the type * k, we have an interleaving,
432 and DRB is accessed before DRA. */
433 diff_mod_size = (init_a - init_b) % type_size_a;
435 if (step && (init_a - init_b) > step)
436 return false;
438 if (diff_mod_size == 0)
440 vect_update_interleaving_chain (drb, dra);
441 if (dump_enabled_p ())
443 dump_printf_loc (MSG_NOTE, vect_location,
444 "Detected interleaving ");
445 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
446 dump_printf (MSG_NOTE, " and ");
447 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
449 return true;
452 else
454 /* If init_b == init_a + the size of the type * k, we have an
455 interleaving, and DRA is accessed before DRB. */
456 diff_mod_size = (init_b - init_a) % type_size_a;
458 if (step && (init_b - init_a) > step)
459 return false;
461 if (diff_mod_size == 0)
463 vect_update_interleaving_chain (dra, drb);
464 if (dump_enabled_p ())
466 dump_printf_loc (MSG_NOTE, vect_location,
467 "Detected interleaving ");
468 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
469 dump_printf (MSG_NOTE, " and ");
470 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
472 return true;
476 return false;
479 /* Check if data references pointed by DR_I and DR_J are same or
480 belong to same interleaving group. Return FALSE if drs are
481 different, otherwise return TRUE. */
483 static bool
484 vect_same_range_drs (data_reference_p dr_i, data_reference_p dr_j)
486 gimple stmt_i = DR_STMT (dr_i);
487 gimple stmt_j = DR_STMT (dr_j);
489 if (operand_equal_p (DR_REF (dr_i), DR_REF (dr_j), 0)
490 || (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
491 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j))
492 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
493 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j)))))
494 return true;
495 else
496 return false;
499 /* If address ranges represented by DDR_I and DDR_J are equal,
500 return TRUE, otherwise return FALSE. */
502 static bool
503 vect_vfa_range_equal (ddr_p ddr_i, ddr_p ddr_j)
505 if ((vect_same_range_drs (DDR_A (ddr_i), DDR_A (ddr_j))
506 && vect_same_range_drs (DDR_B (ddr_i), DDR_B (ddr_j)))
507 || (vect_same_range_drs (DDR_A (ddr_i), DDR_B (ddr_j))
508 && vect_same_range_drs (DDR_B (ddr_i), DDR_A (ddr_j))))
509 return true;
510 else
511 return false;
514 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
515 tested at run-time. Return TRUE if DDR was successfully inserted.
516 Return false if versioning is not supported. */
518 static bool
519 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
521 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
523 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
524 return false;
526 if (dump_enabled_p ())
528 dump_printf_loc (MSG_NOTE, vect_location,
529 "mark for run-time aliasing test between ");
530 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
531 dump_printf (MSG_NOTE, " and ");
532 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
535 if (optimize_loop_nest_for_size_p (loop))
537 if (dump_enabled_p ())
538 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
539 "versioning not supported when optimizing for size.");
540 return false;
543 /* FORNOW: We don't support versioning with outer-loop vectorization. */
544 if (loop->inner)
546 if (dump_enabled_p ())
547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
548 "versioning not yet supported for outer-loops.");
549 return false;
552 /* FORNOW: We don't support creating runtime alias tests for non-constant
553 step. */
554 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
555 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
557 if (dump_enabled_p ())
558 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
559 "versioning not yet supported for non-constant "
560 "step");
561 return false;
564 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
565 return true;
569 /* Function vect_analyze_data_ref_dependence.
571 Return TRUE if there (might) exist a dependence between a memory-reference
572 DRA and a memory-reference DRB. When versioning for alias may check a
573 dependence at run-time, return FALSE. Adjust *MAX_VF according to
574 the data dependence. */
576 static bool
577 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
578 loop_vec_info loop_vinfo, int *max_vf)
580 unsigned int i;
581 struct loop *loop = NULL;
582 struct data_reference *dra = DDR_A (ddr);
583 struct data_reference *drb = DDR_B (ddr);
584 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
585 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
586 lambda_vector dist_v;
587 unsigned int loop_depth;
589 /* Don't bother to analyze statements marked as unvectorizable. */
590 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
591 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
592 return false;
594 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
596 /* Independent data accesses. */
597 vect_check_interleaving (dra, drb);
598 return false;
601 if (loop_vinfo)
602 loop = LOOP_VINFO_LOOP (loop_vinfo);
604 if ((DR_IS_READ (dra) && DR_IS_READ (drb) && loop_vinfo) || dra == drb)
605 return false;
607 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
609 gimple earlier_stmt;
611 if (loop_vinfo)
613 if (dump_enabled_p ())
615 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
616 "versioning for alias required: "
617 "can't determine dependence between ");
618 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
619 DR_REF (dra));
620 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
621 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
622 DR_REF (drb));
625 /* Add to list of ddrs that need to be tested at run-time. */
626 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
629 /* When vectorizing a basic block unknown depnedence can still mean
630 grouped access. */
631 if (vect_check_interleaving (dra, drb))
632 return false;
634 /* Read-read is OK (we need this check here, after checking for
635 interleaving). */
636 if (DR_IS_READ (dra) && DR_IS_READ (drb))
637 return false;
639 if (dump_enabled_p ())
641 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
642 "can't determine dependence between ");
643 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
648 /* We do not vectorize basic blocks with write-write dependencies. */
649 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
650 return true;
652 /* Check that it's not a load-after-store dependence. */
653 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
654 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
655 return true;
657 return false;
660 /* Versioning for alias is not yet supported for basic block SLP, and
661 dependence distance is unapplicable, hence, in case of known data
662 dependence, basic block vectorization is impossible for now. */
663 if (!loop_vinfo)
665 if (dra != drb && vect_check_interleaving (dra, drb))
666 return false;
668 if (dump_enabled_p ())
670 dump_printf_loc (MSG_NOTE, vect_location,
671 "determined dependence between ");
672 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
673 dump_printf (MSG_NOTE, " and ");
674 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
677 /* Do not vectorize basic blcoks with write-write dependences. */
678 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
679 return true;
681 /* Check if this dependence is allowed in basic block vectorization. */
682 return vect_drs_dependent_in_basic_block (dra, drb);
685 /* Loop-based vectorization and known data dependence. */
686 if (DDR_NUM_DIST_VECTS (ddr) == 0)
688 if (dump_enabled_p ())
690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
691 "versioning for alias required: "
692 "bad dist vector for ");
693 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
694 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
695 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
697 /* Add to list of ddrs that need to be tested at run-time. */
698 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
701 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
702 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
704 int dist = dist_v[loop_depth];
706 if (dump_enabled_p ())
707 dump_printf_loc (MSG_NOTE, vect_location,
708 "dependence distance = %d.", dist);
710 if (dist == 0)
712 if (dump_enabled_p ())
714 dump_printf_loc (MSG_NOTE, vect_location,
715 "dependence distance == 0 between ");
716 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
717 dump_printf (MSG_NOTE, " and ");
718 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
721 /* For interleaving, mark that there is a read-write dependency if
722 necessary. We check before that one of the data-refs is store. */
723 if (DR_IS_READ (dra))
724 GROUP_READ_WRITE_DEPENDENCE (stmtinfo_a) = true;
725 else
727 if (DR_IS_READ (drb))
728 GROUP_READ_WRITE_DEPENDENCE (stmtinfo_b) = true;
731 continue;
734 if (dist > 0 && DDR_REVERSED_P (ddr))
736 /* If DDR_REVERSED_P the order of the data-refs in DDR was
737 reversed (to make distance vector positive), and the actual
738 distance is negative. */
739 if (dump_enabled_p ())
740 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
741 "dependence distance negative.");
742 continue;
745 if (abs (dist) >= 2
746 && abs (dist) < *max_vf)
748 /* The dependence distance requires reduction of the maximal
749 vectorization factor. */
750 *max_vf = abs (dist);
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_NOTE, vect_location,
753 "adjusting maximal vectorization factor to %i",
754 *max_vf);
757 if (abs (dist) >= *max_vf)
759 /* Dependence distance does not create dependence, as far as
760 vectorization is concerned, in this case. */
761 if (dump_enabled_p ())
762 dump_printf_loc (MSG_NOTE, vect_location,
763 "dependence distance >= VF.");
764 continue;
767 if (dump_enabled_p ())
769 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
770 "not vectorized, possible dependence "
771 "between data-refs ");
772 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
773 dump_printf (MSG_NOTE, " and ");
774 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
777 return true;
780 return false;
783 /* Function vect_analyze_data_ref_dependences.
785 Examine all the data references in the loop, and make sure there do not
786 exist any data dependences between them. Set *MAX_VF according to
787 the maximum vectorization factor the data dependences allow. */
789 bool
790 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
791 bb_vec_info bb_vinfo, int *max_vf)
793 unsigned int i;
794 vec<ddr_p> ddrs = vNULL;
795 struct data_dependence_relation *ddr;
797 if (dump_enabled_p ())
798 dump_printf_loc (MSG_NOTE, vect_location,
799 "=== vect_analyze_dependences ===");
800 if (loop_vinfo)
801 ddrs = LOOP_VINFO_DDRS (loop_vinfo);
802 else
803 ddrs = BB_VINFO_DDRS (bb_vinfo);
805 FOR_EACH_VEC_ELT (ddrs, i, ddr)
806 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
807 return false;
809 return true;
813 /* Function vect_compute_data_ref_alignment
815 Compute the misalignment of the data reference DR.
817 Output:
818 1. If during the misalignment computation it is found that the data reference
819 cannot be vectorized then false is returned.
820 2. DR_MISALIGNMENT (DR) is defined.
822 FOR NOW: No analysis is actually performed. Misalignment is calculated
823 only for trivial cases. TODO. */
825 static bool
826 vect_compute_data_ref_alignment (struct data_reference *dr)
828 gimple stmt = DR_STMT (dr);
829 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
830 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
831 struct loop *loop = NULL;
832 tree ref = DR_REF (dr);
833 tree vectype;
834 tree base, base_addr;
835 bool base_aligned;
836 tree misalign;
837 tree aligned_to, alignment;
839 if (dump_enabled_p ())
840 dump_printf_loc (MSG_NOTE, vect_location,
841 "vect_compute_data_ref_alignment:");
843 if (loop_vinfo)
844 loop = LOOP_VINFO_LOOP (loop_vinfo);
846 /* Initialize misalignment to unknown. */
847 SET_DR_MISALIGNMENT (dr, -1);
849 /* Strided loads perform only component accesses, misalignment information
850 is irrelevant for them. */
851 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
852 return true;
854 misalign = DR_INIT (dr);
855 aligned_to = DR_ALIGNED_TO (dr);
856 base_addr = DR_BASE_ADDRESS (dr);
857 vectype = STMT_VINFO_VECTYPE (stmt_info);
859 /* In case the dataref is in an inner-loop of the loop that is being
860 vectorized (LOOP), we use the base and misalignment information
861 relative to the outer-loop (LOOP). This is ok only if the misalignment
862 stays the same throughout the execution of the inner-loop, which is why
863 we have to check that the stride of the dataref in the inner-loop evenly
864 divides by the vector size. */
865 if (loop && nested_in_vect_loop_p (loop, stmt))
867 tree step = DR_STEP (dr);
868 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
870 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
872 if (dump_enabled_p ())
873 dump_printf_loc (MSG_NOTE, vect_location,
874 "inner step divides the vector-size.");
875 misalign = STMT_VINFO_DR_INIT (stmt_info);
876 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
877 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
879 else
881 if (dump_enabled_p ())
882 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
883 "inner step doesn't divide the vector-size.");
884 misalign = NULL_TREE;
888 /* Similarly, if we're doing basic-block vectorization, we can only use
889 base and misalignment information relative to an innermost loop if the
890 misalignment stays the same throughout the execution of the loop.
891 As above, this is the case if the stride of the dataref evenly divides
892 by the vector size. */
893 if (!loop)
895 tree step = DR_STEP (dr);
896 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
898 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
900 if (dump_enabled_p ())
901 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
902 "SLP: step doesn't divide the vector-size.");
903 misalign = NULL_TREE;
907 base = build_fold_indirect_ref (base_addr);
908 alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
910 if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
911 || !misalign)
913 if (dump_enabled_p ())
915 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
916 "Unknown alignment for access: ");
917 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
919 return true;
922 if ((DECL_P (base)
923 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
924 alignment) >= 0)
925 || (TREE_CODE (base_addr) == SSA_NAME
926 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
927 TREE_TYPE (base_addr)))),
928 alignment) >= 0)
929 || (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
930 base_aligned = true;
931 else
932 base_aligned = false;
934 if (!base_aligned)
936 /* Do not change the alignment of global variables here if
937 flag_section_anchors is enabled as we already generated
938 RTL for other functions. Most global variables should
939 have been aligned during the IPA increase_alignment pass. */
940 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
941 || (TREE_STATIC (base) && flag_section_anchors))
943 if (dump_enabled_p ())
945 dump_printf_loc (MSG_NOTE, vect_location,
946 "can't force alignment of ref: ");
947 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
949 return true;
952 /* Force the alignment of the decl.
953 NOTE: This is the only change to the code we make during
954 the analysis phase, before deciding to vectorize the loop. */
955 if (dump_enabled_p ())
957 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
958 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
961 DECL_ALIGN (base) = TYPE_ALIGN (vectype);
962 DECL_USER_ALIGN (base) = 1;
965 /* At this point we assume that the base is aligned. */
966 gcc_assert (base_aligned
967 || (TREE_CODE (base) == VAR_DECL
968 && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
970 /* If this is a backward running DR then first access in the larger
971 vectype actually is N-1 elements before the address in the DR.
972 Adjust misalign accordingly. */
973 if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
975 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
976 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
977 otherwise we wouldn't be here. */
978 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
979 /* PLUS because DR_STEP was negative. */
980 misalign = size_binop (PLUS_EXPR, misalign, offset);
983 /* Modulo alignment. */
984 misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
986 if (!host_integerp (misalign, 1))
988 /* Negative or overflowed misalignment value. */
989 if (dump_enabled_p ())
990 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
991 "unexpected misalign value");
992 return false;
995 SET_DR_MISALIGNMENT (dr, TREE_INT_CST_LOW (misalign));
997 if (dump_enabled_p ())
999 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1000 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
1001 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
1004 return true;
1008 /* Function vect_compute_data_refs_alignment
1010 Compute the misalignment of data references in the loop.
1011 Return FALSE if a data reference is found that cannot be vectorized. */
1013 static bool
1014 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
1015 bb_vec_info bb_vinfo)
1017 vec<data_reference_p> datarefs;
1018 struct data_reference *dr;
1019 unsigned int i;
1021 if (loop_vinfo)
1022 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1023 else
1024 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
1026 FOR_EACH_VEC_ELT (datarefs, i, dr)
1027 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
1028 && !vect_compute_data_ref_alignment (dr))
1030 if (bb_vinfo)
1032 /* Mark unsupported statement as unvectorizable. */
1033 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
1034 continue;
1036 else
1037 return false;
1040 return true;
1044 /* Function vect_update_misalignment_for_peel
1046 DR - the data reference whose misalignment is to be adjusted.
1047 DR_PEEL - the data reference whose misalignment is being made
1048 zero in the vector loop by the peel.
1049 NPEEL - the number of iterations in the peel loop if the misalignment
1050 of DR_PEEL is known at compile time. */
1052 static void
1053 vect_update_misalignment_for_peel (struct data_reference *dr,
1054 struct data_reference *dr_peel, int npeel)
1056 unsigned int i;
1057 vec<dr_p> same_align_drs;
1058 struct data_reference *current_dr;
1059 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
1060 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
1061 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
1062 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
1064 /* For interleaved data accesses the step in the loop must be multiplied by
1065 the size of the interleaving group. */
1066 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1067 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
1068 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
1069 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
1071 /* It can be assumed that the data refs with the same alignment as dr_peel
1072 are aligned in the vector loop. */
1073 same_align_drs
1074 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
1075 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
1077 if (current_dr != dr)
1078 continue;
1079 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
1080 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
1081 SET_DR_MISALIGNMENT (dr, 0);
1082 return;
1085 if (known_alignment_for_access_p (dr)
1086 && known_alignment_for_access_p (dr_peel))
1088 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1089 int misal = DR_MISALIGNMENT (dr);
1090 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1091 misal += negative ? -npeel * dr_size : npeel * dr_size;
1092 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
1093 SET_DR_MISALIGNMENT (dr, misal);
1094 return;
1097 if (dump_enabled_p ())
1098 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.");
1099 SET_DR_MISALIGNMENT (dr, -1);
1103 /* Function vect_verify_datarefs_alignment
1105 Return TRUE if all data references in the loop can be
1106 handled with respect to alignment. */
1108 bool
1109 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
1111 vec<data_reference_p> datarefs;
1112 struct data_reference *dr;
1113 enum dr_alignment_support supportable_dr_alignment;
1114 unsigned int i;
1116 if (loop_vinfo)
1117 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1118 else
1119 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
1121 FOR_EACH_VEC_ELT (datarefs, i, dr)
1123 gimple stmt = DR_STMT (dr);
1124 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1126 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1127 continue;
1129 /* For interleaving, only the alignment of the first access matters.
1130 Skip statements marked as not vectorizable. */
1131 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
1132 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1133 || !STMT_VINFO_VECTORIZABLE (stmt_info))
1134 continue;
1136 /* Strided loads perform only component accesses, alignment is
1137 irrelevant for them. */
1138 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1139 continue;
1141 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1142 if (!supportable_dr_alignment)
1144 if (dump_enabled_p ())
1146 if (DR_IS_READ (dr))
1147 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1148 "not vectorized: unsupported unaligned load.");
1149 else
1150 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1151 "not vectorized: unsupported unaligned "
1152 "store.");
1154 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
1155 DR_REF (dr));
1157 return false;
1159 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
1160 dump_printf_loc (MSG_NOTE, vect_location,
1161 "Vectorizing an unaligned access.");
1163 return true;
1166 /* Given an memory reference EXP return whether its alignment is less
1167 than its size. */
1169 static bool
1170 not_size_aligned (tree exp)
1172 if (!host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1))
1173 return true;
1175 return (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))
1176 > get_object_alignment (exp));
1179 /* Function vector_alignment_reachable_p
1181 Return true if vector alignment for DR is reachable by peeling
1182 a few loop iterations. Return false otherwise. */
1184 static bool
1185 vector_alignment_reachable_p (struct data_reference *dr)
1187 gimple stmt = DR_STMT (dr);
1188 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1189 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1191 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1193 /* For interleaved access we peel only if number of iterations in
1194 the prolog loop ({VF - misalignment}), is a multiple of the
1195 number of the interleaved accesses. */
1196 int elem_size, mis_in_elements;
1197 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1199 /* FORNOW: handle only known alignment. */
1200 if (!known_alignment_for_access_p (dr))
1201 return false;
1203 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1204 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1206 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1207 return false;
1210 /* If misalignment is known at the compile time then allow peeling
1211 only if natural alignment is reachable through peeling. */
1212 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1214 HOST_WIDE_INT elmsize =
1215 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1216 if (dump_enabled_p ())
1218 dump_printf_loc (MSG_NOTE, vect_location,
1219 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1220 dump_printf (MSG_NOTE,
1221 ". misalignment = %d. ", DR_MISALIGNMENT (dr));
1223 if (DR_MISALIGNMENT (dr) % elmsize)
1225 if (dump_enabled_p ())
1226 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1227 "data size does not divide the misalignment.\n");
1228 return false;
1232 if (!known_alignment_for_access_p (dr))
1234 tree type = TREE_TYPE (DR_REF (dr));
1235 bool is_packed = not_size_aligned (DR_REF (dr));
1236 if (dump_enabled_p ())
1237 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1238 "Unknown misalignment, is_packed = %d",is_packed);
1239 if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
1240 return true;
1241 else
1242 return false;
1245 return true;
1249 /* Calculate the cost of the memory access represented by DR. */
1251 static void
1252 vect_get_data_access_cost (struct data_reference *dr,
1253 unsigned int *inside_cost,
1254 unsigned int *outside_cost,
1255 stmt_vector_for_cost *body_cost_vec)
1257 gimple stmt = DR_STMT (dr);
1258 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1259 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1260 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1261 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1262 int ncopies = vf / nunits;
1264 if (DR_IS_READ (dr))
1265 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1266 NULL, body_cost_vec, false);
1267 else
1268 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1270 if (dump_enabled_p ())
1271 dump_printf_loc (MSG_NOTE, vect_location,
1272 "vect_get_data_access_cost: inside_cost = %d, "
1273 "outside_cost = %d.", *inside_cost, *outside_cost);
1277 static hashval_t
1278 vect_peeling_hash (const void *elem)
1280 const struct _vect_peel_info *peel_info;
1282 peel_info = (const struct _vect_peel_info *) elem;
1283 return (hashval_t) peel_info->npeel;
1287 static int
1288 vect_peeling_hash_eq (const void *elem1, const void *elem2)
1290 const struct _vect_peel_info *a, *b;
1292 a = (const struct _vect_peel_info *) elem1;
1293 b = (const struct _vect_peel_info *) elem2;
1294 return (a->npeel == b->npeel);
1298 /* Insert DR into peeling hash table with NPEEL as key. */
1300 static void
1301 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1302 int npeel)
1304 struct _vect_peel_info elem, *slot;
1305 void **new_slot;
1306 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1308 elem.npeel = npeel;
1309 slot = (vect_peel_info) htab_find (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1310 &elem);
1311 if (slot)
1312 slot->count++;
1313 else
1315 slot = XNEW (struct _vect_peel_info);
1316 slot->npeel = npeel;
1317 slot->dr = dr;
1318 slot->count = 1;
1319 new_slot = htab_find_slot (LOOP_VINFO_PEELING_HTAB (loop_vinfo), slot,
1320 INSERT);
1321 *new_slot = slot;
1324 if (!supportable_dr_alignment && unlimited_cost_model ())
1325 slot->count += VECT_MAX_COST;
1329 /* Traverse peeling hash table to find peeling option that aligns maximum
1330 number of data accesses. */
1332 static int
1333 vect_peeling_hash_get_most_frequent (void **slot, void *data)
1335 vect_peel_info elem = (vect_peel_info) *slot;
1336 vect_peel_extended_info max = (vect_peel_extended_info) data;
1338 if (elem->count > max->peel_info.count
1339 || (elem->count == max->peel_info.count
1340 && max->peel_info.npeel > elem->npeel))
1342 max->peel_info.npeel = elem->npeel;
1343 max->peel_info.count = elem->count;
1344 max->peel_info.dr = elem->dr;
1347 return 1;
1351 /* Traverse peeling hash table and calculate cost for each peeling option.
1352 Find the one with the lowest cost. */
1354 static int
1355 vect_peeling_hash_get_lowest_cost (void **slot, void *data)
1357 vect_peel_info elem = (vect_peel_info) *slot;
1358 vect_peel_extended_info min = (vect_peel_extended_info) data;
1359 int save_misalignment, dummy;
1360 unsigned int inside_cost = 0, outside_cost = 0, i;
1361 gimple stmt = DR_STMT (elem->dr);
1362 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1363 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1364 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1365 struct data_reference *dr;
1366 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1367 int single_iter_cost;
1369 prologue_cost_vec.create (2);
1370 body_cost_vec.create (2);
1371 epilogue_cost_vec.create (2);
1373 FOR_EACH_VEC_ELT (datarefs, i, dr)
1375 stmt = DR_STMT (dr);
1376 stmt_info = vinfo_for_stmt (stmt);
1377 /* For interleaving, only the alignment of the first access
1378 matters. */
1379 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1380 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1381 continue;
1383 save_misalignment = DR_MISALIGNMENT (dr);
1384 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1385 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1386 &body_cost_vec);
1387 SET_DR_MISALIGNMENT (dr, save_misalignment);
1390 single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
1391 outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
1392 &dummy, single_iter_cost,
1393 &prologue_cost_vec,
1394 &epilogue_cost_vec);
1396 /* Prologue and epilogue costs are added to the target model later.
1397 These costs depend only on the scalar iteration cost, the
1398 number of peeling iterations finally chosen, and the number of
1399 misaligned statements. So discard the information found here. */
1400 prologue_cost_vec.release ();
1401 epilogue_cost_vec.release ();
1403 if (inside_cost < min->inside_cost
1404 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1406 min->inside_cost = inside_cost;
1407 min->outside_cost = outside_cost;
1408 min->body_cost_vec.release ();
1409 min->body_cost_vec = body_cost_vec;
1410 min->peel_info.dr = elem->dr;
1411 min->peel_info.npeel = elem->npeel;
1413 else
1414 body_cost_vec.release ();
1416 return 1;
1420 /* Choose best peeling option by traversing peeling hash table and either
1421 choosing an option with the lowest cost (if cost model is enabled) or the
1422 option that aligns as many accesses as possible. */
1424 static struct data_reference *
1425 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1426 unsigned int *npeel,
1427 stmt_vector_for_cost *body_cost_vec)
1429 struct _vect_peel_extended_info res;
1431 res.peel_info.dr = NULL;
1432 res.body_cost_vec = stmt_vector_for_cost();
1434 if (!unlimited_cost_model ())
1436 res.inside_cost = INT_MAX;
1437 res.outside_cost = INT_MAX;
1438 htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1439 vect_peeling_hash_get_lowest_cost, &res);
1441 else
1443 res.peel_info.count = 0;
1444 htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1445 vect_peeling_hash_get_most_frequent, &res);
1448 *npeel = res.peel_info.npeel;
1449 *body_cost_vec = res.body_cost_vec;
1450 return res.peel_info.dr;
1454 /* Function vect_enhance_data_refs_alignment
1456 This pass will use loop versioning and loop peeling in order to enhance
1457 the alignment of data references in the loop.
1459 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1460 original loop is to be vectorized. Any other loops that are created by
1461 the transformations performed in this pass - are not supposed to be
1462 vectorized. This restriction will be relaxed.
1464 This pass will require a cost model to guide it whether to apply peeling
1465 or versioning or a combination of the two. For example, the scheme that
1466 intel uses when given a loop with several memory accesses, is as follows:
1467 choose one memory access ('p') which alignment you want to force by doing
1468 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1469 other accesses are not necessarily aligned, or (2) use loop versioning to
1470 generate one loop in which all accesses are aligned, and another loop in
1471 which only 'p' is necessarily aligned.
1473 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1474 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1475 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1477 Devising a cost model is the most critical aspect of this work. It will
1478 guide us on which access to peel for, whether to use loop versioning, how
1479 many versions to create, etc. The cost model will probably consist of
1480 generic considerations as well as target specific considerations (on
1481 powerpc for example, misaligned stores are more painful than misaligned
1482 loads).
1484 Here are the general steps involved in alignment enhancements:
1486 -- original loop, before alignment analysis:
1487 for (i=0; i<N; i++){
1488 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1489 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1492 -- After vect_compute_data_refs_alignment:
1493 for (i=0; i<N; i++){
1494 x = q[i]; # DR_MISALIGNMENT(q) = 3
1495 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1498 -- Possibility 1: we do loop versioning:
1499 if (p is aligned) {
1500 for (i=0; i<N; i++){ # loop 1A
1501 x = q[i]; # DR_MISALIGNMENT(q) = 3
1502 p[i] = y; # DR_MISALIGNMENT(p) = 0
1505 else {
1506 for (i=0; i<N; i++){ # loop 1B
1507 x = q[i]; # DR_MISALIGNMENT(q) = 3
1508 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1512 -- Possibility 2: we do loop peeling:
1513 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1514 x = q[i];
1515 p[i] = y;
1517 for (i = 3; i < N; i++){ # loop 2A
1518 x = q[i]; # DR_MISALIGNMENT(q) = 0
1519 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1522 -- Possibility 3: combination of loop peeling and versioning:
1523 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1524 x = q[i];
1525 p[i] = y;
1527 if (p is aligned) {
1528 for (i = 3; i<N; i++){ # loop 3A
1529 x = q[i]; # DR_MISALIGNMENT(q) = 0
1530 p[i] = y; # DR_MISALIGNMENT(p) = 0
1533 else {
1534 for (i = 3; i<N; i++){ # loop 3B
1535 x = q[i]; # DR_MISALIGNMENT(q) = 0
1536 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1540 These loops are later passed to loop_transform to be vectorized. The
1541 vectorizer will use the alignment information to guide the transformation
1542 (whether to generate regular loads/stores, or with special handling for
1543 misalignment). */
1545 bool
1546 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1548 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1549 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1550 enum dr_alignment_support supportable_dr_alignment;
1551 struct data_reference *dr0 = NULL, *first_store = NULL;
1552 struct data_reference *dr;
1553 unsigned int i, j;
1554 bool do_peeling = false;
1555 bool do_versioning = false;
1556 bool stat;
1557 gimple stmt;
1558 stmt_vec_info stmt_info;
1559 int vect_versioning_for_alias_required;
1560 unsigned int npeel = 0;
1561 bool all_misalignments_unknown = true;
1562 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1563 unsigned possible_npeel_number = 1;
1564 tree vectype;
1565 unsigned int nelements, mis, same_align_drs_max = 0;
1566 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost();
1568 if (dump_enabled_p ())
1569 dump_printf_loc (MSG_NOTE, vect_location,
1570 "=== vect_enhance_data_refs_alignment ===");
1572 /* While cost model enhancements are expected in the future, the high level
1573 view of the code at this time is as follows:
1575 A) If there is a misaligned access then see if peeling to align
1576 this access can make all data references satisfy
1577 vect_supportable_dr_alignment. If so, update data structures
1578 as needed and return true.
1580 B) If peeling wasn't possible and there is a data reference with an
1581 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1582 then see if loop versioning checks can be used to make all data
1583 references satisfy vect_supportable_dr_alignment. If so, update
1584 data structures as needed and return true.
1586 C) If neither peeling nor versioning were successful then return false if
1587 any data reference does not satisfy vect_supportable_dr_alignment.
1589 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1591 Note, Possibility 3 above (which is peeling and versioning together) is not
1592 being done at this time. */
1594 /* (1) Peeling to force alignment. */
1596 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1597 Considerations:
1598 + How many accesses will become aligned due to the peeling
1599 - How many accesses will become unaligned due to the peeling,
1600 and the cost of misaligned accesses.
1601 - The cost of peeling (the extra runtime checks, the increase
1602 in code size). */
1604 FOR_EACH_VEC_ELT (datarefs, i, dr)
1606 stmt = DR_STMT (dr);
1607 stmt_info = vinfo_for_stmt (stmt);
1609 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1610 continue;
1612 /* For interleaving, only the alignment of the first access
1613 matters. */
1614 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1615 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1616 continue;
1618 /* For invariant accesses there is nothing to enhance. */
1619 if (integer_zerop (DR_STEP (dr)))
1620 continue;
1622 /* Strided loads perform only component accesses, alignment is
1623 irrelevant for them. */
1624 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1625 continue;
1627 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1628 do_peeling = vector_alignment_reachable_p (dr);
1629 if (do_peeling)
1631 if (known_alignment_for_access_p (dr))
1633 unsigned int npeel_tmp;
1634 bool negative = tree_int_cst_compare (DR_STEP (dr),
1635 size_zero_node) < 0;
1637 /* Save info about DR in the hash table. */
1638 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1639 LOOP_VINFO_PEELING_HTAB (loop_vinfo) =
1640 htab_create (1, vect_peeling_hash,
1641 vect_peeling_hash_eq, free);
1643 vectype = STMT_VINFO_VECTYPE (stmt_info);
1644 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1645 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1646 TREE_TYPE (DR_REF (dr))));
1647 npeel_tmp = (negative
1648 ? (mis - nelements) : (nelements - mis))
1649 & (nelements - 1);
1651 /* For multiple types, it is possible that the bigger type access
1652 will have more than one peeling option. E.g., a loop with two
1653 types: one of size (vector size / 4), and the other one of
1654 size (vector size / 8). Vectorization factor will 8. If both
1655 access are misaligned by 3, the first one needs one scalar
1656 iteration to be aligned, and the second one needs 5. But the
1657 the first one will be aligned also by peeling 5 scalar
1658 iterations, and in that case both accesses will be aligned.
1659 Hence, except for the immediate peeling amount, we also want
1660 to try to add full vector size, while we don't exceed
1661 vectorization factor.
1662 We do this automtically for cost model, since we calculate cost
1663 for every peeling option. */
1664 if (unlimited_cost_model ())
1665 possible_npeel_number = vf /nelements;
1667 /* Handle the aligned case. We may decide to align some other
1668 access, making DR unaligned. */
1669 if (DR_MISALIGNMENT (dr) == 0)
1671 npeel_tmp = 0;
1672 if (unlimited_cost_model ())
1673 possible_npeel_number++;
1676 for (j = 0; j < possible_npeel_number; j++)
1678 gcc_assert (npeel_tmp <= vf);
1679 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1680 npeel_tmp += nelements;
1683 all_misalignments_unknown = false;
1684 /* Data-ref that was chosen for the case that all the
1685 misalignments are unknown is not relevant anymore, since we
1686 have a data-ref with known alignment. */
1687 dr0 = NULL;
1689 else
1691 /* If we don't know all the misalignment values, we prefer
1692 peeling for data-ref that has maximum number of data-refs
1693 with the same alignment, unless the target prefers to align
1694 stores over load. */
1695 if (all_misalignments_unknown)
1697 if (same_align_drs_max
1698 < STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ()
1699 || !dr0)
1701 same_align_drs_max
1702 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1703 dr0 = dr;
1706 if (!first_store && DR_IS_WRITE (dr))
1707 first_store = dr;
1710 /* If there are both known and unknown misaligned accesses in the
1711 loop, we choose peeling amount according to the known
1712 accesses. */
1715 if (!supportable_dr_alignment)
1717 dr0 = dr;
1718 if (!first_store && DR_IS_WRITE (dr))
1719 first_store = dr;
1723 else
1725 if (!aligned_access_p (dr))
1727 if (dump_enabled_p ())
1728 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1729 "vector alignment may not be reachable");
1730 break;
1735 vect_versioning_for_alias_required
1736 = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
1738 /* Temporarily, if versioning for alias is required, we disable peeling
1739 until we support peeling and versioning. Often peeling for alignment
1740 will require peeling for loop-bound, which in turn requires that we
1741 know how to adjust the loop ivs after the loop. */
1742 if (vect_versioning_for_alias_required
1743 || !vect_can_advance_ivs_p (loop_vinfo)
1744 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1745 do_peeling = false;
1747 if (do_peeling && all_misalignments_unknown
1748 && vect_supportable_dr_alignment (dr0, false))
1751 /* Check if the target requires to prefer stores over loads, i.e., if
1752 misaligned stores are more expensive than misaligned loads (taking
1753 drs with same alignment into account). */
1754 if (first_store && DR_IS_READ (dr0))
1756 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1757 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1758 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1759 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1760 stmt_vector_for_cost dummy;
1761 dummy.create (2);
1763 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1764 &dummy);
1765 vect_get_data_access_cost (first_store, &store_inside_cost,
1766 &store_outside_cost, &dummy);
1768 dummy.release ();
1770 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1771 aligning the load DR0). */
1772 load_inside_penalty = store_inside_cost;
1773 load_outside_penalty = store_outside_cost;
1774 for (i = 0;
1775 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1776 DR_STMT (first_store))).iterate (i, &dr);
1777 i++)
1778 if (DR_IS_READ (dr))
1780 load_inside_penalty += load_inside_cost;
1781 load_outside_penalty += load_outside_cost;
1783 else
1785 load_inside_penalty += store_inside_cost;
1786 load_outside_penalty += store_outside_cost;
1789 /* Calculate the penalty for leaving DR0 unaligned (by
1790 aligning the FIRST_STORE). */
1791 store_inside_penalty = load_inside_cost;
1792 store_outside_penalty = load_outside_cost;
1793 for (i = 0;
1794 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1795 DR_STMT (dr0))).iterate (i, &dr);
1796 i++)
1797 if (DR_IS_READ (dr))
1799 store_inside_penalty += load_inside_cost;
1800 store_outside_penalty += load_outside_cost;
1802 else
1804 store_inside_penalty += store_inside_cost;
1805 store_outside_penalty += store_outside_cost;
1808 if (load_inside_penalty > store_inside_penalty
1809 || (load_inside_penalty == store_inside_penalty
1810 && load_outside_penalty > store_outside_penalty))
1811 dr0 = first_store;
1814 /* In case there are only loads with different unknown misalignments, use
1815 peeling only if it may help to align other accesses in the loop. */
1816 if (!first_store
1817 && !STMT_VINFO_SAME_ALIGN_REFS (
1818 vinfo_for_stmt (DR_STMT (dr0))).length ()
1819 && vect_supportable_dr_alignment (dr0, false)
1820 != dr_unaligned_supported)
1821 do_peeling = false;
1824 if (do_peeling && !dr0)
1826 /* Peeling is possible, but there is no data access that is not supported
1827 unless aligned. So we try to choose the best possible peeling. */
1829 /* We should get here only if there are drs with known misalignment. */
1830 gcc_assert (!all_misalignments_unknown);
1832 /* Choose the best peeling from the hash table. */
1833 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1834 &body_cost_vec);
1835 if (!dr0 || !npeel)
1836 do_peeling = false;
1839 if (do_peeling)
1841 stmt = DR_STMT (dr0);
1842 stmt_info = vinfo_for_stmt (stmt);
1843 vectype = STMT_VINFO_VECTYPE (stmt_info);
1844 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1846 if (known_alignment_for_access_p (dr0))
1848 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1849 size_zero_node) < 0;
1850 if (!npeel)
1852 /* Since it's known at compile time, compute the number of
1853 iterations in the peeled loop (the peeling factor) for use in
1854 updating DR_MISALIGNMENT values. The peeling factor is the
1855 vectorization factor minus the misalignment as an element
1856 count. */
1857 mis = DR_MISALIGNMENT (dr0);
1858 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1859 npeel = ((negative ? mis - nelements : nelements - mis)
1860 & (nelements - 1));
1863 /* For interleaved data access every iteration accesses all the
1864 members of the group, therefore we divide the number of iterations
1865 by the group size. */
1866 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1867 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1868 npeel /= GROUP_SIZE (stmt_info);
1870 if (dump_enabled_p ())
1871 dump_printf_loc (MSG_NOTE, vect_location,
1872 "Try peeling by %d", npeel);
1875 /* Ensure that all data refs can be vectorized after the peel. */
1876 FOR_EACH_VEC_ELT (datarefs, i, dr)
1878 int save_misalignment;
1880 if (dr == dr0)
1881 continue;
1883 stmt = DR_STMT (dr);
1884 stmt_info = vinfo_for_stmt (stmt);
1885 /* For interleaving, only the alignment of the first access
1886 matters. */
1887 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1888 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1889 continue;
1891 /* Strided loads perform only component accesses, alignment is
1892 irrelevant for them. */
1893 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1894 continue;
1896 save_misalignment = DR_MISALIGNMENT (dr);
1897 vect_update_misalignment_for_peel (dr, dr0, npeel);
1898 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1899 SET_DR_MISALIGNMENT (dr, save_misalignment);
1901 if (!supportable_dr_alignment)
1903 do_peeling = false;
1904 break;
1908 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1910 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1911 if (!stat)
1912 do_peeling = false;
1913 else
1915 body_cost_vec.release ();
1916 return stat;
1920 if (do_peeling)
1922 unsigned max_allowed_peel
1923 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1924 if (max_allowed_peel != (unsigned)-1)
1926 unsigned max_peel = npeel;
1927 if (max_peel == 0)
1929 gimple dr_stmt = DR_STMT (dr0);
1930 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1931 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1932 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1934 if (max_peel > max_allowed_peel)
1936 do_peeling = false;
1937 if (dump_enabled_p ())
1938 dump_printf_loc (MSG_NOTE, vect_location,
1939 "Disable peeling, max peels reached: %d\n", max_peel);
1944 if (do_peeling)
1946 stmt_info_for_cost *si;
1947 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
1949 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1950 If the misalignment of DR_i is identical to that of dr0 then set
1951 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1952 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1953 by the peeling factor times the element size of DR_i (MOD the
1954 vectorization factor times the size). Otherwise, the
1955 misalignment of DR_i must be set to unknown. */
1956 FOR_EACH_VEC_ELT (datarefs, i, dr)
1957 if (dr != dr0)
1958 vect_update_misalignment_for_peel (dr, dr0, npeel);
1960 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1961 if (npeel)
1962 LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1963 else
1964 LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
1965 SET_DR_MISALIGNMENT (dr0, 0);
1966 if (dump_enabled_p ())
1968 dump_printf_loc (MSG_NOTE, vect_location,
1969 "Alignment of access forced using peeling.");
1970 dump_printf_loc (MSG_NOTE, vect_location,
1971 "Peeling for alignment will be applied.");
1973 /* We've delayed passing the inside-loop peeling costs to the
1974 target cost model until we were sure peeling would happen.
1975 Do so now. */
1976 if (body_cost_vec.exists ())
1978 FOR_EACH_VEC_ELT (body_cost_vec, i, si)
1980 struct _stmt_vec_info *stmt_info
1981 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1982 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1983 si->misalign, vect_body);
1985 body_cost_vec.release ();
1988 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1989 gcc_assert (stat);
1990 return stat;
1994 body_cost_vec.release ();
1996 /* (2) Versioning to force alignment. */
1998 /* Try versioning if:
1999 1) optimize loop for speed
2000 2) there is at least one unsupported misaligned data ref with an unknown
2001 misalignment, and
2002 3) all misaligned data refs with a known misalignment are supported, and
2003 4) the number of runtime alignment checks is within reason. */
2005 do_versioning =
2006 optimize_loop_nest_for_speed_p (loop)
2007 && (!loop->inner); /* FORNOW */
2009 if (do_versioning)
2011 FOR_EACH_VEC_ELT (datarefs, i, dr)
2013 stmt = DR_STMT (dr);
2014 stmt_info = vinfo_for_stmt (stmt);
2016 /* For interleaving, only the alignment of the first access
2017 matters. */
2018 if (aligned_access_p (dr)
2019 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
2020 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
2021 continue;
2023 /* Strided loads perform only component accesses, alignment is
2024 irrelevant for them. */
2025 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
2026 continue;
2028 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
2030 if (!supportable_dr_alignment)
2032 gimple stmt;
2033 int mask;
2034 tree vectype;
2036 if (known_alignment_for_access_p (dr)
2037 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
2038 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
2040 do_versioning = false;
2041 break;
2044 stmt = DR_STMT (dr);
2045 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
2046 gcc_assert (vectype);
2048 /* The rightmost bits of an aligned address must be zeros.
2049 Construct the mask needed for this test. For example,
2050 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
2051 mask must be 15 = 0xf. */
2052 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
2054 /* FORNOW: use the same mask to test all potentially unaligned
2055 references in the loop. The vectorizer currently supports
2056 a single vector size, see the reference to
2057 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
2058 vectorization factor is computed. */
2059 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
2060 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
2061 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
2062 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
2063 DR_STMT (dr));
2067 /* Versioning requires at least one misaligned data reference. */
2068 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2069 do_versioning = false;
2070 else if (!do_versioning)
2071 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
2074 if (do_versioning)
2076 vec<gimple> may_misalign_stmts
2077 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2078 gimple stmt;
2080 /* It can now be assumed that the data references in the statements
2081 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
2082 of the loop being vectorized. */
2083 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
2085 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2086 dr = STMT_VINFO_DATA_REF (stmt_info);
2087 SET_DR_MISALIGNMENT (dr, 0);
2088 if (dump_enabled_p ())
2089 dump_printf_loc (MSG_NOTE, vect_location,
2090 "Alignment of access forced using versioning.");
2093 if (dump_enabled_p ())
2094 dump_printf_loc (MSG_NOTE, vect_location,
2095 "Versioning for alignment will be applied.");
2097 /* Peeling and versioning can't be done together at this time. */
2098 gcc_assert (! (do_peeling && do_versioning));
2100 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
2101 gcc_assert (stat);
2102 return stat;
2105 /* This point is reached if neither peeling nor versioning is being done. */
2106 gcc_assert (! (do_peeling || do_versioning));
2108 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
2109 return stat;
2113 /* Function vect_find_same_alignment_drs.
2115 Update group and alignment relations according to the chosen
2116 vectorization factor. */
2118 static void
2119 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
2120 loop_vec_info loop_vinfo)
2122 unsigned int i;
2123 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2124 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2125 struct data_reference *dra = DDR_A (ddr);
2126 struct data_reference *drb = DDR_B (ddr);
2127 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2128 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2129 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
2130 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
2131 lambda_vector dist_v;
2132 unsigned int loop_depth;
2134 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
2135 return;
2137 if (dra == drb)
2138 return;
2140 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2141 return;
2143 /* Loop-based vectorization and known data dependence. */
2144 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2145 return;
2147 /* Data-dependence analysis reports a distance vector of zero
2148 for data-references that overlap only in the first iteration
2149 but have different sign step (see PR45764).
2150 So as a sanity check require equal DR_STEP. */
2151 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2152 return;
2154 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
2155 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
2157 int dist = dist_v[loop_depth];
2159 if (dump_enabled_p ())
2160 dump_printf_loc (MSG_NOTE, vect_location,
2161 "dependence distance = %d.", dist);
2163 /* Same loop iteration. */
2164 if (dist == 0
2165 || (dist % vectorization_factor == 0 && dra_size == drb_size))
2167 /* Two references with distance zero have the same alignment. */
2168 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
2169 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
2170 if (dump_enabled_p ())
2172 dump_printf_loc (MSG_NOTE, vect_location,
2173 "accesses have the same alignment.");
2174 dump_printf (MSG_NOTE,
2175 "dependence distance modulo vf == 0 between ");
2176 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2177 dump_printf (MSG_NOTE, " and ");
2178 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2185 /* Function vect_analyze_data_refs_alignment
2187 Analyze the alignment of the data-references in the loop.
2188 Return FALSE if a data reference is found that cannot be vectorized. */
2190 bool
2191 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
2192 bb_vec_info bb_vinfo)
2194 if (dump_enabled_p ())
2195 dump_printf_loc (MSG_NOTE, vect_location,
2196 "=== vect_analyze_data_refs_alignment ===");
2198 /* Mark groups of data references with same alignment using
2199 data dependence information. */
2200 if (loop_vinfo)
2202 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
2203 struct data_dependence_relation *ddr;
2204 unsigned int i;
2206 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2207 vect_find_same_alignment_drs (ddr, loop_vinfo);
2210 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
2212 if (dump_enabled_p ())
2213 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2214 "not vectorized: can't calculate alignment "
2215 "for data ref.");
2216 return false;
2219 return true;
2223 /* Analyze groups of accesses: check that DR belongs to a group of
2224 accesses of legal size, step, etc. Detect gaps, single element
2225 interleaving, and other special cases. Set grouped access info.
2226 Collect groups of strided stores for further use in SLP analysis. */
2228 static bool
2229 vect_analyze_group_access (struct data_reference *dr)
2231 tree step = DR_STEP (dr);
2232 tree scalar_type = TREE_TYPE (DR_REF (dr));
2233 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2234 gimple stmt = DR_STMT (dr);
2235 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2236 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2237 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2238 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2239 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2240 bool slp_impossible = false;
2241 struct loop *loop = NULL;
2243 if (loop_vinfo)
2244 loop = LOOP_VINFO_LOOP (loop_vinfo);
2246 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2247 size of the interleaving group (including gaps). */
2248 groupsize = dr_step / type_size;
2250 /* Not consecutive access is possible only if it is a part of interleaving. */
2251 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2253 /* Check if it this DR is a part of interleaving, and is a single
2254 element of the group that is accessed in the loop. */
2256 /* Gaps are supported only for loads. STEP must be a multiple of the type
2257 size. The size of the group must be a power of 2. */
2258 if (DR_IS_READ (dr)
2259 && (dr_step % type_size) == 0
2260 && groupsize > 0
2261 && exact_log2 (groupsize) != -1)
2263 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2264 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2265 if (dump_enabled_p ())
2267 dump_printf_loc (MSG_NOTE, vect_location,
2268 "Detected single element interleaving ");
2269 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2270 dump_printf (MSG_NOTE, " step ");
2271 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2274 if (loop_vinfo)
2276 if (dump_enabled_p ())
2277 dump_printf_loc (MSG_NOTE, vect_location,
2278 "Data access with gaps requires scalar "
2279 "epilogue loop");
2280 if (loop->inner)
2282 if (dump_enabled_p ())
2283 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2284 "Peeling for outer loop is not"
2285 " supported");
2286 return false;
2289 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2292 return true;
2295 if (dump_enabled_p ())
2297 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2298 "not consecutive access ");
2299 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2302 if (bb_vinfo)
2304 /* Mark the statement as unvectorizable. */
2305 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2306 return true;
2309 return false;
2312 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2314 /* First stmt in the interleaving chain. Check the chain. */
2315 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2316 struct data_reference *data_ref = dr;
2317 unsigned int count = 1;
2318 tree next_step;
2319 tree prev_init = DR_INIT (data_ref);
2320 gimple prev = stmt;
2321 HOST_WIDE_INT diff, count_in_bytes, gaps = 0;
2323 while (next)
2325 /* Skip same data-refs. In case that two or more stmts share
2326 data-ref (supported only for loads), we vectorize only the first
2327 stmt, and the rest get their vectorized loads from the first
2328 one. */
2329 if (!tree_int_cst_compare (DR_INIT (data_ref),
2330 DR_INIT (STMT_VINFO_DATA_REF (
2331 vinfo_for_stmt (next)))))
2333 if (DR_IS_WRITE (data_ref))
2335 if (dump_enabled_p ())
2336 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2337 "Two store stmts share the same dr.");
2338 return false;
2341 /* Check that there is no load-store dependencies for this loads
2342 to prevent a case of load-store-load to the same location. */
2343 if (GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (next))
2344 || GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (prev)))
2346 if (dump_enabled_p ())
2347 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2348 "READ_WRITE dependence in interleaving.");
2349 return false;
2352 /* For load use the same data-ref load. */
2353 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2355 prev = next;
2356 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2357 continue;
2360 prev = next;
2362 /* Check that all the accesses have the same STEP. */
2363 next_step = DR_STEP (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
2364 if (tree_int_cst_compare (step, next_step))
2366 if (dump_enabled_p ())
2367 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2368 "not consecutive access in interleaving");
2369 return false;
2372 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2373 /* Check that the distance between two accesses is equal to the type
2374 size. Otherwise, we have gaps. */
2375 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2376 - TREE_INT_CST_LOW (prev_init)) / type_size;
2377 if (diff != 1)
2379 /* FORNOW: SLP of accesses with gaps is not supported. */
2380 slp_impossible = true;
2381 if (DR_IS_WRITE (data_ref))
2383 if (dump_enabled_p ())
2384 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2385 "interleaved store with gaps");
2386 return false;
2389 gaps += diff - 1;
2392 last_accessed_element += diff;
2394 /* Store the gap from the previous member of the group. If there is no
2395 gap in the access, GROUP_GAP is always 1. */
2396 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2398 prev_init = DR_INIT (data_ref);
2399 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2400 /* Count the number of data-refs in the chain. */
2401 count++;
2404 /* COUNT is the number of accesses found, we multiply it by the size of
2405 the type to get COUNT_IN_BYTES. */
2406 count_in_bytes = type_size * count;
2408 /* Check that the size of the interleaving (including gaps) is not
2409 greater than STEP. */
2410 if (dr_step && dr_step < count_in_bytes + gaps * type_size)
2412 if (dump_enabled_p ())
2414 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2415 "interleaving size is greater than step for ");
2416 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dr));
2418 return false;
2421 /* Check that the size of the interleaving is equal to STEP for stores,
2422 i.e., that there are no gaps. */
2423 if (dr_step && dr_step != count_in_bytes)
2425 if (DR_IS_READ (dr))
2427 slp_impossible = true;
2428 /* There is a gap after the last load in the group. This gap is a
2429 difference between the groupsize and the number of elements.
2430 When there is no gap, this difference should be 0. */
2431 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
2433 else
2435 if (dump_enabled_p ())
2436 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2437 "interleaved store with gaps");
2438 return false;
2442 /* Check that STEP is a multiple of type size. */
2443 if (dr_step && (dr_step % type_size) != 0)
2445 if (dump_enabled_p ())
2447 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2448 "step is not a multiple of type size: step ");
2449 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
2450 dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
2451 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2452 TYPE_SIZE_UNIT (scalar_type));
2454 return false;
2457 if (groupsize == 0)
2458 groupsize = count;
2460 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2461 if (dump_enabled_p ())
2462 dump_printf_loc (MSG_NOTE, vect_location,
2463 "Detected interleaving of size %d", (int)groupsize);
2465 /* SLP: create an SLP data structure for every interleaving group of
2466 stores for further analysis in vect_analyse_slp. */
2467 if (DR_IS_WRITE (dr) && !slp_impossible)
2469 if (loop_vinfo)
2470 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2471 if (bb_vinfo)
2472 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2475 /* There is a gap in the end of the group. */
2476 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2478 if (dump_enabled_p ())
2479 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2480 "Data access with gaps requires scalar "
2481 "epilogue loop");
2482 if (loop->inner)
2484 if (dump_enabled_p ())
2485 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2486 "Peeling for outer loop is not supported");
2487 return false;
2490 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2494 return true;
2498 /* Analyze the access pattern of the data-reference DR.
2499 In case of non-consecutive accesses call vect_analyze_group_access() to
2500 analyze groups of accesses. */
2502 static bool
2503 vect_analyze_data_ref_access (struct data_reference *dr)
2505 tree step = DR_STEP (dr);
2506 tree scalar_type = TREE_TYPE (DR_REF (dr));
2507 gimple stmt = DR_STMT (dr);
2508 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2509 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2510 struct loop *loop = NULL;
2512 if (loop_vinfo)
2513 loop = LOOP_VINFO_LOOP (loop_vinfo);
2515 if (loop_vinfo && !step)
2517 if (dump_enabled_p ())
2518 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2519 "bad data-ref access in loop");
2520 return false;
2523 /* Allow invariant loads in not nested loops. */
2524 if (loop_vinfo && integer_zerop (step))
2526 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2527 if (nested_in_vect_loop_p (loop, stmt))
2529 if (dump_enabled_p ())
2530 dump_printf_loc (MSG_NOTE, vect_location,
2531 "zero step in inner loop of nest");
2532 return false;
2534 return DR_IS_READ (dr);
2537 if (loop && nested_in_vect_loop_p (loop, stmt))
2539 /* Interleaved accesses are not yet supported within outer-loop
2540 vectorization for references in the inner-loop. */
2541 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2543 /* For the rest of the analysis we use the outer-loop step. */
2544 step = STMT_VINFO_DR_STEP (stmt_info);
2545 if (integer_zerop (step))
2547 if (dump_enabled_p ())
2548 dump_printf_loc (MSG_NOTE, vect_location,
2549 "zero step in outer loop.");
2550 if (DR_IS_READ (dr))
2551 return true;
2552 else
2553 return false;
2557 /* Consecutive? */
2558 if (TREE_CODE (step) == INTEGER_CST)
2560 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2561 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2562 || (dr_step < 0
2563 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2565 /* Mark that it is not interleaving. */
2566 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2567 return true;
2571 if (loop && nested_in_vect_loop_p (loop, stmt))
2573 if (dump_enabled_p ())
2574 dump_printf_loc (MSG_NOTE, vect_location,
2575 "grouped access in outer loop.");
2576 return false;
2579 /* Assume this is a DR handled by non-constant strided load case. */
2580 if (TREE_CODE (step) != INTEGER_CST)
2581 return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
2583 /* Not consecutive access - check if it's a part of interleaving group. */
2584 return vect_analyze_group_access (dr);
2588 /* Function vect_analyze_data_ref_accesses.
2590 Analyze the access pattern of all the data references in the loop.
2592 FORNOW: the only access pattern that is considered vectorizable is a
2593 simple step 1 (consecutive) access.
2595 FORNOW: handle only arrays and pointer accesses. */
2597 bool
2598 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2600 unsigned int i;
2601 vec<data_reference_p> datarefs;
2602 struct data_reference *dr;
2604 if (dump_enabled_p ())
2605 dump_printf_loc (MSG_NOTE, vect_location,
2606 "=== vect_analyze_data_ref_accesses ===");
2608 if (loop_vinfo)
2609 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2610 else
2611 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2613 FOR_EACH_VEC_ELT (datarefs, i, dr)
2614 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2615 && !vect_analyze_data_ref_access (dr))
2617 if (dump_enabled_p ())
2618 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2619 "not vectorized: complicated access pattern.");
2621 if (bb_vinfo)
2623 /* Mark the statement as not vectorizable. */
2624 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2625 continue;
2627 else
2628 return false;
2631 return true;
2634 /* Function vect_prune_runtime_alias_test_list.
2636 Prune a list of ddrs to be tested at run-time by versioning for alias.
2637 Return FALSE if resulting list of ddrs is longer then allowed by
2638 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2640 bool
2641 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2643 vec<ddr_p> ddrs =
2644 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2645 unsigned i, j;
2647 if (dump_enabled_p ())
2648 dump_printf_loc (MSG_NOTE, vect_location,
2649 "=== vect_prune_runtime_alias_test_list ===");
2651 for (i = 0; i < ddrs.length (); )
2653 bool found;
2654 ddr_p ddr_i;
2656 ddr_i = ddrs[i];
2657 found = false;
2659 for (j = 0; j < i; j++)
2661 ddr_p ddr_j = ddrs[j];
2663 if (vect_vfa_range_equal (ddr_i, ddr_j))
2665 if (dump_enabled_p ())
2667 dump_printf_loc (MSG_NOTE, vect_location,
2668 "found equal ranges ");
2669 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr_i)));
2670 dump_printf (MSG_NOTE, ", ");
2671 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr_i)));
2672 dump_printf (MSG_NOTE, " and ");
2673 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr_j)));
2674 dump_printf (MSG_NOTE, ", ");
2675 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr_j)));
2677 found = true;
2678 break;
2682 if (found)
2684 ddrs.ordered_remove (i);
2685 continue;
2687 i++;
2690 if (ddrs.length () >
2691 (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2693 if (dump_enabled_p ())
2695 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2696 "disable versioning for alias - max number of "
2697 "generated checks exceeded.");
2700 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0);
2702 return false;
2705 return true;
2708 /* Check whether a non-affine read in stmt is suitable for gather load
2709 and if so, return a builtin decl for that operation. */
2711 tree
2712 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2713 tree *offp, int *scalep)
2715 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2716 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2717 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2718 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2719 tree offtype = NULL_TREE;
2720 tree decl, base, off;
2721 enum machine_mode pmode;
2722 int punsignedp, pvolatilep;
2724 /* The gather builtins need address of the form
2725 loop_invariant + vector * {1, 2, 4, 8}
2727 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
2728 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
2729 of loop invariants/SSA_NAMEs defined in the loop, with casts,
2730 multiplications and additions in it. To get a vector, we need
2731 a single SSA_NAME that will be defined in the loop and will
2732 contain everything that is not loop invariant and that can be
2733 vectorized. The following code attempts to find such a preexistng
2734 SSA_NAME OFF and put the loop invariants into a tree BASE
2735 that can be gimplified before the loop. */
2736 base = get_inner_reference (DR_REF (dr), &pbitsize, &pbitpos, &off,
2737 &pmode, &punsignedp, &pvolatilep, false);
2738 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
2740 if (TREE_CODE (base) == MEM_REF)
2742 if (!integer_zerop (TREE_OPERAND (base, 1)))
2744 if (off == NULL_TREE)
2746 double_int moff = mem_ref_offset (base);
2747 off = double_int_to_tree (sizetype, moff);
2749 else
2750 off = size_binop (PLUS_EXPR, off,
2751 fold_convert (sizetype, TREE_OPERAND (base, 1)));
2753 base = TREE_OPERAND (base, 0);
2755 else
2756 base = build_fold_addr_expr (base);
2758 if (off == NULL_TREE)
2759 off = size_zero_node;
2761 /* If base is not loop invariant, either off is 0, then we start with just
2762 the constant offset in the loop invariant BASE and continue with base
2763 as OFF, otherwise give up.
2764 We could handle that case by gimplifying the addition of base + off
2765 into some SSA_NAME and use that as off, but for now punt. */
2766 if (!expr_invariant_in_loop_p (loop, base))
2768 if (!integer_zerop (off))
2769 return NULL_TREE;
2770 off = base;
2771 base = size_int (pbitpos / BITS_PER_UNIT);
2773 /* Otherwise put base + constant offset into the loop invariant BASE
2774 and continue with OFF. */
2775 else
2777 base = fold_convert (sizetype, base);
2778 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
2781 /* OFF at this point may be either a SSA_NAME or some tree expression
2782 from get_inner_reference. Try to peel off loop invariants from it
2783 into BASE as long as possible. */
2784 STRIP_NOPS (off);
2785 while (offtype == NULL_TREE)
2787 enum tree_code code;
2788 tree op0, op1, add = NULL_TREE;
2790 if (TREE_CODE (off) == SSA_NAME)
2792 gimple def_stmt = SSA_NAME_DEF_STMT (off);
2794 if (expr_invariant_in_loop_p (loop, off))
2795 return NULL_TREE;
2797 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2798 break;
2800 op0 = gimple_assign_rhs1 (def_stmt);
2801 code = gimple_assign_rhs_code (def_stmt);
2802 op1 = gimple_assign_rhs2 (def_stmt);
2804 else
2806 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
2807 return NULL_TREE;
2808 code = TREE_CODE (off);
2809 extract_ops_from_tree (off, &code, &op0, &op1);
2811 switch (code)
2813 case POINTER_PLUS_EXPR:
2814 case PLUS_EXPR:
2815 if (expr_invariant_in_loop_p (loop, op0))
2817 add = op0;
2818 off = op1;
2819 do_add:
2820 add = fold_convert (sizetype, add);
2821 if (scale != 1)
2822 add = size_binop (MULT_EXPR, add, size_int (scale));
2823 base = size_binop (PLUS_EXPR, base, add);
2824 continue;
2826 if (expr_invariant_in_loop_p (loop, op1))
2828 add = op1;
2829 off = op0;
2830 goto do_add;
2832 break;
2833 case MINUS_EXPR:
2834 if (expr_invariant_in_loop_p (loop, op1))
2836 add = fold_convert (sizetype, op1);
2837 add = size_binop (MINUS_EXPR, size_zero_node, add);
2838 off = op0;
2839 goto do_add;
2841 break;
2842 case MULT_EXPR:
2843 if (scale == 1 && host_integerp (op1, 0))
2845 scale = tree_low_cst (op1, 0);
2846 off = op0;
2847 continue;
2849 break;
2850 case SSA_NAME:
2851 off = op0;
2852 continue;
2853 CASE_CONVERT:
2854 if (!POINTER_TYPE_P (TREE_TYPE (op0))
2855 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2856 break;
2857 if (TYPE_PRECISION (TREE_TYPE (op0))
2858 == TYPE_PRECISION (TREE_TYPE (off)))
2860 off = op0;
2861 continue;
2863 if (TYPE_PRECISION (TREE_TYPE (op0))
2864 < TYPE_PRECISION (TREE_TYPE (off)))
2866 off = op0;
2867 offtype = TREE_TYPE (off);
2868 STRIP_NOPS (off);
2869 continue;
2871 break;
2872 default:
2873 break;
2875 break;
2878 /* If at the end OFF still isn't a SSA_NAME or isn't
2879 defined in the loop, punt. */
2880 if (TREE_CODE (off) != SSA_NAME
2881 || expr_invariant_in_loop_p (loop, off))
2882 return NULL_TREE;
2884 if (offtype == NULL_TREE)
2885 offtype = TREE_TYPE (off);
2887 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
2888 offtype, scale);
2889 if (decl == NULL_TREE)
2890 return NULL_TREE;
2892 if (basep)
2893 *basep = base;
2894 if (offp)
2895 *offp = off;
2896 if (scalep)
2897 *scalep = scale;
2898 return decl;
2901 /* Check wether a non-affine load in STMT (being in the loop referred to
2902 in LOOP_VINFO) is suitable for handling as strided load. That is the case
2903 if its address is a simple induction variable. If so return the base
2904 of that induction variable in *BASEP and the (loop-invariant) step
2905 in *STEPP, both only when that pointer is non-zero.
2907 This handles ARRAY_REFs (with variant index) and MEM_REFs (with variant
2908 base pointer) only. */
2910 static bool
2911 vect_check_strided_load (gimple stmt, loop_vec_info loop_vinfo)
2913 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2914 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2915 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2916 tree base, off;
2917 affine_iv iv;
2919 if (!DR_IS_READ (dr))
2920 return false;
2922 base = DR_REF (dr);
2924 if (TREE_CODE (base) == ARRAY_REF)
2926 off = TREE_OPERAND (base, 1);
2927 base = TREE_OPERAND (base, 0);
2929 else if (TREE_CODE (base) == MEM_REF)
2931 off = TREE_OPERAND (base, 0);
2932 base = TREE_OPERAND (base, 1);
2934 else
2935 return false;
2937 if (TREE_CODE (off) != SSA_NAME)
2938 return false;
2940 if (!expr_invariant_in_loop_p (loop, base)
2941 || !simple_iv (loop, loop_containing_stmt (stmt), off, &iv, true))
2942 return false;
2944 return true;
2947 /* Function vect_analyze_data_refs.
2949 Find all the data references in the loop or basic block.
2951 The general structure of the analysis of data refs in the vectorizer is as
2952 follows:
2953 1- vect_analyze_data_refs(loop/bb): call
2954 compute_data_dependences_for_loop/bb to find and analyze all data-refs
2955 in the loop/bb and their dependences.
2956 2- vect_analyze_dependences(): apply dependence testing using ddrs.
2957 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
2958 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
2962 bool
2963 vect_analyze_data_refs (loop_vec_info loop_vinfo,
2964 bb_vec_info bb_vinfo,
2965 int *min_vf)
2967 struct loop *loop = NULL;
2968 basic_block bb = NULL;
2969 unsigned int i;
2970 vec<data_reference_p> datarefs;
2971 struct data_reference *dr;
2972 tree scalar_type;
2973 bool res, stop_bb_analysis = false;
2975 if (dump_enabled_p ())
2976 dump_printf_loc (MSG_NOTE, vect_location,
2977 "=== vect_analyze_data_refs ===\n");
2979 if (loop_vinfo)
2981 loop = LOOP_VINFO_LOOP (loop_vinfo);
2982 res = compute_data_dependences_for_loop
2983 (loop, true,
2984 &LOOP_VINFO_LOOP_NEST (loop_vinfo),
2985 &LOOP_VINFO_DATAREFS (loop_vinfo),
2986 &LOOP_VINFO_DDRS (loop_vinfo));
2988 if (!res)
2990 if (dump_enabled_p ())
2991 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2992 "not vectorized: loop contains function calls"
2993 " or data references that cannot be analyzed");
2994 return false;
2997 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2999 else
3001 gimple_stmt_iterator gsi;
3003 bb = BB_VINFO_BB (bb_vinfo);
3004 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3006 gimple stmt = gsi_stmt (gsi);
3007 if (!find_data_references_in_stmt (NULL, stmt,
3008 &BB_VINFO_DATAREFS (bb_vinfo)))
3010 /* Mark the rest of the basic-block as unvectorizable. */
3011 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3013 stmt = gsi_stmt (gsi);
3014 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3016 break;
3019 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
3020 &BB_VINFO_DDRS (bb_vinfo),
3021 vNULL, true))
3023 if (dump_enabled_p ())
3024 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3025 "not vectorized: basic block contains function"
3026 " calls or data references that cannot be"
3027 " analyzed");
3028 return false;
3031 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3034 /* Go through the data-refs, check that the analysis succeeded. Update
3035 pointer from stmt_vec_info struct to DR and vectype. */
3037 FOR_EACH_VEC_ELT (datarefs, i, dr)
3039 gimple stmt;
3040 stmt_vec_info stmt_info;
3041 tree base, offset, init;
3042 bool gather = false;
3043 int vf;
3045 if (!dr || !DR_REF (dr))
3047 if (dump_enabled_p ())
3048 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3049 "not vectorized: unhandled data-ref ");
3050 return false;
3053 stmt = DR_STMT (dr);
3054 stmt_info = vinfo_for_stmt (stmt);
3056 if (stop_bb_analysis)
3058 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3059 continue;
3062 /* Check that analysis of the data-ref succeeded. */
3063 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3064 || !DR_STEP (dr))
3066 /* If target supports vector gather loads, see if they can't
3067 be used. */
3068 if (loop_vinfo
3069 && DR_IS_READ (dr)
3070 && !TREE_THIS_VOLATILE (DR_REF (dr))
3071 && targetm.vectorize.builtin_gather != NULL
3072 && !nested_in_vect_loop_p (loop, stmt))
3074 struct data_reference *newdr
3075 = create_data_ref (NULL, loop_containing_stmt (stmt),
3076 DR_REF (dr), stmt, true);
3077 gcc_assert (newdr != NULL && DR_REF (newdr));
3078 if (DR_BASE_ADDRESS (newdr)
3079 && DR_OFFSET (newdr)
3080 && DR_INIT (newdr)
3081 && DR_STEP (newdr)
3082 && integer_zerop (DR_STEP (newdr)))
3084 dr = newdr;
3085 gather = true;
3087 else
3088 free_data_ref (newdr);
3091 if (!gather)
3093 if (dump_enabled_p ())
3095 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3096 "not vectorized: data ref analysis "
3097 "failed ");
3098 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3101 if (bb_vinfo)
3103 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3104 stop_bb_analysis = true;
3105 continue;
3108 return false;
3112 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3114 if (dump_enabled_p ())
3115 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3116 "not vectorized: base addr of dr is a "
3117 "constant");
3119 if (bb_vinfo)
3121 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3122 stop_bb_analysis = true;
3123 continue;
3126 if (gather)
3127 free_data_ref (dr);
3128 return false;
3131 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3133 if (dump_enabled_p ())
3135 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3136 "not vectorized: volatile type ");
3137 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3140 if (bb_vinfo)
3142 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3143 stop_bb_analysis = true;
3144 continue;
3147 return false;
3150 if (stmt_can_throw_internal (stmt))
3152 if (dump_enabled_p ())
3154 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3155 "not vectorized: statement can throw an "
3156 "exception ");
3157 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3160 if (bb_vinfo)
3162 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3163 stop_bb_analysis = true;
3164 continue;
3167 if (gather)
3168 free_data_ref (dr);
3169 return false;
3172 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3173 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3175 if (dump_enabled_p ())
3177 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3178 "not vectorized: statement is bitfield "
3179 "access ");
3180 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3183 if (bb_vinfo)
3185 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3186 stop_bb_analysis = true;
3187 continue;
3190 if (gather)
3191 free_data_ref (dr);
3192 return false;
3195 base = unshare_expr (DR_BASE_ADDRESS (dr));
3196 offset = unshare_expr (DR_OFFSET (dr));
3197 init = unshare_expr (DR_INIT (dr));
3199 if (is_gimple_call (stmt))
3201 if (dump_enabled_p ())
3203 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3204 "not vectorized: dr in a call ");
3205 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3208 if (bb_vinfo)
3210 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3211 stop_bb_analysis = true;
3212 continue;
3215 if (gather)
3216 free_data_ref (dr);
3217 return false;
3220 /* Update DR field in stmt_vec_info struct. */
3222 /* If the dataref is in an inner-loop of the loop that is considered for
3223 for vectorization, we also want to analyze the access relative to
3224 the outer-loop (DR contains information only relative to the
3225 inner-most enclosing loop). We do that by building a reference to the
3226 first location accessed by the inner-loop, and analyze it relative to
3227 the outer-loop. */
3228 if (loop && nested_in_vect_loop_p (loop, stmt))
3230 tree outer_step, outer_base, outer_init;
3231 HOST_WIDE_INT pbitsize, pbitpos;
3232 tree poffset;
3233 enum machine_mode pmode;
3234 int punsignedp, pvolatilep;
3235 affine_iv base_iv, offset_iv;
3236 tree dinit;
3238 /* Build a reference to the first location accessed by the
3239 inner-loop: *(BASE+INIT). (The first location is actually
3240 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3241 tree inner_base = build_fold_indirect_ref
3242 (fold_build_pointer_plus (base, init));
3244 if (dump_enabled_p ())
3246 dump_printf_loc (MSG_NOTE, vect_location,
3247 "analyze in outer-loop: ");
3248 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3251 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3252 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3253 gcc_assert (outer_base != NULL_TREE);
3255 if (pbitpos % BITS_PER_UNIT != 0)
3257 if (dump_enabled_p ())
3258 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3259 "failed: bit offset alignment.\n");
3260 return false;
3263 outer_base = build_fold_addr_expr (outer_base);
3264 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3265 &base_iv, false))
3267 if (dump_enabled_p ())
3268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3269 "failed: evolution of base is not affine.\n");
3270 return false;
3273 if (offset)
3275 if (poffset)
3276 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3277 poffset);
3278 else
3279 poffset = offset;
3282 if (!poffset)
3284 offset_iv.base = ssize_int (0);
3285 offset_iv.step = ssize_int (0);
3287 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3288 &offset_iv, false))
3290 if (dump_enabled_p ())
3291 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3292 "evolution of offset is not affine.\n");
3293 return false;
3296 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3297 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3298 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3299 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3300 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3302 outer_step = size_binop (PLUS_EXPR,
3303 fold_convert (ssizetype, base_iv.step),
3304 fold_convert (ssizetype, offset_iv.step));
3306 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3307 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3308 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3309 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3310 STMT_VINFO_DR_OFFSET (stmt_info) =
3311 fold_convert (ssizetype, offset_iv.base);
3312 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3313 size_int (highest_pow2_factor (offset_iv.base));
3315 if (dump_enabled_p ())
3317 dump_printf_loc (MSG_NOTE, vect_location,
3318 "\touter base_address: ");
3319 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3320 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3321 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3322 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3323 STMT_VINFO_DR_OFFSET (stmt_info));
3324 dump_printf (MSG_NOTE,
3325 "\n\touter constant offset from base address: ");
3326 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3327 STMT_VINFO_DR_INIT (stmt_info));
3328 dump_printf (MSG_NOTE, "\n\touter step: ");
3329 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3330 STMT_VINFO_DR_STEP (stmt_info));
3331 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3332 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3333 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3337 if (STMT_VINFO_DATA_REF (stmt_info))
3339 if (dump_enabled_p ())
3341 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3342 "not vectorized: more than one data ref "
3343 "in stmt: ");
3344 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3347 if (bb_vinfo)
3349 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3350 stop_bb_analysis = true;
3351 continue;
3354 if (gather)
3355 free_data_ref (dr);
3356 return false;
3359 STMT_VINFO_DATA_REF (stmt_info) = dr;
3361 /* Set vectype for STMT. */
3362 scalar_type = TREE_TYPE (DR_REF (dr));
3363 STMT_VINFO_VECTYPE (stmt_info) =
3364 get_vectype_for_scalar_type (scalar_type);
3365 if (!STMT_VINFO_VECTYPE (stmt_info))
3367 if (dump_enabled_p ())
3369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3370 "not vectorized: no vectype for stmt: ");
3371 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3372 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3373 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3374 scalar_type);
3377 if (bb_vinfo)
3379 /* Mark the statement as not vectorizable. */
3380 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3381 stop_bb_analysis = true;
3382 continue;
3385 if (gather)
3387 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3388 free_data_ref (dr);
3390 return false;
3393 /* Adjust the minimal vectorization factor according to the
3394 vector type. */
3395 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3396 if (vf > *min_vf)
3397 *min_vf = vf;
3399 if (gather)
3401 unsigned int j, k, n;
3402 struct data_reference *olddr
3403 = datarefs[i];
3404 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
3405 struct data_dependence_relation *ddr, *newddr;
3406 bool bad = false;
3407 tree off;
3408 vec<loop_p> nest = LOOP_VINFO_LOOP_NEST (loop_vinfo);
3410 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3411 if (gather
3412 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3413 gather = false;
3414 if (!gather)
3416 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3417 free_data_ref (dr);
3418 if (dump_enabled_p ())
3420 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3421 "not vectorized: not suitable for gather "
3422 "load ");
3423 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3425 return false;
3428 n = datarefs.length () - 1;
3429 for (j = 0, k = i - 1; j < i; j++)
3431 ddr = ddrs[k];
3432 gcc_assert (DDR_B (ddr) == olddr);
3433 newddr = initialize_data_dependence_relation (DDR_A (ddr), dr,
3434 nest);
3435 ddrs[k] = newddr;
3436 free_dependence_relation (ddr);
3437 if (!bad
3438 && DR_IS_WRITE (DDR_A (newddr))
3439 && DDR_ARE_DEPENDENT (newddr) != chrec_known)
3440 bad = true;
3441 k += --n;
3444 k++;
3445 n = k + datarefs.length () - i - 1;
3446 for (; k < n; k++)
3448 ddr = ddrs[k];
3449 gcc_assert (DDR_A (ddr) == olddr);
3450 newddr = initialize_data_dependence_relation (dr, DDR_B (ddr),
3451 nest);
3452 ddrs[k] = newddr;
3453 free_dependence_relation (ddr);
3454 if (!bad
3455 && DR_IS_WRITE (DDR_B (newddr))
3456 && DDR_ARE_DEPENDENT (newddr) != chrec_known)
3457 bad = true;
3460 k = ddrs.length ()
3461 - datarefs.length () + i;
3462 ddr = ddrs[k];
3463 gcc_assert (DDR_A (ddr) == olddr && DDR_B (ddr) == olddr);
3464 newddr = initialize_data_dependence_relation (dr, dr, nest);
3465 ddrs[k] = newddr;
3466 free_dependence_relation (ddr);
3467 datarefs[i] = dr;
3469 if (bad)
3471 if (dump_enabled_p ())
3473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3474 "not vectorized: data dependence conflict"
3475 " prevents gather load");
3476 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3478 return false;
3481 STMT_VINFO_GATHER_P (stmt_info) = true;
3483 else if (loop_vinfo
3484 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3486 bool strided_load = false;
3487 if (!nested_in_vect_loop_p (loop, stmt))
3488 strided_load = vect_check_strided_load (stmt, loop_vinfo);
3489 if (!strided_load)
3491 if (dump_enabled_p ())
3493 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3494 "not vectorized: not suitable for strided "
3495 "load ");
3496 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3498 return false;
3500 STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
3504 return true;
3508 /* Function vect_get_new_vect_var.
3510 Returns a name for a new variable. The current naming scheme appends the
3511 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3512 the name of vectorizer generated variables, and appends that to NAME if
3513 provided. */
3515 tree
3516 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3518 const char *prefix;
3519 tree new_vect_var;
3521 switch (var_kind)
3523 case vect_simple_var:
3524 prefix = "vect_";
3525 break;
3526 case vect_scalar_var:
3527 prefix = "stmp_";
3528 break;
3529 case vect_pointer_var:
3530 prefix = "vect_p";
3531 break;
3532 default:
3533 gcc_unreachable ();
3536 if (name)
3538 char* tmp = concat (prefix, name, NULL);
3539 new_vect_var = create_tmp_reg (type, tmp);
3540 free (tmp);
3542 else
3543 new_vect_var = create_tmp_reg (type, prefix);
3545 return new_vect_var;
3549 /* Function vect_create_addr_base_for_vector_ref.
3551 Create an expression that computes the address of the first memory location
3552 that will be accessed for a data reference.
3554 Input:
3555 STMT: The statement containing the data reference.
3556 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3557 OFFSET: Optional. If supplied, it is be added to the initial address.
3558 LOOP: Specify relative to which loop-nest should the address be computed.
3559 For example, when the dataref is in an inner-loop nested in an
3560 outer-loop that is now being vectorized, LOOP can be either the
3561 outer-loop, or the inner-loop. The first memory location accessed
3562 by the following dataref ('in' points to short):
3564 for (i=0; i<N; i++)
3565 for (j=0; j<M; j++)
3566 s += in[i+j]
3568 is as follows:
3569 if LOOP=i_loop: &in (relative to i_loop)
3570 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3572 Output:
3573 1. Return an SSA_NAME whose value is the address of the memory location of
3574 the first vector of the data reference.
3575 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3576 these statement(s) which define the returned SSA_NAME.
3578 FORNOW: We are only handling array accesses with step 1. */
3580 tree
3581 vect_create_addr_base_for_vector_ref (gimple stmt,
3582 gimple_seq *new_stmt_list,
3583 tree offset,
3584 struct loop *loop)
3586 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3587 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3588 tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3589 const char *base_name;
3590 tree data_ref_base_var;
3591 tree vec_stmt;
3592 tree addr_base, addr_expr;
3593 tree dest;
3594 gimple_seq seq = NULL;
3595 tree base_offset = unshare_expr (DR_OFFSET (dr));
3596 tree init = unshare_expr (DR_INIT (dr));
3597 tree vect_ptr_type;
3598 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3599 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3600 tree base;
3602 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3604 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3606 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3608 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3609 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3610 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3613 if (loop_vinfo)
3614 base_name = get_name (data_ref_base);
3615 else
3617 base_offset = ssize_int (0);
3618 init = ssize_int (0);
3619 base_name = get_name (DR_REF (dr));
3622 data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
3623 data_ref_base = force_gimple_operand (data_ref_base, &seq, true,
3624 data_ref_base_var);
3625 gimple_seq_add_seq (new_stmt_list, seq);
3627 /* Create base_offset */
3628 base_offset = size_binop (PLUS_EXPR,
3629 fold_convert (sizetype, base_offset),
3630 fold_convert (sizetype, init));
3631 dest = create_tmp_var (sizetype, "base_off");
3632 base_offset = force_gimple_operand (base_offset, &seq, true, dest);
3633 gimple_seq_add_seq (new_stmt_list, seq);
3635 if (offset)
3637 tree tmp = create_tmp_var (sizetype, "offset");
3639 offset = fold_build2 (MULT_EXPR, sizetype,
3640 fold_convert (sizetype, offset), step);
3641 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3642 base_offset, offset);
3643 base_offset = force_gimple_operand (base_offset, &seq, false, tmp);
3644 gimple_seq_add_seq (new_stmt_list, seq);
3647 /* base + base_offset */
3648 if (loop_vinfo)
3649 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3650 else
3652 addr_base = build1 (ADDR_EXPR,
3653 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3654 unshare_expr (DR_REF (dr)));
3657 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3658 base = get_base_address (DR_REF (dr));
3659 if (base
3660 && TREE_CODE (base) == MEM_REF)
3661 vect_ptr_type
3662 = build_qualified_type (vect_ptr_type,
3663 TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
3665 vec_stmt = fold_convert (vect_ptr_type, addr_base);
3666 addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
3667 base_name);
3668 vec_stmt = force_gimple_operand (vec_stmt, &seq, false, addr_expr);
3669 gimple_seq_add_seq (new_stmt_list, seq);
3671 if (DR_PTR_INFO (dr)
3672 && TREE_CODE (vec_stmt) == SSA_NAME)
3674 duplicate_ssa_name_ptr_info (vec_stmt, DR_PTR_INFO (dr));
3675 if (offset)
3676 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (vec_stmt));
3679 if (dump_enabled_p ())
3681 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3682 dump_generic_expr (MSG_NOTE, TDF_SLIM, vec_stmt);
3685 return vec_stmt;
3689 /* Function vect_create_data_ref_ptr.
3691 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3692 location accessed in the loop by STMT, along with the def-use update
3693 chain to appropriately advance the pointer through the loop iterations.
3694 Also set aliasing information for the pointer. This pointer is used by
3695 the callers to this function to create a memory reference expression for
3696 vector load/store access.
3698 Input:
3699 1. STMT: a stmt that references memory. Expected to be of the form
3700 GIMPLE_ASSIGN <name, data-ref> or
3701 GIMPLE_ASSIGN <data-ref, name>.
3702 2. AGGR_TYPE: the type of the reference, which should be either a vector
3703 or an array.
3704 3. AT_LOOP: the loop where the vector memref is to be created.
3705 4. OFFSET (optional): an offset to be added to the initial address accessed
3706 by the data-ref in STMT.
3707 5. BSI: location where the new stmts are to be placed if there is no loop
3708 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
3709 pointing to the initial address.
3711 Output:
3712 1. Declare a new ptr to vector_type, and have it point to the base of the
3713 data reference (initial addressed accessed by the data reference).
3714 For example, for vector of type V8HI, the following code is generated:
3716 v8hi *ap;
3717 ap = (v8hi *)initial_address;
3719 if OFFSET is not supplied:
3720 initial_address = &a[init];
3721 if OFFSET is supplied:
3722 initial_address = &a[init + OFFSET];
3724 Return the initial_address in INITIAL_ADDRESS.
3726 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
3727 update the pointer in each iteration of the loop.
3729 Return the increment stmt that updates the pointer in PTR_INCR.
3731 3. Set INV_P to true if the access pattern of the data reference in the
3732 vectorized loop is invariant. Set it to false otherwise.
3734 4. Return the pointer. */
3736 tree
3737 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
3738 tree offset, tree *initial_address,
3739 gimple_stmt_iterator *gsi, gimple *ptr_incr,
3740 bool only_init, bool *inv_p)
3742 const char *base_name;
3743 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3744 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3745 struct loop *loop = NULL;
3746 bool nested_in_vect_loop = false;
3747 struct loop *containing_loop = NULL;
3748 tree aggr_ptr_type;
3749 tree aggr_ptr;
3750 tree new_temp;
3751 gimple vec_stmt;
3752 gimple_seq new_stmt_list = NULL;
3753 edge pe = NULL;
3754 basic_block new_bb;
3755 tree aggr_ptr_init;
3756 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3757 tree aptr;
3758 gimple_stmt_iterator incr_gsi;
3759 bool insert_after;
3760 bool negative;
3761 tree indx_before_incr, indx_after_incr;
3762 gimple incr;
3763 tree step;
3764 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3765 tree base;
3767 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
3768 || TREE_CODE (aggr_type) == VECTOR_TYPE);
3770 if (loop_vinfo)
3772 loop = LOOP_VINFO_LOOP (loop_vinfo);
3773 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
3774 containing_loop = (gimple_bb (stmt))->loop_father;
3775 pe = loop_preheader_edge (loop);
3777 else
3779 gcc_assert (bb_vinfo);
3780 only_init = true;
3781 *ptr_incr = NULL;
3784 /* Check the step (evolution) of the load in LOOP, and record
3785 whether it's invariant. */
3786 if (nested_in_vect_loop)
3787 step = STMT_VINFO_DR_STEP (stmt_info);
3788 else
3789 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
3791 if (tree_int_cst_compare (step, size_zero_node) == 0)
3792 *inv_p = true;
3793 else
3794 *inv_p = false;
3795 negative = tree_int_cst_compare (step, size_zero_node) < 0;
3797 /* Create an expression for the first address accessed by this load
3798 in LOOP. */
3799 base_name = get_name (DR_BASE_ADDRESS (dr));
3801 if (dump_enabled_p ())
3803 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
3804 dump_printf_loc (MSG_NOTE, vect_location,
3805 "create %s-pointer variable to type: ",
3806 tree_code_name[(int) TREE_CODE (aggr_type)]);
3807 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
3808 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
3809 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
3810 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
3811 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
3812 else
3813 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
3814 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
3817 /* (1) Create the new aggregate-pointer variable. */
3818 aggr_ptr_type = build_pointer_type (aggr_type);
3819 base = get_base_address (DR_REF (dr));
3820 if (base
3821 && TREE_CODE (base) == MEM_REF)
3822 aggr_ptr_type
3823 = build_qualified_type (aggr_ptr_type,
3824 TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
3825 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
3827 /* Vector and array types inherit the alias set of their component
3828 type by default so we need to use a ref-all pointer if the data
3829 reference does not conflict with the created aggregated data
3830 reference because it is not addressable. */
3831 if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
3832 get_alias_set (DR_REF (dr))))
3834 aggr_ptr_type
3835 = build_pointer_type_for_mode (aggr_type,
3836 TYPE_MODE (aggr_ptr_type), true);
3837 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
3838 base_name);
3841 /* Likewise for any of the data references in the stmt group. */
3842 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
3844 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
3847 tree lhs = gimple_assign_lhs (orig_stmt);
3848 if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
3849 get_alias_set (lhs)))
3851 aggr_ptr_type
3852 = build_pointer_type_for_mode (aggr_type,
3853 TYPE_MODE (aggr_ptr_type), true);
3854 aggr_ptr
3855 = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
3856 base_name);
3857 break;
3860 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo_for_stmt (orig_stmt));
3862 while (orig_stmt);
3865 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
3866 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
3867 def-use update cycles for the pointer: one relative to the outer-loop
3868 (LOOP), which is what steps (3) and (4) below do. The other is relative
3869 to the inner-loop (which is the inner-most loop containing the dataref),
3870 and this is done be step (5) below.
3872 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
3873 inner-most loop, and so steps (3),(4) work the same, and step (5) is
3874 redundant. Steps (3),(4) create the following:
3876 vp0 = &base_addr;
3877 LOOP: vp1 = phi(vp0,vp2)
3880 vp2 = vp1 + step
3881 goto LOOP
3883 If there is an inner-loop nested in loop, then step (5) will also be
3884 applied, and an additional update in the inner-loop will be created:
3886 vp0 = &base_addr;
3887 LOOP: vp1 = phi(vp0,vp2)
3889 inner: vp3 = phi(vp1,vp4)
3890 vp4 = vp3 + inner_step
3891 if () goto inner
3893 vp2 = vp1 + step
3894 if () goto LOOP */
3896 /* (2) Calculate the initial address of the aggregate-pointer, and set
3897 the aggregate-pointer to point to it before the loop. */
3899 /* Create: (&(base[init_val+offset]) in the loop preheader. */
3901 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
3902 offset, loop);
3903 if (new_stmt_list)
3905 if (pe)
3907 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
3908 gcc_assert (!new_bb);
3910 else
3911 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
3914 *initial_address = new_temp;
3916 /* Create: p = (aggr_type *) initial_base */
3917 if (TREE_CODE (new_temp) != SSA_NAME
3918 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
3920 vec_stmt = gimple_build_assign (aggr_ptr,
3921 fold_convert (aggr_ptr_type, new_temp));
3922 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
3923 /* Copy the points-to information if it exists. */
3924 if (DR_PTR_INFO (dr))
3925 duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
3926 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
3927 if (pe)
3929 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
3930 gcc_assert (!new_bb);
3932 else
3933 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
3935 else
3936 aggr_ptr_init = new_temp;
3938 /* (3) Handle the updating of the aggregate-pointer inside the loop.
3939 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
3940 inner-loop nested in LOOP (during outer-loop vectorization). */
3942 /* No update in loop is required. */
3943 if (only_init && (!loop_vinfo || at_loop == loop))
3944 aptr = aggr_ptr_init;
3945 else
3947 /* The step of the aggregate pointer is the type size. */
3948 tree step = TYPE_SIZE_UNIT (aggr_type);
3949 /* One exception to the above is when the scalar step of the load in
3950 LOOP is zero. In this case the step here is also zero. */
3951 if (*inv_p)
3952 step = size_zero_node;
3953 else if (negative)
3954 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
3956 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
3958 create_iv (aggr_ptr_init,
3959 fold_convert (aggr_ptr_type, step),
3960 aggr_ptr, loop, &incr_gsi, insert_after,
3961 &indx_before_incr, &indx_after_incr);
3962 incr = gsi_stmt (incr_gsi);
3963 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
3965 /* Copy the points-to information if it exists. */
3966 if (DR_PTR_INFO (dr))
3968 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
3969 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
3971 if (ptr_incr)
3972 *ptr_incr = incr;
3974 aptr = indx_before_incr;
3977 if (!nested_in_vect_loop || only_init)
3978 return aptr;
3981 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
3982 nested in LOOP, if exists. */
3984 gcc_assert (nested_in_vect_loop);
3985 if (!only_init)
3987 standard_iv_increment_position (containing_loop, &incr_gsi,
3988 &insert_after);
3989 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
3990 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
3991 &indx_after_incr);
3992 incr = gsi_stmt (incr_gsi);
3993 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
3995 /* Copy the points-to information if it exists. */
3996 if (DR_PTR_INFO (dr))
3998 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
3999 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4001 if (ptr_incr)
4002 *ptr_incr = incr;
4004 return indx_before_incr;
4006 else
4007 gcc_unreachable ();
4011 /* Function bump_vector_ptr
4013 Increment a pointer (to a vector type) by vector-size. If requested,
4014 i.e. if PTR-INCR is given, then also connect the new increment stmt
4015 to the existing def-use update-chain of the pointer, by modifying
4016 the PTR_INCR as illustrated below:
4018 The pointer def-use update-chain before this function:
4019 DATAREF_PTR = phi (p_0, p_2)
4020 ....
4021 PTR_INCR: p_2 = DATAREF_PTR + step
4023 The pointer def-use update-chain after this function:
4024 DATAREF_PTR = phi (p_0, p_2)
4025 ....
4026 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4027 ....
4028 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4030 Input:
4031 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4032 in the loop.
4033 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4034 the loop. The increment amount across iterations is expected
4035 to be vector_size.
4036 BSI - location where the new update stmt is to be placed.
4037 STMT - the original scalar memory-access stmt that is being vectorized.
4038 BUMP - optional. The offset by which to bump the pointer. If not given,
4039 the offset is assumed to be vector_size.
4041 Output: Return NEW_DATAREF_PTR as illustrated above.
4045 tree
4046 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4047 gimple stmt, tree bump)
4049 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4050 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4051 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4052 tree update = TYPE_SIZE_UNIT (vectype);
4053 gimple incr_stmt;
4054 ssa_op_iter iter;
4055 use_operand_p use_p;
4056 tree new_dataref_ptr;
4058 if (bump)
4059 update = bump;
4061 new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
4062 incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
4063 dataref_ptr, update);
4064 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4066 /* Copy the points-to information if it exists. */
4067 if (DR_PTR_INFO (dr))
4069 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4070 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4073 if (!ptr_incr)
4074 return new_dataref_ptr;
4076 /* Update the vector-pointer's cross-iteration increment. */
4077 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4079 tree use = USE_FROM_PTR (use_p);
4081 if (use == dataref_ptr)
4082 SET_USE (use_p, new_dataref_ptr);
4083 else
4084 gcc_assert (tree_int_cst_compare (use, update) == 0);
4087 return new_dataref_ptr;
4091 /* Function vect_create_destination_var.
4093 Create a new temporary of type VECTYPE. */
4095 tree
4096 vect_create_destination_var (tree scalar_dest, tree vectype)
4098 tree vec_dest;
4099 const char *new_name;
4100 tree type;
4101 enum vect_var_kind kind;
4103 kind = vectype ? vect_simple_var : vect_scalar_var;
4104 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4106 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4108 new_name = get_name (scalar_dest);
4109 if (!new_name)
4110 new_name = "var_";
4111 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4113 return vec_dest;
4116 /* Function vect_grouped_store_supported.
4118 Returns TRUE if interleave high and interleave low permutations
4119 are supported, and FALSE otherwise. */
4121 bool
4122 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4124 enum machine_mode mode = TYPE_MODE (vectype);
4126 /* vect_permute_store_chain requires the group size to be a power of two. */
4127 if (exact_log2 (count) == -1)
4129 if (dump_enabled_p ())
4130 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4131 "the size of the group of accesses"
4132 " is not a power of 2");
4133 return false;
4136 /* Check that the permutation is supported. */
4137 if (VECTOR_MODE_P (mode))
4139 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4140 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4141 for (i = 0; i < nelt / 2; i++)
4143 sel[i * 2] = i;
4144 sel[i * 2 + 1] = i + nelt;
4146 if (can_vec_perm_p (mode, false, sel))
4148 for (i = 0; i < nelt; i++)
4149 sel[i] += nelt / 2;
4150 if (can_vec_perm_p (mode, false, sel))
4151 return true;
4155 if (dump_enabled_p ())
4156 dump_printf (MSG_MISSED_OPTIMIZATION,
4157 "interleave op not supported by target.");
4158 return false;
4162 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4163 type VECTYPE. */
4165 bool
4166 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4168 return vect_lanes_optab_supported_p ("vec_store_lanes",
4169 vec_store_lanes_optab,
4170 vectype, count);
4174 /* Function vect_permute_store_chain.
4176 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4177 a power of 2, generate interleave_high/low stmts to reorder the data
4178 correctly for the stores. Return the final references for stores in
4179 RESULT_CHAIN.
4181 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4182 The input is 4 vectors each containing 8 elements. We assign a number to
4183 each element, the input sequence is:
4185 1st vec: 0 1 2 3 4 5 6 7
4186 2nd vec: 8 9 10 11 12 13 14 15
4187 3rd vec: 16 17 18 19 20 21 22 23
4188 4th vec: 24 25 26 27 28 29 30 31
4190 The output sequence should be:
4192 1st vec: 0 8 16 24 1 9 17 25
4193 2nd vec: 2 10 18 26 3 11 19 27
4194 3rd vec: 4 12 20 28 5 13 21 30
4195 4th vec: 6 14 22 30 7 15 23 31
4197 i.e., we interleave the contents of the four vectors in their order.
4199 We use interleave_high/low instructions to create such output. The input of
4200 each interleave_high/low operation is two vectors:
4201 1st vec 2nd vec
4202 0 1 2 3 4 5 6 7
4203 the even elements of the result vector are obtained left-to-right from the
4204 high/low elements of the first vector. The odd elements of the result are
4205 obtained left-to-right from the high/low elements of the second vector.
4206 The output of interleave_high will be: 0 4 1 5
4207 and of interleave_low: 2 6 3 7
4210 The permutation is done in log LENGTH stages. In each stage interleave_high
4211 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4212 where the first argument is taken from the first half of DR_CHAIN and the
4213 second argument from it's second half.
4214 In our example,
4216 I1: interleave_high (1st vec, 3rd vec)
4217 I2: interleave_low (1st vec, 3rd vec)
4218 I3: interleave_high (2nd vec, 4th vec)
4219 I4: interleave_low (2nd vec, 4th vec)
4221 The output for the first stage is:
4223 I1: 0 16 1 17 2 18 3 19
4224 I2: 4 20 5 21 6 22 7 23
4225 I3: 8 24 9 25 10 26 11 27
4226 I4: 12 28 13 29 14 30 15 31
4228 The output of the second stage, i.e. the final result is:
4230 I1: 0 8 16 24 1 9 17 25
4231 I2: 2 10 18 26 3 11 19 27
4232 I3: 4 12 20 28 5 13 21 30
4233 I4: 6 14 22 30 7 15 23 31. */
4235 void
4236 vect_permute_store_chain (vec<tree> dr_chain,
4237 unsigned int length,
4238 gimple stmt,
4239 gimple_stmt_iterator *gsi,
4240 vec<tree> *result_chain)
4242 tree vect1, vect2, high, low;
4243 gimple perm_stmt;
4244 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4245 tree perm_mask_low, perm_mask_high;
4246 unsigned int i, n;
4247 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4248 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4250 result_chain->quick_grow (length);
4251 memcpy (result_chain->address (), dr_chain.address (),
4252 length * sizeof (tree));
4254 for (i = 0, n = nelt / 2; i < n; i++)
4256 sel[i * 2] = i;
4257 sel[i * 2 + 1] = i + nelt;
4259 perm_mask_high = vect_gen_perm_mask (vectype, sel);
4260 gcc_assert (perm_mask_high != NULL);
4262 for (i = 0; i < nelt; i++)
4263 sel[i] += nelt / 2;
4264 perm_mask_low = vect_gen_perm_mask (vectype, sel);
4265 gcc_assert (perm_mask_low != NULL);
4267 for (i = 0, n = exact_log2 (length); i < n; i++)
4269 for (j = 0; j < length/2; j++)
4271 vect1 = dr_chain[j];
4272 vect2 = dr_chain[j+length/2];
4274 /* Create interleaving stmt:
4275 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1, ...}> */
4276 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4277 perm_stmt
4278 = gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
4279 vect1, vect2, perm_mask_high);
4280 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4281 (*result_chain)[2*j] = high;
4283 /* Create interleaving stmt:
4284 low = VEC_PERM_EXPR <vect1, vect2, {nelt/2, nelt*3/2, nelt/2+1,
4285 nelt*3/2+1, ...}> */
4286 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4287 perm_stmt
4288 = gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
4289 vect1, vect2, perm_mask_low);
4290 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4291 (*result_chain)[2*j+1] = low;
4293 memcpy (dr_chain.address (), result_chain->address (),
4294 length * sizeof (tree));
4298 /* Function vect_setup_realignment
4300 This function is called when vectorizing an unaligned load using
4301 the dr_explicit_realign[_optimized] scheme.
4302 This function generates the following code at the loop prolog:
4304 p = initial_addr;
4305 x msq_init = *(floor(p)); # prolog load
4306 realignment_token = call target_builtin;
4307 loop:
4308 x msq = phi (msq_init, ---)
4310 The stmts marked with x are generated only for the case of
4311 dr_explicit_realign_optimized.
4313 The code above sets up a new (vector) pointer, pointing to the first
4314 location accessed by STMT, and a "floor-aligned" load using that pointer.
4315 It also generates code to compute the "realignment-token" (if the relevant
4316 target hook was defined), and creates a phi-node at the loop-header bb
4317 whose arguments are the result of the prolog-load (created by this
4318 function) and the result of a load that takes place in the loop (to be
4319 created by the caller to this function).
4321 For the case of dr_explicit_realign_optimized:
4322 The caller to this function uses the phi-result (msq) to create the
4323 realignment code inside the loop, and sets up the missing phi argument,
4324 as follows:
4325 loop:
4326 msq = phi (msq_init, lsq)
4327 lsq = *(floor(p')); # load in loop
4328 result = realign_load (msq, lsq, realignment_token);
4330 For the case of dr_explicit_realign:
4331 loop:
4332 msq = *(floor(p)); # load in loop
4333 p' = p + (VS-1);
4334 lsq = *(floor(p')); # load in loop
4335 result = realign_load (msq, lsq, realignment_token);
4337 Input:
4338 STMT - (scalar) load stmt to be vectorized. This load accesses
4339 a memory location that may be unaligned.
4340 BSI - place where new code is to be inserted.
4341 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4342 is used.
4344 Output:
4345 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4346 target hook, if defined.
4347 Return value - the result of the loop-header phi node. */
4349 tree
4350 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4351 tree *realignment_token,
4352 enum dr_alignment_support alignment_support_scheme,
4353 tree init_addr,
4354 struct loop **at_loop)
4356 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4357 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4358 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4359 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4360 struct loop *loop = NULL;
4361 edge pe = NULL;
4362 tree scalar_dest = gimple_assign_lhs (stmt);
4363 tree vec_dest;
4364 gimple inc;
4365 tree ptr;
4366 tree data_ref;
4367 gimple new_stmt;
4368 basic_block new_bb;
4369 tree msq_init = NULL_TREE;
4370 tree new_temp;
4371 gimple phi_stmt;
4372 tree msq = NULL_TREE;
4373 gimple_seq stmts = NULL;
4374 bool inv_p;
4375 bool compute_in_loop = false;
4376 bool nested_in_vect_loop = false;
4377 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4378 struct loop *loop_for_initial_load = NULL;
4380 if (loop_vinfo)
4382 loop = LOOP_VINFO_LOOP (loop_vinfo);
4383 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4386 gcc_assert (alignment_support_scheme == dr_explicit_realign
4387 || alignment_support_scheme == dr_explicit_realign_optimized);
4389 /* We need to generate three things:
4390 1. the misalignment computation
4391 2. the extra vector load (for the optimized realignment scheme).
4392 3. the phi node for the two vectors from which the realignment is
4393 done (for the optimized realignment scheme). */
4395 /* 1. Determine where to generate the misalignment computation.
4397 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4398 calculation will be generated by this function, outside the loop (in the
4399 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4400 caller, inside the loop.
4402 Background: If the misalignment remains fixed throughout the iterations of
4403 the loop, then both realignment schemes are applicable, and also the
4404 misalignment computation can be done outside LOOP. This is because we are
4405 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4406 are a multiple of VS (the Vector Size), and therefore the misalignment in
4407 different vectorized LOOP iterations is always the same.
4408 The problem arises only if the memory access is in an inner-loop nested
4409 inside LOOP, which is now being vectorized using outer-loop vectorization.
4410 This is the only case when the misalignment of the memory access may not
4411 remain fixed throughout the iterations of the inner-loop (as explained in
4412 detail in vect_supportable_dr_alignment). In this case, not only is the
4413 optimized realignment scheme not applicable, but also the misalignment
4414 computation (and generation of the realignment token that is passed to
4415 REALIGN_LOAD) have to be done inside the loop.
4417 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4418 or not, which in turn determines if the misalignment is computed inside
4419 the inner-loop, or outside LOOP. */
4421 if (init_addr != NULL_TREE || !loop_vinfo)
4423 compute_in_loop = true;
4424 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4428 /* 2. Determine where to generate the extra vector load.
4430 For the optimized realignment scheme, instead of generating two vector
4431 loads in each iteration, we generate a single extra vector load in the
4432 preheader of the loop, and in each iteration reuse the result of the
4433 vector load from the previous iteration. In case the memory access is in
4434 an inner-loop nested inside LOOP, which is now being vectorized using
4435 outer-loop vectorization, we need to determine whether this initial vector
4436 load should be generated at the preheader of the inner-loop, or can be
4437 generated at the preheader of LOOP. If the memory access has no evolution
4438 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4439 to be generated inside LOOP (in the preheader of the inner-loop). */
4441 if (nested_in_vect_loop)
4443 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4444 bool invariant_in_outerloop =
4445 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4446 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4448 else
4449 loop_for_initial_load = loop;
4450 if (at_loop)
4451 *at_loop = loop_for_initial_load;
4453 if (loop_for_initial_load)
4454 pe = loop_preheader_edge (loop_for_initial_load);
4456 /* 3. For the case of the optimized realignment, create the first vector
4457 load at the loop preheader. */
4459 if (alignment_support_scheme == dr_explicit_realign_optimized)
4461 /* Create msq_init = *(floor(p1)) in the loop preheader */
4463 gcc_assert (!compute_in_loop);
4464 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4465 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4466 NULL_TREE, &init_addr, NULL, &inc,
4467 true, &inv_p);
4468 new_temp = copy_ssa_name (ptr, NULL);
4469 new_stmt = gimple_build_assign_with_ops
4470 (BIT_AND_EXPR, new_temp, ptr,
4471 build_int_cst (TREE_TYPE (ptr),
4472 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4473 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4474 gcc_assert (!new_bb);
4475 data_ref
4476 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4477 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4478 new_stmt = gimple_build_assign (vec_dest, data_ref);
4479 new_temp = make_ssa_name (vec_dest, new_stmt);
4480 gimple_assign_set_lhs (new_stmt, new_temp);
4481 if (pe)
4483 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4484 gcc_assert (!new_bb);
4486 else
4487 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4489 msq_init = gimple_assign_lhs (new_stmt);
4492 /* 4. Create realignment token using a target builtin, if available.
4493 It is done either inside the containing loop, or before LOOP (as
4494 determined above). */
4496 if (targetm.vectorize.builtin_mask_for_load)
4498 tree builtin_decl;
4500 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4501 if (!init_addr)
4503 /* Generate the INIT_ADDR computation outside LOOP. */
4504 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4505 NULL_TREE, loop);
4506 if (loop)
4508 pe = loop_preheader_edge (loop);
4509 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4510 gcc_assert (!new_bb);
4512 else
4513 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4516 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4517 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4518 vec_dest =
4519 vect_create_destination_var (scalar_dest,
4520 gimple_call_return_type (new_stmt));
4521 new_temp = make_ssa_name (vec_dest, new_stmt);
4522 gimple_call_set_lhs (new_stmt, new_temp);
4524 if (compute_in_loop)
4525 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4526 else
4528 /* Generate the misalignment computation outside LOOP. */
4529 pe = loop_preheader_edge (loop);
4530 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4531 gcc_assert (!new_bb);
4534 *realignment_token = gimple_call_lhs (new_stmt);
4536 /* The result of the CALL_EXPR to this builtin is determined from
4537 the value of the parameter and no global variables are touched
4538 which makes the builtin a "const" function. Requiring the
4539 builtin to have the "const" attribute makes it unnecessary
4540 to call mark_call_clobbered. */
4541 gcc_assert (TREE_READONLY (builtin_decl));
4544 if (alignment_support_scheme == dr_explicit_realign)
4545 return msq;
4547 gcc_assert (!compute_in_loop);
4548 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4551 /* 5. Create msq = phi <msq_init, lsq> in loop */
4553 pe = loop_preheader_edge (containing_loop);
4554 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4555 msq = make_ssa_name (vec_dest, NULL);
4556 phi_stmt = create_phi_node (msq, containing_loop->header);
4557 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4559 return msq;
4563 /* Function vect_grouped_load_supported.
4565 Returns TRUE if even and odd permutations are supported,
4566 and FALSE otherwise. */
4568 bool
4569 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4571 enum machine_mode mode = TYPE_MODE (vectype);
4573 /* vect_permute_load_chain requires the group size to be a power of two. */
4574 if (exact_log2 (count) == -1)
4576 if (dump_enabled_p ())
4577 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4578 "the size of the group of accesses"
4579 " is not a power of 2");
4580 return false;
4583 /* Check that the permutation is supported. */
4584 if (VECTOR_MODE_P (mode))
4586 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4587 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4589 for (i = 0; i < nelt; i++)
4590 sel[i] = i * 2;
4591 if (can_vec_perm_p (mode, false, sel))
4593 for (i = 0; i < nelt; i++)
4594 sel[i] = i * 2 + 1;
4595 if (can_vec_perm_p (mode, false, sel))
4596 return true;
4600 if (dump_enabled_p ())
4601 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4602 "extract even/odd not supported by target");
4603 return false;
4606 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
4607 type VECTYPE. */
4609 bool
4610 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4612 return vect_lanes_optab_supported_p ("vec_load_lanes",
4613 vec_load_lanes_optab,
4614 vectype, count);
4617 /* Function vect_permute_load_chain.
4619 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
4620 a power of 2, generate extract_even/odd stmts to reorder the input data
4621 correctly. Return the final references for loads in RESULT_CHAIN.
4623 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4624 The input is 4 vectors each containing 8 elements. We assign a number to each
4625 element, the input sequence is:
4627 1st vec: 0 1 2 3 4 5 6 7
4628 2nd vec: 8 9 10 11 12 13 14 15
4629 3rd vec: 16 17 18 19 20 21 22 23
4630 4th vec: 24 25 26 27 28 29 30 31
4632 The output sequence should be:
4634 1st vec: 0 4 8 12 16 20 24 28
4635 2nd vec: 1 5 9 13 17 21 25 29
4636 3rd vec: 2 6 10 14 18 22 26 30
4637 4th vec: 3 7 11 15 19 23 27 31
4639 i.e., the first output vector should contain the first elements of each
4640 interleaving group, etc.
4642 We use extract_even/odd instructions to create such output. The input of
4643 each extract_even/odd operation is two vectors
4644 1st vec 2nd vec
4645 0 1 2 3 4 5 6 7
4647 and the output is the vector of extracted even/odd elements. The output of
4648 extract_even will be: 0 2 4 6
4649 and of extract_odd: 1 3 5 7
4652 The permutation is done in log LENGTH stages. In each stage extract_even
4653 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
4654 their order. In our example,
4656 E1: extract_even (1st vec, 2nd vec)
4657 E2: extract_odd (1st vec, 2nd vec)
4658 E3: extract_even (3rd vec, 4th vec)
4659 E4: extract_odd (3rd vec, 4th vec)
4661 The output for the first stage will be:
4663 E1: 0 2 4 6 8 10 12 14
4664 E2: 1 3 5 7 9 11 13 15
4665 E3: 16 18 20 22 24 26 28 30
4666 E4: 17 19 21 23 25 27 29 31
4668 In order to proceed and create the correct sequence for the next stage (or
4669 for the correct output, if the second stage is the last one, as in our
4670 example), we first put the output of extract_even operation and then the
4671 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
4672 The input for the second stage is:
4674 1st vec (E1): 0 2 4 6 8 10 12 14
4675 2nd vec (E3): 16 18 20 22 24 26 28 30
4676 3rd vec (E2): 1 3 5 7 9 11 13 15
4677 4th vec (E4): 17 19 21 23 25 27 29 31
4679 The output of the second stage:
4681 E1: 0 4 8 12 16 20 24 28
4682 E2: 2 6 10 14 18 22 26 30
4683 E3: 1 5 9 13 17 21 25 29
4684 E4: 3 7 11 15 19 23 27 31
4686 And RESULT_CHAIN after reordering:
4688 1st vec (E1): 0 4 8 12 16 20 24 28
4689 2nd vec (E3): 1 5 9 13 17 21 25 29
4690 3rd vec (E2): 2 6 10 14 18 22 26 30
4691 4th vec (E4): 3 7 11 15 19 23 27 31. */
4693 static void
4694 vect_permute_load_chain (vec<tree> dr_chain,
4695 unsigned int length,
4696 gimple stmt,
4697 gimple_stmt_iterator *gsi,
4698 vec<tree> *result_chain)
4700 tree data_ref, first_vect, second_vect;
4701 tree perm_mask_even, perm_mask_odd;
4702 gimple perm_stmt;
4703 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4704 unsigned int i, j, log_length = exact_log2 (length);
4705 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
4706 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4708 result_chain->quick_grow (length);
4709 memcpy (result_chain->address (), dr_chain.address (),
4710 length * sizeof (tree));
4712 for (i = 0; i < nelt; ++i)
4713 sel[i] = i * 2;
4714 perm_mask_even = vect_gen_perm_mask (vectype, sel);
4715 gcc_assert (perm_mask_even != NULL);
4717 for (i = 0; i < nelt; ++i)
4718 sel[i] = i * 2 + 1;
4719 perm_mask_odd = vect_gen_perm_mask (vectype, sel);
4720 gcc_assert (perm_mask_odd != NULL);
4722 for (i = 0; i < log_length; i++)
4724 for (j = 0; j < length; j += 2)
4726 first_vect = dr_chain[j];
4727 second_vect = dr_chain[j+1];
4729 /* data_ref = permute_even (first_data_ref, second_data_ref); */
4730 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
4731 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4732 first_vect, second_vect,
4733 perm_mask_even);
4734 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4735 (*result_chain)[j/2] = data_ref;
4737 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
4738 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
4739 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4740 first_vect, second_vect,
4741 perm_mask_odd);
4742 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4743 (*result_chain)[j/2+length/2] = data_ref;
4745 memcpy (dr_chain.address (), result_chain->address (),
4746 length * sizeof (tree));
4751 /* Function vect_transform_grouped_load.
4753 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
4754 to perform their permutation and ascribe the result vectorized statements to
4755 the scalar statements.
4758 void
4759 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
4760 gimple_stmt_iterator *gsi)
4762 vec<tree> result_chain = vNULL;
4764 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
4765 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
4766 vectors, that are ready for vector computation. */
4767 result_chain.create (size);
4768 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
4769 vect_record_grouped_load_vectors (stmt, result_chain);
4770 result_chain.release ();
4773 /* RESULT_CHAIN contains the output of a group of grouped loads that were
4774 generated as part of the vectorization of STMT. Assign the statement
4775 for each vector to the associated scalar statement. */
4777 void
4778 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
4780 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
4781 gimple next_stmt, new_stmt;
4782 unsigned int i, gap_count;
4783 tree tmp_data_ref;
4785 /* Put a permuted data-ref in the VECTORIZED_STMT field.
4786 Since we scan the chain starting from it's first node, their order
4787 corresponds the order of data-refs in RESULT_CHAIN. */
4788 next_stmt = first_stmt;
4789 gap_count = 1;
4790 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
4792 if (!next_stmt)
4793 break;
4795 /* Skip the gaps. Loads created for the gaps will be removed by dead
4796 code elimination pass later. No need to check for the first stmt in
4797 the group, since it always exists.
4798 GROUP_GAP is the number of steps in elements from the previous
4799 access (if there is no gap GROUP_GAP is 1). We skip loads that
4800 correspond to the gaps. */
4801 if (next_stmt != first_stmt
4802 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
4804 gap_count++;
4805 continue;
4808 while (next_stmt)
4810 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
4811 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
4812 copies, and we put the new vector statement in the first available
4813 RELATED_STMT. */
4814 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
4815 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
4816 else
4818 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
4820 gimple prev_stmt =
4821 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
4822 gimple rel_stmt =
4823 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
4824 while (rel_stmt)
4826 prev_stmt = rel_stmt;
4827 rel_stmt =
4828 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
4831 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
4832 new_stmt;
4836 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
4837 gap_count = 1;
4838 /* If NEXT_STMT accesses the same DR as the previous statement,
4839 put the same TMP_DATA_REF as its vectorized statement; otherwise
4840 get the next data-ref from RESULT_CHAIN. */
4841 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
4842 break;
4847 /* Function vect_force_dr_alignment_p.
4849 Returns whether the alignment of a DECL can be forced to be aligned
4850 on ALIGNMENT bit boundary. */
4852 bool
4853 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
4855 if (TREE_CODE (decl) != VAR_DECL)
4856 return false;
4858 /* We cannot change alignment of common or external symbols as another
4859 translation unit may contain a definition with lower alignment.
4860 The rules of common symbol linking mean that the definition
4861 will override the common symbol. The same is true for constant
4862 pool entries which may be shared and are not properly merged
4863 by LTO. */
4864 if (DECL_EXTERNAL (decl)
4865 || DECL_COMMON (decl)
4866 || DECL_IN_CONSTANT_POOL (decl))
4867 return false;
4869 if (TREE_ASM_WRITTEN (decl))
4870 return false;
4872 /* Do not override the alignment as specified by the ABI when the used
4873 attribute is set. */
4874 if (DECL_PRESERVE_P (decl))
4875 return false;
4877 /* Do not override explicit alignment set by the user when an explicit
4878 section name is also used. This is a common idiom used by many
4879 software projects. */
4880 if (DECL_SECTION_NAME (decl) != NULL_TREE
4881 && !DECL_HAS_IMPLICIT_SECTION_NAME_P (decl))
4882 return false;
4884 if (TREE_STATIC (decl))
4885 return (alignment <= MAX_OFILE_ALIGNMENT);
4886 else
4887 return (alignment <= MAX_STACK_ALIGNMENT);
4891 /* Return whether the data reference DR is supported with respect to its
4892 alignment.
4893 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
4894 it is aligned, i.e., check if it is possible to vectorize it with different
4895 alignment. */
4897 enum dr_alignment_support
4898 vect_supportable_dr_alignment (struct data_reference *dr,
4899 bool check_aligned_accesses)
4901 gimple stmt = DR_STMT (dr);
4902 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4903 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4904 enum machine_mode mode = TYPE_MODE (vectype);
4905 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4906 struct loop *vect_loop = NULL;
4907 bool nested_in_vect_loop = false;
4909 if (aligned_access_p (dr) && !check_aligned_accesses)
4910 return dr_aligned;
4912 if (loop_vinfo)
4914 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
4915 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
4918 /* Possibly unaligned access. */
4920 /* We can choose between using the implicit realignment scheme (generating
4921 a misaligned_move stmt) and the explicit realignment scheme (generating
4922 aligned loads with a REALIGN_LOAD). There are two variants to the
4923 explicit realignment scheme: optimized, and unoptimized.
4924 We can optimize the realignment only if the step between consecutive
4925 vector loads is equal to the vector size. Since the vector memory
4926 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
4927 is guaranteed that the misalignment amount remains the same throughout the
4928 execution of the vectorized loop. Therefore, we can create the
4929 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
4930 at the loop preheader.
4932 However, in the case of outer-loop vectorization, when vectorizing a
4933 memory access in the inner-loop nested within the LOOP that is now being
4934 vectorized, while it is guaranteed that the misalignment of the
4935 vectorized memory access will remain the same in different outer-loop
4936 iterations, it is *not* guaranteed that is will remain the same throughout
4937 the execution of the inner-loop. This is because the inner-loop advances
4938 with the original scalar step (and not in steps of VS). If the inner-loop
4939 step happens to be a multiple of VS, then the misalignment remains fixed
4940 and we can use the optimized realignment scheme. For example:
4942 for (i=0; i<N; i++)
4943 for (j=0; j<M; j++)
4944 s += a[i+j];
4946 When vectorizing the i-loop in the above example, the step between
4947 consecutive vector loads is 1, and so the misalignment does not remain
4948 fixed across the execution of the inner-loop, and the realignment cannot
4949 be optimized (as illustrated in the following pseudo vectorized loop):
4951 for (i=0; i<N; i+=4)
4952 for (j=0; j<M; j++){
4953 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
4954 // when j is {0,1,2,3,4,5,6,7,...} respectively.
4955 // (assuming that we start from an aligned address).
4958 We therefore have to use the unoptimized realignment scheme:
4960 for (i=0; i<N; i+=4)
4961 for (j=k; j<M; j+=4)
4962 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
4963 // that the misalignment of the initial address is
4964 // 0).
4966 The loop can then be vectorized as follows:
4968 for (k=0; k<4; k++){
4969 rt = get_realignment_token (&vp[k]);
4970 for (i=0; i<N; i+=4){
4971 v1 = vp[i+k];
4972 for (j=k; j<M; j+=4){
4973 v2 = vp[i+j+VS-1];
4974 va = REALIGN_LOAD <v1,v2,rt>;
4975 vs += va;
4976 v1 = v2;
4979 } */
4981 if (DR_IS_READ (dr))
4983 bool is_packed = false;
4984 tree type = (TREE_TYPE (DR_REF (dr)));
4986 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
4987 && (!targetm.vectorize.builtin_mask_for_load
4988 || targetm.vectorize.builtin_mask_for_load ()))
4990 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4991 if ((nested_in_vect_loop
4992 && (TREE_INT_CST_LOW (DR_STEP (dr))
4993 != GET_MODE_SIZE (TYPE_MODE (vectype))))
4994 || !loop_vinfo)
4995 return dr_explicit_realign;
4996 else
4997 return dr_explicit_realign_optimized;
4999 if (!known_alignment_for_access_p (dr))
5000 is_packed = not_size_aligned (DR_REF (dr));
5002 if (targetm.vectorize.
5003 support_vector_misalignment (mode, type,
5004 DR_MISALIGNMENT (dr), is_packed))
5005 /* Can't software pipeline the loads, but can at least do them. */
5006 return dr_unaligned_supported;
5008 else
5010 bool is_packed = false;
5011 tree type = (TREE_TYPE (DR_REF (dr)));
5013 if (!known_alignment_for_access_p (dr))
5014 is_packed = not_size_aligned (DR_REF (dr));
5016 if (targetm.vectorize.
5017 support_vector_misalignment (mode, type,
5018 DR_MISALIGNMENT (dr), is_packed))
5019 return dr_unaligned_supported;
5022 /* Unsupported. */
5023 return dr_unaligned_unsupported;