* gcc.dg/const-elim-1.c: xfail for xtensa.
[official-gcc.git] / gcc / regclass.c
blob0203d8aa3ff99ce183eaeb43065edf9e1c1f58e5
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "timevar.h"
49 static void init_reg_sets_1 (void);
50 static void init_reg_autoinc (void);
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. */
185 const char * reg_names[] = REGISTER_NAMES;
187 /* For each hard register, the widest mode object that it can contain.
188 This will be a MODE_INT mode if the register can hold integers. Otherwise
189 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
190 register. */
192 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
194 /* 1 if class does contain register of given mode. */
196 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
198 /* Maximum cost of moving from a register in one class to a register in
199 another class. Based on REGISTER_MOVE_COST. */
201 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
203 /* Similar, but here we don't have to move if the first index is a subset
204 of the second so in that case the cost is zero. */
206 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
208 /* Similar, but here we don't have to move if the first index is a superset
209 of the second so in that case the cost is zero. */
211 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
213 #ifdef FORBIDDEN_INC_DEC_CLASSES
215 /* These are the classes that regs which are auto-incremented or decremented
216 cannot be put in. */
218 static int forbidden_inc_dec_class[N_REG_CLASSES];
220 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
221 context. */
223 static char *in_inc_dec;
225 #endif /* FORBIDDEN_INC_DEC_CLASSES */
227 #ifdef CANNOT_CHANGE_MODE_CLASS
228 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
229 + mode. */
230 bitmap_head subregs_of_mode;
231 #endif
233 /* Sample MEM values for use by memory_move_secondary_cost. */
235 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
237 /* Linked list of reg_info structures allocated for reg_n_info array.
238 Grouping all of the allocated structures together in one lump
239 means only one call to bzero to clear them, rather than n smaller
240 calls. */
241 struct reg_info_data {
242 struct reg_info_data *next; /* next set of reg_info structures */
243 size_t min_index; /* minimum index # */
244 size_t max_index; /* maximum index # */
245 char used_p; /* nonzero if this has been used previously */
246 reg_info data[1]; /* beginning of the reg_info data */
249 static struct reg_info_data *reg_info_head;
251 /* No more global register variables may be declared; true once
252 regclass has been initialized. */
254 static int no_global_reg_vars = 0;
256 /* Specify number of hard registers given machine mode occupy. */
257 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
259 /* Function called only once to initialize the above data on reg usage.
260 Once this is done, various switches may override. */
262 void
263 init_reg_sets (void)
265 int i, j;
267 /* First copy the register information from the initial int form into
268 the regsets. */
270 for (i = 0; i < N_REG_CLASSES; i++)
272 CLEAR_HARD_REG_SET (reg_class_contents[i]);
274 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
275 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
276 if (int_reg_class_contents[i][j / 32]
277 & ((unsigned) 1 << (j % 32)))
278 SET_HARD_REG_BIT (reg_class_contents[i], j);
281 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
282 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
283 memset (global_regs, 0, sizeof global_regs);
285 /* Do any additional initialization regsets may need. */
286 INIT_ONCE_REG_SET ();
288 #ifdef REG_ALLOC_ORDER
289 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
290 inv_reg_alloc_order[reg_alloc_order[i]] = i;
291 #endif
294 /* After switches have been processed, which perhaps alter
295 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
297 static void
298 init_reg_sets_1 (void)
300 unsigned int i, j;
301 unsigned int /* enum machine_mode */ m;
302 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
304 /* This macro allows the fixed or call-used registers
305 and the register classes to depend on target flags. */
307 #ifdef CONDITIONAL_REGISTER_USAGE
308 CONDITIONAL_REGISTER_USAGE;
309 #endif
311 /* Compute number of hard regs in each class. */
313 memset (reg_class_size, 0, sizeof reg_class_size);
314 for (i = 0; i < N_REG_CLASSES; i++)
315 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
316 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
317 reg_class_size[i]++;
319 /* Initialize the table of subunions.
320 reg_class_subunion[I][J] gets the largest-numbered reg-class
321 that is contained in the union of classes I and J. */
323 for (i = 0; i < N_REG_CLASSES; i++)
325 for (j = 0; j < N_REG_CLASSES; j++)
327 HARD_REG_SET c;
328 int k;
330 COPY_HARD_REG_SET (c, reg_class_contents[i]);
331 IOR_HARD_REG_SET (c, reg_class_contents[j]);
332 for (k = 0; k < N_REG_CLASSES; k++)
334 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
335 subclass1);
336 continue;
338 subclass1:
339 /* Keep the largest subclass. */ /* SPEE 900308 */
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
341 reg_class_contents[(int) reg_class_subunion[i][j]],
342 subclass2);
343 reg_class_subunion[i][j] = (enum reg_class) k;
344 subclass2:
350 /* Initialize the table of superunions.
351 reg_class_superunion[I][J] gets the smallest-numbered reg-class
352 containing the union of classes I and J. */
354 for (i = 0; i < N_REG_CLASSES; i++)
356 for (j = 0; j < N_REG_CLASSES; j++)
358 HARD_REG_SET c;
359 int k;
361 COPY_HARD_REG_SET (c, reg_class_contents[i]);
362 IOR_HARD_REG_SET (c, reg_class_contents[j]);
363 for (k = 0; k < N_REG_CLASSES; k++)
364 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
366 superclass:
367 reg_class_superunion[i][j] = (enum reg_class) k;
371 /* Initialize the tables of subclasses and superclasses of each reg class.
372 First clear the whole table, then add the elements as they are found. */
374 for (i = 0; i < N_REG_CLASSES; i++)
376 for (j = 0; j < N_REG_CLASSES; j++)
378 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
379 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
383 for (i = 0; i < N_REG_CLASSES; i++)
385 if (i == (int) NO_REGS)
386 continue;
388 for (j = i + 1; j < N_REG_CLASSES; j++)
390 enum reg_class *p;
392 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
393 subclass);
394 continue;
395 subclass:
396 /* Reg class I is a subclass of J.
397 Add J to the table of superclasses of I. */
398 p = &reg_class_superclasses[i][0];
399 while (*p != LIM_REG_CLASSES) p++;
400 *p = (enum reg_class) j;
401 /* Add I to the table of superclasses of J. */
402 p = &reg_class_subclasses[j][0];
403 while (*p != LIM_REG_CLASSES) p++;
404 *p = (enum reg_class) i;
408 /* Initialize "constant" tables. */
410 CLEAR_HARD_REG_SET (fixed_reg_set);
411 CLEAR_HARD_REG_SET (call_used_reg_set);
412 CLEAR_HARD_REG_SET (call_fixed_reg_set);
413 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
415 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
417 n_non_fixed_regs = 0;
419 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
421 if (fixed_regs[i])
422 SET_HARD_REG_BIT (fixed_reg_set, i);
423 else
424 n_non_fixed_regs++;
426 if (call_used_regs[i])
427 SET_HARD_REG_BIT (call_used_reg_set, i);
428 if (call_fixed_regs[i])
429 SET_HARD_REG_BIT (call_fixed_reg_set, i);
430 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
431 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
433 /* There are a couple of fixed registers that we know are safe to
434 exclude from being clobbered by calls:
436 The frame pointer is always preserved across calls. The arg pointer
437 is if it is fixed. The stack pointer usually is, unless
438 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
439 If we are generating PIC code, the PIC offset table register is
440 preserved across calls, though the target can override that. */
442 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
444 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
445 else if (i == HARD_FRAME_POINTER_REGNUM)
447 #endif
448 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
449 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
451 #endif
452 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
453 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
455 #endif
456 else if (0
457 #ifdef CALL_REALLY_USED_REGISTERS
458 || call_really_used_regs[i]
459 #else
460 || call_used_regs[i]
461 #endif
462 || global_regs[i])
463 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
466 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
467 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
468 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
469 for (i = 0; i < N_REG_CLASSES; i++)
470 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
471 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
472 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
473 && HARD_REGNO_MODE_OK (j, m))
475 contains_reg_of_mode [i][m] = 1;
476 allocatable_regs_of_mode [m] = 1;
477 break;
480 /* Initialize the move cost table. Find every subset of each class
481 and take the maximum cost of moving any subset to any other. */
483 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
484 if (allocatable_regs_of_mode [m])
486 for (i = 0; i < N_REG_CLASSES; i++)
487 if (contains_reg_of_mode [i][m])
488 for (j = 0; j < N_REG_CLASSES; j++)
490 int cost;
491 enum reg_class *p1, *p2;
493 if (!contains_reg_of_mode [j][m])
495 move_cost[m][i][j] = 65536;
496 may_move_in_cost[m][i][j] = 65536;
497 may_move_out_cost[m][i][j] = 65536;
499 else
501 cost = REGISTER_MOVE_COST (m, i, j);
503 for (p2 = &reg_class_subclasses[j][0];
504 *p2 != LIM_REG_CLASSES;
505 p2++)
506 if (*p2 != i && contains_reg_of_mode [*p2][m])
507 cost = MAX (cost, move_cost [m][i][*p2]);
509 for (p1 = &reg_class_subclasses[i][0];
510 *p1 != LIM_REG_CLASSES;
511 p1++)
512 if (*p1 != j && contains_reg_of_mode [*p1][m])
513 cost = MAX (cost, move_cost [m][*p1][j]);
515 move_cost[m][i][j] = cost;
517 if (reg_class_subset_p (i, j))
518 may_move_in_cost[m][i][j] = 0;
519 else
520 may_move_in_cost[m][i][j] = cost;
522 if (reg_class_subset_p (j, i))
523 may_move_out_cost[m][i][j] = 0;
524 else
525 may_move_out_cost[m][i][j] = cost;
528 else
529 for (j = 0; j < N_REG_CLASSES; j++)
531 move_cost[m][i][j] = 65536;
532 may_move_in_cost[m][i][j] = 65536;
533 may_move_out_cost[m][i][j] = 65536;
538 /* Compute the table of register modes.
539 These values are used to record death information for individual registers
540 (as opposed to a multi-register mode). */
542 void
543 init_reg_modes_once (void)
545 int i, j;
547 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
548 for (j = 0; j < MAX_MACHINE_MODE; j++)
549 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
551 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
553 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
555 /* If we couldn't find a valid mode, just use the previous mode.
556 ??? One situation in which we need to do this is on the mips where
557 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
558 to use DF mode for the even registers and VOIDmode for the odd
559 (for the cpu models where the odd ones are inaccessible). */
560 if (reg_raw_mode[i] == VOIDmode)
561 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
565 /* Finish initializing the register sets and
566 initialize the register modes. */
568 void
569 init_regs (void)
571 /* This finishes what was started by init_reg_sets, but couldn't be done
572 until after register usage was specified. */
573 init_reg_sets_1 ();
575 init_reg_autoinc ();
578 /* Initialize some fake stack-frame MEM references for use in
579 memory_move_secondary_cost. */
581 void
582 init_fake_stack_mems (void)
584 #ifdef HAVE_SECONDARY_RELOADS
586 int i;
588 for (i = 0; i < MAX_MACHINE_MODE; i++)
589 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
591 #endif
594 #ifdef HAVE_SECONDARY_RELOADS
596 /* Compute extra cost of moving registers to/from memory due to reloads.
597 Only needed if secondary reloads are required for memory moves. */
600 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
602 enum reg_class altclass;
603 int partial_cost = 0;
604 /* We need a memory reference to feed to SECONDARY... macros. */
605 /* mem may be unused even if the SECONDARY_ macros are defined. */
606 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
609 if (in)
611 #ifdef SECONDARY_INPUT_RELOAD_CLASS
612 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
613 #else
614 altclass = NO_REGS;
615 #endif
617 else
619 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
620 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
621 #else
622 altclass = NO_REGS;
623 #endif
626 if (altclass == NO_REGS)
627 return 0;
629 if (in)
630 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
631 else
632 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
634 if (class == altclass)
635 /* This isn't simply a copy-to-temporary situation. Can't guess
636 what it is, so MEMORY_MOVE_COST really ought not to be calling
637 here in that case.
639 I'm tempted to put in an abort here, but returning this will
640 probably only give poor estimates, which is what we would've
641 had before this code anyways. */
642 return partial_cost;
644 /* Check if the secondary reload register will also need a
645 secondary reload. */
646 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
648 #endif
650 /* Return a machine mode that is legitimate for hard reg REGNO and large
651 enough to save nregs. If we can't find one, return VOIDmode.
652 If CALL_SAVED is true, only consider modes that are call saved. */
654 enum machine_mode
655 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
656 unsigned int nregs, bool call_saved)
658 unsigned int /* enum machine_mode */ m;
659 enum machine_mode found_mode = VOIDmode, mode;
661 /* We first look for the largest integer mode that can be validly
662 held in REGNO. If none, we look for the largest floating-point mode.
663 If we still didn't find a valid mode, try CCmode. */
665 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
666 mode != VOIDmode;
667 mode = GET_MODE_WIDER_MODE (mode))
668 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
669 && HARD_REGNO_MODE_OK (regno, mode)
670 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
671 found_mode = mode;
673 if (found_mode != VOIDmode)
674 return found_mode;
676 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
677 mode != VOIDmode;
678 mode = GET_MODE_WIDER_MODE (mode))
679 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
680 && HARD_REGNO_MODE_OK (regno, mode)
681 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
682 found_mode = mode;
684 if (found_mode != VOIDmode)
685 return found_mode;
687 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
688 mode != VOIDmode;
689 mode = GET_MODE_WIDER_MODE (mode))
690 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
691 && HARD_REGNO_MODE_OK (regno, mode)
692 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
693 found_mode = mode;
695 if (found_mode != VOIDmode)
696 return found_mode;
698 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
699 mode != VOIDmode;
700 mode = GET_MODE_WIDER_MODE (mode))
701 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
702 && HARD_REGNO_MODE_OK (regno, mode)
703 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
704 found_mode = mode;
706 if (found_mode != VOIDmode)
707 return found_mode;
709 /* Iterate over all of the CCmodes. */
710 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
712 mode = (enum machine_mode) m;
713 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
714 && HARD_REGNO_MODE_OK (regno, mode)
715 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
716 return mode;
719 /* We can't find a mode valid for this register. */
720 return VOIDmode;
723 /* Specify the usage characteristics of the register named NAME.
724 It should be a fixed register if FIXED and a
725 call-used register if CALL_USED. */
727 void
728 fix_register (const char *name, int fixed, int call_used)
730 int i;
732 /* Decode the name and update the primary form of
733 the register info. */
735 if ((i = decode_reg_name (name)) >= 0)
737 if ((i == STACK_POINTER_REGNUM
738 #ifdef HARD_FRAME_POINTER_REGNUM
739 || i == HARD_FRAME_POINTER_REGNUM
740 #else
741 || i == FRAME_POINTER_REGNUM
742 #endif
744 && (fixed == 0 || call_used == 0))
746 static const char * const what_option[2][2] = {
747 { "call-saved", "call-used" },
748 { "no-such-option", "fixed" }};
750 error ("can't use '%s' as a %s register", name,
751 what_option[fixed][call_used]);
753 else
755 fixed_regs[i] = fixed;
756 call_used_regs[i] = call_used;
757 #ifdef CALL_REALLY_USED_REGISTERS
758 if (fixed == 0)
759 call_really_used_regs[i] = call_used;
760 #endif
763 else
765 warning ("unknown register name: %s", name);
769 /* Mark register number I as global. */
771 void
772 globalize_reg (int i)
774 if (fixed_regs[i] == 0 && no_global_reg_vars)
775 error ("global register variable follows a function definition");
777 if (global_regs[i])
779 warning ("register used for two global register variables");
780 return;
783 if (call_used_regs[i] && ! fixed_regs[i])
784 warning ("call-clobbered register used for global register variable");
786 global_regs[i] = 1;
788 /* If already fixed, nothing else to do. */
789 if (fixed_regs[i])
790 return;
792 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
793 n_non_fixed_regs--;
795 SET_HARD_REG_BIT (fixed_reg_set, i);
796 SET_HARD_REG_BIT (call_used_reg_set, i);
797 SET_HARD_REG_BIT (call_fixed_reg_set, i);
798 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
801 /* Now the data and code for the `regclass' pass, which happens
802 just before local-alloc. */
804 /* The `costs' struct records the cost of using a hard register of each class
805 and of using memory for each pseudo. We use this data to set up
806 register class preferences. */
808 struct costs
810 int cost[N_REG_CLASSES];
811 int mem_cost;
814 /* Structure used to record preferences of given pseudo. */
815 struct reg_pref
817 /* (enum reg_class) prefclass is the preferred class. */
818 char prefclass;
820 /* altclass is a register class that we should use for allocating
821 pseudo if no register in the preferred class is available.
822 If no register in this class is available, memory is preferred.
824 It might appear to be more general to have a bitmask of classes here,
825 but since it is recommended that there be a class corresponding to the
826 union of most major pair of classes, that generality is not required. */
827 char altclass;
830 /* Record the cost of each class for each pseudo. */
832 static struct costs *costs;
834 /* Initialized once, and used to initialize cost values for each insn. */
836 static struct costs init_cost;
838 /* Record preferences of each pseudo.
839 This is available after `regclass' is run. */
841 static struct reg_pref *reg_pref;
843 /* Allocated buffers for reg_pref. */
845 static struct reg_pref *reg_pref_buffer;
847 /* Frequency of executions of current insn. */
849 static int frequency;
851 static rtx scan_one_insn (rtx, int);
852 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
853 static void dump_regclass (FILE *);
854 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
855 const char **, rtx, struct costs *,
856 struct reg_pref *);
857 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
858 static void record_address_regs (rtx, enum reg_class, int);
859 #ifdef FORBIDDEN_INC_DEC_CLASSES
860 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
861 #endif
862 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
864 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
865 This function is sometimes called before the info has been computed.
866 When that happens, just return GENERAL_REGS, which is innocuous. */
868 enum reg_class
869 reg_preferred_class (int regno)
871 if (reg_pref == 0)
872 return GENERAL_REGS;
873 return (enum reg_class) reg_pref[regno].prefclass;
876 enum reg_class
877 reg_alternate_class (int regno)
879 if (reg_pref == 0)
880 return ALL_REGS;
882 return (enum reg_class) reg_pref[regno].altclass;
885 /* Initialize some global data for this pass. */
887 void
888 regclass_init (void)
890 int i;
892 init_cost.mem_cost = 10000;
893 for (i = 0; i < N_REG_CLASSES; i++)
894 init_cost.cost[i] = 10000;
896 /* This prevents dump_flow_info from losing if called
897 before regclass is run. */
898 reg_pref = NULL;
900 /* No more global register variables may be declared. */
901 no_global_reg_vars = 1;
904 /* Dump register costs. */
905 static void
906 dump_regclass (FILE *dump)
908 static const char *const reg_class_names[] = REG_CLASS_NAMES;
909 int i;
910 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
912 int /* enum reg_class */ class;
913 if (REG_N_REFS (i))
915 fprintf (dump, " Register %i costs:", i);
916 for (class = 0; class < (int) N_REG_CLASSES; class++)
917 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
918 #ifdef FORBIDDEN_INC_DEC_CLASSES
919 && (!in_inc_dec[i]
920 || !forbidden_inc_dec_class[(enum reg_class) class])
921 #endif
922 #ifdef CANNOT_CHANGE_MODE_CLASS
923 && ! invalid_mode_change_p (i, (enum reg_class) class,
924 PSEUDO_REGNO_MODE (i))
925 #endif
927 fprintf (dump, " %s:%i", reg_class_names[class],
928 costs[i].cost[(enum reg_class) class]);
929 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
935 /* Calculate the costs of insn operands. */
937 static void
938 record_operand_costs (rtx insn, struct costs *op_costs,
939 struct reg_pref *reg_pref)
941 const char *constraints[MAX_RECOG_OPERANDS];
942 enum machine_mode modes[MAX_RECOG_OPERANDS];
943 int i;
945 for (i = 0; i < recog_data.n_operands; i++)
947 constraints[i] = recog_data.constraints[i];
948 modes[i] = recog_data.operand_mode[i];
951 /* If we get here, we are set up to record the costs of all the
952 operands for this insn. Start by initializing the costs.
953 Then handle any address registers. Finally record the desired
954 classes for any pseudos, doing it twice if some pair of
955 operands are commutative. */
957 for (i = 0; i < recog_data.n_operands; i++)
959 op_costs[i] = init_cost;
961 if (GET_CODE (recog_data.operand[i]) == SUBREG)
962 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
964 if (GET_CODE (recog_data.operand[i]) == MEM)
965 record_address_regs (XEXP (recog_data.operand[i], 0),
966 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
967 else if (constraints[i][0] == 'p'
968 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
969 record_address_regs (recog_data.operand[i],
970 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
973 /* Check for commutative in a separate loop so everything will
974 have been initialized. We must do this even if one operand
975 is a constant--see addsi3 in m68k.md. */
977 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
978 if (constraints[i][0] == '%')
980 const char *xconstraints[MAX_RECOG_OPERANDS];
981 int j;
983 /* Handle commutative operands by swapping the constraints.
984 We assume the modes are the same. */
986 for (j = 0; j < recog_data.n_operands; j++)
987 xconstraints[j] = constraints[j];
989 xconstraints[i] = constraints[i+1];
990 xconstraints[i+1] = constraints[i];
991 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
992 recog_data.operand, modes,
993 xconstraints, insn, op_costs, reg_pref);
996 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
997 recog_data.operand, modes,
998 constraints, insn, op_costs, reg_pref);
1001 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1002 time it would save code to put a certain register in a certain class.
1003 PASS, when nonzero, inhibits some optimizations which need only be done
1004 once.
1005 Return the last insn processed, so that the scan can be continued from
1006 there. */
1008 static rtx
1009 scan_one_insn (rtx insn, int pass)
1011 enum rtx_code pat_code;
1012 rtx set, note;
1013 int i, j;
1014 struct costs op_costs[MAX_RECOG_OPERANDS];
1016 if (!INSN_P (insn))
1017 return insn;
1019 pat_code = GET_CODE (PATTERN (insn));
1020 if (pat_code == USE
1021 || pat_code == CLOBBER
1022 || pat_code == ASM_INPUT
1023 || pat_code == ADDR_VEC
1024 || pat_code == ADDR_DIFF_VEC)
1025 return insn;
1027 set = single_set (insn);
1028 extract_insn (insn);
1030 /* If this insn loads a parameter from its stack slot, then
1031 it represents a savings, rather than a cost, if the
1032 parameter is stored in memory. Record this fact. */
1034 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1035 && GET_CODE (SET_SRC (set)) == MEM
1036 && (note = find_reg_note (insn, REG_EQUIV,
1037 NULL_RTX)) != 0
1038 && GET_CODE (XEXP (note, 0)) == MEM)
1040 costs[REGNO (SET_DEST (set))].mem_cost
1041 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1042 GENERAL_REGS, 1)
1043 * frequency);
1044 record_address_regs (XEXP (SET_SRC (set), 0),
1045 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1046 return insn;
1049 /* Improve handling of two-address insns such as
1050 (set X (ashift CONST Y)) where CONST must be made to
1051 match X. Change it into two insns: (set X CONST)
1052 (set X (ashift X Y)). If we left this for reloading, it
1053 would probably get three insns because X and Y might go
1054 in the same place. This prevents X and Y from receiving
1055 the same hard reg.
1057 We can only do this if the modes of operands 0 and 1
1058 (which might not be the same) are tieable and we only need
1059 do this during our first pass. */
1061 if (pass == 0 && optimize
1062 && recog_data.n_operands >= 3
1063 && recog_data.constraints[1][0] == '0'
1064 && recog_data.constraints[1][1] == 0
1065 && CONSTANT_P (recog_data.operand[1])
1066 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1067 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1068 && GET_CODE (recog_data.operand[0]) == REG
1069 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1070 recog_data.operand_mode[1]))
1072 rtx previnsn = prev_real_insn (insn);
1073 rtx dest
1074 = gen_lowpart (recog_data.operand_mode[1],
1075 recog_data.operand[0]);
1076 rtx newinsn
1077 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1079 /* If this insn was the start of a basic block,
1080 include the new insn in that block.
1081 We need not check for code_label here;
1082 while a basic block can start with a code_label,
1083 INSN could not be at the beginning of that block. */
1084 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1086 basic_block b;
1087 FOR_EACH_BB (b)
1088 if (insn == BB_HEAD (b))
1089 BB_HEAD (b) = newinsn;
1092 /* This makes one more setting of new insns's dest. */
1093 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1094 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1095 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1097 *recog_data.operand_loc[1] = recog_data.operand[0];
1098 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1099 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1100 for (i = recog_data.n_dups - 1; i >= 0; i--)
1101 if (recog_data.dup_num[i] == 1)
1103 *recog_data.dup_loc[i] = recog_data.operand[0];
1104 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1105 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1108 return PREV_INSN (newinsn);
1111 record_operand_costs (insn, op_costs, reg_pref);
1113 /* Now add the cost for each operand to the total costs for
1114 its register. */
1116 for (i = 0; i < recog_data.n_operands; i++)
1117 if (GET_CODE (recog_data.operand[i]) == REG
1118 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1120 int regno = REGNO (recog_data.operand[i]);
1121 struct costs *p = &costs[regno], *q = &op_costs[i];
1123 p->mem_cost += q->mem_cost * frequency;
1124 for (j = 0; j < N_REG_CLASSES; j++)
1125 p->cost[j] += q->cost[j] * frequency;
1128 return insn;
1131 /* Initialize information about which register classes can be used for
1132 pseudos that are auto-incremented or auto-decremented. */
1134 static void
1135 init_reg_autoinc (void)
1137 #ifdef FORBIDDEN_INC_DEC_CLASSES
1138 int i;
1140 for (i = 0; i < N_REG_CLASSES; i++)
1142 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1143 enum machine_mode m;
1144 int j;
1146 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1147 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1149 REGNO (r) = j;
1151 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1152 m = (enum machine_mode) ((int) m + 1))
1153 if (HARD_REGNO_MODE_OK (j, m))
1155 PUT_MODE (r, m);
1157 /* If a register is not directly suitable for an
1158 auto-increment or decrement addressing mode and
1159 requires secondary reloads, disallow its class from
1160 being used in such addresses. */
1162 if ((0
1163 #ifdef SECONDARY_RELOAD_CLASS
1164 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1165 != NO_REGS)
1166 #else
1167 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1168 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1169 != NO_REGS)
1170 #endif
1171 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1172 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1173 != NO_REGS)
1174 #endif
1175 #endif
1177 && ! auto_inc_dec_reg_p (r, m))
1178 forbidden_inc_dec_class[i] = 1;
1182 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1185 /* This is a pass of the compiler that scans all instructions
1186 and calculates the preferred class for each pseudo-register.
1187 This information can be accessed later by calling `reg_preferred_class'.
1188 This pass comes just before local register allocation. */
1190 void
1191 regclass (rtx f, int nregs, FILE *dump)
1193 rtx insn;
1194 int i;
1195 int pass;
1197 init_recog ();
1199 costs = xmalloc (nregs * sizeof (struct costs));
1201 #ifdef FORBIDDEN_INC_DEC_CLASSES
1203 in_inc_dec = xmalloc (nregs);
1205 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1207 /* Normally we scan the insns once and determine the best class to use for
1208 each register. However, if -fexpensive_optimizations are on, we do so
1209 twice, the second time using the tentative best classes to guide the
1210 selection. */
1212 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1214 basic_block bb;
1216 if (dump)
1217 fprintf (dump, "\n\nPass %i\n\n",pass);
1218 /* Zero out our accumulation of the cost of each class for each reg. */
1220 memset (costs, 0, nregs * sizeof (struct costs));
1222 #ifdef FORBIDDEN_INC_DEC_CLASSES
1223 memset (in_inc_dec, 0, nregs);
1224 #endif
1226 /* Scan the instructions and record each time it would
1227 save code to put a certain register in a certain class. */
1229 if (!optimize)
1231 frequency = REG_FREQ_MAX;
1232 for (insn = f; insn; insn = NEXT_INSN (insn))
1233 insn = scan_one_insn (insn, pass);
1235 else
1236 FOR_EACH_BB (bb)
1238 /* Show that an insn inside a loop is likely to be executed three
1239 times more than insns outside a loop. This is much more
1240 aggressive than the assumptions made elsewhere and is being
1241 tried as an experiment. */
1242 frequency = REG_FREQ_FROM_BB (bb);
1243 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1245 insn = scan_one_insn (insn, pass);
1246 if (insn == BB_END (bb))
1247 break;
1251 /* Now for each register look at how desirable each class is
1252 and find which class is preferred. Store that in
1253 `prefclass'. Record in `altclass' the largest register
1254 class any of whose registers is better than memory. */
1256 if (pass == 0)
1257 reg_pref = reg_pref_buffer;
1259 if (dump)
1261 dump_regclass (dump);
1262 fprintf (dump,"\n");
1264 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1266 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1267 enum reg_class best = ALL_REGS, alt = NO_REGS;
1268 /* This is an enum reg_class, but we call it an int
1269 to save lots of casts. */
1270 int class;
1271 struct costs *p = &costs[i];
1273 /* In non-optimizing compilation REG_N_REFS is not initialized
1274 yet. */
1275 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1276 continue;
1278 for (class = (int) ALL_REGS - 1; class > 0; class--)
1280 /* Ignore classes that are too small for this operand or
1281 invalid for an operand that was auto-incremented. */
1282 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1283 #ifdef FORBIDDEN_INC_DEC_CLASSES
1284 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1285 #endif
1286 #ifdef CANNOT_CHANGE_MODE_CLASS
1287 || invalid_mode_change_p (i, (enum reg_class) class,
1288 PSEUDO_REGNO_MODE (i))
1289 #endif
1292 else if (p->cost[class] < best_cost)
1294 best_cost = p->cost[class];
1295 best = (enum reg_class) class;
1297 else if (p->cost[class] == best_cost)
1298 best = reg_class_subunion[(int) best][class];
1301 /* Record the alternate register class; i.e., a class for which
1302 every register in it is better than using memory. If adding a
1303 class would make a smaller class (i.e., no union of just those
1304 classes exists), skip that class. The major unions of classes
1305 should be provided as a register class. Don't do this if we
1306 will be doing it again later. */
1308 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1309 for (class = 0; class < N_REG_CLASSES; class++)
1310 if (p->cost[class] < p->mem_cost
1311 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1312 > reg_class_size[(int) alt])
1313 #ifdef FORBIDDEN_INC_DEC_CLASSES
1314 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1315 #endif
1316 #ifdef CANNOT_CHANGE_MODE_CLASS
1317 && ! invalid_mode_change_p (i, (enum reg_class) class,
1318 PSEUDO_REGNO_MODE (i))
1319 #endif
1321 alt = reg_class_subunion[(int) alt][class];
1323 /* If we don't add any classes, nothing to try. */
1324 if (alt == best)
1325 alt = NO_REGS;
1327 if (dump
1328 && (reg_pref[i].prefclass != (int) best
1329 || reg_pref[i].altclass != (int) alt))
1331 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1332 fprintf (dump, " Register %i", i);
1333 if (alt == ALL_REGS || best == ALL_REGS)
1334 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1335 else if (alt == NO_REGS)
1336 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1337 else
1338 fprintf (dump, " pref %s, else %s\n",
1339 reg_class_names[(int) best],
1340 reg_class_names[(int) alt]);
1343 /* We cast to (int) because (char) hits bugs in some compilers. */
1344 reg_pref[i].prefclass = (int) best;
1345 reg_pref[i].altclass = (int) alt;
1349 #ifdef FORBIDDEN_INC_DEC_CLASSES
1350 free (in_inc_dec);
1351 #endif
1352 free (costs);
1355 /* Record the cost of using memory or registers of various classes for
1356 the operands in INSN.
1358 N_ALTS is the number of alternatives.
1360 N_OPS is the number of operands.
1362 OPS is an array of the operands.
1364 MODES are the modes of the operands, in case any are VOIDmode.
1366 CONSTRAINTS are the constraints to use for the operands. This array
1367 is modified by this procedure.
1369 This procedure works alternative by alternative. For each alternative
1370 we assume that we will be able to allocate all pseudos to their ideal
1371 register class and calculate the cost of using that alternative. Then
1372 we compute for each operand that is a pseudo-register, the cost of
1373 having the pseudo allocated to each register class and using it in that
1374 alternative. To this cost is added the cost of the alternative.
1376 The cost of each class for this insn is its lowest cost among all the
1377 alternatives. */
1379 static void
1380 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1381 enum machine_mode *modes, const char **constraints,
1382 rtx insn, struct costs *op_costs,
1383 struct reg_pref *reg_pref)
1385 int alt;
1386 int i, j;
1387 rtx set;
1389 /* Process each alternative, each time minimizing an operand's cost with
1390 the cost for each operand in that alternative. */
1392 for (alt = 0; alt < n_alts; alt++)
1394 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1395 int alt_fail = 0;
1396 int alt_cost = 0;
1397 enum reg_class classes[MAX_RECOG_OPERANDS];
1398 int allows_mem[MAX_RECOG_OPERANDS];
1399 int class;
1401 for (i = 0; i < n_ops; i++)
1403 const char *p = constraints[i];
1404 rtx op = ops[i];
1405 enum machine_mode mode = modes[i];
1406 int allows_addr = 0;
1407 int win = 0;
1408 unsigned char c;
1410 /* Initially show we know nothing about the register class. */
1411 classes[i] = NO_REGS;
1412 allows_mem[i] = 0;
1414 /* If this operand has no constraints at all, we can conclude
1415 nothing about it since anything is valid. */
1417 if (*p == 0)
1419 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1420 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1422 continue;
1425 /* If this alternative is only relevant when this operand
1426 matches a previous operand, we do different things depending
1427 on whether this operand is a pseudo-reg or not. We must process
1428 any modifiers for the operand before we can make this test. */
1430 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1431 p++;
1433 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1435 /* Copy class and whether memory is allowed from the matching
1436 alternative. Then perform any needed cost computations
1437 and/or adjustments. */
1438 j = p[0] - '0';
1439 classes[i] = classes[j];
1440 allows_mem[i] = allows_mem[j];
1442 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1444 /* If this matches the other operand, we have no added
1445 cost and we win. */
1446 if (rtx_equal_p (ops[j], op))
1447 win = 1;
1449 /* If we can put the other operand into a register, add to
1450 the cost of this alternative the cost to copy this
1451 operand to the register used for the other operand. */
1453 else if (classes[j] != NO_REGS)
1454 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1456 else if (GET_CODE (ops[j]) != REG
1457 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1459 /* This op is a pseudo but the one it matches is not. */
1461 /* If we can't put the other operand into a register, this
1462 alternative can't be used. */
1464 if (classes[j] == NO_REGS)
1465 alt_fail = 1;
1467 /* Otherwise, add to the cost of this alternative the cost
1468 to copy the other operand to the register used for this
1469 operand. */
1471 else
1472 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1474 else
1476 /* The costs of this operand are not the same as the other
1477 operand since move costs are not symmetric. Moreover,
1478 if we cannot tie them, this alternative needs to do a
1479 copy, which is one instruction. */
1481 struct costs *pp = &this_op_costs[i];
1483 for (class = 0; class < N_REG_CLASSES; class++)
1484 pp->cost[class]
1485 = ((recog_data.operand_type[i] != OP_OUT
1486 ? may_move_in_cost[mode][class][(int) classes[i]]
1487 : 0)
1488 + (recog_data.operand_type[i] != OP_IN
1489 ? may_move_out_cost[mode][(int) classes[i]][class]
1490 : 0));
1492 /* If the alternative actually allows memory, make things
1493 a bit cheaper since we won't need an extra insn to
1494 load it. */
1496 pp->mem_cost
1497 = ((recog_data.operand_type[i] != OP_IN
1498 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1499 : 0)
1500 + (recog_data.operand_type[i] != OP_OUT
1501 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1502 : 0) - allows_mem[i]);
1504 /* If we have assigned a class to this register in our
1505 first pass, add a cost to this alternative corresponding
1506 to what we would add if this register were not in the
1507 appropriate class. */
1509 if (reg_pref)
1510 alt_cost
1511 += (may_move_in_cost[mode]
1512 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1513 [(int) classes[i]]);
1515 if (REGNO (ops[i]) != REGNO (ops[j])
1516 && ! find_reg_note (insn, REG_DEAD, op))
1517 alt_cost += 2;
1519 /* This is in place of ordinary cost computation
1520 for this operand, so skip to the end of the
1521 alternative (should be just one character). */
1522 while (*p && *p++ != ',')
1525 constraints[i] = p;
1526 continue;
1530 /* Scan all the constraint letters. See if the operand matches
1531 any of the constraints. Collect the valid register classes
1532 and see if this operand accepts memory. */
1534 while ((c = *p))
1536 switch (c)
1538 case ',':
1539 break;
1540 case '*':
1541 /* Ignore the next letter for this pass. */
1542 c = *++p;
1543 break;
1545 case '?':
1546 alt_cost += 2;
1547 case '!': case '#': case '&':
1548 case '0': case '1': case '2': case '3': case '4':
1549 case '5': case '6': case '7': case '8': case '9':
1550 break;
1552 case 'p':
1553 allows_addr = 1;
1554 win = address_operand (op, GET_MODE (op));
1555 /* We know this operand is an address, so we want it to be
1556 allocated to a register that can be the base of an
1557 address, ie BASE_REG_CLASS. */
1558 classes[i]
1559 = reg_class_subunion[(int) classes[i]]
1560 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1561 break;
1563 case 'm': case 'o': case 'V':
1564 /* It doesn't seem worth distinguishing between offsettable
1565 and non-offsettable addresses here. */
1566 allows_mem[i] = 1;
1567 if (GET_CODE (op) == MEM)
1568 win = 1;
1569 break;
1571 case '<':
1572 if (GET_CODE (op) == MEM
1573 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1574 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1575 win = 1;
1576 break;
1578 case '>':
1579 if (GET_CODE (op) == MEM
1580 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1581 || GET_CODE (XEXP (op, 0)) == POST_INC))
1582 win = 1;
1583 break;
1585 case 'E':
1586 case 'F':
1587 if (GET_CODE (op) == CONST_DOUBLE
1588 || (GET_CODE (op) == CONST_VECTOR
1589 && (GET_MODE_CLASS (GET_MODE (op))
1590 == MODE_VECTOR_FLOAT)))
1591 win = 1;
1592 break;
1594 case 'G':
1595 case 'H':
1596 if (GET_CODE (op) == CONST_DOUBLE
1597 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1598 win = 1;
1599 break;
1601 case 's':
1602 if (GET_CODE (op) == CONST_INT
1603 || (GET_CODE (op) == CONST_DOUBLE
1604 && GET_MODE (op) == VOIDmode))
1605 break;
1606 case 'i':
1607 if (CONSTANT_P (op)
1608 #ifdef LEGITIMATE_PIC_OPERAND_P
1609 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1610 #endif
1612 win = 1;
1613 break;
1615 case 'n':
1616 if (GET_CODE (op) == CONST_INT
1617 || (GET_CODE (op) == CONST_DOUBLE
1618 && GET_MODE (op) == VOIDmode))
1619 win = 1;
1620 break;
1622 case 'I':
1623 case 'J':
1624 case 'K':
1625 case 'L':
1626 case 'M':
1627 case 'N':
1628 case 'O':
1629 case 'P':
1630 if (GET_CODE (op) == CONST_INT
1631 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1632 win = 1;
1633 break;
1635 case 'X':
1636 win = 1;
1637 break;
1639 case 'g':
1640 if (GET_CODE (op) == MEM
1641 || (CONSTANT_P (op)
1642 #ifdef LEGITIMATE_PIC_OPERAND_P
1643 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1644 #endif
1646 win = 1;
1647 allows_mem[i] = 1;
1648 case 'r':
1649 classes[i]
1650 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1651 break;
1653 default:
1654 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1655 classes[i]
1656 = reg_class_subunion[(int) classes[i]]
1657 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1658 #ifdef EXTRA_CONSTRAINT_STR
1659 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1660 win = 1;
1662 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1664 /* Every MEM can be reloaded to fit. */
1665 allows_mem[i] = 1;
1666 if (GET_CODE (op) == MEM)
1667 win = 1;
1669 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1671 /* Every address can be reloaded to fit. */
1672 allows_addr = 1;
1673 if (address_operand (op, GET_MODE (op)))
1674 win = 1;
1675 /* We know this operand is an address, so we want it to
1676 be allocated to a register that can be the base of an
1677 address, ie BASE_REG_CLASS. */
1678 classes[i]
1679 = reg_class_subunion[(int) classes[i]]
1680 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1682 #endif
1683 break;
1685 p += CONSTRAINT_LEN (c, p);
1686 if (c == ',')
1687 break;
1690 constraints[i] = p;
1692 /* How we account for this operand now depends on whether it is a
1693 pseudo register or not. If it is, we first check if any
1694 register classes are valid. If not, we ignore this alternative,
1695 since we want to assume that all pseudos get allocated for
1696 register preferencing. If some register class is valid, compute
1697 the costs of moving the pseudo into that class. */
1699 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1701 if (classes[i] == NO_REGS)
1703 /* We must always fail if the operand is a REG, but
1704 we did not find a suitable class.
1706 Otherwise we may perform an uninitialized read
1707 from this_op_costs after the `continue' statement
1708 below. */
1709 alt_fail = 1;
1711 else
1713 struct costs *pp = &this_op_costs[i];
1715 for (class = 0; class < N_REG_CLASSES; class++)
1716 pp->cost[class]
1717 = ((recog_data.operand_type[i] != OP_OUT
1718 ? may_move_in_cost[mode][class][(int) classes[i]]
1719 : 0)
1720 + (recog_data.operand_type[i] != OP_IN
1721 ? may_move_out_cost[mode][(int) classes[i]][class]
1722 : 0));
1724 /* If the alternative actually allows memory, make things
1725 a bit cheaper since we won't need an extra insn to
1726 load it. */
1728 pp->mem_cost
1729 = ((recog_data.operand_type[i] != OP_IN
1730 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1731 : 0)
1732 + (recog_data.operand_type[i] != OP_OUT
1733 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1734 : 0) - allows_mem[i]);
1736 /* If we have assigned a class to this register in our
1737 first pass, add a cost to this alternative corresponding
1738 to what we would add if this register were not in the
1739 appropriate class. */
1741 if (reg_pref)
1742 alt_cost
1743 += (may_move_in_cost[mode]
1744 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1745 [(int) classes[i]]);
1749 /* Otherwise, if this alternative wins, either because we
1750 have already determined that or if we have a hard register of
1751 the proper class, there is no cost for this alternative. */
1753 else if (win
1754 || (GET_CODE (op) == REG
1755 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1758 /* If registers are valid, the cost of this alternative includes
1759 copying the object to and/or from a register. */
1761 else if (classes[i] != NO_REGS)
1763 if (recog_data.operand_type[i] != OP_OUT)
1764 alt_cost += copy_cost (op, mode, classes[i], 1);
1766 if (recog_data.operand_type[i] != OP_IN)
1767 alt_cost += copy_cost (op, mode, classes[i], 0);
1770 /* The only other way this alternative can be used is if this is a
1771 constant that could be placed into memory. */
1773 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1774 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1775 else
1776 alt_fail = 1;
1779 if (alt_fail)
1780 continue;
1782 /* Finally, update the costs with the information we've calculated
1783 about this alternative. */
1785 for (i = 0; i < n_ops; i++)
1786 if (GET_CODE (ops[i]) == REG
1787 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1789 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1790 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1792 pp->mem_cost = MIN (pp->mem_cost,
1793 (qq->mem_cost + alt_cost) * scale);
1795 for (class = 0; class < N_REG_CLASSES; class++)
1796 pp->cost[class] = MIN (pp->cost[class],
1797 (qq->cost[class] + alt_cost) * scale);
1801 /* If this insn is a single set copying operand 1 to operand 0
1802 and one operand is a pseudo with the other a hard reg or a pseudo
1803 that prefers a register that is in its own register class then
1804 we may want to adjust the cost of that register class to -1.
1806 Avoid the adjustment if the source does not die to avoid stressing of
1807 register allocator by preferrencing two colliding registers into single
1808 class.
1810 Also avoid the adjustment if a copy between registers of the class
1811 is expensive (ten times the cost of a default copy is considered
1812 arbitrarily expensive). This avoids losing when the preferred class
1813 is very expensive as the source of a copy instruction. */
1815 if ((set = single_set (insn)) != 0
1816 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1817 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1818 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1819 for (i = 0; i <= 1; i++)
1820 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1822 unsigned int regno = REGNO (ops[!i]);
1823 enum machine_mode mode = GET_MODE (ops[!i]);
1824 int class;
1825 unsigned int nr;
1827 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1829 enum reg_class pref = reg_pref[regno].prefclass;
1831 if ((reg_class_size[(unsigned char) pref]
1832 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1833 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1834 op_costs[i].cost[(unsigned char) pref] = -1;
1836 else if (regno < FIRST_PSEUDO_REGISTER)
1837 for (class = 0; class < N_REG_CLASSES; class++)
1838 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1839 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1841 if (reg_class_size[class] == 1)
1842 op_costs[i].cost[class] = -1;
1843 else
1845 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1847 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1848 regno + nr))
1849 break;
1852 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1853 op_costs[i].cost[class] = -1;
1859 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1860 TO_P is zero) a register of class CLASS in mode MODE.
1862 X must not be a pseudo. */
1864 static int
1865 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1866 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1868 #ifdef HAVE_SECONDARY_RELOADS
1869 enum reg_class secondary_class = NO_REGS;
1870 #endif
1872 /* If X is a SCRATCH, there is actually nothing to move since we are
1873 assuming optimal allocation. */
1875 if (GET_CODE (x) == SCRATCH)
1876 return 0;
1878 /* Get the class we will actually use for a reload. */
1879 class = PREFERRED_RELOAD_CLASS (x, class);
1881 #ifdef HAVE_SECONDARY_RELOADS
1882 /* If we need a secondary reload (we assume here that we are using
1883 the secondary reload as an intermediate, not a scratch register), the
1884 cost is that to load the input into the intermediate register, then
1885 to copy them. We use a special value of TO_P to avoid recursion. */
1887 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1888 if (to_p == 1)
1889 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1890 #endif
1892 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1893 if (! to_p)
1894 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1895 #endif
1897 if (secondary_class != NO_REGS)
1898 return (move_cost[mode][(int) secondary_class][(int) class]
1899 + copy_cost (x, mode, secondary_class, 2));
1900 #endif /* HAVE_SECONDARY_RELOADS */
1902 /* For memory, use the memory move cost, for (hard) registers, use the
1903 cost to move between the register classes, and use 2 for everything
1904 else (constants). */
1906 if (GET_CODE (x) == MEM || class == NO_REGS)
1907 return MEMORY_MOVE_COST (mode, class, to_p);
1909 else if (GET_CODE (x) == REG)
1910 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1912 else
1913 /* If this is a constant, we may eventually want to call rtx_cost here. */
1914 return COSTS_N_INSNS (1);
1917 /* Record the pseudo registers we must reload into hard registers
1918 in a subexpression of a memory address, X.
1920 CLASS is the class that the register needs to be in and is either
1921 BASE_REG_CLASS or INDEX_REG_CLASS.
1923 SCALE is twice the amount to multiply the cost by (it is twice so we
1924 can represent half-cost adjustments). */
1926 static void
1927 record_address_regs (rtx x, enum reg_class class, int scale)
1929 enum rtx_code code = GET_CODE (x);
1931 switch (code)
1933 case CONST_INT:
1934 case CONST:
1935 case CC0:
1936 case PC:
1937 case SYMBOL_REF:
1938 case LABEL_REF:
1939 return;
1941 case PLUS:
1942 /* When we have an address that is a sum,
1943 we must determine whether registers are "base" or "index" regs.
1944 If there is a sum of two registers, we must choose one to be
1945 the "base". Luckily, we can use the REG_POINTER to make a good
1946 choice most of the time. We only need to do this on machines
1947 that can have two registers in an address and where the base
1948 and index register classes are different.
1950 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1951 that seems bogus since it should only be set when we are sure
1952 the register is being used as a pointer. */
1955 rtx arg0 = XEXP (x, 0);
1956 rtx arg1 = XEXP (x, 1);
1957 enum rtx_code code0 = GET_CODE (arg0);
1958 enum rtx_code code1 = GET_CODE (arg1);
1960 /* Look inside subregs. */
1961 if (code0 == SUBREG)
1962 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1963 if (code1 == SUBREG)
1964 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1966 /* If this machine only allows one register per address, it must
1967 be in the first operand. */
1969 if (MAX_REGS_PER_ADDRESS == 1)
1970 record_address_regs (arg0, class, scale);
1972 /* If index and base registers are the same on this machine, just
1973 record registers in any non-constant operands. We assume here,
1974 as well as in the tests below, that all addresses are in
1975 canonical form. */
1977 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1979 record_address_regs (arg0, class, scale);
1980 if (! CONSTANT_P (arg1))
1981 record_address_regs (arg1, class, scale);
1984 /* If the second operand is a constant integer, it doesn't change
1985 what class the first operand must be. */
1987 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1988 record_address_regs (arg0, class, scale);
1990 /* If the second operand is a symbolic constant, the first operand
1991 must be an index register. */
1993 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1994 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1996 /* If both operands are registers but one is already a hard register
1997 of index or base class, give the other the class that the hard
1998 register is not. */
2000 #ifdef REG_OK_FOR_BASE_P
2001 else if (code0 == REG && code1 == REG
2002 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2003 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2004 record_address_regs (arg1,
2005 REG_OK_FOR_BASE_P (arg0)
2006 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2007 scale);
2008 else if (code0 == REG && code1 == REG
2009 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2010 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2011 record_address_regs (arg0,
2012 REG_OK_FOR_BASE_P (arg1)
2013 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2014 scale);
2015 #endif
2017 /* If one operand is known to be a pointer, it must be the base
2018 with the other operand the index. Likewise if the other operand
2019 is a MULT. */
2021 else if ((code0 == REG && REG_POINTER (arg0))
2022 || code1 == MULT)
2024 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2025 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2027 else if ((code1 == REG && REG_POINTER (arg1))
2028 || code0 == MULT)
2030 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2031 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2034 /* Otherwise, count equal chances that each might be a base
2035 or index register. This case should be rare. */
2037 else
2039 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2040 scale / 2);
2041 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2042 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2043 scale / 2);
2044 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2047 break;
2049 /* Double the importance of a pseudo register that is incremented
2050 or decremented, since it would take two extra insns
2051 if it ends up in the wrong place. */
2052 case POST_MODIFY:
2053 case PRE_MODIFY:
2054 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2055 2 * scale);
2056 if (REG_P (XEXP (XEXP (x, 1), 1)))
2057 record_address_regs (XEXP (XEXP (x, 1), 1),
2058 INDEX_REG_CLASS, 2 * scale);
2059 break;
2061 case POST_INC:
2062 case PRE_INC:
2063 case POST_DEC:
2064 case PRE_DEC:
2065 /* Double the importance of a pseudo register that is incremented
2066 or decremented, since it would take two extra insns
2067 if it ends up in the wrong place. If the operand is a pseudo,
2068 show it is being used in an INC_DEC context. */
2070 #ifdef FORBIDDEN_INC_DEC_CLASSES
2071 if (GET_CODE (XEXP (x, 0)) == REG
2072 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2073 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2074 #endif
2076 record_address_regs (XEXP (x, 0), class, 2 * scale);
2077 break;
2079 case REG:
2081 struct costs *pp = &costs[REGNO (x)];
2082 int i;
2084 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2086 for (i = 0; i < N_REG_CLASSES; i++)
2087 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2089 break;
2091 default:
2093 const char *fmt = GET_RTX_FORMAT (code);
2094 int i;
2095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2096 if (fmt[i] == 'e')
2097 record_address_regs (XEXP (x, i), class, scale);
2102 #ifdef FORBIDDEN_INC_DEC_CLASSES
2104 /* Return 1 if REG is valid as an auto-increment memory reference
2105 to an object of MODE. */
2107 static int
2108 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2110 if (HAVE_POST_INCREMENT
2111 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2112 return 1;
2114 if (HAVE_POST_DECREMENT
2115 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2116 return 1;
2118 if (HAVE_PRE_INCREMENT
2119 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2120 return 1;
2122 if (HAVE_PRE_DECREMENT
2123 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2124 return 1;
2126 return 0;
2128 #endif
2130 static short *renumber;
2131 static size_t regno_allocated;
2132 static unsigned int reg_n_max;
2134 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2135 reg_scan and flow_analysis that are indexed by the register number. If
2136 NEW_P is nonzero, initialize all of the registers, otherwise only
2137 initialize the new registers allocated. The same table is kept from
2138 function to function, only reallocating it when we need more room. If
2139 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2141 void
2142 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2144 size_t size_info;
2145 size_t size_renumber;
2146 size_t min = (new_p) ? 0 : reg_n_max;
2147 struct reg_info_data *reg_data;
2149 if (num_regs > regno_allocated)
2151 size_t old_allocated = regno_allocated;
2153 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2154 size_renumber = regno_allocated * sizeof (short);
2156 if (!reg_n_info)
2158 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2159 renumber = xmalloc (size_renumber);
2160 reg_pref_buffer = xmalloc (regno_allocated
2161 * sizeof (struct reg_pref));
2164 else
2166 VARRAY_GROW (reg_n_info, regno_allocated);
2168 if (new_p) /* If we're zapping everything, no need to realloc. */
2170 free ((char *) renumber);
2171 free ((char *) reg_pref);
2172 renumber = xmalloc (size_renumber);
2173 reg_pref_buffer = xmalloc (regno_allocated
2174 * sizeof (struct reg_pref));
2177 else
2179 renumber = xrealloc (renumber, size_renumber);
2180 reg_pref_buffer = xrealloc (reg_pref_buffer,
2181 regno_allocated
2182 * sizeof (struct reg_pref));
2186 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2187 + sizeof (struct reg_info_data) - sizeof (reg_info);
2188 reg_data = xcalloc (size_info, 1);
2189 reg_data->min_index = old_allocated;
2190 reg_data->max_index = regno_allocated - 1;
2191 reg_data->next = reg_info_head;
2192 reg_info_head = reg_data;
2195 reg_n_max = num_regs;
2196 if (min < num_regs)
2198 /* Loop through each of the segments allocated for the actual
2199 reg_info pages, and set up the pointers, zero the pages, etc. */
2200 for (reg_data = reg_info_head;
2201 reg_data && reg_data->max_index >= min;
2202 reg_data = reg_data->next)
2204 size_t min_index = reg_data->min_index;
2205 size_t max_index = reg_data->max_index;
2206 size_t max = MIN (max_index, num_regs);
2207 size_t local_min = min - min_index;
2208 size_t i;
2210 if (reg_data->min_index > num_regs)
2211 continue;
2213 if (min < min_index)
2214 local_min = 0;
2215 if (!reg_data->used_p) /* page just allocated with calloc */
2216 reg_data->used_p = 1; /* no need to zero */
2217 else
2218 memset (&reg_data->data[local_min], 0,
2219 sizeof (reg_info) * (max - min_index - local_min + 1));
2221 for (i = min_index+local_min; i <= max; i++)
2223 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2224 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2225 renumber[i] = -1;
2226 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2227 reg_pref_buffer[i].altclass = (char) NO_REGS;
2232 /* If {pref,alt}class have already been allocated, update the pointers to
2233 the newly realloced ones. */
2234 if (reg_pref)
2235 reg_pref = reg_pref_buffer;
2237 if (renumber_p)
2238 reg_renumber = renumber;
2240 /* Tell the regset code about the new number of registers. */
2241 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2244 /* Free up the space allocated by allocate_reg_info. */
2245 void
2246 free_reg_info (void)
2248 if (reg_n_info)
2250 struct reg_info_data *reg_data;
2251 struct reg_info_data *reg_next;
2253 VARRAY_FREE (reg_n_info);
2254 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2256 reg_next = reg_data->next;
2257 free ((char *) reg_data);
2260 free (reg_pref_buffer);
2261 reg_pref_buffer = (struct reg_pref *) 0;
2262 reg_info_head = (struct reg_info_data *) 0;
2263 renumber = (short *) 0;
2265 regno_allocated = 0;
2266 reg_n_max = 0;
2269 /* This is the `regscan' pass of the compiler, run just before cse
2270 and again just before loop.
2272 It finds the first and last use of each pseudo-register
2273 and records them in the vectors regno_first_uid, regno_last_uid
2274 and counts the number of sets in the vector reg_n_sets.
2276 REPEAT is nonzero the second time this is called. */
2278 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2279 Always at least 3, since the combiner could put that many together
2280 and we want this to remain correct for all the remaining passes.
2281 This corresponds to the maximum number of times note_stores will call
2282 a function for any insn. */
2284 int max_parallel;
2286 /* Used as a temporary to record the largest number of registers in
2287 PARALLEL in a SET_DEST. This is added to max_parallel. */
2289 static int max_set_parallel;
2291 void
2292 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2294 rtx insn;
2296 timevar_push (TV_REG_SCAN);
2298 allocate_reg_info (nregs, TRUE, FALSE);
2299 max_parallel = 3;
2300 max_set_parallel = 0;
2302 for (insn = f; insn; insn = NEXT_INSN (insn))
2303 if (INSN_P (insn))
2305 rtx pat = PATTERN (insn);
2306 if (GET_CODE (pat) == PARALLEL
2307 && XVECLEN (pat, 0) > max_parallel)
2308 max_parallel = XVECLEN (pat, 0);
2309 reg_scan_mark_refs (pat, insn, 0, 0);
2311 if (REG_NOTES (insn))
2312 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2315 max_parallel += max_set_parallel;
2317 timevar_pop (TV_REG_SCAN);
2320 /* Update 'regscan' information by looking at the insns
2321 from FIRST to LAST. Some new REGs have been created,
2322 and any REG with number greater than OLD_MAX_REGNO is
2323 such a REG. We only update information for those. */
2325 void
2326 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2328 rtx insn;
2330 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2332 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2333 if (INSN_P (insn))
2335 rtx pat = PATTERN (insn);
2336 if (GET_CODE (pat) == PARALLEL
2337 && XVECLEN (pat, 0) > max_parallel)
2338 max_parallel = XVECLEN (pat, 0);
2339 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2341 if (REG_NOTES (insn))
2342 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2346 /* X is the expression to scan. INSN is the insn it appears in.
2347 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2348 We should only record information for REGs with numbers
2349 greater than or equal to MIN_REGNO. */
2351 static void
2352 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2354 enum rtx_code code;
2355 rtx dest;
2356 rtx note;
2358 if (!x)
2359 return;
2360 code = GET_CODE (x);
2361 switch (code)
2363 case CONST:
2364 case CONST_INT:
2365 case CONST_DOUBLE:
2366 case CONST_VECTOR:
2367 case CC0:
2368 case PC:
2369 case SYMBOL_REF:
2370 case LABEL_REF:
2371 case ADDR_VEC:
2372 case ADDR_DIFF_VEC:
2373 return;
2375 case REG:
2377 unsigned int regno = REGNO (x);
2379 if (regno >= min_regno)
2381 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2382 if (!note_flag)
2383 REGNO_LAST_UID (regno) = INSN_UID (insn);
2384 if (REGNO_FIRST_UID (regno) == 0)
2385 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2386 /* If we are called by reg_scan_update() (indicated by min_regno
2387 being set), we also need to update the reference count. */
2388 if (min_regno)
2389 REG_N_REFS (regno)++;
2392 break;
2394 case EXPR_LIST:
2395 if (XEXP (x, 0))
2396 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2397 if (XEXP (x, 1))
2398 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2399 break;
2401 case INSN_LIST:
2402 if (XEXP (x, 1))
2403 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2404 break;
2406 case CLOBBER:
2408 rtx reg = XEXP (x, 0);
2409 if (REG_P (reg)
2410 && REGNO (reg) >= min_regno)
2412 REG_N_SETS (REGNO (reg))++;
2413 REG_N_REFS (REGNO (reg))++;
2415 else if (GET_CODE (reg) == MEM)
2416 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2418 break;
2420 case SET:
2421 /* Count a set of the destination if it is a register. */
2422 for (dest = SET_DEST (x);
2423 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2424 || GET_CODE (dest) == ZERO_EXTEND;
2425 dest = XEXP (dest, 0))
2428 /* For a PARALLEL, record the number of things (less the usual one for a
2429 SET) that are set. */
2430 if (GET_CODE (dest) == PARALLEL)
2431 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2433 if (GET_CODE (dest) == REG
2434 && REGNO (dest) >= min_regno)
2436 REG_N_SETS (REGNO (dest))++;
2437 REG_N_REFS (REGNO (dest))++;
2440 /* If this is setting a pseudo from another pseudo or the sum of a
2441 pseudo and a constant integer and the other pseudo is known to be
2442 a pointer, set the destination to be a pointer as well.
2444 Likewise if it is setting the destination from an address or from a
2445 value equivalent to an address or to the sum of an address and
2446 something else.
2448 But don't do any of this if the pseudo corresponds to a user
2449 variable since it should have already been set as a pointer based
2450 on the type. */
2452 if (GET_CODE (SET_DEST (x)) == REG
2453 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2454 && REGNO (SET_DEST (x)) >= min_regno
2455 /* If the destination pseudo is set more than once, then other
2456 sets might not be to a pointer value (consider access to a
2457 union in two threads of control in the presence of global
2458 optimizations). So only set REG_POINTER on the destination
2459 pseudo if this is the only set of that pseudo. */
2460 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2461 && ! REG_USERVAR_P (SET_DEST (x))
2462 && ! REG_POINTER (SET_DEST (x))
2463 && ((GET_CODE (SET_SRC (x)) == REG
2464 && REG_POINTER (SET_SRC (x)))
2465 || ((GET_CODE (SET_SRC (x)) == PLUS
2466 || GET_CODE (SET_SRC (x)) == LO_SUM)
2467 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2468 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2469 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2470 || GET_CODE (SET_SRC (x)) == CONST
2471 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2472 || GET_CODE (SET_SRC (x)) == LABEL_REF
2473 || (GET_CODE (SET_SRC (x)) == HIGH
2474 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2475 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2476 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2477 || ((GET_CODE (SET_SRC (x)) == PLUS
2478 || GET_CODE (SET_SRC (x)) == LO_SUM)
2479 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2480 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2481 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2482 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2483 && (GET_CODE (XEXP (note, 0)) == CONST
2484 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2485 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2486 REG_POINTER (SET_DEST (x)) = 1;
2488 /* If this is setting a register from a register or from a simple
2489 conversion of a register, propagate REG_EXPR. */
2490 if (GET_CODE (dest) == REG)
2492 rtx src = SET_SRC (x);
2494 while (GET_CODE (src) == SIGN_EXTEND
2495 || GET_CODE (src) == ZERO_EXTEND
2496 || GET_CODE (src) == TRUNCATE
2497 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2498 src = XEXP (src, 0);
2500 if (!REG_ATTRS (dest) && REG_P (src))
2501 REG_ATTRS (dest) = REG_ATTRS (src);
2502 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2503 set_reg_attrs_from_mem (dest, src);
2506 /* ... fall through ... */
2508 default:
2510 const char *fmt = GET_RTX_FORMAT (code);
2511 int i;
2512 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2514 if (fmt[i] == 'e')
2515 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2516 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2518 int j;
2519 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2520 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2527 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2528 is also in C2. */
2531 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2533 if (c1 == c2) return 1;
2535 if (c2 == ALL_REGS)
2536 win:
2537 return 1;
2538 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2539 reg_class_contents[(int) c2],
2540 win);
2541 return 0;
2544 /* Return nonzero if there is a register that is in both C1 and C2. */
2547 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2549 HARD_REG_SET c;
2551 if (c1 == c2) return 1;
2553 if (c1 == ALL_REGS || c2 == ALL_REGS)
2554 return 1;
2556 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2557 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2559 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2560 return 1;
2562 lose:
2563 return 0;
2566 /* Release any memory allocated by register sets. */
2568 void
2569 regset_release_memory (void)
2571 bitmap_release_memory ();
2574 #ifdef CANNOT_CHANGE_MODE_CLASS
2575 /* Set bits in *USED which correspond to registers which can't change
2576 their mode from FROM to any mode in which REGNO was encountered. */
2578 void
2579 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2580 unsigned int regno)
2582 enum machine_mode to;
2583 int n, i;
2584 int start = regno * MAX_MACHINE_MODE;
2586 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2587 if (n >= MAX_MACHINE_MODE + start)
2588 return;
2589 to = n - start;
2590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2591 if (! TEST_HARD_REG_BIT (*used, i)
2592 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2593 SET_HARD_REG_BIT (*used, i);
2597 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2598 mode. */
2600 bool
2601 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2602 enum machine_mode from_mode)
2604 enum machine_mode to_mode;
2605 int n;
2606 int start = regno * MAX_MACHINE_MODE;
2608 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2609 if (n >= MAX_MACHINE_MODE + start)
2610 return 0;
2611 to_mode = n - start;
2612 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2613 return 1;
2615 return 0;
2617 #endif /* CANNOT_CHANGE_MODE_CLASS */
2619 #include "gt-regclass.h"