* gcc.dg/const-elim-1.c: xfail for xtensa.
[official-gcc.git] / gcc / loop.c
blobd4e891007c24a19bf5e4cfde6aaa30f8637a3e35
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables.
27 Basic induction variables (BIVs) are a pseudo registers which are set within
28 a loop only by incrementing or decrementing its value. General induction
29 variables (GIVs) are pseudo registers with a value which is a linear function
30 of a basic induction variable. BIVs are recognized by `basic_induction_var';
31 GIVs by `general_induction_var'.
33 Once induction variables are identified, strength reduction is applied to the
34 general induction variables, and induction variable elimination is applied to
35 the basic induction variables.
37 It also finds cases where
38 a register is set within the loop by zero-extending a narrower value
39 and changes these to zero the entire register once before the loop
40 and merely copy the low part within the loop.
42 Most of the complexity is in heuristics to decide when it is worth
43 while to do these things. */
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "rtl.h"
50 #include "tm_p.h"
51 #include "function.h"
52 #include "expr.h"
53 #include "hard-reg-set.h"
54 #include "basic-block.h"
55 #include "insn-config.h"
56 #include "regs.h"
57 #include "recog.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "loop.h"
61 #include "cselib.h"
62 #include "except.h"
63 #include "toplev.h"
64 #include "predict.h"
65 #include "insn-flags.h"
66 #include "optabs.h"
67 #include "cfgloop.h"
68 #include "ggc.h"
70 /* Not really meaningful values, but at least something. */
71 #ifndef SIMULTANEOUS_PREFETCHES
72 #define SIMULTANEOUS_PREFETCHES 3
73 #endif
74 #ifndef PREFETCH_BLOCK
75 #define PREFETCH_BLOCK 32
76 #endif
77 #ifndef HAVE_prefetch
78 #define HAVE_prefetch 0
79 #define CODE_FOR_prefetch 0
80 #define gen_prefetch(a,b,c) (abort(), NULL_RTX)
81 #endif
83 /* Give up the prefetch optimizations once we exceed a given threshold.
84 It is unlikely that we would be able to optimize something in a loop
85 with so many detected prefetches. */
86 #define MAX_PREFETCHES 100
87 /* The number of prefetch blocks that are beneficial to fetch at once before
88 a loop with a known (and low) iteration count. */
89 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
90 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
91 since it is likely that the data are already in the cache. */
92 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
94 /* Parameterize some prefetch heuristics so they can be turned on and off
95 easily for performance testing on new architectures. These can be
96 defined in target-dependent files. */
98 /* Prefetch is worthwhile only when loads/stores are dense. */
99 #ifndef PREFETCH_ONLY_DENSE_MEM
100 #define PREFETCH_ONLY_DENSE_MEM 1
101 #endif
103 /* Define what we mean by "dense" loads and stores; This value divided by 256
104 is the minimum percentage of memory references that worth prefetching. */
105 #ifndef PREFETCH_DENSE_MEM
106 #define PREFETCH_DENSE_MEM 220
107 #endif
109 /* Do not prefetch for a loop whose iteration count is known to be low. */
110 #ifndef PREFETCH_NO_LOW_LOOPCNT
111 #define PREFETCH_NO_LOW_LOOPCNT 1
112 #endif
114 /* Define what we mean by a "low" iteration count. */
115 #ifndef PREFETCH_LOW_LOOPCNT
116 #define PREFETCH_LOW_LOOPCNT 32
117 #endif
119 /* Do not prefetch for a loop that contains a function call; such a loop is
120 probably not an internal loop. */
121 #ifndef PREFETCH_NO_CALL
122 #define PREFETCH_NO_CALL 1
123 #endif
125 /* Do not prefetch accesses with an extreme stride. */
126 #ifndef PREFETCH_NO_EXTREME_STRIDE
127 #define PREFETCH_NO_EXTREME_STRIDE 1
128 #endif
130 /* Define what we mean by an "extreme" stride. */
131 #ifndef PREFETCH_EXTREME_STRIDE
132 #define PREFETCH_EXTREME_STRIDE 4096
133 #endif
135 /* Define a limit to how far apart indices can be and still be merged
136 into a single prefetch. */
137 #ifndef PREFETCH_EXTREME_DIFFERENCE
138 #define PREFETCH_EXTREME_DIFFERENCE 4096
139 #endif
141 /* Issue prefetch instructions before the loop to fetch data to be used
142 in the first few loop iterations. */
143 #ifndef PREFETCH_BEFORE_LOOP
144 #define PREFETCH_BEFORE_LOOP 1
145 #endif
147 /* Do not handle reversed order prefetches (negative stride). */
148 #ifndef PREFETCH_NO_REVERSE_ORDER
149 #define PREFETCH_NO_REVERSE_ORDER 1
150 #endif
152 /* Prefetch even if the GIV is in conditional code. */
153 #ifndef PREFETCH_CONDITIONAL
154 #define PREFETCH_CONDITIONAL 1
155 #endif
157 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
158 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
160 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
161 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
162 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
164 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
165 ((REGNO) < FIRST_PSEUDO_REGISTER \
166 ? (int) hard_regno_nregs[(REGNO)][GET_MODE (SET_DEST)] : 1)
169 /* Vector mapping INSN_UIDs to luids.
170 The luids are like uids but increase monotonically always.
171 We use them to see whether a jump comes from outside a given loop. */
173 int *uid_luid;
175 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
176 number the insn is contained in. */
178 struct loop **uid_loop;
180 /* 1 + largest uid of any insn. */
182 int max_uid_for_loop;
184 /* Number of loops detected in current function. Used as index to the
185 next few tables. */
187 static int max_loop_num;
189 /* Bound on pseudo register number before loop optimization.
190 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
191 unsigned int max_reg_before_loop;
193 /* The value to pass to the next call of reg_scan_update. */
194 static int loop_max_reg;
196 /* During the analysis of a loop, a chain of `struct movable's
197 is made to record all the movable insns found.
198 Then the entire chain can be scanned to decide which to move. */
200 struct movable
202 rtx insn; /* A movable insn */
203 rtx set_src; /* The expression this reg is set from. */
204 rtx set_dest; /* The destination of this SET. */
205 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
206 of any registers used within the LIBCALL. */
207 int consec; /* Number of consecutive following insns
208 that must be moved with this one. */
209 unsigned int regno; /* The register it sets */
210 short lifetime; /* lifetime of that register;
211 may be adjusted when matching movables
212 that load the same value are found. */
213 short savings; /* Number of insns we can move for this reg,
214 including other movables that force this
215 or match this one. */
216 ENUM_BITFIELD(machine_mode) savemode : 8; /* Nonzero means it is a mode for
217 a low part that we should avoid changing when
218 clearing the rest of the reg. */
219 unsigned int cond : 1; /* 1 if only conditionally movable */
220 unsigned int force : 1; /* 1 means MUST move this insn */
221 unsigned int global : 1; /* 1 means reg is live outside this loop */
222 /* If PARTIAL is 1, GLOBAL means something different:
223 that the reg is live outside the range from where it is set
224 to the following label. */
225 unsigned int done : 1; /* 1 inhibits further processing of this */
227 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
228 In particular, moving it does not make it
229 invariant. */
230 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
231 load SRC, rather than copying INSN. */
232 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
233 first insn of a consecutive sets group. */
234 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
235 unsigned int insert_temp : 1; /* 1 means we copy to a new pseudo and replace
236 the original insn with a copy from that
237 pseudo, rather than deleting it. */
238 struct movable *match; /* First entry for same value */
239 struct movable *forces; /* An insn that must be moved if this is */
240 struct movable *next;
244 FILE *loop_dump_stream;
246 /* Forward declarations. */
248 static void invalidate_loops_containing_label (rtx);
249 static void find_and_verify_loops (rtx, struct loops *);
250 static void mark_loop_jump (rtx, struct loop *);
251 static void prescan_loop (struct loop *);
252 static int reg_in_basic_block_p (rtx, rtx);
253 static int consec_sets_invariant_p (const struct loop *, rtx, int, rtx);
254 static int labels_in_range_p (rtx, int);
255 static void count_one_set (struct loop_regs *, rtx, rtx, rtx *);
256 static void note_addr_stored (rtx, rtx, void *);
257 static void note_set_pseudo_multiple_uses (rtx, rtx, void *);
258 static int loop_reg_used_before_p (const struct loop *, rtx, rtx);
259 static rtx find_regs_nested (rtx, rtx);
260 static void scan_loop (struct loop*, int);
261 #if 0
262 static void replace_call_address (rtx, rtx, rtx);
263 #endif
264 static rtx skip_consec_insns (rtx, int);
265 static int libcall_benefit (rtx);
266 static void ignore_some_movables (struct loop_movables *);
267 static void force_movables (struct loop_movables *);
268 static void combine_movables (struct loop_movables *, struct loop_regs *);
269 static int num_unmoved_movables (const struct loop *);
270 static int regs_match_p (rtx, rtx, struct loop_movables *);
271 static int rtx_equal_for_loop_p (rtx, rtx, struct loop_movables *,
272 struct loop_regs *);
273 static void add_label_notes (rtx, rtx);
274 static void move_movables (struct loop *loop, struct loop_movables *, int,
275 int);
276 static void loop_movables_add (struct loop_movables *, struct movable *);
277 static void loop_movables_free (struct loop_movables *);
278 static int count_nonfixed_reads (const struct loop *, rtx);
279 static void loop_bivs_find (struct loop *);
280 static void loop_bivs_init_find (struct loop *);
281 static void loop_bivs_check (struct loop *);
282 static void loop_givs_find (struct loop *);
283 static void loop_givs_check (struct loop *);
284 static int loop_biv_eliminable_p (struct loop *, struct iv_class *, int, int);
285 static int loop_giv_reduce_benefit (struct loop *, struct iv_class *,
286 struct induction *, rtx);
287 static void loop_givs_dead_check (struct loop *, struct iv_class *);
288 static void loop_givs_reduce (struct loop *, struct iv_class *);
289 static void loop_givs_rescan (struct loop *, struct iv_class *, rtx *);
290 static void loop_ivs_free (struct loop *);
291 static void strength_reduce (struct loop *, int);
292 static void find_single_use_in_loop (struct loop_regs *, rtx, rtx);
293 static int valid_initial_value_p (rtx, rtx, int, rtx);
294 static void find_mem_givs (const struct loop *, rtx, rtx, int, int);
295 static void record_biv (struct loop *, struct induction *, rtx, rtx, rtx,
296 rtx, rtx *, int, int);
297 static void check_final_value (const struct loop *, struct induction *);
298 static void loop_ivs_dump (const struct loop *, FILE *, int);
299 static void loop_iv_class_dump (const struct iv_class *, FILE *, int);
300 static void loop_biv_dump (const struct induction *, FILE *, int);
301 static void loop_giv_dump (const struct induction *, FILE *, int);
302 static void record_giv (const struct loop *, struct induction *, rtx, rtx,
303 rtx, rtx, rtx, rtx, int, enum g_types, int, int,
304 rtx *);
305 static void update_giv_derive (const struct loop *, rtx);
306 static void check_ext_dependent_givs (const struct loop *, struct iv_class *);
307 static int basic_induction_var (const struct loop *, rtx, enum machine_mode,
308 rtx, rtx, rtx *, rtx *, rtx **);
309 static rtx simplify_giv_expr (const struct loop *, rtx, rtx *, int *);
310 static int general_induction_var (const struct loop *loop, rtx, rtx *, rtx *,
311 rtx *, rtx *, int, int *, enum machine_mode);
312 static int consec_sets_giv (const struct loop *, int, rtx, rtx, rtx, rtx *,
313 rtx *, rtx *, rtx *);
314 static int check_dbra_loop (struct loop *, int);
315 static rtx express_from_1 (rtx, rtx, rtx);
316 static rtx combine_givs_p (struct induction *, struct induction *);
317 static int cmp_combine_givs_stats (const void *, const void *);
318 static void combine_givs (struct loop_regs *, struct iv_class *);
319 static int product_cheap_p (rtx, rtx);
320 static int maybe_eliminate_biv (const struct loop *, struct iv_class *, int,
321 int, int);
322 static int maybe_eliminate_biv_1 (const struct loop *, rtx, rtx,
323 struct iv_class *, int, basic_block, rtx);
324 static int last_use_this_basic_block (rtx, rtx);
325 static void record_initial (rtx, rtx, void *);
326 static void update_reg_last_use (rtx, rtx);
327 static rtx next_insn_in_loop (const struct loop *, rtx);
328 static void loop_regs_scan (const struct loop *, int);
329 static int count_insns_in_loop (const struct loop *);
330 static int find_mem_in_note_1 (rtx *, void *);
331 static rtx find_mem_in_note (rtx);
332 static void load_mems (const struct loop *);
333 static int insert_loop_mem (rtx *, void *);
334 static int replace_loop_mem (rtx *, void *);
335 static void replace_loop_mems (rtx, rtx, rtx, int);
336 static int replace_loop_reg (rtx *, void *);
337 static void replace_loop_regs (rtx insn, rtx, rtx);
338 static void note_reg_stored (rtx, rtx, void *);
339 static void try_copy_prop (const struct loop *, rtx, unsigned int);
340 static void try_swap_copy_prop (const struct loop *, rtx, unsigned int);
341 static rtx check_insn_for_givs (struct loop *, rtx, int, int);
342 static rtx check_insn_for_bivs (struct loop *, rtx, int, int);
343 static rtx gen_add_mult (rtx, rtx, rtx, rtx);
344 static void loop_regs_update (const struct loop *, rtx);
345 static int iv_add_mult_cost (rtx, rtx, rtx, rtx);
347 static rtx loop_insn_emit_after (const struct loop *, basic_block, rtx, rtx);
348 static rtx loop_call_insn_emit_before (const struct loop *, basic_block,
349 rtx, rtx);
350 static rtx loop_call_insn_hoist (const struct loop *, rtx);
351 static rtx loop_insn_sink_or_swim (const struct loop *, rtx);
353 static void loop_dump_aux (const struct loop *, FILE *, int);
354 static void loop_delete_insns (rtx, rtx);
355 static HOST_WIDE_INT remove_constant_addition (rtx *);
356 static rtx gen_load_of_final_value (rtx, rtx);
357 void debug_ivs (const struct loop *);
358 void debug_iv_class (const struct iv_class *);
359 void debug_biv (const struct induction *);
360 void debug_giv (const struct induction *);
361 void debug_loop (const struct loop *);
362 void debug_loops (const struct loops *);
364 typedef struct loop_replace_args
366 rtx match;
367 rtx replacement;
368 rtx insn;
369 } loop_replace_args;
371 /* Nonzero iff INSN is between START and END, inclusive. */
372 #define INSN_IN_RANGE_P(INSN, START, END) \
373 (INSN_UID (INSN) < max_uid_for_loop \
374 && INSN_LUID (INSN) >= INSN_LUID (START) \
375 && INSN_LUID (INSN) <= INSN_LUID (END))
377 /* Indirect_jump_in_function is computed once per function. */
378 static int indirect_jump_in_function;
379 static int indirect_jump_in_function_p (rtx);
381 static int compute_luids (rtx, rtx, int);
383 static int biv_elimination_giv_has_0_offset (struct induction *,
384 struct induction *, rtx);
386 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
387 copy the value of the strength reduced giv to its original register. */
388 static int copy_cost;
390 /* Cost of using a register, to normalize the benefits of a giv. */
391 static int reg_address_cost;
393 void
394 init_loop (void)
396 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
398 reg_address_cost = address_cost (reg, SImode);
400 copy_cost = COSTS_N_INSNS (1);
403 /* Compute the mapping from uids to luids.
404 LUIDs are numbers assigned to insns, like uids,
405 except that luids increase monotonically through the code.
406 Start at insn START and stop just before END. Assign LUIDs
407 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
408 static int
409 compute_luids (rtx start, rtx end, int prev_luid)
411 int i;
412 rtx insn;
414 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
416 if (INSN_UID (insn) >= max_uid_for_loop)
417 continue;
418 /* Don't assign luids to line-number NOTEs, so that the distance in
419 luids between two insns is not affected by -g. */
420 if (GET_CODE (insn) != NOTE
421 || NOTE_LINE_NUMBER (insn) <= 0)
422 uid_luid[INSN_UID (insn)] = ++i;
423 else
424 /* Give a line number note the same luid as preceding insn. */
425 uid_luid[INSN_UID (insn)] = i;
427 return i + 1;
430 /* Entry point of this file. Perform loop optimization
431 on the current function. F is the first insn of the function
432 and DUMPFILE is a stream for output of a trace of actions taken
433 (or 0 if none should be output). */
435 void
436 loop_optimize (rtx f, FILE *dumpfile, int flags)
438 rtx insn;
439 int i;
440 struct loops loops_data;
441 struct loops *loops = &loops_data;
442 struct loop_info *loops_info;
444 loop_dump_stream = dumpfile;
446 init_recog_no_volatile ();
448 max_reg_before_loop = max_reg_num ();
449 loop_max_reg = max_reg_before_loop;
451 regs_may_share = 0;
453 /* Count the number of loops. */
455 max_loop_num = 0;
456 for (insn = f; insn; insn = NEXT_INSN (insn))
458 if (GET_CODE (insn) == NOTE
459 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
460 max_loop_num++;
463 /* Don't waste time if no loops. */
464 if (max_loop_num == 0)
465 return;
467 loops->num = max_loop_num;
469 /* Get size to use for tables indexed by uids.
470 Leave some space for labels allocated by find_and_verify_loops. */
471 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
473 uid_luid = xcalloc (max_uid_for_loop, sizeof (int));
474 uid_loop = xcalloc (max_uid_for_loop, sizeof (struct loop *));
476 /* Allocate storage for array of loops. */
477 loops->array = xcalloc (loops->num, sizeof (struct loop));
479 /* Find and process each loop.
480 First, find them, and record them in order of their beginnings. */
481 find_and_verify_loops (f, loops);
483 /* Allocate and initialize auxiliary loop information. */
484 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
485 for (i = 0; i < (int) loops->num; i++)
486 loops->array[i].aux = loops_info + i;
488 /* Now find all register lifetimes. This must be done after
489 find_and_verify_loops, because it might reorder the insns in the
490 function. */
491 reg_scan (f, max_reg_before_loop, 1);
493 /* This must occur after reg_scan so that registers created by gcse
494 will have entries in the register tables.
496 We could have added a call to reg_scan after gcse_main in toplev.c,
497 but moving this call to init_alias_analysis is more efficient. */
498 init_alias_analysis ();
500 /* See if we went too far. Note that get_max_uid already returns
501 one more that the maximum uid of all insn. */
502 if (get_max_uid () > max_uid_for_loop)
503 abort ();
504 /* Now reset it to the actual size we need. See above. */
505 max_uid_for_loop = get_max_uid ();
507 /* find_and_verify_loops has already called compute_luids, but it
508 might have rearranged code afterwards, so we need to recompute
509 the luids now. */
510 compute_luids (f, NULL_RTX, 0);
512 /* Don't leave gaps in uid_luid for insns that have been
513 deleted. It is possible that the first or last insn
514 using some register has been deleted by cross-jumping.
515 Make sure that uid_luid for that former insn's uid
516 points to the general area where that insn used to be. */
517 for (i = 0; i < max_uid_for_loop; i++)
519 uid_luid[0] = uid_luid[i];
520 if (uid_luid[0] != 0)
521 break;
523 for (i = 0; i < max_uid_for_loop; i++)
524 if (uid_luid[i] == 0)
525 uid_luid[i] = uid_luid[i - 1];
527 /* Determine if the function has indirect jump. On some systems
528 this prevents low overhead loop instructions from being used. */
529 indirect_jump_in_function = indirect_jump_in_function_p (f);
531 /* Now scan the loops, last ones first, since this means inner ones are done
532 before outer ones. */
533 for (i = max_loop_num - 1; i >= 0; i--)
535 struct loop *loop = &loops->array[i];
537 if (! loop->invalid && loop->end)
539 scan_loop (loop, flags);
540 ggc_collect ();
544 end_alias_analysis ();
546 /* Clean up. */
547 for (i = 0; i < (int) loops->num; i++)
548 free (loops_info[i].mems);
550 free (uid_luid);
551 free (uid_loop);
552 free (loops_info);
553 free (loops->array);
556 /* Returns the next insn, in execution order, after INSN. START and
557 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
558 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
559 insn-stream; it is used with loops that are entered near the
560 bottom. */
562 static rtx
563 next_insn_in_loop (const struct loop *loop, rtx insn)
565 insn = NEXT_INSN (insn);
567 if (insn == loop->end)
569 if (loop->top)
570 /* Go to the top of the loop, and continue there. */
571 insn = loop->top;
572 else
573 /* We're done. */
574 insn = NULL_RTX;
577 if (insn == loop->scan_start)
578 /* We're done. */
579 insn = NULL_RTX;
581 return insn;
584 /* Find any register references hidden inside X and add them to
585 the dependency list DEPS. This is used to look inside CLOBBER (MEM
586 when checking whether a PARALLEL can be pulled out of a loop. */
588 static rtx
589 find_regs_nested (rtx deps, rtx x)
591 enum rtx_code code = GET_CODE (x);
592 if (code == REG)
593 deps = gen_rtx_EXPR_LIST (VOIDmode, x, deps);
594 else
596 const char *fmt = GET_RTX_FORMAT (code);
597 int i, j;
598 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
600 if (fmt[i] == 'e')
601 deps = find_regs_nested (deps, XEXP (x, i));
602 else if (fmt[i] == 'E')
603 for (j = 0; j < XVECLEN (x, i); j++)
604 deps = find_regs_nested (deps, XVECEXP (x, i, j));
607 return deps;
610 /* Optimize one loop described by LOOP. */
612 /* ??? Could also move memory writes out of loops if the destination address
613 is invariant, the source is invariant, the memory write is not volatile,
614 and if we can prove that no read inside the loop can read this address
615 before the write occurs. If there is a read of this address after the
616 write, then we can also mark the memory read as invariant. */
618 static void
619 scan_loop (struct loop *loop, int flags)
621 struct loop_info *loop_info = LOOP_INFO (loop);
622 struct loop_regs *regs = LOOP_REGS (loop);
623 int i;
624 rtx loop_start = loop->start;
625 rtx loop_end = loop->end;
626 rtx p;
627 /* 1 if we are scanning insns that could be executed zero times. */
628 int maybe_never = 0;
629 /* 1 if we are scanning insns that might never be executed
630 due to a subroutine call which might exit before they are reached. */
631 int call_passed = 0;
632 /* Number of insns in the loop. */
633 int insn_count;
634 int tem;
635 rtx temp, update_start, update_end;
636 /* The SET from an insn, if it is the only SET in the insn. */
637 rtx set, set1;
638 /* Chain describing insns movable in current loop. */
639 struct loop_movables *movables = LOOP_MOVABLES (loop);
640 /* Ratio of extra register life span we can justify
641 for saving an instruction. More if loop doesn't call subroutines
642 since in that case saving an insn makes more difference
643 and more registers are available. */
644 int threshold;
645 /* Nonzero if we are scanning instructions in a sub-loop. */
646 int loop_depth = 0;
647 int in_libcall;
649 loop->top = 0;
651 movables->head = 0;
652 movables->last = 0;
654 /* Determine whether this loop starts with a jump down to a test at
655 the end. This will occur for a small number of loops with a test
656 that is too complex to duplicate in front of the loop.
658 We search for the first insn or label in the loop, skipping NOTEs.
659 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
660 (because we might have a loop executed only once that contains a
661 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
662 (in case we have a degenerate loop).
664 Note that if we mistakenly think that a loop is entered at the top
665 when, in fact, it is entered at the exit test, the only effect will be
666 slightly poorer optimization. Making the opposite error can generate
667 incorrect code. Since very few loops now start with a jump to the
668 exit test, the code here to detect that case is very conservative. */
670 for (p = NEXT_INSN (loop_start);
671 p != loop_end
672 && GET_CODE (p) != CODE_LABEL && ! INSN_P (p)
673 && (GET_CODE (p) != NOTE
674 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
675 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
676 p = NEXT_INSN (p))
679 loop->scan_start = p;
681 /* If loop end is the end of the current function, then emit a
682 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
683 note insn. This is the position we use when sinking insns out of
684 the loop. */
685 if (NEXT_INSN (loop->end) != 0)
686 loop->sink = NEXT_INSN (loop->end);
687 else
688 loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
690 /* Set up variables describing this loop. */
691 prescan_loop (loop);
692 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
694 /* If loop has a jump before the first label,
695 the true entry is the target of that jump.
696 Start scan from there.
697 But record in LOOP->TOP the place where the end-test jumps
698 back to so we can scan that after the end of the loop. */
699 if (GET_CODE (p) == JUMP_INSN
700 /* Loop entry must be unconditional jump (and not a RETURN) */
701 && any_uncondjump_p (p)
702 && JUMP_LABEL (p) != 0
703 /* Check to see whether the jump actually
704 jumps out of the loop (meaning it's no loop).
705 This case can happen for things like
706 do {..} while (0). If this label was generated previously
707 by loop, we can't tell anything about it and have to reject
708 the loop. */
709 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
711 loop->top = next_label (loop->scan_start);
712 loop->scan_start = JUMP_LABEL (p);
715 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
716 as required by loop_reg_used_before_p. So skip such loops. (This
717 test may never be true, but it's best to play it safe.)
719 Also, skip loops where we do not start scanning at a label. This
720 test also rejects loops starting with a JUMP_INSN that failed the
721 test above. */
723 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
724 || GET_CODE (loop->scan_start) != CODE_LABEL)
726 if (loop_dump_stream)
727 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
728 INSN_UID (loop_start), INSN_UID (loop_end));
729 return;
732 /* Allocate extra space for REGs that might be created by load_mems.
733 We allocate a little extra slop as well, in the hopes that we
734 won't have to reallocate the regs array. */
735 loop_regs_scan (loop, loop_info->mems_idx + 16);
736 insn_count = count_insns_in_loop (loop);
738 if (loop_dump_stream)
740 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
741 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
742 if (loop->cont)
743 fprintf (loop_dump_stream, "Continue at insn %d.\n",
744 INSN_UID (loop->cont));
747 /* Scan through the loop finding insns that are safe to move.
748 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
749 this reg will be considered invariant for subsequent insns.
750 We consider whether subsequent insns use the reg
751 in deciding whether it is worth actually moving.
753 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
754 and therefore it is possible that the insns we are scanning
755 would never be executed. At such times, we must make sure
756 that it is safe to execute the insn once instead of zero times.
757 When MAYBE_NEVER is 0, all insns will be executed at least once
758 so that is not a problem. */
760 for (in_libcall = 0, p = next_insn_in_loop (loop, loop->scan_start);
761 p != NULL_RTX;
762 p = next_insn_in_loop (loop, p))
764 if (in_libcall && INSN_P (p) && find_reg_note (p, REG_RETVAL, NULL_RTX))
765 in_libcall--;
766 if (GET_CODE (p) == INSN)
768 temp = find_reg_note (p, REG_LIBCALL, NULL_RTX);
769 if (temp)
770 in_libcall++;
771 if (! in_libcall
772 && (set = single_set (p))
773 && GET_CODE (SET_DEST (set)) == REG
774 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
775 && SET_DEST (set) != pic_offset_table_rtx
776 #endif
777 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
779 int tem1 = 0;
780 int tem2 = 0;
781 int move_insn = 0;
782 int insert_temp = 0;
783 rtx src = SET_SRC (set);
784 rtx dependencies = 0;
786 /* Figure out what to use as a source of this insn. If a
787 REG_EQUIV note is given or if a REG_EQUAL note with a
788 constant operand is specified, use it as the source and
789 mark that we should move this insn by calling
790 emit_move_insn rather that duplicating the insn.
792 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL
793 note is present. */
794 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
795 if (temp)
796 src = XEXP (temp, 0), move_insn = 1;
797 else
799 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
800 if (temp && CONSTANT_P (XEXP (temp, 0)))
801 src = XEXP (temp, 0), move_insn = 1;
802 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
804 src = XEXP (temp, 0);
805 /* A libcall block can use regs that don't appear in
806 the equivalent expression. To move the libcall,
807 we must move those regs too. */
808 dependencies = libcall_other_reg (p, src);
812 /* For parallels, add any possible uses to the dependencies, as
813 we can't move the insn without resolving them first.
814 MEMs inside CLOBBERs may also reference registers; these
815 count as implicit uses. */
816 if (GET_CODE (PATTERN (p)) == PARALLEL)
818 for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
820 rtx x = XVECEXP (PATTERN (p), 0, i);
821 if (GET_CODE (x) == USE)
822 dependencies
823 = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
824 dependencies);
825 else if (GET_CODE (x) == CLOBBER
826 && GET_CODE (XEXP (x, 0)) == MEM)
827 dependencies = find_regs_nested (dependencies,
828 XEXP (XEXP (x, 0), 0));
832 if (/* The register is used in basic blocks other
833 than the one where it is set (meaning that
834 something after this point in the loop might
835 depend on its value before the set). */
836 ! reg_in_basic_block_p (p, SET_DEST (set))
837 /* And the set is not guaranteed to be executed once
838 the loop starts, or the value before the set is
839 needed before the set occurs...
841 ??? Note we have quadratic behavior here, mitigated
842 by the fact that the previous test will often fail for
843 large loops. Rather than re-scanning the entire loop
844 each time for register usage, we should build tables
845 of the register usage and use them here instead. */
846 && (maybe_never
847 || loop_reg_used_before_p (loop, set, p)))
848 /* It is unsafe to move the set. However, it may be OK to
849 move the source into a new pseudo, and substitute a
850 reg-to-reg copy for the original insn.
852 This code used to consider it OK to move a set of a variable
853 which was not created by the user and not used in an exit
854 test.
855 That behavior is incorrect and was removed. */
856 insert_temp = 1;
858 /* Don't try to optimize a MODE_CC set with a constant
859 source. It probably will be combined with a conditional
860 jump. */
861 if (GET_MODE_CLASS (GET_MODE (SET_DEST (set))) == MODE_CC
862 && CONSTANT_P (src))
864 /* Don't try to optimize a register that was made
865 by loop-optimization for an inner loop.
866 We don't know its life-span, so we can't compute
867 the benefit. */
868 else if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
870 /* Don't move the source and add a reg-to-reg copy:
871 - with -Os (this certainly increases size),
872 - if the mode doesn't support copy operations (obviously),
873 - if the source is already a reg (the motion will gain nothing),
874 - if the source is a legitimate constant (likewise). */
875 else if (insert_temp
876 && (optimize_size
877 || ! can_copy_p (GET_MODE (SET_SRC (set)))
878 || GET_CODE (SET_SRC (set)) == REG
879 || (CONSTANT_P (SET_SRC (set))
880 && LEGITIMATE_CONSTANT_P (SET_SRC (set)))))
882 else if ((tem = loop_invariant_p (loop, src))
883 && (dependencies == 0
884 || (tem2
885 = loop_invariant_p (loop, dependencies)) != 0)
886 && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
887 || (tem1
888 = consec_sets_invariant_p
889 (loop, SET_DEST (set),
890 regs->array[REGNO (SET_DEST (set))].set_in_loop,
891 p)))
892 /* If the insn can cause a trap (such as divide by zero),
893 can't move it unless it's guaranteed to be executed
894 once loop is entered. Even a function call might
895 prevent the trap insn from being reached
896 (since it might exit!) */
897 && ! ((maybe_never || call_passed)
898 && may_trap_p (src)))
900 struct movable *m;
901 int regno = REGNO (SET_DEST (set));
903 /* A potential lossage is where we have a case where two insns
904 can be combined as long as they are both in the loop, but
905 we move one of them outside the loop. For large loops,
906 this can lose. The most common case of this is the address
907 of a function being called.
909 Therefore, if this register is marked as being used
910 exactly once if we are in a loop with calls
911 (a "large loop"), see if we can replace the usage of
912 this register with the source of this SET. If we can,
913 delete this insn.
915 Don't do this if P has a REG_RETVAL note or if we have
916 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
918 if (loop_info->has_call
919 && regs->array[regno].single_usage != 0
920 && regs->array[regno].single_usage != const0_rtx
921 && REGNO_FIRST_UID (regno) == INSN_UID (p)
922 && (REGNO_LAST_UID (regno)
923 == INSN_UID (regs->array[regno].single_usage))
924 && regs->array[regno].set_in_loop == 1
925 && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
926 && ! side_effects_p (SET_SRC (set))
927 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
928 && (! SMALL_REGISTER_CLASSES
929 || (! (GET_CODE (SET_SRC (set)) == REG
930 && (REGNO (SET_SRC (set))
931 < FIRST_PSEUDO_REGISTER))))
932 /* This test is not redundant; SET_SRC (set) might be
933 a call-clobbered register and the life of REGNO
934 might span a call. */
935 && ! modified_between_p (SET_SRC (set), p,
936 regs->array[regno].single_usage)
937 && no_labels_between_p (p,
938 regs->array[regno].single_usage)
939 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
940 regs->array[regno].single_usage))
942 /* Replace any usage in a REG_EQUAL note. Must copy
943 the new source, so that we don't get rtx sharing
944 between the SET_SOURCE and REG_NOTES of insn p. */
945 REG_NOTES (regs->array[regno].single_usage)
946 = (replace_rtx
947 (REG_NOTES (regs->array[regno].single_usage),
948 SET_DEST (set), copy_rtx (SET_SRC (set))));
950 delete_insn (p);
951 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
952 i++)
953 regs->array[regno+i].set_in_loop = 0;
954 continue;
957 m = xmalloc (sizeof (struct movable));
958 m->next = 0;
959 m->insn = p;
960 m->set_src = src;
961 m->dependencies = dependencies;
962 m->set_dest = SET_DEST (set);
963 m->force = 0;
964 m->consec
965 = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
966 m->done = 0;
967 m->forces = 0;
968 m->partial = 0;
969 m->move_insn = move_insn;
970 m->move_insn_first = 0;
971 m->insert_temp = insert_temp;
972 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
973 m->savemode = VOIDmode;
974 m->regno = regno;
975 /* Set M->cond if either loop_invariant_p
976 or consec_sets_invariant_p returned 2
977 (only conditionally invariant). */
978 m->cond = ((tem | tem1 | tem2) > 1);
979 m->global = LOOP_REG_GLOBAL_P (loop, regno);
980 m->match = 0;
981 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
982 m->savings = regs->array[regno].n_times_set;
983 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
984 m->savings += libcall_benefit (p);
985 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
986 regs->array[regno+i].set_in_loop = move_insn ? -2 : -1;
987 /* Add M to the end of the chain MOVABLES. */
988 loop_movables_add (movables, m);
990 if (m->consec > 0)
992 /* It is possible for the first instruction to have a
993 REG_EQUAL note but a non-invariant SET_SRC, so we must
994 remember the status of the first instruction in case
995 the last instruction doesn't have a REG_EQUAL note. */
996 m->move_insn_first = m->move_insn;
998 /* Skip this insn, not checking REG_LIBCALL notes. */
999 p = next_nonnote_insn (p);
1000 /* Skip the consecutive insns, if there are any. */
1001 p = skip_consec_insns (p, m->consec);
1002 /* Back up to the last insn of the consecutive group. */
1003 p = prev_nonnote_insn (p);
1005 /* We must now reset m->move_insn, m->is_equiv, and
1006 possibly m->set_src to correspond to the effects of
1007 all the insns. */
1008 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
1009 if (temp)
1010 m->set_src = XEXP (temp, 0), m->move_insn = 1;
1011 else
1013 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
1014 if (temp && CONSTANT_P (XEXP (temp, 0)))
1015 m->set_src = XEXP (temp, 0), m->move_insn = 1;
1016 else
1017 m->move_insn = 0;
1020 m->is_equiv
1021 = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
1024 /* If this register is always set within a STRICT_LOW_PART
1025 or set to zero, then its high bytes are constant.
1026 So clear them outside the loop and within the loop
1027 just load the low bytes.
1028 We must check that the machine has an instruction to do so.
1029 Also, if the value loaded into the register
1030 depends on the same register, this cannot be done. */
1031 else if (SET_SRC (set) == const0_rtx
1032 && GET_CODE (NEXT_INSN (p)) == INSN
1033 && (set1 = single_set (NEXT_INSN (p)))
1034 && GET_CODE (set1) == SET
1035 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
1036 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
1037 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
1038 == SET_DEST (set))
1039 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
1041 int regno = REGNO (SET_DEST (set));
1042 if (regs->array[regno].set_in_loop == 2)
1044 struct movable *m;
1045 m = xmalloc (sizeof (struct movable));
1046 m->next = 0;
1047 m->insn = p;
1048 m->set_dest = SET_DEST (set);
1049 m->dependencies = 0;
1050 m->force = 0;
1051 m->consec = 0;
1052 m->done = 0;
1053 m->forces = 0;
1054 m->move_insn = 0;
1055 m->move_insn_first = 0;
1056 m->insert_temp = insert_temp;
1057 m->partial = 1;
1058 /* If the insn may not be executed on some cycles,
1059 we can't clear the whole reg; clear just high part.
1060 Not even if the reg is used only within this loop.
1061 Consider this:
1062 while (1)
1063 while (s != t) {
1064 if (foo ()) x = *s;
1065 use (x);
1067 Clearing x before the inner loop could clobber a value
1068 being saved from the last time around the outer loop.
1069 However, if the reg is not used outside this loop
1070 and all uses of the register are in the same
1071 basic block as the store, there is no problem.
1073 If this insn was made by loop, we don't know its
1074 INSN_LUID and hence must make a conservative
1075 assumption. */
1076 m->global = (INSN_UID (p) >= max_uid_for_loop
1077 || LOOP_REG_GLOBAL_P (loop, regno)
1078 || (labels_in_range_p
1079 (p, REGNO_FIRST_LUID (regno))));
1080 if (maybe_never && m->global)
1081 m->savemode = GET_MODE (SET_SRC (set1));
1082 else
1083 m->savemode = VOIDmode;
1084 m->regno = regno;
1085 m->cond = 0;
1086 m->match = 0;
1087 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
1088 m->savings = 1;
1089 for (i = 0;
1090 i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
1091 i++)
1092 regs->array[regno+i].set_in_loop = -1;
1093 /* Add M to the end of the chain MOVABLES. */
1094 loop_movables_add (movables, m);
1099 /* Past a call insn, we get to insns which might not be executed
1100 because the call might exit. This matters for insns that trap.
1101 Constant and pure call insns always return, so they don't count. */
1102 else if (GET_CODE (p) == CALL_INSN && ! CONST_OR_PURE_CALL_P (p))
1103 call_passed = 1;
1104 /* Past a label or a jump, we get to insns for which we
1105 can't count on whether or how many times they will be
1106 executed during each iteration. Therefore, we can
1107 only move out sets of trivial variables
1108 (those not used after the loop). */
1109 /* Similar code appears twice in strength_reduce. */
1110 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1111 /* If we enter the loop in the middle, and scan around to the
1112 beginning, don't set maybe_never for that. This must be an
1113 unconditional jump, otherwise the code at the top of the
1114 loop might never be executed. Unconditional jumps are
1115 followed by a barrier then the loop_end. */
1116 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
1117 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1118 && any_uncondjump_p (p)))
1119 maybe_never = 1;
1120 else if (GET_CODE (p) == NOTE)
1122 /* At the virtual top of a converted loop, insns are again known to
1123 be executed: logically, the loop begins here even though the exit
1124 code has been duplicated. */
1125 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1126 maybe_never = call_passed = 0;
1127 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1128 loop_depth++;
1129 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1130 loop_depth--;
1134 /* If one movable subsumes another, ignore that other. */
1136 ignore_some_movables (movables);
1138 /* For each movable insn, see if the reg that it loads
1139 leads when it dies right into another conditionally movable insn.
1140 If so, record that the second insn "forces" the first one,
1141 since the second can be moved only if the first is. */
1143 force_movables (movables);
1145 /* See if there are multiple movable insns that load the same value.
1146 If there are, make all but the first point at the first one
1147 through the `match' field, and add the priorities of them
1148 all together as the priority of the first. */
1150 combine_movables (movables, regs);
1152 /* Now consider each movable insn to decide whether it is worth moving.
1153 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1155 For machines with few registers this increases code size, so do not
1156 move moveables when optimizing for code size on such machines.
1157 (The 18 below is the value for i386.) */
1159 if (!optimize_size
1160 || (reg_class_size[GENERAL_REGS] > 18 && !loop_info->has_call))
1162 move_movables (loop, movables, threshold, insn_count);
1164 /* Recalculate regs->array if move_movables has created new
1165 registers. */
1166 if (max_reg_num () > regs->num)
1168 loop_regs_scan (loop, 0);
1169 for (update_start = loop_start;
1170 PREV_INSN (update_start)
1171 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1172 update_start = PREV_INSN (update_start))
1174 update_end = NEXT_INSN (loop_end);
1176 reg_scan_update (update_start, update_end, loop_max_reg);
1177 loop_max_reg = max_reg_num ();
1181 /* Now candidates that still are negative are those not moved.
1182 Change regs->array[I].set_in_loop to indicate that those are not actually
1183 invariant. */
1184 for (i = 0; i < regs->num; i++)
1185 if (regs->array[i].set_in_loop < 0)
1186 regs->array[i].set_in_loop = regs->array[i].n_times_set;
1188 /* Now that we've moved some things out of the loop, we might be able to
1189 hoist even more memory references. */
1190 load_mems (loop);
1192 /* Recalculate regs->array if load_mems has created new registers. */
1193 if (max_reg_num () > regs->num)
1194 loop_regs_scan (loop, 0);
1196 for (update_start = loop_start;
1197 PREV_INSN (update_start)
1198 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1199 update_start = PREV_INSN (update_start))
1201 update_end = NEXT_INSN (loop_end);
1203 reg_scan_update (update_start, update_end, loop_max_reg);
1204 loop_max_reg = max_reg_num ();
1206 if (flag_strength_reduce)
1208 if (update_end && GET_CODE (update_end) == CODE_LABEL)
1209 /* Ensure our label doesn't go away. */
1210 LABEL_NUSES (update_end)++;
1212 strength_reduce (loop, flags);
1214 reg_scan_update (update_start, update_end, loop_max_reg);
1215 loop_max_reg = max_reg_num ();
1217 if (update_end && GET_CODE (update_end) == CODE_LABEL
1218 && --LABEL_NUSES (update_end) == 0)
1219 delete_related_insns (update_end);
1223 /* The movable information is required for strength reduction. */
1224 loop_movables_free (movables);
1226 free (regs->array);
1227 regs->array = 0;
1228 regs->num = 0;
1231 /* Add elements to *OUTPUT to record all the pseudo-regs
1232 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1234 void
1235 record_excess_regs (rtx in_this, rtx not_in_this, rtx *output)
1237 enum rtx_code code;
1238 const char *fmt;
1239 int i;
1241 code = GET_CODE (in_this);
1243 switch (code)
1245 case PC:
1246 case CC0:
1247 case CONST_INT:
1248 case CONST_DOUBLE:
1249 case CONST:
1250 case SYMBOL_REF:
1251 case LABEL_REF:
1252 return;
1254 case REG:
1255 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1256 && ! reg_mentioned_p (in_this, not_in_this))
1257 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1258 return;
1260 default:
1261 break;
1264 fmt = GET_RTX_FORMAT (code);
1265 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1267 int j;
1269 switch (fmt[i])
1271 case 'E':
1272 for (j = 0; j < XVECLEN (in_this, i); j++)
1273 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1274 break;
1276 case 'e':
1277 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1278 break;
1283 /* Check what regs are referred to in the libcall block ending with INSN,
1284 aside from those mentioned in the equivalent value.
1285 If there are none, return 0.
1286 If there are one or more, return an EXPR_LIST containing all of them. */
1289 libcall_other_reg (rtx insn, rtx equiv)
1291 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1292 rtx p = XEXP (note, 0);
1293 rtx output = 0;
1295 /* First, find all the regs used in the libcall block
1296 that are not mentioned as inputs to the result. */
1298 while (p != insn)
1300 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1301 || GET_CODE (p) == CALL_INSN)
1302 record_excess_regs (PATTERN (p), equiv, &output);
1303 p = NEXT_INSN (p);
1306 return output;
1309 /* Return 1 if all uses of REG
1310 are between INSN and the end of the basic block. */
1312 static int
1313 reg_in_basic_block_p (rtx insn, rtx reg)
1315 int regno = REGNO (reg);
1316 rtx p;
1318 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1319 return 0;
1321 /* Search this basic block for the already recorded last use of the reg. */
1322 for (p = insn; p; p = NEXT_INSN (p))
1324 switch (GET_CODE (p))
1326 case NOTE:
1327 break;
1329 case INSN:
1330 case CALL_INSN:
1331 /* Ordinary insn: if this is the last use, we win. */
1332 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1333 return 1;
1334 break;
1336 case JUMP_INSN:
1337 /* Jump insn: if this is the last use, we win. */
1338 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1339 return 1;
1340 /* Otherwise, it's the end of the basic block, so we lose. */
1341 return 0;
1343 case CODE_LABEL:
1344 case BARRIER:
1345 /* It's the end of the basic block, so we lose. */
1346 return 0;
1348 default:
1349 break;
1353 /* The "last use" that was recorded can't be found after the first
1354 use. This can happen when the last use was deleted while
1355 processing an inner loop, this inner loop was then completely
1356 unrolled, and the outer loop is always exited after the inner loop,
1357 so that everything after the first use becomes a single basic block. */
1358 return 1;
1361 /* Compute the benefit of eliminating the insns in the block whose
1362 last insn is LAST. This may be a group of insns used to compute a
1363 value directly or can contain a library call. */
1365 static int
1366 libcall_benefit (rtx last)
1368 rtx insn;
1369 int benefit = 0;
1371 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1372 insn != last; insn = NEXT_INSN (insn))
1374 if (GET_CODE (insn) == CALL_INSN)
1375 benefit += 10; /* Assume at least this many insns in a library
1376 routine. */
1377 else if (GET_CODE (insn) == INSN
1378 && GET_CODE (PATTERN (insn)) != USE
1379 && GET_CODE (PATTERN (insn)) != CLOBBER)
1380 benefit++;
1383 return benefit;
1386 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1388 static rtx
1389 skip_consec_insns (rtx insn, int count)
1391 for (; count > 0; count--)
1393 rtx temp;
1395 /* If first insn of libcall sequence, skip to end. */
1396 /* Do this at start of loop, since INSN is guaranteed to
1397 be an insn here. */
1398 if (GET_CODE (insn) != NOTE
1399 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1400 insn = XEXP (temp, 0);
1403 insn = NEXT_INSN (insn);
1404 while (GET_CODE (insn) == NOTE);
1407 return insn;
1410 /* Ignore any movable whose insn falls within a libcall
1411 which is part of another movable.
1412 We make use of the fact that the movable for the libcall value
1413 was made later and so appears later on the chain. */
1415 static void
1416 ignore_some_movables (struct loop_movables *movables)
1418 struct movable *m, *m1;
1420 for (m = movables->head; m; m = m->next)
1422 /* Is this a movable for the value of a libcall? */
1423 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1424 if (note)
1426 rtx insn;
1427 /* Check for earlier movables inside that range,
1428 and mark them invalid. We cannot use LUIDs here because
1429 insns created by loop.c for prior loops don't have LUIDs.
1430 Rather than reject all such insns from movables, we just
1431 explicitly check each insn in the libcall (since invariant
1432 libcalls aren't that common). */
1433 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1434 for (m1 = movables->head; m1 != m; m1 = m1->next)
1435 if (m1->insn == insn)
1436 m1->done = 1;
1441 /* For each movable insn, see if the reg that it loads
1442 leads when it dies right into another conditionally movable insn.
1443 If so, record that the second insn "forces" the first one,
1444 since the second can be moved only if the first is. */
1446 static void
1447 force_movables (struct loop_movables *movables)
1449 struct movable *m, *m1;
1451 for (m1 = movables->head; m1; m1 = m1->next)
1452 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1453 if (!m1->partial && !m1->done)
1455 int regno = m1->regno;
1456 for (m = m1->next; m; m = m->next)
1457 /* ??? Could this be a bug? What if CSE caused the
1458 register of M1 to be used after this insn?
1459 Since CSE does not update regno_last_uid,
1460 this insn M->insn might not be where it dies.
1461 But very likely this doesn't matter; what matters is
1462 that M's reg is computed from M1's reg. */
1463 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1464 && !m->done)
1465 break;
1466 if (m != 0 && m->set_src == m1->set_dest
1467 /* If m->consec, m->set_src isn't valid. */
1468 && m->consec == 0)
1469 m = 0;
1471 /* Increase the priority of the moving the first insn
1472 since it permits the second to be moved as well.
1473 Likewise for insns already forced by the first insn. */
1474 if (m != 0)
1476 struct movable *m2;
1478 m->forces = m1;
1479 for (m2 = m1; m2; m2 = m2->forces)
1481 m2->lifetime += m->lifetime;
1482 m2->savings += m->savings;
1488 /* Find invariant expressions that are equal and can be combined into
1489 one register. */
1491 static void
1492 combine_movables (struct loop_movables *movables, struct loop_regs *regs)
1494 struct movable *m;
1495 char *matched_regs = xmalloc (regs->num);
1496 enum machine_mode mode;
1498 /* Regs that are set more than once are not allowed to match
1499 or be matched. I'm no longer sure why not. */
1500 /* Only pseudo registers are allowed to match or be matched,
1501 since move_movables does not validate the change. */
1502 /* Perhaps testing m->consec_sets would be more appropriate here? */
1504 for (m = movables->head; m; m = m->next)
1505 if (m->match == 0 && regs->array[m->regno].n_times_set == 1
1506 && m->regno >= FIRST_PSEUDO_REGISTER
1507 && !m->insert_temp
1508 && !m->partial)
1510 struct movable *m1;
1511 int regno = m->regno;
1513 memset (matched_regs, 0, regs->num);
1514 matched_regs[regno] = 1;
1516 /* We want later insns to match the first one. Don't make the first
1517 one match any later ones. So start this loop at m->next. */
1518 for (m1 = m->next; m1; m1 = m1->next)
1519 if (m != m1 && m1->match == 0
1520 && !m1->insert_temp
1521 && regs->array[m1->regno].n_times_set == 1
1522 && m1->regno >= FIRST_PSEUDO_REGISTER
1523 /* A reg used outside the loop mustn't be eliminated. */
1524 && !m1->global
1525 /* A reg used for zero-extending mustn't be eliminated. */
1526 && !m1->partial
1527 && (matched_regs[m1->regno]
1530 /* Can combine regs with different modes loaded from the
1531 same constant only if the modes are the same or
1532 if both are integer modes with M wider or the same
1533 width as M1. The check for integer is redundant, but
1534 safe, since the only case of differing destination
1535 modes with equal sources is when both sources are
1536 VOIDmode, i.e., CONST_INT. */
1537 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1538 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1539 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1540 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1541 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1542 /* See if the source of M1 says it matches M. */
1543 && ((GET_CODE (m1->set_src) == REG
1544 && matched_regs[REGNO (m1->set_src)])
1545 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1546 movables, regs))))
1547 && ((m->dependencies == m1->dependencies)
1548 || rtx_equal_p (m->dependencies, m1->dependencies)))
1550 m->lifetime += m1->lifetime;
1551 m->savings += m1->savings;
1552 m1->done = 1;
1553 m1->match = m;
1554 matched_regs[m1->regno] = 1;
1558 /* Now combine the regs used for zero-extension.
1559 This can be done for those not marked `global'
1560 provided their lives don't overlap. */
1562 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1563 mode = GET_MODE_WIDER_MODE (mode))
1565 struct movable *m0 = 0;
1567 /* Combine all the registers for extension from mode MODE.
1568 Don't combine any that are used outside this loop. */
1569 for (m = movables->head; m; m = m->next)
1570 if (m->partial && ! m->global
1571 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1573 struct movable *m1;
1575 int first = REGNO_FIRST_LUID (m->regno);
1576 int last = REGNO_LAST_LUID (m->regno);
1578 if (m0 == 0)
1580 /* First one: don't check for overlap, just record it. */
1581 m0 = m;
1582 continue;
1585 /* Make sure they extend to the same mode.
1586 (Almost always true.) */
1587 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1588 continue;
1590 /* We already have one: check for overlap with those
1591 already combined together. */
1592 for (m1 = movables->head; m1 != m; m1 = m1->next)
1593 if (m1 == m0 || (m1->partial && m1->match == m0))
1594 if (! (REGNO_FIRST_LUID (m1->regno) > last
1595 || REGNO_LAST_LUID (m1->regno) < first))
1596 goto overlap;
1598 /* No overlap: we can combine this with the others. */
1599 m0->lifetime += m->lifetime;
1600 m0->savings += m->savings;
1601 m->done = 1;
1602 m->match = m0;
1604 overlap:
1609 /* Clean up. */
1610 free (matched_regs);
1613 /* Returns the number of movable instructions in LOOP that were not
1614 moved outside the loop. */
1616 static int
1617 num_unmoved_movables (const struct loop *loop)
1619 int num = 0;
1620 struct movable *m;
1622 for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
1623 if (!m->done)
1624 ++num;
1626 return num;
1630 /* Return 1 if regs X and Y will become the same if moved. */
1632 static int
1633 regs_match_p (rtx x, rtx y, struct loop_movables *movables)
1635 unsigned int xn = REGNO (x);
1636 unsigned int yn = REGNO (y);
1637 struct movable *mx, *my;
1639 for (mx = movables->head; mx; mx = mx->next)
1640 if (mx->regno == xn)
1641 break;
1643 for (my = movables->head; my; my = my->next)
1644 if (my->regno == yn)
1645 break;
1647 return (mx && my
1648 && ((mx->match == my->match && mx->match != 0)
1649 || mx->match == my
1650 || mx == my->match));
1653 /* Return 1 if X and Y are identical-looking rtx's.
1654 This is the Lisp function EQUAL for rtx arguments.
1656 If two registers are matching movables or a movable register and an
1657 equivalent constant, consider them equal. */
1659 static int
1660 rtx_equal_for_loop_p (rtx x, rtx y, struct loop_movables *movables,
1661 struct loop_regs *regs)
1663 int i;
1664 int j;
1665 struct movable *m;
1666 enum rtx_code code;
1667 const char *fmt;
1669 if (x == y)
1670 return 1;
1671 if (x == 0 || y == 0)
1672 return 0;
1674 code = GET_CODE (x);
1676 /* If we have a register and a constant, they may sometimes be
1677 equal. */
1678 if (GET_CODE (x) == REG && regs->array[REGNO (x)].set_in_loop == -2
1679 && CONSTANT_P (y))
1681 for (m = movables->head; m; m = m->next)
1682 if (m->move_insn && m->regno == REGNO (x)
1683 && rtx_equal_p (m->set_src, y))
1684 return 1;
1686 else if (GET_CODE (y) == REG && regs->array[REGNO (y)].set_in_loop == -2
1687 && CONSTANT_P (x))
1689 for (m = movables->head; m; m = m->next)
1690 if (m->move_insn && m->regno == REGNO (y)
1691 && rtx_equal_p (m->set_src, x))
1692 return 1;
1695 /* Otherwise, rtx's of different codes cannot be equal. */
1696 if (code != GET_CODE (y))
1697 return 0;
1699 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1700 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1702 if (GET_MODE (x) != GET_MODE (y))
1703 return 0;
1705 /* These three types of rtx's can be compared nonrecursively. */
1706 if (code == REG)
1707 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1709 if (code == LABEL_REF)
1710 return XEXP (x, 0) == XEXP (y, 0);
1711 if (code == SYMBOL_REF)
1712 return XSTR (x, 0) == XSTR (y, 0);
1714 /* Compare the elements. If any pair of corresponding elements
1715 fail to match, return 0 for the whole things. */
1717 fmt = GET_RTX_FORMAT (code);
1718 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1720 switch (fmt[i])
1722 case 'w':
1723 if (XWINT (x, i) != XWINT (y, i))
1724 return 0;
1725 break;
1727 case 'i':
1728 if (XINT (x, i) != XINT (y, i))
1729 return 0;
1730 break;
1732 case 'E':
1733 /* Two vectors must have the same length. */
1734 if (XVECLEN (x, i) != XVECLEN (y, i))
1735 return 0;
1737 /* And the corresponding elements must match. */
1738 for (j = 0; j < XVECLEN (x, i); j++)
1739 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
1740 movables, regs) == 0)
1741 return 0;
1742 break;
1744 case 'e':
1745 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
1746 == 0)
1747 return 0;
1748 break;
1750 case 's':
1751 if (strcmp (XSTR (x, i), XSTR (y, i)))
1752 return 0;
1753 break;
1755 case 'u':
1756 /* These are just backpointers, so they don't matter. */
1757 break;
1759 case '0':
1760 break;
1762 /* It is believed that rtx's at this level will never
1763 contain anything but integers and other rtx's,
1764 except for within LABEL_REFs and SYMBOL_REFs. */
1765 default:
1766 abort ();
1769 return 1;
1772 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1773 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1774 references is incremented once for each added note. */
1776 static void
1777 add_label_notes (rtx x, rtx insns)
1779 enum rtx_code code = GET_CODE (x);
1780 int i, j;
1781 const char *fmt;
1782 rtx insn;
1784 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1786 /* This code used to ignore labels that referred to dispatch tables to
1787 avoid flow generating (slightly) worse code.
1789 We no longer ignore such label references (see LABEL_REF handling in
1790 mark_jump_label for additional information). */
1791 for (insn = insns; insn; insn = NEXT_INSN (insn))
1792 if (reg_mentioned_p (XEXP (x, 0), insn))
1794 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
1795 REG_NOTES (insn));
1796 if (LABEL_P (XEXP (x, 0)))
1797 LABEL_NUSES (XEXP (x, 0))++;
1801 fmt = GET_RTX_FORMAT (code);
1802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1804 if (fmt[i] == 'e')
1805 add_label_notes (XEXP (x, i), insns);
1806 else if (fmt[i] == 'E')
1807 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1808 add_label_notes (XVECEXP (x, i, j), insns);
1812 /* Scan MOVABLES, and move the insns that deserve to be moved.
1813 If two matching movables are combined, replace one reg with the
1814 other throughout. */
1816 static void
1817 move_movables (struct loop *loop, struct loop_movables *movables,
1818 int threshold, int insn_count)
1820 struct loop_regs *regs = LOOP_REGS (loop);
1821 int nregs = regs->num;
1822 rtx new_start = 0;
1823 struct movable *m;
1824 rtx p;
1825 rtx loop_start = loop->start;
1826 rtx loop_end = loop->end;
1827 /* Map of pseudo-register replacements to handle combining
1828 when we move several insns that load the same value
1829 into different pseudo-registers. */
1830 rtx *reg_map = xcalloc (nregs, sizeof (rtx));
1831 char *already_moved = xcalloc (nregs, sizeof (char));
1833 for (m = movables->head; m; m = m->next)
1835 /* Describe this movable insn. */
1837 if (loop_dump_stream)
1839 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1840 INSN_UID (m->insn), m->regno, m->lifetime);
1841 if (m->consec > 0)
1842 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1843 if (m->cond)
1844 fprintf (loop_dump_stream, "cond ");
1845 if (m->force)
1846 fprintf (loop_dump_stream, "force ");
1847 if (m->global)
1848 fprintf (loop_dump_stream, "global ");
1849 if (m->done)
1850 fprintf (loop_dump_stream, "done ");
1851 if (m->move_insn)
1852 fprintf (loop_dump_stream, "move-insn ");
1853 if (m->match)
1854 fprintf (loop_dump_stream, "matches %d ",
1855 INSN_UID (m->match->insn));
1856 if (m->forces)
1857 fprintf (loop_dump_stream, "forces %d ",
1858 INSN_UID (m->forces->insn));
1861 /* Ignore the insn if it's already done (it matched something else).
1862 Otherwise, see if it is now safe to move. */
1864 if (!m->done
1865 && (! m->cond
1866 || (1 == loop_invariant_p (loop, m->set_src)
1867 && (m->dependencies == 0
1868 || 1 == loop_invariant_p (loop, m->dependencies))
1869 && (m->consec == 0
1870 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1871 m->consec + 1,
1872 m->insn))))
1873 && (! m->forces || m->forces->done))
1875 int regno;
1876 rtx p;
1877 int savings = m->savings;
1879 /* We have an insn that is safe to move.
1880 Compute its desirability. */
1882 p = m->insn;
1883 regno = m->regno;
1885 if (loop_dump_stream)
1886 fprintf (loop_dump_stream, "savings %d ", savings);
1888 if (regs->array[regno].moved_once && loop_dump_stream)
1889 fprintf (loop_dump_stream, "halved since already moved ");
1891 /* An insn MUST be moved if we already moved something else
1892 which is safe only if this one is moved too: that is,
1893 if already_moved[REGNO] is nonzero. */
1895 /* An insn is desirable to move if the new lifetime of the
1896 register is no more than THRESHOLD times the old lifetime.
1897 If it's not desirable, it means the loop is so big
1898 that moving won't speed things up much,
1899 and it is liable to make register usage worse. */
1901 /* It is also desirable to move if it can be moved at no
1902 extra cost because something else was already moved. */
1904 if (already_moved[regno]
1905 || flag_move_all_movables
1906 || (threshold * savings * m->lifetime) >=
1907 (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
1908 || (m->forces && m->forces->done
1909 && regs->array[m->forces->regno].n_times_set == 1))
1911 int count;
1912 struct movable *m1;
1913 rtx first = NULL_RTX;
1914 rtx newreg = NULL_RTX;
1916 if (m->insert_temp)
1917 newreg = gen_reg_rtx (GET_MODE (m->set_dest));
1919 /* Now move the insns that set the reg. */
1921 if (m->partial && m->match)
1923 rtx newpat, i1;
1924 rtx r1, r2;
1925 /* Find the end of this chain of matching regs.
1926 Thus, we load each reg in the chain from that one reg.
1927 And that reg is loaded with 0 directly,
1928 since it has ->match == 0. */
1929 for (m1 = m; m1->match; m1 = m1->match);
1930 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1931 SET_DEST (PATTERN (m1->insn)));
1932 i1 = loop_insn_hoist (loop, newpat);
1934 /* Mark the moved, invariant reg as being allowed to
1935 share a hard reg with the other matching invariant. */
1936 REG_NOTES (i1) = REG_NOTES (m->insn);
1937 r1 = SET_DEST (PATTERN (m->insn));
1938 r2 = SET_DEST (PATTERN (m1->insn));
1939 regs_may_share
1940 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1941 gen_rtx_EXPR_LIST (VOIDmode, r2,
1942 regs_may_share));
1943 delete_insn (m->insn);
1945 if (new_start == 0)
1946 new_start = i1;
1948 if (loop_dump_stream)
1949 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1951 /* If we are to re-generate the item being moved with a
1952 new move insn, first delete what we have and then emit
1953 the move insn before the loop. */
1954 else if (m->move_insn)
1956 rtx i1, temp, seq;
1958 for (count = m->consec; count >= 0; count--)
1960 /* If this is the first insn of a library call sequence,
1961 something is very wrong. */
1962 if (GET_CODE (p) != NOTE
1963 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1964 abort ();
1966 /* If this is the last insn of a libcall sequence, then
1967 delete every insn in the sequence except the last.
1968 The last insn is handled in the normal manner. */
1969 if (GET_CODE (p) != NOTE
1970 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1972 temp = XEXP (temp, 0);
1973 while (temp != p)
1974 temp = delete_insn (temp);
1977 temp = p;
1978 p = delete_insn (p);
1980 /* simplify_giv_expr expects that it can walk the insns
1981 at m->insn forwards and see this old sequence we are
1982 tossing here. delete_insn does preserve the next
1983 pointers, but when we skip over a NOTE we must fix
1984 it up. Otherwise that code walks into the non-deleted
1985 insn stream. */
1986 while (p && GET_CODE (p) == NOTE)
1987 p = NEXT_INSN (temp) = NEXT_INSN (p);
1989 if (m->insert_temp)
1991 /* Replace the original insn with a move from
1992 our newly created temp. */
1993 start_sequence ();
1994 emit_move_insn (m->set_dest, newreg);
1995 seq = get_insns ();
1996 end_sequence ();
1997 emit_insn_before (seq, p);
2001 start_sequence ();
2002 emit_move_insn (m->insert_temp ? newreg : m->set_dest,
2003 m->set_src);
2004 seq = get_insns ();
2005 end_sequence ();
2007 add_label_notes (m->set_src, seq);
2009 i1 = loop_insn_hoist (loop, seq);
2010 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2011 set_unique_reg_note (i1,
2012 m->is_equiv ? REG_EQUIV : REG_EQUAL,
2013 m->set_src);
2015 if (loop_dump_stream)
2016 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
2018 /* The more regs we move, the less we like moving them. */
2019 threshold -= 3;
2021 else
2023 for (count = m->consec; count >= 0; count--)
2025 rtx i1, temp;
2027 /* If first insn of libcall sequence, skip to end. */
2028 /* Do this at start of loop, since p is guaranteed to
2029 be an insn here. */
2030 if (GET_CODE (p) != NOTE
2031 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2032 p = XEXP (temp, 0);
2034 /* If last insn of libcall sequence, move all
2035 insns except the last before the loop. The last
2036 insn is handled in the normal manner. */
2037 if (GET_CODE (p) != NOTE
2038 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
2040 rtx fn_address = 0;
2041 rtx fn_reg = 0;
2042 rtx fn_address_insn = 0;
2044 first = 0;
2045 for (temp = XEXP (temp, 0); temp != p;
2046 temp = NEXT_INSN (temp))
2048 rtx body;
2049 rtx n;
2050 rtx next;
2052 if (GET_CODE (temp) == NOTE)
2053 continue;
2055 body = PATTERN (temp);
2057 /* Find the next insn after TEMP,
2058 not counting USE or NOTE insns. */
2059 for (next = NEXT_INSN (temp); next != p;
2060 next = NEXT_INSN (next))
2061 if (! (GET_CODE (next) == INSN
2062 && GET_CODE (PATTERN (next)) == USE)
2063 && GET_CODE (next) != NOTE)
2064 break;
2066 /* If that is the call, this may be the insn
2067 that loads the function address.
2069 Extract the function address from the insn
2070 that loads it into a register.
2071 If this insn was cse'd, we get incorrect code.
2073 So emit a new move insn that copies the
2074 function address into the register that the
2075 call insn will use. flow.c will delete any
2076 redundant stores that we have created. */
2077 if (GET_CODE (next) == CALL_INSN
2078 && GET_CODE (body) == SET
2079 && GET_CODE (SET_DEST (body)) == REG
2080 && (n = find_reg_note (temp, REG_EQUAL,
2081 NULL_RTX)))
2083 fn_reg = SET_SRC (body);
2084 if (GET_CODE (fn_reg) != REG)
2085 fn_reg = SET_DEST (body);
2086 fn_address = XEXP (n, 0);
2087 fn_address_insn = temp;
2089 /* We have the call insn.
2090 If it uses the register we suspect it might,
2091 load it with the correct address directly. */
2092 if (GET_CODE (temp) == CALL_INSN
2093 && fn_address != 0
2094 && reg_referenced_p (fn_reg, body))
2095 loop_insn_emit_after (loop, 0, fn_address_insn,
2096 gen_move_insn
2097 (fn_reg, fn_address));
2099 if (GET_CODE (temp) == CALL_INSN)
2101 i1 = loop_call_insn_hoist (loop, body);
2102 /* Because the USAGE information potentially
2103 contains objects other than hard registers
2104 we need to copy it. */
2105 if (CALL_INSN_FUNCTION_USAGE (temp))
2106 CALL_INSN_FUNCTION_USAGE (i1)
2107 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2109 else
2110 i1 = loop_insn_hoist (loop, body);
2111 if (first == 0)
2112 first = i1;
2113 if (temp == fn_address_insn)
2114 fn_address_insn = i1;
2115 REG_NOTES (i1) = REG_NOTES (temp);
2116 REG_NOTES (temp) = NULL;
2117 delete_insn (temp);
2119 if (new_start == 0)
2120 new_start = first;
2122 if (m->savemode != VOIDmode)
2124 /* P sets REG to zero; but we should clear only
2125 the bits that are not covered by the mode
2126 m->savemode. */
2127 rtx reg = m->set_dest;
2128 rtx sequence;
2129 rtx tem;
2131 start_sequence ();
2132 tem = expand_simple_binop
2133 (GET_MODE (reg), AND, reg,
2134 GEN_INT ((((HOST_WIDE_INT) 1
2135 << GET_MODE_BITSIZE (m->savemode)))
2136 - 1),
2137 reg, 1, OPTAB_LIB_WIDEN);
2138 if (tem == 0)
2139 abort ();
2140 if (tem != reg)
2141 emit_move_insn (reg, tem);
2142 sequence = get_insns ();
2143 end_sequence ();
2144 i1 = loop_insn_hoist (loop, sequence);
2146 else if (GET_CODE (p) == CALL_INSN)
2148 i1 = loop_call_insn_hoist (loop, PATTERN (p));
2149 /* Because the USAGE information potentially
2150 contains objects other than hard registers
2151 we need to copy it. */
2152 if (CALL_INSN_FUNCTION_USAGE (p))
2153 CALL_INSN_FUNCTION_USAGE (i1)
2154 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2156 else if (count == m->consec && m->move_insn_first)
2158 rtx seq;
2159 /* The SET_SRC might not be invariant, so we must
2160 use the REG_EQUAL note. */
2161 start_sequence ();
2162 emit_move_insn (m->insert_temp ? newreg : m->set_dest,
2163 m->set_src);
2164 seq = get_insns ();
2165 end_sequence ();
2167 add_label_notes (m->set_src, seq);
2169 i1 = loop_insn_hoist (loop, seq);
2170 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2171 set_unique_reg_note (i1, m->is_equiv ? REG_EQUIV
2172 : REG_EQUAL, m->set_src);
2174 else if (m->insert_temp)
2176 rtx *reg_map2 = xcalloc (REGNO (newreg),
2177 sizeof(rtx));
2178 reg_map2 [m->regno] = newreg;
2180 i1 = loop_insn_hoist (loop, copy_rtx (PATTERN (p)));
2181 replace_regs (i1, reg_map2, REGNO (newreg), 1);
2182 free (reg_map2);
2184 else
2185 i1 = loop_insn_hoist (loop, PATTERN (p));
2187 if (REG_NOTES (i1) == 0)
2189 REG_NOTES (i1) = REG_NOTES (p);
2190 REG_NOTES (p) = NULL;
2192 /* If there is a REG_EQUAL note present whose value
2193 is not loop invariant, then delete it, since it
2194 may cause problems with later optimization passes.
2195 It is possible for cse to create such notes
2196 like this as a result of record_jump_cond. */
2198 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2199 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2200 remove_note (i1, temp);
2203 if (new_start == 0)
2204 new_start = i1;
2206 if (loop_dump_stream)
2207 fprintf (loop_dump_stream, " moved to %d",
2208 INSN_UID (i1));
2210 /* If library call, now fix the REG_NOTES that contain
2211 insn pointers, namely REG_LIBCALL on FIRST
2212 and REG_RETVAL on I1. */
2213 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2215 XEXP (temp, 0) = first;
2216 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2217 XEXP (temp, 0) = i1;
2220 temp = p;
2221 delete_insn (p);
2222 p = NEXT_INSN (p);
2224 /* simplify_giv_expr expects that it can walk the insns
2225 at m->insn forwards and see this old sequence we are
2226 tossing here. delete_insn does preserve the next
2227 pointers, but when we skip over a NOTE we must fix
2228 it up. Otherwise that code walks into the non-deleted
2229 insn stream. */
2230 while (p && GET_CODE (p) == NOTE)
2231 p = NEXT_INSN (temp) = NEXT_INSN (p);
2233 if (m->insert_temp)
2235 rtx seq;
2236 /* Replace the original insn with a move from
2237 our newly created temp. */
2238 start_sequence ();
2239 emit_move_insn (m->set_dest, newreg);
2240 seq = get_insns ();
2241 end_sequence ();
2242 emit_insn_before (seq, p);
2246 /* The more regs we move, the less we like moving them. */
2247 threshold -= 3;
2250 m->done = 1;
2252 if (!m->insert_temp)
2254 /* Any other movable that loads the same register
2255 MUST be moved. */
2256 already_moved[regno] = 1;
2258 /* This reg has been moved out of one loop. */
2259 regs->array[regno].moved_once = 1;
2261 /* The reg set here is now invariant. */
2262 if (! m->partial)
2264 int i;
2265 for (i = 0; i < LOOP_REGNO_NREGS (regno, m->set_dest); i++)
2266 regs->array[regno+i].set_in_loop = 0;
2269 /* Change the length-of-life info for the register
2270 to say it lives at least the full length of this loop.
2271 This will help guide optimizations in outer loops. */
2273 if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
2274 /* This is the old insn before all the moved insns.
2275 We can't use the moved insn because it is out of range
2276 in uid_luid. Only the old insns have luids. */
2277 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2278 if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
2279 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2282 /* Combine with this moved insn any other matching movables. */
2284 if (! m->partial)
2285 for (m1 = movables->head; m1; m1 = m1->next)
2286 if (m1->match == m)
2288 rtx temp;
2290 /* Schedule the reg loaded by M1
2291 for replacement so that shares the reg of M.
2292 If the modes differ (only possible in restricted
2293 circumstances, make a SUBREG.
2295 Note this assumes that the target dependent files
2296 treat REG and SUBREG equally, including within
2297 GO_IF_LEGITIMATE_ADDRESS and in all the
2298 predicates since we never verify that replacing the
2299 original register with a SUBREG results in a
2300 recognizable insn. */
2301 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2302 reg_map[m1->regno] = m->set_dest;
2303 else
2304 reg_map[m1->regno]
2305 = gen_lowpart_common (GET_MODE (m1->set_dest),
2306 m->set_dest);
2308 /* Get rid of the matching insn
2309 and prevent further processing of it. */
2310 m1->done = 1;
2312 /* If library call, delete all insns. */
2313 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2314 NULL_RTX)))
2315 delete_insn_chain (XEXP (temp, 0), m1->insn);
2316 else
2317 delete_insn (m1->insn);
2319 /* Any other movable that loads the same register
2320 MUST be moved. */
2321 already_moved[m1->regno] = 1;
2323 /* The reg merged here is now invariant,
2324 if the reg it matches is invariant. */
2325 if (! m->partial)
2327 int i;
2328 for (i = 0;
2329 i < LOOP_REGNO_NREGS (regno, m1->set_dest);
2330 i++)
2331 regs->array[m1->regno+i].set_in_loop = 0;
2335 else if (loop_dump_stream)
2336 fprintf (loop_dump_stream, "not desirable");
2338 else if (loop_dump_stream && !m->match)
2339 fprintf (loop_dump_stream, "not safe");
2341 if (loop_dump_stream)
2342 fprintf (loop_dump_stream, "\n");
2345 if (new_start == 0)
2346 new_start = loop_start;
2348 /* Go through all the instructions in the loop, making
2349 all the register substitutions scheduled in REG_MAP. */
2350 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2351 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2352 || GET_CODE (p) == CALL_INSN)
2354 replace_regs (PATTERN (p), reg_map, nregs, 0);
2355 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2356 INSN_CODE (p) = -1;
2359 /* Clean up. */
2360 free (reg_map);
2361 free (already_moved);
2365 static void
2366 loop_movables_add (struct loop_movables *movables, struct movable *m)
2368 if (movables->head == 0)
2369 movables->head = m;
2370 else
2371 movables->last->next = m;
2372 movables->last = m;
2376 static void
2377 loop_movables_free (struct loop_movables *movables)
2379 struct movable *m;
2380 struct movable *m_next;
2382 for (m = movables->head; m; m = m_next)
2384 m_next = m->next;
2385 free (m);
2389 #if 0
2390 /* Scan X and replace the address of any MEM in it with ADDR.
2391 REG is the address that MEM should have before the replacement. */
2393 static void
2394 replace_call_address (rtx x, rtx reg, rtx addr)
2396 enum rtx_code code;
2397 int i;
2398 const char *fmt;
2400 if (x == 0)
2401 return;
2402 code = GET_CODE (x);
2403 switch (code)
2405 case PC:
2406 case CC0:
2407 case CONST_INT:
2408 case CONST_DOUBLE:
2409 case CONST:
2410 case SYMBOL_REF:
2411 case LABEL_REF:
2412 case REG:
2413 return;
2415 case SET:
2416 /* Short cut for very common case. */
2417 replace_call_address (XEXP (x, 1), reg, addr);
2418 return;
2420 case CALL:
2421 /* Short cut for very common case. */
2422 replace_call_address (XEXP (x, 0), reg, addr);
2423 return;
2425 case MEM:
2426 /* If this MEM uses a reg other than the one we expected,
2427 something is wrong. */
2428 if (XEXP (x, 0) != reg)
2429 abort ();
2430 XEXP (x, 0) = addr;
2431 return;
2433 default:
2434 break;
2437 fmt = GET_RTX_FORMAT (code);
2438 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2440 if (fmt[i] == 'e')
2441 replace_call_address (XEXP (x, i), reg, addr);
2442 else if (fmt[i] == 'E')
2444 int j;
2445 for (j = 0; j < XVECLEN (x, i); j++)
2446 replace_call_address (XVECEXP (x, i, j), reg, addr);
2450 #endif
2452 /* Return the number of memory refs to addresses that vary
2453 in the rtx X. */
2455 static int
2456 count_nonfixed_reads (const struct loop *loop, rtx x)
2458 enum rtx_code code;
2459 int i;
2460 const char *fmt;
2461 int value;
2463 if (x == 0)
2464 return 0;
2466 code = GET_CODE (x);
2467 switch (code)
2469 case PC:
2470 case CC0:
2471 case CONST_INT:
2472 case CONST_DOUBLE:
2473 case CONST:
2474 case SYMBOL_REF:
2475 case LABEL_REF:
2476 case REG:
2477 return 0;
2479 case MEM:
2480 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2481 + count_nonfixed_reads (loop, XEXP (x, 0)));
2483 default:
2484 break;
2487 value = 0;
2488 fmt = GET_RTX_FORMAT (code);
2489 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2491 if (fmt[i] == 'e')
2492 value += count_nonfixed_reads (loop, XEXP (x, i));
2493 if (fmt[i] == 'E')
2495 int j;
2496 for (j = 0; j < XVECLEN (x, i); j++)
2497 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2500 return value;
2503 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2504 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2505 `unknown_address_altered', `unknown_constant_address_altered', and
2506 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2507 list `store_mems' in LOOP. */
2509 static void
2510 prescan_loop (struct loop *loop)
2512 int level = 1;
2513 rtx insn;
2514 struct loop_info *loop_info = LOOP_INFO (loop);
2515 rtx start = loop->start;
2516 rtx end = loop->end;
2517 /* The label after END. Jumping here is just like falling off the
2518 end of the loop. We use next_nonnote_insn instead of next_label
2519 as a hedge against the (pathological) case where some actual insn
2520 might end up between the two. */
2521 rtx exit_target = next_nonnote_insn (end);
2523 loop_info->has_indirect_jump = indirect_jump_in_function;
2524 loop_info->pre_header_has_call = 0;
2525 loop_info->has_call = 0;
2526 loop_info->has_nonconst_call = 0;
2527 loop_info->has_prefetch = 0;
2528 loop_info->has_volatile = 0;
2529 loop_info->has_tablejump = 0;
2530 loop_info->has_multiple_exit_targets = 0;
2531 loop->level = 1;
2533 loop_info->unknown_address_altered = 0;
2534 loop_info->unknown_constant_address_altered = 0;
2535 loop_info->store_mems = NULL_RTX;
2536 loop_info->first_loop_store_insn = NULL_RTX;
2537 loop_info->mems_idx = 0;
2538 loop_info->num_mem_sets = 0;
2539 /* If loop opts run twice, this was set on 1st pass for 2nd. */
2540 loop_info->preconditioned = NOTE_PRECONDITIONED (end);
2542 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
2543 insn = PREV_INSN (insn))
2545 if (GET_CODE (insn) == CALL_INSN)
2547 loop_info->pre_header_has_call = 1;
2548 break;
2552 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2553 insn = NEXT_INSN (insn))
2555 switch (GET_CODE (insn))
2557 case NOTE:
2558 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2560 ++level;
2561 /* Count number of loops contained in this one. */
2562 loop->level++;
2564 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2565 --level;
2566 break;
2568 case CALL_INSN:
2569 if (! CONST_OR_PURE_CALL_P (insn))
2571 loop_info->unknown_address_altered = 1;
2572 loop_info->has_nonconst_call = 1;
2574 else if (pure_call_p (insn))
2575 loop_info->has_nonconst_call = 1;
2576 loop_info->has_call = 1;
2577 if (can_throw_internal (insn))
2578 loop_info->has_multiple_exit_targets = 1;
2580 /* Calls initializing constant objects have CLOBBER of MEM /u in the
2581 attached FUNCTION_USAGE expression list, not accounted for by the
2582 code above. We should note these to avoid missing dependencies in
2583 later references. */
2585 rtx fusage_entry;
2587 for (fusage_entry = CALL_INSN_FUNCTION_USAGE (insn);
2588 fusage_entry; fusage_entry = XEXP (fusage_entry, 1))
2590 rtx fusage = XEXP (fusage_entry, 0);
2592 if (GET_CODE (fusage) == CLOBBER
2593 && GET_CODE (XEXP (fusage, 0)) == MEM
2594 && RTX_UNCHANGING_P (XEXP (fusage, 0)))
2596 note_stores (fusage, note_addr_stored, loop_info);
2597 if (! loop_info->first_loop_store_insn
2598 && loop_info->store_mems)
2599 loop_info->first_loop_store_insn = insn;
2603 break;
2605 case JUMP_INSN:
2606 if (! loop_info->has_multiple_exit_targets)
2608 rtx set = pc_set (insn);
2610 if (set)
2612 rtx src = SET_SRC (set);
2613 rtx label1, label2;
2615 if (GET_CODE (src) == IF_THEN_ELSE)
2617 label1 = XEXP (src, 1);
2618 label2 = XEXP (src, 2);
2620 else
2622 label1 = src;
2623 label2 = NULL_RTX;
2628 if (label1 && label1 != pc_rtx)
2630 if (GET_CODE (label1) != LABEL_REF)
2632 /* Something tricky. */
2633 loop_info->has_multiple_exit_targets = 1;
2634 break;
2636 else if (XEXP (label1, 0) != exit_target
2637 && LABEL_OUTSIDE_LOOP_P (label1))
2639 /* A jump outside the current loop. */
2640 loop_info->has_multiple_exit_targets = 1;
2641 break;
2645 label1 = label2;
2646 label2 = NULL_RTX;
2648 while (label1);
2650 else
2652 /* A return, or something tricky. */
2653 loop_info->has_multiple_exit_targets = 1;
2656 /* Fall through. */
2658 case INSN:
2659 if (volatile_refs_p (PATTERN (insn)))
2660 loop_info->has_volatile = 1;
2662 if (GET_CODE (insn) == JUMP_INSN
2663 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2664 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2665 loop_info->has_tablejump = 1;
2667 note_stores (PATTERN (insn), note_addr_stored, loop_info);
2668 if (! loop_info->first_loop_store_insn && loop_info->store_mems)
2669 loop_info->first_loop_store_insn = insn;
2671 if (flag_non_call_exceptions && can_throw_internal (insn))
2672 loop_info->has_multiple_exit_targets = 1;
2673 break;
2675 default:
2676 break;
2680 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2681 if (/* An exception thrown by a called function might land us
2682 anywhere. */
2683 ! loop_info->has_nonconst_call
2684 /* We don't want loads for MEMs moved to a location before the
2685 one at which their stack memory becomes allocated. (Note
2686 that this is not a problem for malloc, etc., since those
2687 require actual function calls. */
2688 && ! current_function_calls_alloca
2689 /* There are ways to leave the loop other than falling off the
2690 end. */
2691 && ! loop_info->has_multiple_exit_targets)
2692 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2693 insn = NEXT_INSN (insn))
2694 for_each_rtx (&insn, insert_loop_mem, loop_info);
2696 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2697 that loop_invariant_p and load_mems can use true_dependence
2698 to determine what is really clobbered. */
2699 if (loop_info->unknown_address_altered)
2701 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2703 loop_info->store_mems
2704 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2706 if (loop_info->unknown_constant_address_altered)
2708 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2710 RTX_UNCHANGING_P (mem) = 1;
2711 loop_info->store_mems
2712 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2716 /* Invalidate all loops containing LABEL. */
2718 static void
2719 invalidate_loops_containing_label (rtx label)
2721 struct loop *loop;
2722 for (loop = uid_loop[INSN_UID (label)]; loop; loop = loop->outer)
2723 loop->invalid = 1;
2726 /* Scan the function looking for loops. Record the start and end of each loop.
2727 Also mark as invalid loops any loops that contain a setjmp or are branched
2728 to from outside the loop. */
2730 static void
2731 find_and_verify_loops (rtx f, struct loops *loops)
2733 rtx insn;
2734 rtx label;
2735 int num_loops;
2736 struct loop *current_loop;
2737 struct loop *next_loop;
2738 struct loop *loop;
2740 num_loops = loops->num;
2742 compute_luids (f, NULL_RTX, 0);
2744 /* If there are jumps to undefined labels,
2745 treat them as jumps out of any/all loops.
2746 This also avoids writing past end of tables when there are no loops. */
2747 uid_loop[0] = NULL;
2749 /* Find boundaries of loops, mark which loops are contained within
2750 loops, and invalidate loops that have setjmp. */
2752 num_loops = 0;
2753 current_loop = NULL;
2754 for (insn = f; insn; insn = NEXT_INSN (insn))
2756 if (GET_CODE (insn) == NOTE)
2757 switch (NOTE_LINE_NUMBER (insn))
2759 case NOTE_INSN_LOOP_BEG:
2760 next_loop = loops->array + num_loops;
2761 next_loop->num = num_loops;
2762 num_loops++;
2763 next_loop->start = insn;
2764 next_loop->outer = current_loop;
2765 current_loop = next_loop;
2766 break;
2768 case NOTE_INSN_LOOP_CONT:
2769 current_loop->cont = insn;
2770 break;
2772 case NOTE_INSN_LOOP_VTOP:
2773 current_loop->vtop = insn;
2774 break;
2776 case NOTE_INSN_LOOP_END:
2777 if (! current_loop)
2778 abort ();
2780 current_loop->end = insn;
2781 current_loop = current_loop->outer;
2782 break;
2784 default:
2785 break;
2788 if (GET_CODE (insn) == CALL_INSN
2789 && find_reg_note (insn, REG_SETJMP, NULL))
2791 /* In this case, we must invalidate our current loop and any
2792 enclosing loop. */
2793 for (loop = current_loop; loop; loop = loop->outer)
2795 loop->invalid = 1;
2796 if (loop_dump_stream)
2797 fprintf (loop_dump_stream,
2798 "\nLoop at %d ignored due to setjmp.\n",
2799 INSN_UID (loop->start));
2803 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2804 enclosing loop, but this doesn't matter. */
2805 uid_loop[INSN_UID (insn)] = current_loop;
2808 /* Any loop containing a label used in an initializer must be invalidated,
2809 because it can be jumped into from anywhere. */
2810 for (label = forced_labels; label; label = XEXP (label, 1))
2811 invalidate_loops_containing_label (XEXP (label, 0));
2813 /* Any loop containing a label used for an exception handler must be
2814 invalidated, because it can be jumped into from anywhere. */
2815 for_each_eh_label (invalidate_loops_containing_label);
2817 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2818 loop that it is not contained within, that loop is marked invalid.
2819 If any INSN or CALL_INSN uses a label's address, then the loop containing
2820 that label is marked invalid, because it could be jumped into from
2821 anywhere.
2823 Also look for blocks of code ending in an unconditional branch that
2824 exits the loop. If such a block is surrounded by a conditional
2825 branch around the block, move the block elsewhere (see below) and
2826 invert the jump to point to the code block. This may eliminate a
2827 label in our loop and will simplify processing by both us and a
2828 possible second cse pass. */
2830 for (insn = f; insn; insn = NEXT_INSN (insn))
2831 if (INSN_P (insn))
2833 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2835 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2837 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2838 if (note)
2839 invalidate_loops_containing_label (XEXP (note, 0));
2842 if (GET_CODE (insn) != JUMP_INSN)
2843 continue;
2845 mark_loop_jump (PATTERN (insn), this_loop);
2847 /* See if this is an unconditional branch outside the loop. */
2848 if (this_loop
2849 && (GET_CODE (PATTERN (insn)) == RETURN
2850 || (any_uncondjump_p (insn)
2851 && onlyjump_p (insn)
2852 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2853 != this_loop)))
2854 && get_max_uid () < max_uid_for_loop)
2856 rtx p;
2857 rtx our_next = next_real_insn (insn);
2858 rtx last_insn_to_move = NEXT_INSN (insn);
2859 struct loop *dest_loop;
2860 struct loop *outer_loop = NULL;
2862 /* Go backwards until we reach the start of the loop, a label,
2863 or a JUMP_INSN. */
2864 for (p = PREV_INSN (insn);
2865 GET_CODE (p) != CODE_LABEL
2866 && ! (GET_CODE (p) == NOTE
2867 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2868 && GET_CODE (p) != JUMP_INSN;
2869 p = PREV_INSN (p))
2872 /* Check for the case where we have a jump to an inner nested
2873 loop, and do not perform the optimization in that case. */
2875 if (JUMP_LABEL (insn))
2877 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2878 if (dest_loop)
2880 for (outer_loop = dest_loop; outer_loop;
2881 outer_loop = outer_loop->outer)
2882 if (outer_loop == this_loop)
2883 break;
2887 /* Make sure that the target of P is within the current loop. */
2889 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2890 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2891 outer_loop = this_loop;
2893 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2894 we have a block of code to try to move.
2896 We look backward and then forward from the target of INSN
2897 to find a BARRIER at the same loop depth as the target.
2898 If we find such a BARRIER, we make a new label for the start
2899 of the block, invert the jump in P and point it to that label,
2900 and move the block of code to the spot we found. */
2902 if (! outer_loop
2903 && GET_CODE (p) == JUMP_INSN
2904 && JUMP_LABEL (p) != 0
2905 /* Just ignore jumps to labels that were never emitted.
2906 These always indicate compilation errors. */
2907 && INSN_UID (JUMP_LABEL (p)) != 0
2908 && any_condjump_p (p) && onlyjump_p (p)
2909 && next_real_insn (JUMP_LABEL (p)) == our_next
2910 /* If it's not safe to move the sequence, then we
2911 mustn't try. */
2912 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2913 &last_insn_to_move))
2915 rtx target
2916 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2917 struct loop *target_loop = uid_loop[INSN_UID (target)];
2918 rtx loc, loc2;
2919 rtx tmp;
2921 /* Search for possible garbage past the conditional jumps
2922 and look for the last barrier. */
2923 for (tmp = last_insn_to_move;
2924 tmp && GET_CODE (tmp) != CODE_LABEL; tmp = NEXT_INSN (tmp))
2925 if (GET_CODE (tmp) == BARRIER)
2926 last_insn_to_move = tmp;
2928 for (loc = target; loc; loc = PREV_INSN (loc))
2929 if (GET_CODE (loc) == BARRIER
2930 /* Don't move things inside a tablejump. */
2931 && ((loc2 = next_nonnote_insn (loc)) == 0
2932 || GET_CODE (loc2) != CODE_LABEL
2933 || (loc2 = next_nonnote_insn (loc2)) == 0
2934 || GET_CODE (loc2) != JUMP_INSN
2935 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2936 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2937 && uid_loop[INSN_UID (loc)] == target_loop)
2938 break;
2940 if (loc == 0)
2941 for (loc = target; loc; loc = NEXT_INSN (loc))
2942 if (GET_CODE (loc) == BARRIER
2943 /* Don't move things inside a tablejump. */
2944 && ((loc2 = next_nonnote_insn (loc)) == 0
2945 || GET_CODE (loc2) != CODE_LABEL
2946 || (loc2 = next_nonnote_insn (loc2)) == 0
2947 || GET_CODE (loc2) != JUMP_INSN
2948 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2949 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2950 && uid_loop[INSN_UID (loc)] == target_loop)
2951 break;
2953 if (loc)
2955 rtx cond_label = JUMP_LABEL (p);
2956 rtx new_label = get_label_after (p);
2958 /* Ensure our label doesn't go away. */
2959 LABEL_NUSES (cond_label)++;
2961 /* Verify that uid_loop is large enough and that
2962 we can invert P. */
2963 if (invert_jump (p, new_label, 1))
2965 rtx q, r;
2967 /* If no suitable BARRIER was found, create a suitable
2968 one before TARGET. Since TARGET is a fall through
2969 path, we'll need to insert a jump around our block
2970 and add a BARRIER before TARGET.
2972 This creates an extra unconditional jump outside
2973 the loop. However, the benefits of removing rarely
2974 executed instructions from inside the loop usually
2975 outweighs the cost of the extra unconditional jump
2976 outside the loop. */
2977 if (loc == 0)
2979 rtx temp;
2981 temp = gen_jump (JUMP_LABEL (insn));
2982 temp = emit_jump_insn_before (temp, target);
2983 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2984 LABEL_NUSES (JUMP_LABEL (insn))++;
2985 loc = emit_barrier_before (target);
2988 /* Include the BARRIER after INSN and copy the
2989 block after LOC. */
2990 if (squeeze_notes (&new_label, &last_insn_to_move))
2991 abort ();
2992 reorder_insns (new_label, last_insn_to_move, loc);
2994 /* All those insns are now in TARGET_LOOP. */
2995 for (q = new_label;
2996 q != NEXT_INSN (last_insn_to_move);
2997 q = NEXT_INSN (q))
2998 uid_loop[INSN_UID (q)] = target_loop;
3000 /* The label jumped to by INSN is no longer a loop
3001 exit. Unless INSN does not have a label (e.g.,
3002 it is a RETURN insn), search loop->exit_labels
3003 to find its label_ref, and remove it. Also turn
3004 off LABEL_OUTSIDE_LOOP_P bit. */
3005 if (JUMP_LABEL (insn))
3007 for (q = 0, r = this_loop->exit_labels;
3009 q = r, r = LABEL_NEXTREF (r))
3010 if (XEXP (r, 0) == JUMP_LABEL (insn))
3012 LABEL_OUTSIDE_LOOP_P (r) = 0;
3013 if (q)
3014 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
3015 else
3016 this_loop->exit_labels = LABEL_NEXTREF (r);
3017 break;
3020 for (loop = this_loop; loop && loop != target_loop;
3021 loop = loop->outer)
3022 loop->exit_count--;
3024 /* If we didn't find it, then something is
3025 wrong. */
3026 if (! r)
3027 abort ();
3030 /* P is now a jump outside the loop, so it must be put
3031 in loop->exit_labels, and marked as such.
3032 The easiest way to do this is to just call
3033 mark_loop_jump again for P. */
3034 mark_loop_jump (PATTERN (p), this_loop);
3036 /* If INSN now jumps to the insn after it,
3037 delete INSN. */
3038 if (JUMP_LABEL (insn) != 0
3039 && (next_real_insn (JUMP_LABEL (insn))
3040 == next_real_insn (insn)))
3041 delete_related_insns (insn);
3044 /* Continue the loop after where the conditional
3045 branch used to jump, since the only branch insn
3046 in the block (if it still remains) is an inter-loop
3047 branch and hence needs no processing. */
3048 insn = NEXT_INSN (cond_label);
3050 if (--LABEL_NUSES (cond_label) == 0)
3051 delete_related_insns (cond_label);
3053 /* This loop will be continued with NEXT_INSN (insn). */
3054 insn = PREV_INSN (insn);
3061 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
3062 loops it is contained in, mark the target loop invalid.
3064 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
3066 static void
3067 mark_loop_jump (rtx x, struct loop *loop)
3069 struct loop *dest_loop;
3070 struct loop *outer_loop;
3071 int i;
3073 switch (GET_CODE (x))
3075 case PC:
3076 case USE:
3077 case CLOBBER:
3078 case REG:
3079 case MEM:
3080 case CONST_INT:
3081 case CONST_DOUBLE:
3082 case RETURN:
3083 return;
3085 case CONST:
3086 /* There could be a label reference in here. */
3087 mark_loop_jump (XEXP (x, 0), loop);
3088 return;
3090 case PLUS:
3091 case MINUS:
3092 case MULT:
3093 mark_loop_jump (XEXP (x, 0), loop);
3094 mark_loop_jump (XEXP (x, 1), loop);
3095 return;
3097 case LO_SUM:
3098 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3099 mark_loop_jump (XEXP (x, 1), loop);
3100 return;
3102 case SIGN_EXTEND:
3103 case ZERO_EXTEND:
3104 mark_loop_jump (XEXP (x, 0), loop);
3105 return;
3107 case LABEL_REF:
3108 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3110 /* Link together all labels that branch outside the loop. This
3111 is used by final_[bg]iv_value and the loop unrolling code. Also
3112 mark this LABEL_REF so we know that this branch should predict
3113 false. */
3115 /* A check to make sure the label is not in an inner nested loop,
3116 since this does not count as a loop exit. */
3117 if (dest_loop)
3119 for (outer_loop = dest_loop; outer_loop;
3120 outer_loop = outer_loop->outer)
3121 if (outer_loop == loop)
3122 break;
3124 else
3125 outer_loop = NULL;
3127 if (loop && ! outer_loop)
3129 LABEL_OUTSIDE_LOOP_P (x) = 1;
3130 LABEL_NEXTREF (x) = loop->exit_labels;
3131 loop->exit_labels = x;
3133 for (outer_loop = loop;
3134 outer_loop && outer_loop != dest_loop;
3135 outer_loop = outer_loop->outer)
3136 outer_loop->exit_count++;
3139 /* If this is inside a loop, but not in the current loop or one enclosed
3140 by it, it invalidates at least one loop. */
3142 if (! dest_loop)
3143 return;
3145 /* We must invalidate every nested loop containing the target of this
3146 label, except those that also contain the jump insn. */
3148 for (; dest_loop; dest_loop = dest_loop->outer)
3150 /* Stop when we reach a loop that also contains the jump insn. */
3151 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3152 if (dest_loop == outer_loop)
3153 return;
3155 /* If we get here, we know we need to invalidate a loop. */
3156 if (loop_dump_stream && ! dest_loop->invalid)
3157 fprintf (loop_dump_stream,
3158 "\nLoop at %d ignored due to multiple entry points.\n",
3159 INSN_UID (dest_loop->start));
3161 dest_loop->invalid = 1;
3163 return;
3165 case SET:
3166 /* If this is not setting pc, ignore. */
3167 if (SET_DEST (x) == pc_rtx)
3168 mark_loop_jump (SET_SRC (x), loop);
3169 return;
3171 case IF_THEN_ELSE:
3172 mark_loop_jump (XEXP (x, 1), loop);
3173 mark_loop_jump (XEXP (x, 2), loop);
3174 return;
3176 case PARALLEL:
3177 case ADDR_VEC:
3178 for (i = 0; i < XVECLEN (x, 0); i++)
3179 mark_loop_jump (XVECEXP (x, 0, i), loop);
3180 return;
3182 case ADDR_DIFF_VEC:
3183 for (i = 0; i < XVECLEN (x, 1); i++)
3184 mark_loop_jump (XVECEXP (x, 1, i), loop);
3185 return;
3187 default:
3188 /* Strictly speaking this is not a jump into the loop, only a possible
3189 jump out of the loop. However, we have no way to link the destination
3190 of this jump onto the list of exit labels. To be safe we mark this
3191 loop and any containing loops as invalid. */
3192 if (loop)
3194 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3196 if (loop_dump_stream && ! outer_loop->invalid)
3197 fprintf (loop_dump_stream,
3198 "\nLoop at %d ignored due to unknown exit jump.\n",
3199 INSN_UID (outer_loop->start));
3200 outer_loop->invalid = 1;
3203 return;
3207 /* Return nonzero if there is a label in the range from
3208 insn INSN to and including the insn whose luid is END
3209 INSN must have an assigned luid (i.e., it must not have
3210 been previously created by loop.c). */
3212 static int
3213 labels_in_range_p (rtx insn, int end)
3215 while (insn && INSN_LUID (insn) <= end)
3217 if (GET_CODE (insn) == CODE_LABEL)
3218 return 1;
3219 insn = NEXT_INSN (insn);
3222 return 0;
3225 /* Record that a memory reference X is being set. */
3227 static void
3228 note_addr_stored (rtx x, rtx y ATTRIBUTE_UNUSED,
3229 void *data ATTRIBUTE_UNUSED)
3231 struct loop_info *loop_info = data;
3233 if (x == 0 || GET_CODE (x) != MEM)
3234 return;
3236 /* Count number of memory writes.
3237 This affects heuristics in strength_reduce. */
3238 loop_info->num_mem_sets++;
3240 /* BLKmode MEM means all memory is clobbered. */
3241 if (GET_MODE (x) == BLKmode)
3243 if (RTX_UNCHANGING_P (x))
3244 loop_info->unknown_constant_address_altered = 1;
3245 else
3246 loop_info->unknown_address_altered = 1;
3248 return;
3251 loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
3252 loop_info->store_mems);
3255 /* X is a value modified by an INSN that references a biv inside a loop
3256 exit test (ie, X is somehow related to the value of the biv). If X
3257 is a pseudo that is used more than once, then the biv is (effectively)
3258 used more than once. DATA is a pointer to a loop_regs structure. */
3260 static void
3261 note_set_pseudo_multiple_uses (rtx x, rtx y ATTRIBUTE_UNUSED, void *data)
3263 struct loop_regs *regs = (struct loop_regs *) data;
3265 if (x == 0)
3266 return;
3268 while (GET_CODE (x) == STRICT_LOW_PART
3269 || GET_CODE (x) == SIGN_EXTRACT
3270 || GET_CODE (x) == ZERO_EXTRACT
3271 || GET_CODE (x) == SUBREG)
3272 x = XEXP (x, 0);
3274 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3275 return;
3277 /* If we do not have usage information, or if we know the register
3278 is used more than once, note that fact for check_dbra_loop. */
3279 if (REGNO (x) >= max_reg_before_loop
3280 || ! regs->array[REGNO (x)].single_usage
3281 || regs->array[REGNO (x)].single_usage == const0_rtx)
3282 regs->multiple_uses = 1;
3285 /* Return nonzero if the rtx X is invariant over the current loop.
3287 The value is 2 if we refer to something only conditionally invariant.
3289 A memory ref is invariant if it is not volatile and does not conflict
3290 with anything stored in `loop_info->store_mems'. */
3293 loop_invariant_p (const struct loop *loop, rtx x)
3295 struct loop_info *loop_info = LOOP_INFO (loop);
3296 struct loop_regs *regs = LOOP_REGS (loop);
3297 int i;
3298 enum rtx_code code;
3299 const char *fmt;
3300 int conditional = 0;
3301 rtx mem_list_entry;
3303 if (x == 0)
3304 return 1;
3305 code = GET_CODE (x);
3306 switch (code)
3308 case CONST_INT:
3309 case CONST_DOUBLE:
3310 case SYMBOL_REF:
3311 case CONST:
3312 return 1;
3314 case LABEL_REF:
3315 /* A LABEL_REF is normally invariant, however, if we are unrolling
3316 loops, and this label is inside the loop, then it isn't invariant.
3317 This is because each unrolled copy of the loop body will have
3318 a copy of this label. If this was invariant, then an insn loading
3319 the address of this label into a register might get moved outside
3320 the loop, and then each loop body would end up using the same label.
3322 We don't know the loop bounds here though, so just fail for all
3323 labels. */
3324 if (flag_old_unroll_loops)
3325 return 0;
3326 else
3327 return 1;
3329 case PC:
3330 case CC0:
3331 case UNSPEC_VOLATILE:
3332 return 0;
3334 case REG:
3335 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3336 since the reg might be set by initialization within the loop. */
3338 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3339 || x == arg_pointer_rtx || x == pic_offset_table_rtx)
3340 && ! current_function_has_nonlocal_goto)
3341 return 1;
3343 if (LOOP_INFO (loop)->has_call
3344 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3345 return 0;
3347 /* Out-of-range regs can occur when we are called from unrolling.
3348 These registers created by the unroller are set in the loop,
3349 hence are never invariant.
3350 Other out-of-range regs can be generated by load_mems; those that
3351 are written to in the loop are not invariant, while those that are
3352 not written to are invariant. It would be easy for load_mems
3353 to set n_times_set correctly for these registers, however, there
3354 is no easy way to distinguish them from registers created by the
3355 unroller. */
3357 if (REGNO (x) >= (unsigned) regs->num)
3358 return 0;
3360 if (regs->array[REGNO (x)].set_in_loop < 0)
3361 return 2;
3363 return regs->array[REGNO (x)].set_in_loop == 0;
3365 case MEM:
3366 /* Volatile memory references must be rejected. Do this before
3367 checking for read-only items, so that volatile read-only items
3368 will be rejected also. */
3369 if (MEM_VOLATILE_P (x))
3370 return 0;
3372 /* See if there is any dependence between a store and this load. */
3373 mem_list_entry = loop_info->store_mems;
3374 while (mem_list_entry)
3376 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3377 x, rtx_varies_p))
3378 return 0;
3380 mem_list_entry = XEXP (mem_list_entry, 1);
3383 /* It's not invalidated by a store in memory
3384 but we must still verify the address is invariant. */
3385 break;
3387 case ASM_OPERANDS:
3388 /* Don't mess with insns declared volatile. */
3389 if (MEM_VOLATILE_P (x))
3390 return 0;
3391 break;
3393 default:
3394 break;
3397 fmt = GET_RTX_FORMAT (code);
3398 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3400 if (fmt[i] == 'e')
3402 int tem = loop_invariant_p (loop, XEXP (x, i));
3403 if (tem == 0)
3404 return 0;
3405 if (tem == 2)
3406 conditional = 1;
3408 else if (fmt[i] == 'E')
3410 int j;
3411 for (j = 0; j < XVECLEN (x, i); j++)
3413 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3414 if (tem == 0)
3415 return 0;
3416 if (tem == 2)
3417 conditional = 1;
3423 return 1 + conditional;
3426 /* Return nonzero if all the insns in the loop that set REG
3427 are INSN and the immediately following insns,
3428 and if each of those insns sets REG in an invariant way
3429 (not counting uses of REG in them).
3431 The value is 2 if some of these insns are only conditionally invariant.
3433 We assume that INSN itself is the first set of REG
3434 and that its source is invariant. */
3436 static int
3437 consec_sets_invariant_p (const struct loop *loop, rtx reg, int n_sets,
3438 rtx insn)
3440 struct loop_regs *regs = LOOP_REGS (loop);
3441 rtx p = insn;
3442 unsigned int regno = REGNO (reg);
3443 rtx temp;
3444 /* Number of sets we have to insist on finding after INSN. */
3445 int count = n_sets - 1;
3446 int old = regs->array[regno].set_in_loop;
3447 int value = 0;
3448 int this;
3450 /* If N_SETS hit the limit, we can't rely on its value. */
3451 if (n_sets == 127)
3452 return 0;
3454 regs->array[regno].set_in_loop = 0;
3456 while (count > 0)
3458 enum rtx_code code;
3459 rtx set;
3461 p = NEXT_INSN (p);
3462 code = GET_CODE (p);
3464 /* If library call, skip to end of it. */
3465 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3466 p = XEXP (temp, 0);
3468 this = 0;
3469 if (code == INSN
3470 && (set = single_set (p))
3471 && GET_CODE (SET_DEST (set)) == REG
3472 && REGNO (SET_DEST (set)) == regno)
3474 this = loop_invariant_p (loop, SET_SRC (set));
3475 if (this != 0)
3476 value |= this;
3477 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3479 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3480 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3481 notes are OK. */
3482 this = (CONSTANT_P (XEXP (temp, 0))
3483 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3484 && loop_invariant_p (loop, XEXP (temp, 0))));
3485 if (this != 0)
3486 value |= this;
3489 if (this != 0)
3490 count--;
3491 else if (code != NOTE)
3493 regs->array[regno].set_in_loop = old;
3494 return 0;
3498 regs->array[regno].set_in_loop = old;
3499 /* If loop_invariant_p ever returned 2, we return 2. */
3500 return 1 + (value & 2);
3503 /* Look at all uses (not sets) of registers in X. For each, if it is
3504 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3505 a different insn, set USAGE[REGNO] to const0_rtx. */
3507 static void
3508 find_single_use_in_loop (struct loop_regs *regs, rtx insn, rtx x)
3510 enum rtx_code code = GET_CODE (x);
3511 const char *fmt = GET_RTX_FORMAT (code);
3512 int i, j;
3514 if (code == REG)
3515 regs->array[REGNO (x)].single_usage
3516 = (regs->array[REGNO (x)].single_usage != 0
3517 && regs->array[REGNO (x)].single_usage != insn)
3518 ? const0_rtx : insn;
3520 else if (code == SET)
3522 /* Don't count SET_DEST if it is a REG; otherwise count things
3523 in SET_DEST because if a register is partially modified, it won't
3524 show up as a potential movable so we don't care how USAGE is set
3525 for it. */
3526 if (GET_CODE (SET_DEST (x)) != REG)
3527 find_single_use_in_loop (regs, insn, SET_DEST (x));
3528 find_single_use_in_loop (regs, insn, SET_SRC (x));
3530 else
3531 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3533 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3534 find_single_use_in_loop (regs, insn, XEXP (x, i));
3535 else if (fmt[i] == 'E')
3536 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3537 find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
3541 /* Count and record any set in X which is contained in INSN. Update
3542 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3543 in X. */
3545 static void
3546 count_one_set (struct loop_regs *regs, rtx insn, rtx x, rtx *last_set)
3548 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3549 /* Don't move a reg that has an explicit clobber.
3550 It's not worth the pain to try to do it correctly. */
3551 regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
3553 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3555 rtx dest = SET_DEST (x);
3556 while (GET_CODE (dest) == SUBREG
3557 || GET_CODE (dest) == ZERO_EXTRACT
3558 || GET_CODE (dest) == SIGN_EXTRACT
3559 || GET_CODE (dest) == STRICT_LOW_PART)
3560 dest = XEXP (dest, 0);
3561 if (GET_CODE (dest) == REG)
3563 int i;
3564 int regno = REGNO (dest);
3565 for (i = 0; i < LOOP_REGNO_NREGS (regno, dest); i++)
3567 /* If this is the first setting of this reg
3568 in current basic block, and it was set before,
3569 it must be set in two basic blocks, so it cannot
3570 be moved out of the loop. */
3571 if (regs->array[regno].set_in_loop > 0
3572 && last_set[regno] == 0)
3573 regs->array[regno+i].may_not_optimize = 1;
3574 /* If this is not first setting in current basic block,
3575 see if reg was used in between previous one and this.
3576 If so, neither one can be moved. */
3577 if (last_set[regno] != 0
3578 && reg_used_between_p (dest, last_set[regno], insn))
3579 regs->array[regno+i].may_not_optimize = 1;
3580 if (regs->array[regno+i].set_in_loop < 127)
3581 ++regs->array[regno+i].set_in_loop;
3582 last_set[regno+i] = insn;
3588 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3589 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3590 contained in insn INSN is used by any insn that precedes INSN in
3591 cyclic order starting from the loop entry point.
3593 We don't want to use INSN_LUID here because if we restrict INSN to those
3594 that have a valid INSN_LUID, it means we cannot move an invariant out
3595 from an inner loop past two loops. */
3597 static int
3598 loop_reg_used_before_p (const struct loop *loop, rtx set, rtx insn)
3600 rtx reg = SET_DEST (set);
3601 rtx p;
3603 /* Scan forward checking for register usage. If we hit INSN, we
3604 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3605 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3607 if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
3608 return 1;
3610 if (p == loop->end)
3611 p = loop->start;
3614 return 0;
3618 /* Information we collect about arrays that we might want to prefetch. */
3619 struct prefetch_info
3621 struct iv_class *class; /* Class this prefetch is based on. */
3622 struct induction *giv; /* GIV this prefetch is based on. */
3623 rtx base_address; /* Start prefetching from this address plus
3624 index. */
3625 HOST_WIDE_INT index;
3626 HOST_WIDE_INT stride; /* Prefetch stride in bytes in each
3627 iteration. */
3628 unsigned int bytes_accessed; /* Sum of sizes of all accesses to this
3629 prefetch area in one iteration. */
3630 unsigned int total_bytes; /* Total bytes loop will access in this block.
3631 This is set only for loops with known
3632 iteration counts and is 0xffffffff
3633 otherwise. */
3634 int prefetch_in_loop; /* Number of prefetch insns in loop. */
3635 int prefetch_before_loop; /* Number of prefetch insns before loop. */
3636 unsigned int write : 1; /* 1 for read/write prefetches. */
3639 /* Data used by check_store function. */
3640 struct check_store_data
3642 rtx mem_address;
3643 int mem_write;
3646 static void check_store (rtx, rtx, void *);
3647 static void emit_prefetch_instructions (struct loop *);
3648 static int rtx_equal_for_prefetch_p (rtx, rtx);
3650 /* Set mem_write when mem_address is found. Used as callback to
3651 note_stores. */
3652 static void
3653 check_store (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3655 struct check_store_data *d = (struct check_store_data *) data;
3657 if ((GET_CODE (x) == MEM) && rtx_equal_p (d->mem_address, XEXP (x, 0)))
3658 d->mem_write = 1;
3661 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3662 important to get some addresses combined. Later more sophisticated
3663 transformations can be added when necessary.
3665 ??? Same trick with swapping operand is done at several other places.
3666 It can be nice to develop some common way to handle this. */
3668 static int
3669 rtx_equal_for_prefetch_p (rtx x, rtx y)
3671 int i;
3672 int j;
3673 enum rtx_code code = GET_CODE (x);
3674 const char *fmt;
3676 if (x == y)
3677 return 1;
3678 if (code != GET_CODE (y))
3679 return 0;
3681 if (COMMUTATIVE_ARITH_P (x))
3683 return ((rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 0))
3684 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 1)))
3685 || (rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 1))
3686 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 0))));
3689 /* Compare the elements. If any pair of corresponding elements fails to
3690 match, return 0 for the whole thing. */
3692 fmt = GET_RTX_FORMAT (code);
3693 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3695 switch (fmt[i])
3697 case 'w':
3698 if (XWINT (x, i) != XWINT (y, i))
3699 return 0;
3700 break;
3702 case 'i':
3703 if (XINT (x, i) != XINT (y, i))
3704 return 0;
3705 break;
3707 case 'E':
3708 /* Two vectors must have the same length. */
3709 if (XVECLEN (x, i) != XVECLEN (y, i))
3710 return 0;
3712 /* And the corresponding elements must match. */
3713 for (j = 0; j < XVECLEN (x, i); j++)
3714 if (rtx_equal_for_prefetch_p (XVECEXP (x, i, j),
3715 XVECEXP (y, i, j)) == 0)
3716 return 0;
3717 break;
3719 case 'e':
3720 if (rtx_equal_for_prefetch_p (XEXP (x, i), XEXP (y, i)) == 0)
3721 return 0;
3722 break;
3724 case 's':
3725 if (strcmp (XSTR (x, i), XSTR (y, i)))
3726 return 0;
3727 break;
3729 case 'u':
3730 /* These are just backpointers, so they don't matter. */
3731 break;
3733 case '0':
3734 break;
3736 /* It is believed that rtx's at this level will never
3737 contain anything but integers and other rtx's,
3738 except for within LABEL_REFs and SYMBOL_REFs. */
3739 default:
3740 abort ();
3743 return 1;
3746 /* Remove constant addition value from the expression X (when present)
3747 and return it. */
3749 static HOST_WIDE_INT
3750 remove_constant_addition (rtx *x)
3752 HOST_WIDE_INT addval = 0;
3753 rtx exp = *x;
3755 /* Avoid clobbering a shared CONST expression. */
3756 if (GET_CODE (exp) == CONST)
3758 if (GET_CODE (XEXP (exp, 0)) == PLUS
3759 && GET_CODE (XEXP (XEXP (exp, 0), 0)) == SYMBOL_REF
3760 && GET_CODE (XEXP (XEXP (exp, 0), 1)) == CONST_INT)
3762 *x = XEXP (XEXP (exp, 0), 0);
3763 return INTVAL (XEXP (XEXP (exp, 0), 1));
3765 return 0;
3768 if (GET_CODE (exp) == CONST_INT)
3770 addval = INTVAL (exp);
3771 *x = const0_rtx;
3774 /* For plus expression recurse on ourself. */
3775 else if (GET_CODE (exp) == PLUS)
3777 addval += remove_constant_addition (&XEXP (exp, 0));
3778 addval += remove_constant_addition (&XEXP (exp, 1));
3780 /* In case our parameter was constant, remove extra zero from the
3781 expression. */
3782 if (XEXP (exp, 0) == const0_rtx)
3783 *x = XEXP (exp, 1);
3784 else if (XEXP (exp, 1) == const0_rtx)
3785 *x = XEXP (exp, 0);
3788 return addval;
3791 /* Attempt to identify accesses to arrays that are most likely to cause cache
3792 misses, and emit prefetch instructions a few prefetch blocks forward.
3794 To detect the arrays we use the GIV information that was collected by the
3795 strength reduction pass.
3797 The prefetch instructions are generated after the GIV information is done
3798 and before the strength reduction process. The new GIVs are injected into
3799 the strength reduction tables, so the prefetch addresses are optimized as
3800 well.
3802 GIVs are split into base address, stride, and constant addition values.
3803 GIVs with the same address, stride and close addition values are combined
3804 into a single prefetch. Also writes to GIVs are detected, so that prefetch
3805 for write instructions can be used for the block we write to, on machines
3806 that support write prefetches.
3808 Several heuristics are used to determine when to prefetch. They are
3809 controlled by defined symbols that can be overridden for each target. */
3811 static void
3812 emit_prefetch_instructions (struct loop *loop)
3814 int num_prefetches = 0;
3815 int num_real_prefetches = 0;
3816 int num_real_write_prefetches = 0;
3817 int num_prefetches_before = 0;
3818 int num_write_prefetches_before = 0;
3819 int ahead = 0;
3820 int i;
3821 struct iv_class *bl;
3822 struct induction *iv;
3823 struct prefetch_info info[MAX_PREFETCHES];
3824 struct loop_ivs *ivs = LOOP_IVS (loop);
3826 if (!HAVE_prefetch)
3827 return;
3829 /* Consider only loops w/o calls. When a call is done, the loop is probably
3830 slow enough to read the memory. */
3831 if (PREFETCH_NO_CALL && LOOP_INFO (loop)->has_call)
3833 if (loop_dump_stream)
3834 fprintf (loop_dump_stream, "Prefetch: ignoring loop: has call.\n");
3836 return;
3839 /* Don't prefetch in loops known to have few iterations. */
3840 if (PREFETCH_NO_LOW_LOOPCNT
3841 && LOOP_INFO (loop)->n_iterations
3842 && LOOP_INFO (loop)->n_iterations <= PREFETCH_LOW_LOOPCNT)
3844 if (loop_dump_stream)
3845 fprintf (loop_dump_stream,
3846 "Prefetch: ignoring loop: not enough iterations.\n");
3847 return;
3850 /* Search all induction variables and pick those interesting for the prefetch
3851 machinery. */
3852 for (bl = ivs->list; bl; bl = bl->next)
3854 struct induction *biv = bl->biv, *biv1;
3855 int basestride = 0;
3857 biv1 = biv;
3859 /* Expect all BIVs to be executed in each iteration. This makes our
3860 analysis more conservative. */
3861 while (biv1)
3863 /* Discard non-constant additions that we can't handle well yet, and
3864 BIVs that are executed multiple times; such BIVs ought to be
3865 handled in the nested loop. We accept not_every_iteration BIVs,
3866 since these only result in larger strides and make our
3867 heuristics more conservative. */
3868 if (GET_CODE (biv->add_val) != CONST_INT)
3870 if (loop_dump_stream)
3872 fprintf (loop_dump_stream,
3873 "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
3874 REGNO (biv->src_reg), INSN_UID (biv->insn));
3875 print_rtl (loop_dump_stream, biv->add_val);
3876 fprintf (loop_dump_stream, "\n");
3878 break;
3881 if (biv->maybe_multiple)
3883 if (loop_dump_stream)
3885 fprintf (loop_dump_stream,
3886 "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
3887 REGNO (biv->src_reg), INSN_UID (biv->insn));
3888 print_rtl (loop_dump_stream, biv->add_val);
3889 fprintf (loop_dump_stream, "\n");
3891 break;
3894 basestride += INTVAL (biv1->add_val);
3895 biv1 = biv1->next_iv;
3898 if (biv1 || !basestride)
3899 continue;
3901 for (iv = bl->giv; iv; iv = iv->next_iv)
3903 rtx address;
3904 rtx temp;
3905 HOST_WIDE_INT index = 0;
3906 int add = 1;
3907 HOST_WIDE_INT stride = 0;
3908 int stride_sign = 1;
3909 struct check_store_data d;
3910 const char *ignore_reason = NULL;
3911 int size = GET_MODE_SIZE (GET_MODE (iv));
3913 /* See whether an induction variable is interesting to us and if
3914 not, report the reason. */
3915 if (iv->giv_type != DEST_ADDR)
3916 ignore_reason = "giv is not a destination address";
3918 /* We are interested only in constant stride memory references
3919 in order to be able to compute density easily. */
3920 else if (GET_CODE (iv->mult_val) != CONST_INT)
3921 ignore_reason = "stride is not constant";
3923 else
3925 stride = INTVAL (iv->mult_val) * basestride;
3926 if (stride < 0)
3928 stride = -stride;
3929 stride_sign = -1;
3932 /* On some targets, reversed order prefetches are not
3933 worthwhile. */
3934 if (PREFETCH_NO_REVERSE_ORDER && stride_sign < 0)
3935 ignore_reason = "reversed order stride";
3937 /* Prefetch of accesses with an extreme stride might not be
3938 worthwhile, either. */
3939 else if (PREFETCH_NO_EXTREME_STRIDE
3940 && stride > PREFETCH_EXTREME_STRIDE)
3941 ignore_reason = "extreme stride";
3943 /* Ignore GIVs with varying add values; we can't predict the
3944 value for the next iteration. */
3945 else if (!loop_invariant_p (loop, iv->add_val))
3946 ignore_reason = "giv has varying add value";
3948 /* Ignore GIVs in the nested loops; they ought to have been
3949 handled already. */
3950 else if (iv->maybe_multiple)
3951 ignore_reason = "giv is in nested loop";
3954 if (ignore_reason != NULL)
3956 if (loop_dump_stream)
3957 fprintf (loop_dump_stream,
3958 "Prefetch: ignoring giv at %d: %s.\n",
3959 INSN_UID (iv->insn), ignore_reason);
3960 continue;
3963 /* Determine the pointer to the basic array we are examining. It is
3964 the sum of the BIV's initial value and the GIV's add_val. */
3965 address = copy_rtx (iv->add_val);
3966 temp = copy_rtx (bl->initial_value);
3968 address = simplify_gen_binary (PLUS, Pmode, temp, address);
3969 index = remove_constant_addition (&address);
3971 d.mem_write = 0;
3972 d.mem_address = *iv->location;
3974 /* When the GIV is not always executed, we might be better off by
3975 not dirtying the cache pages. */
3976 if (PREFETCH_CONDITIONAL || iv->always_executed)
3977 note_stores (PATTERN (iv->insn), check_store, &d);
3978 else
3980 if (loop_dump_stream)
3981 fprintf (loop_dump_stream, "Prefetch: Ignoring giv at %d: %s\n",
3982 INSN_UID (iv->insn), "in conditional code.");
3983 continue;
3986 /* Attempt to find another prefetch to the same array and see if we
3987 can merge this one. */
3988 for (i = 0; i < num_prefetches; i++)
3989 if (rtx_equal_for_prefetch_p (address, info[i].base_address)
3990 && stride == info[i].stride)
3992 /* In case both access same array (same location
3993 just with small difference in constant indexes), merge
3994 the prefetches. Just do the later and the earlier will
3995 get prefetched from previous iteration.
3996 The artificial threshold should not be too small,
3997 but also not bigger than small portion of memory usually
3998 traversed by single loop. */
3999 if (index >= info[i].index
4000 && index - info[i].index < PREFETCH_EXTREME_DIFFERENCE)
4002 info[i].write |= d.mem_write;
4003 info[i].bytes_accessed += size;
4004 info[i].index = index;
4005 info[i].giv = iv;
4006 info[i].class = bl;
4007 info[num_prefetches].base_address = address;
4008 add = 0;
4009 break;
4012 if (index < info[i].index
4013 && info[i].index - index < PREFETCH_EXTREME_DIFFERENCE)
4015 info[i].write |= d.mem_write;
4016 info[i].bytes_accessed += size;
4017 add = 0;
4018 break;
4022 /* Merging failed. */
4023 if (add)
4025 info[num_prefetches].giv = iv;
4026 info[num_prefetches].class = bl;
4027 info[num_prefetches].index = index;
4028 info[num_prefetches].stride = stride;
4029 info[num_prefetches].base_address = address;
4030 info[num_prefetches].write = d.mem_write;
4031 info[num_prefetches].bytes_accessed = size;
4032 num_prefetches++;
4033 if (num_prefetches >= MAX_PREFETCHES)
4035 if (loop_dump_stream)
4036 fprintf (loop_dump_stream,
4037 "Maximal number of prefetches exceeded.\n");
4038 return;
4044 for (i = 0; i < num_prefetches; i++)
4046 int density;
4048 /* Attempt to calculate the total number of bytes fetched by all
4049 iterations of the loop. Avoid overflow. */
4050 if (LOOP_INFO (loop)->n_iterations
4051 && ((unsigned HOST_WIDE_INT) (0xffffffff / info[i].stride)
4052 >= LOOP_INFO (loop)->n_iterations))
4053 info[i].total_bytes = info[i].stride * LOOP_INFO (loop)->n_iterations;
4054 else
4055 info[i].total_bytes = 0xffffffff;
4057 density = info[i].bytes_accessed * 100 / info[i].stride;
4059 /* Prefetch might be worthwhile only when the loads/stores are dense. */
4060 if (PREFETCH_ONLY_DENSE_MEM)
4061 if (density * 256 > PREFETCH_DENSE_MEM * 100
4062 && (info[i].total_bytes / PREFETCH_BLOCK
4063 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN))
4065 info[i].prefetch_before_loop = 1;
4066 info[i].prefetch_in_loop
4067 = (info[i].total_bytes / PREFETCH_BLOCK
4068 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX);
4070 else
4072 info[i].prefetch_in_loop = 0, info[i].prefetch_before_loop = 0;
4073 if (loop_dump_stream)
4074 fprintf (loop_dump_stream,
4075 "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
4076 INSN_UID (info[i].giv->insn), density);
4078 else
4079 info[i].prefetch_in_loop = 1, info[i].prefetch_before_loop = 1;
4081 /* Find how many prefetch instructions we'll use within the loop. */
4082 if (info[i].prefetch_in_loop != 0)
4084 info[i].prefetch_in_loop = ((info[i].stride + PREFETCH_BLOCK - 1)
4085 / PREFETCH_BLOCK);
4086 num_real_prefetches += info[i].prefetch_in_loop;
4087 if (info[i].write)
4088 num_real_write_prefetches += info[i].prefetch_in_loop;
4092 /* Determine how many iterations ahead to prefetch within the loop, based
4093 on how many prefetches we currently expect to do within the loop. */
4094 if (num_real_prefetches != 0)
4096 if ((ahead = SIMULTANEOUS_PREFETCHES / num_real_prefetches) == 0)
4098 if (loop_dump_stream)
4099 fprintf (loop_dump_stream,
4100 "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
4101 SIMULTANEOUS_PREFETCHES, num_real_prefetches);
4102 num_real_prefetches = 0, num_real_write_prefetches = 0;
4105 /* We'll also use AHEAD to determine how many prefetch instructions to
4106 emit before a loop, so don't leave it zero. */
4107 if (ahead == 0)
4108 ahead = PREFETCH_BLOCKS_BEFORE_LOOP_MAX;
4110 for (i = 0; i < num_prefetches; i++)
4112 /* Update if we've decided not to prefetch anything within the loop. */
4113 if (num_real_prefetches == 0)
4114 info[i].prefetch_in_loop = 0;
4116 /* Find how many prefetch instructions we'll use before the loop. */
4117 if (info[i].prefetch_before_loop != 0)
4119 int n = info[i].total_bytes / PREFETCH_BLOCK;
4120 if (n > ahead)
4121 n = ahead;
4122 info[i].prefetch_before_loop = n;
4123 num_prefetches_before += n;
4124 if (info[i].write)
4125 num_write_prefetches_before += n;
4128 if (loop_dump_stream)
4130 if (info[i].prefetch_in_loop == 0
4131 && info[i].prefetch_before_loop == 0)
4132 continue;
4133 fprintf (loop_dump_stream, "Prefetch insn: %d",
4134 INSN_UID (info[i].giv->insn));
4135 fprintf (loop_dump_stream,
4136 "; in loop: %d; before: %d; %s\n",
4137 info[i].prefetch_in_loop,
4138 info[i].prefetch_before_loop,
4139 info[i].write ? "read/write" : "read only");
4140 fprintf (loop_dump_stream,
4141 " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
4142 (int) (info[i].bytes_accessed * 100 / info[i].stride),
4143 info[i].bytes_accessed, info[i].total_bytes);
4144 fprintf (loop_dump_stream, " index: " HOST_WIDE_INT_PRINT_DEC
4145 "; stride: " HOST_WIDE_INT_PRINT_DEC "; address: ",
4146 info[i].index, info[i].stride);
4147 print_rtl (loop_dump_stream, info[i].base_address);
4148 fprintf (loop_dump_stream, "\n");
4152 if (num_real_prefetches + num_prefetches_before > 0)
4154 /* Record that this loop uses prefetch instructions. */
4155 LOOP_INFO (loop)->has_prefetch = 1;
4157 if (loop_dump_stream)
4159 fprintf (loop_dump_stream, "Real prefetches needed within loop: %d (write: %d)\n",
4160 num_real_prefetches, num_real_write_prefetches);
4161 fprintf (loop_dump_stream, "Real prefetches needed before loop: %d (write: %d)\n",
4162 num_prefetches_before, num_write_prefetches_before);
4166 for (i = 0; i < num_prefetches; i++)
4168 int y;
4170 for (y = 0; y < info[i].prefetch_in_loop; y++)
4172 rtx loc = copy_rtx (*info[i].giv->location);
4173 rtx insn;
4174 int bytes_ahead = PREFETCH_BLOCK * (ahead + y);
4175 rtx before_insn = info[i].giv->insn;
4176 rtx prev_insn = PREV_INSN (info[i].giv->insn);
4177 rtx seq;
4179 /* We can save some effort by offsetting the address on
4180 architectures with offsettable memory references. */
4181 if (offsettable_address_p (0, VOIDmode, loc))
4182 loc = plus_constant (loc, bytes_ahead);
4183 else
4185 rtx reg = gen_reg_rtx (Pmode);
4186 loop_iv_add_mult_emit_before (loop, loc, const1_rtx,
4187 GEN_INT (bytes_ahead), reg,
4188 0, before_insn);
4189 loc = reg;
4192 start_sequence ();
4193 /* Make sure the address operand is valid for prefetch. */
4194 if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
4195 (loc, insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
4196 loc = force_reg (Pmode, loc);
4197 emit_insn (gen_prefetch (loc, GEN_INT (info[i].write),
4198 GEN_INT (3)));
4199 seq = get_insns ();
4200 end_sequence ();
4201 emit_insn_before (seq, before_insn);
4203 /* Check all insns emitted and record the new GIV
4204 information. */
4205 insn = NEXT_INSN (prev_insn);
4206 while (insn != before_insn)
4208 insn = check_insn_for_givs (loop, insn,
4209 info[i].giv->always_executed,
4210 info[i].giv->maybe_multiple);
4211 insn = NEXT_INSN (insn);
4215 if (PREFETCH_BEFORE_LOOP)
4217 /* Emit insns before the loop to fetch the first cache lines or,
4218 if we're not prefetching within the loop, everything we expect
4219 to need. */
4220 for (y = 0; y < info[i].prefetch_before_loop; y++)
4222 rtx reg = gen_reg_rtx (Pmode);
4223 rtx loop_start = loop->start;
4224 rtx init_val = info[i].class->initial_value;
4225 rtx add_val = simplify_gen_binary (PLUS, Pmode,
4226 info[i].giv->add_val,
4227 GEN_INT (y * PREFETCH_BLOCK));
4229 /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
4230 non-constant INIT_VAL to have the same mode as REG, which
4231 in this case we know to be Pmode. */
4232 if (GET_MODE (init_val) != Pmode && !CONSTANT_P (init_val))
4234 rtx seq;
4236 start_sequence ();
4237 init_val = convert_to_mode (Pmode, init_val, 0);
4238 seq = get_insns ();
4239 end_sequence ();
4240 loop_insn_emit_before (loop, 0, loop_start, seq);
4242 loop_iv_add_mult_emit_before (loop, init_val,
4243 info[i].giv->mult_val,
4244 add_val, reg, 0, loop_start);
4245 emit_insn_before (gen_prefetch (reg, GEN_INT (info[i].write),
4246 GEN_INT (3)),
4247 loop_start);
4252 return;
4255 /* Communication with routines called via `note_stores'. */
4257 static rtx note_insn;
4259 /* Dummy register to have nonzero DEST_REG for DEST_ADDR type givs. */
4261 static rtx addr_placeholder;
4263 /* ??? Unfinished optimizations, and possible future optimizations,
4264 for the strength reduction code. */
4266 /* ??? The interaction of biv elimination, and recognition of 'constant'
4267 bivs, may cause problems. */
4269 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4270 performance problems.
4272 Perhaps don't eliminate things that can be combined with an addressing
4273 mode. Find all givs that have the same biv, mult_val, and add_val;
4274 then for each giv, check to see if its only use dies in a following
4275 memory address. If so, generate a new memory address and check to see
4276 if it is valid. If it is valid, then store the modified memory address,
4277 otherwise, mark the giv as not done so that it will get its own iv. */
4279 /* ??? Could try to optimize branches when it is known that a biv is always
4280 positive. */
4282 /* ??? When replace a biv in a compare insn, we should replace with closest
4283 giv so that an optimized branch can still be recognized by the combiner,
4284 e.g. the VAX acb insn. */
4286 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4287 was rerun in loop_optimize whenever a register was added or moved.
4288 Also, some of the optimizations could be a little less conservative. */
4290 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4291 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4292 callback.
4294 NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
4295 least once for every loop iteration except for the last one.
4297 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4298 loop iteration.
4300 void
4301 for_each_insn_in_loop (struct loop *loop, loop_insn_callback fncall)
4303 int not_every_iteration = 0;
4304 int maybe_multiple = 0;
4305 int past_loop_latch = 0;
4306 int loop_depth = 0;
4307 rtx p;
4309 /* If loop_scan_start points to the loop exit test, we have to be wary of
4310 subversive use of gotos inside expression statements. */
4311 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
4312 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
4314 /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
4315 for (p = next_insn_in_loop (loop, loop->scan_start);
4316 p != NULL_RTX;
4317 p = next_insn_in_loop (loop, p))
4319 p = fncall (loop, p, not_every_iteration, maybe_multiple);
4321 /* Past CODE_LABEL, we get to insns that may be executed multiple
4322 times. The only way we can be sure that they can't is if every
4323 jump insn between here and the end of the loop either
4324 returns, exits the loop, is a jump to a location that is still
4325 behind the label, or is a jump to the loop start. */
4327 if (GET_CODE (p) == CODE_LABEL)
4329 rtx insn = p;
4331 maybe_multiple = 0;
4333 while (1)
4335 insn = NEXT_INSN (insn);
4336 if (insn == loop->scan_start)
4337 break;
4338 if (insn == loop->end)
4340 if (loop->top != 0)
4341 insn = loop->top;
4342 else
4343 break;
4344 if (insn == loop->scan_start)
4345 break;
4348 if (GET_CODE (insn) == JUMP_INSN
4349 && GET_CODE (PATTERN (insn)) != RETURN
4350 && (!any_condjump_p (insn)
4351 || (JUMP_LABEL (insn) != 0
4352 && JUMP_LABEL (insn) != loop->scan_start
4353 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
4355 maybe_multiple = 1;
4356 break;
4361 /* Past a jump, we get to insns for which we can't count
4362 on whether they will be executed during each iteration. */
4363 /* This code appears twice in strength_reduce. There is also similar
4364 code in scan_loop. */
4365 if (GET_CODE (p) == JUMP_INSN
4366 /* If we enter the loop in the middle, and scan around to the
4367 beginning, don't set not_every_iteration for that.
4368 This can be any kind of jump, since we want to know if insns
4369 will be executed if the loop is executed. */
4370 && !(JUMP_LABEL (p) == loop->top
4371 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
4372 && any_uncondjump_p (p))
4373 || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
4375 rtx label = 0;
4377 /* If this is a jump outside the loop, then it also doesn't
4378 matter. Check to see if the target of this branch is on the
4379 loop->exits_labels list. */
4381 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
4382 if (XEXP (label, 0) == JUMP_LABEL (p))
4383 break;
4385 if (!label)
4386 not_every_iteration = 1;
4389 else if (GET_CODE (p) == NOTE)
4391 /* At the virtual top of a converted loop, insns are again known to
4392 be executed each iteration: logically, the loop begins here
4393 even though the exit code has been duplicated.
4395 Insns are also again known to be executed each iteration at
4396 the LOOP_CONT note. */
4397 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4398 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4399 && loop_depth == 0)
4400 not_every_iteration = 0;
4401 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4402 loop_depth++;
4403 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4404 loop_depth--;
4407 /* Note if we pass a loop latch. If we do, then we can not clear
4408 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4409 a loop since a jump before the last CODE_LABEL may have started
4410 a new loop iteration.
4412 Note that LOOP_TOP is only set for rotated loops and we need
4413 this check for all loops, so compare against the CODE_LABEL
4414 which immediately follows LOOP_START. */
4415 if (GET_CODE (p) == JUMP_INSN
4416 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
4417 past_loop_latch = 1;
4419 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4420 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4421 or not an insn is known to be executed each iteration of the
4422 loop, whether or not any iterations are known to occur.
4424 Therefore, if we have just passed a label and have no more labels
4425 between here and the test insn of the loop, and we have not passed
4426 a jump to the top of the loop, then we know these insns will be
4427 executed each iteration. */
4429 if (not_every_iteration
4430 && !past_loop_latch
4431 && GET_CODE (p) == CODE_LABEL
4432 && no_labels_between_p (p, loop->end)
4433 && loop_insn_first_p (p, loop->cont))
4434 not_every_iteration = 0;
4438 static void
4439 loop_bivs_find (struct loop *loop)
4441 struct loop_regs *regs = LOOP_REGS (loop);
4442 struct loop_ivs *ivs = LOOP_IVS (loop);
4443 /* Temporary list pointers for traversing ivs->list. */
4444 struct iv_class *bl, **backbl;
4446 ivs->list = 0;
4448 for_each_insn_in_loop (loop, check_insn_for_bivs);
4450 /* Scan ivs->list to remove all regs that proved not to be bivs.
4451 Make a sanity check against regs->n_times_set. */
4452 for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
4454 if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4455 /* Above happens if register modified by subreg, etc. */
4456 /* Make sure it is not recognized as a basic induction var: */
4457 || regs->array[bl->regno].n_times_set != bl->biv_count
4458 /* If never incremented, it is invariant that we decided not to
4459 move. So leave it alone. */
4460 || ! bl->incremented)
4462 if (loop_dump_stream)
4463 fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
4464 bl->regno,
4465 (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4466 ? "not induction variable"
4467 : (! bl->incremented ? "never incremented"
4468 : "count error")));
4470 REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
4471 *backbl = bl->next;
4473 else
4475 backbl = &bl->next;
4477 if (loop_dump_stream)
4478 fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
4484 /* Determine how BIVS are initialized by looking through pre-header
4485 extended basic block. */
4486 static void
4487 loop_bivs_init_find (struct loop *loop)
4489 struct loop_ivs *ivs = LOOP_IVS (loop);
4490 /* Temporary list pointers for traversing ivs->list. */
4491 struct iv_class *bl;
4492 int call_seen;
4493 rtx p;
4495 /* Find initial value for each biv by searching backwards from loop_start,
4496 halting at first label. Also record any test condition. */
4498 call_seen = 0;
4499 for (p = loop->start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
4501 rtx test;
4503 note_insn = p;
4505 if (GET_CODE (p) == CALL_INSN)
4506 call_seen = 1;
4508 if (INSN_P (p))
4509 note_stores (PATTERN (p), record_initial, ivs);
4511 /* Record any test of a biv that branches around the loop if no store
4512 between it and the start of loop. We only care about tests with
4513 constants and registers and only certain of those. */
4514 if (GET_CODE (p) == JUMP_INSN
4515 && JUMP_LABEL (p) != 0
4516 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
4517 && (test = get_condition_for_loop (loop, p)) != 0
4518 && GET_CODE (XEXP (test, 0)) == REG
4519 && REGNO (XEXP (test, 0)) < max_reg_before_loop
4520 && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
4521 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
4522 && bl->init_insn == 0)
4524 /* If an NE test, we have an initial value! */
4525 if (GET_CODE (test) == NE)
4527 bl->init_insn = p;
4528 bl->init_set = gen_rtx_SET (VOIDmode,
4529 XEXP (test, 0), XEXP (test, 1));
4531 else
4532 bl->initial_test = test;
4538 /* Look at the each biv and see if we can say anything better about its
4539 initial value from any initializing insns set up above. (This is done
4540 in two passes to avoid missing SETs in a PARALLEL.) */
4541 static void
4542 loop_bivs_check (struct loop *loop)
4544 struct loop_ivs *ivs = LOOP_IVS (loop);
4545 /* Temporary list pointers for traversing ivs->list. */
4546 struct iv_class *bl;
4547 struct iv_class **backbl;
4549 for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
4551 rtx src;
4552 rtx note;
4554 if (! bl->init_insn)
4555 continue;
4557 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4558 is a constant, use the value of that. */
4559 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4560 && CONSTANT_P (XEXP (note, 0)))
4561 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4562 && CONSTANT_P (XEXP (note, 0))))
4563 src = XEXP (note, 0);
4564 else
4565 src = SET_SRC (bl->init_set);
4567 if (loop_dump_stream)
4568 fprintf (loop_dump_stream,
4569 "Biv %d: initialized at insn %d: initial value ",
4570 bl->regno, INSN_UID (bl->init_insn));
4572 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4573 || GET_MODE (src) == VOIDmode)
4574 && valid_initial_value_p (src, bl->init_insn,
4575 LOOP_INFO (loop)->pre_header_has_call,
4576 loop->start))
4578 bl->initial_value = src;
4580 if (loop_dump_stream)
4582 print_simple_rtl (loop_dump_stream, src);
4583 fputc ('\n', loop_dump_stream);
4586 /* If we can't make it a giv,
4587 let biv keep initial value of "itself". */
4588 else if (loop_dump_stream)
4589 fprintf (loop_dump_stream, "is complex\n");
4594 /* Search the loop for general induction variables. */
4596 static void
4597 loop_givs_find (struct loop* loop)
4599 for_each_insn_in_loop (loop, check_insn_for_givs);
4603 /* For each giv for which we still don't know whether or not it is
4604 replaceable, check to see if it is replaceable because its final value
4605 can be calculated. */
4607 static void
4608 loop_givs_check (struct loop *loop)
4610 struct loop_ivs *ivs = LOOP_IVS (loop);
4611 struct iv_class *bl;
4613 for (bl = ivs->list; bl; bl = bl->next)
4615 struct induction *v;
4617 for (v = bl->giv; v; v = v->next_iv)
4618 if (! v->replaceable && ! v->not_replaceable)
4619 check_final_value (loop, v);
4624 /* Return nonzero if it is possible to eliminate the biv BL provided
4625 all givs are reduced. This is possible if either the reg is not
4626 used outside the loop, or we can compute what its final value will
4627 be. */
4629 static int
4630 loop_biv_eliminable_p (struct loop *loop, struct iv_class *bl,
4631 int threshold, int insn_count)
4633 /* For architectures with a decrement_and_branch_until_zero insn,
4634 don't do this if we put a REG_NONNEG note on the endtest for this
4635 biv. */
4637 #ifdef HAVE_decrement_and_branch_until_zero
4638 if (bl->nonneg)
4640 if (loop_dump_stream)
4641 fprintf (loop_dump_stream,
4642 "Cannot eliminate nonneg biv %d.\n", bl->regno);
4643 return 0;
4645 #endif
4647 /* Check that biv is used outside loop or if it has a final value.
4648 Compare against bl->init_insn rather than loop->start. We aren't
4649 concerned with any uses of the biv between init_insn and
4650 loop->start since these won't be affected by the value of the biv
4651 elsewhere in the function, so long as init_insn doesn't use the
4652 biv itself. */
4654 if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
4655 && bl->init_insn
4656 && INSN_UID (bl->init_insn) < max_uid_for_loop
4657 && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
4658 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4659 || (bl->final_value = final_biv_value (loop, bl)))
4660 return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
4662 if (loop_dump_stream)
4664 fprintf (loop_dump_stream,
4665 "Cannot eliminate biv %d.\n",
4666 bl->regno);
4667 fprintf (loop_dump_stream,
4668 "First use: insn %d, last use: insn %d.\n",
4669 REGNO_FIRST_UID (bl->regno),
4670 REGNO_LAST_UID (bl->regno));
4672 return 0;
4676 /* Reduce each giv of BL that we have decided to reduce. */
4678 static void
4679 loop_givs_reduce (struct loop *loop, struct iv_class *bl)
4681 struct induction *v;
4683 for (v = bl->giv; v; v = v->next_iv)
4685 struct induction *tv;
4686 if (! v->ignore && v->same == 0)
4688 int auto_inc_opt = 0;
4690 /* If the code for derived givs immediately below has already
4691 allocated a new_reg, we must keep it. */
4692 if (! v->new_reg)
4693 v->new_reg = gen_reg_rtx (v->mode);
4695 #ifdef AUTO_INC_DEC
4696 /* If the target has auto-increment addressing modes, and
4697 this is an address giv, then try to put the increment
4698 immediately after its use, so that flow can create an
4699 auto-increment addressing mode. */
4700 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4701 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4702 /* We don't handle reversed biv's because bl->biv->insn
4703 does not have a valid INSN_LUID. */
4704 && ! bl->reversed
4705 && v->always_executed && ! v->maybe_multiple
4706 && INSN_UID (v->insn) < max_uid_for_loop)
4708 /* If other giv's have been combined with this one, then
4709 this will work only if all uses of the other giv's occur
4710 before this giv's insn. This is difficult to check.
4712 We simplify this by looking for the common case where
4713 there is one DEST_REG giv, and this giv's insn is the
4714 last use of the dest_reg of that DEST_REG giv. If the
4715 increment occurs after the address giv, then we can
4716 perform the optimization. (Otherwise, the increment
4717 would have to go before other_giv, and we would not be
4718 able to combine it with the address giv to get an
4719 auto-inc address.) */
4720 if (v->combined_with)
4722 struct induction *other_giv = 0;
4724 for (tv = bl->giv; tv; tv = tv->next_iv)
4725 if (tv->same == v)
4727 if (other_giv)
4728 break;
4729 else
4730 other_giv = tv;
4732 if (! tv && other_giv
4733 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4734 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4735 == INSN_UID (v->insn))
4736 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4737 auto_inc_opt = 1;
4739 /* Check for case where increment is before the address
4740 giv. Do this test in "loop order". */
4741 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4742 && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4743 || (INSN_LUID (bl->biv->insn)
4744 > INSN_LUID (loop->scan_start))))
4745 || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4746 && (INSN_LUID (loop->scan_start)
4747 < INSN_LUID (bl->biv->insn))))
4748 auto_inc_opt = -1;
4749 else
4750 auto_inc_opt = 1;
4752 #ifdef HAVE_cc0
4754 rtx prev;
4756 /* We can't put an insn immediately after one setting
4757 cc0, or immediately before one using cc0. */
4758 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4759 || (auto_inc_opt == -1
4760 && (prev = prev_nonnote_insn (v->insn)) != 0
4761 && INSN_P (prev)
4762 && sets_cc0_p (PATTERN (prev))))
4763 auto_inc_opt = 0;
4765 #endif
4767 if (auto_inc_opt)
4768 v->auto_inc_opt = 1;
4770 #endif
4772 /* For each place where the biv is incremented, add an insn
4773 to increment the new, reduced reg for the giv. */
4774 for (tv = bl->biv; tv; tv = tv->next_iv)
4776 rtx insert_before;
4778 /* Skip if location is the same as a previous one. */
4779 if (tv->same)
4780 continue;
4781 if (! auto_inc_opt)
4782 insert_before = NEXT_INSN (tv->insn);
4783 else if (auto_inc_opt == 1)
4784 insert_before = NEXT_INSN (v->insn);
4785 else
4786 insert_before = v->insn;
4788 if (tv->mult_val == const1_rtx)
4789 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4790 v->new_reg, v->new_reg,
4791 0, insert_before);
4792 else /* tv->mult_val == const0_rtx */
4793 /* A multiply is acceptable here
4794 since this is presumed to be seldom executed. */
4795 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4796 v->add_val, v->new_reg,
4797 0, insert_before);
4800 /* Add code at loop start to initialize giv's reduced reg. */
4802 loop_iv_add_mult_hoist (loop,
4803 extend_value_for_giv (v, bl->initial_value),
4804 v->mult_val, v->add_val, v->new_reg);
4810 /* Check for givs whose first use is their definition and whose
4811 last use is the definition of another giv. If so, it is likely
4812 dead and should not be used to derive another giv nor to
4813 eliminate a biv. */
4815 static void
4816 loop_givs_dead_check (struct loop *loop ATTRIBUTE_UNUSED, struct iv_class *bl)
4818 struct induction *v;
4820 for (v = bl->giv; v; v = v->next_iv)
4822 if (v->ignore
4823 || (v->same && v->same->ignore))
4824 continue;
4826 if (v->giv_type == DEST_REG
4827 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4829 struct induction *v1;
4831 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4832 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4833 v->maybe_dead = 1;
4839 static void
4840 loop_givs_rescan (struct loop *loop, struct iv_class *bl, rtx *reg_map)
4842 struct induction *v;
4844 for (v = bl->giv; v; v = v->next_iv)
4846 if (v->same && v->same->ignore)
4847 v->ignore = 1;
4849 if (v->ignore)
4850 continue;
4852 /* Update expression if this was combined, in case other giv was
4853 replaced. */
4854 if (v->same)
4855 v->new_reg = replace_rtx (v->new_reg,
4856 v->same->dest_reg, v->same->new_reg);
4858 /* See if this register is known to be a pointer to something. If
4859 so, see if we can find the alignment. First see if there is a
4860 destination register that is a pointer. If so, this shares the
4861 alignment too. Next see if we can deduce anything from the
4862 computational information. If not, and this is a DEST_ADDR
4863 giv, at least we know that it's a pointer, though we don't know
4864 the alignment. */
4865 if (GET_CODE (v->new_reg) == REG
4866 && v->giv_type == DEST_REG
4867 && REG_POINTER (v->dest_reg))
4868 mark_reg_pointer (v->new_reg,
4869 REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
4870 else if (GET_CODE (v->new_reg) == REG
4871 && REG_POINTER (v->src_reg))
4873 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
4875 if (align == 0
4876 || GET_CODE (v->add_val) != CONST_INT
4877 || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
4878 align = 0;
4880 mark_reg_pointer (v->new_reg, align);
4882 else if (GET_CODE (v->new_reg) == REG
4883 && GET_CODE (v->add_val) == REG
4884 && REG_POINTER (v->add_val))
4886 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
4888 if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
4889 || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
4890 align = 0;
4892 mark_reg_pointer (v->new_reg, align);
4894 else if (GET_CODE (v->new_reg) == REG && v->giv_type == DEST_ADDR)
4895 mark_reg_pointer (v->new_reg, 0);
4897 if (v->giv_type == DEST_ADDR)
4898 /* Store reduced reg as the address in the memref where we found
4899 this giv. */
4900 validate_change (v->insn, v->location, v->new_reg, 0);
4901 else if (v->replaceable)
4903 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4905 else
4907 rtx original_insn = v->insn;
4908 rtx note;
4910 /* Not replaceable; emit an insn to set the original giv reg from
4911 the reduced giv, same as above. */
4912 v->insn = loop_insn_emit_after (loop, 0, original_insn,
4913 gen_move_insn (v->dest_reg,
4914 v->new_reg));
4916 /* The original insn may have a REG_EQUAL note. This note is
4917 now incorrect and may result in invalid substitutions later.
4918 The original insn is dead, but may be part of a libcall
4919 sequence, which doesn't seem worth the bother of handling. */
4920 note = find_reg_note (original_insn, REG_EQUAL, NULL_RTX);
4921 if (note)
4922 remove_note (original_insn, note);
4925 /* When a loop is reversed, givs which depend on the reversed
4926 biv, and which are live outside the loop, must be set to their
4927 correct final value. This insn is only needed if the giv is
4928 not replaceable. The correct final value is the same as the
4929 value that the giv starts the reversed loop with. */
4930 if (bl->reversed && ! v->replaceable)
4931 loop_iv_add_mult_sink (loop,
4932 extend_value_for_giv (v, bl->initial_value),
4933 v->mult_val, v->add_val, v->dest_reg);
4934 else if (v->final_value)
4935 loop_insn_sink_or_swim (loop,
4936 gen_load_of_final_value (v->dest_reg,
4937 v->final_value));
4939 if (loop_dump_stream)
4941 fprintf (loop_dump_stream, "giv at %d reduced to ",
4942 INSN_UID (v->insn));
4943 print_simple_rtl (loop_dump_stream, v->new_reg);
4944 fprintf (loop_dump_stream, "\n");
4950 static int
4951 loop_giv_reduce_benefit (struct loop *loop ATTRIBUTE_UNUSED,
4952 struct iv_class *bl, struct induction *v,
4953 rtx test_reg)
4955 int add_cost;
4956 int benefit;
4958 benefit = v->benefit;
4959 PUT_MODE (test_reg, v->mode);
4960 add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
4961 test_reg, test_reg);
4963 /* Reduce benefit if not replaceable, since we will insert a
4964 move-insn to replace the insn that calculates this giv. Don't do
4965 this unless the giv is a user variable, since it will often be
4966 marked non-replaceable because of the duplication of the exit
4967 code outside the loop. In such a case, the copies we insert are
4968 dead and will be deleted. So they don't have a cost. Similar
4969 situations exist. */
4970 /* ??? The new final_[bg]iv_value code does a much better job of
4971 finding replaceable giv's, and hence this code may no longer be
4972 necessary. */
4973 if (! v->replaceable && ! bl->eliminable
4974 && REG_USERVAR_P (v->dest_reg))
4975 benefit -= copy_cost;
4977 /* Decrease the benefit to count the add-insns that we will insert
4978 to increment the reduced reg for the giv. ??? This can
4979 overestimate the run-time cost of the additional insns, e.g. if
4980 there are multiple basic blocks that increment the biv, but only
4981 one of these blocks is executed during each iteration. There is
4982 no good way to detect cases like this with the current structure
4983 of the loop optimizer. This code is more accurate for
4984 determining code size than run-time benefits. */
4985 benefit -= add_cost * bl->biv_count;
4987 /* Decide whether to strength-reduce this giv or to leave the code
4988 unchanged (recompute it from the biv each time it is used). This
4989 decision can be made independently for each giv. */
4991 #ifdef AUTO_INC_DEC
4992 /* Attempt to guess whether autoincrement will handle some of the
4993 new add insns; if so, increase BENEFIT (undo the subtraction of
4994 add_cost that was done above). */
4995 if (v->giv_type == DEST_ADDR
4996 /* Increasing the benefit is risky, since this is only a guess.
4997 Avoid increasing register pressure in cases where there would
4998 be no other benefit from reducing this giv. */
4999 && benefit > 0
5000 && GET_CODE (v->mult_val) == CONST_INT)
5002 int size = GET_MODE_SIZE (GET_MODE (v->mem));
5004 if (HAVE_POST_INCREMENT
5005 && INTVAL (v->mult_val) == size)
5006 benefit += add_cost * bl->biv_count;
5007 else if (HAVE_PRE_INCREMENT
5008 && INTVAL (v->mult_val) == size)
5009 benefit += add_cost * bl->biv_count;
5010 else if (HAVE_POST_DECREMENT
5011 && -INTVAL (v->mult_val) == size)
5012 benefit += add_cost * bl->biv_count;
5013 else if (HAVE_PRE_DECREMENT
5014 && -INTVAL (v->mult_val) == size)
5015 benefit += add_cost * bl->biv_count;
5017 #endif
5019 return benefit;
5023 /* Free IV structures for LOOP. */
5025 static void
5026 loop_ivs_free (struct loop *loop)
5028 struct loop_ivs *ivs = LOOP_IVS (loop);
5029 struct iv_class *iv = ivs->list;
5031 free (ivs->regs);
5033 while (iv)
5035 struct iv_class *next = iv->next;
5036 struct induction *induction;
5037 struct induction *next_induction;
5039 for (induction = iv->biv; induction; induction = next_induction)
5041 next_induction = induction->next_iv;
5042 free (induction);
5044 for (induction = iv->giv; induction; induction = next_induction)
5046 next_induction = induction->next_iv;
5047 free (induction);
5050 free (iv);
5051 iv = next;
5056 /* Perform strength reduction and induction variable elimination.
5058 Pseudo registers created during this function will be beyond the
5059 last valid index in several tables including
5060 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
5061 problem here, because the added registers cannot be givs outside of
5062 their loop, and hence will never be reconsidered. But scan_loop
5063 must check regnos to make sure they are in bounds. */
5065 static void
5066 strength_reduce (struct loop *loop, int flags)
5068 struct loop_info *loop_info = LOOP_INFO (loop);
5069 struct loop_regs *regs = LOOP_REGS (loop);
5070 struct loop_ivs *ivs = LOOP_IVS (loop);
5071 rtx p;
5072 /* Temporary list pointer for traversing ivs->list. */
5073 struct iv_class *bl;
5074 /* Ratio of extra register life span we can justify
5075 for saving an instruction. More if loop doesn't call subroutines
5076 since in that case saving an insn makes more difference
5077 and more registers are available. */
5078 /* ??? could set this to last value of threshold in move_movables */
5079 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
5080 /* Map of pseudo-register replacements. */
5081 rtx *reg_map = NULL;
5082 int reg_map_size;
5083 int unrolled_insn_copies = 0;
5084 rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
5085 int insn_count = count_insns_in_loop (loop);
5087 addr_placeholder = gen_reg_rtx (Pmode);
5089 ivs->n_regs = max_reg_before_loop;
5090 ivs->regs = xcalloc (ivs->n_regs, sizeof (struct iv));
5092 /* Find all BIVs in loop. */
5093 loop_bivs_find (loop);
5095 /* Exit if there are no bivs. */
5096 if (! ivs->list)
5098 /* Can still unroll the loop anyways, but indicate that there is no
5099 strength reduction info available. */
5100 if (flags & LOOP_UNROLL)
5101 unroll_loop (loop, insn_count, 0);
5103 loop_ivs_free (loop);
5104 return;
5107 /* Determine how BIVS are initialized by looking through pre-header
5108 extended basic block. */
5109 loop_bivs_init_find (loop);
5111 /* Look at the each biv and see if we can say anything better about its
5112 initial value from any initializing insns set up above. */
5113 loop_bivs_check (loop);
5115 /* Search the loop for general induction variables. */
5116 loop_givs_find (loop);
5118 /* Try to calculate and save the number of loop iterations. This is
5119 set to zero if the actual number can not be calculated. This must
5120 be called after all giv's have been identified, since otherwise it may
5121 fail if the iteration variable is a giv. */
5122 loop_iterations (loop);
5124 #ifdef HAVE_prefetch
5125 if (flags & LOOP_PREFETCH)
5126 emit_prefetch_instructions (loop);
5127 #endif
5129 /* Now for each giv for which we still don't know whether or not it is
5130 replaceable, check to see if it is replaceable because its final value
5131 can be calculated. This must be done after loop_iterations is called,
5132 so that final_giv_value will work correctly. */
5133 loop_givs_check (loop);
5135 /* Try to prove that the loop counter variable (if any) is always
5136 nonnegative; if so, record that fact with a REG_NONNEG note
5137 so that "decrement and branch until zero" insn can be used. */
5138 check_dbra_loop (loop, insn_count);
5140 /* Create reg_map to hold substitutions for replaceable giv regs.
5141 Some givs might have been made from biv increments, so look at
5142 ivs->reg_iv_type for a suitable size. */
5143 reg_map_size = ivs->n_regs;
5144 reg_map = xcalloc (reg_map_size, sizeof (rtx));
5146 /* Examine each iv class for feasibility of strength reduction/induction
5147 variable elimination. */
5149 for (bl = ivs->list; bl; bl = bl->next)
5151 struct induction *v;
5152 int benefit;
5154 /* Test whether it will be possible to eliminate this biv
5155 provided all givs are reduced. */
5156 bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
5158 /* This will be true at the end, if all givs which depend on this
5159 biv have been strength reduced.
5160 We can't (currently) eliminate the biv unless this is so. */
5161 bl->all_reduced = 1;
5163 /* Check each extension dependent giv in this class to see if its
5164 root biv is safe from wrapping in the interior mode. */
5165 check_ext_dependent_givs (loop, bl);
5167 /* Combine all giv's for this iv_class. */
5168 combine_givs (regs, bl);
5170 for (v = bl->giv; v; v = v->next_iv)
5172 struct induction *tv;
5174 if (v->ignore || v->same)
5175 continue;
5177 benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
5179 /* If an insn is not to be strength reduced, then set its ignore
5180 flag, and clear bl->all_reduced. */
5182 /* A giv that depends on a reversed biv must be reduced if it is
5183 used after the loop exit, otherwise, it would have the wrong
5184 value after the loop exit. To make it simple, just reduce all
5185 of such giv's whether or not we know they are used after the loop
5186 exit. */
5188 if (! flag_reduce_all_givs
5189 && v->lifetime * threshold * benefit < insn_count
5190 && ! bl->reversed)
5192 if (loop_dump_stream)
5193 fprintf (loop_dump_stream,
5194 "giv of insn %d not worth while, %d vs %d.\n",
5195 INSN_UID (v->insn),
5196 v->lifetime * threshold * benefit, insn_count);
5197 v->ignore = 1;
5198 bl->all_reduced = 0;
5200 else
5202 /* Check that we can increment the reduced giv without a
5203 multiply insn. If not, reject it. */
5205 for (tv = bl->biv; tv; tv = tv->next_iv)
5206 if (tv->mult_val == const1_rtx
5207 && ! product_cheap_p (tv->add_val, v->mult_val))
5209 if (loop_dump_stream)
5210 fprintf (loop_dump_stream,
5211 "giv of insn %d: would need a multiply.\n",
5212 INSN_UID (v->insn));
5213 v->ignore = 1;
5214 bl->all_reduced = 0;
5215 break;
5220 /* Check for givs whose first use is their definition and whose
5221 last use is the definition of another giv. If so, it is likely
5222 dead and should not be used to derive another giv nor to
5223 eliminate a biv. */
5224 loop_givs_dead_check (loop, bl);
5226 /* Reduce each giv that we decided to reduce. */
5227 loop_givs_reduce (loop, bl);
5229 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5230 as not reduced.
5232 For each giv register that can be reduced now: if replaceable,
5233 substitute reduced reg wherever the old giv occurs;
5234 else add new move insn "giv_reg = reduced_reg". */
5235 loop_givs_rescan (loop, bl, reg_map);
5237 /* All the givs based on the biv bl have been reduced if they
5238 merit it. */
5240 /* For each giv not marked as maybe dead that has been combined with a
5241 second giv, clear any "maybe dead" mark on that second giv.
5242 v->new_reg will either be or refer to the register of the giv it
5243 combined with.
5245 Doing this clearing avoids problems in biv elimination where
5246 a giv's new_reg is a complex value that can't be put in the
5247 insn but the giv combined with (with a reg as new_reg) is
5248 marked maybe_dead. Since the register will be used in either
5249 case, we'd prefer it be used from the simpler giv. */
5251 for (v = bl->giv; v; v = v->next_iv)
5252 if (! v->maybe_dead && v->same)
5253 v->same->maybe_dead = 0;
5255 /* Try to eliminate the biv, if it is a candidate.
5256 This won't work if ! bl->all_reduced,
5257 since the givs we planned to use might not have been reduced.
5259 We have to be careful that we didn't initially think we could
5260 eliminate this biv because of a giv that we now think may be
5261 dead and shouldn't be used as a biv replacement.
5263 Also, there is the possibility that we may have a giv that looks
5264 like it can be used to eliminate a biv, but the resulting insn
5265 isn't valid. This can happen, for example, on the 88k, where a
5266 JUMP_INSN can compare a register only with zero. Attempts to
5267 replace it with a compare with a constant will fail.
5269 Note that in cases where this call fails, we may have replaced some
5270 of the occurrences of the biv with a giv, but no harm was done in
5271 doing so in the rare cases where it can occur. */
5273 if (bl->all_reduced == 1 && bl->eliminable
5274 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
5276 /* ?? If we created a new test to bypass the loop entirely,
5277 or otherwise drop straight in, based on this test, then
5278 we might want to rewrite it also. This way some later
5279 pass has more hope of removing the initialization of this
5280 biv entirely. */
5282 /* If final_value != 0, then the biv may be used after loop end
5283 and we must emit an insn to set it just in case.
5285 Reversed bivs already have an insn after the loop setting their
5286 value, so we don't need another one. We can't calculate the
5287 proper final value for such a biv here anyways. */
5288 if (bl->final_value && ! bl->reversed)
5289 loop_insn_sink_or_swim (loop,
5290 gen_load_of_final_value (bl->biv->dest_reg,
5291 bl->final_value));
5293 if (loop_dump_stream)
5294 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5295 bl->regno);
5297 /* See above note wrt final_value. But since we couldn't eliminate
5298 the biv, we must set the value after the loop instead of before. */
5299 else if (bl->final_value && ! bl->reversed)
5300 loop_insn_sink (loop, gen_load_of_final_value (bl->biv->dest_reg,
5301 bl->final_value));
5304 /* Go through all the instructions in the loop, making all the
5305 register substitutions scheduled in REG_MAP. */
5307 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
5308 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5309 || GET_CODE (p) == CALL_INSN)
5311 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5312 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5313 INSN_CODE (p) = -1;
5316 if (loop_info->n_iterations > 0)
5318 /* When we completely unroll a loop we will likely not need the increment
5319 of the loop BIV and we will not need the conditional branch at the
5320 end of the loop. */
5321 unrolled_insn_copies = insn_count - 2;
5323 #ifdef HAVE_cc0
5324 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5325 need the comparison before the conditional branch at the end of the
5326 loop. */
5327 unrolled_insn_copies -= 1;
5328 #endif
5330 /* We'll need one copy for each loop iteration. */
5331 unrolled_insn_copies *= loop_info->n_iterations;
5333 /* A little slop to account for the ability to remove initialization
5334 code, better CSE, and other secondary benefits of completely
5335 unrolling some loops. */
5336 unrolled_insn_copies -= 1;
5338 /* Clamp the value. */
5339 if (unrolled_insn_copies < 0)
5340 unrolled_insn_copies = 0;
5343 /* Unroll loops from within strength reduction so that we can use the
5344 induction variable information that strength_reduce has already
5345 collected. Always unroll loops that would be as small or smaller
5346 unrolled than when rolled. */
5347 if ((flags & LOOP_UNROLL)
5348 || ((flags & LOOP_AUTO_UNROLL)
5349 && loop_info->n_iterations > 0
5350 && unrolled_insn_copies <= insn_count))
5351 unroll_loop (loop, insn_count, 1);
5353 #ifdef HAVE_doloop_end
5354 if (HAVE_doloop_end && (flags & LOOP_BCT) && flag_branch_on_count_reg)
5355 doloop_optimize (loop);
5356 #endif /* HAVE_doloop_end */
5358 /* In case number of iterations is known, drop branch prediction note
5359 in the branch. Do that only in second loop pass, as loop unrolling
5360 may change the number of iterations performed. */
5361 if (flags & LOOP_BCT)
5363 unsigned HOST_WIDE_INT n
5364 = loop_info->n_iterations / loop_info->unroll_number;
5365 if (n > 1)
5366 predict_insn (prev_nonnote_insn (loop->end), PRED_LOOP_ITERATIONS,
5367 REG_BR_PROB_BASE - REG_BR_PROB_BASE / n);
5370 if (loop_dump_stream)
5371 fprintf (loop_dump_stream, "\n");
5373 loop_ivs_free (loop);
5374 if (reg_map)
5375 free (reg_map);
5378 /*Record all basic induction variables calculated in the insn. */
5379 static rtx
5380 check_insn_for_bivs (struct loop *loop, rtx p, int not_every_iteration,
5381 int maybe_multiple)
5383 struct loop_ivs *ivs = LOOP_IVS (loop);
5384 rtx set;
5385 rtx dest_reg;
5386 rtx inc_val;
5387 rtx mult_val;
5388 rtx *location;
5390 if (GET_CODE (p) == INSN
5391 && (set = single_set (p))
5392 && GET_CODE (SET_DEST (set)) == REG)
5394 dest_reg = SET_DEST (set);
5395 if (REGNO (dest_reg) < max_reg_before_loop
5396 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
5397 && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
5399 if (basic_induction_var (loop, SET_SRC (set),
5400 GET_MODE (SET_SRC (set)),
5401 dest_reg, p, &inc_val, &mult_val,
5402 &location))
5404 /* It is a possible basic induction variable.
5405 Create and initialize an induction structure for it. */
5407 struct induction *v = xmalloc (sizeof (struct induction));
5409 record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
5410 not_every_iteration, maybe_multiple);
5411 REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
5413 else if (REGNO (dest_reg) < ivs->n_regs)
5414 REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
5417 return p;
5420 /* Record all givs calculated in the insn.
5421 A register is a giv if: it is only set once, it is a function of a
5422 biv and a constant (or invariant), and it is not a biv. */
5423 static rtx
5424 check_insn_for_givs (struct loop *loop, rtx p, int not_every_iteration,
5425 int maybe_multiple)
5427 struct loop_regs *regs = LOOP_REGS (loop);
5429 rtx set;
5430 /* Look for a general induction variable in a register. */
5431 if (GET_CODE (p) == INSN
5432 && (set = single_set (p))
5433 && GET_CODE (SET_DEST (set)) == REG
5434 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
5436 rtx src_reg;
5437 rtx dest_reg;
5438 rtx add_val;
5439 rtx mult_val;
5440 rtx ext_val;
5441 int benefit;
5442 rtx regnote = 0;
5443 rtx last_consec_insn;
5445 dest_reg = SET_DEST (set);
5446 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
5447 return p;
5449 if (/* SET_SRC is a giv. */
5450 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
5451 &mult_val, &ext_val, 0, &benefit, VOIDmode)
5452 /* Equivalent expression is a giv. */
5453 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
5454 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
5455 &add_val, &mult_val, &ext_val, 0,
5456 &benefit, VOIDmode)))
5457 /* Don't try to handle any regs made by loop optimization.
5458 We have nothing on them in regno_first_uid, etc. */
5459 && REGNO (dest_reg) < max_reg_before_loop
5460 /* Don't recognize a BASIC_INDUCT_VAR here. */
5461 && dest_reg != src_reg
5462 /* This must be the only place where the register is set. */
5463 && (regs->array[REGNO (dest_reg)].n_times_set == 1
5464 /* or all sets must be consecutive and make a giv. */
5465 || (benefit = consec_sets_giv (loop, benefit, p,
5466 src_reg, dest_reg,
5467 &add_val, &mult_val, &ext_val,
5468 &last_consec_insn))))
5470 struct induction *v = xmalloc (sizeof (struct induction));
5472 /* If this is a library call, increase benefit. */
5473 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5474 benefit += libcall_benefit (p);
5476 /* Skip the consecutive insns, if there are any. */
5477 if (regs->array[REGNO (dest_reg)].n_times_set != 1)
5478 p = last_consec_insn;
5480 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
5481 ext_val, benefit, DEST_REG, not_every_iteration,
5482 maybe_multiple, (rtx*) 0);
5487 /* Look for givs which are memory addresses. */
5488 if (GET_CODE (p) == INSN)
5489 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
5490 maybe_multiple);
5492 /* Update the status of whether giv can derive other givs. This can
5493 change when we pass a label or an insn that updates a biv. */
5494 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5495 || GET_CODE (p) == CODE_LABEL)
5496 update_giv_derive (loop, p);
5497 return p;
5500 /* Return 1 if X is a valid source for an initial value (or as value being
5501 compared against in an initial test).
5503 X must be either a register or constant and must not be clobbered between
5504 the current insn and the start of the loop.
5506 INSN is the insn containing X. */
5508 static int
5509 valid_initial_value_p (rtx x, rtx insn, int call_seen, rtx loop_start)
5511 if (CONSTANT_P (x))
5512 return 1;
5514 /* Only consider pseudos we know about initialized in insns whose luids
5515 we know. */
5516 if (GET_CODE (x) != REG
5517 || REGNO (x) >= max_reg_before_loop)
5518 return 0;
5520 /* Don't use call-clobbered registers across a call which clobbers it. On
5521 some machines, don't use any hard registers at all. */
5522 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5523 && (SMALL_REGISTER_CLASSES
5524 || (call_used_regs[REGNO (x)] && call_seen)))
5525 return 0;
5527 /* Don't use registers that have been clobbered before the start of the
5528 loop. */
5529 if (reg_set_between_p (x, insn, loop_start))
5530 return 0;
5532 return 1;
5535 /* Scan X for memory refs and check each memory address
5536 as a possible giv. INSN is the insn whose pattern X comes from.
5537 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5538 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5539 more than once in each loop iteration. */
5541 static void
5542 find_mem_givs (const struct loop *loop, rtx x, rtx insn,
5543 int not_every_iteration, int maybe_multiple)
5545 int i, j;
5546 enum rtx_code code;
5547 const char *fmt;
5549 if (x == 0)
5550 return;
5552 code = GET_CODE (x);
5553 switch (code)
5555 case REG:
5556 case CONST_INT:
5557 case CONST:
5558 case CONST_DOUBLE:
5559 case SYMBOL_REF:
5560 case LABEL_REF:
5561 case PC:
5562 case CC0:
5563 case ADDR_VEC:
5564 case ADDR_DIFF_VEC:
5565 case USE:
5566 case CLOBBER:
5567 return;
5569 case MEM:
5571 rtx src_reg;
5572 rtx add_val;
5573 rtx mult_val;
5574 rtx ext_val;
5575 int benefit;
5577 /* This code used to disable creating GIVs with mult_val == 1 and
5578 add_val == 0. However, this leads to lost optimizations when
5579 it comes time to combine a set of related DEST_ADDR GIVs, since
5580 this one would not be seen. */
5582 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
5583 &mult_val, &ext_val, 1, &benefit,
5584 GET_MODE (x)))
5586 /* Found one; record it. */
5587 struct induction *v = xmalloc (sizeof (struct induction));
5589 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
5590 add_val, ext_val, benefit, DEST_ADDR,
5591 not_every_iteration, maybe_multiple, &XEXP (x, 0));
5593 v->mem = x;
5596 return;
5598 default:
5599 break;
5602 /* Recursively scan the subexpressions for other mem refs. */
5604 fmt = GET_RTX_FORMAT (code);
5605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5606 if (fmt[i] == 'e')
5607 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
5608 maybe_multiple);
5609 else if (fmt[i] == 'E')
5610 for (j = 0; j < XVECLEN (x, i); j++)
5611 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
5612 maybe_multiple);
5615 /* Fill in the data about one biv update.
5616 V is the `struct induction' in which we record the biv. (It is
5617 allocated by the caller, with alloca.)
5618 INSN is the insn that sets it.
5619 DEST_REG is the biv's reg.
5621 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5622 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5623 being set to INC_VAL.
5625 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5626 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5627 can be executed more than once per iteration. If MAYBE_MULTIPLE
5628 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5629 executed exactly once per iteration. */
5631 static void
5632 record_biv (struct loop *loop, struct induction *v, rtx insn, rtx dest_reg,
5633 rtx inc_val, rtx mult_val, rtx *location,
5634 int not_every_iteration, int maybe_multiple)
5636 struct loop_ivs *ivs = LOOP_IVS (loop);
5637 struct iv_class *bl;
5639 v->insn = insn;
5640 v->src_reg = dest_reg;
5641 v->dest_reg = dest_reg;
5642 v->mult_val = mult_val;
5643 v->add_val = inc_val;
5644 v->ext_dependent = NULL_RTX;
5645 v->location = location;
5646 v->mode = GET_MODE (dest_reg);
5647 v->always_computable = ! not_every_iteration;
5648 v->always_executed = ! not_every_iteration;
5649 v->maybe_multiple = maybe_multiple;
5650 v->same = 0;
5652 /* Add this to the reg's iv_class, creating a class
5653 if this is the first incrementation of the reg. */
5655 bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
5656 if (bl == 0)
5658 /* Create and initialize new iv_class. */
5660 bl = xmalloc (sizeof (struct iv_class));
5662 bl->regno = REGNO (dest_reg);
5663 bl->biv = 0;
5664 bl->giv = 0;
5665 bl->biv_count = 0;
5666 bl->giv_count = 0;
5668 /* Set initial value to the reg itself. */
5669 bl->initial_value = dest_reg;
5670 bl->final_value = 0;
5671 /* We haven't seen the initializing insn yet. */
5672 bl->init_insn = 0;
5673 bl->init_set = 0;
5674 bl->initial_test = 0;
5675 bl->incremented = 0;
5676 bl->eliminable = 0;
5677 bl->nonneg = 0;
5678 bl->reversed = 0;
5679 bl->total_benefit = 0;
5681 /* Add this class to ivs->list. */
5682 bl->next = ivs->list;
5683 ivs->list = bl;
5685 /* Put it in the array of biv register classes. */
5686 REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
5688 else
5690 /* Check if location is the same as a previous one. */
5691 struct induction *induction;
5692 for (induction = bl->biv; induction; induction = induction->next_iv)
5693 if (location == induction->location)
5695 v->same = induction;
5696 break;
5700 /* Update IV_CLASS entry for this biv. */
5701 v->next_iv = bl->biv;
5702 bl->biv = v;
5703 bl->biv_count++;
5704 if (mult_val == const1_rtx)
5705 bl->incremented = 1;
5707 if (loop_dump_stream)
5708 loop_biv_dump (v, loop_dump_stream, 0);
5711 /* Fill in the data about one giv.
5712 V is the `struct induction' in which we record the giv. (It is
5713 allocated by the caller, with alloca.)
5714 INSN is the insn that sets it.
5715 BENEFIT estimates the savings from deleting this insn.
5716 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5717 into a register or is used as a memory address.
5719 SRC_REG is the biv reg which the giv is computed from.
5720 DEST_REG is the giv's reg (if the giv is stored in a reg).
5721 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5722 LOCATION points to the place where this giv's value appears in INSN. */
5724 static void
5725 record_giv (const struct loop *loop, struct induction *v, rtx insn,
5726 rtx src_reg, rtx dest_reg, rtx mult_val, rtx add_val,
5727 rtx ext_val, int benefit, enum g_types type,
5728 int not_every_iteration, int maybe_multiple, rtx *location)
5730 struct loop_ivs *ivs = LOOP_IVS (loop);
5731 struct induction *b;
5732 struct iv_class *bl;
5733 rtx set = single_set (insn);
5734 rtx temp;
5736 /* Attempt to prove constantness of the values. Don't let simplify_rtx
5737 undo the MULT canonicalization that we performed earlier. */
5738 temp = simplify_rtx (add_val);
5739 if (temp
5740 && ! (GET_CODE (add_val) == MULT
5741 && GET_CODE (temp) == ASHIFT))
5742 add_val = temp;
5744 v->insn = insn;
5745 v->src_reg = src_reg;
5746 v->giv_type = type;
5747 v->dest_reg = dest_reg;
5748 v->mult_val = mult_val;
5749 v->add_val = add_val;
5750 v->ext_dependent = ext_val;
5751 v->benefit = benefit;
5752 v->location = location;
5753 v->cant_derive = 0;
5754 v->combined_with = 0;
5755 v->maybe_multiple = maybe_multiple;
5756 v->maybe_dead = 0;
5757 v->derive_adjustment = 0;
5758 v->same = 0;
5759 v->ignore = 0;
5760 v->new_reg = 0;
5761 v->final_value = 0;
5762 v->same_insn = 0;
5763 v->auto_inc_opt = 0;
5764 v->unrolled = 0;
5765 v->shared = 0;
5767 /* The v->always_computable field is used in update_giv_derive, to
5768 determine whether a giv can be used to derive another giv. For a
5769 DEST_REG giv, INSN computes a new value for the giv, so its value
5770 isn't computable if INSN insn't executed every iteration.
5771 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5772 it does not compute a new value. Hence the value is always computable
5773 regardless of whether INSN is executed each iteration. */
5775 if (type == DEST_ADDR)
5776 v->always_computable = 1;
5777 else
5778 v->always_computable = ! not_every_iteration;
5780 v->always_executed = ! not_every_iteration;
5782 if (type == DEST_ADDR)
5784 v->mode = GET_MODE (*location);
5785 v->lifetime = 1;
5787 else /* type == DEST_REG */
5789 v->mode = GET_MODE (SET_DEST (set));
5791 v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
5793 /* If the lifetime is zero, it means that this register is
5794 really a dead store. So mark this as a giv that can be
5795 ignored. This will not prevent the biv from being eliminated. */
5796 if (v->lifetime == 0)
5797 v->ignore = 1;
5799 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
5800 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
5803 /* Add the giv to the class of givs computed from one biv. */
5805 bl = REG_IV_CLASS (ivs, REGNO (src_reg));
5806 if (bl)
5808 v->next_iv = bl->giv;
5809 bl->giv = v;
5810 /* Don't count DEST_ADDR. This is supposed to count the number of
5811 insns that calculate givs. */
5812 if (type == DEST_REG)
5813 bl->giv_count++;
5814 bl->total_benefit += benefit;
5816 else
5817 /* Fatal error, biv missing for this giv? */
5818 abort ();
5820 if (type == DEST_ADDR)
5822 v->replaceable = 1;
5823 v->not_replaceable = 0;
5825 else
5827 /* The giv can be replaced outright by the reduced register only if all
5828 of the following conditions are true:
5829 - the insn that sets the giv is always executed on any iteration
5830 on which the giv is used at all
5831 (there are two ways to deduce this:
5832 either the insn is executed on every iteration,
5833 or all uses follow that insn in the same basic block),
5834 - the giv is not used outside the loop
5835 - no assignments to the biv occur during the giv's lifetime. */
5837 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5838 /* Previous line always fails if INSN was moved by loop opt. */
5839 && REGNO_LAST_LUID (REGNO (dest_reg))
5840 < INSN_LUID (loop->end)
5841 && (! not_every_iteration
5842 || last_use_this_basic_block (dest_reg, insn)))
5844 /* Now check that there are no assignments to the biv within the
5845 giv's lifetime. This requires two separate checks. */
5847 /* Check each biv update, and fail if any are between the first
5848 and last use of the giv.
5850 If this loop contains an inner loop that was unrolled, then
5851 the insn modifying the biv may have been emitted by the loop
5852 unrolling code, and hence does not have a valid luid. Just
5853 mark the biv as not replaceable in this case. It is not very
5854 useful as a biv, because it is used in two different loops.
5855 It is very unlikely that we would be able to optimize the giv
5856 using this biv anyways. */
5858 v->replaceable = 1;
5859 v->not_replaceable = 0;
5860 for (b = bl->biv; b; b = b->next_iv)
5862 if (INSN_UID (b->insn) >= max_uid_for_loop
5863 || ((INSN_LUID (b->insn)
5864 >= REGNO_FIRST_LUID (REGNO (dest_reg)))
5865 && (INSN_LUID (b->insn)
5866 <= REGNO_LAST_LUID (REGNO (dest_reg)))))
5868 v->replaceable = 0;
5869 v->not_replaceable = 1;
5870 break;
5874 /* If there are any backwards branches that go from after the
5875 biv update to before it, then this giv is not replaceable. */
5876 if (v->replaceable)
5877 for (b = bl->biv; b; b = b->next_iv)
5878 if (back_branch_in_range_p (loop, b->insn))
5880 v->replaceable = 0;
5881 v->not_replaceable = 1;
5882 break;
5885 else
5887 /* May still be replaceable, we don't have enough info here to
5888 decide. */
5889 v->replaceable = 0;
5890 v->not_replaceable = 0;
5894 /* Record whether the add_val contains a const_int, for later use by
5895 combine_givs. */
5897 rtx tem = add_val;
5899 v->no_const_addval = 1;
5900 if (tem == const0_rtx)
5902 else if (CONSTANT_P (add_val))
5903 v->no_const_addval = 0;
5904 if (GET_CODE (tem) == PLUS)
5906 while (1)
5908 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5909 tem = XEXP (tem, 0);
5910 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5911 tem = XEXP (tem, 1);
5912 else
5913 break;
5915 if (CONSTANT_P (XEXP (tem, 1)))
5916 v->no_const_addval = 0;
5920 if (loop_dump_stream)
5921 loop_giv_dump (v, loop_dump_stream, 0);
5924 /* All this does is determine whether a giv can be made replaceable because
5925 its final value can be calculated. This code can not be part of record_giv
5926 above, because final_giv_value requires that the number of loop iterations
5927 be known, and that can not be accurately calculated until after all givs
5928 have been identified. */
5930 static void
5931 check_final_value (const struct loop *loop, struct induction *v)
5933 rtx final_value = 0;
5935 /* DEST_ADDR givs will never reach here, because they are always marked
5936 replaceable above in record_giv. */
5938 /* The giv can be replaced outright by the reduced register only if all
5939 of the following conditions are true:
5940 - the insn that sets the giv is always executed on any iteration
5941 on which the giv is used at all
5942 (there are two ways to deduce this:
5943 either the insn is executed on every iteration,
5944 or all uses follow that insn in the same basic block),
5945 - its final value can be calculated (this condition is different
5946 than the one above in record_giv)
5947 - it's not used before the it's set
5948 - no assignments to the biv occur during the giv's lifetime. */
5950 #if 0
5951 /* This is only called now when replaceable is known to be false. */
5952 /* Clear replaceable, so that it won't confuse final_giv_value. */
5953 v->replaceable = 0;
5954 #endif
5956 if ((final_value = final_giv_value (loop, v))
5957 && (v->always_executed
5958 || last_use_this_basic_block (v->dest_reg, v->insn)))
5960 int biv_increment_seen = 0, before_giv_insn = 0;
5961 rtx p = v->insn;
5962 rtx last_giv_use;
5964 v->replaceable = 1;
5965 v->not_replaceable = 0;
5967 /* When trying to determine whether or not a biv increment occurs
5968 during the lifetime of the giv, we can ignore uses of the variable
5969 outside the loop because final_value is true. Hence we can not
5970 use regno_last_uid and regno_first_uid as above in record_giv. */
5972 /* Search the loop to determine whether any assignments to the
5973 biv occur during the giv's lifetime. Start with the insn
5974 that sets the giv, and search around the loop until we come
5975 back to that insn again.
5977 Also fail if there is a jump within the giv's lifetime that jumps
5978 to somewhere outside the lifetime but still within the loop. This
5979 catches spaghetti code where the execution order is not linear, and
5980 hence the above test fails. Here we assume that the giv lifetime
5981 does not extend from one iteration of the loop to the next, so as
5982 to make the test easier. Since the lifetime isn't known yet,
5983 this requires two loops. See also record_giv above. */
5985 last_giv_use = v->insn;
5987 while (1)
5989 p = NEXT_INSN (p);
5990 if (p == loop->end)
5992 before_giv_insn = 1;
5993 p = NEXT_INSN (loop->start);
5995 if (p == v->insn)
5996 break;
5998 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5999 || GET_CODE (p) == CALL_INSN)
6001 /* It is possible for the BIV increment to use the GIV if we
6002 have a cycle. Thus we must be sure to check each insn for
6003 both BIV and GIV uses, and we must check for BIV uses
6004 first. */
6006 if (! biv_increment_seen
6007 && reg_set_p (v->src_reg, PATTERN (p)))
6008 biv_increment_seen = 1;
6010 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
6012 if (biv_increment_seen || before_giv_insn)
6014 v->replaceable = 0;
6015 v->not_replaceable = 1;
6016 break;
6018 last_giv_use = p;
6023 /* Now that the lifetime of the giv is known, check for branches
6024 from within the lifetime to outside the lifetime if it is still
6025 replaceable. */
6027 if (v->replaceable)
6029 p = v->insn;
6030 while (1)
6032 p = NEXT_INSN (p);
6033 if (p == loop->end)
6034 p = NEXT_INSN (loop->start);
6035 if (p == last_giv_use)
6036 break;
6038 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
6039 && LABEL_NAME (JUMP_LABEL (p))
6040 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
6041 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
6042 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
6043 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
6045 v->replaceable = 0;
6046 v->not_replaceable = 1;
6048 if (loop_dump_stream)
6049 fprintf (loop_dump_stream,
6050 "Found branch outside giv lifetime.\n");
6052 break;
6057 /* If it is replaceable, then save the final value. */
6058 if (v->replaceable)
6059 v->final_value = final_value;
6062 if (loop_dump_stream && v->replaceable)
6063 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
6064 INSN_UID (v->insn), REGNO (v->dest_reg));
6067 /* Update the status of whether a giv can derive other givs.
6069 We need to do something special if there is or may be an update to the biv
6070 between the time the giv is defined and the time it is used to derive
6071 another giv.
6073 In addition, a giv that is only conditionally set is not allowed to
6074 derive another giv once a label has been passed.
6076 The cases we look at are when a label or an update to a biv is passed. */
6078 static void
6079 update_giv_derive (const struct loop *loop, rtx p)
6081 struct loop_ivs *ivs = LOOP_IVS (loop);
6082 struct iv_class *bl;
6083 struct induction *biv, *giv;
6084 rtx tem;
6085 int dummy;
6087 /* Search all IV classes, then all bivs, and finally all givs.
6089 There are three cases we are concerned with. First we have the situation
6090 of a giv that is only updated conditionally. In that case, it may not
6091 derive any givs after a label is passed.
6093 The second case is when a biv update occurs, or may occur, after the
6094 definition of a giv. For certain biv updates (see below) that are
6095 known to occur between the giv definition and use, we can adjust the
6096 giv definition. For others, or when the biv update is conditional,
6097 we must prevent the giv from deriving any other givs. There are two
6098 sub-cases within this case.
6100 If this is a label, we are concerned with any biv update that is done
6101 conditionally, since it may be done after the giv is defined followed by
6102 a branch here (actually, we need to pass both a jump and a label, but
6103 this extra tracking doesn't seem worth it).
6105 If this is a jump, we are concerned about any biv update that may be
6106 executed multiple times. We are actually only concerned about
6107 backward jumps, but it is probably not worth performing the test
6108 on the jump again here.
6110 If this is a biv update, we must adjust the giv status to show that a
6111 subsequent biv update was performed. If this adjustment cannot be done,
6112 the giv cannot derive further givs. */
6114 for (bl = ivs->list; bl; bl = bl->next)
6115 for (biv = bl->biv; biv; biv = biv->next_iv)
6116 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
6117 || biv->insn == p)
6119 /* Skip if location is the same as a previous one. */
6120 if (biv->same)
6121 continue;
6123 for (giv = bl->giv; giv; giv = giv->next_iv)
6125 /* If cant_derive is already true, there is no point in
6126 checking all of these conditions again. */
6127 if (giv->cant_derive)
6128 continue;
6130 /* If this giv is conditionally set and we have passed a label,
6131 it cannot derive anything. */
6132 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
6133 giv->cant_derive = 1;
6135 /* Skip givs that have mult_val == 0, since
6136 they are really invariants. Also skip those that are
6137 replaceable, since we know their lifetime doesn't contain
6138 any biv update. */
6139 else if (giv->mult_val == const0_rtx || giv->replaceable)
6140 continue;
6142 /* The only way we can allow this giv to derive another
6143 is if this is a biv increment and we can form the product
6144 of biv->add_val and giv->mult_val. In this case, we will
6145 be able to compute a compensation. */
6146 else if (biv->insn == p)
6148 rtx ext_val_dummy;
6150 tem = 0;
6151 if (biv->mult_val == const1_rtx)
6152 tem = simplify_giv_expr (loop,
6153 gen_rtx_MULT (giv->mode,
6154 biv->add_val,
6155 giv->mult_val),
6156 &ext_val_dummy, &dummy);
6158 if (tem && giv->derive_adjustment)
6159 tem = simplify_giv_expr
6160 (loop,
6161 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
6162 &ext_val_dummy, &dummy);
6164 if (tem)
6165 giv->derive_adjustment = tem;
6166 else
6167 giv->cant_derive = 1;
6169 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
6170 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
6171 giv->cant_derive = 1;
6176 /* Check whether an insn is an increment legitimate for a basic induction var.
6177 X is the source of insn P, or a part of it.
6178 MODE is the mode in which X should be interpreted.
6180 DEST_REG is the putative biv, also the destination of the insn.
6181 We accept patterns of these forms:
6182 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6183 REG = INVARIANT + REG
6185 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6186 store the additive term into *INC_VAL, and store the place where
6187 we found the additive term into *LOCATION.
6189 If X is an assignment of an invariant into DEST_REG, we set
6190 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6192 We also want to detect a BIV when it corresponds to a variable
6193 whose mode was promoted. In that case, an increment
6194 of the variable may be a PLUS that adds a SUBREG of that variable to
6195 an invariant and then sign- or zero-extends the result of the PLUS
6196 into the variable.
6198 Most GIVs in such cases will be in the promoted mode, since that is the
6199 probably the natural computation mode (and almost certainly the mode
6200 used for addresses) on the machine. So we view the pseudo-reg containing
6201 the variable as the BIV, as if it were simply incremented.
6203 Note that treating the entire pseudo as a BIV will result in making
6204 simple increments to any GIVs based on it. However, if the variable
6205 overflows in its declared mode but not its promoted mode, the result will
6206 be incorrect. This is acceptable if the variable is signed, since
6207 overflows in such cases are undefined, but not if it is unsigned, since
6208 those overflows are defined. So we only check for SIGN_EXTEND and
6209 not ZERO_EXTEND.
6211 If we cannot find a biv, we return 0. */
6213 static int
6214 basic_induction_var (const struct loop *loop, rtx x, enum machine_mode mode,
6215 rtx dest_reg, rtx p, rtx *inc_val, rtx *mult_val,
6216 rtx **location)
6218 enum rtx_code code;
6219 rtx *argp, arg;
6220 rtx insn, set = 0, last, inc;
6222 code = GET_CODE (x);
6223 *location = NULL;
6224 switch (code)
6226 case PLUS:
6227 if (rtx_equal_p (XEXP (x, 0), dest_reg)
6228 || (GET_CODE (XEXP (x, 0)) == SUBREG
6229 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
6230 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
6232 argp = &XEXP (x, 1);
6234 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
6235 || (GET_CODE (XEXP (x, 1)) == SUBREG
6236 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
6237 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
6239 argp = &XEXP (x, 0);
6241 else
6242 return 0;
6244 arg = *argp;
6245 if (loop_invariant_p (loop, arg) != 1)
6246 return 0;
6248 /* convert_modes can emit new instructions, e.g. when arg is a loop
6249 invariant MEM and dest_reg has a different mode.
6250 These instructions would be emitted after the end of the function
6251 and then *inc_val would be an uninitialized pseudo.
6252 Detect this and bail in this case.
6253 Other alternatives to solve this can be introducing a convert_modes
6254 variant which is allowed to fail but not allowed to emit new
6255 instructions, emit these instructions before loop start and let
6256 it be garbage collected if *inc_val is never used or saving the
6257 *inc_val initialization sequence generated here and when *inc_val
6258 is going to be actually used, emit it at some suitable place. */
6259 last = get_last_insn ();
6260 inc = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
6261 if (get_last_insn () != last)
6263 delete_insns_since (last);
6264 return 0;
6267 *inc_val = inc;
6268 *mult_val = const1_rtx;
6269 *location = argp;
6270 return 1;
6272 case SUBREG:
6273 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
6274 handle addition of promoted variables.
6275 ??? The comment at the start of this function is wrong: promoted
6276 variable increments don't look like it says they do. */
6277 return basic_induction_var (loop, SUBREG_REG (x),
6278 GET_MODE (SUBREG_REG (x)),
6279 dest_reg, p, inc_val, mult_val, location);
6281 case REG:
6282 /* If this register is assigned in a previous insn, look at its
6283 source, but don't go outside the loop or past a label. */
6285 /* If this sets a register to itself, we would repeat any previous
6286 biv increment if we applied this strategy blindly. */
6287 if (rtx_equal_p (dest_reg, x))
6288 return 0;
6290 insn = p;
6291 while (1)
6293 rtx dest;
6296 insn = PREV_INSN (insn);
6298 while (insn && GET_CODE (insn) == NOTE
6299 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6301 if (!insn)
6302 break;
6303 set = single_set (insn);
6304 if (set == 0)
6305 break;
6306 dest = SET_DEST (set);
6307 if (dest == x
6308 || (GET_CODE (dest) == SUBREG
6309 && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
6310 && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
6311 && SUBREG_REG (dest) == x))
6312 return basic_induction_var (loop, SET_SRC (set),
6313 (GET_MODE (SET_SRC (set)) == VOIDmode
6314 ? GET_MODE (x)
6315 : GET_MODE (SET_SRC (set))),
6316 dest_reg, insn,
6317 inc_val, mult_val, location);
6319 while (GET_CODE (dest) == SIGN_EXTRACT
6320 || GET_CODE (dest) == ZERO_EXTRACT
6321 || GET_CODE (dest) == SUBREG
6322 || GET_CODE (dest) == STRICT_LOW_PART)
6323 dest = XEXP (dest, 0);
6324 if (dest == x)
6325 break;
6327 /* Fall through. */
6329 /* Can accept constant setting of biv only when inside inner most loop.
6330 Otherwise, a biv of an inner loop may be incorrectly recognized
6331 as a biv of the outer loop,
6332 causing code to be moved INTO the inner loop. */
6333 case MEM:
6334 if (loop_invariant_p (loop, x) != 1)
6335 return 0;
6336 case CONST_INT:
6337 case SYMBOL_REF:
6338 case CONST:
6339 /* convert_modes aborts if we try to convert to or from CCmode, so just
6340 exclude that case. It is very unlikely that a condition code value
6341 would be a useful iterator anyways. convert_modes aborts if we try to
6342 convert a float mode to non-float or vice versa too. */
6343 if (loop->level == 1
6344 && GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (dest_reg))
6345 && GET_MODE_CLASS (mode) != MODE_CC)
6347 /* Possible bug here? Perhaps we don't know the mode of X. */
6348 last = get_last_insn ();
6349 inc = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6350 if (get_last_insn () != last)
6352 delete_insns_since (last);
6353 return 0;
6356 *inc_val = inc;
6357 *mult_val = const0_rtx;
6358 return 1;
6360 else
6361 return 0;
6363 case SIGN_EXTEND:
6364 /* Ignore this BIV if signed arithmetic overflow is defined. */
6365 if (flag_wrapv)
6366 return 0;
6367 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6368 dest_reg, p, inc_val, mult_val, location);
6370 case ASHIFTRT:
6371 /* Similar, since this can be a sign extension. */
6372 for (insn = PREV_INSN (p);
6373 (insn && GET_CODE (insn) == NOTE
6374 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6375 insn = PREV_INSN (insn))
6378 if (insn)
6379 set = single_set (insn);
6381 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
6382 && set && SET_DEST (set) == XEXP (x, 0)
6383 && GET_CODE (XEXP (x, 1)) == CONST_INT
6384 && INTVAL (XEXP (x, 1)) >= 0
6385 && GET_CODE (SET_SRC (set)) == ASHIFT
6386 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
6387 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
6388 GET_MODE (XEXP (x, 0)),
6389 dest_reg, insn, inc_val, mult_val,
6390 location);
6391 return 0;
6393 default:
6394 return 0;
6398 /* A general induction variable (giv) is any quantity that is a linear
6399 function of a basic induction variable,
6400 i.e. giv = biv * mult_val + add_val.
6401 The coefficients can be any loop invariant quantity.
6402 A giv need not be computed directly from the biv;
6403 it can be computed by way of other givs. */
6405 /* Determine whether X computes a giv.
6406 If it does, return a nonzero value
6407 which is the benefit from eliminating the computation of X;
6408 set *SRC_REG to the register of the biv that it is computed from;
6409 set *ADD_VAL and *MULT_VAL to the coefficients,
6410 such that the value of X is biv * mult + add; */
6412 static int
6413 general_induction_var (const struct loop *loop, rtx x, rtx *src_reg,
6414 rtx *add_val, rtx *mult_val, rtx *ext_val,
6415 int is_addr, int *pbenefit,
6416 enum machine_mode addr_mode)
6418 struct loop_ivs *ivs = LOOP_IVS (loop);
6419 rtx orig_x = x;
6421 /* If this is an invariant, forget it, it isn't a giv. */
6422 if (loop_invariant_p (loop, x) == 1)
6423 return 0;
6425 *pbenefit = 0;
6426 *ext_val = NULL_RTX;
6427 x = simplify_giv_expr (loop, x, ext_val, pbenefit);
6428 if (x == 0)
6429 return 0;
6431 switch (GET_CODE (x))
6433 case USE:
6434 case CONST_INT:
6435 /* Since this is now an invariant and wasn't before, it must be a giv
6436 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6437 with. */
6438 *src_reg = ivs->list->biv->dest_reg;
6439 *mult_val = const0_rtx;
6440 *add_val = x;
6441 break;
6443 case REG:
6444 /* This is equivalent to a BIV. */
6445 *src_reg = x;
6446 *mult_val = const1_rtx;
6447 *add_val = const0_rtx;
6448 break;
6450 case PLUS:
6451 /* Either (plus (biv) (invar)) or
6452 (plus (mult (biv) (invar_1)) (invar_2)). */
6453 if (GET_CODE (XEXP (x, 0)) == MULT)
6455 *src_reg = XEXP (XEXP (x, 0), 0);
6456 *mult_val = XEXP (XEXP (x, 0), 1);
6458 else
6460 *src_reg = XEXP (x, 0);
6461 *mult_val = const1_rtx;
6463 *add_val = XEXP (x, 1);
6464 break;
6466 case MULT:
6467 /* ADD_VAL is zero. */
6468 *src_reg = XEXP (x, 0);
6469 *mult_val = XEXP (x, 1);
6470 *add_val = const0_rtx;
6471 break;
6473 default:
6474 abort ();
6477 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6478 unless they are CONST_INT). */
6479 if (GET_CODE (*add_val) == USE)
6480 *add_val = XEXP (*add_val, 0);
6481 if (GET_CODE (*mult_val) == USE)
6482 *mult_val = XEXP (*mult_val, 0);
6484 if (is_addr)
6485 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
6486 else
6487 *pbenefit += rtx_cost (orig_x, SET);
6489 /* Always return true if this is a giv so it will be detected as such,
6490 even if the benefit is zero or negative. This allows elimination
6491 of bivs that might otherwise not be eliminated. */
6492 return 1;
6495 /* Given an expression, X, try to form it as a linear function of a biv.
6496 We will canonicalize it to be of the form
6497 (plus (mult (BIV) (invar_1))
6498 (invar_2))
6499 with possible degeneracies.
6501 The invariant expressions must each be of a form that can be used as a
6502 machine operand. We surround then with a USE rtx (a hack, but localized
6503 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6504 routine; it is the caller's responsibility to strip them.
6506 If no such canonicalization is possible (i.e., two biv's are used or an
6507 expression that is neither invariant nor a biv or giv), this routine
6508 returns 0.
6510 For a nonzero return, the result will have a code of CONST_INT, USE,
6511 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6513 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6515 static rtx sge_plus (enum machine_mode, rtx, rtx);
6516 static rtx sge_plus_constant (rtx, rtx);
6518 static rtx
6519 simplify_giv_expr (const struct loop *loop, rtx x, rtx *ext_val, int *benefit)
6521 struct loop_ivs *ivs = LOOP_IVS (loop);
6522 struct loop_regs *regs = LOOP_REGS (loop);
6523 enum machine_mode mode = GET_MODE (x);
6524 rtx arg0, arg1;
6525 rtx tem;
6527 /* If this is not an integer mode, or if we cannot do arithmetic in this
6528 mode, this can't be a giv. */
6529 if (mode != VOIDmode
6530 && (GET_MODE_CLASS (mode) != MODE_INT
6531 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6532 return NULL_RTX;
6534 switch (GET_CODE (x))
6536 case PLUS:
6537 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6538 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6539 if (arg0 == 0 || arg1 == 0)
6540 return NULL_RTX;
6542 /* Put constant last, CONST_INT last if both constant. */
6543 if ((GET_CODE (arg0) == USE
6544 || GET_CODE (arg0) == CONST_INT)
6545 && ! ((GET_CODE (arg0) == USE
6546 && GET_CODE (arg1) == USE)
6547 || GET_CODE (arg1) == CONST_INT))
6548 tem = arg0, arg0 = arg1, arg1 = tem;
6550 /* Handle addition of zero, then addition of an invariant. */
6551 if (arg1 == const0_rtx)
6552 return arg0;
6553 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6554 switch (GET_CODE (arg0))
6556 case CONST_INT:
6557 case USE:
6558 /* Adding two invariants must result in an invariant, so enclose
6559 addition operation inside a USE and return it. */
6560 if (GET_CODE (arg0) == USE)
6561 arg0 = XEXP (arg0, 0);
6562 if (GET_CODE (arg1) == USE)
6563 arg1 = XEXP (arg1, 0);
6565 if (GET_CODE (arg0) == CONST_INT)
6566 tem = arg0, arg0 = arg1, arg1 = tem;
6567 if (GET_CODE (arg1) == CONST_INT)
6568 tem = sge_plus_constant (arg0, arg1);
6569 else
6570 tem = sge_plus (mode, arg0, arg1);
6572 if (GET_CODE (tem) != CONST_INT)
6573 tem = gen_rtx_USE (mode, tem);
6574 return tem;
6576 case REG:
6577 case MULT:
6578 /* biv + invar or mult + invar. Return sum. */
6579 return gen_rtx_PLUS (mode, arg0, arg1);
6581 case PLUS:
6582 /* (a + invar_1) + invar_2. Associate. */
6583 return
6584 simplify_giv_expr (loop,
6585 gen_rtx_PLUS (mode,
6586 XEXP (arg0, 0),
6587 gen_rtx_PLUS (mode,
6588 XEXP (arg0, 1),
6589 arg1)),
6590 ext_val, benefit);
6592 default:
6593 abort ();
6596 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6597 MULT to reduce cases. */
6598 if (GET_CODE (arg0) == REG)
6599 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6600 if (GET_CODE (arg1) == REG)
6601 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6603 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6604 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6605 Recurse to associate the second PLUS. */
6606 if (GET_CODE (arg1) == MULT)
6607 tem = arg0, arg0 = arg1, arg1 = tem;
6609 if (GET_CODE (arg1) == PLUS)
6610 return
6611 simplify_giv_expr (loop,
6612 gen_rtx_PLUS (mode,
6613 gen_rtx_PLUS (mode, arg0,
6614 XEXP (arg1, 0)),
6615 XEXP (arg1, 1)),
6616 ext_val, benefit);
6618 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6619 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6620 return NULL_RTX;
6622 if (!rtx_equal_p (arg0, arg1))
6623 return NULL_RTX;
6625 return simplify_giv_expr (loop,
6626 gen_rtx_MULT (mode,
6627 XEXP (arg0, 0),
6628 gen_rtx_PLUS (mode,
6629 XEXP (arg0, 1),
6630 XEXP (arg1, 1))),
6631 ext_val, benefit);
6633 case MINUS:
6634 /* Handle "a - b" as "a + b * (-1)". */
6635 return simplify_giv_expr (loop,
6636 gen_rtx_PLUS (mode,
6637 XEXP (x, 0),
6638 gen_rtx_MULT (mode,
6639 XEXP (x, 1),
6640 constm1_rtx)),
6641 ext_val, benefit);
6643 case MULT:
6644 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6645 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6646 if (arg0 == 0 || arg1 == 0)
6647 return NULL_RTX;
6649 /* Put constant last, CONST_INT last if both constant. */
6650 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6651 && GET_CODE (arg1) != CONST_INT)
6652 tem = arg0, arg0 = arg1, arg1 = tem;
6654 /* If second argument is not now constant, not giv. */
6655 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6656 return NULL_RTX;
6658 /* Handle multiply by 0 or 1. */
6659 if (arg1 == const0_rtx)
6660 return const0_rtx;
6662 else if (arg1 == const1_rtx)
6663 return arg0;
6665 switch (GET_CODE (arg0))
6667 case REG:
6668 /* biv * invar. Done. */
6669 return gen_rtx_MULT (mode, arg0, arg1);
6671 case CONST_INT:
6672 /* Product of two constants. */
6673 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6675 case USE:
6676 /* invar * invar is a giv, but attempt to simplify it somehow. */
6677 if (GET_CODE (arg1) != CONST_INT)
6678 return NULL_RTX;
6680 arg0 = XEXP (arg0, 0);
6681 if (GET_CODE (arg0) == MULT)
6683 /* (invar_0 * invar_1) * invar_2. Associate. */
6684 return simplify_giv_expr (loop,
6685 gen_rtx_MULT (mode,
6686 XEXP (arg0, 0),
6687 gen_rtx_MULT (mode,
6688 XEXP (arg0,
6690 arg1)),
6691 ext_val, benefit);
6693 /* Propagate the MULT expressions to the innermost nodes. */
6694 else if (GET_CODE (arg0) == PLUS)
6696 /* (invar_0 + invar_1) * invar_2. Distribute. */
6697 return simplify_giv_expr (loop,
6698 gen_rtx_PLUS (mode,
6699 gen_rtx_MULT (mode,
6700 XEXP (arg0,
6702 arg1),
6703 gen_rtx_MULT (mode,
6704 XEXP (arg0,
6706 arg1)),
6707 ext_val, benefit);
6709 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
6711 case MULT:
6712 /* (a * invar_1) * invar_2. Associate. */
6713 return simplify_giv_expr (loop,
6714 gen_rtx_MULT (mode,
6715 XEXP (arg0, 0),
6716 gen_rtx_MULT (mode,
6717 XEXP (arg0, 1),
6718 arg1)),
6719 ext_val, benefit);
6721 case PLUS:
6722 /* (a + invar_1) * invar_2. Distribute. */
6723 return simplify_giv_expr (loop,
6724 gen_rtx_PLUS (mode,
6725 gen_rtx_MULT (mode,
6726 XEXP (arg0, 0),
6727 arg1),
6728 gen_rtx_MULT (mode,
6729 XEXP (arg0, 1),
6730 arg1)),
6731 ext_val, benefit);
6733 default:
6734 abort ();
6737 case ASHIFT:
6738 /* Shift by constant is multiply by power of two. */
6739 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6740 return 0;
6742 return
6743 simplify_giv_expr (loop,
6744 gen_rtx_MULT (mode,
6745 XEXP (x, 0),
6746 GEN_INT ((HOST_WIDE_INT) 1
6747 << INTVAL (XEXP (x, 1)))),
6748 ext_val, benefit);
6750 case NEG:
6751 /* "-a" is "a * (-1)" */
6752 return simplify_giv_expr (loop,
6753 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6754 ext_val, benefit);
6756 case NOT:
6757 /* "~a" is "-a - 1". Silly, but easy. */
6758 return simplify_giv_expr (loop,
6759 gen_rtx_MINUS (mode,
6760 gen_rtx_NEG (mode, XEXP (x, 0)),
6761 const1_rtx),
6762 ext_val, benefit);
6764 case USE:
6765 /* Already in proper form for invariant. */
6766 return x;
6768 case SIGN_EXTEND:
6769 case ZERO_EXTEND:
6770 case TRUNCATE:
6771 /* Conditionally recognize extensions of simple IVs. After we've
6772 computed loop traversal counts and verified the range of the
6773 source IV, we'll reevaluate this as a GIV. */
6774 if (*ext_val == NULL_RTX)
6776 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6777 if (arg0 && *ext_val == NULL_RTX && GET_CODE (arg0) == REG)
6779 *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
6780 return arg0;
6783 goto do_default;
6785 case REG:
6786 /* If this is a new register, we can't deal with it. */
6787 if (REGNO (x) >= max_reg_before_loop)
6788 return 0;
6790 /* Check for biv or giv. */
6791 switch (REG_IV_TYPE (ivs, REGNO (x)))
6793 case BASIC_INDUCT:
6794 return x;
6795 case GENERAL_INDUCT:
6797 struct induction *v = REG_IV_INFO (ivs, REGNO (x));
6799 /* Form expression from giv and add benefit. Ensure this giv
6800 can derive another and subtract any needed adjustment if so. */
6802 /* Increasing the benefit here is risky. The only case in which it
6803 is arguably correct is if this is the only use of V. In other
6804 cases, this will artificially inflate the benefit of the current
6805 giv, and lead to suboptimal code. Thus, it is disabled, since
6806 potentially not reducing an only marginally beneficial giv is
6807 less harmful than reducing many givs that are not really
6808 beneficial. */
6810 rtx single_use = regs->array[REGNO (x)].single_usage;
6811 if (single_use && single_use != const0_rtx)
6812 *benefit += v->benefit;
6815 if (v->cant_derive)
6816 return 0;
6818 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6819 v->src_reg, v->mult_val),
6820 v->add_val);
6822 if (v->derive_adjustment)
6823 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6824 arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
6825 if (*ext_val)
6827 if (!v->ext_dependent)
6828 return arg0;
6830 else
6832 *ext_val = v->ext_dependent;
6833 return arg0;
6835 return 0;
6838 default:
6839 do_default:
6840 /* If it isn't an induction variable, and it is invariant, we
6841 may be able to simplify things further by looking through
6842 the bits we just moved outside the loop. */
6843 if (loop_invariant_p (loop, x) == 1)
6845 struct movable *m;
6846 struct loop_movables *movables = LOOP_MOVABLES (loop);
6848 for (m = movables->head; m; m = m->next)
6849 if (rtx_equal_p (x, m->set_dest))
6851 /* Ok, we found a match. Substitute and simplify. */
6853 /* If we match another movable, we must use that, as
6854 this one is going away. */
6855 if (m->match)
6856 return simplify_giv_expr (loop, m->match->set_dest,
6857 ext_val, benefit);
6859 /* If consec is nonzero, this is a member of a group of
6860 instructions that were moved together. We handle this
6861 case only to the point of seeking to the last insn and
6862 looking for a REG_EQUAL. Fail if we don't find one. */
6863 if (m->consec != 0)
6865 int i = m->consec;
6866 tem = m->insn;
6869 tem = NEXT_INSN (tem);
6871 while (--i > 0);
6873 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6874 if (tem)
6875 tem = XEXP (tem, 0);
6877 else
6879 tem = single_set (m->insn);
6880 if (tem)
6881 tem = SET_SRC (tem);
6884 if (tem)
6886 /* What we are most interested in is pointer
6887 arithmetic on invariants -- only take
6888 patterns we may be able to do something with. */
6889 if (GET_CODE (tem) == PLUS
6890 || GET_CODE (tem) == MULT
6891 || GET_CODE (tem) == ASHIFT
6892 || GET_CODE (tem) == CONST_INT
6893 || GET_CODE (tem) == SYMBOL_REF)
6895 tem = simplify_giv_expr (loop, tem, ext_val,
6896 benefit);
6897 if (tem)
6898 return tem;
6900 else if (GET_CODE (tem) == CONST
6901 && GET_CODE (XEXP (tem, 0)) == PLUS
6902 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6903 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6905 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6906 ext_val, benefit);
6907 if (tem)
6908 return tem;
6911 break;
6914 break;
6917 /* Fall through to general case. */
6918 default:
6919 /* If invariant, return as USE (unless CONST_INT).
6920 Otherwise, not giv. */
6921 if (GET_CODE (x) == USE)
6922 x = XEXP (x, 0);
6924 if (loop_invariant_p (loop, x) == 1)
6926 if (GET_CODE (x) == CONST_INT)
6927 return x;
6928 if (GET_CODE (x) == CONST
6929 && GET_CODE (XEXP (x, 0)) == PLUS
6930 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6931 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6932 x = XEXP (x, 0);
6933 return gen_rtx_USE (mode, x);
6935 else
6936 return 0;
6940 /* This routine folds invariants such that there is only ever one
6941 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6943 static rtx
6944 sge_plus_constant (rtx x, rtx c)
6946 if (GET_CODE (x) == CONST_INT)
6947 return GEN_INT (INTVAL (x) + INTVAL (c));
6948 else if (GET_CODE (x) != PLUS)
6949 return gen_rtx_PLUS (GET_MODE (x), x, c);
6950 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6952 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6953 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6955 else if (GET_CODE (XEXP (x, 0)) == PLUS
6956 || GET_CODE (XEXP (x, 1)) != PLUS)
6958 return gen_rtx_PLUS (GET_MODE (x),
6959 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6961 else
6963 return gen_rtx_PLUS (GET_MODE (x),
6964 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6968 static rtx
6969 sge_plus (enum machine_mode mode, rtx x, rtx y)
6971 while (GET_CODE (y) == PLUS)
6973 rtx a = XEXP (y, 0);
6974 if (GET_CODE (a) == CONST_INT)
6975 x = sge_plus_constant (x, a);
6976 else
6977 x = gen_rtx_PLUS (mode, x, a);
6978 y = XEXP (y, 1);
6980 if (GET_CODE (y) == CONST_INT)
6981 x = sge_plus_constant (x, y);
6982 else
6983 x = gen_rtx_PLUS (mode, x, y);
6984 return x;
6987 /* Help detect a giv that is calculated by several consecutive insns;
6988 for example,
6989 giv = biv * M
6990 giv = giv + A
6991 The caller has already identified the first insn P as having a giv as dest;
6992 we check that all other insns that set the same register follow
6993 immediately after P, that they alter nothing else,
6994 and that the result of the last is still a giv.
6996 The value is 0 if the reg set in P is not really a giv.
6997 Otherwise, the value is the amount gained by eliminating
6998 all the consecutive insns that compute the value.
7000 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
7001 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
7003 The coefficients of the ultimate giv value are stored in
7004 *MULT_VAL and *ADD_VAL. */
7006 static int
7007 consec_sets_giv (const struct loop *loop, int first_benefit, rtx p,
7008 rtx src_reg, rtx dest_reg, rtx *add_val, rtx *mult_val,
7009 rtx *ext_val, rtx *last_consec_insn)
7011 struct loop_ivs *ivs = LOOP_IVS (loop);
7012 struct loop_regs *regs = LOOP_REGS (loop);
7013 int count;
7014 enum rtx_code code;
7015 int benefit;
7016 rtx temp;
7017 rtx set;
7019 /* Indicate that this is a giv so that we can update the value produced in
7020 each insn of the multi-insn sequence.
7022 This induction structure will be used only by the call to
7023 general_induction_var below, so we can allocate it on our stack.
7024 If this is a giv, our caller will replace the induct var entry with
7025 a new induction structure. */
7026 struct induction *v;
7028 if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
7029 return 0;
7031 v = alloca (sizeof (struct induction));
7032 v->src_reg = src_reg;
7033 v->mult_val = *mult_val;
7034 v->add_val = *add_val;
7035 v->benefit = first_benefit;
7036 v->cant_derive = 0;
7037 v->derive_adjustment = 0;
7038 v->ext_dependent = NULL_RTX;
7040 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
7041 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
7043 count = regs->array[REGNO (dest_reg)].n_times_set - 1;
7045 while (count > 0)
7047 p = NEXT_INSN (p);
7048 code = GET_CODE (p);
7050 /* If libcall, skip to end of call sequence. */
7051 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
7052 p = XEXP (temp, 0);
7054 if (code == INSN
7055 && (set = single_set (p))
7056 && GET_CODE (SET_DEST (set)) == REG
7057 && SET_DEST (set) == dest_reg
7058 && (general_induction_var (loop, SET_SRC (set), &src_reg,
7059 add_val, mult_val, ext_val, 0,
7060 &benefit, VOIDmode)
7061 /* Giv created by equivalent expression. */
7062 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
7063 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
7064 add_val, mult_val, ext_val, 0,
7065 &benefit, VOIDmode)))
7066 && src_reg == v->src_reg)
7068 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
7069 benefit += libcall_benefit (p);
7071 count--;
7072 v->mult_val = *mult_val;
7073 v->add_val = *add_val;
7074 v->benefit += benefit;
7076 else if (code != NOTE)
7078 /* Allow insns that set something other than this giv to a
7079 constant. Such insns are needed on machines which cannot
7080 include long constants and should not disqualify a giv. */
7081 if (code == INSN
7082 && (set = single_set (p))
7083 && SET_DEST (set) != dest_reg
7084 && CONSTANT_P (SET_SRC (set)))
7085 continue;
7087 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
7088 return 0;
7092 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
7093 *last_consec_insn = p;
7094 return v->benefit;
7097 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7098 represented by G1. If no such expression can be found, or it is clear that
7099 it cannot possibly be a valid address, 0 is returned.
7101 To perform the computation, we note that
7102 G1 = x * v + a and
7103 G2 = y * v + b
7104 where `v' is the biv.
7106 So G2 = (y/b) * G1 + (b - a*y/x).
7108 Note that MULT = y/x.
7110 Update: A and B are now allowed to be additive expressions such that
7111 B contains all variables in A. That is, computing B-A will not require
7112 subtracting variables. */
7114 static rtx
7115 express_from_1 (rtx a, rtx b, rtx mult)
7117 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
7119 if (mult == const0_rtx)
7120 return b;
7122 /* If MULT is not 1, we cannot handle A with non-constants, since we
7123 would then be required to subtract multiples of the registers in A.
7124 This is theoretically possible, and may even apply to some Fortran
7125 constructs, but it is a lot of work and we do not attempt it here. */
7127 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
7128 return NULL_RTX;
7130 /* In general these structures are sorted top to bottom (down the PLUS
7131 chain), but not left to right across the PLUS. If B is a higher
7132 order giv than A, we can strip one level and recurse. If A is higher
7133 order, we'll eventually bail out, but won't know that until the end.
7134 If they are the same, we'll strip one level around this loop. */
7136 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
7138 rtx ra, rb, oa, ob, tmp;
7140 ra = XEXP (a, 0), oa = XEXP (a, 1);
7141 if (GET_CODE (ra) == PLUS)
7142 tmp = ra, ra = oa, oa = tmp;
7144 rb = XEXP (b, 0), ob = XEXP (b, 1);
7145 if (GET_CODE (rb) == PLUS)
7146 tmp = rb, rb = ob, ob = tmp;
7148 if (rtx_equal_p (ra, rb))
7149 /* We matched: remove one reg completely. */
7150 a = oa, b = ob;
7151 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
7152 /* An alternate match. */
7153 a = oa, b = rb;
7154 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
7155 /* An alternate match. */
7156 a = ra, b = ob;
7157 else
7159 /* Indicates an extra register in B. Strip one level from B and
7160 recurse, hoping B was the higher order expression. */
7161 ob = express_from_1 (a, ob, mult);
7162 if (ob == NULL_RTX)
7163 return NULL_RTX;
7164 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
7168 /* Here we are at the last level of A, go through the cases hoping to
7169 get rid of everything but a constant. */
7171 if (GET_CODE (a) == PLUS)
7173 rtx ra, oa;
7175 ra = XEXP (a, 0), oa = XEXP (a, 1);
7176 if (rtx_equal_p (oa, b))
7177 oa = ra;
7178 else if (!rtx_equal_p (ra, b))
7179 return NULL_RTX;
7181 if (GET_CODE (oa) != CONST_INT)
7182 return NULL_RTX;
7184 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
7186 else if (GET_CODE (a) == CONST_INT)
7188 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
7190 else if (CONSTANT_P (a))
7192 enum machine_mode mode_a = GET_MODE (a);
7193 enum machine_mode mode_b = GET_MODE (b);
7194 enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
7195 return simplify_gen_binary (MINUS, mode, b, a);
7197 else if (GET_CODE (b) == PLUS)
7199 if (rtx_equal_p (a, XEXP (b, 0)))
7200 return XEXP (b, 1);
7201 else if (rtx_equal_p (a, XEXP (b, 1)))
7202 return XEXP (b, 0);
7203 else
7204 return NULL_RTX;
7206 else if (rtx_equal_p (a, b))
7207 return const0_rtx;
7209 return NULL_RTX;
7213 express_from (struct induction *g1, struct induction *g2)
7215 rtx mult, add;
7217 /* The value that G1 will be multiplied by must be a constant integer. Also,
7218 the only chance we have of getting a valid address is if b*c/a (see above
7219 for notation) is also an integer. */
7220 if (GET_CODE (g1->mult_val) == CONST_INT
7221 && GET_CODE (g2->mult_val) == CONST_INT)
7223 if (g1->mult_val == const0_rtx
7224 || (g1->mult_val == constm1_rtx
7225 && INTVAL (g2->mult_val)
7226 == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
7227 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
7228 return NULL_RTX;
7229 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
7231 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
7232 mult = const1_rtx;
7233 else
7235 /* ??? Find out if the one is a multiple of the other? */
7236 return NULL_RTX;
7239 add = express_from_1 (g1->add_val, g2->add_val, mult);
7240 if (add == NULL_RTX)
7242 /* Failed. If we've got a multiplication factor between G1 and G2,
7243 scale G1's addend and try again. */
7244 if (INTVAL (mult) > 1)
7246 rtx g1_add_val = g1->add_val;
7247 if (GET_CODE (g1_add_val) == MULT
7248 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
7250 HOST_WIDE_INT m;
7251 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
7252 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
7253 XEXP (g1_add_val, 0), GEN_INT (m));
7255 else
7257 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
7258 mult);
7261 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
7264 if (add == NULL_RTX)
7265 return NULL_RTX;
7267 /* Form simplified final result. */
7268 if (mult == const0_rtx)
7269 return add;
7270 else if (mult == const1_rtx)
7271 mult = g1->dest_reg;
7272 else
7273 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
7275 if (add == const0_rtx)
7276 return mult;
7277 else
7279 if (GET_CODE (add) == PLUS
7280 && CONSTANT_P (XEXP (add, 1)))
7282 rtx tem = XEXP (add, 1);
7283 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
7284 add = tem;
7287 return gen_rtx_PLUS (g2->mode, mult, add);
7291 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7292 represented by G1. This indicates that G2 should be combined with G1 and
7293 that G2 can use (either directly or via an address expression) a register
7294 used to represent G1. */
7296 static rtx
7297 combine_givs_p (struct induction *g1, struct induction *g2)
7299 rtx comb, ret;
7301 /* With the introduction of ext dependent givs, we must care for modes.
7302 G2 must not use a wider mode than G1. */
7303 if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
7304 return NULL_RTX;
7306 ret = comb = express_from (g1, g2);
7307 if (comb == NULL_RTX)
7308 return NULL_RTX;
7309 if (g1->mode != g2->mode)
7310 ret = gen_lowpart (g2->mode, comb);
7312 /* If these givs are identical, they can be combined. We use the results
7313 of express_from because the addends are not in a canonical form, so
7314 rtx_equal_p is a weaker test. */
7315 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7316 combination to be the other way round. */
7317 if (comb == g1->dest_reg
7318 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
7320 return ret;
7323 /* If G2 can be expressed as a function of G1 and that function is valid
7324 as an address and no more expensive than using a register for G2,
7325 the expression of G2 in terms of G1 can be used. */
7326 if (ret != NULL_RTX
7327 && g2->giv_type == DEST_ADDR
7328 && memory_address_p (GET_MODE (g2->mem), ret))
7329 return ret;
7331 return NULL_RTX;
7334 /* Check each extension dependent giv in this class to see if its
7335 root biv is safe from wrapping in the interior mode, which would
7336 make the giv illegal. */
7338 static void
7339 check_ext_dependent_givs (const struct loop *loop, struct iv_class *bl)
7341 struct loop_info *loop_info = LOOP_INFO (loop);
7342 int ze_ok = 0, se_ok = 0, info_ok = 0;
7343 enum machine_mode biv_mode = GET_MODE (bl->biv->src_reg);
7344 HOST_WIDE_INT start_val;
7345 unsigned HOST_WIDE_INT u_end_val = 0;
7346 unsigned HOST_WIDE_INT u_start_val = 0;
7347 rtx incr = pc_rtx;
7348 struct induction *v;
7350 /* Make sure the iteration data is available. We must have
7351 constants in order to be certain of no overflow. */
7352 if (loop_info->n_iterations > 0
7353 && bl->initial_value
7354 && GET_CODE (bl->initial_value) == CONST_INT
7355 && (incr = biv_total_increment (bl))
7356 && GET_CODE (incr) == CONST_INT
7357 /* Make sure the host can represent the arithmetic. */
7358 && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (biv_mode))
7360 unsigned HOST_WIDE_INT abs_incr, total_incr;
7361 HOST_WIDE_INT s_end_val;
7362 int neg_incr;
7364 info_ok = 1;
7365 start_val = INTVAL (bl->initial_value);
7366 u_start_val = start_val;
7368 neg_incr = 0, abs_incr = INTVAL (incr);
7369 if (INTVAL (incr) < 0)
7370 neg_incr = 1, abs_incr = -abs_incr;
7371 total_incr = abs_incr * loop_info->n_iterations;
7373 /* Check for host arithmetic overflow. */
7374 if (total_incr / loop_info->n_iterations == abs_incr)
7376 unsigned HOST_WIDE_INT u_max;
7377 HOST_WIDE_INT s_max;
7379 u_end_val = start_val + (neg_incr ? -total_incr : total_incr);
7380 s_end_val = u_end_val;
7381 u_max = GET_MODE_MASK (biv_mode);
7382 s_max = u_max >> 1;
7384 /* Check zero extension of biv ok. */
7385 if (start_val >= 0
7386 /* Check for host arithmetic overflow. */
7387 && (neg_incr
7388 ? u_end_val < u_start_val
7389 : u_end_val > u_start_val)
7390 /* Check for target arithmetic overflow. */
7391 && (neg_incr
7392 ? 1 /* taken care of with host overflow */
7393 : u_end_val <= u_max))
7395 ze_ok = 1;
7398 /* Check sign extension of biv ok. */
7399 /* ??? While it is true that overflow with signed and pointer
7400 arithmetic is undefined, I fear too many programmers don't
7401 keep this fact in mind -- myself included on occasion.
7402 So leave alone with the signed overflow optimizations. */
7403 if (start_val >= -s_max - 1
7404 /* Check for host arithmetic overflow. */
7405 && (neg_incr
7406 ? s_end_val < start_val
7407 : s_end_val > start_val)
7408 /* Check for target arithmetic overflow. */
7409 && (neg_incr
7410 ? s_end_val >= -s_max - 1
7411 : s_end_val <= s_max))
7413 se_ok = 1;
7418 /* If we know the BIV is compared at run-time against an
7419 invariant value, and the increment is +/- 1, we may also
7420 be able to prove that the BIV cannot overflow. */
7421 else if (bl->biv->src_reg == loop_info->iteration_var
7422 && loop_info->comparison_value
7423 && loop_invariant_p (loop, loop_info->comparison_value)
7424 && (incr = biv_total_increment (bl))
7425 && GET_CODE (incr) == CONST_INT)
7427 /* If the increment is +1, and the exit test is a <,
7428 the BIV cannot overflow. (For <=, we have the
7429 problematic case that the comparison value might
7430 be the maximum value of the range.) */
7431 if (INTVAL (incr) == 1)
7433 if (loop_info->comparison_code == LT)
7434 se_ok = ze_ok = 1;
7435 else if (loop_info->comparison_code == LTU)
7436 ze_ok = 1;
7439 /* Likewise for increment -1 and exit test >. */
7440 if (INTVAL (incr) == -1)
7442 if (loop_info->comparison_code == GT)
7443 se_ok = ze_ok = 1;
7444 else if (loop_info->comparison_code == GTU)
7445 ze_ok = 1;
7449 /* Invalidate givs that fail the tests. */
7450 for (v = bl->giv; v; v = v->next_iv)
7451 if (v->ext_dependent)
7453 enum rtx_code code = GET_CODE (v->ext_dependent);
7454 int ok = 0;
7456 switch (code)
7458 case SIGN_EXTEND:
7459 ok = se_ok;
7460 break;
7461 case ZERO_EXTEND:
7462 ok = ze_ok;
7463 break;
7465 case TRUNCATE:
7466 /* We don't know whether this value is being used as either
7467 signed or unsigned, so to safely truncate we must satisfy
7468 both. The initial check here verifies the BIV itself;
7469 once that is successful we may check its range wrt the
7470 derived GIV. This works only if we were able to determine
7471 constant start and end values above. */
7472 if (se_ok && ze_ok && info_ok)
7474 enum machine_mode outer_mode = GET_MODE (v->ext_dependent);
7475 unsigned HOST_WIDE_INT max = GET_MODE_MASK (outer_mode) >> 1;
7477 /* We know from the above that both endpoints are nonnegative,
7478 and that there is no wrapping. Verify that both endpoints
7479 are within the (signed) range of the outer mode. */
7480 if (u_start_val <= max && u_end_val <= max)
7481 ok = 1;
7483 break;
7485 default:
7486 abort ();
7489 if (ok)
7491 if (loop_dump_stream)
7493 fprintf (loop_dump_stream,
7494 "Verified ext dependent giv at %d of reg %d\n",
7495 INSN_UID (v->insn), bl->regno);
7498 else
7500 if (loop_dump_stream)
7502 const char *why;
7504 if (info_ok)
7505 why = "biv iteration values overflowed";
7506 else
7508 if (incr == pc_rtx)
7509 incr = biv_total_increment (bl);
7510 if (incr == const1_rtx)
7511 why = "biv iteration info incomplete; incr by 1";
7512 else
7513 why = "biv iteration info incomplete";
7516 fprintf (loop_dump_stream,
7517 "Failed ext dependent giv at %d, %s\n",
7518 INSN_UID (v->insn), why);
7520 v->ignore = 1;
7521 bl->all_reduced = 0;
7526 /* Generate a version of VALUE in a mode appropriate for initializing V. */
7529 extend_value_for_giv (struct induction *v, rtx value)
7531 rtx ext_dep = v->ext_dependent;
7533 if (! ext_dep)
7534 return value;
7536 /* Recall that check_ext_dependent_givs verified that the known bounds
7537 of a biv did not overflow or wrap with respect to the extension for
7538 the giv. Therefore, constants need no additional adjustment. */
7539 if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
7540 return value;
7542 /* Otherwise, we must adjust the value to compensate for the
7543 differing modes of the biv and the giv. */
7544 return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
7547 struct combine_givs_stats
7549 int giv_number;
7550 int total_benefit;
7553 static int
7554 cmp_combine_givs_stats (const void *xp, const void *yp)
7556 const struct combine_givs_stats * const x =
7557 (const struct combine_givs_stats *) xp;
7558 const struct combine_givs_stats * const y =
7559 (const struct combine_givs_stats *) yp;
7560 int d;
7561 d = y->total_benefit - x->total_benefit;
7562 /* Stabilize the sort. */
7563 if (!d)
7564 d = x->giv_number - y->giv_number;
7565 return d;
7568 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7569 any other. If so, point SAME to the giv combined with and set NEW_REG to
7570 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7571 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7573 static void
7574 combine_givs (struct loop_regs *regs, struct iv_class *bl)
7576 /* Additional benefit to add for being combined multiple times. */
7577 const int extra_benefit = 3;
7579 struct induction *g1, *g2, **giv_array;
7580 int i, j, k, giv_count;
7581 struct combine_givs_stats *stats;
7582 rtx *can_combine;
7584 /* Count givs, because bl->giv_count is incorrect here. */
7585 giv_count = 0;
7586 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7587 if (!g1->ignore)
7588 giv_count++;
7590 giv_array = alloca (giv_count * sizeof (struct induction *));
7591 i = 0;
7592 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7593 if (!g1->ignore)
7594 giv_array[i++] = g1;
7596 stats = xcalloc (giv_count, sizeof (*stats));
7597 can_combine = xcalloc (giv_count, giv_count * sizeof (rtx));
7599 for (i = 0; i < giv_count; i++)
7601 int this_benefit;
7602 rtx single_use;
7604 g1 = giv_array[i];
7605 stats[i].giv_number = i;
7607 /* If a DEST_REG GIV is used only once, do not allow it to combine
7608 with anything, for in doing so we will gain nothing that cannot
7609 be had by simply letting the GIV with which we would have combined
7610 to be reduced on its own. The losage shows up in particular with
7611 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7612 be seen elsewhere as well. */
7613 if (g1->giv_type == DEST_REG
7614 && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
7615 && single_use != const0_rtx)
7616 continue;
7618 this_benefit = g1->benefit;
7619 /* Add an additional weight for zero addends. */
7620 if (g1->no_const_addval)
7621 this_benefit += 1;
7623 for (j = 0; j < giv_count; j++)
7625 rtx this_combine;
7627 g2 = giv_array[j];
7628 if (g1 != g2
7629 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7631 can_combine[i * giv_count + j] = this_combine;
7632 this_benefit += g2->benefit + extra_benefit;
7635 stats[i].total_benefit = this_benefit;
7638 /* Iterate, combining until we can't. */
7639 restart:
7640 qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
7642 if (loop_dump_stream)
7644 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7645 for (k = 0; k < giv_count; k++)
7647 g1 = giv_array[stats[k].giv_number];
7648 if (!g1->combined_with && !g1->same)
7649 fprintf (loop_dump_stream, " {%d, %d}",
7650 INSN_UID (giv_array[stats[k].giv_number]->insn),
7651 stats[k].total_benefit);
7653 putc ('\n', loop_dump_stream);
7656 for (k = 0; k < giv_count; k++)
7658 int g1_add_benefit = 0;
7660 i = stats[k].giv_number;
7661 g1 = giv_array[i];
7663 /* If it has already been combined, skip. */
7664 if (g1->combined_with || g1->same)
7665 continue;
7667 for (j = 0; j < giv_count; j++)
7669 g2 = giv_array[j];
7670 if (g1 != g2 && can_combine[i * giv_count + j]
7671 /* If it has already been combined, skip. */
7672 && ! g2->same && ! g2->combined_with)
7674 int l;
7676 g2->new_reg = can_combine[i * giv_count + j];
7677 g2->same = g1;
7678 /* For destination, we now may replace by mem expression instead
7679 of register. This changes the costs considerably, so add the
7680 compensation. */
7681 if (g2->giv_type == DEST_ADDR)
7682 g2->benefit = (g2->benefit + reg_address_cost
7683 - address_cost (g2->new_reg,
7684 GET_MODE (g2->mem)));
7685 g1->combined_with++;
7686 g1->lifetime += g2->lifetime;
7688 g1_add_benefit += g2->benefit;
7690 /* ??? The new final_[bg]iv_value code does a much better job
7691 of finding replaceable giv's, and hence this code may no
7692 longer be necessary. */
7693 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7694 g1_add_benefit -= copy_cost;
7696 /* To help optimize the next set of combinations, remove
7697 this giv from the benefits of other potential mates. */
7698 for (l = 0; l < giv_count; ++l)
7700 int m = stats[l].giv_number;
7701 if (can_combine[m * giv_count + j])
7702 stats[l].total_benefit -= g2->benefit + extra_benefit;
7705 if (loop_dump_stream)
7706 fprintf (loop_dump_stream,
7707 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
7708 INSN_UID (g2->insn), INSN_UID (g1->insn),
7709 g1->benefit, g1_add_benefit, g1->lifetime);
7713 /* To help optimize the next set of combinations, remove
7714 this giv from the benefits of other potential mates. */
7715 if (g1->combined_with)
7717 for (j = 0; j < giv_count; ++j)
7719 int m = stats[j].giv_number;
7720 if (can_combine[m * giv_count + i])
7721 stats[j].total_benefit -= g1->benefit + extra_benefit;
7724 g1->benefit += g1_add_benefit;
7726 /* We've finished with this giv, and everything it touched.
7727 Restart the combination so that proper weights for the
7728 rest of the givs are properly taken into account. */
7729 /* ??? Ideally we would compact the arrays at this point, so
7730 as to not cover old ground. But sanely compacting
7731 can_combine is tricky. */
7732 goto restart;
7736 /* Clean up. */
7737 free (stats);
7738 free (can_combine);
7741 /* Generate sequence for REG = B * M + A. B is the initial value of
7742 the basic induction variable, M a multiplicative constant, A an
7743 additive constant and REG the destination register. */
7745 static rtx
7746 gen_add_mult (rtx b, rtx m, rtx a, rtx reg)
7748 rtx seq;
7749 rtx result;
7751 start_sequence ();
7752 /* Use unsigned arithmetic. */
7753 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7754 if (reg != result)
7755 emit_move_insn (reg, result);
7756 seq = get_insns ();
7757 end_sequence ();
7759 return seq;
7763 /* Update registers created in insn sequence SEQ. */
7765 static void
7766 loop_regs_update (const struct loop *loop ATTRIBUTE_UNUSED, rtx seq)
7768 rtx insn;
7770 /* Update register info for alias analysis. */
7772 insn = seq;
7773 while (insn != NULL_RTX)
7775 rtx set = single_set (insn);
7777 if (set && GET_CODE (SET_DEST (set)) == REG)
7778 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7780 insn = NEXT_INSN (insn);
7785 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. B
7786 is the initial value of the basic induction variable, M a
7787 multiplicative constant, A an additive constant and REG the
7788 destination register. */
7790 void
7791 loop_iv_add_mult_emit_before (const struct loop *loop, rtx b, rtx m, rtx a,
7792 rtx reg, basic_block before_bb, rtx before_insn)
7794 rtx seq;
7796 if (! before_insn)
7798 loop_iv_add_mult_hoist (loop, b, m, a, reg);
7799 return;
7802 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7803 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7805 /* Increase the lifetime of any invariants moved further in code. */
7806 update_reg_last_use (a, before_insn);
7807 update_reg_last_use (b, before_insn);
7808 update_reg_last_use (m, before_insn);
7810 /* It is possible that the expansion created lots of new registers.
7811 Iterate over the sequence we just created and record them all. We
7812 must do this before inserting the sequence. */
7813 loop_regs_update (loop, seq);
7815 loop_insn_emit_before (loop, before_bb, before_insn, seq);
7819 /* Emit insns in loop pre-header to set REG = B * M + A. B is the
7820 initial value of the basic induction variable, M a multiplicative
7821 constant, A an additive constant and REG the destination
7822 register. */
7824 void
7825 loop_iv_add_mult_sink (const struct loop *loop, rtx b, rtx m, rtx a, rtx reg)
7827 rtx seq;
7829 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7830 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7832 /* Increase the lifetime of any invariants moved further in code.
7833 ???? Is this really necessary? */
7834 update_reg_last_use (a, loop->sink);
7835 update_reg_last_use (b, loop->sink);
7836 update_reg_last_use (m, loop->sink);
7838 /* It is possible that the expansion created lots of new registers.
7839 Iterate over the sequence we just created and record them all. We
7840 must do this before inserting the sequence. */
7841 loop_regs_update (loop, seq);
7843 loop_insn_sink (loop, seq);
7847 /* Emit insns after loop to set REG = B * M + A. B is the initial
7848 value of the basic induction variable, M a multiplicative constant,
7849 A an additive constant and REG the destination register. */
7851 void
7852 loop_iv_add_mult_hoist (const struct loop *loop, rtx b, rtx m, rtx a, rtx reg)
7854 rtx seq;
7856 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7857 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7859 /* It is possible that the expansion created lots of new registers.
7860 Iterate over the sequence we just created and record them all. We
7861 must do this before inserting the sequence. */
7862 loop_regs_update (loop, seq);
7864 loop_insn_hoist (loop, seq);
7869 /* Similar to gen_add_mult, but compute cost rather than generating
7870 sequence. */
7872 static int
7873 iv_add_mult_cost (rtx b, rtx m, rtx a, rtx reg)
7875 int cost = 0;
7876 rtx last, result;
7878 start_sequence ();
7879 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7880 if (reg != result)
7881 emit_move_insn (reg, result);
7882 last = get_last_insn ();
7883 while (last)
7885 rtx t = single_set (last);
7886 if (t)
7887 cost += rtx_cost (SET_SRC (t), SET);
7888 last = PREV_INSN (last);
7890 end_sequence ();
7891 return cost;
7894 /* Test whether A * B can be computed without
7895 an actual multiply insn. Value is 1 if so.
7897 ??? This function stinks because it generates a ton of wasted RTL
7898 ??? and as a result fragments GC memory to no end. There are other
7899 ??? places in the compiler which are invoked a lot and do the same
7900 ??? thing, generate wasted RTL just to see if something is possible. */
7902 static int
7903 product_cheap_p (rtx a, rtx b)
7905 rtx tmp;
7906 int win, n_insns;
7908 /* If only one is constant, make it B. */
7909 if (GET_CODE (a) == CONST_INT)
7910 tmp = a, a = b, b = tmp;
7912 /* If first constant, both constant, so don't need multiply. */
7913 if (GET_CODE (a) == CONST_INT)
7914 return 1;
7916 /* If second not constant, neither is constant, so would need multiply. */
7917 if (GET_CODE (b) != CONST_INT)
7918 return 0;
7920 /* One operand is constant, so might not need multiply insn. Generate the
7921 code for the multiply and see if a call or multiply, or long sequence
7922 of insns is generated. */
7924 start_sequence ();
7925 expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
7926 tmp = get_insns ();
7927 end_sequence ();
7929 win = 1;
7930 if (INSN_P (tmp))
7932 n_insns = 0;
7933 while (tmp != NULL_RTX)
7935 rtx next = NEXT_INSN (tmp);
7937 if (++n_insns > 3
7938 || GET_CODE (tmp) != INSN
7939 || (GET_CODE (PATTERN (tmp)) == SET
7940 && GET_CODE (SET_SRC (PATTERN (tmp))) == MULT)
7941 || (GET_CODE (PATTERN (tmp)) == PARALLEL
7942 && GET_CODE (XVECEXP (PATTERN (tmp), 0, 0)) == SET
7943 && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp), 0, 0))) == MULT))
7945 win = 0;
7946 break;
7949 tmp = next;
7952 else if (GET_CODE (tmp) == SET
7953 && GET_CODE (SET_SRC (tmp)) == MULT)
7954 win = 0;
7955 else if (GET_CODE (tmp) == PARALLEL
7956 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7957 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7958 win = 0;
7960 return win;
7963 /* Check to see if loop can be terminated by a "decrement and branch until
7964 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7965 Also try reversing an increment loop to a decrement loop
7966 to see if the optimization can be performed.
7967 Value is nonzero if optimization was performed. */
7969 /* This is useful even if the architecture doesn't have such an insn,
7970 because it might change a loops which increments from 0 to n to a loop
7971 which decrements from n to 0. A loop that decrements to zero is usually
7972 faster than one that increments from zero. */
7974 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7975 such as approx_final_value, biv_total_increment, loop_iterations, and
7976 final_[bg]iv_value. */
7978 static int
7979 check_dbra_loop (struct loop *loop, int insn_count)
7981 struct loop_info *loop_info = LOOP_INFO (loop);
7982 struct loop_regs *regs = LOOP_REGS (loop);
7983 struct loop_ivs *ivs = LOOP_IVS (loop);
7984 struct iv_class *bl;
7985 rtx reg;
7986 enum machine_mode mode;
7987 rtx jump_label;
7988 rtx final_value;
7989 rtx start_value;
7990 rtx new_add_val;
7991 rtx comparison;
7992 rtx before_comparison;
7993 rtx p;
7994 rtx jump;
7995 rtx first_compare;
7996 int compare_and_branch;
7997 rtx loop_start = loop->start;
7998 rtx loop_end = loop->end;
8000 /* If last insn is a conditional branch, and the insn before tests a
8001 register value, try to optimize it. Otherwise, we can't do anything. */
8003 jump = PREV_INSN (loop_end);
8004 comparison = get_condition_for_loop (loop, jump);
8005 if (comparison == 0)
8006 return 0;
8007 if (!onlyjump_p (jump))
8008 return 0;
8010 /* Try to compute whether the compare/branch at the loop end is one or
8011 two instructions. */
8012 get_condition (jump, &first_compare, false);
8013 if (first_compare == jump)
8014 compare_and_branch = 1;
8015 else if (first_compare == prev_nonnote_insn (jump))
8016 compare_and_branch = 2;
8017 else
8018 return 0;
8021 /* If more than one condition is present to control the loop, then
8022 do not proceed, as this function does not know how to rewrite
8023 loop tests with more than one condition.
8025 Look backwards from the first insn in the last comparison
8026 sequence and see if we've got another comparison sequence. */
8028 rtx jump1;
8029 if ((jump1 = prev_nonnote_insn (first_compare)) != loop->cont)
8030 if (GET_CODE (jump1) == JUMP_INSN)
8031 return 0;
8034 /* Check all of the bivs to see if the compare uses one of them.
8035 Skip biv's set more than once because we can't guarantee that
8036 it will be zero on the last iteration. Also skip if the biv is
8037 used between its update and the test insn. */
8039 for (bl = ivs->list; bl; bl = bl->next)
8041 if (bl->biv_count == 1
8042 && ! bl->biv->maybe_multiple
8043 && bl->biv->dest_reg == XEXP (comparison, 0)
8044 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
8045 first_compare))
8046 break;
8049 /* Try swapping the comparison to identify a suitable biv. */
8050 if (!bl)
8051 for (bl = ivs->list; bl; bl = bl->next)
8052 if (bl->biv_count == 1
8053 && ! bl->biv->maybe_multiple
8054 && bl->biv->dest_reg == XEXP (comparison, 1)
8055 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
8056 first_compare))
8058 comparison = gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)),
8059 VOIDmode,
8060 XEXP (comparison, 1),
8061 XEXP (comparison, 0));
8062 break;
8065 if (! bl)
8066 return 0;
8068 /* Look for the case where the basic induction variable is always
8069 nonnegative, and equals zero on the last iteration.
8070 In this case, add a reg_note REG_NONNEG, which allows the
8071 m68k DBRA instruction to be used. */
8073 if (((GET_CODE (comparison) == GT && XEXP (comparison, 1) == constm1_rtx)
8074 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
8075 && GET_CODE (bl->biv->add_val) == CONST_INT
8076 && INTVAL (bl->biv->add_val) < 0)
8078 /* Initial value must be greater than 0,
8079 init_val % -dec_value == 0 to ensure that it equals zero on
8080 the last iteration */
8082 if (GET_CODE (bl->initial_value) == CONST_INT
8083 && INTVAL (bl->initial_value) > 0
8084 && (INTVAL (bl->initial_value)
8085 % (-INTVAL (bl->biv->add_val))) == 0)
8087 /* Register always nonnegative, add REG_NOTE to branch. */
8088 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8089 REG_NOTES (jump)
8090 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8091 REG_NOTES (jump));
8092 bl->nonneg = 1;
8094 return 1;
8097 /* If the decrement is 1 and the value was tested as >= 0 before
8098 the loop, then we can safely optimize. */
8099 for (p = loop_start; p; p = PREV_INSN (p))
8101 if (GET_CODE (p) == CODE_LABEL)
8102 break;
8103 if (GET_CODE (p) != JUMP_INSN)
8104 continue;
8106 before_comparison = get_condition_for_loop (loop, p);
8107 if (before_comparison
8108 && XEXP (before_comparison, 0) == bl->biv->dest_reg
8109 && (GET_CODE (before_comparison) == LT
8110 || GET_CODE (before_comparison) == LTU)
8111 && XEXP (before_comparison, 1) == const0_rtx
8112 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
8113 && INTVAL (bl->biv->add_val) == -1)
8115 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8116 REG_NOTES (jump)
8117 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8118 REG_NOTES (jump));
8119 bl->nonneg = 1;
8121 return 1;
8125 else if (GET_CODE (bl->biv->add_val) == CONST_INT
8126 && INTVAL (bl->biv->add_val) > 0)
8128 /* Try to change inc to dec, so can apply above optimization. */
8129 /* Can do this if:
8130 all registers modified are induction variables or invariant,
8131 all memory references have non-overlapping addresses
8132 (obviously true if only one write)
8133 allow 2 insns for the compare/jump at the end of the loop. */
8134 /* Also, we must avoid any instructions which use both the reversed
8135 biv and another biv. Such instructions will fail if the loop is
8136 reversed. We meet this condition by requiring that either
8137 no_use_except_counting is true, or else that there is only
8138 one biv. */
8139 int num_nonfixed_reads = 0;
8140 /* 1 if the iteration var is used only to count iterations. */
8141 int no_use_except_counting = 0;
8142 /* 1 if the loop has no memory store, or it has a single memory store
8143 which is reversible. */
8144 int reversible_mem_store = 1;
8146 if (bl->giv_count == 0
8147 && !loop->exit_count
8148 && !loop_info->has_multiple_exit_targets)
8150 rtx bivreg = regno_reg_rtx[bl->regno];
8151 struct iv_class *blt;
8153 /* If there are no givs for this biv, and the only exit is the
8154 fall through at the end of the loop, then
8155 see if perhaps there are no uses except to count. */
8156 no_use_except_counting = 1;
8157 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8158 if (INSN_P (p))
8160 rtx set = single_set (p);
8162 if (set && GET_CODE (SET_DEST (set)) == REG
8163 && REGNO (SET_DEST (set)) == bl->regno)
8164 /* An insn that sets the biv is okay. */
8166 else if (!reg_mentioned_p (bivreg, PATTERN (p)))
8167 /* An insn that doesn't mention the biv is okay. */
8169 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
8170 || p == prev_nonnote_insn (loop_end))
8172 /* If either of these insns uses the biv and sets a pseudo
8173 that has more than one usage, then the biv has uses
8174 other than counting since it's used to derive a value
8175 that is used more than one time. */
8176 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
8177 regs);
8178 if (regs->multiple_uses)
8180 no_use_except_counting = 0;
8181 break;
8184 else
8186 no_use_except_counting = 0;
8187 break;
8191 /* A biv has uses besides counting if it is used to set
8192 another biv. */
8193 for (blt = ivs->list; blt; blt = blt->next)
8194 if (blt->init_set
8195 && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
8197 no_use_except_counting = 0;
8198 break;
8202 if (no_use_except_counting)
8203 /* No need to worry about MEMs. */
8205 else if (loop_info->num_mem_sets <= 1)
8207 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8208 if (INSN_P (p))
8209 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
8211 /* If the loop has a single store, and the destination address is
8212 invariant, then we can't reverse the loop, because this address
8213 might then have the wrong value at loop exit.
8214 This would work if the source was invariant also, however, in that
8215 case, the insn should have been moved out of the loop. */
8217 if (loop_info->num_mem_sets == 1)
8219 struct induction *v;
8221 /* If we could prove that each of the memory locations
8222 written to was different, then we could reverse the
8223 store -- but we don't presently have any way of
8224 knowing that. */
8225 reversible_mem_store = 0;
8227 /* If the store depends on a register that is set after the
8228 store, it depends on the initial value, and is thus not
8229 reversible. */
8230 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
8232 if (v->giv_type == DEST_REG
8233 && reg_mentioned_p (v->dest_reg,
8234 PATTERN (loop_info->first_loop_store_insn))
8235 && loop_insn_first_p (loop_info->first_loop_store_insn,
8236 v->insn))
8237 reversible_mem_store = 0;
8241 else
8242 return 0;
8244 /* This code only acts for innermost loops. Also it simplifies
8245 the memory address check by only reversing loops with
8246 zero or one memory access.
8247 Two memory accesses could involve parts of the same array,
8248 and that can't be reversed.
8249 If the biv is used only for counting, than we don't need to worry
8250 about all these things. */
8252 if ((num_nonfixed_reads <= 1
8253 && ! loop_info->has_nonconst_call
8254 && ! loop_info->has_prefetch
8255 && ! loop_info->has_volatile
8256 && reversible_mem_store
8257 && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
8258 + num_unmoved_movables (loop) + compare_and_branch == insn_count)
8259 && (bl == ivs->list && bl->next == 0))
8260 || (no_use_except_counting && ! loop_info->has_prefetch))
8262 rtx tem;
8264 /* Loop can be reversed. */
8265 if (loop_dump_stream)
8266 fprintf (loop_dump_stream, "Can reverse loop\n");
8268 /* Now check other conditions:
8270 The increment must be a constant, as must the initial value,
8271 and the comparison code must be LT.
8273 This test can probably be improved since +/- 1 in the constant
8274 can be obtained by changing LT to LE and vice versa; this is
8275 confusing. */
8277 if (comparison
8278 /* for constants, LE gets turned into LT */
8279 && (GET_CODE (comparison) == LT
8280 || (GET_CODE (comparison) == LE
8281 && no_use_except_counting)
8282 || GET_CODE (comparison) == LTU))
8284 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
8285 rtx initial_value, comparison_value;
8286 int nonneg = 0;
8287 enum rtx_code cmp_code;
8288 int comparison_const_width;
8289 unsigned HOST_WIDE_INT comparison_sign_mask;
8291 add_val = INTVAL (bl->biv->add_val);
8292 comparison_value = XEXP (comparison, 1);
8293 if (GET_MODE (comparison_value) == VOIDmode)
8294 comparison_const_width
8295 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8296 else
8297 comparison_const_width
8298 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8299 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8300 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8301 comparison_sign_mask
8302 = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
8304 /* If the comparison value is not a loop invariant, then we
8305 can not reverse this loop.
8307 ??? If the insns which initialize the comparison value as
8308 a whole compute an invariant result, then we could move
8309 them out of the loop and proceed with loop reversal. */
8310 if (! loop_invariant_p (loop, comparison_value))
8311 return 0;
8313 if (GET_CODE (comparison_value) == CONST_INT)
8314 comparison_val = INTVAL (comparison_value);
8315 initial_value = bl->initial_value;
8317 /* Normalize the initial value if it is an integer and
8318 has no other use except as a counter. This will allow
8319 a few more loops to be reversed. */
8320 if (no_use_except_counting
8321 && GET_CODE (comparison_value) == CONST_INT
8322 && GET_CODE (initial_value) == CONST_INT)
8324 comparison_val = comparison_val - INTVAL (bl->initial_value);
8325 /* The code below requires comparison_val to be a multiple
8326 of add_val in order to do the loop reversal, so
8327 round up comparison_val to a multiple of add_val.
8328 Since comparison_value is constant, we know that the
8329 current comparison code is LT. */
8330 comparison_val = comparison_val + add_val - 1;
8331 comparison_val
8332 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8333 /* We postpone overflow checks for COMPARISON_VAL here;
8334 even if there is an overflow, we might still be able to
8335 reverse the loop, if converting the loop exit test to
8336 NE is possible. */
8337 initial_value = const0_rtx;
8340 /* First check if we can do a vanilla loop reversal. */
8341 if (initial_value == const0_rtx
8342 /* If we have a decrement_and_branch_on_count,
8343 prefer the NE test, since this will allow that
8344 instruction to be generated. Note that we must
8345 use a vanilla loop reversal if the biv is used to
8346 calculate a giv or has a non-counting use. */
8347 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8348 && defined (HAVE_decrement_and_branch_on_count)
8349 && (! (add_val == 1 && loop->vtop
8350 && (bl->biv_count == 0
8351 || no_use_except_counting)))
8352 #endif
8353 && GET_CODE (comparison_value) == CONST_INT
8354 /* Now do postponed overflow checks on COMPARISON_VAL. */
8355 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8356 & comparison_sign_mask))
8358 /* Register will always be nonnegative, with value
8359 0 on last iteration */
8360 add_adjust = add_val;
8361 nonneg = 1;
8362 cmp_code = GE;
8364 else if (add_val == 1 && loop->vtop
8365 && (bl->biv_count == 0
8366 || no_use_except_counting))
8368 add_adjust = 0;
8369 cmp_code = NE;
8371 else
8372 return 0;
8374 if (GET_CODE (comparison) == LE)
8375 add_adjust -= add_val;
8377 /* If the initial value is not zero, or if the comparison
8378 value is not an exact multiple of the increment, then we
8379 can not reverse this loop. */
8380 if (initial_value == const0_rtx
8381 && GET_CODE (comparison_value) == CONST_INT)
8383 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8384 return 0;
8386 else
8388 if (! no_use_except_counting || add_val != 1)
8389 return 0;
8392 final_value = comparison_value;
8394 /* Reset these in case we normalized the initial value
8395 and comparison value above. */
8396 if (GET_CODE (comparison_value) == CONST_INT
8397 && GET_CODE (initial_value) == CONST_INT)
8399 comparison_value = GEN_INT (comparison_val);
8400 final_value
8401 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8403 bl->initial_value = initial_value;
8405 /* Save some info needed to produce the new insns. */
8406 reg = bl->biv->dest_reg;
8407 mode = GET_MODE (reg);
8408 jump_label = condjump_label (PREV_INSN (loop_end));
8409 new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
8411 /* Set start_value; if this is not a CONST_INT, we need
8412 to generate a SUB.
8413 Initialize biv to start_value before loop start.
8414 The old initializing insn will be deleted as a
8415 dead store by flow.c. */
8416 if (initial_value == const0_rtx
8417 && GET_CODE (comparison_value) == CONST_INT)
8419 start_value
8420 = gen_int_mode (comparison_val - add_adjust, mode);
8421 loop_insn_hoist (loop, gen_move_insn (reg, start_value));
8423 else if (GET_CODE (initial_value) == CONST_INT)
8425 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8426 rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
8428 if (add_insn == 0)
8429 return 0;
8431 start_value
8432 = gen_rtx_PLUS (mode, comparison_value, offset);
8433 loop_insn_hoist (loop, add_insn);
8434 if (GET_CODE (comparison) == LE)
8435 final_value = gen_rtx_PLUS (mode, comparison_value,
8436 GEN_INT (add_val));
8438 else if (! add_adjust)
8440 rtx sub_insn = gen_sub3_insn (reg, comparison_value,
8441 initial_value);
8443 if (sub_insn == 0)
8444 return 0;
8445 start_value
8446 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8447 loop_insn_hoist (loop, sub_insn);
8449 else
8450 /* We could handle the other cases too, but it'll be
8451 better to have a testcase first. */
8452 return 0;
8454 /* We may not have a single insn which can increment a reg, so
8455 create a sequence to hold all the insns from expand_inc. */
8456 start_sequence ();
8457 expand_inc (reg, new_add_val);
8458 tem = get_insns ();
8459 end_sequence ();
8461 p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
8462 delete_insn (bl->biv->insn);
8464 /* Update biv info to reflect its new status. */
8465 bl->biv->insn = p;
8466 bl->initial_value = start_value;
8467 bl->biv->add_val = new_add_val;
8469 /* Update loop info. */
8470 loop_info->initial_value = reg;
8471 loop_info->initial_equiv_value = reg;
8472 loop_info->final_value = const0_rtx;
8473 loop_info->final_equiv_value = const0_rtx;
8474 loop_info->comparison_value = const0_rtx;
8475 loop_info->comparison_code = cmp_code;
8476 loop_info->increment = new_add_val;
8478 /* Inc LABEL_NUSES so that delete_insn will
8479 not delete the label. */
8480 LABEL_NUSES (XEXP (jump_label, 0))++;
8482 /* Emit an insn after the end of the loop to set the biv's
8483 proper exit value if it is used anywhere outside the loop. */
8484 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8485 || ! bl->init_insn
8486 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8487 loop_insn_sink (loop, gen_load_of_final_value (reg, final_value));
8489 /* Delete compare/branch at end of loop. */
8490 delete_related_insns (PREV_INSN (loop_end));
8491 if (compare_and_branch == 2)
8492 delete_related_insns (first_compare);
8494 /* Add new compare/branch insn at end of loop. */
8495 start_sequence ();
8496 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8497 mode, 0,
8498 XEXP (jump_label, 0));
8499 tem = get_insns ();
8500 end_sequence ();
8501 emit_jump_insn_before (tem, loop_end);
8503 for (tem = PREV_INSN (loop_end);
8504 tem && GET_CODE (tem) != JUMP_INSN;
8505 tem = PREV_INSN (tem))
8508 if (tem)
8509 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8511 if (nonneg)
8513 if (tem)
8515 /* Increment of LABEL_NUSES done above. */
8516 /* Register is now always nonnegative,
8517 so add REG_NONNEG note to the branch. */
8518 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
8519 REG_NOTES (tem));
8521 bl->nonneg = 1;
8524 /* No insn may reference both the reversed and another biv or it
8525 will fail (see comment near the top of the loop reversal
8526 code).
8527 Earlier on, we have verified that the biv has no use except
8528 counting, or it is the only biv in this function.
8529 However, the code that computes no_use_except_counting does
8530 not verify reg notes. It's possible to have an insn that
8531 references another biv, and has a REG_EQUAL note with an
8532 expression based on the reversed biv. To avoid this case,
8533 remove all REG_EQUAL notes based on the reversed biv
8534 here. */
8535 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8536 if (INSN_P (p))
8538 rtx *pnote;
8539 rtx set = single_set (p);
8540 /* If this is a set of a GIV based on the reversed biv, any
8541 REG_EQUAL notes should still be correct. */
8542 if (! set
8543 || GET_CODE (SET_DEST (set)) != REG
8544 || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
8545 || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
8546 || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8547 for (pnote = &REG_NOTES (p); *pnote;)
8549 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8550 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8551 XEXP (*pnote, 0)))
8552 *pnote = XEXP (*pnote, 1);
8553 else
8554 pnote = &XEXP (*pnote, 1);
8558 /* Mark that this biv has been reversed. Each giv which depends
8559 on this biv, and which is also live past the end of the loop
8560 will have to be fixed up. */
8562 bl->reversed = 1;
8564 if (loop_dump_stream)
8566 fprintf (loop_dump_stream, "Reversed loop");
8567 if (bl->nonneg)
8568 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8569 else
8570 fprintf (loop_dump_stream, "\n");
8573 return 1;
8578 return 0;
8581 /* Verify whether the biv BL appears to be eliminable,
8582 based on the insns in the loop that refer to it.
8584 If ELIMINATE_P is nonzero, actually do the elimination.
8586 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8587 determine whether invariant insns should be placed inside or at the
8588 start of the loop. */
8590 static int
8591 maybe_eliminate_biv (const struct loop *loop, struct iv_class *bl,
8592 int eliminate_p, int threshold, int insn_count)
8594 struct loop_ivs *ivs = LOOP_IVS (loop);
8595 rtx reg = bl->biv->dest_reg;
8596 rtx p;
8598 /* Scan all insns in the loop, stopping if we find one that uses the
8599 biv in a way that we cannot eliminate. */
8601 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
8603 enum rtx_code code = GET_CODE (p);
8604 basic_block where_bb = 0;
8605 rtx where_insn = threshold >= insn_count ? 0 : p;
8606 rtx note;
8608 /* If this is a libcall that sets a giv, skip ahead to its end. */
8609 if (INSN_P (p))
8611 note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8613 if (note)
8615 rtx last = XEXP (note, 0);
8616 rtx set = single_set (last);
8618 if (set && GET_CODE (SET_DEST (set)) == REG)
8620 unsigned int regno = REGNO (SET_DEST (set));
8622 if (regno < ivs->n_regs
8623 && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
8624 && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
8625 p = last;
8630 /* Closely examine the insn if the biv is mentioned. */
8631 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8632 && reg_mentioned_p (reg, PATTERN (p))
8633 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
8634 eliminate_p, where_bb, where_insn))
8636 if (loop_dump_stream)
8637 fprintf (loop_dump_stream,
8638 "Cannot eliminate biv %d: biv used in insn %d.\n",
8639 bl->regno, INSN_UID (p));
8640 break;
8643 /* If we are eliminating, kill REG_EQUAL notes mentioning the biv. */
8644 if (eliminate_p
8645 && (note = find_reg_note (p, REG_EQUAL, NULL_RTX)) != NULL_RTX
8646 && reg_mentioned_p (reg, XEXP (note, 0)))
8647 remove_note (p, note);
8650 if (p == loop->end)
8652 if (loop_dump_stream)
8653 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8654 bl->regno, eliminate_p ? "was" : "can be");
8655 return 1;
8658 return 0;
8661 /* INSN and REFERENCE are instructions in the same insn chain.
8662 Return nonzero if INSN is first. */
8665 loop_insn_first_p (rtx insn, rtx reference)
8667 rtx p, q;
8669 for (p = insn, q = reference;;)
8671 /* Start with test for not first so that INSN == REFERENCE yields not
8672 first. */
8673 if (q == insn || ! p)
8674 return 0;
8675 if (p == reference || ! q)
8676 return 1;
8678 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8679 previous insn, hence the <= comparison below does not work if
8680 P is a note. */
8681 if (INSN_UID (p) < max_uid_for_loop
8682 && INSN_UID (q) < max_uid_for_loop
8683 && GET_CODE (p) != NOTE)
8684 return INSN_LUID (p) <= INSN_LUID (q);
8686 if (INSN_UID (p) >= max_uid_for_loop
8687 || GET_CODE (p) == NOTE)
8688 p = NEXT_INSN (p);
8689 if (INSN_UID (q) >= max_uid_for_loop)
8690 q = NEXT_INSN (q);
8694 /* We are trying to eliminate BIV in INSN using GIV. Return nonzero if
8695 the offset that we have to take into account due to auto-increment /
8696 div derivation is zero. */
8697 static int
8698 biv_elimination_giv_has_0_offset (struct induction *biv,
8699 struct induction *giv, rtx insn)
8701 /* If the giv V had the auto-inc address optimization applied
8702 to it, and INSN occurs between the giv insn and the biv
8703 insn, then we'd have to adjust the value used here.
8704 This is rare, so we don't bother to make this possible. */
8705 if (giv->auto_inc_opt
8706 && ((loop_insn_first_p (giv->insn, insn)
8707 && loop_insn_first_p (insn, biv->insn))
8708 || (loop_insn_first_p (biv->insn, insn)
8709 && loop_insn_first_p (insn, giv->insn))))
8710 return 0;
8712 return 1;
8715 /* If BL appears in X (part of the pattern of INSN), see if we can
8716 eliminate its use. If so, return 1. If not, return 0.
8718 If BIV does not appear in X, return 1.
8720 If ELIMINATE_P is nonzero, actually do the elimination.
8721 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
8722 Depending on how many items have been moved out of the loop, it
8723 will either be before INSN (when WHERE_INSN is nonzero) or at the
8724 start of the loop (when WHERE_INSN is zero). */
8726 static int
8727 maybe_eliminate_biv_1 (const struct loop *loop, rtx x, rtx insn,
8728 struct iv_class *bl, int eliminate_p,
8729 basic_block where_bb, rtx where_insn)
8731 enum rtx_code code = GET_CODE (x);
8732 rtx reg = bl->biv->dest_reg;
8733 enum machine_mode mode = GET_MODE (reg);
8734 struct induction *v;
8735 rtx arg, tem;
8736 #ifdef HAVE_cc0
8737 rtx new;
8738 #endif
8739 int arg_operand;
8740 const char *fmt;
8741 int i, j;
8743 switch (code)
8745 case REG:
8746 /* If we haven't already been able to do something with this BIV,
8747 we can't eliminate it. */
8748 if (x == reg)
8749 return 0;
8750 return 1;
8752 case SET:
8753 /* If this sets the BIV, it is not a problem. */
8754 if (SET_DEST (x) == reg)
8755 return 1;
8757 /* If this is an insn that defines a giv, it is also ok because
8758 it will go away when the giv is reduced. */
8759 for (v = bl->giv; v; v = v->next_iv)
8760 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8761 return 1;
8763 #ifdef HAVE_cc0
8764 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8766 /* Can replace with any giv that was reduced and
8767 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8768 Require a constant for MULT_VAL, so we know it's nonzero.
8769 ??? We disable this optimization to avoid potential
8770 overflows. */
8772 for (v = bl->giv; v; v = v->next_iv)
8773 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8774 && v->add_val == const0_rtx
8775 && ! v->ignore && ! v->maybe_dead && v->always_computable
8776 && v->mode == mode
8777 && 0)
8779 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8780 continue;
8782 if (! eliminate_p)
8783 return 1;
8785 /* If the giv has the opposite direction of change,
8786 then reverse the comparison. */
8787 if (INTVAL (v->mult_val) < 0)
8788 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8789 const0_rtx, v->new_reg);
8790 else
8791 new = v->new_reg;
8793 /* We can probably test that giv's reduced reg. */
8794 if (validate_change (insn, &SET_SRC (x), new, 0))
8795 return 1;
8798 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8799 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8800 Require a constant for MULT_VAL, so we know it's nonzero.
8801 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8802 overflow problem. */
8804 for (v = bl->giv; v; v = v->next_iv)
8805 if (GET_CODE (v->mult_val) == CONST_INT
8806 && v->mult_val != const0_rtx
8807 && ! v->ignore && ! v->maybe_dead && v->always_computable
8808 && v->mode == mode
8809 && (GET_CODE (v->add_val) == SYMBOL_REF
8810 || GET_CODE (v->add_val) == LABEL_REF
8811 || GET_CODE (v->add_val) == CONST
8812 || (GET_CODE (v->add_val) == REG
8813 && REG_POINTER (v->add_val))))
8815 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8816 continue;
8818 if (! eliminate_p)
8819 return 1;
8821 /* If the giv has the opposite direction of change,
8822 then reverse the comparison. */
8823 if (INTVAL (v->mult_val) < 0)
8824 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8825 v->new_reg);
8826 else
8827 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8828 copy_rtx (v->add_val));
8830 /* Replace biv with the giv's reduced register. */
8831 update_reg_last_use (v->add_val, insn);
8832 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8833 return 1;
8835 /* Insn doesn't support that constant or invariant. Copy it
8836 into a register (it will be a loop invariant.) */
8837 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8839 loop_insn_emit_before (loop, 0, where_insn,
8840 gen_move_insn (tem,
8841 copy_rtx (v->add_val)));
8843 /* Substitute the new register for its invariant value in
8844 the compare expression. */
8845 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8846 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8847 return 1;
8850 #endif
8851 break;
8853 case COMPARE:
8854 case EQ: case NE:
8855 case GT: case GE: case GTU: case GEU:
8856 case LT: case LE: case LTU: case LEU:
8857 /* See if either argument is the biv. */
8858 if (XEXP (x, 0) == reg)
8859 arg = XEXP (x, 1), arg_operand = 1;
8860 else if (XEXP (x, 1) == reg)
8861 arg = XEXP (x, 0), arg_operand = 0;
8862 else
8863 break;
8865 if (CONSTANT_P (arg))
8867 /* First try to replace with any giv that has constant positive
8868 mult_val and constant add_val. We might be able to support
8869 negative mult_val, but it seems complex to do it in general. */
8871 for (v = bl->giv; v; v = v->next_iv)
8872 if (GET_CODE (v->mult_val) == CONST_INT
8873 && INTVAL (v->mult_val) > 0
8874 && (GET_CODE (v->add_val) == SYMBOL_REF
8875 || GET_CODE (v->add_val) == LABEL_REF
8876 || GET_CODE (v->add_val) == CONST
8877 || (GET_CODE (v->add_val) == REG
8878 && REG_POINTER (v->add_val)))
8879 && ! v->ignore && ! v->maybe_dead && v->always_computable
8880 && v->mode == mode)
8882 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8883 continue;
8885 /* Don't eliminate if the linear combination that makes up
8886 the giv overflows when it is applied to ARG. */
8887 if (GET_CODE (arg) == CONST_INT)
8889 rtx add_val;
8891 if (GET_CODE (v->add_val) == CONST_INT)
8892 add_val = v->add_val;
8893 else
8894 add_val = const0_rtx;
8896 if (const_mult_add_overflow_p (arg, v->mult_val,
8897 add_val, mode, 1))
8898 continue;
8901 if (! eliminate_p)
8902 return 1;
8904 /* Replace biv with the giv's reduced reg. */
8905 validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
8907 /* If all constants are actually constant integers and
8908 the derived constant can be directly placed in the COMPARE,
8909 do so. */
8910 if (GET_CODE (arg) == CONST_INT
8911 && GET_CODE (v->add_val) == CONST_INT)
8913 tem = expand_mult_add (arg, NULL_RTX, v->mult_val,
8914 v->add_val, mode, 1);
8916 else
8918 /* Otherwise, load it into a register. */
8919 tem = gen_reg_rtx (mode);
8920 loop_iv_add_mult_emit_before (loop, arg,
8921 v->mult_val, v->add_val,
8922 tem, where_bb, where_insn);
8925 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8927 if (apply_change_group ())
8928 return 1;
8931 /* Look for giv with positive constant mult_val and nonconst add_val.
8932 Insert insns to calculate new compare value.
8933 ??? Turn this off due to possible overflow. */
8935 for (v = bl->giv; v; v = v->next_iv)
8936 if (GET_CODE (v->mult_val) == CONST_INT
8937 && INTVAL (v->mult_val) > 0
8938 && ! v->ignore && ! v->maybe_dead && v->always_computable
8939 && v->mode == mode
8940 && 0)
8942 rtx tem;
8944 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8945 continue;
8947 if (! eliminate_p)
8948 return 1;
8950 tem = gen_reg_rtx (mode);
8952 /* Replace biv with giv's reduced register. */
8953 validate_change (insn, &XEXP (x, 1 - arg_operand),
8954 v->new_reg, 1);
8956 /* Compute value to compare against. */
8957 loop_iv_add_mult_emit_before (loop, arg,
8958 v->mult_val, v->add_val,
8959 tem, where_bb, where_insn);
8960 /* Use it in this insn. */
8961 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8962 if (apply_change_group ())
8963 return 1;
8966 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8968 if (loop_invariant_p (loop, arg) == 1)
8970 /* Look for giv with constant positive mult_val and nonconst
8971 add_val. Insert insns to compute new compare value.
8972 ??? Turn this off due to possible overflow. */
8974 for (v = bl->giv; v; v = v->next_iv)
8975 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8976 && ! v->ignore && ! v->maybe_dead && v->always_computable
8977 && v->mode == mode
8978 && 0)
8980 rtx tem;
8982 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8983 continue;
8985 if (! eliminate_p)
8986 return 1;
8988 tem = gen_reg_rtx (mode);
8990 /* Replace biv with giv's reduced register. */
8991 validate_change (insn, &XEXP (x, 1 - arg_operand),
8992 v->new_reg, 1);
8994 /* Compute value to compare against. */
8995 loop_iv_add_mult_emit_before (loop, arg,
8996 v->mult_val, v->add_val,
8997 tem, where_bb, where_insn);
8998 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8999 if (apply_change_group ())
9000 return 1;
9004 /* This code has problems. Basically, you can't know when
9005 seeing if we will eliminate BL, whether a particular giv
9006 of ARG will be reduced. If it isn't going to be reduced,
9007 we can't eliminate BL. We can try forcing it to be reduced,
9008 but that can generate poor code.
9010 The problem is that the benefit of reducing TV, below should
9011 be increased if BL can actually be eliminated, but this means
9012 we might have to do a topological sort of the order in which
9013 we try to process biv. It doesn't seem worthwhile to do
9014 this sort of thing now. */
9016 #if 0
9017 /* Otherwise the reg compared with had better be a biv. */
9018 if (GET_CODE (arg) != REG
9019 || REG_IV_TYPE (ivs, REGNO (arg)) != BASIC_INDUCT)
9020 return 0;
9022 /* Look for a pair of givs, one for each biv,
9023 with identical coefficients. */
9024 for (v = bl->giv; v; v = v->next_iv)
9026 struct induction *tv;
9028 if (v->ignore || v->maybe_dead || v->mode != mode)
9029 continue;
9031 for (tv = REG_IV_CLASS (ivs, REGNO (arg))->giv; tv;
9032 tv = tv->next_iv)
9033 if (! tv->ignore && ! tv->maybe_dead
9034 && rtx_equal_p (tv->mult_val, v->mult_val)
9035 && rtx_equal_p (tv->add_val, v->add_val)
9036 && tv->mode == mode)
9038 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
9039 continue;
9041 if (! eliminate_p)
9042 return 1;
9044 /* Replace biv with its giv's reduced reg. */
9045 XEXP (x, 1 - arg_operand) = v->new_reg;
9046 /* Replace other operand with the other giv's
9047 reduced reg. */
9048 XEXP (x, arg_operand) = tv->new_reg;
9049 return 1;
9052 #endif
9055 /* If we get here, the biv can't be eliminated. */
9056 return 0;
9058 case MEM:
9059 /* If this address is a DEST_ADDR giv, it doesn't matter if the
9060 biv is used in it, since it will be replaced. */
9061 for (v = bl->giv; v; v = v->next_iv)
9062 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
9063 return 1;
9064 break;
9066 default:
9067 break;
9070 /* See if any subexpression fails elimination. */
9071 fmt = GET_RTX_FORMAT (code);
9072 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9074 switch (fmt[i])
9076 case 'e':
9077 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
9078 eliminate_p, where_bb, where_insn))
9079 return 0;
9080 break;
9082 case 'E':
9083 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9084 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
9085 eliminate_p, where_bb, where_insn))
9086 return 0;
9087 break;
9091 return 1;
9094 /* Return nonzero if the last use of REG
9095 is in an insn following INSN in the same basic block. */
9097 static int
9098 last_use_this_basic_block (rtx reg, rtx insn)
9100 rtx n;
9101 for (n = insn;
9102 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
9103 n = NEXT_INSN (n))
9105 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
9106 return 1;
9108 return 0;
9111 /* Called via `note_stores' to record the initial value of a biv. Here we
9112 just record the location of the set and process it later. */
9114 static void
9115 record_initial (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9117 struct loop_ivs *ivs = (struct loop_ivs *) data;
9118 struct iv_class *bl;
9120 if (GET_CODE (dest) != REG
9121 || REGNO (dest) >= ivs->n_regs
9122 || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
9123 return;
9125 bl = REG_IV_CLASS (ivs, REGNO (dest));
9127 /* If this is the first set found, record it. */
9128 if (bl->init_insn == 0)
9130 bl->init_insn = note_insn;
9131 bl->init_set = set;
9135 /* If any of the registers in X are "old" and currently have a last use earlier
9136 than INSN, update them to have a last use of INSN. Their actual last use
9137 will be the previous insn but it will not have a valid uid_luid so we can't
9138 use it. X must be a source expression only. */
9140 static void
9141 update_reg_last_use (rtx x, rtx insn)
9143 /* Check for the case where INSN does not have a valid luid. In this case,
9144 there is no need to modify the regno_last_uid, as this can only happen
9145 when code is inserted after the loop_end to set a pseudo's final value,
9146 and hence this insn will never be the last use of x.
9147 ???? This comment is not correct. See for example loop_givs_reduce.
9148 This may insert an insn before another new insn. */
9149 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
9150 && INSN_UID (insn) < max_uid_for_loop
9151 && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
9153 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
9155 else
9157 int i, j;
9158 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
9159 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
9161 if (fmt[i] == 'e')
9162 update_reg_last_use (XEXP (x, i), insn);
9163 else if (fmt[i] == 'E')
9164 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9165 update_reg_last_use (XVECEXP (x, i, j), insn);
9170 /* Given an insn INSN and condition COND, return the condition in a
9171 canonical form to simplify testing by callers. Specifically:
9173 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
9174 (2) Both operands will be machine operands; (cc0) will have been replaced.
9175 (3) If an operand is a constant, it will be the second operand.
9176 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
9177 for GE, GEU, and LEU.
9179 If the condition cannot be understood, or is an inequality floating-point
9180 comparison which needs to be reversed, 0 will be returned.
9182 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
9184 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9185 insn used in locating the condition was found. If a replacement test
9186 of the condition is desired, it should be placed in front of that
9187 insn and we will be sure that the inputs are still valid.
9189 If WANT_REG is nonzero, we wish the condition to be relative to that
9190 register, if possible. Therefore, do not canonicalize the condition
9191 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
9192 to be a compare to a CC mode register. */
9195 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
9196 rtx want_reg, int allow_cc_mode)
9198 enum rtx_code code;
9199 rtx prev = insn;
9200 rtx set;
9201 rtx tem;
9202 rtx op0, op1;
9203 int reverse_code = 0;
9204 enum machine_mode mode;
9206 code = GET_CODE (cond);
9207 mode = GET_MODE (cond);
9208 op0 = XEXP (cond, 0);
9209 op1 = XEXP (cond, 1);
9211 if (reverse)
9212 code = reversed_comparison_code (cond, insn);
9213 if (code == UNKNOWN)
9214 return 0;
9216 if (earliest)
9217 *earliest = insn;
9219 /* If we are comparing a register with zero, see if the register is set
9220 in the previous insn to a COMPARE or a comparison operation. Perform
9221 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9222 in cse.c */
9224 while ((GET_RTX_CLASS (code) == RTX_COMPARE
9225 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9226 && op1 == CONST0_RTX (GET_MODE (op0))
9227 && op0 != want_reg)
9229 /* Set nonzero when we find something of interest. */
9230 rtx x = 0;
9232 #ifdef HAVE_cc0
9233 /* If comparison with cc0, import actual comparison from compare
9234 insn. */
9235 if (op0 == cc0_rtx)
9237 if ((prev = prev_nonnote_insn (prev)) == 0
9238 || GET_CODE (prev) != INSN
9239 || (set = single_set (prev)) == 0
9240 || SET_DEST (set) != cc0_rtx)
9241 return 0;
9243 op0 = SET_SRC (set);
9244 op1 = CONST0_RTX (GET_MODE (op0));
9245 if (earliest)
9246 *earliest = prev;
9248 #endif
9250 /* If this is a COMPARE, pick up the two things being compared. */
9251 if (GET_CODE (op0) == COMPARE)
9253 op1 = XEXP (op0, 1);
9254 op0 = XEXP (op0, 0);
9255 continue;
9257 else if (GET_CODE (op0) != REG)
9258 break;
9260 /* Go back to the previous insn. Stop if it is not an INSN. We also
9261 stop if it isn't a single set or if it has a REG_INC note because
9262 we don't want to bother dealing with it. */
9264 if ((prev = prev_nonnote_insn (prev)) == 0
9265 || GET_CODE (prev) != INSN
9266 || FIND_REG_INC_NOTE (prev, NULL_RTX))
9267 break;
9269 set = set_of (op0, prev);
9271 if (set
9272 && (GET_CODE (set) != SET
9273 || !rtx_equal_p (SET_DEST (set), op0)))
9274 break;
9276 /* If this is setting OP0, get what it sets it to if it looks
9277 relevant. */
9278 if (set)
9280 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
9281 #ifdef FLOAT_STORE_FLAG_VALUE
9282 REAL_VALUE_TYPE fsfv;
9283 #endif
9285 /* ??? We may not combine comparisons done in a CCmode with
9286 comparisons not done in a CCmode. This is to aid targets
9287 like Alpha that have an IEEE compliant EQ instruction, and
9288 a non-IEEE compliant BEQ instruction. The use of CCmode is
9289 actually artificial, simply to prevent the combination, but
9290 should not affect other platforms.
9292 However, we must allow VOIDmode comparisons to match either
9293 CCmode or non-CCmode comparison, because some ports have
9294 modeless comparisons inside branch patterns.
9296 ??? This mode check should perhaps look more like the mode check
9297 in simplify_comparison in combine. */
9299 if ((GET_CODE (SET_SRC (set)) == COMPARE
9300 || (((code == NE
9301 || (code == LT
9302 && GET_MODE_CLASS (inner_mode) == MODE_INT
9303 && (GET_MODE_BITSIZE (inner_mode)
9304 <= HOST_BITS_PER_WIDE_INT)
9305 && (STORE_FLAG_VALUE
9306 & ((HOST_WIDE_INT) 1
9307 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9308 #ifdef FLOAT_STORE_FLAG_VALUE
9309 || (code == LT
9310 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9311 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
9312 REAL_VALUE_NEGATIVE (fsfv)))
9313 #endif
9315 && COMPARISON_P (SET_SRC (set))))
9316 && (((GET_MODE_CLASS (mode) == MODE_CC)
9317 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9318 || mode == VOIDmode || inner_mode == VOIDmode))
9319 x = SET_SRC (set);
9320 else if (((code == EQ
9321 || (code == GE
9322 && (GET_MODE_BITSIZE (inner_mode)
9323 <= HOST_BITS_PER_WIDE_INT)
9324 && GET_MODE_CLASS (inner_mode) == MODE_INT
9325 && (STORE_FLAG_VALUE
9326 & ((HOST_WIDE_INT) 1
9327 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9328 #ifdef FLOAT_STORE_FLAG_VALUE
9329 || (code == GE
9330 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9331 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
9332 REAL_VALUE_NEGATIVE (fsfv)))
9333 #endif
9335 && COMPARISON_P (SET_SRC (set))
9336 && (((GET_MODE_CLASS (mode) == MODE_CC)
9337 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9338 || mode == VOIDmode || inner_mode == VOIDmode))
9341 reverse_code = 1;
9342 x = SET_SRC (set);
9344 else
9345 break;
9348 else if (reg_set_p (op0, prev))
9349 /* If this sets OP0, but not directly, we have to give up. */
9350 break;
9352 if (x)
9354 if (COMPARISON_P (x))
9355 code = GET_CODE (x);
9356 if (reverse_code)
9358 code = reversed_comparison_code (x, prev);
9359 if (code == UNKNOWN)
9360 return 0;
9361 reverse_code = 0;
9364 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9365 if (earliest)
9366 *earliest = prev;
9370 /* If constant is first, put it last. */
9371 if (CONSTANT_P (op0))
9372 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9374 /* If OP0 is the result of a comparison, we weren't able to find what
9375 was really being compared, so fail. */
9376 if (!allow_cc_mode
9377 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9378 return 0;
9380 /* Canonicalize any ordered comparison with integers involving equality
9381 if we can do computations in the relevant mode and we do not
9382 overflow. */
9384 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
9385 && GET_CODE (op1) == CONST_INT
9386 && GET_MODE (op0) != VOIDmode
9387 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9389 HOST_WIDE_INT const_val = INTVAL (op1);
9390 unsigned HOST_WIDE_INT uconst_val = const_val;
9391 unsigned HOST_WIDE_INT max_val
9392 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9394 switch (code)
9396 case LE:
9397 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9398 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
9399 break;
9401 /* When cross-compiling, const_val might be sign-extended from
9402 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9403 case GE:
9404 if ((HOST_WIDE_INT) (const_val & max_val)
9405 != (((HOST_WIDE_INT) 1
9406 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9407 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
9408 break;
9410 case LEU:
9411 if (uconst_val < max_val)
9412 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
9413 break;
9415 case GEU:
9416 if (uconst_val != 0)
9417 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
9418 break;
9420 default:
9421 break;
9425 /* Never return CC0; return zero instead. */
9426 if (CC0_P (op0))
9427 return 0;
9429 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9432 /* Given a jump insn JUMP, return the condition that will cause it to branch
9433 to its JUMP_LABEL. If the condition cannot be understood, or is an
9434 inequality floating-point comparison which needs to be reversed, 0 will
9435 be returned.
9437 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9438 insn used in locating the condition was found. If a replacement test
9439 of the condition is desired, it should be placed in front of that
9440 insn and we will be sure that the inputs are still valid.
9442 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
9443 compare CC mode register. */
9446 get_condition (rtx jump, rtx *earliest, int allow_cc_mode)
9448 rtx cond;
9449 int reverse;
9450 rtx set;
9452 /* If this is not a standard conditional jump, we can't parse it. */
9453 if (GET_CODE (jump) != JUMP_INSN
9454 || ! any_condjump_p (jump))
9455 return 0;
9456 set = pc_set (jump);
9458 cond = XEXP (SET_SRC (set), 0);
9460 /* If this branches to JUMP_LABEL when the condition is false, reverse
9461 the condition. */
9462 reverse
9463 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
9464 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
9466 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
9467 allow_cc_mode);
9470 /* Similar to above routine, except that we also put an invariant last
9471 unless both operands are invariants. */
9474 get_condition_for_loop (const struct loop *loop, rtx x)
9476 rtx comparison = get_condition (x, (rtx*) 0, false);
9478 if (comparison == 0
9479 || ! loop_invariant_p (loop, XEXP (comparison, 0))
9480 || loop_invariant_p (loop, XEXP (comparison, 1)))
9481 return comparison;
9483 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9484 XEXP (comparison, 1), XEXP (comparison, 0));
9487 /* Scan the function and determine whether it has indirect (computed) jumps.
9489 This is taken mostly from flow.c; similar code exists elsewhere
9490 in the compiler. It may be useful to put this into rtlanal.c. */
9491 static int
9492 indirect_jump_in_function_p (rtx start)
9494 rtx insn;
9496 for (insn = start; insn; insn = NEXT_INSN (insn))
9497 if (computed_jump_p (insn))
9498 return 1;
9500 return 0;
9503 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9504 documentation for LOOP_MEMS for the definition of `appropriate'.
9505 This function is called from prescan_loop via for_each_rtx. */
9507 static int
9508 insert_loop_mem (rtx *mem, void *data ATTRIBUTE_UNUSED)
9510 struct loop_info *loop_info = data;
9511 int i;
9512 rtx m = *mem;
9514 if (m == NULL_RTX)
9515 return 0;
9517 switch (GET_CODE (m))
9519 case MEM:
9520 break;
9522 case CLOBBER:
9523 /* We're not interested in MEMs that are only clobbered. */
9524 return -1;
9526 case CONST_DOUBLE:
9527 /* We're not interested in the MEM associated with a
9528 CONST_DOUBLE, so there's no need to traverse into this. */
9529 return -1;
9531 case EXPR_LIST:
9532 /* We're not interested in any MEMs that only appear in notes. */
9533 return -1;
9535 default:
9536 /* This is not a MEM. */
9537 return 0;
9540 /* See if we've already seen this MEM. */
9541 for (i = 0; i < loop_info->mems_idx; ++i)
9542 if (rtx_equal_p (m, loop_info->mems[i].mem))
9544 if (MEM_VOLATILE_P (m) && !MEM_VOLATILE_P (loop_info->mems[i].mem))
9545 loop_info->mems[i].mem = m;
9546 if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
9547 /* The modes of the two memory accesses are different. If
9548 this happens, something tricky is going on, and we just
9549 don't optimize accesses to this MEM. */
9550 loop_info->mems[i].optimize = 0;
9552 return 0;
9555 /* Resize the array, if necessary. */
9556 if (loop_info->mems_idx == loop_info->mems_allocated)
9558 if (loop_info->mems_allocated != 0)
9559 loop_info->mems_allocated *= 2;
9560 else
9561 loop_info->mems_allocated = 32;
9563 loop_info->mems = xrealloc (loop_info->mems,
9564 loop_info->mems_allocated * sizeof (loop_mem_info));
9567 /* Actually insert the MEM. */
9568 loop_info->mems[loop_info->mems_idx].mem = m;
9569 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9570 because we can't put it in a register. We still store it in the
9571 table, though, so that if we see the same address later, but in a
9572 non-BLK mode, we'll not think we can optimize it at that point. */
9573 loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
9574 loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
9575 ++loop_info->mems_idx;
9577 return 0;
9581 /* Allocate REGS->ARRAY or reallocate it if it is too small.
9583 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
9584 register that is modified by an insn between FROM and TO. If the
9585 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
9586 more, stop incrementing it, to avoid overflow.
9588 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
9589 register I is used, if it is only used once. Otherwise, it is set
9590 to 0 (for no uses) or const0_rtx for more than one use. This
9591 parameter may be zero, in which case this processing is not done.
9593 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
9594 optimize register I. */
9596 static void
9597 loop_regs_scan (const struct loop *loop, int extra_size)
9599 struct loop_regs *regs = LOOP_REGS (loop);
9600 int old_nregs;
9601 /* last_set[n] is nonzero iff reg n has been set in the current
9602 basic block. In that case, it is the insn that last set reg n. */
9603 rtx *last_set;
9604 rtx insn;
9605 int i;
9607 old_nregs = regs->num;
9608 regs->num = max_reg_num ();
9610 /* Grow the regs array if not allocated or too small. */
9611 if (regs->num >= regs->size)
9613 regs->size = regs->num + extra_size;
9615 regs->array = xrealloc (regs->array, regs->size * sizeof (*regs->array));
9617 /* Zero the new elements. */
9618 memset (regs->array + old_nregs, 0,
9619 (regs->size - old_nregs) * sizeof (*regs->array));
9622 /* Clear previously scanned fields but do not clear n_times_set. */
9623 for (i = 0; i < old_nregs; i++)
9625 regs->array[i].set_in_loop = 0;
9626 regs->array[i].may_not_optimize = 0;
9627 regs->array[i].single_usage = NULL_RTX;
9630 last_set = xcalloc (regs->num, sizeof (rtx));
9632 /* Scan the loop, recording register usage. */
9633 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9634 insn = NEXT_INSN (insn))
9636 if (INSN_P (insn))
9638 /* Record registers that have exactly one use. */
9639 find_single_use_in_loop (regs, insn, PATTERN (insn));
9641 /* Include uses in REG_EQUAL notes. */
9642 if (REG_NOTES (insn))
9643 find_single_use_in_loop (regs, insn, REG_NOTES (insn));
9645 if (GET_CODE (PATTERN (insn)) == SET
9646 || GET_CODE (PATTERN (insn)) == CLOBBER)
9647 count_one_set (regs, insn, PATTERN (insn), last_set);
9648 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
9650 int i;
9651 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
9652 count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
9653 last_set);
9657 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
9658 memset (last_set, 0, regs->num * sizeof (rtx));
9660 /* Invalidate all registers used for function argument passing.
9661 We check rtx_varies_p for the same reason as below, to allow
9662 optimizing PIC calculations. */
9663 if (GET_CODE (insn) == CALL_INSN)
9665 rtx link;
9666 for (link = CALL_INSN_FUNCTION_USAGE (insn);
9667 link;
9668 link = XEXP (link, 1))
9670 rtx op, reg;
9672 if (GET_CODE (op = XEXP (link, 0)) == USE
9673 && GET_CODE (reg = XEXP (op, 0)) == REG
9674 && rtx_varies_p (reg, 1))
9675 regs->array[REGNO (reg)].may_not_optimize = 1;
9680 /* Invalidate all hard registers clobbered by calls. With one exception:
9681 a call-clobbered PIC register is still function-invariant for our
9682 purposes, since we can hoist any PIC calculations out of the loop.
9683 Thus the call to rtx_varies_p. */
9684 if (LOOP_INFO (loop)->has_call)
9685 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9686 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
9687 && rtx_varies_p (regno_reg_rtx[i], 1))
9689 regs->array[i].may_not_optimize = 1;
9690 regs->array[i].set_in_loop = 1;
9693 #ifdef AVOID_CCMODE_COPIES
9694 /* Don't try to move insns which set CC registers if we should not
9695 create CCmode register copies. */
9696 for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9697 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9698 regs->array[i].may_not_optimize = 1;
9699 #endif
9701 /* Set regs->array[I].n_times_set for the new registers. */
9702 for (i = old_nregs; i < regs->num; i++)
9703 regs->array[i].n_times_set = regs->array[i].set_in_loop;
9705 free (last_set);
9708 /* Returns the number of real INSNs in the LOOP. */
9710 static int
9711 count_insns_in_loop (const struct loop *loop)
9713 int count = 0;
9714 rtx insn;
9716 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9717 insn = NEXT_INSN (insn))
9718 if (INSN_P (insn))
9719 ++count;
9721 return count;
9724 /* Move MEMs into registers for the duration of the loop. */
9726 static void
9727 load_mems (const struct loop *loop)
9729 struct loop_info *loop_info = LOOP_INFO (loop);
9730 struct loop_regs *regs = LOOP_REGS (loop);
9731 int maybe_never = 0;
9732 int i;
9733 rtx p, prev_ebb_head;
9734 rtx label = NULL_RTX;
9735 rtx end_label;
9736 /* Nonzero if the next instruction may never be executed. */
9737 int next_maybe_never = 0;
9738 unsigned int last_max_reg = max_reg_num ();
9740 if (loop_info->mems_idx == 0)
9741 return;
9743 /* We cannot use next_label here because it skips over normal insns. */
9744 end_label = next_nonnote_insn (loop->end);
9745 if (end_label && GET_CODE (end_label) != CODE_LABEL)
9746 end_label = NULL_RTX;
9748 /* Check to see if it's possible that some instructions in the loop are
9749 never executed. Also check if there is a goto out of the loop other
9750 than right after the end of the loop. */
9751 for (p = next_insn_in_loop (loop, loop->scan_start);
9752 p != NULL_RTX;
9753 p = next_insn_in_loop (loop, p))
9755 if (GET_CODE (p) == CODE_LABEL)
9756 maybe_never = 1;
9757 else if (GET_CODE (p) == JUMP_INSN
9758 /* If we enter the loop in the middle, and scan
9759 around to the beginning, don't set maybe_never
9760 for that. This must be an unconditional jump,
9761 otherwise the code at the top of the loop might
9762 never be executed. Unconditional jumps are
9763 followed a by barrier then loop end. */
9764 && ! (GET_CODE (p) == JUMP_INSN
9765 && JUMP_LABEL (p) == loop->top
9766 && NEXT_INSN (NEXT_INSN (p)) == loop->end
9767 && any_uncondjump_p (p)))
9769 /* If this is a jump outside of the loop but not right
9770 after the end of the loop, we would have to emit new fixup
9771 sequences for each such label. */
9772 if (/* If we can't tell where control might go when this
9773 JUMP_INSN is executed, we must be conservative. */
9774 !JUMP_LABEL (p)
9775 || (JUMP_LABEL (p) != end_label
9776 && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
9777 || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
9778 || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
9779 return;
9781 if (!any_condjump_p (p))
9782 /* Something complicated. */
9783 maybe_never = 1;
9784 else
9785 /* If there are any more instructions in the loop, they
9786 might not be reached. */
9787 next_maybe_never = 1;
9789 else if (next_maybe_never)
9790 maybe_never = 1;
9793 /* Find start of the extended basic block that enters the loop. */
9794 for (p = loop->start;
9795 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
9796 p = PREV_INSN (p))
9798 prev_ebb_head = p;
9800 cselib_init ();
9802 /* Build table of mems that get set to constant values before the
9803 loop. */
9804 for (; p != loop->start; p = NEXT_INSN (p))
9805 cselib_process_insn (p);
9807 /* Actually move the MEMs. */
9808 for (i = 0; i < loop_info->mems_idx; ++i)
9810 regset_head load_copies;
9811 regset_head store_copies;
9812 int written = 0;
9813 rtx reg;
9814 rtx mem = loop_info->mems[i].mem;
9815 rtx mem_list_entry;
9817 if (MEM_VOLATILE_P (mem)
9818 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
9819 /* There's no telling whether or not MEM is modified. */
9820 loop_info->mems[i].optimize = 0;
9822 /* Go through the MEMs written to in the loop to see if this
9823 one is aliased by one of them. */
9824 mem_list_entry = loop_info->store_mems;
9825 while (mem_list_entry)
9827 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9828 written = 1;
9829 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9830 mem, rtx_varies_p))
9832 /* MEM is indeed aliased by this store. */
9833 loop_info->mems[i].optimize = 0;
9834 break;
9836 mem_list_entry = XEXP (mem_list_entry, 1);
9839 if (flag_float_store && written
9840 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
9841 loop_info->mems[i].optimize = 0;
9843 /* If this MEM is written to, we must be sure that there
9844 are no reads from another MEM that aliases this one. */
9845 if (loop_info->mems[i].optimize && written)
9847 int j;
9849 for (j = 0; j < loop_info->mems_idx; ++j)
9851 if (j == i)
9852 continue;
9853 else if (true_dependence (mem,
9854 VOIDmode,
9855 loop_info->mems[j].mem,
9856 rtx_varies_p))
9858 /* It's not safe to hoist loop_info->mems[i] out of
9859 the loop because writes to it might not be
9860 seen by reads from loop_info->mems[j]. */
9861 loop_info->mems[i].optimize = 0;
9862 break;
9867 if (maybe_never && may_trap_p (mem))
9868 /* We can't access the MEM outside the loop; it might
9869 cause a trap that wouldn't have happened otherwise. */
9870 loop_info->mems[i].optimize = 0;
9872 if (!loop_info->mems[i].optimize)
9873 /* We thought we were going to lift this MEM out of the
9874 loop, but later discovered that we could not. */
9875 continue;
9877 INIT_REG_SET (&load_copies);
9878 INIT_REG_SET (&store_copies);
9880 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9881 order to keep scan_loop from moving stores to this MEM
9882 out of the loop just because this REG is neither a
9883 user-variable nor used in the loop test. */
9884 reg = gen_reg_rtx (GET_MODE (mem));
9885 REG_USERVAR_P (reg) = 1;
9886 loop_info->mems[i].reg = reg;
9888 /* Now, replace all references to the MEM with the
9889 corresponding pseudos. */
9890 maybe_never = 0;
9891 for (p = next_insn_in_loop (loop, loop->scan_start);
9892 p != NULL_RTX;
9893 p = next_insn_in_loop (loop, p))
9895 if (INSN_P (p))
9897 rtx set;
9899 set = single_set (p);
9901 /* See if this copies the mem into a register that isn't
9902 modified afterwards. We'll try to do copy propagation
9903 a little further on. */
9904 if (set
9905 /* @@@ This test is _way_ too conservative. */
9906 && ! maybe_never
9907 && GET_CODE (SET_DEST (set)) == REG
9908 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9909 && REGNO (SET_DEST (set)) < last_max_reg
9910 && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
9911 && rtx_equal_p (SET_SRC (set), mem))
9912 SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
9914 /* See if this copies the mem from a register that isn't
9915 modified afterwards. We'll try to remove the
9916 redundant copy later on by doing a little register
9917 renaming and copy propagation. This will help
9918 to untangle things for the BIV detection code. */
9919 if (set
9920 && ! maybe_never
9921 && GET_CODE (SET_SRC (set)) == REG
9922 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
9923 && REGNO (SET_SRC (set)) < last_max_reg
9924 && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
9925 && rtx_equal_p (SET_DEST (set), mem))
9926 SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
9928 /* If this is a call which uses / clobbers this memory
9929 location, we must not change the interface here. */
9930 if (GET_CODE (p) == CALL_INSN
9931 && reg_mentioned_p (loop_info->mems[i].mem,
9932 CALL_INSN_FUNCTION_USAGE (p)))
9934 cancel_changes (0);
9935 loop_info->mems[i].optimize = 0;
9936 break;
9938 else
9939 /* Replace the memory reference with the shadow register. */
9940 replace_loop_mems (p, loop_info->mems[i].mem,
9941 loop_info->mems[i].reg, written);
9944 if (GET_CODE (p) == CODE_LABEL
9945 || GET_CODE (p) == JUMP_INSN)
9946 maybe_never = 1;
9949 if (! loop_info->mems[i].optimize)
9950 ; /* We found we couldn't do the replacement, so do nothing. */
9951 else if (! apply_change_group ())
9952 /* We couldn't replace all occurrences of the MEM. */
9953 loop_info->mems[i].optimize = 0;
9954 else
9956 /* Load the memory immediately before LOOP->START, which is
9957 the NOTE_LOOP_BEG. */
9958 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9959 rtx set;
9960 rtx best = mem;
9961 int j;
9962 struct elt_loc_list *const_equiv = 0;
9964 if (e)
9966 struct elt_loc_list *equiv;
9967 struct elt_loc_list *best_equiv = 0;
9968 for (equiv = e->locs; equiv; equiv = equiv->next)
9970 if (CONSTANT_P (equiv->loc))
9971 const_equiv = equiv;
9972 else if (GET_CODE (equiv->loc) == REG
9973 /* Extending hard register lifetimes causes crash
9974 on SRC targets. Doing so on non-SRC is
9975 probably also not good idea, since we most
9976 probably have pseudoregister equivalence as
9977 well. */
9978 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
9979 best_equiv = equiv;
9981 /* Use the constant equivalence if that is cheap enough. */
9982 if (! best_equiv)
9983 best_equiv = const_equiv;
9984 else if (const_equiv
9985 && (rtx_cost (const_equiv->loc, SET)
9986 <= rtx_cost (best_equiv->loc, SET)))
9988 best_equiv = const_equiv;
9989 const_equiv = 0;
9992 /* If best_equiv is nonzero, we know that MEM is set to a
9993 constant or register before the loop. We will use this
9994 knowledge to initialize the shadow register with that
9995 constant or reg rather than by loading from MEM. */
9996 if (best_equiv)
9997 best = copy_rtx (best_equiv->loc);
10000 set = gen_move_insn (reg, best);
10001 set = loop_insn_hoist (loop, set);
10002 if (REG_P (best))
10004 for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
10005 if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
10007 REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
10008 break;
10012 if (const_equiv)
10013 set_unique_reg_note (set, REG_EQUAL, copy_rtx (const_equiv->loc));
10015 if (written)
10017 if (label == NULL_RTX)
10019 label = gen_label_rtx ();
10020 emit_label_after (label, loop->end);
10023 /* Store the memory immediately after END, which is
10024 the NOTE_LOOP_END. */
10025 set = gen_move_insn (copy_rtx (mem), reg);
10026 loop_insn_emit_after (loop, 0, label, set);
10029 if (loop_dump_stream)
10031 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
10032 REGNO (reg), (written ? "r/w" : "r/o"));
10033 print_rtl (loop_dump_stream, mem);
10034 fputc ('\n', loop_dump_stream);
10037 /* Attempt a bit of copy propagation. This helps untangle the
10038 data flow, and enables {basic,general}_induction_var to find
10039 more bivs/givs. */
10040 EXECUTE_IF_SET_IN_REG_SET
10041 (&load_copies, FIRST_PSEUDO_REGISTER, j,
10043 try_copy_prop (loop, reg, j);
10045 CLEAR_REG_SET (&load_copies);
10047 EXECUTE_IF_SET_IN_REG_SET
10048 (&store_copies, FIRST_PSEUDO_REGISTER, j,
10050 try_swap_copy_prop (loop, reg, j);
10052 CLEAR_REG_SET (&store_copies);
10056 /* Now, we need to replace all references to the previous exit
10057 label with the new one. */
10058 if (label != NULL_RTX && end_label != NULL_RTX)
10059 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
10060 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
10061 redirect_jump (p, label, false);
10063 cselib_finish ();
10066 /* For communication between note_reg_stored and its caller. */
10067 struct note_reg_stored_arg
10069 int set_seen;
10070 rtx reg;
10073 /* Called via note_stores, record in SET_SEEN whether X, which is written,
10074 is equal to ARG. */
10075 static void
10076 note_reg_stored (rtx x, rtx setter ATTRIBUTE_UNUSED, void *arg)
10078 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
10079 if (t->reg == x)
10080 t->set_seen = 1;
10083 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
10084 There must be exactly one insn that sets this pseudo; it will be
10085 deleted if all replacements succeed and we can prove that the register
10086 is not used after the loop. */
10088 static void
10089 try_copy_prop (const struct loop *loop, rtx replacement, unsigned int regno)
10091 /* This is the reg that we are copying from. */
10092 rtx reg_rtx = regno_reg_rtx[regno];
10093 rtx init_insn = 0;
10094 rtx insn;
10095 /* These help keep track of whether we replaced all uses of the reg. */
10096 int replaced_last = 0;
10097 int store_is_first = 0;
10099 for (insn = next_insn_in_loop (loop, loop->scan_start);
10100 insn != NULL_RTX;
10101 insn = next_insn_in_loop (loop, insn))
10103 rtx set;
10105 /* Only substitute within one extended basic block from the initializing
10106 insn. */
10107 if (GET_CODE (insn) == CODE_LABEL && init_insn)
10108 break;
10110 if (! INSN_P (insn))
10111 continue;
10113 /* Is this the initializing insn? */
10114 set = single_set (insn);
10115 if (set
10116 && GET_CODE (SET_DEST (set)) == REG
10117 && REGNO (SET_DEST (set)) == regno)
10119 if (init_insn)
10120 abort ();
10122 init_insn = insn;
10123 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
10124 store_is_first = 1;
10127 /* Only substitute after seeing the initializing insn. */
10128 if (init_insn && insn != init_insn)
10130 struct note_reg_stored_arg arg;
10132 replace_loop_regs (insn, reg_rtx, replacement);
10133 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
10134 replaced_last = 1;
10136 /* Stop replacing when REPLACEMENT is modified. */
10137 arg.reg = replacement;
10138 arg.set_seen = 0;
10139 note_stores (PATTERN (insn), note_reg_stored, &arg);
10140 if (arg.set_seen)
10142 rtx note = find_reg_note (insn, REG_EQUAL, NULL);
10144 /* It is possible that we've turned previously valid REG_EQUAL to
10145 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
10146 REPLACEMENT is modified, we get different meaning. */
10147 if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
10148 remove_note (insn, note);
10149 break;
10153 if (! init_insn)
10154 abort ();
10155 if (apply_change_group ())
10157 if (loop_dump_stream)
10158 fprintf (loop_dump_stream, " Replaced reg %d", regno);
10159 if (store_is_first && replaced_last)
10161 rtx first;
10162 rtx retval_note;
10164 /* Assume we're just deleting INIT_INSN. */
10165 first = init_insn;
10166 /* Look for REG_RETVAL note. If we're deleting the end of
10167 the libcall sequence, the whole sequence can go. */
10168 retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
10169 /* If we found a REG_RETVAL note, find the first instruction
10170 in the sequence. */
10171 if (retval_note)
10172 first = XEXP (retval_note, 0);
10174 /* Delete the instructions. */
10175 loop_delete_insns (first, init_insn);
10177 if (loop_dump_stream)
10178 fprintf (loop_dump_stream, ".\n");
10182 /* Replace all the instructions from FIRST up to and including LAST
10183 with NOTE_INSN_DELETED notes. */
10185 static void
10186 loop_delete_insns (rtx first, rtx last)
10188 while (1)
10190 if (loop_dump_stream)
10191 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
10192 INSN_UID (first));
10193 delete_insn (first);
10195 /* If this was the LAST instructions we're supposed to delete,
10196 we're done. */
10197 if (first == last)
10198 break;
10200 first = NEXT_INSN (first);
10204 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
10205 loop LOOP if the order of the sets of these registers can be
10206 swapped. There must be exactly one insn within the loop that sets
10207 this pseudo followed immediately by a move insn that sets
10208 REPLACEMENT with REGNO. */
10209 static void
10210 try_swap_copy_prop (const struct loop *loop, rtx replacement,
10211 unsigned int regno)
10213 rtx insn;
10214 rtx set = NULL_RTX;
10215 unsigned int new_regno;
10217 new_regno = REGNO (replacement);
10219 for (insn = next_insn_in_loop (loop, loop->scan_start);
10220 insn != NULL_RTX;
10221 insn = next_insn_in_loop (loop, insn))
10223 /* Search for the insn that copies REGNO to NEW_REGNO? */
10224 if (INSN_P (insn)
10225 && (set = single_set (insn))
10226 && GET_CODE (SET_DEST (set)) == REG
10227 && REGNO (SET_DEST (set)) == new_regno
10228 && GET_CODE (SET_SRC (set)) == REG
10229 && REGNO (SET_SRC (set)) == regno)
10230 break;
10233 if (insn != NULL_RTX)
10235 rtx prev_insn;
10236 rtx prev_set;
10238 /* Some DEF-USE info would come in handy here to make this
10239 function more general. For now, just check the previous insn
10240 which is the most likely candidate for setting REGNO. */
10242 prev_insn = PREV_INSN (insn);
10244 if (INSN_P (insn)
10245 && (prev_set = single_set (prev_insn))
10246 && GET_CODE (SET_DEST (prev_set)) == REG
10247 && REGNO (SET_DEST (prev_set)) == regno)
10249 /* We have:
10250 (set (reg regno) (expr))
10251 (set (reg new_regno) (reg regno))
10253 so try converting this to:
10254 (set (reg new_regno) (expr))
10255 (set (reg regno) (reg new_regno))
10257 The former construct is often generated when a global
10258 variable used for an induction variable is shadowed by a
10259 register (NEW_REGNO). The latter construct improves the
10260 chances of GIV replacement and BIV elimination. */
10262 validate_change (prev_insn, &SET_DEST (prev_set),
10263 replacement, 1);
10264 validate_change (insn, &SET_DEST (set),
10265 SET_SRC (set), 1);
10266 validate_change (insn, &SET_SRC (set),
10267 replacement, 1);
10269 if (apply_change_group ())
10271 if (loop_dump_stream)
10272 fprintf (loop_dump_stream,
10273 " Swapped set of reg %d at %d with reg %d at %d.\n",
10274 regno, INSN_UID (insn),
10275 new_regno, INSN_UID (prev_insn));
10277 /* Update first use of REGNO. */
10278 if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
10279 REGNO_FIRST_UID (regno) = INSN_UID (insn);
10281 /* Now perform copy propagation to hopefully
10282 remove all uses of REGNO within the loop. */
10283 try_copy_prop (loop, replacement, regno);
10289 /* Worker function for find_mem_in_note, called via for_each_rtx. */
10291 static int
10292 find_mem_in_note_1 (rtx *x, void *data)
10294 if (*x != NULL_RTX && GET_CODE (*x) == MEM)
10296 rtx *res = (rtx *) data;
10297 *res = *x;
10298 return 1;
10300 return 0;
10303 /* Returns the first MEM found in NOTE by depth-first search. */
10305 static rtx
10306 find_mem_in_note (rtx note)
10308 if (note && for_each_rtx (&note, find_mem_in_note_1, &note))
10309 return note;
10310 return NULL_RTX;
10313 /* Replace MEM with its associated pseudo register. This function is
10314 called from load_mems via for_each_rtx. DATA is actually a pointer
10315 to a structure describing the instruction currently being scanned
10316 and the MEM we are currently replacing. */
10318 static int
10319 replace_loop_mem (rtx *mem, void *data)
10321 loop_replace_args *args = (loop_replace_args *) data;
10322 rtx m = *mem;
10324 if (m == NULL_RTX)
10325 return 0;
10327 switch (GET_CODE (m))
10329 case MEM:
10330 break;
10332 case CONST_DOUBLE:
10333 /* We're not interested in the MEM associated with a
10334 CONST_DOUBLE, so there's no need to traverse into one. */
10335 return -1;
10337 default:
10338 /* This is not a MEM. */
10339 return 0;
10342 if (!rtx_equal_p (args->match, m))
10343 /* This is not the MEM we are currently replacing. */
10344 return 0;
10346 /* Actually replace the MEM. */
10347 validate_change (args->insn, mem, args->replacement, 1);
10349 return 0;
10352 static void
10353 replace_loop_mems (rtx insn, rtx mem, rtx reg, int written)
10355 loop_replace_args args;
10357 args.insn = insn;
10358 args.match = mem;
10359 args.replacement = reg;
10361 for_each_rtx (&insn, replace_loop_mem, &args);
10363 /* If we hoist a mem write out of the loop, then REG_EQUAL
10364 notes referring to the mem are no longer valid. */
10365 if (written)
10367 rtx note, sub;
10368 rtx *link;
10370 for (link = &REG_NOTES (insn); (note = *link); link = &XEXP (note, 1))
10372 if (REG_NOTE_KIND (note) == REG_EQUAL
10373 && (sub = find_mem_in_note (note))
10374 && true_dependence (mem, VOIDmode, sub, rtx_varies_p))
10376 /* Remove the note. */
10377 validate_change (NULL_RTX, link, XEXP (note, 1), 1);
10378 break;
10384 /* Replace one register with another. Called through for_each_rtx; PX points
10385 to the rtx being scanned. DATA is actually a pointer to
10386 a structure of arguments. */
10388 static int
10389 replace_loop_reg (rtx *px, void *data)
10391 rtx x = *px;
10392 loop_replace_args *args = (loop_replace_args *) data;
10394 if (x == NULL_RTX)
10395 return 0;
10397 if (x == args->match)
10398 validate_change (args->insn, px, args->replacement, 1);
10400 return 0;
10403 static void
10404 replace_loop_regs (rtx insn, rtx reg, rtx replacement)
10406 loop_replace_args args;
10408 args.insn = insn;
10409 args.match = reg;
10410 args.replacement = replacement;
10412 for_each_rtx (&insn, replace_loop_reg, &args);
10415 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
10416 (ignored in the interim). */
10418 static rtx
10419 loop_insn_emit_after (const struct loop *loop ATTRIBUTE_UNUSED,
10420 basic_block where_bb ATTRIBUTE_UNUSED, rtx where_insn,
10421 rtx pattern)
10423 return emit_insn_after (pattern, where_insn);
10427 /* If WHERE_INSN is nonzero emit insn for PATTERN before WHERE_INSN
10428 in basic block WHERE_BB (ignored in the interim) within the loop
10429 otherwise hoist PATTERN into the loop pre-header. */
10432 loop_insn_emit_before (const struct loop *loop,
10433 basic_block where_bb ATTRIBUTE_UNUSED,
10434 rtx where_insn, rtx pattern)
10436 if (! where_insn)
10437 return loop_insn_hoist (loop, pattern);
10438 return emit_insn_before (pattern, where_insn);
10442 /* Emit call insn for PATTERN before WHERE_INSN in basic block
10443 WHERE_BB (ignored in the interim) within the loop. */
10445 static rtx
10446 loop_call_insn_emit_before (const struct loop *loop ATTRIBUTE_UNUSED,
10447 basic_block where_bb ATTRIBUTE_UNUSED,
10448 rtx where_insn, rtx pattern)
10450 return emit_call_insn_before (pattern, where_insn);
10454 /* Hoist insn for PATTERN into the loop pre-header. */
10457 loop_insn_hoist (const struct loop *loop, rtx pattern)
10459 return loop_insn_emit_before (loop, 0, loop->start, pattern);
10463 /* Hoist call insn for PATTERN into the loop pre-header. */
10465 static rtx
10466 loop_call_insn_hoist (const struct loop *loop, rtx pattern)
10468 return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
10472 /* Sink insn for PATTERN after the loop end. */
10475 loop_insn_sink (const struct loop *loop, rtx pattern)
10477 return loop_insn_emit_before (loop, 0, loop->sink, pattern);
10480 /* bl->final_value can be either general_operand or PLUS of general_operand
10481 and constant. Emit sequence of instructions to load it into REG. */
10482 static rtx
10483 gen_load_of_final_value (rtx reg, rtx final_value)
10485 rtx seq;
10486 start_sequence ();
10487 final_value = force_operand (final_value, reg);
10488 if (final_value != reg)
10489 emit_move_insn (reg, final_value);
10490 seq = get_insns ();
10491 end_sequence ();
10492 return seq;
10495 /* If the loop has multiple exits, emit insn for PATTERN before the
10496 loop to ensure that it will always be executed no matter how the
10497 loop exits. Otherwise, emit the insn for PATTERN after the loop,
10498 since this is slightly more efficient. */
10500 static rtx
10501 loop_insn_sink_or_swim (const struct loop *loop, rtx pattern)
10503 if (loop->exit_count)
10504 return loop_insn_hoist (loop, pattern);
10505 else
10506 return loop_insn_sink (loop, pattern);
10509 static void
10510 loop_ivs_dump (const struct loop *loop, FILE *file, int verbose)
10512 struct iv_class *bl;
10513 int iv_num = 0;
10515 if (! loop || ! file)
10516 return;
10518 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10519 iv_num++;
10521 fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
10523 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10525 loop_iv_class_dump (bl, file, verbose);
10526 fputc ('\n', file);
10531 static void
10532 loop_iv_class_dump (const struct iv_class *bl, FILE *file,
10533 int verbose ATTRIBUTE_UNUSED)
10535 struct induction *v;
10536 rtx incr;
10537 int i;
10539 if (! bl || ! file)
10540 return;
10542 fprintf (file, "IV class for reg %d, benefit %d\n",
10543 bl->regno, bl->total_benefit);
10545 fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
10546 if (bl->initial_value)
10548 fprintf (file, ", init val: ");
10549 print_simple_rtl (file, bl->initial_value);
10551 if (bl->initial_test)
10553 fprintf (file, ", init test: ");
10554 print_simple_rtl (file, bl->initial_test);
10556 fputc ('\n', file);
10558 if (bl->final_value)
10560 fprintf (file, " Final val: ");
10561 print_simple_rtl (file, bl->final_value);
10562 fputc ('\n', file);
10565 if ((incr = biv_total_increment (bl)))
10567 fprintf (file, " Total increment: ");
10568 print_simple_rtl (file, incr);
10569 fputc ('\n', file);
10572 /* List the increments. */
10573 for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
10575 fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
10576 print_simple_rtl (file, v->add_val);
10577 fputc ('\n', file);
10580 /* List the givs. */
10581 for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
10583 fprintf (file, " Giv%d: insn %d, benefit %d, ",
10584 i, INSN_UID (v->insn), v->benefit);
10585 if (v->giv_type == DEST_ADDR)
10586 print_simple_rtl (file, v->mem);
10587 else
10588 print_simple_rtl (file, single_set (v->insn));
10589 fputc ('\n', file);
10594 static void
10595 loop_biv_dump (const struct induction *v, FILE *file, int verbose)
10597 if (! v || ! file)
10598 return;
10600 fprintf (file,
10601 "Biv %d: insn %d",
10602 REGNO (v->dest_reg), INSN_UID (v->insn));
10603 fprintf (file, " const ");
10604 print_simple_rtl (file, v->add_val);
10606 if (verbose && v->final_value)
10608 fputc ('\n', file);
10609 fprintf (file, " final ");
10610 print_simple_rtl (file, v->final_value);
10613 fputc ('\n', file);
10617 static void
10618 loop_giv_dump (const struct induction *v, FILE *file, int verbose)
10620 if (! v || ! file)
10621 return;
10623 if (v->giv_type == DEST_REG)
10624 fprintf (file, "Giv %d: insn %d",
10625 REGNO (v->dest_reg), INSN_UID (v->insn));
10626 else
10627 fprintf (file, "Dest address: insn %d",
10628 INSN_UID (v->insn));
10630 fprintf (file, " src reg %d benefit %d",
10631 REGNO (v->src_reg), v->benefit);
10632 fprintf (file, " lifetime %d",
10633 v->lifetime);
10635 if (v->replaceable)
10636 fprintf (file, " replaceable");
10638 if (v->no_const_addval)
10639 fprintf (file, " ncav");
10641 if (v->ext_dependent)
10643 switch (GET_CODE (v->ext_dependent))
10645 case SIGN_EXTEND:
10646 fprintf (file, " ext se");
10647 break;
10648 case ZERO_EXTEND:
10649 fprintf (file, " ext ze");
10650 break;
10651 case TRUNCATE:
10652 fprintf (file, " ext tr");
10653 break;
10654 default:
10655 abort ();
10659 fputc ('\n', file);
10660 fprintf (file, " mult ");
10661 print_simple_rtl (file, v->mult_val);
10663 fputc ('\n', file);
10664 fprintf (file, " add ");
10665 print_simple_rtl (file, v->add_val);
10667 if (verbose && v->final_value)
10669 fputc ('\n', file);
10670 fprintf (file, " final ");
10671 print_simple_rtl (file, v->final_value);
10674 fputc ('\n', file);
10678 void
10679 debug_ivs (const struct loop *loop)
10681 loop_ivs_dump (loop, stderr, 1);
10685 void
10686 debug_iv_class (const struct iv_class *bl)
10688 loop_iv_class_dump (bl, stderr, 1);
10692 void
10693 debug_biv (const struct induction *v)
10695 loop_biv_dump (v, stderr, 1);
10699 void
10700 debug_giv (const struct induction *v)
10702 loop_giv_dump (v, stderr, 1);
10706 #define LOOP_BLOCK_NUM_1(INSN) \
10707 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
10709 /* The notes do not have an assigned block, so look at the next insn. */
10710 #define LOOP_BLOCK_NUM(INSN) \
10711 ((INSN) ? (GET_CODE (INSN) == NOTE \
10712 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
10713 : LOOP_BLOCK_NUM_1 (INSN)) \
10714 : -1)
10716 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
10718 static void
10719 loop_dump_aux (const struct loop *loop, FILE *file,
10720 int verbose ATTRIBUTE_UNUSED)
10722 rtx label;
10724 if (! loop || ! file)
10725 return;
10727 /* Print diagnostics to compare our concept of a loop with
10728 what the loop notes say. */
10729 if (! PREV_INSN (BB_HEAD (loop->first))
10730 || GET_CODE (PREV_INSN (BB_HEAD (loop->first))) != NOTE
10731 || NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (loop->first)))
10732 != NOTE_INSN_LOOP_BEG)
10733 fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
10734 INSN_UID (PREV_INSN (BB_HEAD (loop->first))));
10735 if (! NEXT_INSN (BB_END (loop->last))
10736 || GET_CODE (NEXT_INSN (BB_END (loop->last))) != NOTE
10737 || NOTE_LINE_NUMBER (NEXT_INSN (BB_END (loop->last)))
10738 != NOTE_INSN_LOOP_END)
10739 fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
10740 INSN_UID (NEXT_INSN (BB_END (loop->last))));
10742 if (loop->start)
10744 fprintf (file,
10745 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
10746 LOOP_BLOCK_NUM (loop->start),
10747 LOOP_INSN_UID (loop->start),
10748 LOOP_BLOCK_NUM (loop->cont),
10749 LOOP_INSN_UID (loop->cont),
10750 LOOP_BLOCK_NUM (loop->cont),
10751 LOOP_INSN_UID (loop->cont),
10752 LOOP_BLOCK_NUM (loop->vtop),
10753 LOOP_INSN_UID (loop->vtop),
10754 LOOP_BLOCK_NUM (loop->end),
10755 LOOP_INSN_UID (loop->end));
10756 fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
10757 LOOP_BLOCK_NUM (loop->top),
10758 LOOP_INSN_UID (loop->top),
10759 LOOP_BLOCK_NUM (loop->scan_start),
10760 LOOP_INSN_UID (loop->scan_start));
10761 fprintf (file, ";; exit_count %d", loop->exit_count);
10762 if (loop->exit_count)
10764 fputs (", labels:", file);
10765 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
10767 fprintf (file, " %d ",
10768 LOOP_INSN_UID (XEXP (label, 0)));
10771 fputs ("\n", file);
10773 /* This can happen when a marked loop appears as two nested loops,
10774 say from while (a || b) {}. The inner loop won't match
10775 the loop markers but the outer one will. */
10776 if (LOOP_BLOCK_NUM (loop->cont) != loop->latch->index)
10777 fprintf (file, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
10781 /* Call this function from the debugger to dump LOOP. */
10783 void
10784 debug_loop (const struct loop *loop)
10786 flow_loop_dump (loop, stderr, loop_dump_aux, 1);
10789 /* Call this function from the debugger to dump LOOPS. */
10791 void
10792 debug_loops (const struct loops *loops)
10794 flow_loops_dump (loops, stderr, loop_dump_aux, 1);