* gcc.dg/const-elim-1.c: xfail for xtensa.
[official-gcc.git] / gcc / final.c
blob832b3335cd1c45307f72a3171601ac8f07fe1123
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
123 /* Line number of last NOTE. */
124 static int last_linenum;
126 /* Highest line number in current block. */
127 static int high_block_linenum;
129 /* Likewise for function. */
130 static int high_function_linenum;
132 /* Filename of last NOTE. */
133 static const char *last_filename;
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
145 /* Compare optimization flag. */
147 static rtx last_ignored_compare = 0;
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
152 static int insn_counter = 0;
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
159 CC_STATUS cc_status;
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
164 CC_STATUS cc_prev_status;
165 #endif
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
188 int frame_pointer_needed;
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192 static int block_depth;
194 /* Nonzero if have enabled APP processing of our assembler output. */
196 static int app_on;
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
201 rtx final_sequence;
203 #ifdef ASSEMBLER_DIALECT
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
239 /* Initialize data in final at the beginning of a compilation. */
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
244 app_on = 0;
245 final_sequence = 0;
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
271 void
272 app_enable (void)
274 if (! app_on)
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
284 void
285 app_disable (void)
287 if (app_on)
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
298 #ifdef DELAY_SLOTS
300 dbr_sequence_length (void)
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
307 #endif
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
315 static int *insn_lengths;
317 varray_type insn_addresses_;
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
340 struct label_alignment
342 short alignment;
343 short max_skip;
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
350 /* Indicate that branch shortening hasn't yet been done. */
352 void
353 init_insn_lengths (void)
355 if (uid_shuid)
357 free (uid_shuid);
358 uid_shuid = 0;
360 if (insn_lengths)
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
371 free (uid_align);
372 uid_align = 0;
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
408 else
409 length = insn_default_length (insn);
410 break;
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
426 default:
427 break;
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 static int min_labelno, max_labelno;
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 /* For the benefit of port specific code do this also as a function. */
544 label_to_alignment (rtx label)
546 return LABEL_TO_ALIGNMENT (label);
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 int align_addr, new_align;
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
602 return fuzz;
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
618 insn_current_reference_address (rtx branch)
620 rtx dest, seq;
621 int seq_uid;
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (GET_CODE (branch) != JUMP_INSN)
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
645 else
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
652 #endif /* HAVE_ATTR_length */
654 void
655 compute_alignments (void)
657 int log, max_skip, max_log;
658 basic_block bb;
660 if (label_align)
662 free (label_align);
663 label_align = 0;
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
675 FOR_EACH_BB (bb)
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
681 if (GET_CODE (label) != CODE_LABEL
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
687 for (e = bb->pred; e; e = e->pred_next)
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
765 #endif
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
770 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
772 if (max_labelno != max_label_num ())
774 int old = max_labelno;
775 int n_labels;
776 int n_old_labels;
778 max_labelno = max_label_num ();
780 n_labels = max_labelno - min_labelno + 1;
781 n_old_labels = old - min_labelno + 1;
783 label_align = xrealloc (label_align,
784 n_labels * sizeof (struct label_alignment));
786 /* Range of labels grows monotonically in the function. Abort here
787 means that the initialization of array got lost. */
788 if (n_old_labels > n_labels)
789 abort ();
791 memset (label_align + n_old_labels, 0,
792 (n_labels - n_old_labels) * sizeof (struct label_alignment));
795 /* Initialize label_align and set up uid_shuid to be strictly
796 monotonically rising with insn order. */
797 /* We use max_log here to keep track of the maximum alignment we want to
798 impose on the next CODE_LABEL (or the current one if we are processing
799 the CODE_LABEL itself). */
801 max_log = 0;
802 max_skip = 0;
804 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
806 int log;
808 INSN_SHUID (insn) = i++;
809 if (INSN_P (insn))
811 /* reorg might make the first insn of a loop being run once only,
812 and delete the label in front of it. Then we want to apply
813 the loop alignment to the new label created by reorg, which
814 is separated by the former loop start insn from the
815 NOTE_INSN_LOOP_BEG. */
817 else if (GET_CODE (insn) == CODE_LABEL)
819 rtx next;
821 /* Merge in alignments computed by compute_alignments. */
822 log = LABEL_TO_ALIGNMENT (insn);
823 if (max_log < log)
825 max_log = log;
826 max_skip = LABEL_TO_MAX_SKIP (insn);
829 log = LABEL_ALIGN (insn);
830 if (max_log < log)
832 max_log = log;
833 max_skip = LABEL_ALIGN_MAX_SKIP;
835 next = NEXT_INSN (insn);
836 /* ADDR_VECs only take room if read-only data goes into the text
837 section. */
838 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
839 if (next && GET_CODE (next) == JUMP_INSN)
841 rtx nextbody = PATTERN (next);
842 if (GET_CODE (nextbody) == ADDR_VEC
843 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
845 log = ADDR_VEC_ALIGN (next);
846 if (max_log < log)
848 max_log = log;
849 max_skip = LABEL_ALIGN_MAX_SKIP;
853 LABEL_TO_ALIGNMENT (insn) = max_log;
854 LABEL_TO_MAX_SKIP (insn) = max_skip;
855 max_log = 0;
856 max_skip = 0;
858 else if (GET_CODE (insn) == BARRIER)
860 rtx label;
862 for (label = insn; label && ! INSN_P (label);
863 label = NEXT_INSN (label))
864 if (GET_CODE (label) == CODE_LABEL)
866 log = LABEL_ALIGN_AFTER_BARRIER (insn);
867 if (max_log < log)
869 max_log = log;
870 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
872 break;
876 #ifdef HAVE_ATTR_length
878 /* Allocate the rest of the arrays. */
879 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
880 insn_lengths_max_uid = max_uid;
881 /* Syntax errors can lead to labels being outside of the main insn stream.
882 Initialize insn_addresses, so that we get reproducible results. */
883 INSN_ADDRESSES_ALLOC (max_uid);
885 varying_length = xcalloc (max_uid, sizeof (char));
887 /* Initialize uid_align. We scan instructions
888 from end to start, and keep in align_tab[n] the last seen insn
889 that does an alignment of at least n+1, i.e. the successor
890 in the alignment chain for an insn that does / has a known
891 alignment of n. */
892 uid_align = xcalloc (max_uid, sizeof *uid_align);
894 for (i = MAX_CODE_ALIGN; --i >= 0;)
895 align_tab[i] = NULL_RTX;
896 seq = get_last_insn ();
897 for (; seq; seq = PREV_INSN (seq))
899 int uid = INSN_UID (seq);
900 int log;
901 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
902 uid_align[uid] = align_tab[0];
903 if (log)
905 /* Found an alignment label. */
906 uid_align[uid] = align_tab[log];
907 for (i = log - 1; i >= 0; i--)
908 align_tab[i] = seq;
911 #ifdef CASE_VECTOR_SHORTEN_MODE
912 if (optimize)
914 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
915 label fields. */
917 int min_shuid = INSN_SHUID (get_insns ()) - 1;
918 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
919 int rel;
921 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
923 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
924 int len, i, min, max, insn_shuid;
925 int min_align;
926 addr_diff_vec_flags flags;
928 if (GET_CODE (insn) != JUMP_INSN
929 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
930 continue;
931 pat = PATTERN (insn);
932 len = XVECLEN (pat, 1);
933 if (len <= 0)
934 abort ();
935 min_align = MAX_CODE_ALIGN;
936 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
938 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
939 int shuid = INSN_SHUID (lab);
940 if (shuid < min)
942 min = shuid;
943 min_lab = lab;
945 if (shuid > max)
947 max = shuid;
948 max_lab = lab;
950 if (min_align > LABEL_TO_ALIGNMENT (lab))
951 min_align = LABEL_TO_ALIGNMENT (lab);
953 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
954 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
955 insn_shuid = INSN_SHUID (insn);
956 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
957 flags.min_align = min_align;
958 flags.base_after_vec = rel > insn_shuid;
959 flags.min_after_vec = min > insn_shuid;
960 flags.max_after_vec = max > insn_shuid;
961 flags.min_after_base = min > rel;
962 flags.max_after_base = max > rel;
963 ADDR_DIFF_VEC_FLAGS (pat) = flags;
966 #endif /* CASE_VECTOR_SHORTEN_MODE */
968 /* Compute initial lengths, addresses, and varying flags for each insn. */
969 for (insn_current_address = 0, insn = first;
970 insn != 0;
971 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
973 uid = INSN_UID (insn);
975 insn_lengths[uid] = 0;
977 if (GET_CODE (insn) == CODE_LABEL)
979 int log = LABEL_TO_ALIGNMENT (insn);
980 if (log)
982 int align = 1 << log;
983 int new_address = (insn_current_address + align - 1) & -align;
984 insn_lengths[uid] = new_address - insn_current_address;
988 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
990 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
991 || GET_CODE (insn) == CODE_LABEL)
992 continue;
993 if (INSN_DELETED_P (insn))
994 continue;
996 body = PATTERN (insn);
997 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
999 /* This only takes room if read-only data goes into the text
1000 section. */
1001 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1002 insn_lengths[uid] = (XVECLEN (body,
1003 GET_CODE (body) == ADDR_DIFF_VEC)
1004 * GET_MODE_SIZE (GET_MODE (body)));
1005 /* Alignment is handled by ADDR_VEC_ALIGN. */
1007 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1008 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1009 else if (GET_CODE (body) == SEQUENCE)
1011 int i;
1012 int const_delay_slots;
1013 #ifdef DELAY_SLOTS
1014 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1015 #else
1016 const_delay_slots = 0;
1017 #endif
1018 /* Inside a delay slot sequence, we do not do any branch shortening
1019 if the shortening could change the number of delay slots
1020 of the branch. */
1021 for (i = 0; i < XVECLEN (body, 0); i++)
1023 rtx inner_insn = XVECEXP (body, 0, i);
1024 int inner_uid = INSN_UID (inner_insn);
1025 int inner_length;
1027 if (GET_CODE (body) == ASM_INPUT
1028 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1029 inner_length = (asm_insn_count (PATTERN (inner_insn))
1030 * insn_default_length (inner_insn));
1031 else
1032 inner_length = insn_default_length (inner_insn);
1034 insn_lengths[inner_uid] = inner_length;
1035 if (const_delay_slots)
1037 if ((varying_length[inner_uid]
1038 = insn_variable_length_p (inner_insn)) != 0)
1039 varying_length[uid] = 1;
1040 INSN_ADDRESSES (inner_uid) = (insn_current_address
1041 + insn_lengths[uid]);
1043 else
1044 varying_length[inner_uid] = 0;
1045 insn_lengths[uid] += inner_length;
1048 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1050 insn_lengths[uid] = insn_default_length (insn);
1051 varying_length[uid] = insn_variable_length_p (insn);
1054 /* If needed, do any adjustment. */
1055 #ifdef ADJUST_INSN_LENGTH
1056 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1057 if (insn_lengths[uid] < 0)
1058 fatal_insn ("negative insn length", insn);
1059 #endif
1062 /* Now loop over all the insns finding varying length insns. For each,
1063 get the current insn length. If it has changed, reflect the change.
1064 When nothing changes for a full pass, we are done. */
1066 while (something_changed)
1068 something_changed = 0;
1069 insn_current_align = MAX_CODE_ALIGN - 1;
1070 for (insn_current_address = 0, insn = first;
1071 insn != 0;
1072 insn = NEXT_INSN (insn))
1074 int new_length;
1075 #ifdef ADJUST_INSN_LENGTH
1076 int tmp_length;
1077 #endif
1078 int length_align;
1080 uid = INSN_UID (insn);
1082 if (GET_CODE (insn) == CODE_LABEL)
1084 int log = LABEL_TO_ALIGNMENT (insn);
1085 if (log > insn_current_align)
1087 int align = 1 << log;
1088 int new_address= (insn_current_address + align - 1) & -align;
1089 insn_lengths[uid] = new_address - insn_current_address;
1090 insn_current_align = log;
1091 insn_current_address = new_address;
1093 else
1094 insn_lengths[uid] = 0;
1095 INSN_ADDRESSES (uid) = insn_current_address;
1096 continue;
1099 length_align = INSN_LENGTH_ALIGNMENT (insn);
1100 if (length_align < insn_current_align)
1101 insn_current_align = length_align;
1103 insn_last_address = INSN_ADDRESSES (uid);
1104 INSN_ADDRESSES (uid) = insn_current_address;
1106 #ifdef CASE_VECTOR_SHORTEN_MODE
1107 if (optimize && GET_CODE (insn) == JUMP_INSN
1108 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1110 rtx body = PATTERN (insn);
1111 int old_length = insn_lengths[uid];
1112 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1113 rtx min_lab = XEXP (XEXP (body, 2), 0);
1114 rtx max_lab = XEXP (XEXP (body, 3), 0);
1115 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1116 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1117 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1118 rtx prev;
1119 int rel_align = 0;
1120 addr_diff_vec_flags flags;
1122 /* Avoid automatic aggregate initialization. */
1123 flags = ADDR_DIFF_VEC_FLAGS (body);
1125 /* Try to find a known alignment for rel_lab. */
1126 for (prev = rel_lab;
1127 prev
1128 && ! insn_lengths[INSN_UID (prev)]
1129 && ! (varying_length[INSN_UID (prev)] & 1);
1130 prev = PREV_INSN (prev))
1131 if (varying_length[INSN_UID (prev)] & 2)
1133 rel_align = LABEL_TO_ALIGNMENT (prev);
1134 break;
1137 /* See the comment on addr_diff_vec_flags in rtl.h for the
1138 meaning of the flags values. base: REL_LAB vec: INSN */
1139 /* Anything after INSN has still addresses from the last
1140 pass; adjust these so that they reflect our current
1141 estimate for this pass. */
1142 if (flags.base_after_vec)
1143 rel_addr += insn_current_address - insn_last_address;
1144 if (flags.min_after_vec)
1145 min_addr += insn_current_address - insn_last_address;
1146 if (flags.max_after_vec)
1147 max_addr += insn_current_address - insn_last_address;
1148 /* We want to know the worst case, i.e. lowest possible value
1149 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1150 its offset is positive, and we have to be wary of code shrink;
1151 otherwise, it is negative, and we have to be vary of code
1152 size increase. */
1153 if (flags.min_after_base)
1155 /* If INSN is between REL_LAB and MIN_LAB, the size
1156 changes we are about to make can change the alignment
1157 within the observed offset, therefore we have to break
1158 it up into two parts that are independent. */
1159 if (! flags.base_after_vec && flags.min_after_vec)
1161 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1162 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1164 else
1165 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1167 else
1169 if (flags.base_after_vec && ! flags.min_after_vec)
1171 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1172 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1174 else
1175 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1177 /* Likewise, determine the highest lowest possible value
1178 for the offset of MAX_LAB. */
1179 if (flags.max_after_base)
1181 if (! flags.base_after_vec && flags.max_after_vec)
1183 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1184 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1186 else
1187 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1189 else
1191 if (flags.base_after_vec && ! flags.max_after_vec)
1193 max_addr += align_fuzz (max_lab, insn, 0, 0);
1194 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1196 else
1197 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1199 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1200 max_addr - rel_addr,
1201 body));
1202 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1204 insn_lengths[uid]
1205 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1206 insn_current_address += insn_lengths[uid];
1207 if (insn_lengths[uid] != old_length)
1208 something_changed = 1;
1211 continue;
1213 #endif /* CASE_VECTOR_SHORTEN_MODE */
1215 if (! (varying_length[uid]))
1217 if (GET_CODE (insn) == INSN
1218 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1220 int i;
1222 body = PATTERN (insn);
1223 for (i = 0; i < XVECLEN (body, 0); i++)
1225 rtx inner_insn = XVECEXP (body, 0, i);
1226 int inner_uid = INSN_UID (inner_insn);
1228 INSN_ADDRESSES (inner_uid) = insn_current_address;
1230 insn_current_address += insn_lengths[inner_uid];
1233 else
1234 insn_current_address += insn_lengths[uid];
1236 continue;
1239 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1241 int i;
1243 body = PATTERN (insn);
1244 new_length = 0;
1245 for (i = 0; i < XVECLEN (body, 0); i++)
1247 rtx inner_insn = XVECEXP (body, 0, i);
1248 int inner_uid = INSN_UID (inner_insn);
1249 int inner_length;
1251 INSN_ADDRESSES (inner_uid) = insn_current_address;
1253 /* insn_current_length returns 0 for insns with a
1254 non-varying length. */
1255 if (! varying_length[inner_uid])
1256 inner_length = insn_lengths[inner_uid];
1257 else
1258 inner_length = insn_current_length (inner_insn);
1260 if (inner_length != insn_lengths[inner_uid])
1262 insn_lengths[inner_uid] = inner_length;
1263 something_changed = 1;
1265 insn_current_address += insn_lengths[inner_uid];
1266 new_length += inner_length;
1269 else
1271 new_length = insn_current_length (insn);
1272 insn_current_address += new_length;
1275 #ifdef ADJUST_INSN_LENGTH
1276 /* If needed, do any adjustment. */
1277 tmp_length = new_length;
1278 ADJUST_INSN_LENGTH (insn, new_length);
1279 insn_current_address += (new_length - tmp_length);
1280 #endif
1282 if (new_length != insn_lengths[uid])
1284 insn_lengths[uid] = new_length;
1285 something_changed = 1;
1288 /* For a non-optimizing compile, do only a single pass. */
1289 if (!optimize)
1290 break;
1293 free (varying_length);
1295 #endif /* HAVE_ATTR_length */
1298 #ifdef HAVE_ATTR_length
1299 /* Given the body of an INSN known to be generated by an ASM statement, return
1300 the number of machine instructions likely to be generated for this insn.
1301 This is used to compute its length. */
1303 static int
1304 asm_insn_count (rtx body)
1306 const char *template;
1307 int count = 1;
1309 if (GET_CODE (body) == ASM_INPUT)
1310 template = XSTR (body, 0);
1311 else
1312 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1314 for (; *template; template++)
1315 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1316 count++;
1318 return count;
1320 #endif
1322 /* Output assembler code for the start of a function,
1323 and initialize some of the variables in this file
1324 for the new function. The label for the function and associated
1325 assembler pseudo-ops have already been output in `assemble_start_function'.
1327 FIRST is the first insn of the rtl for the function being compiled.
1328 FILE is the file to write assembler code to.
1329 OPTIMIZE is nonzero if we should eliminate redundant
1330 test and compare insns. */
1332 void
1333 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1334 int optimize ATTRIBUTE_UNUSED)
1336 block_depth = 0;
1338 this_is_asm_operands = 0;
1340 last_filename = locator_file (prologue_locator);
1341 last_linenum = locator_line (prologue_locator);
1343 high_block_linenum = high_function_linenum = last_linenum;
1345 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1347 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1348 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1349 dwarf2out_begin_prologue (0, NULL);
1350 #endif
1352 #ifdef LEAF_REG_REMAP
1353 if (current_function_uses_only_leaf_regs)
1354 leaf_renumber_regs (first);
1355 #endif
1357 /* The Sun386i and perhaps other machines don't work right
1358 if the profiling code comes after the prologue. */
1359 #ifdef PROFILE_BEFORE_PROLOGUE
1360 if (current_function_profile)
1361 profile_function (file);
1362 #endif /* PROFILE_BEFORE_PROLOGUE */
1364 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1365 if (dwarf2out_do_frame ())
1366 dwarf2out_frame_debug (NULL_RTX);
1367 #endif
1369 /* If debugging, assign block numbers to all of the blocks in this
1370 function. */
1371 if (write_symbols)
1373 remove_unnecessary_notes ();
1374 reemit_insn_block_notes ();
1375 number_blocks (current_function_decl);
1376 /* We never actually put out begin/end notes for the top-level
1377 block in the function. But, conceptually, that block is
1378 always needed. */
1379 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1382 /* First output the function prologue: code to set up the stack frame. */
1383 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1385 /* If the machine represents the prologue as RTL, the profiling code must
1386 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1387 #ifdef HAVE_prologue
1388 if (! HAVE_prologue)
1389 #endif
1390 profile_after_prologue (file);
1393 static void
1394 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1396 #ifndef PROFILE_BEFORE_PROLOGUE
1397 if (current_function_profile)
1398 profile_function (file);
1399 #endif /* not PROFILE_BEFORE_PROLOGUE */
1402 static void
1403 profile_function (FILE *file ATTRIBUTE_UNUSED)
1405 #ifndef NO_PROFILE_COUNTERS
1406 # define NO_PROFILE_COUNTERS 0
1407 #endif
1408 #if defined(ASM_OUTPUT_REG_PUSH)
1409 int sval = current_function_returns_struct;
1410 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1411 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1412 int cxt = current_function_needs_context;
1413 #endif
1414 #endif /* ASM_OUTPUT_REG_PUSH */
1416 if (! NO_PROFILE_COUNTERS)
1418 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1419 data_section ();
1420 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1421 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1422 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1425 function_section (current_function_decl);
1427 #if defined(ASM_OUTPUT_REG_PUSH)
1428 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1429 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1430 #endif
1432 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1433 if (cxt)
1434 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1435 #else
1436 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1437 if (cxt)
1439 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1441 #endif
1442 #endif
1444 FUNCTION_PROFILER (file, current_function_funcdef_no);
1446 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1447 if (cxt)
1448 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1449 #else
1450 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1451 if (cxt)
1453 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1455 #endif
1456 #endif
1458 #if defined(ASM_OUTPUT_REG_PUSH)
1459 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1460 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1461 #endif
1464 /* Output assembler code for the end of a function.
1465 For clarity, args are same as those of `final_start_function'
1466 even though not all of them are needed. */
1468 void
1469 final_end_function (void)
1471 app_disable ();
1473 (*debug_hooks->end_function) (high_function_linenum);
1475 /* Finally, output the function epilogue:
1476 code to restore the stack frame and return to the caller. */
1477 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1479 /* And debug output. */
1480 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1482 #if defined (DWARF2_UNWIND_INFO)
1483 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1484 && dwarf2out_do_frame ())
1485 dwarf2out_end_epilogue (last_linenum, last_filename);
1486 #endif
1489 /* Output assembler code for some insns: all or part of a function.
1490 For description of args, see `final_start_function', above.
1492 PRESCAN is 1 if we are not really outputting,
1493 just scanning as if we were outputting.
1494 Prescanning deletes and rearranges insns just like ordinary output.
1495 PRESCAN is -2 if we are outputting after having prescanned.
1496 In this case, don't try to delete or rearrange insns
1497 because that has already been done.
1498 Prescanning is done only on certain machines. */
1500 void
1501 final (rtx first, FILE *file, int optimize, int prescan)
1503 rtx insn;
1504 int max_uid = 0;
1505 int seen = 0;
1507 last_ignored_compare = 0;
1509 #ifdef SDB_DEBUGGING_INFO
1510 /* When producing SDB debugging info, delete troublesome line number
1511 notes from inlined functions in other files as well as duplicate
1512 line number notes. */
1513 if (write_symbols == SDB_DEBUG)
1515 rtx last = 0;
1516 for (insn = first; insn; insn = NEXT_INSN (insn))
1517 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1519 if ((RTX_INTEGRATED_P (insn)
1520 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1521 || (last != 0
1522 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1523 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1525 delete_insn (insn); /* Use delete_note. */
1526 continue;
1528 last = insn;
1531 #endif
1533 for (insn = first; insn; insn = NEXT_INSN (insn))
1535 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1536 max_uid = INSN_UID (insn);
1537 #ifdef HAVE_cc0
1538 /* If CC tracking across branches is enabled, record the insn which
1539 jumps to each branch only reached from one place. */
1540 if (optimize && GET_CODE (insn) == JUMP_INSN)
1542 rtx lab = JUMP_LABEL (insn);
1543 if (lab && LABEL_NUSES (lab) == 1)
1545 LABEL_REFS (lab) = insn;
1548 #endif
1551 init_recog ();
1553 CC_STATUS_INIT;
1555 /* Output the insns. */
1556 for (insn = NEXT_INSN (first); insn;)
1558 #ifdef HAVE_ATTR_length
1559 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1561 /* This can be triggered by bugs elsewhere in the compiler if
1562 new insns are created after init_insn_lengths is called. */
1563 if (GET_CODE (insn) == NOTE)
1564 insn_current_address = -1;
1565 else
1566 abort ();
1568 else
1569 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1570 #endif /* HAVE_ATTR_length */
1572 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1576 const char *
1577 get_insn_template (int code, rtx insn)
1579 switch (insn_data[code].output_format)
1581 case INSN_OUTPUT_FORMAT_SINGLE:
1582 return insn_data[code].output.single;
1583 case INSN_OUTPUT_FORMAT_MULTI:
1584 return insn_data[code].output.multi[which_alternative];
1585 case INSN_OUTPUT_FORMAT_FUNCTION:
1586 if (insn == NULL)
1587 abort ();
1588 return (*insn_data[code].output.function) (recog_data.operand, insn);
1590 default:
1591 abort ();
1595 /* Emit the appropriate declaration for an alternate-entry-point
1596 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1597 LABEL_KIND != LABEL_NORMAL.
1599 The case fall-through in this function is intentional. */
1600 static void
1601 output_alternate_entry_point (FILE *file, rtx insn)
1603 const char *name = LABEL_NAME (insn);
1605 switch (LABEL_KIND (insn))
1607 case LABEL_WEAK_ENTRY:
1608 #ifdef ASM_WEAKEN_LABEL
1609 ASM_WEAKEN_LABEL (file, name);
1610 #endif
1611 case LABEL_GLOBAL_ENTRY:
1612 (*targetm.asm_out.globalize_label) (file, name);
1613 case LABEL_STATIC_ENTRY:
1614 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1615 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1616 #endif
1617 ASM_OUTPUT_LABEL (file, name);
1618 break;
1620 case LABEL_NORMAL:
1621 default:
1622 abort ();
1626 /* The final scan for one insn, INSN.
1627 Args are same as in `final', except that INSN
1628 is the insn being scanned.
1629 Value returned is the next insn to be scanned.
1631 NOPEEPHOLES is the flag to disallow peephole processing (currently
1632 used for within delayed branch sequence output).
1634 SEEN is used to track the end of the prologue, for emitting
1635 debug information. We force the emission of a line note after
1636 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1637 at the beginning of the second basic block, whichever comes
1638 first. */
1641 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1642 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1643 int *seen)
1645 #ifdef HAVE_cc0
1646 rtx set;
1647 #endif
1649 insn_counter++;
1651 /* Ignore deleted insns. These can occur when we split insns (due to a
1652 template of "#") while not optimizing. */
1653 if (INSN_DELETED_P (insn))
1654 return NEXT_INSN (insn);
1656 switch (GET_CODE (insn))
1658 case NOTE:
1659 if (prescan > 0)
1660 break;
1662 switch (NOTE_LINE_NUMBER (insn))
1664 case NOTE_INSN_DELETED:
1665 case NOTE_INSN_LOOP_BEG:
1666 case NOTE_INSN_LOOP_END:
1667 case NOTE_INSN_LOOP_END_TOP_COND:
1668 case NOTE_INSN_LOOP_CONT:
1669 case NOTE_INSN_LOOP_VTOP:
1670 case NOTE_INSN_FUNCTION_END:
1671 case NOTE_INSN_REPEATED_LINE_NUMBER:
1672 case NOTE_INSN_EXPECTED_VALUE:
1673 break;
1675 case NOTE_INSN_BASIC_BLOCK:
1676 #ifdef IA64_UNWIND_INFO
1677 IA64_UNWIND_EMIT (asm_out_file, insn);
1678 #endif
1679 if (flag_debug_asm)
1680 fprintf (asm_out_file, "\t%s basic block %d\n",
1681 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1683 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1685 *seen |= SEEN_EMITTED;
1686 last_filename = NULL;
1688 else
1689 *seen |= SEEN_BB;
1691 break;
1693 case NOTE_INSN_EH_REGION_BEG:
1694 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1695 NOTE_EH_HANDLER (insn));
1696 break;
1698 case NOTE_INSN_EH_REGION_END:
1699 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1700 NOTE_EH_HANDLER (insn));
1701 break;
1703 case NOTE_INSN_PROLOGUE_END:
1704 (*targetm.asm_out.function_end_prologue) (file);
1705 profile_after_prologue (file);
1707 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1709 *seen |= SEEN_EMITTED;
1710 last_filename = NULL;
1712 else
1713 *seen |= SEEN_NOTE;
1715 break;
1717 case NOTE_INSN_EPILOGUE_BEG:
1718 (*targetm.asm_out.function_begin_epilogue) (file);
1719 break;
1721 case NOTE_INSN_FUNCTION_BEG:
1722 app_disable ();
1723 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1725 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1727 *seen |= SEEN_EMITTED;
1728 last_filename = NULL;
1730 else
1731 *seen |= SEEN_NOTE;
1733 break;
1735 case NOTE_INSN_BLOCK_BEG:
1736 if (debug_info_level == DINFO_LEVEL_NORMAL
1737 || debug_info_level == DINFO_LEVEL_VERBOSE
1738 || write_symbols == DWARF_DEBUG
1739 || write_symbols == DWARF2_DEBUG
1740 || write_symbols == VMS_AND_DWARF2_DEBUG
1741 || write_symbols == VMS_DEBUG)
1743 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1745 app_disable ();
1746 ++block_depth;
1747 high_block_linenum = last_linenum;
1749 /* Output debugging info about the symbol-block beginning. */
1750 (*debug_hooks->begin_block) (last_linenum, n);
1752 /* Mark this block as output. */
1753 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1755 break;
1757 case NOTE_INSN_BLOCK_END:
1758 if (debug_info_level == DINFO_LEVEL_NORMAL
1759 || debug_info_level == DINFO_LEVEL_VERBOSE
1760 || write_symbols == DWARF_DEBUG
1761 || write_symbols == DWARF2_DEBUG
1762 || write_symbols == VMS_AND_DWARF2_DEBUG
1763 || write_symbols == VMS_DEBUG)
1765 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1767 app_disable ();
1769 /* End of a symbol-block. */
1770 --block_depth;
1771 if (block_depth < 0)
1772 abort ();
1774 (*debug_hooks->end_block) (high_block_linenum, n);
1776 break;
1778 case NOTE_INSN_DELETED_LABEL:
1779 /* Emit the label. We may have deleted the CODE_LABEL because
1780 the label could be proved to be unreachable, though still
1781 referenced (in the form of having its address taken. */
1782 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1783 break;
1785 case NOTE_INSN_VAR_LOCATION:
1786 (*debug_hooks->var_location) (insn);
1787 break;
1789 case 0:
1790 break;
1792 default:
1793 if (NOTE_LINE_NUMBER (insn) <= 0)
1794 abort ();
1795 break;
1797 break;
1799 case BARRIER:
1800 #if defined (DWARF2_UNWIND_INFO)
1801 if (dwarf2out_do_frame ())
1802 dwarf2out_frame_debug (insn);
1803 #endif
1804 break;
1806 case CODE_LABEL:
1807 /* The target port might emit labels in the output function for
1808 some insn, e.g. sh.c output_branchy_insn. */
1809 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1811 int align = LABEL_TO_ALIGNMENT (insn);
1812 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1813 int max_skip = LABEL_TO_MAX_SKIP (insn);
1814 #endif
1816 if (align && NEXT_INSN (insn))
1818 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1819 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1820 #else
1821 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1822 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1823 #else
1824 ASM_OUTPUT_ALIGN (file, align);
1825 #endif
1826 #endif
1829 #ifdef HAVE_cc0
1830 CC_STATUS_INIT;
1831 /* If this label is reached from only one place, set the condition
1832 codes from the instruction just before the branch. */
1834 /* Disabled because some insns set cc_status in the C output code
1835 and NOTICE_UPDATE_CC alone can set incorrect status. */
1836 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1838 rtx jump = LABEL_REFS (insn);
1839 rtx barrier = prev_nonnote_insn (insn);
1840 rtx prev;
1841 /* If the LABEL_REFS field of this label has been set to point
1842 at a branch, the predecessor of the branch is a regular
1843 insn, and that branch is the only way to reach this label,
1844 set the condition codes based on the branch and its
1845 predecessor. */
1846 if (barrier && GET_CODE (barrier) == BARRIER
1847 && jump && GET_CODE (jump) == JUMP_INSN
1848 && (prev = prev_nonnote_insn (jump))
1849 && GET_CODE (prev) == INSN)
1851 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1852 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1855 #endif
1856 if (prescan > 0)
1857 break;
1859 if (LABEL_NAME (insn))
1860 (*debug_hooks->label) (insn);
1862 if (app_on)
1864 fputs (ASM_APP_OFF, file);
1865 app_on = 0;
1867 if (NEXT_INSN (insn) != 0
1868 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1870 rtx nextbody = PATTERN (NEXT_INSN (insn));
1872 /* If this label is followed by a jump-table,
1873 make sure we put the label in the read-only section. Also
1874 possibly write the label and jump table together. */
1876 if (GET_CODE (nextbody) == ADDR_VEC
1877 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1879 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1880 /* In this case, the case vector is being moved by the
1881 target, so don't output the label at all. Leave that
1882 to the back end macros. */
1883 #else
1884 if (! JUMP_TABLES_IN_TEXT_SECTION)
1886 int log_align;
1888 readonly_data_section ();
1890 #ifdef ADDR_VEC_ALIGN
1891 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1892 #else
1893 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1894 #endif
1895 ASM_OUTPUT_ALIGN (file, log_align);
1897 else
1898 function_section (current_function_decl);
1900 #ifdef ASM_OUTPUT_CASE_LABEL
1901 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1902 NEXT_INSN (insn));
1903 #else
1904 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1905 #endif
1906 #endif
1907 break;
1910 if (LABEL_ALT_ENTRY_P (insn))
1911 output_alternate_entry_point (file, insn);
1912 else
1913 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1914 break;
1916 default:
1918 rtx body = PATTERN (insn);
1919 int insn_code_number;
1920 const char *template;
1921 rtx note;
1923 /* An INSN, JUMP_INSN or CALL_INSN.
1924 First check for special kinds that recog doesn't recognize. */
1926 if (GET_CODE (body) == USE /* These are just declarations. */
1927 || GET_CODE (body) == CLOBBER)
1928 break;
1930 #ifdef HAVE_cc0
1931 /* If there is a REG_CC_SETTER note on this insn, it means that
1932 the setting of the condition code was done in the delay slot
1933 of the insn that branched here. So recover the cc status
1934 from the insn that set it. */
1936 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1937 if (note)
1939 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1940 cc_prev_status = cc_status;
1942 #endif
1944 /* Detect insns that are really jump-tables
1945 and output them as such. */
1947 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1949 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1950 int vlen, idx;
1951 #endif
1953 if (prescan > 0)
1954 break;
1956 if (app_on)
1958 fputs (ASM_APP_OFF, file);
1959 app_on = 0;
1962 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1963 if (GET_CODE (body) == ADDR_VEC)
1965 #ifdef ASM_OUTPUT_ADDR_VEC
1966 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1967 #else
1968 abort ();
1969 #endif
1971 else
1973 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1974 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1975 #else
1976 abort ();
1977 #endif
1979 #else
1980 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1981 for (idx = 0; idx < vlen; idx++)
1983 if (GET_CODE (body) == ADDR_VEC)
1985 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1986 ASM_OUTPUT_ADDR_VEC_ELT
1987 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1988 #else
1989 abort ();
1990 #endif
1992 else
1994 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
1995 ASM_OUTPUT_ADDR_DIFF_ELT
1996 (file,
1997 body,
1998 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
1999 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2000 #else
2001 abort ();
2002 #endif
2005 #ifdef ASM_OUTPUT_CASE_END
2006 ASM_OUTPUT_CASE_END (file,
2007 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2008 insn);
2009 #endif
2010 #endif
2012 function_section (current_function_decl);
2014 break;
2016 /* Output this line note if it is the first or the last line
2017 note in a row. */
2018 if (notice_source_line (insn))
2020 (*debug_hooks->source_line) (last_linenum, last_filename);
2023 if (GET_CODE (body) == ASM_INPUT)
2025 const char *string = XSTR (body, 0);
2027 /* There's no telling what that did to the condition codes. */
2028 CC_STATUS_INIT;
2029 if (prescan > 0)
2030 break;
2032 if (string[0])
2034 if (! app_on)
2036 fputs (ASM_APP_ON, file);
2037 app_on = 1;
2039 fprintf (asm_out_file, "\t%s\n", string);
2041 break;
2044 /* Detect `asm' construct with operands. */
2045 if (asm_noperands (body) >= 0)
2047 unsigned int noperands = asm_noperands (body);
2048 rtx *ops = alloca (noperands * sizeof (rtx));
2049 const char *string;
2051 /* There's no telling what that did to the condition codes. */
2052 CC_STATUS_INIT;
2053 if (prescan > 0)
2054 break;
2056 /* Get out the operand values. */
2057 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2058 /* Inhibit aborts on what would otherwise be compiler bugs. */
2059 insn_noperands = noperands;
2060 this_is_asm_operands = insn;
2062 #ifdef FINAL_PRESCAN_INSN
2063 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2064 #endif
2066 /* Output the insn using them. */
2067 if (string[0])
2069 if (! app_on)
2071 fputs (ASM_APP_ON, file);
2072 app_on = 1;
2074 output_asm_insn (string, ops);
2077 this_is_asm_operands = 0;
2078 break;
2081 if (prescan <= 0 && app_on)
2083 fputs (ASM_APP_OFF, file);
2084 app_on = 0;
2087 if (GET_CODE (body) == SEQUENCE)
2089 /* A delayed-branch sequence */
2090 int i;
2091 rtx next;
2093 if (prescan > 0)
2094 break;
2095 final_sequence = body;
2097 /* Record the delay slots' frame information before the branch.
2098 This is needed for delayed calls: see execute_cfa_program(). */
2099 #if defined (DWARF2_UNWIND_INFO)
2100 if (dwarf2out_do_frame ())
2101 for (i = 1; i < XVECLEN (body, 0); i++)
2102 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2103 #endif
2105 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2106 force the restoration of a comparison that was previously
2107 thought unnecessary. If that happens, cancel this sequence
2108 and cause that insn to be restored. */
2110 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2111 if (next != XVECEXP (body, 0, 1))
2113 final_sequence = 0;
2114 return next;
2117 for (i = 1; i < XVECLEN (body, 0); i++)
2119 rtx insn = XVECEXP (body, 0, i);
2120 rtx next = NEXT_INSN (insn);
2121 /* We loop in case any instruction in a delay slot gets
2122 split. */
2124 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2125 while (insn != next);
2127 #ifdef DBR_OUTPUT_SEQEND
2128 DBR_OUTPUT_SEQEND (file);
2129 #endif
2130 final_sequence = 0;
2132 /* If the insn requiring the delay slot was a CALL_INSN, the
2133 insns in the delay slot are actually executed before the
2134 called function. Hence we don't preserve any CC-setting
2135 actions in these insns and the CC must be marked as being
2136 clobbered by the function. */
2137 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2139 CC_STATUS_INIT;
2141 break;
2144 /* We have a real machine instruction as rtl. */
2146 body = PATTERN (insn);
2148 #ifdef HAVE_cc0
2149 set = single_set (insn);
2151 /* Check for redundant test and compare instructions
2152 (when the condition codes are already set up as desired).
2153 This is done only when optimizing; if not optimizing,
2154 it should be possible for the user to alter a variable
2155 with the debugger in between statements
2156 and the next statement should reexamine the variable
2157 to compute the condition codes. */
2159 if (optimize)
2161 if (set
2162 && GET_CODE (SET_DEST (set)) == CC0
2163 && insn != last_ignored_compare)
2165 if (GET_CODE (SET_SRC (set)) == SUBREG)
2166 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2167 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2169 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2170 XEXP (SET_SRC (set), 0)
2171 = alter_subreg (&XEXP (SET_SRC (set), 0));
2172 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2173 XEXP (SET_SRC (set), 1)
2174 = alter_subreg (&XEXP (SET_SRC (set), 1));
2176 if ((cc_status.value1 != 0
2177 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2178 || (cc_status.value2 != 0
2179 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2181 /* Don't delete insn if it has an addressing side-effect. */
2182 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2183 /* or if anything in it is volatile. */
2184 && ! volatile_refs_p (PATTERN (insn)))
2186 /* We don't really delete the insn; just ignore it. */
2187 last_ignored_compare = insn;
2188 break;
2193 #endif
2195 #ifndef STACK_REGS
2196 /* Don't bother outputting obvious no-ops, even without -O.
2197 This optimization is fast and doesn't interfere with debugging.
2198 Don't do this if the insn is in a delay slot, since this
2199 will cause an improper number of delay insns to be written. */
2200 if (final_sequence == 0
2201 && prescan >= 0
2202 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2203 && GET_CODE (SET_SRC (body)) == REG
2204 && GET_CODE (SET_DEST (body)) == REG
2205 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2206 break;
2207 #endif
2209 #ifdef HAVE_cc0
2210 /* If this is a conditional branch, maybe modify it
2211 if the cc's are in a nonstandard state
2212 so that it accomplishes the same thing that it would
2213 do straightforwardly if the cc's were set up normally. */
2215 if (cc_status.flags != 0
2216 && GET_CODE (insn) == JUMP_INSN
2217 && GET_CODE (body) == SET
2218 && SET_DEST (body) == pc_rtx
2219 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2220 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2221 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2222 /* This is done during prescan; it is not done again
2223 in final scan when prescan has been done. */
2224 && prescan >= 0)
2226 /* This function may alter the contents of its argument
2227 and clear some of the cc_status.flags bits.
2228 It may also return 1 meaning condition now always true
2229 or -1 meaning condition now always false
2230 or 2 meaning condition nontrivial but altered. */
2231 int result = alter_cond (XEXP (SET_SRC (body), 0));
2232 /* If condition now has fixed value, replace the IF_THEN_ELSE
2233 with its then-operand or its else-operand. */
2234 if (result == 1)
2235 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2236 if (result == -1)
2237 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2239 /* The jump is now either unconditional or a no-op.
2240 If it has become a no-op, don't try to output it.
2241 (It would not be recognized.) */
2242 if (SET_SRC (body) == pc_rtx)
2244 delete_insn (insn);
2245 break;
2247 else if (GET_CODE (SET_SRC (body)) == RETURN)
2248 /* Replace (set (pc) (return)) with (return). */
2249 PATTERN (insn) = body = SET_SRC (body);
2251 /* Rerecognize the instruction if it has changed. */
2252 if (result != 0)
2253 INSN_CODE (insn) = -1;
2256 /* Make same adjustments to instructions that examine the
2257 condition codes without jumping and instructions that
2258 handle conditional moves (if this machine has either one). */
2260 if (cc_status.flags != 0
2261 && set != 0)
2263 rtx cond_rtx, then_rtx, else_rtx;
2265 if (GET_CODE (insn) != JUMP_INSN
2266 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2268 cond_rtx = XEXP (SET_SRC (set), 0);
2269 then_rtx = XEXP (SET_SRC (set), 1);
2270 else_rtx = XEXP (SET_SRC (set), 2);
2272 else
2274 cond_rtx = SET_SRC (set);
2275 then_rtx = const_true_rtx;
2276 else_rtx = const0_rtx;
2279 switch (GET_CODE (cond_rtx))
2281 case GTU:
2282 case GT:
2283 case LTU:
2284 case LT:
2285 case GEU:
2286 case GE:
2287 case LEU:
2288 case LE:
2289 case EQ:
2290 case NE:
2292 int result;
2293 if (XEXP (cond_rtx, 0) != cc0_rtx)
2294 break;
2295 result = alter_cond (cond_rtx);
2296 if (result == 1)
2297 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2298 else if (result == -1)
2299 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2300 else if (result == 2)
2301 INSN_CODE (insn) = -1;
2302 if (SET_DEST (set) == SET_SRC (set))
2303 delete_insn (insn);
2305 break;
2307 default:
2308 break;
2312 #endif
2314 #ifdef HAVE_peephole
2315 /* Do machine-specific peephole optimizations if desired. */
2317 if (optimize && !flag_no_peephole && !nopeepholes)
2319 rtx next = peephole (insn);
2320 /* When peepholing, if there were notes within the peephole,
2321 emit them before the peephole. */
2322 if (next != 0 && next != NEXT_INSN (insn))
2324 rtx prev = PREV_INSN (insn);
2326 for (note = NEXT_INSN (insn); note != next;
2327 note = NEXT_INSN (note))
2328 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2330 /* In case this is prescan, put the notes
2331 in proper position for later rescan. */
2332 note = NEXT_INSN (insn);
2333 PREV_INSN (note) = prev;
2334 NEXT_INSN (prev) = note;
2335 NEXT_INSN (PREV_INSN (next)) = insn;
2336 PREV_INSN (insn) = PREV_INSN (next);
2337 NEXT_INSN (insn) = next;
2338 PREV_INSN (next) = insn;
2341 /* PEEPHOLE might have changed this. */
2342 body = PATTERN (insn);
2344 #endif
2346 /* Try to recognize the instruction.
2347 If successful, verify that the operands satisfy the
2348 constraints for the instruction. Crash if they don't,
2349 since `reload' should have changed them so that they do. */
2351 insn_code_number = recog_memoized (insn);
2352 cleanup_subreg_operands (insn);
2354 /* Dump the insn in the assembly for debugging. */
2355 if (flag_dump_rtl_in_asm)
2357 print_rtx_head = ASM_COMMENT_START;
2358 print_rtl_single (asm_out_file, insn);
2359 print_rtx_head = "";
2362 if (! constrain_operands_cached (1))
2363 fatal_insn_not_found (insn);
2365 /* Some target machines need to prescan each insn before
2366 it is output. */
2368 #ifdef FINAL_PRESCAN_INSN
2369 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2370 #endif
2372 #ifdef HAVE_conditional_execution
2373 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2374 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2375 else
2376 current_insn_predicate = NULL_RTX;
2377 #endif
2379 #ifdef HAVE_cc0
2380 cc_prev_status = cc_status;
2382 /* Update `cc_status' for this instruction.
2383 The instruction's output routine may change it further.
2384 If the output routine for a jump insn needs to depend
2385 on the cc status, it should look at cc_prev_status. */
2387 NOTICE_UPDATE_CC (body, insn);
2388 #endif
2390 current_output_insn = debug_insn = insn;
2392 #if defined (DWARF2_UNWIND_INFO)
2393 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2394 dwarf2out_frame_debug (insn);
2395 #endif
2397 /* Find the proper template for this insn. */
2398 template = get_insn_template (insn_code_number, insn);
2400 /* If the C code returns 0, it means that it is a jump insn
2401 which follows a deleted test insn, and that test insn
2402 needs to be reinserted. */
2403 if (template == 0)
2405 rtx prev;
2407 if (prev_nonnote_insn (insn) != last_ignored_compare)
2408 abort ();
2410 /* We have already processed the notes between the setter and
2411 the user. Make sure we don't process them again, this is
2412 particularly important if one of the notes is a block
2413 scope note or an EH note. */
2414 for (prev = insn;
2415 prev != last_ignored_compare;
2416 prev = PREV_INSN (prev))
2418 if (GET_CODE (prev) == NOTE)
2419 delete_insn (prev); /* Use delete_note. */
2422 return prev;
2425 /* If the template is the string "#", it means that this insn must
2426 be split. */
2427 if (template[0] == '#' && template[1] == '\0')
2429 rtx new = try_split (body, insn, 0);
2431 /* If we didn't split the insn, go away. */
2432 if (new == insn && PATTERN (new) == body)
2433 fatal_insn ("could not split insn", insn);
2435 #ifdef HAVE_ATTR_length
2436 /* This instruction should have been split in shorten_branches,
2437 to ensure that we would have valid length info for the
2438 splitees. */
2439 abort ();
2440 #endif
2442 return new;
2445 if (prescan > 0)
2446 break;
2448 #ifdef IA64_UNWIND_INFO
2449 IA64_UNWIND_EMIT (asm_out_file, insn);
2450 #endif
2451 /* Output assembler code from the template. */
2453 output_asm_insn (template, recog_data.operand);
2455 /* If necessary, report the effect that the instruction has on
2456 the unwind info. We've already done this for delay slots
2457 and call instructions. */
2458 #if defined (DWARF2_UNWIND_INFO)
2459 if (GET_CODE (insn) == INSN
2460 #if !defined (HAVE_prologue)
2461 && !ACCUMULATE_OUTGOING_ARGS
2462 #endif
2463 && final_sequence == 0
2464 && dwarf2out_do_frame ())
2465 dwarf2out_frame_debug (insn);
2466 #endif
2468 #if 0
2469 /* It's not at all clear why we did this and doing so used to
2470 interfere with tests that used REG_WAS_0 notes, which are
2471 now gone, so let's try with this out. */
2473 /* Mark this insn as having been output. */
2474 INSN_DELETED_P (insn) = 1;
2475 #endif
2477 /* Emit information for vtable gc. */
2478 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2480 current_output_insn = debug_insn = 0;
2483 return NEXT_INSN (insn);
2486 /* Output debugging info to the assembler file FILE
2487 based on the NOTE-insn INSN, assumed to be a line number. */
2489 static bool
2490 notice_source_line (rtx insn)
2492 const char *filename = insn_file (insn);
2493 int linenum = insn_line (insn);
2495 if (filename && (filename != last_filename || last_linenum != linenum))
2497 last_filename = filename;
2498 last_linenum = linenum;
2499 high_block_linenum = MAX (last_linenum, high_block_linenum);
2500 high_function_linenum = MAX (last_linenum, high_function_linenum);
2501 return true;
2503 return false;
2506 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2507 directly to the desired hard register. */
2509 void
2510 cleanup_subreg_operands (rtx insn)
2512 int i;
2513 extract_insn_cached (insn);
2514 for (i = 0; i < recog_data.n_operands; i++)
2516 /* The following test cannot use recog_data.operand when testing
2517 for a SUBREG: the underlying object might have been changed
2518 already if we are inside a match_operator expression that
2519 matches the else clause. Instead we test the underlying
2520 expression directly. */
2521 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2522 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2523 else if (GET_CODE (recog_data.operand[i]) == PLUS
2524 || GET_CODE (recog_data.operand[i]) == MULT
2525 || GET_CODE (recog_data.operand[i]) == MEM)
2526 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2529 for (i = 0; i < recog_data.n_dups; i++)
2531 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2532 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2533 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2534 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2535 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2536 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2540 /* If X is a SUBREG, replace it with a REG or a MEM,
2541 based on the thing it is a subreg of. */
2544 alter_subreg (rtx *xp)
2546 rtx x = *xp;
2547 rtx y = SUBREG_REG (x);
2549 /* simplify_subreg does not remove subreg from volatile references.
2550 We are required to. */
2551 if (GET_CODE (y) == MEM)
2552 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2553 else
2555 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2556 SUBREG_BYTE (x));
2558 if (new != 0)
2559 *xp = new;
2560 /* Simplify_subreg can't handle some REG cases, but we have to. */
2561 else if (GET_CODE (y) == REG)
2563 unsigned int regno = subreg_hard_regno (x, 1);
2564 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2566 else
2567 abort ();
2570 return *xp;
2573 /* Do alter_subreg on all the SUBREGs contained in X. */
2575 static rtx
2576 walk_alter_subreg (rtx *xp)
2578 rtx x = *xp;
2579 switch (GET_CODE (x))
2581 case PLUS:
2582 case MULT:
2583 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2584 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2585 break;
2587 case MEM:
2588 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2589 break;
2591 case SUBREG:
2592 return alter_subreg (xp);
2594 default:
2595 break;
2598 return *xp;
2601 #ifdef HAVE_cc0
2603 /* Given BODY, the body of a jump instruction, alter the jump condition
2604 as required by the bits that are set in cc_status.flags.
2605 Not all of the bits there can be handled at this level in all cases.
2607 The value is normally 0.
2608 1 means that the condition has become always true.
2609 -1 means that the condition has become always false.
2610 2 means that COND has been altered. */
2612 static int
2613 alter_cond (rtx cond)
2615 int value = 0;
2617 if (cc_status.flags & CC_REVERSED)
2619 value = 2;
2620 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2623 if (cc_status.flags & CC_INVERTED)
2625 value = 2;
2626 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2629 if (cc_status.flags & CC_NOT_POSITIVE)
2630 switch (GET_CODE (cond))
2632 case LE:
2633 case LEU:
2634 case GEU:
2635 /* Jump becomes unconditional. */
2636 return 1;
2638 case GT:
2639 case GTU:
2640 case LTU:
2641 /* Jump becomes no-op. */
2642 return -1;
2644 case GE:
2645 PUT_CODE (cond, EQ);
2646 value = 2;
2647 break;
2649 case LT:
2650 PUT_CODE (cond, NE);
2651 value = 2;
2652 break;
2654 default:
2655 break;
2658 if (cc_status.flags & CC_NOT_NEGATIVE)
2659 switch (GET_CODE (cond))
2661 case GE:
2662 case GEU:
2663 /* Jump becomes unconditional. */
2664 return 1;
2666 case LT:
2667 case LTU:
2668 /* Jump becomes no-op. */
2669 return -1;
2671 case LE:
2672 case LEU:
2673 PUT_CODE (cond, EQ);
2674 value = 2;
2675 break;
2677 case GT:
2678 case GTU:
2679 PUT_CODE (cond, NE);
2680 value = 2;
2681 break;
2683 default:
2684 break;
2687 if (cc_status.flags & CC_NO_OVERFLOW)
2688 switch (GET_CODE (cond))
2690 case GEU:
2691 /* Jump becomes unconditional. */
2692 return 1;
2694 case LEU:
2695 PUT_CODE (cond, EQ);
2696 value = 2;
2697 break;
2699 case GTU:
2700 PUT_CODE (cond, NE);
2701 value = 2;
2702 break;
2704 case LTU:
2705 /* Jump becomes no-op. */
2706 return -1;
2708 default:
2709 break;
2712 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2713 switch (GET_CODE (cond))
2715 default:
2716 abort ();
2718 case NE:
2719 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2720 value = 2;
2721 break;
2723 case EQ:
2724 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2725 value = 2;
2726 break;
2729 if (cc_status.flags & CC_NOT_SIGNED)
2730 /* The flags are valid if signed condition operators are converted
2731 to unsigned. */
2732 switch (GET_CODE (cond))
2734 case LE:
2735 PUT_CODE (cond, LEU);
2736 value = 2;
2737 break;
2739 case LT:
2740 PUT_CODE (cond, LTU);
2741 value = 2;
2742 break;
2744 case GT:
2745 PUT_CODE (cond, GTU);
2746 value = 2;
2747 break;
2749 case GE:
2750 PUT_CODE (cond, GEU);
2751 value = 2;
2752 break;
2754 default:
2755 break;
2758 return value;
2760 #endif
2762 /* Report inconsistency between the assembler template and the operands.
2763 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2765 void
2766 output_operand_lossage (const char *msgid, ...)
2768 char *fmt_string;
2769 char *new_message;
2770 const char *pfx_str;
2771 va_list ap;
2773 va_start (ap, msgid);
2775 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2776 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2777 vasprintf (&new_message, fmt_string, ap);
2779 if (this_is_asm_operands)
2780 error_for_asm (this_is_asm_operands, "%s", new_message);
2781 else
2782 internal_error ("%s", new_message);
2784 free (fmt_string);
2785 free (new_message);
2786 va_end (ap);
2789 /* Output of assembler code from a template, and its subroutines. */
2791 /* Annotate the assembly with a comment describing the pattern and
2792 alternative used. */
2794 static void
2795 output_asm_name (void)
2797 if (debug_insn)
2799 int num = INSN_CODE (debug_insn);
2800 fprintf (asm_out_file, "\t%s %d\t%s",
2801 ASM_COMMENT_START, INSN_UID (debug_insn),
2802 insn_data[num].name);
2803 if (insn_data[num].n_alternatives > 1)
2804 fprintf (asm_out_file, "/%d", which_alternative + 1);
2805 #ifdef HAVE_ATTR_length
2806 fprintf (asm_out_file, "\t[length = %d]",
2807 get_attr_length (debug_insn));
2808 #endif
2809 /* Clear this so only the first assembler insn
2810 of any rtl insn will get the special comment for -dp. */
2811 debug_insn = 0;
2815 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2816 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2817 corresponds to the address of the object and 0 if to the object. */
2819 static tree
2820 get_mem_expr_from_op (rtx op, int *paddressp)
2822 tree expr;
2823 int inner_addressp;
2825 *paddressp = 0;
2827 if (GET_CODE (op) == REG)
2828 return REG_EXPR (op);
2829 else if (GET_CODE (op) != MEM)
2830 return 0;
2832 if (MEM_EXPR (op) != 0)
2833 return MEM_EXPR (op);
2835 /* Otherwise we have an address, so indicate it and look at the address. */
2836 *paddressp = 1;
2837 op = XEXP (op, 0);
2839 /* First check if we have a decl for the address, then look at the right side
2840 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2841 But don't allow the address to itself be indirect. */
2842 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2843 return expr;
2844 else if (GET_CODE (op) == PLUS
2845 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2846 return expr;
2848 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2849 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2850 op = XEXP (op, 0);
2852 expr = get_mem_expr_from_op (op, &inner_addressp);
2853 return inner_addressp ? 0 : expr;
2856 /* Output operand names for assembler instructions. OPERANDS is the
2857 operand vector, OPORDER is the order to write the operands, and NOPS
2858 is the number of operands to write. */
2860 static void
2861 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2863 int wrote = 0;
2864 int i;
2866 for (i = 0; i < nops; i++)
2868 int addressp;
2869 rtx op = operands[oporder[i]];
2870 tree expr = get_mem_expr_from_op (op, &addressp);
2872 fprintf (asm_out_file, "%c%s",
2873 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2874 wrote = 1;
2875 if (expr)
2877 fprintf (asm_out_file, "%s",
2878 addressp ? "*" : "");
2879 print_mem_expr (asm_out_file, expr);
2880 wrote = 1;
2882 else if (REG_P (op) && ORIGINAL_REGNO (op)
2883 && ORIGINAL_REGNO (op) != REGNO (op))
2884 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2888 /* Output text from TEMPLATE to the assembler output file,
2889 obeying %-directions to substitute operands taken from
2890 the vector OPERANDS.
2892 %N (for N a digit) means print operand N in usual manner.
2893 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2894 and print the label name with no punctuation.
2895 %cN means require operand N to be a constant
2896 and print the constant expression with no punctuation.
2897 %aN means expect operand N to be a memory address
2898 (not a memory reference!) and print a reference
2899 to that address.
2900 %nN means expect operand N to be a constant
2901 and print a constant expression for minus the value
2902 of the operand, with no other punctuation. */
2904 void
2905 output_asm_insn (const char *template, rtx *operands)
2907 const char *p;
2908 int c;
2909 #ifdef ASSEMBLER_DIALECT
2910 int dialect = 0;
2911 #endif
2912 int oporder[MAX_RECOG_OPERANDS];
2913 char opoutput[MAX_RECOG_OPERANDS];
2914 int ops = 0;
2916 /* An insn may return a null string template
2917 in a case where no assembler code is needed. */
2918 if (*template == 0)
2919 return;
2921 memset (opoutput, 0, sizeof opoutput);
2922 p = template;
2923 putc ('\t', asm_out_file);
2925 #ifdef ASM_OUTPUT_OPCODE
2926 ASM_OUTPUT_OPCODE (asm_out_file, p);
2927 #endif
2929 while ((c = *p++))
2930 switch (c)
2932 case '\n':
2933 if (flag_verbose_asm)
2934 output_asm_operand_names (operands, oporder, ops);
2935 if (flag_print_asm_name)
2936 output_asm_name ();
2938 ops = 0;
2939 memset (opoutput, 0, sizeof opoutput);
2941 putc (c, asm_out_file);
2942 #ifdef ASM_OUTPUT_OPCODE
2943 while ((c = *p) == '\t')
2945 putc (c, asm_out_file);
2946 p++;
2948 ASM_OUTPUT_OPCODE (asm_out_file, p);
2949 #endif
2950 break;
2952 #ifdef ASSEMBLER_DIALECT
2953 case '{':
2955 int i;
2957 if (dialect)
2958 output_operand_lossage ("nested assembly dialect alternatives");
2959 else
2960 dialect = 1;
2962 /* If we want the first dialect, do nothing. Otherwise, skip
2963 DIALECT_NUMBER of strings ending with '|'. */
2964 for (i = 0; i < dialect_number; i++)
2966 while (*p && *p != '}' && *p++ != '|')
2968 if (*p == '}')
2969 break;
2970 if (*p == '|')
2971 p++;
2974 if (*p == '\0')
2975 output_operand_lossage ("unterminated assembly dialect alternative");
2977 break;
2979 case '|':
2980 if (dialect)
2982 /* Skip to close brace. */
2985 if (*p == '\0')
2987 output_operand_lossage ("unterminated assembly dialect alternative");
2988 break;
2991 while (*p++ != '}');
2992 dialect = 0;
2994 else
2995 putc (c, asm_out_file);
2996 break;
2998 case '}':
2999 if (! dialect)
3000 putc (c, asm_out_file);
3001 dialect = 0;
3002 break;
3003 #endif
3005 case '%':
3006 /* %% outputs a single %. */
3007 if (*p == '%')
3009 p++;
3010 putc (c, asm_out_file);
3012 /* %= outputs a number which is unique to each insn in the entire
3013 compilation. This is useful for making local labels that are
3014 referred to more than once in a given insn. */
3015 else if (*p == '=')
3017 p++;
3018 fprintf (asm_out_file, "%d", insn_counter);
3020 /* % followed by a letter and some digits
3021 outputs an operand in a special way depending on the letter.
3022 Letters `acln' are implemented directly.
3023 Other letters are passed to `output_operand' so that
3024 the PRINT_OPERAND macro can define them. */
3025 else if (ISALPHA (*p))
3027 int letter = *p++;
3028 c = atoi (p);
3030 if (! ISDIGIT (*p))
3031 output_operand_lossage ("operand number missing after %%-letter");
3032 else if (this_is_asm_operands
3033 && (c < 0 || (unsigned int) c >= insn_noperands))
3034 output_operand_lossage ("operand number out of range");
3035 else if (letter == 'l')
3036 output_asm_label (operands[c]);
3037 else if (letter == 'a')
3038 output_address (operands[c]);
3039 else if (letter == 'c')
3041 if (CONSTANT_ADDRESS_P (operands[c]))
3042 output_addr_const (asm_out_file, operands[c]);
3043 else
3044 output_operand (operands[c], 'c');
3046 else if (letter == 'n')
3048 if (GET_CODE (operands[c]) == CONST_INT)
3049 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3050 - INTVAL (operands[c]));
3051 else
3053 putc ('-', asm_out_file);
3054 output_addr_const (asm_out_file, operands[c]);
3057 else
3058 output_operand (operands[c], letter);
3060 if (!opoutput[c])
3061 oporder[ops++] = c;
3062 opoutput[c] = 1;
3064 while (ISDIGIT (c = *p))
3065 p++;
3067 /* % followed by a digit outputs an operand the default way. */
3068 else if (ISDIGIT (*p))
3070 c = atoi (p);
3071 if (this_is_asm_operands
3072 && (c < 0 || (unsigned int) c >= insn_noperands))
3073 output_operand_lossage ("operand number out of range");
3074 else
3075 output_operand (operands[c], 0);
3077 if (!opoutput[c])
3078 oporder[ops++] = c;
3079 opoutput[c] = 1;
3081 while (ISDIGIT (c = *p))
3082 p++;
3084 /* % followed by punctuation: output something for that
3085 punctuation character alone, with no operand.
3086 The PRINT_OPERAND macro decides what is actually done. */
3087 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3088 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3089 output_operand (NULL_RTX, *p++);
3090 #endif
3091 else
3092 output_operand_lossage ("invalid %%-code");
3093 break;
3095 default:
3096 putc (c, asm_out_file);
3099 /* Write out the variable names for operands, if we know them. */
3100 if (flag_verbose_asm)
3101 output_asm_operand_names (operands, oporder, ops);
3102 if (flag_print_asm_name)
3103 output_asm_name ();
3105 putc ('\n', asm_out_file);
3108 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3110 void
3111 output_asm_label (rtx x)
3113 char buf[256];
3115 if (GET_CODE (x) == LABEL_REF)
3116 x = XEXP (x, 0);
3117 if (GET_CODE (x) == CODE_LABEL
3118 || (GET_CODE (x) == NOTE
3119 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3120 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3121 else
3122 output_operand_lossage ("`%%l' operand isn't a label");
3124 assemble_name (asm_out_file, buf);
3127 /* Print operand X using machine-dependent assembler syntax.
3128 The macro PRINT_OPERAND is defined just to control this function.
3129 CODE is a non-digit that preceded the operand-number in the % spec,
3130 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3131 between the % and the digits.
3132 When CODE is a non-letter, X is 0.
3134 The meanings of the letters are machine-dependent and controlled
3135 by PRINT_OPERAND. */
3137 static void
3138 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3140 if (x && GET_CODE (x) == SUBREG)
3141 x = alter_subreg (&x);
3143 /* If X is a pseudo-register, abort now rather than writing trash to the
3144 assembler file. */
3146 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3147 abort ();
3149 PRINT_OPERAND (asm_out_file, x, code);
3152 /* Print a memory reference operand for address X
3153 using machine-dependent assembler syntax.
3154 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3156 void
3157 output_address (rtx x)
3159 walk_alter_subreg (&x);
3160 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3163 /* Print an integer constant expression in assembler syntax.
3164 Addition and subtraction are the only arithmetic
3165 that may appear in these expressions. */
3167 void
3168 output_addr_const (FILE *file, rtx x)
3170 char buf[256];
3172 restart:
3173 switch (GET_CODE (x))
3175 case PC:
3176 putc ('.', file);
3177 break;
3179 case SYMBOL_REF:
3180 #ifdef ASM_OUTPUT_SYMBOL_REF
3181 ASM_OUTPUT_SYMBOL_REF (file, x);
3182 #else
3183 assemble_name (file, XSTR (x, 0));
3184 #endif
3185 break;
3187 case LABEL_REF:
3188 x = XEXP (x, 0);
3189 /* Fall through. */
3190 case CODE_LABEL:
3191 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3192 #ifdef ASM_OUTPUT_LABEL_REF
3193 ASM_OUTPUT_LABEL_REF (file, buf);
3194 #else
3195 assemble_name (file, buf);
3196 #endif
3197 break;
3199 case CONST_INT:
3200 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3201 break;
3203 case CONST:
3204 /* This used to output parentheses around the expression,
3205 but that does not work on the 386 (either ATT or BSD assembler). */
3206 output_addr_const (file, XEXP (x, 0));
3207 break;
3209 case CONST_DOUBLE:
3210 if (GET_MODE (x) == VOIDmode)
3212 /* We can use %d if the number is one word and positive. */
3213 if (CONST_DOUBLE_HIGH (x))
3214 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3215 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3216 else if (CONST_DOUBLE_LOW (x) < 0)
3217 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3218 else
3219 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3221 else
3222 /* We can't handle floating point constants;
3223 PRINT_OPERAND must handle them. */
3224 output_operand_lossage ("floating constant misused");
3225 break;
3227 case PLUS:
3228 /* Some assemblers need integer constants to appear last (eg masm). */
3229 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3231 output_addr_const (file, XEXP (x, 1));
3232 if (INTVAL (XEXP (x, 0)) >= 0)
3233 fprintf (file, "+");
3234 output_addr_const (file, XEXP (x, 0));
3236 else
3238 output_addr_const (file, XEXP (x, 0));
3239 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3240 || INTVAL (XEXP (x, 1)) >= 0)
3241 fprintf (file, "+");
3242 output_addr_const (file, XEXP (x, 1));
3244 break;
3246 case MINUS:
3247 /* Avoid outputting things like x-x or x+5-x,
3248 since some assemblers can't handle that. */
3249 x = simplify_subtraction (x);
3250 if (GET_CODE (x) != MINUS)
3251 goto restart;
3253 output_addr_const (file, XEXP (x, 0));
3254 fprintf (file, "-");
3255 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3256 || GET_CODE (XEXP (x, 1)) == PC
3257 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3258 output_addr_const (file, XEXP (x, 1));
3259 else
3261 fputs (targetm.asm_out.open_paren, file);
3262 output_addr_const (file, XEXP (x, 1));
3263 fputs (targetm.asm_out.close_paren, file);
3265 break;
3267 case ZERO_EXTEND:
3268 case SIGN_EXTEND:
3269 case SUBREG:
3270 output_addr_const (file, XEXP (x, 0));
3271 break;
3273 default:
3274 #ifdef OUTPUT_ADDR_CONST_EXTRA
3275 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3276 break;
3278 fail:
3279 #endif
3280 output_operand_lossage ("invalid expression as operand");
3284 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3285 %R prints the value of REGISTER_PREFIX.
3286 %L prints the value of LOCAL_LABEL_PREFIX.
3287 %U prints the value of USER_LABEL_PREFIX.
3288 %I prints the value of IMMEDIATE_PREFIX.
3289 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3290 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3292 We handle alternate assembler dialects here, just like output_asm_insn. */
3294 void
3295 asm_fprintf (FILE *file, const char *p, ...)
3297 char buf[10];
3298 char *q, c;
3299 va_list argptr;
3301 va_start (argptr, p);
3303 buf[0] = '%';
3305 while ((c = *p++))
3306 switch (c)
3308 #ifdef ASSEMBLER_DIALECT
3309 case '{':
3311 int i;
3313 /* If we want the first dialect, do nothing. Otherwise, skip
3314 DIALECT_NUMBER of strings ending with '|'. */
3315 for (i = 0; i < dialect_number; i++)
3317 while (*p && *p++ != '|')
3320 if (*p == '|')
3321 p++;
3324 break;
3326 case '|':
3327 /* Skip to close brace. */
3328 while (*p && *p++ != '}')
3330 break;
3332 case '}':
3333 break;
3334 #endif
3336 case '%':
3337 c = *p++;
3338 q = &buf[1];
3339 while (strchr ("-+ #0", c))
3341 *q++ = c;
3342 c = *p++;
3344 while (ISDIGIT (c) || c == '.')
3346 *q++ = c;
3347 c = *p++;
3349 switch (c)
3351 case '%':
3352 putc ('%', file);
3353 break;
3355 case 'd': case 'i': case 'u':
3356 case 'x': case 'X': case 'o':
3357 case 'c':
3358 *q++ = c;
3359 *q = 0;
3360 fprintf (file, buf, va_arg (argptr, int));
3361 break;
3363 case 'w':
3364 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3365 'o' cases, but we do not check for those cases. It
3366 means that the value is a HOST_WIDE_INT, which may be
3367 either `long' or `long long'. */
3368 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3369 q += strlen (HOST_WIDE_INT_PRINT);
3370 *q++ = *p++;
3371 *q = 0;
3372 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3373 break;
3375 case 'l':
3376 *q++ = c;
3377 #ifdef HAVE_LONG_LONG
3378 if (*p == 'l')
3380 *q++ = *p++;
3381 *q++ = *p++;
3382 *q = 0;
3383 fprintf (file, buf, va_arg (argptr, long long));
3385 else
3386 #endif
3388 *q++ = *p++;
3389 *q = 0;
3390 fprintf (file, buf, va_arg (argptr, long));
3393 break;
3395 case 's':
3396 *q++ = c;
3397 *q = 0;
3398 fprintf (file, buf, va_arg (argptr, char *));
3399 break;
3401 case 'O':
3402 #ifdef ASM_OUTPUT_OPCODE
3403 ASM_OUTPUT_OPCODE (asm_out_file, p);
3404 #endif
3405 break;
3407 case 'R':
3408 #ifdef REGISTER_PREFIX
3409 fprintf (file, "%s", REGISTER_PREFIX);
3410 #endif
3411 break;
3413 case 'I':
3414 #ifdef IMMEDIATE_PREFIX
3415 fprintf (file, "%s", IMMEDIATE_PREFIX);
3416 #endif
3417 break;
3419 case 'L':
3420 #ifdef LOCAL_LABEL_PREFIX
3421 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3422 #endif
3423 break;
3425 case 'U':
3426 fputs (user_label_prefix, file);
3427 break;
3429 #ifdef ASM_FPRINTF_EXTENSIONS
3430 /* Uppercase letters are reserved for general use by asm_fprintf
3431 and so are not available to target specific code. In order to
3432 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3433 they are defined here. As they get turned into real extensions
3434 to asm_fprintf they should be removed from this list. */
3435 case 'A': case 'B': case 'C': case 'D': case 'E':
3436 case 'F': case 'G': case 'H': case 'J': case 'K':
3437 case 'M': case 'N': case 'P': case 'Q': case 'S':
3438 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3439 break;
3441 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3442 #endif
3443 default:
3444 abort ();
3446 break;
3448 default:
3449 putc (c, file);
3451 va_end (argptr);
3454 /* Split up a CONST_DOUBLE or integer constant rtx
3455 into two rtx's for single words,
3456 storing in *FIRST the word that comes first in memory in the target
3457 and in *SECOND the other. */
3459 void
3460 split_double (rtx value, rtx *first, rtx *second)
3462 if (GET_CODE (value) == CONST_INT)
3464 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3466 /* In this case the CONST_INT holds both target words.
3467 Extract the bits from it into two word-sized pieces.
3468 Sign extend each half to HOST_WIDE_INT. */
3469 unsigned HOST_WIDE_INT low, high;
3470 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3472 /* Set sign_bit to the most significant bit of a word. */
3473 sign_bit = 1;
3474 sign_bit <<= BITS_PER_WORD - 1;
3476 /* Set mask so that all bits of the word are set. We could
3477 have used 1 << BITS_PER_WORD instead of basing the
3478 calculation on sign_bit. However, on machines where
3479 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3480 compiler warning, even though the code would never be
3481 executed. */
3482 mask = sign_bit << 1;
3483 mask--;
3485 /* Set sign_extend as any remaining bits. */
3486 sign_extend = ~mask;
3488 /* Pick the lower word and sign-extend it. */
3489 low = INTVAL (value);
3490 low &= mask;
3491 if (low & sign_bit)
3492 low |= sign_extend;
3494 /* Pick the higher word, shifted to the least significant
3495 bits, and sign-extend it. */
3496 high = INTVAL (value);
3497 high >>= BITS_PER_WORD - 1;
3498 high >>= 1;
3499 high &= mask;
3500 if (high & sign_bit)
3501 high |= sign_extend;
3503 /* Store the words in the target machine order. */
3504 if (WORDS_BIG_ENDIAN)
3506 *first = GEN_INT (high);
3507 *second = GEN_INT (low);
3509 else
3511 *first = GEN_INT (low);
3512 *second = GEN_INT (high);
3515 else
3517 /* The rule for using CONST_INT for a wider mode
3518 is that we regard the value as signed.
3519 So sign-extend it. */
3520 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3521 if (WORDS_BIG_ENDIAN)
3523 *first = high;
3524 *second = value;
3526 else
3528 *first = value;
3529 *second = high;
3533 else if (GET_CODE (value) != CONST_DOUBLE)
3535 if (WORDS_BIG_ENDIAN)
3537 *first = const0_rtx;
3538 *second = value;
3540 else
3542 *first = value;
3543 *second = const0_rtx;
3546 else if (GET_MODE (value) == VOIDmode
3547 /* This is the old way we did CONST_DOUBLE integers. */
3548 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3550 /* In an integer, the words are defined as most and least significant.
3551 So order them by the target's convention. */
3552 if (WORDS_BIG_ENDIAN)
3554 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3555 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3557 else
3559 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3560 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3563 else
3565 REAL_VALUE_TYPE r;
3566 long l[2];
3567 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3569 /* Note, this converts the REAL_VALUE_TYPE to the target's
3570 format, splits up the floating point double and outputs
3571 exactly 32 bits of it into each of l[0] and l[1] --
3572 not necessarily BITS_PER_WORD bits. */
3573 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3575 /* If 32 bits is an entire word for the target, but not for the host,
3576 then sign-extend on the host so that the number will look the same
3577 way on the host that it would on the target. See for instance
3578 simplify_unary_operation. The #if is needed to avoid compiler
3579 warnings. */
3581 #if HOST_BITS_PER_LONG > 32
3582 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3584 if (l[0] & ((long) 1 << 31))
3585 l[0] |= ((long) (-1) << 32);
3586 if (l[1] & ((long) 1 << 31))
3587 l[1] |= ((long) (-1) << 32);
3589 #endif
3591 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3592 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3596 /* Return nonzero if this function has no function calls. */
3599 leaf_function_p (void)
3601 rtx insn;
3602 rtx link;
3604 if (current_function_profile || profile_arc_flag)
3605 return 0;
3607 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3609 if (GET_CODE (insn) == CALL_INSN
3610 && ! SIBLING_CALL_P (insn))
3611 return 0;
3612 if (GET_CODE (insn) == INSN
3613 && GET_CODE (PATTERN (insn)) == SEQUENCE
3614 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3615 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3616 return 0;
3618 for (link = current_function_epilogue_delay_list;
3619 link;
3620 link = XEXP (link, 1))
3622 insn = XEXP (link, 0);
3624 if (GET_CODE (insn) == CALL_INSN
3625 && ! SIBLING_CALL_P (insn))
3626 return 0;
3627 if (GET_CODE (insn) == INSN
3628 && GET_CODE (PATTERN (insn)) == SEQUENCE
3629 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3630 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3631 return 0;
3634 return 1;
3637 /* Return 1 if branch is a forward branch.
3638 Uses insn_shuid array, so it works only in the final pass. May be used by
3639 output templates to customary add branch prediction hints.
3642 final_forward_branch_p (rtx insn)
3644 int insn_id, label_id;
3645 if (!uid_shuid)
3646 abort ();
3647 insn_id = INSN_SHUID (insn);
3648 label_id = INSN_SHUID (JUMP_LABEL (insn));
3649 /* We've hit some insns that does not have id information available. */
3650 if (!insn_id || !label_id)
3651 abort ();
3652 return insn_id < label_id;
3655 /* On some machines, a function with no call insns
3656 can run faster if it doesn't create its own register window.
3657 When output, the leaf function should use only the "output"
3658 registers. Ordinarily, the function would be compiled to use
3659 the "input" registers to find its arguments; it is a candidate
3660 for leaf treatment if it uses only the "input" registers.
3661 Leaf function treatment means renumbering so the function
3662 uses the "output" registers instead. */
3664 #ifdef LEAF_REGISTERS
3666 /* Return 1 if this function uses only the registers that can be
3667 safely renumbered. */
3670 only_leaf_regs_used (void)
3672 int i;
3673 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3676 if ((regs_ever_live[i] || global_regs[i])
3677 && ! permitted_reg_in_leaf_functions[i])
3678 return 0;
3680 if (current_function_uses_pic_offset_table
3681 && pic_offset_table_rtx != 0
3682 && GET_CODE (pic_offset_table_rtx) == REG
3683 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3684 return 0;
3686 return 1;
3689 /* Scan all instructions and renumber all registers into those
3690 available in leaf functions. */
3692 static void
3693 leaf_renumber_regs (rtx first)
3695 rtx insn;
3697 /* Renumber only the actual patterns.
3698 The reg-notes can contain frame pointer refs,
3699 and renumbering them could crash, and should not be needed. */
3700 for (insn = first; insn; insn = NEXT_INSN (insn))
3701 if (INSN_P (insn))
3702 leaf_renumber_regs_insn (PATTERN (insn));
3703 for (insn = current_function_epilogue_delay_list;
3704 insn;
3705 insn = XEXP (insn, 1))
3706 if (INSN_P (XEXP (insn, 0)))
3707 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3710 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3711 available in leaf functions. */
3713 void
3714 leaf_renumber_regs_insn (rtx in_rtx)
3716 int i, j;
3717 const char *format_ptr;
3719 if (in_rtx == 0)
3720 return;
3722 /* Renumber all input-registers into output-registers.
3723 renumbered_regs would be 1 for an output-register;
3724 they */
3726 if (GET_CODE (in_rtx) == REG)
3728 int newreg;
3730 /* Don't renumber the same reg twice. */
3731 if (in_rtx->used)
3732 return;
3734 newreg = REGNO (in_rtx);
3735 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3736 to reach here as part of a REG_NOTE. */
3737 if (newreg >= FIRST_PSEUDO_REGISTER)
3739 in_rtx->used = 1;
3740 return;
3742 newreg = LEAF_REG_REMAP (newreg);
3743 if (newreg < 0)
3744 abort ();
3745 regs_ever_live[REGNO (in_rtx)] = 0;
3746 regs_ever_live[newreg] = 1;
3747 REGNO (in_rtx) = newreg;
3748 in_rtx->used = 1;
3751 if (INSN_P (in_rtx))
3753 /* Inside a SEQUENCE, we find insns.
3754 Renumber just the patterns of these insns,
3755 just as we do for the top-level insns. */
3756 leaf_renumber_regs_insn (PATTERN (in_rtx));
3757 return;
3760 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3762 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3763 switch (*format_ptr++)
3765 case 'e':
3766 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3767 break;
3769 case 'E':
3770 if (NULL != XVEC (in_rtx, i))
3772 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3773 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3775 break;
3777 case 'S':
3778 case 's':
3779 case '0':
3780 case 'i':
3781 case 'w':
3782 case 'n':
3783 case 'u':
3784 break;
3786 default:
3787 abort ();
3790 #endif
3793 /* When -gused is used, emit debug info for only used symbols. But in
3794 addition to the standard intercepted debug_hooks there are some direct
3795 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3796 Those routines may also be called from a higher level intercepted routine. So
3797 to prevent recording data for an inner call to one of these for an intercept,
3798 we maintain an intercept nesting counter (debug_nesting). We only save the
3799 intercepted arguments if the nesting is 1. */
3800 int debug_nesting = 0;
3802 static tree *symbol_queue;
3803 int symbol_queue_index = 0;
3804 static int symbol_queue_size = 0;
3806 /* Generate the symbols for any queued up type symbols we encountered
3807 while generating the type info for some originally used symbol.
3808 This might generate additional entries in the queue. Only when
3809 the nesting depth goes to 0 is this routine called. */
3811 void
3812 debug_flush_symbol_queue (void)
3814 int i;
3816 /* Make sure that additionally queued items are not flushed
3817 prematurely. */
3819 ++debug_nesting;
3821 for (i = 0; i < symbol_queue_index; ++i)
3823 /* If we pushed queued symbols then such symbols are must be
3824 output no matter what anyone else says. Specifically,
3825 we need to make sure dbxout_symbol() thinks the symbol was
3826 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3827 which may be set for outside reasons. */
3828 int saved_tree_used = TREE_USED (symbol_queue[i]);
3829 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3830 TREE_USED (symbol_queue[i]) = 1;
3831 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3833 #ifdef DBX_DEBUGGING_INFO
3834 dbxout_symbol (symbol_queue[i], 0);
3835 #endif
3837 TREE_USED (symbol_queue[i]) = saved_tree_used;
3838 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3841 symbol_queue_index = 0;
3842 --debug_nesting;
3845 /* Queue a type symbol needed as part of the definition of a decl
3846 symbol. These symbols are generated when debug_flush_symbol_queue()
3847 is called. */
3849 void
3850 debug_queue_symbol (tree decl)
3852 if (symbol_queue_index >= symbol_queue_size)
3854 symbol_queue_size += 10;
3855 symbol_queue = xrealloc (symbol_queue,
3856 symbol_queue_size * sizeof (tree));
3859 symbol_queue[symbol_queue_index++] = decl;
3862 /* Free symbol queue. */
3863 void
3864 debug_free_queue (void)
3866 if (symbol_queue)
3868 free (symbol_queue);
3869 symbol_queue = NULL;
3870 symbol_queue_size = 0;