* gcc.dg/const-elim-1.c: xfail for xtensa.
[official-gcc.git] / gcc / combine.c
blobc21d5c90f99cee9a8bcd2bcb67796ee57550463c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
94 /* Number of attempts to combine instructions in this function. */
96 static int combine_attempts;
98 /* Number of attempts that got as far as substitution in this function. */
100 static int combine_merges;
102 /* Number of instructions combined with added SETs in this function. */
104 static int combine_extras;
106 /* Number of instructions combined in this function. */
108 static int combine_successes;
110 /* Totals over entire compilation. */
112 static int total_attempts, total_merges, total_extras, total_successes;
115 /* Vector mapping INSN_UIDs to cuids.
116 The cuids are like uids but increase monotonically always.
117 Combine always uses cuids so that it can compare them.
118 But actually renumbering the uids, which we used to do,
119 proves to be a bad idea because it makes it hard to compare
120 the dumps produced by earlier passes with those from later passes. */
122 static int *uid_cuid;
123 static int max_uid_cuid;
125 /* Get the cuid of an insn. */
127 #define INSN_CUID(INSN) \
128 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
130 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
131 BITS_PER_WORD would invoke undefined behavior. Work around it. */
133 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
134 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
136 #define nonzero_bits(X, M) \
137 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
139 #define num_sign_bit_copies(X, M) \
140 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 /* Record last point of death of (hard or pseudo) register n. */
148 static rtx *reg_last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
152 static rtx *reg_last_set;
154 /* Record the cuid of the last insn that invalidated memory
155 (anything that writes memory, and subroutine calls, but not pushes). */
157 static int mem_last_set;
159 /* Record the cuid of the last CALL_INSN
160 so we can tell whether a potential combination crosses any calls. */
162 static int last_call_cuid;
164 /* When `subst' is called, this is the insn that is being modified
165 (by combining in a previous insn). The PATTERN of this insn
166 is still the old pattern partially modified and it should not be
167 looked at, but this may be used to examine the successors of the insn
168 to judge whether a simplification is valid. */
170 static rtx subst_insn;
172 /* This is the lowest CUID that `subst' is currently dealing with.
173 get_last_value will not return a value if the register was set at or
174 after this CUID. If not for this mechanism, we could get confused if
175 I2 or I1 in try_combine were an insn that used the old value of a register
176 to obtain a new value. In that case, we might erroneously get the
177 new value of the register when we wanted the old one. */
179 static int subst_low_cuid;
181 /* This contains any hard registers that are used in newpat; reg_dead_at_p
182 must consider all these registers to be always live. */
184 static HARD_REG_SET newpat_used_regs;
186 /* This is an insn to which a LOG_LINKS entry has been added. If this
187 insn is the earlier than I2 or I3, combine should rescan starting at
188 that location. */
190 static rtx added_links_insn;
192 /* Basic block in which we are performing combines. */
193 static basic_block this_basic_block;
195 /* A bitmap indicating which blocks had registers go dead at entry.
196 After combine, we'll need to re-do global life analysis with
197 those blocks as starting points. */
198 static sbitmap refresh_blocks;
200 /* The next group of arrays allows the recording of the last value assigned
201 to (hard or pseudo) register n. We use this information to see if an
202 operation being processed is redundant given a prior operation performed
203 on the register. For example, an `and' with a constant is redundant if
204 all the zero bits are already known to be turned off.
206 We use an approach similar to that used by cse, but change it in the
207 following ways:
209 (1) We do not want to reinitialize at each label.
210 (2) It is useful, but not critical, to know the actual value assigned
211 to a register. Often just its form is helpful.
213 Therefore, we maintain the following arrays:
215 reg_last_set_value the last value assigned
216 reg_last_set_label records the value of label_tick when the
217 register was assigned
218 reg_last_set_table_tick records the value of label_tick when a
219 value using the register is assigned
220 reg_last_set_invalid set to nonzero when it is not valid
221 to use the value of this register in some
222 register's value
224 To understand the usage of these tables, it is important to understand
225 the distinction between the value in reg_last_set_value being valid
226 and the register being validly contained in some other expression in the
227 table.
229 Entry I in reg_last_set_value is valid if it is nonzero, and either
230 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
232 Register I may validly appear in any expression returned for the value
233 of another register if reg_n_sets[i] is 1. It may also appear in the
234 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
235 reg_last_set_invalid[j] is zero.
237 If an expression is found in the table containing a register which may
238 not validly appear in an expression, the register is replaced by
239 something that won't match, (clobber (const_int 0)).
241 reg_last_set_invalid[i] is set nonzero when register I is being assigned
242 to and reg_last_set_table_tick[i] == label_tick. */
244 /* Record last value assigned to (hard or pseudo) register n. */
246 static rtx *reg_last_set_value;
248 /* Record the value of label_tick when the value for register n is placed in
249 reg_last_set_value[n]. */
251 static int *reg_last_set_label;
253 /* Record the value of label_tick when an expression involving register n
254 is placed in reg_last_set_value. */
256 static int *reg_last_set_table_tick;
258 /* Set nonzero if references to register n in expressions should not be
259 used. */
261 static char *reg_last_set_invalid;
263 /* Incremented for each label. */
265 static int label_tick;
267 /* Some registers that are set more than once and used in more than one
268 basic block are nevertheless always set in similar ways. For example,
269 a QImode register may be loaded from memory in two places on a machine
270 where byte loads zero extend.
272 We record in the following array what we know about the nonzero
273 bits of a register, specifically which bits are known to be zero.
275 If an entry is zero, it means that we don't know anything special. */
277 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
279 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
280 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
282 static enum machine_mode nonzero_bits_mode;
284 /* Nonzero if we know that a register has some leading bits that are always
285 equal to the sign bit. */
287 static unsigned char *reg_sign_bit_copies;
289 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
290 It is zero while computing them and after combine has completed. This
291 former test prevents propagating values based on previously set values,
292 which can be incorrect if a variable is modified in a loop. */
294 static int nonzero_sign_valid;
296 /* These arrays are maintained in parallel with reg_last_set_value
297 and are used to store the mode in which the register was last set,
298 the bits that were known to be zero when it was last set, and the
299 number of sign bits copies it was known to have when it was last set. */
301 static enum machine_mode *reg_last_set_mode;
302 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
303 static char *reg_last_set_sign_bit_copies;
305 /* Record one modification to rtl structure
306 to be undone by storing old_contents into *where.
307 is_int is 1 if the contents are an int. */
309 struct undo
311 struct undo *next;
312 int is_int;
313 union {rtx r; int i;} old_contents;
314 union {rtx *r; int *i;} where;
317 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
318 num_undo says how many are currently recorded.
320 other_insn is nonzero if we have modified some other insn in the process
321 of working on subst_insn. It must be verified too. */
323 struct undobuf
325 struct undo *undos;
326 struct undo *frees;
327 rtx other_insn;
330 static struct undobuf undobuf;
332 /* Number of times the pseudo being substituted for
333 was found and replaced. */
335 static int n_occurrences;
337 static void do_SUBST (rtx *, rtx);
338 static void do_SUBST_INT (int *, int);
339 static void init_reg_last_arrays (void);
340 static void setup_incoming_promotions (void);
341 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
342 static int cant_combine_insn_p (rtx);
343 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
344 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
345 static int contains_muldiv (rtx);
346 static rtx try_combine (rtx, rtx, rtx, int *);
347 static void undo_all (void);
348 static void undo_commit (void);
349 static rtx *find_split_point (rtx *, rtx);
350 static rtx subst (rtx, rtx, rtx, int, int);
351 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
352 static rtx simplify_if_then_else (rtx);
353 static rtx simplify_set (rtx);
354 static rtx simplify_logical (rtx, int);
355 static rtx expand_compound_operation (rtx);
356 static rtx expand_field_assignment (rtx);
357 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
358 rtx, unsigned HOST_WIDE_INT, int, int, int);
359 static rtx extract_left_shift (rtx, int);
360 static rtx make_compound_operation (rtx, enum rtx_code);
361 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
362 unsigned HOST_WIDE_INT *);
363 static rtx force_to_mode (rtx, enum machine_mode,
364 unsigned HOST_WIDE_INT, rtx, int);
365 static rtx if_then_else_cond (rtx, rtx *, rtx *);
366 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
367 static int rtx_equal_for_field_assignment_p (rtx, rtx);
368 static rtx make_field_assignment (rtx);
369 static rtx apply_distributive_law (rtx);
370 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
371 unsigned HOST_WIDE_INT);
372 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
373 rtx, enum machine_mode,
374 unsigned HOST_WIDE_INT);
375 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT);
378 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
379 enum machine_mode,
380 unsigned int);
381 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
382 enum machine_mode, unsigned int);
383 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
384 HOST_WIDE_INT, enum machine_mode, int *);
385 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
386 int);
387 static int recog_for_combine (rtx *, rtx, rtx *);
388 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
389 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
390 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
391 static void update_table_tick (rtx);
392 static void record_value_for_reg (rtx, rtx, rtx);
393 static void check_promoted_subreg (rtx, rtx);
394 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
395 static void record_dead_and_set_regs (rtx);
396 static int get_last_value_validate (rtx *, rtx, int, int);
397 static rtx get_last_value (rtx);
398 static int use_crosses_set_p (rtx, int);
399 static void reg_dead_at_p_1 (rtx, rtx, void *);
400 static int reg_dead_at_p (rtx, rtx);
401 static void move_deaths (rtx, rtx, int, rtx, rtx *);
402 static int reg_bitfield_target_p (rtx, rtx);
403 static void distribute_notes (rtx, rtx, rtx, rtx);
404 static void distribute_links (rtx);
405 static void mark_used_regs_combine (rtx);
406 static int insn_cuid (rtx);
407 static void record_promoted_value (rtx, rtx);
408 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
409 static enum rtx_code combine_reversed_comparison_code (rtx);
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (rtx *into, rtx newval)
420 struct undo *buf;
421 rtx oldval = *into;
423 if (oldval == newval)
424 return;
426 /* We'd like to catch as many invalid transformations here as
427 possible. Unfortunately, there are way too many mode changes
428 that are perfectly valid, so we'd waste too much effort for
429 little gain doing the checks here. Focus on catching invalid
430 transformations involving integer constants. */
431 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
432 && GET_CODE (newval) == CONST_INT)
434 /* Sanity check that we're replacing oldval with a CONST_INT
435 that is a valid sign-extension for the original mode. */
436 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
437 GET_MODE (oldval)))
438 abort ();
440 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
441 CONST_INT is not valid, because after the replacement, the
442 original mode would be gone. Unfortunately, we can't tell
443 when do_SUBST is called to replace the operand thereof, so we
444 perform this test on oldval instead, checking whether an
445 invalid replacement took place before we got here. */
446 if ((GET_CODE (oldval) == SUBREG
447 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
448 || (GET_CODE (oldval) == ZERO_EXTEND
449 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
450 abort ();
453 if (undobuf.frees)
454 buf = undobuf.frees, undobuf.frees = buf->next;
455 else
456 buf = xmalloc (sizeof (struct undo));
458 buf->is_int = 0;
459 buf->where.r = into;
460 buf->old_contents.r = oldval;
461 *into = newval;
463 buf->next = undobuf.undos, undobuf.undos = buf;
466 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
468 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
469 for the value of a HOST_WIDE_INT value (including CONST_INT) is
470 not safe. */
472 static void
473 do_SUBST_INT (int *into, int newval)
475 struct undo *buf;
476 int oldval = *into;
478 if (oldval == newval)
479 return;
481 if (undobuf.frees)
482 buf = undobuf.frees, undobuf.frees = buf->next;
483 else
484 buf = xmalloc (sizeof (struct undo));
486 buf->is_int = 1;
487 buf->where.i = into;
488 buf->old_contents.i = oldval;
489 *into = newval;
491 buf->next = undobuf.undos, undobuf.undos = buf;
494 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
496 /* Main entry point for combiner. F is the first insn of the function.
497 NREGS is the first unused pseudo-reg number.
499 Return nonzero if the combiner has turned an indirect jump
500 instruction into a direct jump. */
502 combine_instructions (rtx f, unsigned int nregs)
504 rtx insn, next;
505 #ifdef HAVE_cc0
506 rtx prev;
507 #endif
508 int i;
509 rtx links, nextlinks;
511 int new_direct_jump_p = 0;
513 combine_attempts = 0;
514 combine_merges = 0;
515 combine_extras = 0;
516 combine_successes = 0;
518 combine_max_regno = nregs;
520 /* It is not safe to use ordinary gen_lowpart in combine.
521 See comments in gen_lowpart_for_combine. */
522 gen_lowpart = gen_lowpart_for_combine;
524 reg_nonzero_bits = xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT));
525 reg_sign_bit_copies = xcalloc (nregs, sizeof (unsigned char));
527 reg_last_death = xmalloc (nregs * sizeof (rtx));
528 reg_last_set = xmalloc (nregs * sizeof (rtx));
529 reg_last_set_value = xmalloc (nregs * sizeof (rtx));
530 reg_last_set_table_tick = xmalloc (nregs * sizeof (int));
531 reg_last_set_label = xmalloc (nregs * sizeof (int));
532 reg_last_set_invalid = xmalloc (nregs * sizeof (char));
533 reg_last_set_mode = xmalloc (nregs * sizeof (enum machine_mode));
534 reg_last_set_nonzero_bits = xmalloc (nregs * sizeof (HOST_WIDE_INT));
535 reg_last_set_sign_bit_copies = xmalloc (nregs * sizeof (char));
537 init_reg_last_arrays ();
539 init_recog_no_volatile ();
541 /* Compute maximum uid value so uid_cuid can be allocated. */
543 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
544 if (INSN_UID (insn) > i)
545 i = INSN_UID (insn);
547 uid_cuid = xmalloc ((i + 1) * sizeof (int));
548 max_uid_cuid = i;
550 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
552 /* Don't use reg_nonzero_bits when computing it. This can cause problems
553 when, for example, we have j <<= 1 in a loop. */
555 nonzero_sign_valid = 0;
557 /* Compute the mapping from uids to cuids.
558 Cuids are numbers assigned to insns, like uids,
559 except that cuids increase monotonically through the code.
561 Scan all SETs and see if we can deduce anything about what
562 bits are known to be zero for some registers and how many copies
563 of the sign bit are known to exist for those registers.
565 Also set any known values so that we can use it while searching
566 for what bits are known to be set. */
568 label_tick = 1;
570 setup_incoming_promotions ();
572 refresh_blocks = sbitmap_alloc (last_basic_block);
573 sbitmap_zero (refresh_blocks);
575 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
577 uid_cuid[INSN_UID (insn)] = ++i;
578 subst_low_cuid = i;
579 subst_insn = insn;
581 if (INSN_P (insn))
583 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
584 NULL);
585 record_dead_and_set_regs (insn);
587 #ifdef AUTO_INC_DEC
588 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
589 if (REG_NOTE_KIND (links) == REG_INC)
590 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
591 NULL);
592 #endif
595 if (GET_CODE (insn) == CODE_LABEL)
596 label_tick++;
599 nonzero_sign_valid = 1;
601 /* Now scan all the insns in forward order. */
603 label_tick = 1;
604 last_call_cuid = 0;
605 mem_last_set = 0;
606 init_reg_last_arrays ();
607 setup_incoming_promotions ();
609 FOR_EACH_BB (this_basic_block)
611 for (insn = BB_HEAD (this_basic_block);
612 insn != NEXT_INSN (BB_END (this_basic_block));
613 insn = next ? next : NEXT_INSN (insn))
615 next = 0;
617 if (GET_CODE (insn) == CODE_LABEL)
618 label_tick++;
620 else if (INSN_P (insn))
622 /* See if we know about function return values before this
623 insn based upon SUBREG flags. */
624 check_promoted_subreg (insn, PATTERN (insn));
626 /* Try this insn with each insn it links back to. */
628 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
629 if ((next = try_combine (insn, XEXP (links, 0),
630 NULL_RTX, &new_direct_jump_p)) != 0)
631 goto retry;
633 /* Try each sequence of three linked insns ending with this one. */
635 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
637 rtx link = XEXP (links, 0);
639 /* If the linked insn has been replaced by a note, then there
640 is no point in pursuing this chain any further. */
641 if (GET_CODE (link) == NOTE)
642 continue;
644 for (nextlinks = LOG_LINKS (link);
645 nextlinks;
646 nextlinks = XEXP (nextlinks, 1))
647 if ((next = try_combine (insn, link,
648 XEXP (nextlinks, 0),
649 &new_direct_jump_p)) != 0)
650 goto retry;
653 #ifdef HAVE_cc0
654 /* Try to combine a jump insn that uses CC0
655 with a preceding insn that sets CC0, and maybe with its
656 logical predecessor as well.
657 This is how we make decrement-and-branch insns.
658 We need this special code because data flow connections
659 via CC0 do not get entered in LOG_LINKS. */
661 if (GET_CODE (insn) == JUMP_INSN
662 && (prev = prev_nonnote_insn (insn)) != 0
663 && GET_CODE (prev) == INSN
664 && sets_cc0_p (PATTERN (prev)))
666 if ((next = try_combine (insn, prev,
667 NULL_RTX, &new_direct_jump_p)) != 0)
668 goto retry;
670 for (nextlinks = LOG_LINKS (prev); nextlinks;
671 nextlinks = XEXP (nextlinks, 1))
672 if ((next = try_combine (insn, prev,
673 XEXP (nextlinks, 0),
674 &new_direct_jump_p)) != 0)
675 goto retry;
678 /* Do the same for an insn that explicitly references CC0. */
679 if (GET_CODE (insn) == INSN
680 && (prev = prev_nonnote_insn (insn)) != 0
681 && GET_CODE (prev) == INSN
682 && sets_cc0_p (PATTERN (prev))
683 && GET_CODE (PATTERN (insn)) == SET
684 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
686 if ((next = try_combine (insn, prev,
687 NULL_RTX, &new_direct_jump_p)) != 0)
688 goto retry;
690 for (nextlinks = LOG_LINKS (prev); nextlinks;
691 nextlinks = XEXP (nextlinks, 1))
692 if ((next = try_combine (insn, prev,
693 XEXP (nextlinks, 0),
694 &new_direct_jump_p)) != 0)
695 goto retry;
698 /* Finally, see if any of the insns that this insn links to
699 explicitly references CC0. If so, try this insn, that insn,
700 and its predecessor if it sets CC0. */
701 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
702 if (GET_CODE (XEXP (links, 0)) == INSN
703 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
704 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
705 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
706 && GET_CODE (prev) == INSN
707 && sets_cc0_p (PATTERN (prev))
708 && (next = try_combine (insn, XEXP (links, 0),
709 prev, &new_direct_jump_p)) != 0)
710 goto retry;
711 #endif
713 /* Try combining an insn with two different insns whose results it
714 uses. */
715 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
716 for (nextlinks = XEXP (links, 1); nextlinks;
717 nextlinks = XEXP (nextlinks, 1))
718 if ((next = try_combine (insn, XEXP (links, 0),
719 XEXP (nextlinks, 0),
720 &new_direct_jump_p)) != 0)
721 goto retry;
723 if (GET_CODE (insn) != NOTE)
724 record_dead_and_set_regs (insn);
726 retry:
731 clear_bb_flags ();
733 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
734 BASIC_BLOCK (i)->flags |= BB_DIRTY);
735 new_direct_jump_p |= purge_all_dead_edges (0);
736 delete_noop_moves (f);
738 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
739 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
740 | PROP_KILL_DEAD_CODE);
742 /* Clean up. */
743 sbitmap_free (refresh_blocks);
744 free (reg_nonzero_bits);
745 free (reg_sign_bit_copies);
746 free (reg_last_death);
747 free (reg_last_set);
748 free (reg_last_set_value);
749 free (reg_last_set_table_tick);
750 free (reg_last_set_label);
751 free (reg_last_set_invalid);
752 free (reg_last_set_mode);
753 free (reg_last_set_nonzero_bits);
754 free (reg_last_set_sign_bit_copies);
755 free (uid_cuid);
758 struct undo *undo, *next;
759 for (undo = undobuf.frees; undo; undo = next)
761 next = undo->next;
762 free (undo);
764 undobuf.frees = 0;
767 total_attempts += combine_attempts;
768 total_merges += combine_merges;
769 total_extras += combine_extras;
770 total_successes += combine_successes;
772 nonzero_sign_valid = 0;
773 gen_lowpart = gen_lowpart_general;
775 /* Make recognizer allow volatile MEMs again. */
776 init_recog ();
778 return new_direct_jump_p;
781 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
783 static void
784 init_reg_last_arrays (void)
786 unsigned int nregs = combine_max_regno;
788 memset (reg_last_death, 0, nregs * sizeof (rtx));
789 memset (reg_last_set, 0, nregs * sizeof (rtx));
790 memset (reg_last_set_value, 0, nregs * sizeof (rtx));
791 memset (reg_last_set_table_tick, 0, nregs * sizeof (int));
792 memset (reg_last_set_label, 0, nregs * sizeof (int));
793 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
794 memset (reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
795 memset (reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
796 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
799 /* Set up any promoted values for incoming argument registers. */
801 static void
802 setup_incoming_promotions (void)
804 unsigned int regno;
805 rtx reg;
806 enum machine_mode mode;
807 int unsignedp;
808 rtx first = get_insns ();
810 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
812 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
813 /* Check whether this register can hold an incoming pointer
814 argument. FUNCTION_ARG_REGNO_P tests outgoing register
815 numbers, so translate if necessary due to register windows. */
816 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
817 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
819 record_value_for_reg
820 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
821 : SIGN_EXTEND),
822 GET_MODE (reg),
823 gen_rtx_CLOBBER (mode, const0_rtx)));
828 /* Called via note_stores. If X is a pseudo that is narrower than
829 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
831 If we are setting only a portion of X and we can't figure out what
832 portion, assume all bits will be used since we don't know what will
833 be happening.
835 Similarly, set how many bits of X are known to be copies of the sign bit
836 at all locations in the function. This is the smallest number implied
837 by any set of X. */
839 static void
840 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
841 void *data ATTRIBUTE_UNUSED)
843 unsigned int num;
845 if (GET_CODE (x) == REG
846 && REGNO (x) >= FIRST_PSEUDO_REGISTER
847 /* If this register is undefined at the start of the file, we can't
848 say what its contents were. */
849 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
850 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
852 if (set == 0 || GET_CODE (set) == CLOBBER)
854 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
855 reg_sign_bit_copies[REGNO (x)] = 1;
856 return;
859 /* If this is a complex assignment, see if we can convert it into a
860 simple assignment. */
861 set = expand_field_assignment (set);
863 /* If this is a simple assignment, or we have a paradoxical SUBREG,
864 set what we know about X. */
866 if (SET_DEST (set) == x
867 || (GET_CODE (SET_DEST (set)) == SUBREG
868 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
869 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
870 && SUBREG_REG (SET_DEST (set)) == x))
872 rtx src = SET_SRC (set);
874 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
875 /* If X is narrower than a word and SRC is a non-negative
876 constant that would appear negative in the mode of X,
877 sign-extend it for use in reg_nonzero_bits because some
878 machines (maybe most) will actually do the sign-extension
879 and this is the conservative approach.
881 ??? For 2.5, try to tighten up the MD files in this regard
882 instead of this kludge. */
884 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
885 && GET_CODE (src) == CONST_INT
886 && INTVAL (src) > 0
887 && 0 != (INTVAL (src)
888 & ((HOST_WIDE_INT) 1
889 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
890 src = GEN_INT (INTVAL (src)
891 | ((HOST_WIDE_INT) (-1)
892 << GET_MODE_BITSIZE (GET_MODE (x))));
893 #endif
895 /* Don't call nonzero_bits if it cannot change anything. */
896 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
897 reg_nonzero_bits[REGNO (x)]
898 |= nonzero_bits (src, nonzero_bits_mode);
899 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
900 if (reg_sign_bit_copies[REGNO (x)] == 0
901 || reg_sign_bit_copies[REGNO (x)] > num)
902 reg_sign_bit_copies[REGNO (x)] = num;
904 else
906 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
907 reg_sign_bit_copies[REGNO (x)] = 1;
912 /* See if INSN can be combined into I3. PRED and SUCC are optionally
913 insns that were previously combined into I3 or that will be combined
914 into the merger of INSN and I3.
916 Return 0 if the combination is not allowed for any reason.
918 If the combination is allowed, *PDEST will be set to the single
919 destination of INSN and *PSRC to the single source, and this function
920 will return 1. */
922 static int
923 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
924 rtx *pdest, rtx *psrc)
926 int i;
927 rtx set = 0, src, dest;
928 rtx p;
929 #ifdef AUTO_INC_DEC
930 rtx link;
931 #endif
932 int all_adjacent = (succ ? (next_active_insn (insn) == succ
933 && next_active_insn (succ) == i3)
934 : next_active_insn (insn) == i3);
936 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
937 or a PARALLEL consisting of such a SET and CLOBBERs.
939 If INSN has CLOBBER parallel parts, ignore them for our processing.
940 By definition, these happen during the execution of the insn. When it
941 is merged with another insn, all bets are off. If they are, in fact,
942 needed and aren't also supplied in I3, they may be added by
943 recog_for_combine. Otherwise, it won't match.
945 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
946 note.
948 Get the source and destination of INSN. If more than one, can't
949 combine. */
951 if (GET_CODE (PATTERN (insn)) == SET)
952 set = PATTERN (insn);
953 else if (GET_CODE (PATTERN (insn)) == PARALLEL
954 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
956 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
958 rtx elt = XVECEXP (PATTERN (insn), 0, i);
959 rtx note;
961 switch (GET_CODE (elt))
963 /* This is important to combine floating point insns
964 for the SH4 port. */
965 case USE:
966 /* Combining an isolated USE doesn't make sense.
967 We depend here on combinable_i3pat to reject them. */
968 /* The code below this loop only verifies that the inputs of
969 the SET in INSN do not change. We call reg_set_between_p
970 to verify that the REG in the USE does not change between
971 I3 and INSN.
972 If the USE in INSN was for a pseudo register, the matching
973 insn pattern will likely match any register; combining this
974 with any other USE would only be safe if we knew that the
975 used registers have identical values, or if there was
976 something to tell them apart, e.g. different modes. For
977 now, we forgo such complicated tests and simply disallow
978 combining of USES of pseudo registers with any other USE. */
979 if (GET_CODE (XEXP (elt, 0)) == REG
980 && GET_CODE (PATTERN (i3)) == PARALLEL)
982 rtx i3pat = PATTERN (i3);
983 int i = XVECLEN (i3pat, 0) - 1;
984 unsigned int regno = REGNO (XEXP (elt, 0));
988 rtx i3elt = XVECEXP (i3pat, 0, i);
990 if (GET_CODE (i3elt) == USE
991 && GET_CODE (XEXP (i3elt, 0)) == REG
992 && (REGNO (XEXP (i3elt, 0)) == regno
993 ? reg_set_between_p (XEXP (elt, 0),
994 PREV_INSN (insn), i3)
995 : regno >= FIRST_PSEUDO_REGISTER))
996 return 0;
998 while (--i >= 0);
1000 break;
1002 /* We can ignore CLOBBERs. */
1003 case CLOBBER:
1004 break;
1006 case SET:
1007 /* Ignore SETs whose result isn't used but not those that
1008 have side-effects. */
1009 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1010 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1011 || INTVAL (XEXP (note, 0)) <= 0)
1012 && ! side_effects_p (elt))
1013 break;
1015 /* If we have already found a SET, this is a second one and
1016 so we cannot combine with this insn. */
1017 if (set)
1018 return 0;
1020 set = elt;
1021 break;
1023 default:
1024 /* Anything else means we can't combine. */
1025 return 0;
1029 if (set == 0
1030 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1031 so don't do anything with it. */
1032 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1033 return 0;
1035 else
1036 return 0;
1038 if (set == 0)
1039 return 0;
1041 set = expand_field_assignment (set);
1042 src = SET_SRC (set), dest = SET_DEST (set);
1044 /* Don't eliminate a store in the stack pointer. */
1045 if (dest == stack_pointer_rtx
1046 /* Don't combine with an insn that sets a register to itself if it has
1047 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1048 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1049 /* Can't merge an ASM_OPERANDS. */
1050 || GET_CODE (src) == ASM_OPERANDS
1051 /* Can't merge a function call. */
1052 || GET_CODE (src) == CALL
1053 /* Don't eliminate a function call argument. */
1054 || (GET_CODE (i3) == CALL_INSN
1055 && (find_reg_fusage (i3, USE, dest)
1056 || (GET_CODE (dest) == REG
1057 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1058 && global_regs[REGNO (dest)])))
1059 /* Don't substitute into an incremented register. */
1060 || FIND_REG_INC_NOTE (i3, dest)
1061 || (succ && FIND_REG_INC_NOTE (succ, dest))
1062 #if 0
1063 /* Don't combine the end of a libcall into anything. */
1064 /* ??? This gives worse code, and appears to be unnecessary, since no
1065 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1066 use REG_RETVAL notes for noconflict blocks, but other code here
1067 makes sure that those insns don't disappear. */
1068 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1069 #endif
1070 /* Make sure that DEST is not used after SUCC but before I3. */
1071 || (succ && ! all_adjacent
1072 && reg_used_between_p (dest, succ, i3))
1073 /* Make sure that the value that is to be substituted for the register
1074 does not use any registers whose values alter in between. However,
1075 If the insns are adjacent, a use can't cross a set even though we
1076 think it might (this can happen for a sequence of insns each setting
1077 the same destination; reg_last_set of that register might point to
1078 a NOTE). If INSN has a REG_EQUIV note, the register is always
1079 equivalent to the memory so the substitution is valid even if there
1080 are intervening stores. Also, don't move a volatile asm or
1081 UNSPEC_VOLATILE across any other insns. */
1082 || (! all_adjacent
1083 && (((GET_CODE (src) != MEM
1084 || ! find_reg_note (insn, REG_EQUIV, src))
1085 && use_crosses_set_p (src, INSN_CUID (insn)))
1086 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1087 || GET_CODE (src) == UNSPEC_VOLATILE))
1088 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1089 better register allocation by not doing the combine. */
1090 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1091 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1092 /* Don't combine across a CALL_INSN, because that would possibly
1093 change whether the life span of some REGs crosses calls or not,
1094 and it is a pain to update that information.
1095 Exception: if source is a constant, moving it later can't hurt.
1096 Accept that special case, because it helps -fforce-addr a lot. */
1097 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1098 return 0;
1100 /* DEST must either be a REG or CC0. */
1101 if (GET_CODE (dest) == REG)
1103 /* If register alignment is being enforced for multi-word items in all
1104 cases except for parameters, it is possible to have a register copy
1105 insn referencing a hard register that is not allowed to contain the
1106 mode being copied and which would not be valid as an operand of most
1107 insns. Eliminate this problem by not combining with such an insn.
1109 Also, on some machines we don't want to extend the life of a hard
1110 register. */
1112 if (GET_CODE (src) == REG
1113 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1114 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1115 /* Don't extend the life of a hard register unless it is
1116 user variable (if we have few registers) or it can't
1117 fit into the desired register (meaning something special
1118 is going on).
1119 Also avoid substituting a return register into I3, because
1120 reload can't handle a conflict with constraints of other
1121 inputs. */
1122 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1123 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1124 return 0;
1126 else if (GET_CODE (dest) != CC0)
1127 return 0;
1129 /* Don't substitute for a register intended as a clobberable operand.
1130 Similarly, don't substitute an expression containing a register that
1131 will be clobbered in I3. */
1132 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1133 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1134 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1135 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1136 src)
1137 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1138 return 0;
1140 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1141 or not), reject, unless nothing volatile comes between it and I3 */
1143 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1145 /* Make sure succ doesn't contain a volatile reference. */
1146 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1147 return 0;
1149 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1150 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1151 return 0;
1154 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1155 to be an explicit register variable, and was chosen for a reason. */
1157 if (GET_CODE (src) == ASM_OPERANDS
1158 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1159 return 0;
1161 /* If there are any volatile insns between INSN and I3, reject, because
1162 they might affect machine state. */
1164 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1165 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1166 return 0;
1168 /* If INSN or I2 contains an autoincrement or autodecrement,
1169 make sure that register is not used between there and I3,
1170 and not already used in I3 either.
1171 Also insist that I3 not be a jump; if it were one
1172 and the incremented register were spilled, we would lose. */
1174 #ifdef AUTO_INC_DEC
1175 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1176 if (REG_NOTE_KIND (link) == REG_INC
1177 && (GET_CODE (i3) == JUMP_INSN
1178 || reg_used_between_p (XEXP (link, 0), insn, i3)
1179 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1180 return 0;
1181 #endif
1183 #ifdef HAVE_cc0
1184 /* Don't combine an insn that follows a CC0-setting insn.
1185 An insn that uses CC0 must not be separated from the one that sets it.
1186 We do, however, allow I2 to follow a CC0-setting insn if that insn
1187 is passed as I1; in that case it will be deleted also.
1188 We also allow combining in this case if all the insns are adjacent
1189 because that would leave the two CC0 insns adjacent as well.
1190 It would be more logical to test whether CC0 occurs inside I1 or I2,
1191 but that would be much slower, and this ought to be equivalent. */
1193 p = prev_nonnote_insn (insn);
1194 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1195 && ! all_adjacent)
1196 return 0;
1197 #endif
1199 /* If we get here, we have passed all the tests and the combination is
1200 to be allowed. */
1202 *pdest = dest;
1203 *psrc = src;
1205 return 1;
1208 /* LOC is the location within I3 that contains its pattern or the component
1209 of a PARALLEL of the pattern. We validate that it is valid for combining.
1211 One problem is if I3 modifies its output, as opposed to replacing it
1212 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1213 so would produce an insn that is not equivalent to the original insns.
1215 Consider:
1217 (set (reg:DI 101) (reg:DI 100))
1218 (set (subreg:SI (reg:DI 101) 0) <foo>)
1220 This is NOT equivalent to:
1222 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1223 (set (reg:DI 101) (reg:DI 100))])
1225 Not only does this modify 100 (in which case it might still be valid
1226 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1228 We can also run into a problem if I2 sets a register that I1
1229 uses and I1 gets directly substituted into I3 (not via I2). In that
1230 case, we would be getting the wrong value of I2DEST into I3, so we
1231 must reject the combination. This case occurs when I2 and I1 both
1232 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1233 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1234 of a SET must prevent combination from occurring.
1236 Before doing the above check, we first try to expand a field assignment
1237 into a set of logical operations.
1239 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1240 we place a register that is both set and used within I3. If more than one
1241 such register is detected, we fail.
1243 Return 1 if the combination is valid, zero otherwise. */
1245 static int
1246 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1247 int i1_not_in_src, rtx *pi3dest_killed)
1249 rtx x = *loc;
1251 if (GET_CODE (x) == SET)
1253 rtx set = x ;
1254 rtx dest = SET_DEST (set);
1255 rtx src = SET_SRC (set);
1256 rtx inner_dest = dest;
1258 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1259 || GET_CODE (inner_dest) == SUBREG
1260 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1261 inner_dest = XEXP (inner_dest, 0);
1263 /* Check for the case where I3 modifies its output, as discussed
1264 above. We don't want to prevent pseudos from being combined
1265 into the address of a MEM, so only prevent the combination if
1266 i1 or i2 set the same MEM. */
1267 if ((inner_dest != dest &&
1268 (GET_CODE (inner_dest) != MEM
1269 || rtx_equal_p (i2dest, inner_dest)
1270 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1271 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1272 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1274 /* This is the same test done in can_combine_p except we can't test
1275 all_adjacent; we don't have to, since this instruction will stay
1276 in place, thus we are not considering increasing the lifetime of
1277 INNER_DEST.
1279 Also, if this insn sets a function argument, combining it with
1280 something that might need a spill could clobber a previous
1281 function argument; the all_adjacent test in can_combine_p also
1282 checks this; here, we do a more specific test for this case. */
1284 || (GET_CODE (inner_dest) == REG
1285 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1286 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1287 GET_MODE (inner_dest))))
1288 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1289 return 0;
1291 /* If DEST is used in I3, it is being killed in this insn,
1292 so record that for later.
1293 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1294 STACK_POINTER_REGNUM, since these are always considered to be
1295 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1296 if (pi3dest_killed && GET_CODE (dest) == REG
1297 && reg_referenced_p (dest, PATTERN (i3))
1298 && REGNO (dest) != FRAME_POINTER_REGNUM
1299 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1300 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1301 #endif
1302 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1303 && (REGNO (dest) != ARG_POINTER_REGNUM
1304 || ! fixed_regs [REGNO (dest)])
1305 #endif
1306 && REGNO (dest) != STACK_POINTER_REGNUM)
1308 if (*pi3dest_killed)
1309 return 0;
1311 *pi3dest_killed = dest;
1315 else if (GET_CODE (x) == PARALLEL)
1317 int i;
1319 for (i = 0; i < XVECLEN (x, 0); i++)
1320 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1321 i1_not_in_src, pi3dest_killed))
1322 return 0;
1325 return 1;
1328 /* Return 1 if X is an arithmetic expression that contains a multiplication
1329 and division. We don't count multiplications by powers of two here. */
1331 static int
1332 contains_muldiv (rtx x)
1334 switch (GET_CODE (x))
1336 case MOD: case DIV: case UMOD: case UDIV:
1337 return 1;
1339 case MULT:
1340 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1341 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1342 default:
1343 if (BINARY_P (x))
1344 return contains_muldiv (XEXP (x, 0))
1345 || contains_muldiv (XEXP (x, 1));
1347 if (UNARY_P (x))
1348 return contains_muldiv (XEXP (x, 0));
1350 return 0;
1354 /* Determine whether INSN can be used in a combination. Return nonzero if
1355 not. This is used in try_combine to detect early some cases where we
1356 can't perform combinations. */
1358 static int
1359 cant_combine_insn_p (rtx insn)
1361 rtx set;
1362 rtx src, dest;
1364 /* If this isn't really an insn, we can't do anything.
1365 This can occur when flow deletes an insn that it has merged into an
1366 auto-increment address. */
1367 if (! INSN_P (insn))
1368 return 1;
1370 /* Never combine loads and stores involving hard regs that are likely
1371 to be spilled. The register allocator can usually handle such
1372 reg-reg moves by tying. If we allow the combiner to make
1373 substitutions of likely-spilled regs, we may abort in reload.
1374 As an exception, we allow combinations involving fixed regs; these are
1375 not available to the register allocator so there's no risk involved. */
1377 set = single_set (insn);
1378 if (! set)
1379 return 0;
1380 src = SET_SRC (set);
1381 dest = SET_DEST (set);
1382 if (GET_CODE (src) == SUBREG)
1383 src = SUBREG_REG (src);
1384 if (GET_CODE (dest) == SUBREG)
1385 dest = SUBREG_REG (dest);
1386 if (REG_P (src) && REG_P (dest)
1387 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1388 && ! fixed_regs[REGNO (src)]
1389 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1390 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1391 && ! fixed_regs[REGNO (dest)]
1392 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1393 return 1;
1395 return 0;
1398 /* Adjust INSN after we made a change to its destination.
1400 Changing the destination can invalidate notes that say something about
1401 the results of the insn and a LOG_LINK pointing to the insn. */
1403 static void
1404 adjust_for_new_dest (rtx insn)
1406 rtx *loc;
1408 /* For notes, be conservative and simply remove them. */
1409 loc = &REG_NOTES (insn);
1410 while (*loc)
1412 enum reg_note kind = REG_NOTE_KIND (*loc);
1413 if (kind == REG_EQUAL || kind == REG_EQUIV)
1414 *loc = XEXP (*loc, 1);
1415 else
1416 loc = &XEXP (*loc, 1);
1419 /* The new insn will have a destination that was previously the destination
1420 of an insn just above it. Call distribute_links to make a LOG_LINK from
1421 the next use of that destination. */
1422 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1425 /* Try to combine the insns I1 and I2 into I3.
1426 Here I1 and I2 appear earlier than I3.
1427 I1 can be zero; then we combine just I2 into I3.
1429 If we are combining three insns and the resulting insn is not recognized,
1430 try splitting it into two insns. If that happens, I2 and I3 are retained
1431 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1432 are pseudo-deleted.
1434 Return 0 if the combination does not work. Then nothing is changed.
1435 If we did the combination, return the insn at which combine should
1436 resume scanning.
1438 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1439 new direct jump instruction. */
1441 static rtx
1442 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1444 /* New patterns for I3 and I2, respectively. */
1445 rtx newpat, newi2pat = 0;
1446 int substed_i2 = 0, substed_i1 = 0;
1447 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1448 int added_sets_1, added_sets_2;
1449 /* Total number of SETs to put into I3. */
1450 int total_sets;
1451 /* Nonzero if I2's body now appears in I3. */
1452 int i2_is_used;
1453 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1454 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1455 /* Contains I3 if the destination of I3 is used in its source, which means
1456 that the old life of I3 is being killed. If that usage is placed into
1457 I2 and not in I3, a REG_DEAD note must be made. */
1458 rtx i3dest_killed = 0;
1459 /* SET_DEST and SET_SRC of I2 and I1. */
1460 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1461 /* PATTERN (I2), or a copy of it in certain cases. */
1462 rtx i2pat;
1463 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1464 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1465 int i1_feeds_i3 = 0;
1466 /* Notes that must be added to REG_NOTES in I3 and I2. */
1467 rtx new_i3_notes, new_i2_notes;
1468 /* Notes that we substituted I3 into I2 instead of the normal case. */
1469 int i3_subst_into_i2 = 0;
1470 /* Notes that I1, I2 or I3 is a MULT operation. */
1471 int have_mult = 0;
1473 int maxreg;
1474 rtx temp;
1475 rtx link;
1476 int i;
1478 /* Exit early if one of the insns involved can't be used for
1479 combinations. */
1480 if (cant_combine_insn_p (i3)
1481 || cant_combine_insn_p (i2)
1482 || (i1 && cant_combine_insn_p (i1))
1483 /* We also can't do anything if I3 has a
1484 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1485 libcall. */
1486 #if 0
1487 /* ??? This gives worse code, and appears to be unnecessary, since no
1488 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1489 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1490 #endif
1492 return 0;
1494 combine_attempts++;
1495 undobuf.other_insn = 0;
1497 /* Reset the hard register usage information. */
1498 CLEAR_HARD_REG_SET (newpat_used_regs);
1500 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1501 code below, set I1 to be the earlier of the two insns. */
1502 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1503 temp = i1, i1 = i2, i2 = temp;
1505 added_links_insn = 0;
1507 /* First check for one important special-case that the code below will
1508 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1509 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1510 we may be able to replace that destination with the destination of I3.
1511 This occurs in the common code where we compute both a quotient and
1512 remainder into a structure, in which case we want to do the computation
1513 directly into the structure to avoid register-register copies.
1515 Note that this case handles both multiple sets in I2 and also
1516 cases where I2 has a number of CLOBBER or PARALLELs.
1518 We make very conservative checks below and only try to handle the
1519 most common cases of this. For example, we only handle the case
1520 where I2 and I3 are adjacent to avoid making difficult register
1521 usage tests. */
1523 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1524 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1525 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1526 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1527 && GET_CODE (PATTERN (i2)) == PARALLEL
1528 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1529 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1530 below would need to check what is inside (and reg_overlap_mentioned_p
1531 doesn't support those codes anyway). Don't allow those destinations;
1532 the resulting insn isn't likely to be recognized anyway. */
1533 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1534 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1535 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1536 SET_DEST (PATTERN (i3)))
1537 && next_real_insn (i2) == i3)
1539 rtx p2 = PATTERN (i2);
1541 /* Make sure that the destination of I3,
1542 which we are going to substitute into one output of I2,
1543 is not used within another output of I2. We must avoid making this:
1544 (parallel [(set (mem (reg 69)) ...)
1545 (set (reg 69) ...)])
1546 which is not well-defined as to order of actions.
1547 (Besides, reload can't handle output reloads for this.)
1549 The problem can also happen if the dest of I3 is a memory ref,
1550 if another dest in I2 is an indirect memory ref. */
1551 for (i = 0; i < XVECLEN (p2, 0); i++)
1552 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1553 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1554 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1555 SET_DEST (XVECEXP (p2, 0, i))))
1556 break;
1558 if (i == XVECLEN (p2, 0))
1559 for (i = 0; i < XVECLEN (p2, 0); i++)
1560 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1561 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1562 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1564 combine_merges++;
1566 subst_insn = i3;
1567 subst_low_cuid = INSN_CUID (i2);
1569 added_sets_2 = added_sets_1 = 0;
1570 i2dest = SET_SRC (PATTERN (i3));
1572 /* Replace the dest in I2 with our dest and make the resulting
1573 insn the new pattern for I3. Then skip to where we
1574 validate the pattern. Everything was set up above. */
1575 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1576 SET_DEST (PATTERN (i3)));
1578 newpat = p2;
1579 i3_subst_into_i2 = 1;
1580 goto validate_replacement;
1584 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1585 one of those words to another constant, merge them by making a new
1586 constant. */
1587 if (i1 == 0
1588 && (temp = single_set (i2)) != 0
1589 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1590 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1591 && GET_CODE (SET_DEST (temp)) == REG
1592 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1593 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1594 && GET_CODE (PATTERN (i3)) == SET
1595 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1596 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1597 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1598 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1599 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1601 HOST_WIDE_INT lo, hi;
1603 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1604 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1605 else
1607 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1608 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1611 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1613 /* We don't handle the case of the target word being wider
1614 than a host wide int. */
1615 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1616 abort ();
1618 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1619 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1620 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1622 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1623 hi = INTVAL (SET_SRC (PATTERN (i3)));
1624 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1626 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1627 >> (HOST_BITS_PER_WIDE_INT - 1));
1629 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1630 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1631 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1632 (INTVAL (SET_SRC (PATTERN (i3)))));
1633 if (hi == sign)
1634 hi = lo < 0 ? -1 : 0;
1636 else
1637 /* We don't handle the case of the higher word not fitting
1638 entirely in either hi or lo. */
1639 abort ();
1641 combine_merges++;
1642 subst_insn = i3;
1643 subst_low_cuid = INSN_CUID (i2);
1644 added_sets_2 = added_sets_1 = 0;
1645 i2dest = SET_DEST (temp);
1647 SUBST (SET_SRC (temp),
1648 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1650 newpat = PATTERN (i2);
1651 goto validate_replacement;
1654 #ifndef HAVE_cc0
1655 /* If we have no I1 and I2 looks like:
1656 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1657 (set Y OP)])
1658 make up a dummy I1 that is
1659 (set Y OP)
1660 and change I2 to be
1661 (set (reg:CC X) (compare:CC Y (const_int 0)))
1663 (We can ignore any trailing CLOBBERs.)
1665 This undoes a previous combination and allows us to match a branch-and-
1666 decrement insn. */
1668 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1669 && XVECLEN (PATTERN (i2), 0) >= 2
1670 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1671 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1672 == MODE_CC)
1673 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1674 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1675 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1676 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1677 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1678 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1680 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1681 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1682 break;
1684 if (i == 1)
1686 /* We make I1 with the same INSN_UID as I2. This gives it
1687 the same INSN_CUID for value tracking. Our fake I1 will
1688 never appear in the insn stream so giving it the same INSN_UID
1689 as I2 will not cause a problem. */
1691 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1692 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1693 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1694 NULL_RTX);
1696 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1697 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1698 SET_DEST (PATTERN (i1)));
1701 #endif
1703 /* Verify that I2 and I1 are valid for combining. */
1704 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1705 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1707 undo_all ();
1708 return 0;
1711 /* Record whether I2DEST is used in I2SRC and similarly for the other
1712 cases. Knowing this will help in register status updating below. */
1713 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1714 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1715 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1717 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1718 in I2SRC. */
1719 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1721 /* Ensure that I3's pattern can be the destination of combines. */
1722 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1723 i1 && i2dest_in_i1src && i1_feeds_i3,
1724 &i3dest_killed))
1726 undo_all ();
1727 return 0;
1730 /* See if any of the insns is a MULT operation. Unless one is, we will
1731 reject a combination that is, since it must be slower. Be conservative
1732 here. */
1733 if (GET_CODE (i2src) == MULT
1734 || (i1 != 0 && GET_CODE (i1src) == MULT)
1735 || (GET_CODE (PATTERN (i3)) == SET
1736 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1737 have_mult = 1;
1739 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1740 We used to do this EXCEPT in one case: I3 has a post-inc in an
1741 output operand. However, that exception can give rise to insns like
1742 mov r3,(r3)+
1743 which is a famous insn on the PDP-11 where the value of r3 used as the
1744 source was model-dependent. Avoid this sort of thing. */
1746 #if 0
1747 if (!(GET_CODE (PATTERN (i3)) == SET
1748 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1749 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1750 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1751 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1752 /* It's not the exception. */
1753 #endif
1754 #ifdef AUTO_INC_DEC
1755 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1756 if (REG_NOTE_KIND (link) == REG_INC
1757 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1758 || (i1 != 0
1759 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1761 undo_all ();
1762 return 0;
1764 #endif
1766 /* See if the SETs in I1 or I2 need to be kept around in the merged
1767 instruction: whenever the value set there is still needed past I3.
1768 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1770 For the SET in I1, we have two cases: If I1 and I2 independently
1771 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1772 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1773 in I1 needs to be kept around unless I1DEST dies or is set in either
1774 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1775 I1DEST. If so, we know I1 feeds into I2. */
1777 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1779 added_sets_1
1780 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1781 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1783 /* If the set in I2 needs to be kept around, we must make a copy of
1784 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1785 PATTERN (I2), we are only substituting for the original I1DEST, not into
1786 an already-substituted copy. This also prevents making self-referential
1787 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1788 I2DEST. */
1790 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1791 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1792 : PATTERN (i2));
1794 if (added_sets_2)
1795 i2pat = copy_rtx (i2pat);
1797 combine_merges++;
1799 /* Substitute in the latest insn for the regs set by the earlier ones. */
1801 maxreg = max_reg_num ();
1803 subst_insn = i3;
1805 /* It is possible that the source of I2 or I1 may be performing an
1806 unneeded operation, such as a ZERO_EXTEND of something that is known
1807 to have the high part zero. Handle that case by letting subst look at
1808 the innermost one of them.
1810 Another way to do this would be to have a function that tries to
1811 simplify a single insn instead of merging two or more insns. We don't
1812 do this because of the potential of infinite loops and because
1813 of the potential extra memory required. However, doing it the way
1814 we are is a bit of a kludge and doesn't catch all cases.
1816 But only do this if -fexpensive-optimizations since it slows things down
1817 and doesn't usually win. */
1819 if (flag_expensive_optimizations)
1821 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1822 if (i1)
1824 subst_low_cuid = INSN_CUID (i1);
1825 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1827 else
1829 subst_low_cuid = INSN_CUID (i2);
1830 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1834 #ifndef HAVE_cc0
1835 /* Many machines that don't use CC0 have insns that can both perform an
1836 arithmetic operation and set the condition code. These operations will
1837 be represented as a PARALLEL with the first element of the vector
1838 being a COMPARE of an arithmetic operation with the constant zero.
1839 The second element of the vector will set some pseudo to the result
1840 of the same arithmetic operation. If we simplify the COMPARE, we won't
1841 match such a pattern and so will generate an extra insn. Here we test
1842 for this case, where both the comparison and the operation result are
1843 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1844 I2SRC. Later we will make the PARALLEL that contains I2. */
1846 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1847 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1848 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1849 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1851 #ifdef SELECT_CC_MODE
1852 rtx *cc_use;
1853 enum machine_mode compare_mode;
1854 #endif
1856 newpat = PATTERN (i3);
1857 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1859 i2_is_used = 1;
1861 #ifdef SELECT_CC_MODE
1862 /* See if a COMPARE with the operand we substituted in should be done
1863 with the mode that is currently being used. If not, do the same
1864 processing we do in `subst' for a SET; namely, if the destination
1865 is used only once, try to replace it with a register of the proper
1866 mode and also replace the COMPARE. */
1867 if (undobuf.other_insn == 0
1868 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1869 &undobuf.other_insn))
1870 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1871 i2src, const0_rtx))
1872 != GET_MODE (SET_DEST (newpat))))
1874 unsigned int regno = REGNO (SET_DEST (newpat));
1875 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1877 if (regno < FIRST_PSEUDO_REGISTER
1878 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1879 && ! REG_USERVAR_P (SET_DEST (newpat))))
1881 if (regno >= FIRST_PSEUDO_REGISTER)
1882 SUBST (regno_reg_rtx[regno], new_dest);
1884 SUBST (SET_DEST (newpat), new_dest);
1885 SUBST (XEXP (*cc_use, 0), new_dest);
1886 SUBST (SET_SRC (newpat),
1887 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1889 else
1890 undobuf.other_insn = 0;
1892 #endif
1894 else
1895 #endif
1897 n_occurrences = 0; /* `subst' counts here */
1899 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1900 need to make a unique copy of I2SRC each time we substitute it
1901 to avoid self-referential rtl. */
1903 subst_low_cuid = INSN_CUID (i2);
1904 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1905 ! i1_feeds_i3 && i1dest_in_i1src);
1906 substed_i2 = 1;
1908 /* Record whether i2's body now appears within i3's body. */
1909 i2_is_used = n_occurrences;
1912 /* If we already got a failure, don't try to do more. Otherwise,
1913 try to substitute in I1 if we have it. */
1915 if (i1 && GET_CODE (newpat) != CLOBBER)
1917 /* Before we can do this substitution, we must redo the test done
1918 above (see detailed comments there) that ensures that I1DEST
1919 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1921 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1922 0, (rtx*) 0))
1924 undo_all ();
1925 return 0;
1928 n_occurrences = 0;
1929 subst_low_cuid = INSN_CUID (i1);
1930 newpat = subst (newpat, i1dest, i1src, 0, 0);
1931 substed_i1 = 1;
1934 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1935 to count all the ways that I2SRC and I1SRC can be used. */
1936 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1937 && i2_is_used + added_sets_2 > 1)
1938 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1939 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1940 > 1))
1941 /* Fail if we tried to make a new register (we used to abort, but there's
1942 really no reason to). */
1943 || max_reg_num () != maxreg
1944 /* Fail if we couldn't do something and have a CLOBBER. */
1945 || GET_CODE (newpat) == CLOBBER
1946 /* Fail if this new pattern is a MULT and we didn't have one before
1947 at the outer level. */
1948 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1949 && ! have_mult))
1951 undo_all ();
1952 return 0;
1955 /* If the actions of the earlier insns must be kept
1956 in addition to substituting them into the latest one,
1957 we must make a new PARALLEL for the latest insn
1958 to hold additional the SETs. */
1960 if (added_sets_1 || added_sets_2)
1962 combine_extras++;
1964 if (GET_CODE (newpat) == PARALLEL)
1966 rtvec old = XVEC (newpat, 0);
1967 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1968 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1969 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1970 sizeof (old->elem[0]) * old->num_elem);
1972 else
1974 rtx old = newpat;
1975 total_sets = 1 + added_sets_1 + added_sets_2;
1976 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1977 XVECEXP (newpat, 0, 0) = old;
1980 if (added_sets_1)
1981 XVECEXP (newpat, 0, --total_sets)
1982 = (GET_CODE (PATTERN (i1)) == PARALLEL
1983 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1985 if (added_sets_2)
1987 /* If there is no I1, use I2's body as is. We used to also not do
1988 the subst call below if I2 was substituted into I3,
1989 but that could lose a simplification. */
1990 if (i1 == 0)
1991 XVECEXP (newpat, 0, --total_sets) = i2pat;
1992 else
1993 /* See comment where i2pat is assigned. */
1994 XVECEXP (newpat, 0, --total_sets)
1995 = subst (i2pat, i1dest, i1src, 0, 0);
1999 /* We come here when we are replacing a destination in I2 with the
2000 destination of I3. */
2001 validate_replacement:
2003 /* Note which hard regs this insn has as inputs. */
2004 mark_used_regs_combine (newpat);
2006 /* Is the result of combination a valid instruction? */
2007 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2009 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2010 the second SET's destination is a register that is unused and isn't
2011 marked as an instruction that might trap in an EH region. In that case,
2012 we just need the first SET. This can occur when simplifying a divmod
2013 insn. We *must* test for this case here because the code below that
2014 splits two independent SETs doesn't handle this case correctly when it
2015 updates the register status.
2017 It's pointless doing this if we originally had two sets, one from
2018 i3, and one from i2. Combining then splitting the parallel results
2019 in the original i2 again plus an invalid insn (which we delete).
2020 The net effect is only to move instructions around, which makes
2021 debug info less accurate.
2023 Also check the case where the first SET's destination is unused.
2024 That would not cause incorrect code, but does cause an unneeded
2025 insn to remain. */
2027 if (insn_code_number < 0
2028 && !(added_sets_2 && i1 == 0)
2029 && GET_CODE (newpat) == PARALLEL
2030 && XVECLEN (newpat, 0) == 2
2031 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2032 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2033 && asm_noperands (newpat) < 0)
2035 rtx set0 = XVECEXP (newpat, 0, 0);
2036 rtx set1 = XVECEXP (newpat, 0, 1);
2037 rtx note;
2039 if (((GET_CODE (SET_DEST (set1)) == REG
2040 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2041 || (GET_CODE (SET_DEST (set1)) == SUBREG
2042 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2043 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2044 || INTVAL (XEXP (note, 0)) <= 0)
2045 && ! side_effects_p (SET_SRC (set1)))
2047 newpat = set0;
2048 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2051 else if (((GET_CODE (SET_DEST (set0)) == REG
2052 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2053 || (GET_CODE (SET_DEST (set0)) == SUBREG
2054 && find_reg_note (i3, REG_UNUSED,
2055 SUBREG_REG (SET_DEST (set0)))))
2056 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2057 || INTVAL (XEXP (note, 0)) <= 0)
2058 && ! side_effects_p (SET_SRC (set0)))
2060 newpat = set1;
2061 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2063 if (insn_code_number >= 0)
2065 /* If we will be able to accept this, we have made a
2066 change to the destination of I3. This requires us to
2067 do a few adjustments. */
2069 PATTERN (i3) = newpat;
2070 adjust_for_new_dest (i3);
2075 /* If we were combining three insns and the result is a simple SET
2076 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2077 insns. There are two ways to do this. It can be split using a
2078 machine-specific method (like when you have an addition of a large
2079 constant) or by combine in the function find_split_point. */
2081 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2082 && asm_noperands (newpat) < 0)
2084 rtx m_split, *split;
2085 rtx ni2dest = i2dest;
2087 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2088 use I2DEST as a scratch register will help. In the latter case,
2089 convert I2DEST to the mode of the source of NEWPAT if we can. */
2091 m_split = split_insns (newpat, i3);
2093 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2094 inputs of NEWPAT. */
2096 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2097 possible to try that as a scratch reg. This would require adding
2098 more code to make it work though. */
2100 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2102 /* If I2DEST is a hard register or the only use of a pseudo,
2103 we can change its mode. */
2104 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2105 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2106 && GET_CODE (i2dest) == REG
2107 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2108 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2109 && ! REG_USERVAR_P (i2dest))))
2110 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2111 REGNO (i2dest));
2113 m_split = split_insns (gen_rtx_PARALLEL
2114 (VOIDmode,
2115 gen_rtvec (2, newpat,
2116 gen_rtx_CLOBBER (VOIDmode,
2117 ni2dest))),
2118 i3);
2119 /* If the split with the mode-changed register didn't work, try
2120 the original register. */
2121 if (! m_split && ni2dest != i2dest)
2123 ni2dest = i2dest;
2124 m_split = split_insns (gen_rtx_PARALLEL
2125 (VOIDmode,
2126 gen_rtvec (2, newpat,
2127 gen_rtx_CLOBBER (VOIDmode,
2128 i2dest))),
2129 i3);
2133 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2135 m_split = PATTERN (m_split);
2136 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2137 if (insn_code_number >= 0)
2138 newpat = m_split;
2140 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2141 && (next_real_insn (i2) == i3
2142 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2144 rtx i2set, i3set;
2145 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2146 newi2pat = PATTERN (m_split);
2148 i3set = single_set (NEXT_INSN (m_split));
2149 i2set = single_set (m_split);
2151 /* In case we changed the mode of I2DEST, replace it in the
2152 pseudo-register table here. We can't do it above in case this
2153 code doesn't get executed and we do a split the other way. */
2155 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2156 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2158 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2160 /* If I2 or I3 has multiple SETs, we won't know how to track
2161 register status, so don't use these insns. If I2's destination
2162 is used between I2 and I3, we also can't use these insns. */
2164 if (i2_code_number >= 0 && i2set && i3set
2165 && (next_real_insn (i2) == i3
2166 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2167 insn_code_number = recog_for_combine (&newi3pat, i3,
2168 &new_i3_notes);
2169 if (insn_code_number >= 0)
2170 newpat = newi3pat;
2172 /* It is possible that both insns now set the destination of I3.
2173 If so, we must show an extra use of it. */
2175 if (insn_code_number >= 0)
2177 rtx new_i3_dest = SET_DEST (i3set);
2178 rtx new_i2_dest = SET_DEST (i2set);
2180 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2181 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2182 || GET_CODE (new_i3_dest) == SUBREG)
2183 new_i3_dest = XEXP (new_i3_dest, 0);
2185 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2186 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2187 || GET_CODE (new_i2_dest) == SUBREG)
2188 new_i2_dest = XEXP (new_i2_dest, 0);
2190 if (GET_CODE (new_i3_dest) == REG
2191 && GET_CODE (new_i2_dest) == REG
2192 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2193 REG_N_SETS (REGNO (new_i2_dest))++;
2197 /* If we can split it and use I2DEST, go ahead and see if that
2198 helps things be recognized. Verify that none of the registers
2199 are set between I2 and I3. */
2200 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2201 #ifdef HAVE_cc0
2202 && GET_CODE (i2dest) == REG
2203 #endif
2204 /* We need I2DEST in the proper mode. If it is a hard register
2205 or the only use of a pseudo, we can change its mode. */
2206 && (GET_MODE (*split) == GET_MODE (i2dest)
2207 || GET_MODE (*split) == VOIDmode
2208 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2209 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2210 && ! REG_USERVAR_P (i2dest)))
2211 && (next_real_insn (i2) == i3
2212 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2213 /* We can't overwrite I2DEST if its value is still used by
2214 NEWPAT. */
2215 && ! reg_referenced_p (i2dest, newpat))
2217 rtx newdest = i2dest;
2218 enum rtx_code split_code = GET_CODE (*split);
2219 enum machine_mode split_mode = GET_MODE (*split);
2221 /* Get NEWDEST as a register in the proper mode. We have already
2222 validated that we can do this. */
2223 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2225 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2227 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2228 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2231 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2232 an ASHIFT. This can occur if it was inside a PLUS and hence
2233 appeared to be a memory address. This is a kludge. */
2234 if (split_code == MULT
2235 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2236 && INTVAL (XEXP (*split, 1)) > 0
2237 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2239 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2240 XEXP (*split, 0), GEN_INT (i)));
2241 /* Update split_code because we may not have a multiply
2242 anymore. */
2243 split_code = GET_CODE (*split);
2246 #ifdef INSN_SCHEDULING
2247 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2248 be written as a ZERO_EXTEND. */
2249 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2251 #ifdef LOAD_EXTEND_OP
2252 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2253 what it really is. */
2254 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2255 == SIGN_EXTEND)
2256 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2257 SUBREG_REG (*split)));
2258 else
2259 #endif
2260 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2261 SUBREG_REG (*split)));
2263 #endif
2265 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2266 SUBST (*split, newdest);
2267 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2269 /* If the split point was a MULT and we didn't have one before,
2270 don't use one now. */
2271 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2272 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2276 /* Check for a case where we loaded from memory in a narrow mode and
2277 then sign extended it, but we need both registers. In that case,
2278 we have a PARALLEL with both loads from the same memory location.
2279 We can split this into a load from memory followed by a register-register
2280 copy. This saves at least one insn, more if register allocation can
2281 eliminate the copy.
2283 We cannot do this if the destination of the first assignment is a
2284 condition code register or cc0. We eliminate this case by making sure
2285 the SET_DEST and SET_SRC have the same mode.
2287 We cannot do this if the destination of the second assignment is
2288 a register that we have already assumed is zero-extended. Similarly
2289 for a SUBREG of such a register. */
2291 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2292 && GET_CODE (newpat) == PARALLEL
2293 && XVECLEN (newpat, 0) == 2
2294 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2295 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2296 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2297 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2298 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2299 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2300 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2301 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2302 INSN_CUID (i2))
2303 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2304 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2305 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2306 (GET_CODE (temp) == REG
2307 && reg_nonzero_bits[REGNO (temp)] != 0
2308 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2309 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2310 && (reg_nonzero_bits[REGNO (temp)]
2311 != GET_MODE_MASK (word_mode))))
2312 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2313 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2314 (GET_CODE (temp) == REG
2315 && reg_nonzero_bits[REGNO (temp)] != 0
2316 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2317 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2318 && (reg_nonzero_bits[REGNO (temp)]
2319 != GET_MODE_MASK (word_mode)))))
2320 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2321 SET_SRC (XVECEXP (newpat, 0, 1)))
2322 && ! find_reg_note (i3, REG_UNUSED,
2323 SET_DEST (XVECEXP (newpat, 0, 0))))
2325 rtx ni2dest;
2327 newi2pat = XVECEXP (newpat, 0, 0);
2328 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2329 newpat = XVECEXP (newpat, 0, 1);
2330 SUBST (SET_SRC (newpat),
2331 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2332 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2334 if (i2_code_number >= 0)
2335 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2337 if (insn_code_number >= 0)
2339 rtx insn;
2340 rtx link;
2342 /* If we will be able to accept this, we have made a change to the
2343 destination of I3. This requires us to do a few adjustments. */
2344 PATTERN (i3) = newpat;
2345 adjust_for_new_dest (i3);
2347 /* I3 now uses what used to be its destination and which is
2348 now I2's destination. That means we need a LOG_LINK from
2349 I3 to I2. But we used to have one, so we still will.
2351 However, some later insn might be using I2's dest and have
2352 a LOG_LINK pointing at I3. We must remove this link.
2353 The simplest way to remove the link is to point it at I1,
2354 which we know will be a NOTE. */
2356 for (insn = NEXT_INSN (i3);
2357 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2358 || insn != BB_HEAD (this_basic_block->next_bb));
2359 insn = NEXT_INSN (insn))
2361 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2363 for (link = LOG_LINKS (insn); link;
2364 link = XEXP (link, 1))
2365 if (XEXP (link, 0) == i3)
2366 XEXP (link, 0) = i1;
2368 break;
2374 /* Similarly, check for a case where we have a PARALLEL of two independent
2375 SETs but we started with three insns. In this case, we can do the sets
2376 as two separate insns. This case occurs when some SET allows two
2377 other insns to combine, but the destination of that SET is still live. */
2379 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2380 && GET_CODE (newpat) == PARALLEL
2381 && XVECLEN (newpat, 0) == 2
2382 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2383 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2384 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2385 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2387 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2388 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2389 INSN_CUID (i2))
2390 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2391 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2392 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2393 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2394 XVECEXP (newpat, 0, 0))
2395 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2396 XVECEXP (newpat, 0, 1))
2397 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2398 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2400 /* Normally, it doesn't matter which of the two is done first,
2401 but it does if one references cc0. In that case, it has to
2402 be first. */
2403 #ifdef HAVE_cc0
2404 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2406 newi2pat = XVECEXP (newpat, 0, 0);
2407 newpat = XVECEXP (newpat, 0, 1);
2409 else
2410 #endif
2412 newi2pat = XVECEXP (newpat, 0, 1);
2413 newpat = XVECEXP (newpat, 0, 0);
2416 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2418 if (i2_code_number >= 0)
2419 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2422 /* If it still isn't recognized, fail and change things back the way they
2423 were. */
2424 if ((insn_code_number < 0
2425 /* Is the result a reasonable ASM_OPERANDS? */
2426 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2428 undo_all ();
2429 return 0;
2432 /* If we had to change another insn, make sure it is valid also. */
2433 if (undobuf.other_insn)
2435 rtx other_pat = PATTERN (undobuf.other_insn);
2436 rtx new_other_notes;
2437 rtx note, next;
2439 CLEAR_HARD_REG_SET (newpat_used_regs);
2441 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2442 &new_other_notes);
2444 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2446 undo_all ();
2447 return 0;
2450 PATTERN (undobuf.other_insn) = other_pat;
2452 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2453 are still valid. Then add any non-duplicate notes added by
2454 recog_for_combine. */
2455 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2457 next = XEXP (note, 1);
2459 if (REG_NOTE_KIND (note) == REG_UNUSED
2460 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2462 if (GET_CODE (XEXP (note, 0)) == REG)
2463 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2465 remove_note (undobuf.other_insn, note);
2469 for (note = new_other_notes; note; note = XEXP (note, 1))
2470 if (GET_CODE (XEXP (note, 0)) == REG)
2471 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2473 distribute_notes (new_other_notes, undobuf.other_insn,
2474 undobuf.other_insn, NULL_RTX);
2476 #ifdef HAVE_cc0
2477 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2478 they are adjacent to each other or not. */
2480 rtx p = prev_nonnote_insn (i3);
2481 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2482 && sets_cc0_p (newi2pat))
2484 undo_all ();
2485 return 0;
2488 #endif
2490 /* We now know that we can do this combination. Merge the insns and
2491 update the status of registers and LOG_LINKS. */
2494 rtx i3notes, i2notes, i1notes = 0;
2495 rtx i3links, i2links, i1links = 0;
2496 rtx midnotes = 0;
2497 unsigned int regno;
2499 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2500 clear them. */
2501 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2502 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2503 if (i1)
2504 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2506 /* Ensure that we do not have something that should not be shared but
2507 occurs multiple times in the new insns. Check this by first
2508 resetting all the `used' flags and then copying anything is shared. */
2510 reset_used_flags (i3notes);
2511 reset_used_flags (i2notes);
2512 reset_used_flags (i1notes);
2513 reset_used_flags (newpat);
2514 reset_used_flags (newi2pat);
2515 if (undobuf.other_insn)
2516 reset_used_flags (PATTERN (undobuf.other_insn));
2518 i3notes = copy_rtx_if_shared (i3notes);
2519 i2notes = copy_rtx_if_shared (i2notes);
2520 i1notes = copy_rtx_if_shared (i1notes);
2521 newpat = copy_rtx_if_shared (newpat);
2522 newi2pat = copy_rtx_if_shared (newi2pat);
2523 if (undobuf.other_insn)
2524 reset_used_flags (PATTERN (undobuf.other_insn));
2526 INSN_CODE (i3) = insn_code_number;
2527 PATTERN (i3) = newpat;
2529 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2531 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2533 reset_used_flags (call_usage);
2534 call_usage = copy_rtx (call_usage);
2536 if (substed_i2)
2537 replace_rtx (call_usage, i2dest, i2src);
2539 if (substed_i1)
2540 replace_rtx (call_usage, i1dest, i1src);
2542 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2545 if (undobuf.other_insn)
2546 INSN_CODE (undobuf.other_insn) = other_code_number;
2548 /* We had one special case above where I2 had more than one set and
2549 we replaced a destination of one of those sets with the destination
2550 of I3. In that case, we have to update LOG_LINKS of insns later
2551 in this basic block. Note that this (expensive) case is rare.
2553 Also, in this case, we must pretend that all REG_NOTEs for I2
2554 actually came from I3, so that REG_UNUSED notes from I2 will be
2555 properly handled. */
2557 if (i3_subst_into_i2)
2559 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2560 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2561 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2562 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2563 && ! find_reg_note (i2, REG_UNUSED,
2564 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2565 for (temp = NEXT_INSN (i2);
2566 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2567 || BB_HEAD (this_basic_block) != temp);
2568 temp = NEXT_INSN (temp))
2569 if (temp != i3 && INSN_P (temp))
2570 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2571 if (XEXP (link, 0) == i2)
2572 XEXP (link, 0) = i3;
2574 if (i3notes)
2576 rtx link = i3notes;
2577 while (XEXP (link, 1))
2578 link = XEXP (link, 1);
2579 XEXP (link, 1) = i2notes;
2581 else
2582 i3notes = i2notes;
2583 i2notes = 0;
2586 LOG_LINKS (i3) = 0;
2587 REG_NOTES (i3) = 0;
2588 LOG_LINKS (i2) = 0;
2589 REG_NOTES (i2) = 0;
2591 if (newi2pat)
2593 INSN_CODE (i2) = i2_code_number;
2594 PATTERN (i2) = newi2pat;
2596 else
2598 PUT_CODE (i2, NOTE);
2599 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2600 NOTE_SOURCE_FILE (i2) = 0;
2603 if (i1)
2605 LOG_LINKS (i1) = 0;
2606 REG_NOTES (i1) = 0;
2607 PUT_CODE (i1, NOTE);
2608 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2609 NOTE_SOURCE_FILE (i1) = 0;
2612 /* Get death notes for everything that is now used in either I3 or
2613 I2 and used to die in a previous insn. If we built two new
2614 patterns, move from I1 to I2 then I2 to I3 so that we get the
2615 proper movement on registers that I2 modifies. */
2617 if (newi2pat)
2619 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2620 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2622 else
2623 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2624 i3, &midnotes);
2626 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2627 if (i3notes)
2628 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2629 if (i2notes)
2630 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2631 if (i1notes)
2632 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2633 if (midnotes)
2634 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2636 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2637 know these are REG_UNUSED and want them to go to the desired insn,
2638 so we always pass it as i3. We have not counted the notes in
2639 reg_n_deaths yet, so we need to do so now. */
2641 if (newi2pat && new_i2_notes)
2643 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2644 if (GET_CODE (XEXP (temp, 0)) == REG)
2645 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2647 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2650 if (new_i3_notes)
2652 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2653 if (GET_CODE (XEXP (temp, 0)) == REG)
2654 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2656 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2659 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2660 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2661 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2662 in that case, it might delete I2. Similarly for I2 and I1.
2663 Show an additional death due to the REG_DEAD note we make here. If
2664 we discard it in distribute_notes, we will decrement it again. */
2666 if (i3dest_killed)
2668 if (GET_CODE (i3dest_killed) == REG)
2669 REG_N_DEATHS (REGNO (i3dest_killed))++;
2671 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2672 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2673 NULL_RTX),
2674 NULL_RTX, i2, NULL_RTX);
2675 else
2676 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2677 NULL_RTX),
2678 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2681 if (i2dest_in_i2src)
2683 if (GET_CODE (i2dest) == REG)
2684 REG_N_DEATHS (REGNO (i2dest))++;
2686 if (newi2pat && reg_set_p (i2dest, newi2pat))
2687 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2688 NULL_RTX, i2, NULL_RTX);
2689 else
2690 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2691 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2694 if (i1dest_in_i1src)
2696 if (GET_CODE (i1dest) == REG)
2697 REG_N_DEATHS (REGNO (i1dest))++;
2699 if (newi2pat && reg_set_p (i1dest, newi2pat))
2700 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2701 NULL_RTX, i2, NULL_RTX);
2702 else
2703 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2704 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2707 distribute_links (i3links);
2708 distribute_links (i2links);
2709 distribute_links (i1links);
2711 if (GET_CODE (i2dest) == REG)
2713 rtx link;
2714 rtx i2_insn = 0, i2_val = 0, set;
2716 /* The insn that used to set this register doesn't exist, and
2717 this life of the register may not exist either. See if one of
2718 I3's links points to an insn that sets I2DEST. If it does,
2719 that is now the last known value for I2DEST. If we don't update
2720 this and I2 set the register to a value that depended on its old
2721 contents, we will get confused. If this insn is used, thing
2722 will be set correctly in combine_instructions. */
2724 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2725 if ((set = single_set (XEXP (link, 0))) != 0
2726 && rtx_equal_p (i2dest, SET_DEST (set)))
2727 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2729 record_value_for_reg (i2dest, i2_insn, i2_val);
2731 /* If the reg formerly set in I2 died only once and that was in I3,
2732 zero its use count so it won't make `reload' do any work. */
2733 if (! added_sets_2
2734 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2735 && ! i2dest_in_i2src)
2737 regno = REGNO (i2dest);
2738 REG_N_SETS (regno)--;
2742 if (i1 && GET_CODE (i1dest) == REG)
2744 rtx link;
2745 rtx i1_insn = 0, i1_val = 0, set;
2747 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2748 if ((set = single_set (XEXP (link, 0))) != 0
2749 && rtx_equal_p (i1dest, SET_DEST (set)))
2750 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2752 record_value_for_reg (i1dest, i1_insn, i1_val);
2754 regno = REGNO (i1dest);
2755 if (! added_sets_1 && ! i1dest_in_i1src)
2756 REG_N_SETS (regno)--;
2759 /* Update reg_nonzero_bits et al for any changes that may have been made
2760 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2761 important. Because newi2pat can affect nonzero_bits of newpat */
2762 if (newi2pat)
2763 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2764 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2766 /* Set new_direct_jump_p if a new return or simple jump instruction
2767 has been created.
2769 If I3 is now an unconditional jump, ensure that it has a
2770 BARRIER following it since it may have initially been a
2771 conditional jump. It may also be the last nonnote insn. */
2773 if (returnjump_p (i3) || any_uncondjump_p (i3))
2775 *new_direct_jump_p = 1;
2776 mark_jump_label (PATTERN (i3), i3, 0);
2778 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2779 || GET_CODE (temp) != BARRIER)
2780 emit_barrier_after (i3);
2783 if (undobuf.other_insn != NULL_RTX
2784 && (returnjump_p (undobuf.other_insn)
2785 || any_uncondjump_p (undobuf.other_insn)))
2787 *new_direct_jump_p = 1;
2789 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2790 || GET_CODE (temp) != BARRIER)
2791 emit_barrier_after (undobuf.other_insn);
2794 /* An NOOP jump does not need barrier, but it does need cleaning up
2795 of CFG. */
2796 if (GET_CODE (newpat) == SET
2797 && SET_SRC (newpat) == pc_rtx
2798 && SET_DEST (newpat) == pc_rtx)
2799 *new_direct_jump_p = 1;
2802 combine_successes++;
2803 undo_commit ();
2805 if (added_links_insn
2806 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2807 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2808 return added_links_insn;
2809 else
2810 return newi2pat ? i2 : i3;
2813 /* Undo all the modifications recorded in undobuf. */
2815 static void
2816 undo_all (void)
2818 struct undo *undo, *next;
2820 for (undo = undobuf.undos; undo; undo = next)
2822 next = undo->next;
2823 if (undo->is_int)
2824 *undo->where.i = undo->old_contents.i;
2825 else
2826 *undo->where.r = undo->old_contents.r;
2828 undo->next = undobuf.frees;
2829 undobuf.frees = undo;
2832 undobuf.undos = 0;
2835 /* We've committed to accepting the changes we made. Move all
2836 of the undos to the free list. */
2838 static void
2839 undo_commit (void)
2841 struct undo *undo, *next;
2843 for (undo = undobuf.undos; undo; undo = next)
2845 next = undo->next;
2846 undo->next = undobuf.frees;
2847 undobuf.frees = undo;
2849 undobuf.undos = 0;
2853 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2854 where we have an arithmetic expression and return that point. LOC will
2855 be inside INSN.
2857 try_combine will call this function to see if an insn can be split into
2858 two insns. */
2860 static rtx *
2861 find_split_point (rtx *loc, rtx insn)
2863 rtx x = *loc;
2864 enum rtx_code code = GET_CODE (x);
2865 rtx *split;
2866 unsigned HOST_WIDE_INT len = 0;
2867 HOST_WIDE_INT pos = 0;
2868 int unsignedp = 0;
2869 rtx inner = NULL_RTX;
2871 /* First special-case some codes. */
2872 switch (code)
2874 case SUBREG:
2875 #ifdef INSN_SCHEDULING
2876 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2877 point. */
2878 if (GET_CODE (SUBREG_REG (x)) == MEM)
2879 return loc;
2880 #endif
2881 return find_split_point (&SUBREG_REG (x), insn);
2883 case MEM:
2884 #ifdef HAVE_lo_sum
2885 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2886 using LO_SUM and HIGH. */
2887 if (GET_CODE (XEXP (x, 0)) == CONST
2888 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2890 SUBST (XEXP (x, 0),
2891 gen_rtx_LO_SUM (Pmode,
2892 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2893 XEXP (x, 0)));
2894 return &XEXP (XEXP (x, 0), 0);
2896 #endif
2898 /* If we have a PLUS whose second operand is a constant and the
2899 address is not valid, perhaps will can split it up using
2900 the machine-specific way to split large constants. We use
2901 the first pseudo-reg (one of the virtual regs) as a placeholder;
2902 it will not remain in the result. */
2903 if (GET_CODE (XEXP (x, 0)) == PLUS
2904 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2905 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2907 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2908 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2909 subst_insn);
2911 /* This should have produced two insns, each of which sets our
2912 placeholder. If the source of the second is a valid address,
2913 we can make put both sources together and make a split point
2914 in the middle. */
2916 if (seq
2917 && NEXT_INSN (seq) != NULL_RTX
2918 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2919 && GET_CODE (seq) == INSN
2920 && GET_CODE (PATTERN (seq)) == SET
2921 && SET_DEST (PATTERN (seq)) == reg
2922 && ! reg_mentioned_p (reg,
2923 SET_SRC (PATTERN (seq)))
2924 && GET_CODE (NEXT_INSN (seq)) == INSN
2925 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2926 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2927 && memory_address_p (GET_MODE (x),
2928 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2930 rtx src1 = SET_SRC (PATTERN (seq));
2931 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2933 /* Replace the placeholder in SRC2 with SRC1. If we can
2934 find where in SRC2 it was placed, that can become our
2935 split point and we can replace this address with SRC2.
2936 Just try two obvious places. */
2938 src2 = replace_rtx (src2, reg, src1);
2939 split = 0;
2940 if (XEXP (src2, 0) == src1)
2941 split = &XEXP (src2, 0);
2942 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2943 && XEXP (XEXP (src2, 0), 0) == src1)
2944 split = &XEXP (XEXP (src2, 0), 0);
2946 if (split)
2948 SUBST (XEXP (x, 0), src2);
2949 return split;
2953 /* If that didn't work, perhaps the first operand is complex and
2954 needs to be computed separately, so make a split point there.
2955 This will occur on machines that just support REG + CONST
2956 and have a constant moved through some previous computation. */
2958 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
2959 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
2961 return &XEXP (XEXP (x, 0), 0);
2963 break;
2965 case SET:
2966 #ifdef HAVE_cc0
2967 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2968 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2969 we need to put the operand into a register. So split at that
2970 point. */
2972 if (SET_DEST (x) == cc0_rtx
2973 && GET_CODE (SET_SRC (x)) != COMPARE
2974 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2975 && !OBJECT_P (SET_SRC (x))
2976 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2977 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
2978 return &SET_SRC (x);
2979 #endif
2981 /* See if we can split SET_SRC as it stands. */
2982 split = find_split_point (&SET_SRC (x), insn);
2983 if (split && split != &SET_SRC (x))
2984 return split;
2986 /* See if we can split SET_DEST as it stands. */
2987 split = find_split_point (&SET_DEST (x), insn);
2988 if (split && split != &SET_DEST (x))
2989 return split;
2991 /* See if this is a bitfield assignment with everything constant. If
2992 so, this is an IOR of an AND, so split it into that. */
2993 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2994 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2995 <= HOST_BITS_PER_WIDE_INT)
2996 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2997 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2998 && GET_CODE (SET_SRC (x)) == CONST_INT
2999 && ((INTVAL (XEXP (SET_DEST (x), 1))
3000 + INTVAL (XEXP (SET_DEST (x), 2)))
3001 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3002 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3004 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3005 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3006 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3007 rtx dest = XEXP (SET_DEST (x), 0);
3008 enum machine_mode mode = GET_MODE (dest);
3009 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3011 if (BITS_BIG_ENDIAN)
3012 pos = GET_MODE_BITSIZE (mode) - len - pos;
3014 if (src == mask)
3015 SUBST (SET_SRC (x),
3016 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3017 else
3018 SUBST (SET_SRC (x),
3019 gen_binary (IOR, mode,
3020 gen_binary (AND, mode, dest,
3021 gen_int_mode (~(mask << pos),
3022 mode)),
3023 GEN_INT (src << pos)));
3025 SUBST (SET_DEST (x), dest);
3027 split = find_split_point (&SET_SRC (x), insn);
3028 if (split && split != &SET_SRC (x))
3029 return split;
3032 /* Otherwise, see if this is an operation that we can split into two.
3033 If so, try to split that. */
3034 code = GET_CODE (SET_SRC (x));
3036 switch (code)
3038 case AND:
3039 /* If we are AND'ing with a large constant that is only a single
3040 bit and the result is only being used in a context where we
3041 need to know if it is zero or nonzero, replace it with a bit
3042 extraction. This will avoid the large constant, which might
3043 have taken more than one insn to make. If the constant were
3044 not a valid argument to the AND but took only one insn to make,
3045 this is no worse, but if it took more than one insn, it will
3046 be better. */
3048 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3049 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3050 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3051 && GET_CODE (SET_DEST (x)) == REG
3052 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3053 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3054 && XEXP (*split, 0) == SET_DEST (x)
3055 && XEXP (*split, 1) == const0_rtx)
3057 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3058 XEXP (SET_SRC (x), 0),
3059 pos, NULL_RTX, 1, 1, 0, 0);
3060 if (extraction != 0)
3062 SUBST (SET_SRC (x), extraction);
3063 return find_split_point (loc, insn);
3066 break;
3068 case NE:
3069 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3070 is known to be on, this can be converted into a NEG of a shift. */
3071 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3072 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3073 && 1 <= (pos = exact_log2
3074 (nonzero_bits (XEXP (SET_SRC (x), 0),
3075 GET_MODE (XEXP (SET_SRC (x), 0))))))
3077 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3079 SUBST (SET_SRC (x),
3080 gen_rtx_NEG (mode,
3081 gen_rtx_LSHIFTRT (mode,
3082 XEXP (SET_SRC (x), 0),
3083 GEN_INT (pos))));
3085 split = find_split_point (&SET_SRC (x), insn);
3086 if (split && split != &SET_SRC (x))
3087 return split;
3089 break;
3091 case SIGN_EXTEND:
3092 inner = XEXP (SET_SRC (x), 0);
3094 /* We can't optimize if either mode is a partial integer
3095 mode as we don't know how many bits are significant
3096 in those modes. */
3097 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3098 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3099 break;
3101 pos = 0;
3102 len = GET_MODE_BITSIZE (GET_MODE (inner));
3103 unsignedp = 0;
3104 break;
3106 case SIGN_EXTRACT:
3107 case ZERO_EXTRACT:
3108 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3109 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3111 inner = XEXP (SET_SRC (x), 0);
3112 len = INTVAL (XEXP (SET_SRC (x), 1));
3113 pos = INTVAL (XEXP (SET_SRC (x), 2));
3115 if (BITS_BIG_ENDIAN)
3116 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3117 unsignedp = (code == ZERO_EXTRACT);
3119 break;
3121 default:
3122 break;
3125 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3127 enum machine_mode mode = GET_MODE (SET_SRC (x));
3129 /* For unsigned, we have a choice of a shift followed by an
3130 AND or two shifts. Use two shifts for field sizes where the
3131 constant might be too large. We assume here that we can
3132 always at least get 8-bit constants in an AND insn, which is
3133 true for every current RISC. */
3135 if (unsignedp && len <= 8)
3137 SUBST (SET_SRC (x),
3138 gen_rtx_AND (mode,
3139 gen_rtx_LSHIFTRT
3140 (mode, gen_lowpart (mode, inner),
3141 GEN_INT (pos)),
3142 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3144 split = find_split_point (&SET_SRC (x), insn);
3145 if (split && split != &SET_SRC (x))
3146 return split;
3148 else
3150 SUBST (SET_SRC (x),
3151 gen_rtx_fmt_ee
3152 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3153 gen_rtx_ASHIFT (mode,
3154 gen_lowpart (mode, inner),
3155 GEN_INT (GET_MODE_BITSIZE (mode)
3156 - len - pos)),
3157 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3159 split = find_split_point (&SET_SRC (x), insn);
3160 if (split && split != &SET_SRC (x))
3161 return split;
3165 /* See if this is a simple operation with a constant as the second
3166 operand. It might be that this constant is out of range and hence
3167 could be used as a split point. */
3168 if (BINARY_P (SET_SRC (x))
3169 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3170 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3171 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3172 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3173 return &XEXP (SET_SRC (x), 1);
3175 /* Finally, see if this is a simple operation with its first operand
3176 not in a register. The operation might require this operand in a
3177 register, so return it as a split point. We can always do this
3178 because if the first operand were another operation, we would have
3179 already found it as a split point. */
3180 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3181 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3182 return &XEXP (SET_SRC (x), 0);
3184 return 0;
3186 case AND:
3187 case IOR:
3188 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3189 it is better to write this as (not (ior A B)) so we can split it.
3190 Similarly for IOR. */
3191 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3193 SUBST (*loc,
3194 gen_rtx_NOT (GET_MODE (x),
3195 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3196 GET_MODE (x),
3197 XEXP (XEXP (x, 0), 0),
3198 XEXP (XEXP (x, 1), 0))));
3199 return find_split_point (loc, insn);
3202 /* Many RISC machines have a large set of logical insns. If the
3203 second operand is a NOT, put it first so we will try to split the
3204 other operand first. */
3205 if (GET_CODE (XEXP (x, 1)) == NOT)
3207 rtx tem = XEXP (x, 0);
3208 SUBST (XEXP (x, 0), XEXP (x, 1));
3209 SUBST (XEXP (x, 1), tem);
3211 break;
3213 default:
3214 break;
3217 /* Otherwise, select our actions depending on our rtx class. */
3218 switch (GET_RTX_CLASS (code))
3220 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3221 case RTX_TERNARY:
3222 split = find_split_point (&XEXP (x, 2), insn);
3223 if (split)
3224 return split;
3225 /* ... fall through ... */
3226 case RTX_BIN_ARITH:
3227 case RTX_COMM_ARITH:
3228 case RTX_COMPARE:
3229 case RTX_COMM_COMPARE:
3230 split = find_split_point (&XEXP (x, 1), insn);
3231 if (split)
3232 return split;
3233 /* ... fall through ... */
3234 case RTX_UNARY:
3235 /* Some machines have (and (shift ...) ...) insns. If X is not
3236 an AND, but XEXP (X, 0) is, use it as our split point. */
3237 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3238 return &XEXP (x, 0);
3240 split = find_split_point (&XEXP (x, 0), insn);
3241 if (split)
3242 return split;
3243 return loc;
3245 default:
3246 /* Otherwise, we don't have a split point. */
3247 return 0;
3251 /* Throughout X, replace FROM with TO, and return the result.
3252 The result is TO if X is FROM;
3253 otherwise the result is X, but its contents may have been modified.
3254 If they were modified, a record was made in undobuf so that
3255 undo_all will (among other things) return X to its original state.
3257 If the number of changes necessary is too much to record to undo,
3258 the excess changes are not made, so the result is invalid.
3259 The changes already made can still be undone.
3260 undobuf.num_undo is incremented for such changes, so by testing that
3261 the caller can tell whether the result is valid.
3263 `n_occurrences' is incremented each time FROM is replaced.
3265 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3267 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3268 by copying if `n_occurrences' is nonzero. */
3270 static rtx
3271 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3273 enum rtx_code code = GET_CODE (x);
3274 enum machine_mode op0_mode = VOIDmode;
3275 const char *fmt;
3276 int len, i;
3277 rtx new;
3279 /* Two expressions are equal if they are identical copies of a shared
3280 RTX or if they are both registers with the same register number
3281 and mode. */
3283 #define COMBINE_RTX_EQUAL_P(X,Y) \
3284 ((X) == (Y) \
3285 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3286 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3288 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3290 n_occurrences++;
3291 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3294 /* If X and FROM are the same register but different modes, they will
3295 not have been seen as equal above. However, flow.c will make a
3296 LOG_LINKS entry for that case. If we do nothing, we will try to
3297 rerecognize our original insn and, when it succeeds, we will
3298 delete the feeding insn, which is incorrect.
3300 So force this insn not to match in this (rare) case. */
3301 if (! in_dest && code == REG && GET_CODE (from) == REG
3302 && REGNO (x) == REGNO (from))
3303 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3305 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3306 of which may contain things that can be combined. */
3307 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3308 return x;
3310 /* It is possible to have a subexpression appear twice in the insn.
3311 Suppose that FROM is a register that appears within TO.
3312 Then, after that subexpression has been scanned once by `subst',
3313 the second time it is scanned, TO may be found. If we were
3314 to scan TO here, we would find FROM within it and create a
3315 self-referent rtl structure which is completely wrong. */
3316 if (COMBINE_RTX_EQUAL_P (x, to))
3317 return to;
3319 /* Parallel asm_operands need special attention because all of the
3320 inputs are shared across the arms. Furthermore, unsharing the
3321 rtl results in recognition failures. Failure to handle this case
3322 specially can result in circular rtl.
3324 Solve this by doing a normal pass across the first entry of the
3325 parallel, and only processing the SET_DESTs of the subsequent
3326 entries. Ug. */
3328 if (code == PARALLEL
3329 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3330 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3332 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3334 /* If this substitution failed, this whole thing fails. */
3335 if (GET_CODE (new) == CLOBBER
3336 && XEXP (new, 0) == const0_rtx)
3337 return new;
3339 SUBST (XVECEXP (x, 0, 0), new);
3341 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3343 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3345 if (GET_CODE (dest) != REG
3346 && GET_CODE (dest) != CC0
3347 && GET_CODE (dest) != PC)
3349 new = subst (dest, from, to, 0, unique_copy);
3351 /* If this substitution failed, this whole thing fails. */
3352 if (GET_CODE (new) == CLOBBER
3353 && XEXP (new, 0) == const0_rtx)
3354 return new;
3356 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3360 else
3362 len = GET_RTX_LENGTH (code);
3363 fmt = GET_RTX_FORMAT (code);
3365 /* We don't need to process a SET_DEST that is a register, CC0,
3366 or PC, so set up to skip this common case. All other cases
3367 where we want to suppress replacing something inside a
3368 SET_SRC are handled via the IN_DEST operand. */
3369 if (code == SET
3370 && (GET_CODE (SET_DEST (x)) == REG
3371 || GET_CODE (SET_DEST (x)) == CC0
3372 || GET_CODE (SET_DEST (x)) == PC))
3373 fmt = "ie";
3375 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3376 constant. */
3377 if (fmt[0] == 'e')
3378 op0_mode = GET_MODE (XEXP (x, 0));
3380 for (i = 0; i < len; i++)
3382 if (fmt[i] == 'E')
3384 int j;
3385 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3387 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3389 new = (unique_copy && n_occurrences
3390 ? copy_rtx (to) : to);
3391 n_occurrences++;
3393 else
3395 new = subst (XVECEXP (x, i, j), from, to, 0,
3396 unique_copy);
3398 /* If this substitution failed, this whole thing
3399 fails. */
3400 if (GET_CODE (new) == CLOBBER
3401 && XEXP (new, 0) == const0_rtx)
3402 return new;
3405 SUBST (XVECEXP (x, i, j), new);
3408 else if (fmt[i] == 'e')
3410 /* If this is a register being set, ignore it. */
3411 new = XEXP (x, i);
3412 if (in_dest
3413 && (code == SUBREG || code == STRICT_LOW_PART
3414 || code == ZERO_EXTRACT)
3415 && i == 0
3416 && GET_CODE (new) == REG)
3419 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3421 /* In general, don't install a subreg involving two
3422 modes not tieable. It can worsen register
3423 allocation, and can even make invalid reload
3424 insns, since the reg inside may need to be copied
3425 from in the outside mode, and that may be invalid
3426 if it is an fp reg copied in integer mode.
3428 We allow two exceptions to this: It is valid if
3429 it is inside another SUBREG and the mode of that
3430 SUBREG and the mode of the inside of TO is
3431 tieable and it is valid if X is a SET that copies
3432 FROM to CC0. */
3434 if (GET_CODE (to) == SUBREG
3435 && ! MODES_TIEABLE_P (GET_MODE (to),
3436 GET_MODE (SUBREG_REG (to)))
3437 && ! (code == SUBREG
3438 && MODES_TIEABLE_P (GET_MODE (x),
3439 GET_MODE (SUBREG_REG (to))))
3440 #ifdef HAVE_cc0
3441 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3442 #endif
3444 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3446 #ifdef CANNOT_CHANGE_MODE_CLASS
3447 if (code == SUBREG
3448 && GET_CODE (to) == REG
3449 && REGNO (to) < FIRST_PSEUDO_REGISTER
3450 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3451 GET_MODE (to),
3452 GET_MODE (x)))
3453 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3454 #endif
3456 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3457 n_occurrences++;
3459 else
3460 /* If we are in a SET_DEST, suppress most cases unless we
3461 have gone inside a MEM, in which case we want to
3462 simplify the address. We assume here that things that
3463 are actually part of the destination have their inner
3464 parts in the first expression. This is true for SUBREG,
3465 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3466 things aside from REG and MEM that should appear in a
3467 SET_DEST. */
3468 new = subst (XEXP (x, i), from, to,
3469 (((in_dest
3470 && (code == SUBREG || code == STRICT_LOW_PART
3471 || code == ZERO_EXTRACT))
3472 || code == SET)
3473 && i == 0), unique_copy);
3475 /* If we found that we will have to reject this combination,
3476 indicate that by returning the CLOBBER ourselves, rather than
3477 an expression containing it. This will speed things up as
3478 well as prevent accidents where two CLOBBERs are considered
3479 to be equal, thus producing an incorrect simplification. */
3481 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3482 return new;
3484 if (GET_CODE (x) == SUBREG
3485 && (GET_CODE (new) == CONST_INT
3486 || GET_CODE (new) == CONST_DOUBLE))
3488 enum machine_mode mode = GET_MODE (x);
3490 x = simplify_subreg (GET_MODE (x), new,
3491 GET_MODE (SUBREG_REG (x)),
3492 SUBREG_BYTE (x));
3493 if (! x)
3494 x = gen_rtx_CLOBBER (mode, const0_rtx);
3496 else if (GET_CODE (new) == CONST_INT
3497 && GET_CODE (x) == ZERO_EXTEND)
3499 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3500 new, GET_MODE (XEXP (x, 0)));
3501 if (! x)
3502 abort ();
3504 else
3505 SUBST (XEXP (x, i), new);
3510 /* Try to simplify X. If the simplification changed the code, it is likely
3511 that further simplification will help, so loop, but limit the number
3512 of repetitions that will be performed. */
3514 for (i = 0; i < 4; i++)
3516 /* If X is sufficiently simple, don't bother trying to do anything
3517 with it. */
3518 if (code != CONST_INT && code != REG && code != CLOBBER)
3519 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3521 if (GET_CODE (x) == code)
3522 break;
3524 code = GET_CODE (x);
3526 /* We no longer know the original mode of operand 0 since we
3527 have changed the form of X) */
3528 op0_mode = VOIDmode;
3531 return x;
3534 /* Simplify X, a piece of RTL. We just operate on the expression at the
3535 outer level; call `subst' to simplify recursively. Return the new
3536 expression.
3538 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3539 will be the iteration even if an expression with a code different from
3540 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3542 static rtx
3543 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3544 int in_dest)
3546 enum rtx_code code = GET_CODE (x);
3547 enum machine_mode mode = GET_MODE (x);
3548 rtx temp;
3549 rtx reversed;
3550 int i;
3552 /* If this is a commutative operation, put a constant last and a complex
3553 expression first. We don't need to do this for comparisons here. */
3554 if (COMMUTATIVE_ARITH_P (x)
3555 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3557 temp = XEXP (x, 0);
3558 SUBST (XEXP (x, 0), XEXP (x, 1));
3559 SUBST (XEXP (x, 1), temp);
3562 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3563 sign extension of a PLUS with a constant, reverse the order of the sign
3564 extension and the addition. Note that this not the same as the original
3565 code, but overflow is undefined for signed values. Also note that the
3566 PLUS will have been partially moved "inside" the sign-extension, so that
3567 the first operand of X will really look like:
3568 (ashiftrt (plus (ashift A C4) C5) C4).
3569 We convert this to
3570 (plus (ashiftrt (ashift A C4) C2) C4)
3571 and replace the first operand of X with that expression. Later parts
3572 of this function may simplify the expression further.
3574 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3575 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3576 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3578 We do this to simplify address expressions. */
3580 if ((code == PLUS || code == MINUS || code == MULT)
3581 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3582 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3583 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3584 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3585 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3586 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3587 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3588 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3589 XEXP (XEXP (XEXP (x, 0), 0), 1),
3590 XEXP (XEXP (x, 0), 1))) != 0)
3592 rtx new
3593 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3594 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3595 INTVAL (XEXP (XEXP (x, 0), 1)));
3597 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3598 INTVAL (XEXP (XEXP (x, 0), 1)));
3600 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3603 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3604 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3605 things. Check for cases where both arms are testing the same
3606 condition.
3608 Don't do anything if all operands are very simple. */
3610 if ((BINARY_P (x)
3611 && ((!OBJECT_P (XEXP (x, 0))
3612 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3613 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3614 || (!OBJECT_P (XEXP (x, 1))
3615 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3616 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3617 || (UNARY_P (x)
3618 && (!OBJECT_P (XEXP (x, 0))
3619 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3620 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3622 rtx cond, true_rtx, false_rtx;
3624 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3625 if (cond != 0
3626 /* If everything is a comparison, what we have is highly unlikely
3627 to be simpler, so don't use it. */
3628 && ! (COMPARISON_P (x)
3629 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3631 rtx cop1 = const0_rtx;
3632 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3634 if (cond_code == NE && COMPARISON_P (cond))
3635 return x;
3637 /* Simplify the alternative arms; this may collapse the true and
3638 false arms to store-flag values. Be careful to use copy_rtx
3639 here since true_rtx or false_rtx might share RTL with x as a
3640 result of the if_then_else_cond call above. */
3641 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3642 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3644 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3645 is unlikely to be simpler. */
3646 if (general_operand (true_rtx, VOIDmode)
3647 && general_operand (false_rtx, VOIDmode))
3649 enum rtx_code reversed;
3651 /* Restarting if we generate a store-flag expression will cause
3652 us to loop. Just drop through in this case. */
3654 /* If the result values are STORE_FLAG_VALUE and zero, we can
3655 just make the comparison operation. */
3656 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3657 x = gen_binary (cond_code, mode, cond, cop1);
3658 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3659 && ((reversed = reversed_comparison_code_parts
3660 (cond_code, cond, cop1, NULL))
3661 != UNKNOWN))
3662 x = gen_binary (reversed, mode, cond, cop1);
3664 /* Likewise, we can make the negate of a comparison operation
3665 if the result values are - STORE_FLAG_VALUE and zero. */
3666 else if (GET_CODE (true_rtx) == CONST_INT
3667 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3668 && false_rtx == const0_rtx)
3669 x = simplify_gen_unary (NEG, mode,
3670 gen_binary (cond_code, mode, cond,
3671 cop1),
3672 mode);
3673 else if (GET_CODE (false_rtx) == CONST_INT
3674 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3675 && true_rtx == const0_rtx
3676 && ((reversed = reversed_comparison_code_parts
3677 (cond_code, cond, cop1, NULL))
3678 != UNKNOWN))
3679 x = simplify_gen_unary (NEG, mode,
3680 gen_binary (reversed, mode,
3681 cond, cop1),
3682 mode);
3683 else
3684 return gen_rtx_IF_THEN_ELSE (mode,
3685 gen_binary (cond_code, VOIDmode,
3686 cond, cop1),
3687 true_rtx, false_rtx);
3689 code = GET_CODE (x);
3690 op0_mode = VOIDmode;
3695 /* Try to fold this expression in case we have constants that weren't
3696 present before. */
3697 temp = 0;
3698 switch (GET_RTX_CLASS (code))
3700 case RTX_UNARY:
3701 if (op0_mode == VOIDmode)
3702 op0_mode = GET_MODE (XEXP (x, 0));
3703 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3704 break;
3705 case RTX_COMPARE:
3706 case RTX_COMM_COMPARE:
3708 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3709 if (cmp_mode == VOIDmode)
3711 cmp_mode = GET_MODE (XEXP (x, 1));
3712 if (cmp_mode == VOIDmode)
3713 cmp_mode = op0_mode;
3715 temp = simplify_relational_operation (code, cmp_mode,
3716 XEXP (x, 0), XEXP (x, 1));
3718 #ifdef FLOAT_STORE_FLAG_VALUE
3719 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3721 if (temp == const0_rtx)
3722 temp = CONST0_RTX (mode);
3723 else
3724 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3725 mode);
3727 #endif
3728 break;
3729 case RTX_COMM_ARITH:
3730 case RTX_BIN_ARITH:
3731 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3732 break;
3733 case RTX_BITFIELD_OPS:
3734 case RTX_TERNARY:
3735 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3736 XEXP (x, 1), XEXP (x, 2));
3737 break;
3738 default:
3739 break;
3742 if (temp)
3744 x = temp;
3745 code = GET_CODE (temp);
3746 op0_mode = VOIDmode;
3747 mode = GET_MODE (temp);
3750 /* First see if we can apply the inverse distributive law. */
3751 if (code == PLUS || code == MINUS
3752 || code == AND || code == IOR || code == XOR)
3754 x = apply_distributive_law (x);
3755 code = GET_CODE (x);
3756 op0_mode = VOIDmode;
3759 /* If CODE is an associative operation not otherwise handled, see if we
3760 can associate some operands. This can win if they are constants or
3761 if they are logically related (i.e. (a & b) & a). */
3762 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3763 || code == AND || code == IOR || code == XOR
3764 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3765 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3766 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3768 if (GET_CODE (XEXP (x, 0)) == code)
3770 rtx other = XEXP (XEXP (x, 0), 0);
3771 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3772 rtx inner_op1 = XEXP (x, 1);
3773 rtx inner;
3775 /* Make sure we pass the constant operand if any as the second
3776 one if this is a commutative operation. */
3777 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3779 rtx tem = inner_op0;
3780 inner_op0 = inner_op1;
3781 inner_op1 = tem;
3783 inner = simplify_binary_operation (code == MINUS ? PLUS
3784 : code == DIV ? MULT
3785 : code,
3786 mode, inner_op0, inner_op1);
3788 /* For commutative operations, try the other pair if that one
3789 didn't simplify. */
3790 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3792 other = XEXP (XEXP (x, 0), 1);
3793 inner = simplify_binary_operation (code, mode,
3794 XEXP (XEXP (x, 0), 0),
3795 XEXP (x, 1));
3798 if (inner)
3799 return gen_binary (code, mode, other, inner);
3803 /* A little bit of algebraic simplification here. */
3804 switch (code)
3806 case MEM:
3807 /* Ensure that our address has any ASHIFTs converted to MULT in case
3808 address-recognizing predicates are called later. */
3809 temp = make_compound_operation (XEXP (x, 0), MEM);
3810 SUBST (XEXP (x, 0), temp);
3811 break;
3813 case SUBREG:
3814 if (op0_mode == VOIDmode)
3815 op0_mode = GET_MODE (SUBREG_REG (x));
3817 /* See if this can be moved to simplify_subreg. */
3818 if (CONSTANT_P (SUBREG_REG (x))
3819 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3820 /* Don't call gen_lowpart if the inner mode
3821 is VOIDmode and we cannot simplify it, as SUBREG without
3822 inner mode is invalid. */
3823 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3824 || gen_lowpart_common (mode, SUBREG_REG (x))))
3825 return gen_lowpart (mode, SUBREG_REG (x));
3827 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3828 break;
3830 rtx temp;
3831 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3832 SUBREG_BYTE (x));
3833 if (temp)
3834 return temp;
3837 /* Don't change the mode of the MEM if that would change the meaning
3838 of the address. */
3839 if (GET_CODE (SUBREG_REG (x)) == MEM
3840 && (MEM_VOLATILE_P (SUBREG_REG (x))
3841 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3842 return gen_rtx_CLOBBER (mode, const0_rtx);
3844 /* Note that we cannot do any narrowing for non-constants since
3845 we might have been counting on using the fact that some bits were
3846 zero. We now do this in the SET. */
3848 break;
3850 case NOT:
3851 if (GET_CODE (XEXP (x, 0)) == SUBREG
3852 && subreg_lowpart_p (XEXP (x, 0))
3853 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3854 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3855 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3856 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3858 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3860 x = gen_rtx_ROTATE (inner_mode,
3861 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3862 inner_mode),
3863 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3864 return gen_lowpart (mode, x);
3867 /* Apply De Morgan's laws to reduce number of patterns for machines
3868 with negating logical insns (and-not, nand, etc.). If result has
3869 only one NOT, put it first, since that is how the patterns are
3870 coded. */
3872 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3874 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3875 enum machine_mode op_mode;
3877 op_mode = GET_MODE (in1);
3878 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3880 op_mode = GET_MODE (in2);
3881 if (op_mode == VOIDmode)
3882 op_mode = mode;
3883 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3885 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3887 rtx tem = in2;
3888 in2 = in1; in1 = tem;
3891 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3892 mode, in1, in2);
3894 break;
3896 case NEG:
3897 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3898 if (GET_CODE (XEXP (x, 0)) == XOR
3899 && XEXP (XEXP (x, 0), 1) == const1_rtx
3900 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3901 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3903 temp = expand_compound_operation (XEXP (x, 0));
3905 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3906 replaced by (lshiftrt X C). This will convert
3907 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3909 if (GET_CODE (temp) == ASHIFTRT
3910 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3911 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3912 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3913 INTVAL (XEXP (temp, 1)));
3915 /* If X has only a single bit that might be nonzero, say, bit I, convert
3916 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3917 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3918 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3919 or a SUBREG of one since we'd be making the expression more
3920 complex if it was just a register. */
3922 if (GET_CODE (temp) != REG
3923 && ! (GET_CODE (temp) == SUBREG
3924 && GET_CODE (SUBREG_REG (temp)) == REG)
3925 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3927 rtx temp1 = simplify_shift_const
3928 (NULL_RTX, ASHIFTRT, mode,
3929 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3930 GET_MODE_BITSIZE (mode) - 1 - i),
3931 GET_MODE_BITSIZE (mode) - 1 - i);
3933 /* If all we did was surround TEMP with the two shifts, we
3934 haven't improved anything, so don't use it. Otherwise,
3935 we are better off with TEMP1. */
3936 if (GET_CODE (temp1) != ASHIFTRT
3937 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3938 || XEXP (XEXP (temp1, 0), 0) != temp)
3939 return temp1;
3941 break;
3943 case TRUNCATE:
3944 /* We can't handle truncation to a partial integer mode here
3945 because we don't know the real bitsize of the partial
3946 integer mode. */
3947 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3948 break;
3950 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3951 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3952 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3953 SUBST (XEXP (x, 0),
3954 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3955 GET_MODE_MASK (mode), NULL_RTX, 0));
3957 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3958 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3959 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3960 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3961 return XEXP (XEXP (x, 0), 0);
3963 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3964 (OP:SI foo:SI) if OP is NEG or ABS. */
3965 if ((GET_CODE (XEXP (x, 0)) == ABS
3966 || GET_CODE (XEXP (x, 0)) == NEG)
3967 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3968 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3969 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3970 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
3971 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
3973 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3974 (truncate:SI x). */
3975 if (GET_CODE (XEXP (x, 0)) == SUBREG
3976 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3977 && subreg_lowpart_p (XEXP (x, 0)))
3978 return SUBREG_REG (XEXP (x, 0));
3980 /* If we know that the value is already truncated, we can
3981 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
3982 is nonzero for the corresponding modes. But don't do this
3983 for an (LSHIFTRT (MULT ...)) since this will cause problems
3984 with the umulXi3_highpart patterns. */
3985 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3986 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3987 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3988 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
3989 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
3990 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
3991 return gen_lowpart (mode, XEXP (x, 0));
3993 /* A truncate of a comparison can be replaced with a subreg if
3994 STORE_FLAG_VALUE permits. This is like the previous test,
3995 but it works even if the comparison is done in a mode larger
3996 than HOST_BITS_PER_WIDE_INT. */
3997 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3998 && COMPARISON_P (XEXP (x, 0))
3999 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4000 return gen_lowpart (mode, XEXP (x, 0));
4002 /* Similarly, a truncate of a register whose value is a
4003 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4004 permits. */
4005 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4006 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4007 && (temp = get_last_value (XEXP (x, 0)))
4008 && COMPARISON_P (temp))
4009 return gen_lowpart (mode, XEXP (x, 0));
4011 break;
4013 case FLOAT_TRUNCATE:
4014 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4015 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4016 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4017 return XEXP (XEXP (x, 0), 0);
4019 /* (float_truncate:SF (float_truncate:DF foo:XF))
4020 = (float_truncate:SF foo:XF).
4021 This may eliminate double rounding, so it is unsafe.
4023 (float_truncate:SF (float_extend:XF foo:DF))
4024 = (float_truncate:SF foo:DF).
4026 (float_truncate:DF (float_extend:XF foo:SF))
4027 = (float_extend:SF foo:DF). */
4028 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4029 && flag_unsafe_math_optimizations)
4030 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4031 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4032 0)))
4033 > GET_MODE_SIZE (mode)
4034 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4035 mode,
4036 XEXP (XEXP (x, 0), 0), mode);
4038 /* (float_truncate (float x)) is (float x) */
4039 if (GET_CODE (XEXP (x, 0)) == FLOAT
4040 && (flag_unsafe_math_optimizations
4041 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4042 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4043 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4044 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4045 return simplify_gen_unary (FLOAT, mode,
4046 XEXP (XEXP (x, 0), 0),
4047 GET_MODE (XEXP (XEXP (x, 0), 0)));
4049 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4050 (OP:SF foo:SF) if OP is NEG or ABS. */
4051 if ((GET_CODE (XEXP (x, 0)) == ABS
4052 || GET_CODE (XEXP (x, 0)) == NEG)
4053 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4054 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4055 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4056 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4058 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4059 is (float_truncate:SF x). */
4060 if (GET_CODE (XEXP (x, 0)) == SUBREG
4061 && subreg_lowpart_p (XEXP (x, 0))
4062 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4063 return SUBREG_REG (XEXP (x, 0));
4064 break;
4065 case FLOAT_EXTEND:
4066 /* (float_extend (float_extend x)) is (float_extend x)
4068 (float_extend (float x)) is (float x) assuming that double
4069 rounding can't happen.
4071 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4072 || (GET_CODE (XEXP (x, 0)) == FLOAT
4073 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4074 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4075 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4076 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4077 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4078 XEXP (XEXP (x, 0), 0),
4079 GET_MODE (XEXP (XEXP (x, 0), 0)));
4081 break;
4082 #ifdef HAVE_cc0
4083 case COMPARE:
4084 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4085 using cc0, in which case we want to leave it as a COMPARE
4086 so we can distinguish it from a register-register-copy. */
4087 if (XEXP (x, 1) == const0_rtx)
4088 return XEXP (x, 0);
4090 /* x - 0 is the same as x unless x's mode has signed zeros and
4091 allows rounding towards -infinity. Under those conditions,
4092 0 - 0 is -0. */
4093 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4094 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4095 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4096 return XEXP (x, 0);
4097 break;
4098 #endif
4100 case CONST:
4101 /* (const (const X)) can become (const X). Do it this way rather than
4102 returning the inner CONST since CONST can be shared with a
4103 REG_EQUAL note. */
4104 if (GET_CODE (XEXP (x, 0)) == CONST)
4105 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4106 break;
4108 #ifdef HAVE_lo_sum
4109 case LO_SUM:
4110 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4111 can add in an offset. find_split_point will split this address up
4112 again if it doesn't match. */
4113 if (GET_CODE (XEXP (x, 0)) == HIGH
4114 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4115 return XEXP (x, 1);
4116 break;
4117 #endif
4119 case PLUS:
4120 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4122 if (GET_CODE (XEXP (x, 0)) == MULT
4123 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4125 rtx in1, in2;
4127 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4128 in2 = XEXP (XEXP (x, 0), 1);
4129 return gen_binary (MINUS, mode, XEXP (x, 1),
4130 gen_binary (MULT, mode, in1, in2));
4133 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4134 outermost. That's because that's the way indexed addresses are
4135 supposed to appear. This code used to check many more cases, but
4136 they are now checked elsewhere. */
4137 if (GET_CODE (XEXP (x, 0)) == PLUS
4138 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4139 return gen_binary (PLUS, mode,
4140 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4141 XEXP (x, 1)),
4142 XEXP (XEXP (x, 0), 1));
4144 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4145 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4146 bit-field and can be replaced by either a sign_extend or a
4147 sign_extract. The `and' may be a zero_extend and the two
4148 <c>, -<c> constants may be reversed. */
4149 if (GET_CODE (XEXP (x, 0)) == XOR
4150 && GET_CODE (XEXP (x, 1)) == CONST_INT
4151 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4152 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4153 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4154 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4155 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4156 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4157 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4158 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4159 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4160 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4161 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4162 == (unsigned int) i + 1))))
4163 return simplify_shift_const
4164 (NULL_RTX, ASHIFTRT, mode,
4165 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4166 XEXP (XEXP (XEXP (x, 0), 0), 0),
4167 GET_MODE_BITSIZE (mode) - (i + 1)),
4168 GET_MODE_BITSIZE (mode) - (i + 1));
4170 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4171 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4172 is 1. This produces better code than the alternative immediately
4173 below. */
4174 if (COMPARISON_P (XEXP (x, 0))
4175 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4176 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4177 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4178 XEXP (XEXP (x, 0), 0),
4179 XEXP (XEXP (x, 0), 1))))
4180 return
4181 simplify_gen_unary (NEG, mode, reversed, mode);
4183 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4184 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4185 the bitsize of the mode - 1. This allows simplification of
4186 "a = (b & 8) == 0;" */
4187 if (XEXP (x, 1) == constm1_rtx
4188 && GET_CODE (XEXP (x, 0)) != REG
4189 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4190 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4191 && nonzero_bits (XEXP (x, 0), mode) == 1)
4192 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4193 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4194 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4195 GET_MODE_BITSIZE (mode) - 1),
4196 GET_MODE_BITSIZE (mode) - 1);
4198 /* If we are adding two things that have no bits in common, convert
4199 the addition into an IOR. This will often be further simplified,
4200 for example in cases like ((a & 1) + (a & 2)), which can
4201 become a & 3. */
4203 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4204 && (nonzero_bits (XEXP (x, 0), mode)
4205 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4207 /* Try to simplify the expression further. */
4208 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4209 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4211 /* If we could, great. If not, do not go ahead with the IOR
4212 replacement, since PLUS appears in many special purpose
4213 address arithmetic instructions. */
4214 if (GET_CODE (temp) != CLOBBER && temp != tor)
4215 return temp;
4217 break;
4219 case MINUS:
4220 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4221 by reversing the comparison code if valid. */
4222 if (STORE_FLAG_VALUE == 1
4223 && XEXP (x, 0) == const1_rtx
4224 && COMPARISON_P (XEXP (x, 1))
4225 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4226 XEXP (XEXP (x, 1), 0),
4227 XEXP (XEXP (x, 1), 1))))
4228 return reversed;
4230 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4231 (and <foo> (const_int pow2-1)) */
4232 if (GET_CODE (XEXP (x, 1)) == AND
4233 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4234 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4235 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4236 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4237 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4239 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4241 if (GET_CODE (XEXP (x, 1)) == MULT
4242 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4244 rtx in1, in2;
4246 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4247 in2 = XEXP (XEXP (x, 1), 1);
4248 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4249 XEXP (x, 0));
4252 /* Canonicalize (minus (neg A) (mult B C)) to
4253 (minus (mult (neg B) C) A). */
4254 if (GET_CODE (XEXP (x, 1)) == MULT
4255 && GET_CODE (XEXP (x, 0)) == NEG)
4257 rtx in1, in2;
4259 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4260 in2 = XEXP (XEXP (x, 1), 1);
4261 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4262 XEXP (XEXP (x, 0), 0));
4265 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4266 integers. */
4267 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4268 return gen_binary (MINUS, mode,
4269 gen_binary (MINUS, mode, XEXP (x, 0),
4270 XEXP (XEXP (x, 1), 0)),
4271 XEXP (XEXP (x, 1), 1));
4272 break;
4274 case MULT:
4275 /* If we have (mult (plus A B) C), apply the distributive law and then
4276 the inverse distributive law to see if things simplify. This
4277 occurs mostly in addresses, often when unrolling loops. */
4279 if (GET_CODE (XEXP (x, 0)) == PLUS)
4281 x = apply_distributive_law
4282 (gen_binary (PLUS, mode,
4283 gen_binary (MULT, mode,
4284 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4285 gen_binary (MULT, mode,
4286 XEXP (XEXP (x, 0), 1),
4287 copy_rtx (XEXP (x, 1)))));
4289 if (GET_CODE (x) != MULT)
4290 return x;
4292 /* Try simplify a*(b/c) as (a*b)/c. */
4293 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4294 && GET_CODE (XEXP (x, 0)) == DIV)
4296 rtx tem = simplify_binary_operation (MULT, mode,
4297 XEXP (XEXP (x, 0), 0),
4298 XEXP (x, 1));
4299 if (tem)
4300 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4302 break;
4304 case UDIV:
4305 /* If this is a divide by a power of two, treat it as a shift if
4306 its first operand is a shift. */
4307 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4308 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4309 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4310 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4311 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4312 || GET_CODE (XEXP (x, 0)) == ROTATE
4313 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4314 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4315 break;
4317 case EQ: case NE:
4318 case GT: case GTU: case GE: case GEU:
4319 case LT: case LTU: case LE: case LEU:
4320 case UNEQ: case LTGT:
4321 case UNGT: case UNGE:
4322 case UNLT: case UNLE:
4323 case UNORDERED: case ORDERED:
4324 /* If the first operand is a condition code, we can't do anything
4325 with it. */
4326 if (GET_CODE (XEXP (x, 0)) == COMPARE
4327 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4328 && ! CC0_P (XEXP (x, 0))))
4330 rtx op0 = XEXP (x, 0);
4331 rtx op1 = XEXP (x, 1);
4332 enum rtx_code new_code;
4334 if (GET_CODE (op0) == COMPARE)
4335 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4337 /* Simplify our comparison, if possible. */
4338 new_code = simplify_comparison (code, &op0, &op1);
4340 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4341 if only the low-order bit is possibly nonzero in X (such as when
4342 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4343 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4344 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4345 (plus X 1).
4347 Remove any ZERO_EXTRACT we made when thinking this was a
4348 comparison. It may now be simpler to use, e.g., an AND. If a
4349 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4350 the call to make_compound_operation in the SET case. */
4352 if (STORE_FLAG_VALUE == 1
4353 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4354 && op1 == const0_rtx
4355 && mode == GET_MODE (op0)
4356 && nonzero_bits (op0, mode) == 1)
4357 return gen_lowpart (mode,
4358 expand_compound_operation (op0));
4360 else if (STORE_FLAG_VALUE == 1
4361 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4362 && op1 == const0_rtx
4363 && mode == GET_MODE (op0)
4364 && (num_sign_bit_copies (op0, mode)
4365 == GET_MODE_BITSIZE (mode)))
4367 op0 = expand_compound_operation (op0);
4368 return simplify_gen_unary (NEG, mode,
4369 gen_lowpart (mode, op0),
4370 mode);
4373 else if (STORE_FLAG_VALUE == 1
4374 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4375 && op1 == const0_rtx
4376 && mode == GET_MODE (op0)
4377 && nonzero_bits (op0, mode) == 1)
4379 op0 = expand_compound_operation (op0);
4380 return gen_binary (XOR, mode,
4381 gen_lowpart (mode, op0),
4382 const1_rtx);
4385 else if (STORE_FLAG_VALUE == 1
4386 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4387 && op1 == const0_rtx
4388 && mode == GET_MODE (op0)
4389 && (num_sign_bit_copies (op0, mode)
4390 == GET_MODE_BITSIZE (mode)))
4392 op0 = expand_compound_operation (op0);
4393 return plus_constant (gen_lowpart (mode, op0), 1);
4396 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4397 those above. */
4398 if (STORE_FLAG_VALUE == -1
4399 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4400 && op1 == const0_rtx
4401 && (num_sign_bit_copies (op0, mode)
4402 == GET_MODE_BITSIZE (mode)))
4403 return gen_lowpart (mode,
4404 expand_compound_operation (op0));
4406 else if (STORE_FLAG_VALUE == -1
4407 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4408 && op1 == const0_rtx
4409 && mode == GET_MODE (op0)
4410 && nonzero_bits (op0, mode) == 1)
4412 op0 = expand_compound_operation (op0);
4413 return simplify_gen_unary (NEG, mode,
4414 gen_lowpart (mode, op0),
4415 mode);
4418 else if (STORE_FLAG_VALUE == -1
4419 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4420 && op1 == const0_rtx
4421 && mode == GET_MODE (op0)
4422 && (num_sign_bit_copies (op0, mode)
4423 == GET_MODE_BITSIZE (mode)))
4425 op0 = expand_compound_operation (op0);
4426 return simplify_gen_unary (NOT, mode,
4427 gen_lowpart (mode, op0),
4428 mode);
4431 /* If X is 0/1, (eq X 0) is X-1. */
4432 else if (STORE_FLAG_VALUE == -1
4433 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4434 && op1 == const0_rtx
4435 && mode == GET_MODE (op0)
4436 && nonzero_bits (op0, mode) == 1)
4438 op0 = expand_compound_operation (op0);
4439 return plus_constant (gen_lowpart (mode, op0), -1);
4442 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4443 one bit that might be nonzero, we can convert (ne x 0) to
4444 (ashift x c) where C puts the bit in the sign bit. Remove any
4445 AND with STORE_FLAG_VALUE when we are done, since we are only
4446 going to test the sign bit. */
4447 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4448 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4449 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4450 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4451 && op1 == const0_rtx
4452 && mode == GET_MODE (op0)
4453 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4455 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4456 expand_compound_operation (op0),
4457 GET_MODE_BITSIZE (mode) - 1 - i);
4458 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4459 return XEXP (x, 0);
4460 else
4461 return x;
4464 /* If the code changed, return a whole new comparison. */
4465 if (new_code != code)
4466 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4468 /* Otherwise, keep this operation, but maybe change its operands.
4469 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4470 SUBST (XEXP (x, 0), op0);
4471 SUBST (XEXP (x, 1), op1);
4473 break;
4475 case IF_THEN_ELSE:
4476 return simplify_if_then_else (x);
4478 case ZERO_EXTRACT:
4479 case SIGN_EXTRACT:
4480 case ZERO_EXTEND:
4481 case SIGN_EXTEND:
4482 /* If we are processing SET_DEST, we are done. */
4483 if (in_dest)
4484 return x;
4486 return expand_compound_operation (x);
4488 case SET:
4489 return simplify_set (x);
4491 case AND:
4492 case IOR:
4493 case XOR:
4494 return simplify_logical (x, last);
4496 case ABS:
4497 /* (abs (neg <foo>)) -> (abs <foo>) */
4498 if (GET_CODE (XEXP (x, 0)) == NEG)
4499 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4501 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4502 do nothing. */
4503 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4504 break;
4506 /* If operand is something known to be positive, ignore the ABS. */
4507 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4508 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4509 <= HOST_BITS_PER_WIDE_INT)
4510 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4511 & ((HOST_WIDE_INT) 1
4512 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4513 == 0)))
4514 return XEXP (x, 0);
4516 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4517 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4518 return gen_rtx_NEG (mode, XEXP (x, 0));
4520 break;
4522 case FFS:
4523 /* (ffs (*_extend <X>)) = (ffs <X>) */
4524 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4525 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4526 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4527 break;
4529 case POPCOUNT:
4530 case PARITY:
4531 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4532 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4533 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4534 break;
4536 case FLOAT:
4537 /* (float (sign_extend <X>)) = (float <X>). */
4538 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4539 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4540 break;
4542 case ASHIFT:
4543 case LSHIFTRT:
4544 case ASHIFTRT:
4545 case ROTATE:
4546 case ROTATERT:
4547 /* If this is a shift by a constant amount, simplify it. */
4548 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4549 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4550 INTVAL (XEXP (x, 1)));
4552 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4553 SUBST (XEXP (x, 1),
4554 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4555 ((HOST_WIDE_INT) 1
4556 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4557 - 1,
4558 NULL_RTX, 0));
4559 break;
4561 case VEC_SELECT:
4563 rtx op0 = XEXP (x, 0);
4564 rtx op1 = XEXP (x, 1);
4565 int len;
4567 if (GET_CODE (op1) != PARALLEL)
4568 abort ();
4569 len = XVECLEN (op1, 0);
4570 if (len == 1
4571 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4572 && GET_CODE (op0) == VEC_CONCAT)
4574 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4576 /* Try to find the element in the VEC_CONCAT. */
4577 for (;;)
4579 if (GET_MODE (op0) == GET_MODE (x))
4580 return op0;
4581 if (GET_CODE (op0) == VEC_CONCAT)
4583 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4584 if (op0_size < offset)
4585 op0 = XEXP (op0, 0);
4586 else
4588 offset -= op0_size;
4589 op0 = XEXP (op0, 1);
4592 else
4593 break;
4598 break;
4600 default:
4601 break;
4604 return x;
4607 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4609 static rtx
4610 simplify_if_then_else (rtx x)
4612 enum machine_mode mode = GET_MODE (x);
4613 rtx cond = XEXP (x, 0);
4614 rtx true_rtx = XEXP (x, 1);
4615 rtx false_rtx = XEXP (x, 2);
4616 enum rtx_code true_code = GET_CODE (cond);
4617 int comparison_p = COMPARISON_P (cond);
4618 rtx temp;
4619 int i;
4620 enum rtx_code false_code;
4621 rtx reversed;
4623 /* Simplify storing of the truth value. */
4624 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4625 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4627 /* Also when the truth value has to be reversed. */
4628 if (comparison_p
4629 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4630 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4631 XEXP (cond, 1))))
4632 return reversed;
4634 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4635 in it is being compared against certain values. Get the true and false
4636 comparisons and see if that says anything about the value of each arm. */
4638 if (comparison_p
4639 && ((false_code = combine_reversed_comparison_code (cond))
4640 != UNKNOWN)
4641 && GET_CODE (XEXP (cond, 0)) == REG)
4643 HOST_WIDE_INT nzb;
4644 rtx from = XEXP (cond, 0);
4645 rtx true_val = XEXP (cond, 1);
4646 rtx false_val = true_val;
4647 int swapped = 0;
4649 /* If FALSE_CODE is EQ, swap the codes and arms. */
4651 if (false_code == EQ)
4653 swapped = 1, true_code = EQ, false_code = NE;
4654 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4657 /* If we are comparing against zero and the expression being tested has
4658 only a single bit that might be nonzero, that is its value when it is
4659 not equal to zero. Similarly if it is known to be -1 or 0. */
4661 if (true_code == EQ && true_val == const0_rtx
4662 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4663 false_code = EQ, false_val = GEN_INT (nzb);
4664 else if (true_code == EQ && true_val == const0_rtx
4665 && (num_sign_bit_copies (from, GET_MODE (from))
4666 == GET_MODE_BITSIZE (GET_MODE (from))))
4667 false_code = EQ, false_val = constm1_rtx;
4669 /* Now simplify an arm if we know the value of the register in the
4670 branch and it is used in the arm. Be careful due to the potential
4671 of locally-shared RTL. */
4673 if (reg_mentioned_p (from, true_rtx))
4674 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4675 from, true_val),
4676 pc_rtx, pc_rtx, 0, 0);
4677 if (reg_mentioned_p (from, false_rtx))
4678 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4679 from, false_val),
4680 pc_rtx, pc_rtx, 0, 0);
4682 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4683 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4685 true_rtx = XEXP (x, 1);
4686 false_rtx = XEXP (x, 2);
4687 true_code = GET_CODE (cond);
4690 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4691 reversed, do so to avoid needing two sets of patterns for
4692 subtract-and-branch insns. Similarly if we have a constant in the true
4693 arm, the false arm is the same as the first operand of the comparison, or
4694 the false arm is more complicated than the true arm. */
4696 if (comparison_p
4697 && combine_reversed_comparison_code (cond) != UNKNOWN
4698 && (true_rtx == pc_rtx
4699 || (CONSTANT_P (true_rtx)
4700 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4701 || true_rtx == const0_rtx
4702 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4703 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4704 && !OBJECT_P (false_rtx))
4705 || reg_mentioned_p (true_rtx, false_rtx)
4706 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4708 true_code = reversed_comparison_code (cond, NULL);
4709 SUBST (XEXP (x, 0),
4710 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4711 XEXP (cond, 1)));
4713 SUBST (XEXP (x, 1), false_rtx);
4714 SUBST (XEXP (x, 2), true_rtx);
4716 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4717 cond = XEXP (x, 0);
4719 /* It is possible that the conditional has been simplified out. */
4720 true_code = GET_CODE (cond);
4721 comparison_p = COMPARISON_P (cond);
4724 /* If the two arms are identical, we don't need the comparison. */
4726 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4727 return true_rtx;
4729 /* Convert a == b ? b : a to "a". */
4730 if (true_code == EQ && ! side_effects_p (cond)
4731 && !HONOR_NANS (mode)
4732 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4733 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4734 return false_rtx;
4735 else if (true_code == NE && ! side_effects_p (cond)
4736 && !HONOR_NANS (mode)
4737 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4738 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4739 return true_rtx;
4741 /* Look for cases where we have (abs x) or (neg (abs X)). */
4743 if (GET_MODE_CLASS (mode) == MODE_INT
4744 && GET_CODE (false_rtx) == NEG
4745 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4746 && comparison_p
4747 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4748 && ! side_effects_p (true_rtx))
4749 switch (true_code)
4751 case GT:
4752 case GE:
4753 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4754 case LT:
4755 case LE:
4756 return
4757 simplify_gen_unary (NEG, mode,
4758 simplify_gen_unary (ABS, mode, true_rtx, mode),
4759 mode);
4760 default:
4761 break;
4764 /* Look for MIN or MAX. */
4766 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4767 && comparison_p
4768 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4769 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4770 && ! side_effects_p (cond))
4771 switch (true_code)
4773 case GE:
4774 case GT:
4775 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4776 case LE:
4777 case LT:
4778 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4779 case GEU:
4780 case GTU:
4781 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4782 case LEU:
4783 case LTU:
4784 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4785 default:
4786 break;
4789 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4790 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4791 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4792 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4793 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4794 neither 1 or -1, but it isn't worth checking for. */
4796 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4797 && comparison_p
4798 && GET_MODE_CLASS (mode) == MODE_INT
4799 && ! side_effects_p (x))
4801 rtx t = make_compound_operation (true_rtx, SET);
4802 rtx f = make_compound_operation (false_rtx, SET);
4803 rtx cond_op0 = XEXP (cond, 0);
4804 rtx cond_op1 = XEXP (cond, 1);
4805 enum rtx_code op = NIL, extend_op = NIL;
4806 enum machine_mode m = mode;
4807 rtx z = 0, c1 = NULL_RTX;
4809 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4810 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4811 || GET_CODE (t) == ASHIFT
4812 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4813 && rtx_equal_p (XEXP (t, 0), f))
4814 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4816 /* If an identity-zero op is commutative, check whether there
4817 would be a match if we swapped the operands. */
4818 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4819 || GET_CODE (t) == XOR)
4820 && rtx_equal_p (XEXP (t, 1), f))
4821 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4822 else if (GET_CODE (t) == SIGN_EXTEND
4823 && (GET_CODE (XEXP (t, 0)) == PLUS
4824 || GET_CODE (XEXP (t, 0)) == MINUS
4825 || GET_CODE (XEXP (t, 0)) == IOR
4826 || GET_CODE (XEXP (t, 0)) == XOR
4827 || GET_CODE (XEXP (t, 0)) == ASHIFT
4828 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4829 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4830 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4831 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4832 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4833 && (num_sign_bit_copies (f, GET_MODE (f))
4834 > (unsigned int)
4835 (GET_MODE_BITSIZE (mode)
4836 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4838 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4839 extend_op = SIGN_EXTEND;
4840 m = GET_MODE (XEXP (t, 0));
4842 else if (GET_CODE (t) == SIGN_EXTEND
4843 && (GET_CODE (XEXP (t, 0)) == PLUS
4844 || GET_CODE (XEXP (t, 0)) == IOR
4845 || GET_CODE (XEXP (t, 0)) == XOR)
4846 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4847 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4848 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4849 && (num_sign_bit_copies (f, GET_MODE (f))
4850 > (unsigned int)
4851 (GET_MODE_BITSIZE (mode)
4852 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4854 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4855 extend_op = SIGN_EXTEND;
4856 m = GET_MODE (XEXP (t, 0));
4858 else if (GET_CODE (t) == ZERO_EXTEND
4859 && (GET_CODE (XEXP (t, 0)) == PLUS
4860 || GET_CODE (XEXP (t, 0)) == MINUS
4861 || GET_CODE (XEXP (t, 0)) == IOR
4862 || GET_CODE (XEXP (t, 0)) == XOR
4863 || GET_CODE (XEXP (t, 0)) == ASHIFT
4864 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4865 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4866 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4867 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4868 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4869 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4870 && ((nonzero_bits (f, GET_MODE (f))
4871 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4872 == 0))
4874 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4875 extend_op = ZERO_EXTEND;
4876 m = GET_MODE (XEXP (t, 0));
4878 else if (GET_CODE (t) == ZERO_EXTEND
4879 && (GET_CODE (XEXP (t, 0)) == PLUS
4880 || GET_CODE (XEXP (t, 0)) == IOR
4881 || GET_CODE (XEXP (t, 0)) == XOR)
4882 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4883 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4884 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4885 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4886 && ((nonzero_bits (f, GET_MODE (f))
4887 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4888 == 0))
4890 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4891 extend_op = ZERO_EXTEND;
4892 m = GET_MODE (XEXP (t, 0));
4895 if (z)
4897 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4898 pc_rtx, pc_rtx, 0, 0);
4899 temp = gen_binary (MULT, m, temp,
4900 gen_binary (MULT, m, c1, const_true_rtx));
4901 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4902 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
4904 if (extend_op != NIL)
4905 temp = simplify_gen_unary (extend_op, mode, temp, m);
4907 return temp;
4911 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4912 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4913 negation of a single bit, we can convert this operation to a shift. We
4914 can actually do this more generally, but it doesn't seem worth it. */
4916 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4917 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4918 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4919 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4920 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4921 == GET_MODE_BITSIZE (mode))
4922 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4923 return
4924 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4925 gen_lowpart (mode, XEXP (cond, 0)), i);
4927 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
4928 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4929 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4930 && GET_MODE (XEXP (cond, 0)) == mode
4931 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
4932 == nonzero_bits (XEXP (cond, 0), mode)
4933 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
4934 return XEXP (cond, 0);
4936 return x;
4939 /* Simplify X, a SET expression. Return the new expression. */
4941 static rtx
4942 simplify_set (rtx x)
4944 rtx src = SET_SRC (x);
4945 rtx dest = SET_DEST (x);
4946 enum machine_mode mode
4947 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4948 rtx other_insn;
4949 rtx *cc_use;
4951 /* (set (pc) (return)) gets written as (return). */
4952 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4953 return src;
4955 /* Now that we know for sure which bits of SRC we are using, see if we can
4956 simplify the expression for the object knowing that we only need the
4957 low-order bits. */
4959 if (GET_MODE_CLASS (mode) == MODE_INT
4960 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4962 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4963 SUBST (SET_SRC (x), src);
4966 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4967 the comparison result and try to simplify it unless we already have used
4968 undobuf.other_insn. */
4969 if ((GET_MODE_CLASS (mode) == MODE_CC
4970 || GET_CODE (src) == COMPARE
4971 || CC0_P (dest))
4972 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4973 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4974 && COMPARISON_P (*cc_use)
4975 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4977 enum rtx_code old_code = GET_CODE (*cc_use);
4978 enum rtx_code new_code;
4979 rtx op0, op1, tmp;
4980 int other_changed = 0;
4981 enum machine_mode compare_mode = GET_MODE (dest);
4982 enum machine_mode tmp_mode;
4984 if (GET_CODE (src) == COMPARE)
4985 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4986 else
4987 op0 = src, op1 = const0_rtx;
4989 /* Check whether the comparison is known at compile time. */
4990 if (GET_MODE (op0) != VOIDmode)
4991 tmp_mode = GET_MODE (op0);
4992 else if (GET_MODE (op1) != VOIDmode)
4993 tmp_mode = GET_MODE (op1);
4994 else
4995 tmp_mode = compare_mode;
4996 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
4997 if (tmp != NULL_RTX)
4999 rtx pat = PATTERN (other_insn);
5000 undobuf.other_insn = other_insn;
5001 SUBST (*cc_use, tmp);
5003 /* Attempt to simplify CC user. */
5004 if (GET_CODE (pat) == SET)
5006 rtx new = simplify_rtx (SET_SRC (pat));
5007 if (new != NULL_RTX)
5008 SUBST (SET_SRC (pat), new);
5011 /* Convert X into a no-op move. */
5012 SUBST (SET_DEST (x), pc_rtx);
5013 SUBST (SET_SRC (x), pc_rtx);
5014 return x;
5017 /* Simplify our comparison, if possible. */
5018 new_code = simplify_comparison (old_code, &op0, &op1);
5020 #ifdef SELECT_CC_MODE
5021 /* If this machine has CC modes other than CCmode, check to see if we
5022 need to use a different CC mode here. */
5023 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5025 #ifndef HAVE_cc0
5026 /* If the mode changed, we have to change SET_DEST, the mode in the
5027 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5028 a hard register, just build new versions with the proper mode. If it
5029 is a pseudo, we lose unless it is only time we set the pseudo, in
5030 which case we can safely change its mode. */
5031 if (compare_mode != GET_MODE (dest))
5033 unsigned int regno = REGNO (dest);
5034 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5036 if (regno < FIRST_PSEUDO_REGISTER
5037 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5039 if (regno >= FIRST_PSEUDO_REGISTER)
5040 SUBST (regno_reg_rtx[regno], new_dest);
5042 SUBST (SET_DEST (x), new_dest);
5043 SUBST (XEXP (*cc_use, 0), new_dest);
5044 other_changed = 1;
5046 dest = new_dest;
5049 #endif /* cc0 */
5050 #endif /* SELECT_CC_MODE */
5052 /* If the code changed, we have to build a new comparison in
5053 undobuf.other_insn. */
5054 if (new_code != old_code)
5056 int other_changed_previously = other_changed;
5057 unsigned HOST_WIDE_INT mask;
5059 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5060 dest, const0_rtx));
5061 other_changed = 1;
5063 /* If the only change we made was to change an EQ into an NE or
5064 vice versa, OP0 has only one bit that might be nonzero, and OP1
5065 is zero, check if changing the user of the condition code will
5066 produce a valid insn. If it won't, we can keep the original code
5067 in that insn by surrounding our operation with an XOR. */
5069 if (((old_code == NE && new_code == EQ)
5070 || (old_code == EQ && new_code == NE))
5071 && ! other_changed_previously && op1 == const0_rtx
5072 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5073 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5075 rtx pat = PATTERN (other_insn), note = 0;
5077 if ((recog_for_combine (&pat, other_insn, &note) < 0
5078 && ! check_asm_operands (pat)))
5080 PUT_CODE (*cc_use, old_code);
5081 other_changed = 0;
5083 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5088 if (other_changed)
5089 undobuf.other_insn = other_insn;
5091 #ifdef HAVE_cc0
5092 /* If we are now comparing against zero, change our source if
5093 needed. If we do not use cc0, we always have a COMPARE. */
5094 if (op1 == const0_rtx && dest == cc0_rtx)
5096 SUBST (SET_SRC (x), op0);
5097 src = op0;
5099 else
5100 #endif
5102 /* Otherwise, if we didn't previously have a COMPARE in the
5103 correct mode, we need one. */
5104 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5106 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5107 src = SET_SRC (x);
5109 else
5111 /* Otherwise, update the COMPARE if needed. */
5112 SUBST (XEXP (src, 0), op0);
5113 SUBST (XEXP (src, 1), op1);
5116 else
5118 /* Get SET_SRC in a form where we have placed back any
5119 compound expressions. Then do the checks below. */
5120 src = make_compound_operation (src, SET);
5121 SUBST (SET_SRC (x), src);
5124 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5125 and X being a REG or (subreg (reg)), we may be able to convert this to
5126 (set (subreg:m2 x) (op)).
5128 We can always do this if M1 is narrower than M2 because that means that
5129 we only care about the low bits of the result.
5131 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5132 perform a narrower operation than requested since the high-order bits will
5133 be undefined. On machine where it is defined, this transformation is safe
5134 as long as M1 and M2 have the same number of words. */
5136 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5137 && !OBJECT_P (SUBREG_REG (src))
5138 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5139 / UNITS_PER_WORD)
5140 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5141 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5142 #ifndef WORD_REGISTER_OPERATIONS
5143 && (GET_MODE_SIZE (GET_MODE (src))
5144 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5145 #endif
5146 #ifdef CANNOT_CHANGE_MODE_CLASS
5147 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5148 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5149 GET_MODE (SUBREG_REG (src)),
5150 GET_MODE (src)))
5151 #endif
5152 && (GET_CODE (dest) == REG
5153 || (GET_CODE (dest) == SUBREG
5154 && GET_CODE (SUBREG_REG (dest)) == REG)))
5156 SUBST (SET_DEST (x),
5157 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5158 dest));
5159 SUBST (SET_SRC (x), SUBREG_REG (src));
5161 src = SET_SRC (x), dest = SET_DEST (x);
5164 #ifdef HAVE_cc0
5165 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5166 in SRC. */
5167 if (dest == cc0_rtx
5168 && GET_CODE (src) == SUBREG
5169 && subreg_lowpart_p (src)
5170 && (GET_MODE_BITSIZE (GET_MODE (src))
5171 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5173 rtx inner = SUBREG_REG (src);
5174 enum machine_mode inner_mode = GET_MODE (inner);
5176 /* Here we make sure that we don't have a sign bit on. */
5177 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5178 && (nonzero_bits (inner, inner_mode)
5179 < ((unsigned HOST_WIDE_INT) 1
5180 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5182 SUBST (SET_SRC (x), inner);
5183 src = SET_SRC (x);
5186 #endif
5188 #ifdef LOAD_EXTEND_OP
5189 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5190 would require a paradoxical subreg. Replace the subreg with a
5191 zero_extend to avoid the reload that would otherwise be required. */
5193 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5194 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5195 && SUBREG_BYTE (src) == 0
5196 && (GET_MODE_SIZE (GET_MODE (src))
5197 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5198 && GET_CODE (SUBREG_REG (src)) == MEM)
5200 SUBST (SET_SRC (x),
5201 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5202 GET_MODE (src), SUBREG_REG (src)));
5204 src = SET_SRC (x);
5206 #endif
5208 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5209 are comparing an item known to be 0 or -1 against 0, use a logical
5210 operation instead. Check for one of the arms being an IOR of the other
5211 arm with some value. We compute three terms to be IOR'ed together. In
5212 practice, at most two will be nonzero. Then we do the IOR's. */
5214 if (GET_CODE (dest) != PC
5215 && GET_CODE (src) == IF_THEN_ELSE
5216 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5217 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5218 && XEXP (XEXP (src, 0), 1) == const0_rtx
5219 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5220 #ifdef HAVE_conditional_move
5221 && ! can_conditionally_move_p (GET_MODE (src))
5222 #endif
5223 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5224 GET_MODE (XEXP (XEXP (src, 0), 0)))
5225 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5226 && ! side_effects_p (src))
5228 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5229 ? XEXP (src, 1) : XEXP (src, 2));
5230 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5231 ? XEXP (src, 2) : XEXP (src, 1));
5232 rtx term1 = const0_rtx, term2, term3;
5234 if (GET_CODE (true_rtx) == IOR
5235 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5236 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5237 else if (GET_CODE (true_rtx) == IOR
5238 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5239 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5240 else if (GET_CODE (false_rtx) == IOR
5241 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5242 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5243 else if (GET_CODE (false_rtx) == IOR
5244 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5245 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5247 term2 = gen_binary (AND, GET_MODE (src),
5248 XEXP (XEXP (src, 0), 0), true_rtx);
5249 term3 = gen_binary (AND, GET_MODE (src),
5250 simplify_gen_unary (NOT, GET_MODE (src),
5251 XEXP (XEXP (src, 0), 0),
5252 GET_MODE (src)),
5253 false_rtx);
5255 SUBST (SET_SRC (x),
5256 gen_binary (IOR, GET_MODE (src),
5257 gen_binary (IOR, GET_MODE (src), term1, term2),
5258 term3));
5260 src = SET_SRC (x);
5263 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5264 whole thing fail. */
5265 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5266 return src;
5267 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5268 return dest;
5269 else
5270 /* Convert this into a field assignment operation, if possible. */
5271 return make_field_assignment (x);
5274 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5275 result. LAST is nonzero if this is the last retry. */
5277 static rtx
5278 simplify_logical (rtx x, int last)
5280 enum machine_mode mode = GET_MODE (x);
5281 rtx op0 = XEXP (x, 0);
5282 rtx op1 = XEXP (x, 1);
5283 rtx reversed;
5285 switch (GET_CODE (x))
5287 case AND:
5288 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5289 insn (and may simplify more). */
5290 if (GET_CODE (op0) == XOR
5291 && rtx_equal_p (XEXP (op0, 0), op1)
5292 && ! side_effects_p (op1))
5293 x = gen_binary (AND, mode,
5294 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5295 op1);
5297 if (GET_CODE (op0) == XOR
5298 && rtx_equal_p (XEXP (op0, 1), op1)
5299 && ! side_effects_p (op1))
5300 x = gen_binary (AND, mode,
5301 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5302 op1);
5304 /* Similarly for (~(A ^ B)) & A. */
5305 if (GET_CODE (op0) == NOT
5306 && GET_CODE (XEXP (op0, 0)) == XOR
5307 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5308 && ! side_effects_p (op1))
5309 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5311 if (GET_CODE (op0) == NOT
5312 && GET_CODE (XEXP (op0, 0)) == XOR
5313 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5314 && ! side_effects_p (op1))
5315 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5317 /* We can call simplify_and_const_int only if we don't lose
5318 any (sign) bits when converting INTVAL (op1) to
5319 "unsigned HOST_WIDE_INT". */
5320 if (GET_CODE (op1) == CONST_INT
5321 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5322 || INTVAL (op1) > 0))
5324 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5326 /* If we have (ior (and (X C1) C2)) and the next restart would be
5327 the last, simplify this by making C1 as small as possible
5328 and then exit. */
5329 if (last
5330 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5331 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5332 && GET_CODE (op1) == CONST_INT)
5333 return gen_binary (IOR, mode,
5334 gen_binary (AND, mode, XEXP (op0, 0),
5335 GEN_INT (INTVAL (XEXP (op0, 1))
5336 & ~INTVAL (op1))), op1);
5338 if (GET_CODE (x) != AND)
5339 return x;
5341 op0 = XEXP (x, 0);
5342 op1 = XEXP (x, 1);
5345 /* Convert (A | B) & A to A. */
5346 if (GET_CODE (op0) == IOR
5347 && (rtx_equal_p (XEXP (op0, 0), op1)
5348 || rtx_equal_p (XEXP (op0, 1), op1))
5349 && ! side_effects_p (XEXP (op0, 0))
5350 && ! side_effects_p (XEXP (op0, 1)))
5351 return op1;
5353 /* In the following group of tests (and those in case IOR below),
5354 we start with some combination of logical operations and apply
5355 the distributive law followed by the inverse distributive law.
5356 Most of the time, this results in no change. However, if some of
5357 the operands are the same or inverses of each other, simplifications
5358 will result.
5360 For example, (and (ior A B) (not B)) can occur as the result of
5361 expanding a bit field assignment. When we apply the distributive
5362 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5363 which then simplifies to (and (A (not B))).
5365 If we have (and (ior A B) C), apply the distributive law and then
5366 the inverse distributive law to see if things simplify. */
5368 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5370 x = apply_distributive_law
5371 (gen_binary (GET_CODE (op0), mode,
5372 gen_binary (AND, mode, XEXP (op0, 0), op1),
5373 gen_binary (AND, mode, XEXP (op0, 1),
5374 copy_rtx (op1))));
5375 if (GET_CODE (x) != AND)
5376 return x;
5379 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5380 return apply_distributive_law
5381 (gen_binary (GET_CODE (op1), mode,
5382 gen_binary (AND, mode, XEXP (op1, 0), op0),
5383 gen_binary (AND, mode, XEXP (op1, 1),
5384 copy_rtx (op0))));
5386 /* Similarly, taking advantage of the fact that
5387 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5389 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5390 return apply_distributive_law
5391 (gen_binary (XOR, mode,
5392 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5393 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5394 XEXP (op1, 1))));
5396 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5397 return apply_distributive_law
5398 (gen_binary (XOR, mode,
5399 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5400 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5401 break;
5403 case IOR:
5404 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5405 if (GET_CODE (op1) == CONST_INT
5406 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5407 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5408 return op1;
5410 /* Convert (A & B) | A to A. */
5411 if (GET_CODE (op0) == AND
5412 && (rtx_equal_p (XEXP (op0, 0), op1)
5413 || rtx_equal_p (XEXP (op0, 1), op1))
5414 && ! side_effects_p (XEXP (op0, 0))
5415 && ! side_effects_p (XEXP (op0, 1)))
5416 return op1;
5418 /* If we have (ior (and A B) C), apply the distributive law and then
5419 the inverse distributive law to see if things simplify. */
5421 if (GET_CODE (op0) == AND)
5423 x = apply_distributive_law
5424 (gen_binary (AND, mode,
5425 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5426 gen_binary (IOR, mode, XEXP (op0, 1),
5427 copy_rtx (op1))));
5429 if (GET_CODE (x) != IOR)
5430 return x;
5433 if (GET_CODE (op1) == AND)
5435 x = apply_distributive_law
5436 (gen_binary (AND, mode,
5437 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5438 gen_binary (IOR, mode, XEXP (op1, 1),
5439 copy_rtx (op0))));
5441 if (GET_CODE (x) != IOR)
5442 return x;
5445 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5446 mode size to (rotate A CX). */
5448 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5449 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5450 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5451 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5452 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5453 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5454 == GET_MODE_BITSIZE (mode)))
5455 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5456 (GET_CODE (op0) == ASHIFT
5457 ? XEXP (op0, 1) : XEXP (op1, 1)));
5459 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5460 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5461 does not affect any of the bits in OP1, it can really be done
5462 as a PLUS and we can associate. We do this by seeing if OP1
5463 can be safely shifted left C bits. */
5464 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5465 && GET_CODE (XEXP (op0, 0)) == PLUS
5466 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5467 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5468 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5470 int count = INTVAL (XEXP (op0, 1));
5471 HOST_WIDE_INT mask = INTVAL (op1) << count;
5473 if (mask >> count == INTVAL (op1)
5474 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5476 SUBST (XEXP (XEXP (op0, 0), 1),
5477 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5478 return op0;
5481 break;
5483 case XOR:
5484 /* If we are XORing two things that have no bits in common,
5485 convert them into an IOR. This helps to detect rotation encoded
5486 using those methods and possibly other simplifications. */
5488 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5489 && (nonzero_bits (op0, mode)
5490 & nonzero_bits (op1, mode)) == 0)
5491 return (gen_binary (IOR, mode, op0, op1));
5493 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5494 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5495 (NOT y). */
5497 int num_negated = 0;
5499 if (GET_CODE (op0) == NOT)
5500 num_negated++, op0 = XEXP (op0, 0);
5501 if (GET_CODE (op1) == NOT)
5502 num_negated++, op1 = XEXP (op1, 0);
5504 if (num_negated == 2)
5506 SUBST (XEXP (x, 0), op0);
5507 SUBST (XEXP (x, 1), op1);
5509 else if (num_negated == 1)
5510 return
5511 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5512 mode);
5515 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5516 correspond to a machine insn or result in further simplifications
5517 if B is a constant. */
5519 if (GET_CODE (op0) == AND
5520 && rtx_equal_p (XEXP (op0, 1), op1)
5521 && ! side_effects_p (op1))
5522 return gen_binary (AND, mode,
5523 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5524 op1);
5526 else if (GET_CODE (op0) == AND
5527 && rtx_equal_p (XEXP (op0, 0), op1)
5528 && ! side_effects_p (op1))
5529 return gen_binary (AND, mode,
5530 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5531 op1);
5533 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5534 comparison if STORE_FLAG_VALUE is 1. */
5535 if (STORE_FLAG_VALUE == 1
5536 && op1 == const1_rtx
5537 && COMPARISON_P (op0)
5538 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5539 XEXP (op0, 1))))
5540 return reversed;
5542 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5543 is (lt foo (const_int 0)), so we can perform the above
5544 simplification if STORE_FLAG_VALUE is 1. */
5546 if (STORE_FLAG_VALUE == 1
5547 && op1 == const1_rtx
5548 && GET_CODE (op0) == LSHIFTRT
5549 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5550 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5551 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5553 /* (xor (comparison foo bar) (const_int sign-bit))
5554 when STORE_FLAG_VALUE is the sign bit. */
5555 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5556 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5557 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5558 && op1 == const_true_rtx
5559 && COMPARISON_P (op0)
5560 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5561 XEXP (op0, 1))))
5562 return reversed;
5564 break;
5566 default:
5567 abort ();
5570 return x;
5573 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5574 operations" because they can be replaced with two more basic operations.
5575 ZERO_EXTEND is also considered "compound" because it can be replaced with
5576 an AND operation, which is simpler, though only one operation.
5578 The function expand_compound_operation is called with an rtx expression
5579 and will convert it to the appropriate shifts and AND operations,
5580 simplifying at each stage.
5582 The function make_compound_operation is called to convert an expression
5583 consisting of shifts and ANDs into the equivalent compound expression.
5584 It is the inverse of this function, loosely speaking. */
5586 static rtx
5587 expand_compound_operation (rtx x)
5589 unsigned HOST_WIDE_INT pos = 0, len;
5590 int unsignedp = 0;
5591 unsigned int modewidth;
5592 rtx tem;
5594 switch (GET_CODE (x))
5596 case ZERO_EXTEND:
5597 unsignedp = 1;
5598 case SIGN_EXTEND:
5599 /* We can't necessarily use a const_int for a multiword mode;
5600 it depends on implicitly extending the value.
5601 Since we don't know the right way to extend it,
5602 we can't tell whether the implicit way is right.
5604 Even for a mode that is no wider than a const_int,
5605 we can't win, because we need to sign extend one of its bits through
5606 the rest of it, and we don't know which bit. */
5607 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5608 return x;
5610 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5611 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5612 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5613 reloaded. If not for that, MEM's would very rarely be safe.
5615 Reject MODEs bigger than a word, because we might not be able
5616 to reference a two-register group starting with an arbitrary register
5617 (and currently gen_lowpart might crash for a SUBREG). */
5619 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5620 return x;
5622 /* Reject MODEs that aren't scalar integers because turning vector
5623 or complex modes into shifts causes problems. */
5625 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5626 return x;
5628 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5629 /* If the inner object has VOIDmode (the only way this can happen
5630 is if it is an ASM_OPERANDS), we can't do anything since we don't
5631 know how much masking to do. */
5632 if (len == 0)
5633 return x;
5635 break;
5637 case ZERO_EXTRACT:
5638 unsignedp = 1;
5639 case SIGN_EXTRACT:
5640 /* If the operand is a CLOBBER, just return it. */
5641 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5642 return XEXP (x, 0);
5644 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5645 || GET_CODE (XEXP (x, 2)) != CONST_INT
5646 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5647 return x;
5649 /* Reject MODEs that aren't scalar integers because turning vector
5650 or complex modes into shifts causes problems. */
5652 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5653 return x;
5655 len = INTVAL (XEXP (x, 1));
5656 pos = INTVAL (XEXP (x, 2));
5658 /* If this goes outside the object being extracted, replace the object
5659 with a (use (mem ...)) construct that only combine understands
5660 and is used only for this purpose. */
5661 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5662 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5664 if (BITS_BIG_ENDIAN)
5665 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5667 break;
5669 default:
5670 return x;
5672 /* Convert sign extension to zero extension, if we know that the high
5673 bit is not set, as this is easier to optimize. It will be converted
5674 back to cheaper alternative in make_extraction. */
5675 if (GET_CODE (x) == SIGN_EXTEND
5676 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5677 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5678 & ~(((unsigned HOST_WIDE_INT)
5679 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5680 >> 1))
5681 == 0)))
5683 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5684 rtx temp2 = expand_compound_operation (temp);
5686 /* Make sure this is a profitable operation. */
5687 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5688 return temp2;
5689 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5690 return temp;
5691 else
5692 return x;
5695 /* We can optimize some special cases of ZERO_EXTEND. */
5696 if (GET_CODE (x) == ZERO_EXTEND)
5698 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5699 know that the last value didn't have any inappropriate bits
5700 set. */
5701 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5702 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5703 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5704 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5705 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5706 return XEXP (XEXP (x, 0), 0);
5708 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5709 if (GET_CODE (XEXP (x, 0)) == SUBREG
5710 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5711 && subreg_lowpart_p (XEXP (x, 0))
5712 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5713 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5714 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5715 return SUBREG_REG (XEXP (x, 0));
5717 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5718 is a comparison and STORE_FLAG_VALUE permits. This is like
5719 the first case, but it works even when GET_MODE (x) is larger
5720 than HOST_WIDE_INT. */
5721 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5722 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5723 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5724 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5725 <= HOST_BITS_PER_WIDE_INT)
5726 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5727 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5728 return XEXP (XEXP (x, 0), 0);
5730 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5731 if (GET_CODE (XEXP (x, 0)) == SUBREG
5732 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5733 && subreg_lowpart_p (XEXP (x, 0))
5734 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5735 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5736 <= HOST_BITS_PER_WIDE_INT)
5737 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5738 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5739 return SUBREG_REG (XEXP (x, 0));
5743 /* If we reach here, we want to return a pair of shifts. The inner
5744 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5745 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5746 logical depending on the value of UNSIGNEDP.
5748 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5749 converted into an AND of a shift.
5751 We must check for the case where the left shift would have a negative
5752 count. This can happen in a case like (x >> 31) & 255 on machines
5753 that can't shift by a constant. On those machines, we would first
5754 combine the shift with the AND to produce a variable-position
5755 extraction. Then the constant of 31 would be substituted in to produce
5756 a such a position. */
5758 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5759 if (modewidth + len >= pos)
5760 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5761 GET_MODE (x),
5762 simplify_shift_const (NULL_RTX, ASHIFT,
5763 GET_MODE (x),
5764 XEXP (x, 0),
5765 modewidth - pos - len),
5766 modewidth - len);
5768 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5769 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5770 simplify_shift_const (NULL_RTX, LSHIFTRT,
5771 GET_MODE (x),
5772 XEXP (x, 0), pos),
5773 ((HOST_WIDE_INT) 1 << len) - 1);
5774 else
5775 /* Any other cases we can't handle. */
5776 return x;
5778 /* If we couldn't do this for some reason, return the original
5779 expression. */
5780 if (GET_CODE (tem) == CLOBBER)
5781 return x;
5783 return tem;
5786 /* X is a SET which contains an assignment of one object into
5787 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5788 or certain SUBREGS). If possible, convert it into a series of
5789 logical operations.
5791 We half-heartedly support variable positions, but do not at all
5792 support variable lengths. */
5794 static rtx
5795 expand_field_assignment (rtx x)
5797 rtx inner;
5798 rtx pos; /* Always counts from low bit. */
5799 int len;
5800 rtx mask;
5801 enum machine_mode compute_mode;
5803 /* Loop until we find something we can't simplify. */
5804 while (1)
5806 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5807 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5809 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5810 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5811 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5813 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5814 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5816 inner = XEXP (SET_DEST (x), 0);
5817 len = INTVAL (XEXP (SET_DEST (x), 1));
5818 pos = XEXP (SET_DEST (x), 2);
5820 /* If the position is constant and spans the width of INNER,
5821 surround INNER with a USE to indicate this. */
5822 if (GET_CODE (pos) == CONST_INT
5823 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5824 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5826 if (BITS_BIG_ENDIAN)
5828 if (GET_CODE (pos) == CONST_INT)
5829 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5830 - INTVAL (pos));
5831 else if (GET_CODE (pos) == MINUS
5832 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5833 && (INTVAL (XEXP (pos, 1))
5834 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5835 /* If position is ADJUST - X, new position is X. */
5836 pos = XEXP (pos, 0);
5837 else
5838 pos = gen_binary (MINUS, GET_MODE (pos),
5839 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5840 - len),
5841 pos);
5845 /* A SUBREG between two modes that occupy the same numbers of words
5846 can be done by moving the SUBREG to the source. */
5847 else if (GET_CODE (SET_DEST (x)) == SUBREG
5848 /* We need SUBREGs to compute nonzero_bits properly. */
5849 && nonzero_sign_valid
5850 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5851 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5852 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5853 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5855 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5856 gen_lowpart
5857 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5858 SET_SRC (x)));
5859 continue;
5861 else
5862 break;
5864 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5865 inner = SUBREG_REG (inner);
5867 compute_mode = GET_MODE (inner);
5869 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5870 if (! SCALAR_INT_MODE_P (compute_mode))
5872 enum machine_mode imode;
5874 /* Don't do anything for vector or complex integral types. */
5875 if (! FLOAT_MODE_P (compute_mode))
5876 break;
5878 /* Try to find an integral mode to pun with. */
5879 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5880 if (imode == BLKmode)
5881 break;
5883 compute_mode = imode;
5884 inner = gen_lowpart (imode, inner);
5887 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5888 if (len < HOST_BITS_PER_WIDE_INT)
5889 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5890 else
5891 break;
5893 /* Now compute the equivalent expression. Make a copy of INNER
5894 for the SET_DEST in case it is a MEM into which we will substitute;
5895 we don't want shared RTL in that case. */
5896 x = gen_rtx_SET
5897 (VOIDmode, copy_rtx (inner),
5898 gen_binary (IOR, compute_mode,
5899 gen_binary (AND, compute_mode,
5900 simplify_gen_unary (NOT, compute_mode,
5901 gen_binary (ASHIFT,
5902 compute_mode,
5903 mask, pos),
5904 compute_mode),
5905 inner),
5906 gen_binary (ASHIFT, compute_mode,
5907 gen_binary (AND, compute_mode,
5908 gen_lowpart
5909 (compute_mode, SET_SRC (x)),
5910 mask),
5911 pos)));
5914 return x;
5917 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5918 it is an RTX that represents a variable starting position; otherwise,
5919 POS is the (constant) starting bit position (counted from the LSB).
5921 INNER may be a USE. This will occur when we started with a bitfield
5922 that went outside the boundary of the object in memory, which is
5923 allowed on most machines. To isolate this case, we produce a USE
5924 whose mode is wide enough and surround the MEM with it. The only
5925 code that understands the USE is this routine. If it is not removed,
5926 it will cause the resulting insn not to match.
5928 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5929 signed reference.
5931 IN_DEST is nonzero if this is a reference in the destination of a
5932 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5933 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5934 be used.
5936 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5937 ZERO_EXTRACT should be built even for bits starting at bit 0.
5939 MODE is the desired mode of the result (if IN_DEST == 0).
5941 The result is an RTX for the extraction or NULL_RTX if the target
5942 can't handle it. */
5944 static rtx
5945 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5946 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5947 int in_dest, int in_compare)
5949 /* This mode describes the size of the storage area
5950 to fetch the overall value from. Within that, we
5951 ignore the POS lowest bits, etc. */
5952 enum machine_mode is_mode = GET_MODE (inner);
5953 enum machine_mode inner_mode;
5954 enum machine_mode wanted_inner_mode = byte_mode;
5955 enum machine_mode wanted_inner_reg_mode = word_mode;
5956 enum machine_mode pos_mode = word_mode;
5957 enum machine_mode extraction_mode = word_mode;
5958 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5959 int spans_byte = 0;
5960 rtx new = 0;
5961 rtx orig_pos_rtx = pos_rtx;
5962 HOST_WIDE_INT orig_pos;
5964 /* Get some information about INNER and get the innermost object. */
5965 if (GET_CODE (inner) == USE)
5966 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5967 /* We don't need to adjust the position because we set up the USE
5968 to pretend that it was a full-word object. */
5969 spans_byte = 1, inner = XEXP (inner, 0);
5970 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5972 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5973 consider just the QI as the memory to extract from.
5974 The subreg adds or removes high bits; its mode is
5975 irrelevant to the meaning of this extraction,
5976 since POS and LEN count from the lsb. */
5977 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5978 is_mode = GET_MODE (SUBREG_REG (inner));
5979 inner = SUBREG_REG (inner);
5981 else if (GET_CODE (inner) == ASHIFT
5982 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5983 && pos_rtx == 0 && pos == 0
5984 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5986 /* We're extracting the least significant bits of an rtx
5987 (ashift X (const_int C)), where LEN > C. Extract the
5988 least significant (LEN - C) bits of X, giving an rtx
5989 whose mode is MODE, then shift it left C times. */
5990 new = make_extraction (mode, XEXP (inner, 0),
5991 0, 0, len - INTVAL (XEXP (inner, 1)),
5992 unsignedp, in_dest, in_compare);
5993 if (new != 0)
5994 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5997 inner_mode = GET_MODE (inner);
5999 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6000 pos = INTVAL (pos_rtx), pos_rtx = 0;
6002 /* See if this can be done without an extraction. We never can if the
6003 width of the field is not the same as that of some integer mode. For
6004 registers, we can only avoid the extraction if the position is at the
6005 low-order bit and this is either not in the destination or we have the
6006 appropriate STRICT_LOW_PART operation available.
6008 For MEM, we can avoid an extract if the field starts on an appropriate
6009 boundary and we can change the mode of the memory reference. However,
6010 we cannot directly access the MEM if we have a USE and the underlying
6011 MEM is not TMODE. This combination means that MEM was being used in a
6012 context where bits outside its mode were being referenced; that is only
6013 valid in bit-field insns. */
6015 if (tmode != BLKmode
6016 && ! (spans_byte && inner_mode != tmode)
6017 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6018 && GET_CODE (inner) != MEM
6019 && (! in_dest
6020 || (GET_CODE (inner) == REG
6021 && have_insn_for (STRICT_LOW_PART, tmode))))
6022 || (GET_CODE (inner) == MEM && pos_rtx == 0
6023 && (pos
6024 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6025 : BITS_PER_UNIT)) == 0
6026 /* We can't do this if we are widening INNER_MODE (it
6027 may not be aligned, for one thing). */
6028 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6029 && (inner_mode == tmode
6030 || (! mode_dependent_address_p (XEXP (inner, 0))
6031 && ! MEM_VOLATILE_P (inner))))))
6033 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6034 field. If the original and current mode are the same, we need not
6035 adjust the offset. Otherwise, we do if bytes big endian.
6037 If INNER is not a MEM, get a piece consisting of just the field
6038 of interest (in this case POS % BITS_PER_WORD must be 0). */
6040 if (GET_CODE (inner) == MEM)
6042 HOST_WIDE_INT offset;
6044 /* POS counts from lsb, but make OFFSET count in memory order. */
6045 if (BYTES_BIG_ENDIAN)
6046 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6047 else
6048 offset = pos / BITS_PER_UNIT;
6050 new = adjust_address_nv (inner, tmode, offset);
6052 else if (GET_CODE (inner) == REG)
6054 if (tmode != inner_mode)
6056 /* We can't call gen_lowpart in a DEST since we
6057 always want a SUBREG (see below) and it would sometimes
6058 return a new hard register. */
6059 if (pos || in_dest)
6061 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6063 if (WORDS_BIG_ENDIAN
6064 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6065 final_word = ((GET_MODE_SIZE (inner_mode)
6066 - GET_MODE_SIZE (tmode))
6067 / UNITS_PER_WORD) - final_word;
6069 final_word *= UNITS_PER_WORD;
6070 if (BYTES_BIG_ENDIAN &&
6071 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6072 final_word += (GET_MODE_SIZE (inner_mode)
6073 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6075 /* Avoid creating invalid subregs, for example when
6076 simplifying (x>>32)&255. */
6077 if (final_word >= GET_MODE_SIZE (inner_mode))
6078 return NULL_RTX;
6080 new = gen_rtx_SUBREG (tmode, inner, final_word);
6082 else
6083 new = gen_lowpart (tmode, inner);
6085 else
6086 new = inner;
6088 else
6089 new = force_to_mode (inner, tmode,
6090 len >= HOST_BITS_PER_WIDE_INT
6091 ? ~(unsigned HOST_WIDE_INT) 0
6092 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6093 NULL_RTX, 0);
6095 /* If this extraction is going into the destination of a SET,
6096 make a STRICT_LOW_PART unless we made a MEM. */
6098 if (in_dest)
6099 return (GET_CODE (new) == MEM ? new
6100 : (GET_CODE (new) != SUBREG
6101 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6102 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6104 if (mode == tmode)
6105 return new;
6107 if (GET_CODE (new) == CONST_INT)
6108 return gen_int_mode (INTVAL (new), mode);
6110 /* If we know that no extraneous bits are set, and that the high
6111 bit is not set, convert the extraction to the cheaper of
6112 sign and zero extension, that are equivalent in these cases. */
6113 if (flag_expensive_optimizations
6114 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6115 && ((nonzero_bits (new, tmode)
6116 & ~(((unsigned HOST_WIDE_INT)
6117 GET_MODE_MASK (tmode))
6118 >> 1))
6119 == 0)))
6121 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6122 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6124 /* Prefer ZERO_EXTENSION, since it gives more information to
6125 backends. */
6126 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6127 return temp;
6128 return temp1;
6131 /* Otherwise, sign- or zero-extend unless we already are in the
6132 proper mode. */
6134 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6135 mode, new));
6138 /* Unless this is a COMPARE or we have a funny memory reference,
6139 don't do anything with zero-extending field extracts starting at
6140 the low-order bit since they are simple AND operations. */
6141 if (pos_rtx == 0 && pos == 0 && ! in_dest
6142 && ! in_compare && ! spans_byte && unsignedp)
6143 return 0;
6145 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6146 we would be spanning bytes or if the position is not a constant and the
6147 length is not 1. In all other cases, we would only be going outside
6148 our object in cases when an original shift would have been
6149 undefined. */
6150 if (! spans_byte && GET_CODE (inner) == MEM
6151 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6152 || (pos_rtx != 0 && len != 1)))
6153 return 0;
6155 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6156 and the mode for the result. */
6157 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6159 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6160 pos_mode = mode_for_extraction (EP_insv, 2);
6161 extraction_mode = mode_for_extraction (EP_insv, 3);
6164 if (! in_dest && unsignedp
6165 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6167 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6168 pos_mode = mode_for_extraction (EP_extzv, 3);
6169 extraction_mode = mode_for_extraction (EP_extzv, 0);
6172 if (! in_dest && ! unsignedp
6173 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6175 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6176 pos_mode = mode_for_extraction (EP_extv, 3);
6177 extraction_mode = mode_for_extraction (EP_extv, 0);
6180 /* Never narrow an object, since that might not be safe. */
6182 if (mode != VOIDmode
6183 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6184 extraction_mode = mode;
6186 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6187 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6188 pos_mode = GET_MODE (pos_rtx);
6190 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6191 if we have to change the mode of memory and cannot, the desired mode is
6192 EXTRACTION_MODE. */
6193 if (GET_CODE (inner) != MEM)
6194 wanted_inner_mode = wanted_inner_reg_mode;
6195 else if (inner_mode != wanted_inner_mode
6196 && (mode_dependent_address_p (XEXP (inner, 0))
6197 || MEM_VOLATILE_P (inner)))
6198 wanted_inner_mode = extraction_mode;
6200 orig_pos = pos;
6202 if (BITS_BIG_ENDIAN)
6204 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6205 BITS_BIG_ENDIAN style. If position is constant, compute new
6206 position. Otherwise, build subtraction.
6207 Note that POS is relative to the mode of the original argument.
6208 If it's a MEM we need to recompute POS relative to that.
6209 However, if we're extracting from (or inserting into) a register,
6210 we want to recompute POS relative to wanted_inner_mode. */
6211 int width = (GET_CODE (inner) == MEM
6212 ? GET_MODE_BITSIZE (is_mode)
6213 : GET_MODE_BITSIZE (wanted_inner_mode));
6215 if (pos_rtx == 0)
6216 pos = width - len - pos;
6217 else
6218 pos_rtx
6219 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6220 /* POS may be less than 0 now, but we check for that below.
6221 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6224 /* If INNER has a wider mode, make it smaller. If this is a constant
6225 extract, try to adjust the byte to point to the byte containing
6226 the value. */
6227 if (wanted_inner_mode != VOIDmode
6228 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6229 && ((GET_CODE (inner) == MEM
6230 && (inner_mode == wanted_inner_mode
6231 || (! mode_dependent_address_p (XEXP (inner, 0))
6232 && ! MEM_VOLATILE_P (inner))))))
6234 int offset = 0;
6236 /* The computations below will be correct if the machine is big
6237 endian in both bits and bytes or little endian in bits and bytes.
6238 If it is mixed, we must adjust. */
6240 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6241 adjust OFFSET to compensate. */
6242 if (BYTES_BIG_ENDIAN
6243 && ! spans_byte
6244 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6245 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6247 /* If this is a constant position, we can move to the desired byte. */
6248 if (pos_rtx == 0)
6250 offset += pos / BITS_PER_UNIT;
6251 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6254 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6255 && ! spans_byte
6256 && is_mode != wanted_inner_mode)
6257 offset = (GET_MODE_SIZE (is_mode)
6258 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6260 if (offset != 0 || inner_mode != wanted_inner_mode)
6261 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6264 /* If INNER is not memory, we can always get it into the proper mode. If we
6265 are changing its mode, POS must be a constant and smaller than the size
6266 of the new mode. */
6267 else if (GET_CODE (inner) != MEM)
6269 if (GET_MODE (inner) != wanted_inner_mode
6270 && (pos_rtx != 0
6271 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6272 return 0;
6274 inner = force_to_mode (inner, wanted_inner_mode,
6275 pos_rtx
6276 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6277 ? ~(unsigned HOST_WIDE_INT) 0
6278 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6279 << orig_pos),
6280 NULL_RTX, 0);
6283 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6284 have to zero extend. Otherwise, we can just use a SUBREG. */
6285 if (pos_rtx != 0
6286 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6288 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6290 /* If we know that no extraneous bits are set, and that the high
6291 bit is not set, convert extraction to cheaper one - either
6292 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6293 cases. */
6294 if (flag_expensive_optimizations
6295 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6296 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6297 & ~(((unsigned HOST_WIDE_INT)
6298 GET_MODE_MASK (GET_MODE (pos_rtx)))
6299 >> 1))
6300 == 0)))
6302 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6304 /* Prefer ZERO_EXTENSION, since it gives more information to
6305 backends. */
6306 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6307 temp = temp1;
6309 pos_rtx = temp;
6311 else if (pos_rtx != 0
6312 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6313 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6315 /* Make POS_RTX unless we already have it and it is correct. If we don't
6316 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6317 be a CONST_INT. */
6318 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6319 pos_rtx = orig_pos_rtx;
6321 else if (pos_rtx == 0)
6322 pos_rtx = GEN_INT (pos);
6324 /* Make the required operation. See if we can use existing rtx. */
6325 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6326 extraction_mode, inner, GEN_INT (len), pos_rtx);
6327 if (! in_dest)
6328 new = gen_lowpart (mode, new);
6330 return new;
6333 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6334 with any other operations in X. Return X without that shift if so. */
6336 static rtx
6337 extract_left_shift (rtx x, int count)
6339 enum rtx_code code = GET_CODE (x);
6340 enum machine_mode mode = GET_MODE (x);
6341 rtx tem;
6343 switch (code)
6345 case ASHIFT:
6346 /* This is the shift itself. If it is wide enough, we will return
6347 either the value being shifted if the shift count is equal to
6348 COUNT or a shift for the difference. */
6349 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6350 && INTVAL (XEXP (x, 1)) >= count)
6351 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6352 INTVAL (XEXP (x, 1)) - count);
6353 break;
6355 case NEG: case NOT:
6356 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6357 return simplify_gen_unary (code, mode, tem, mode);
6359 break;
6361 case PLUS: case IOR: case XOR: case AND:
6362 /* If we can safely shift this constant and we find the inner shift,
6363 make a new operation. */
6364 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6365 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6366 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6367 return gen_binary (code, mode, tem,
6368 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6370 break;
6372 default:
6373 break;
6376 return 0;
6379 /* Look at the expression rooted at X. Look for expressions
6380 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6381 Form these expressions.
6383 Return the new rtx, usually just X.
6385 Also, for machines like the VAX that don't have logical shift insns,
6386 try to convert logical to arithmetic shift operations in cases where
6387 they are equivalent. This undoes the canonicalizations to logical
6388 shifts done elsewhere.
6390 We try, as much as possible, to re-use rtl expressions to save memory.
6392 IN_CODE says what kind of expression we are processing. Normally, it is
6393 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6394 being kludges), it is MEM. When processing the arguments of a comparison
6395 or a COMPARE against zero, it is COMPARE. */
6397 static rtx
6398 make_compound_operation (rtx x, enum rtx_code in_code)
6400 enum rtx_code code = GET_CODE (x);
6401 enum machine_mode mode = GET_MODE (x);
6402 int mode_width = GET_MODE_BITSIZE (mode);
6403 rtx rhs, lhs;
6404 enum rtx_code next_code;
6405 int i;
6406 rtx new = 0;
6407 rtx tem;
6408 const char *fmt;
6410 /* Select the code to be used in recursive calls. Once we are inside an
6411 address, we stay there. If we have a comparison, set to COMPARE,
6412 but once inside, go back to our default of SET. */
6414 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6415 : ((code == COMPARE || COMPARISON_P (x))
6416 && XEXP (x, 1) == const0_rtx) ? COMPARE
6417 : in_code == COMPARE ? SET : in_code);
6419 /* Process depending on the code of this operation. If NEW is set
6420 nonzero, it will be returned. */
6422 switch (code)
6424 case ASHIFT:
6425 /* Convert shifts by constants into multiplications if inside
6426 an address. */
6427 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6428 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6429 && INTVAL (XEXP (x, 1)) >= 0)
6431 new = make_compound_operation (XEXP (x, 0), next_code);
6432 new = gen_rtx_MULT (mode, new,
6433 GEN_INT ((HOST_WIDE_INT) 1
6434 << INTVAL (XEXP (x, 1))));
6436 break;
6438 case AND:
6439 /* If the second operand is not a constant, we can't do anything
6440 with it. */
6441 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6442 break;
6444 /* If the constant is a power of two minus one and the first operand
6445 is a logical right shift, make an extraction. */
6446 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6447 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6449 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6450 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6451 0, in_code == COMPARE);
6454 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6455 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6456 && subreg_lowpart_p (XEXP (x, 0))
6457 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6458 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6460 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6461 next_code);
6462 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6463 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6464 0, in_code == COMPARE);
6466 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6467 else if ((GET_CODE (XEXP (x, 0)) == XOR
6468 || GET_CODE (XEXP (x, 0)) == IOR)
6469 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6470 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6471 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6473 /* Apply the distributive law, and then try to make extractions. */
6474 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6475 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6476 XEXP (x, 1)),
6477 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6478 XEXP (x, 1)));
6479 new = make_compound_operation (new, in_code);
6482 /* If we are have (and (rotate X C) M) and C is larger than the number
6483 of bits in M, this is an extraction. */
6485 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6486 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6487 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6488 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6490 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6491 new = make_extraction (mode, new,
6492 (GET_MODE_BITSIZE (mode)
6493 - INTVAL (XEXP (XEXP (x, 0), 1))),
6494 NULL_RTX, i, 1, 0, in_code == COMPARE);
6497 /* On machines without logical shifts, if the operand of the AND is
6498 a logical shift and our mask turns off all the propagated sign
6499 bits, we can replace the logical shift with an arithmetic shift. */
6500 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6501 && !have_insn_for (LSHIFTRT, mode)
6502 && have_insn_for (ASHIFTRT, mode)
6503 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6504 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6505 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6506 && mode_width <= HOST_BITS_PER_WIDE_INT)
6508 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6510 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6511 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6512 SUBST (XEXP (x, 0),
6513 gen_rtx_ASHIFTRT (mode,
6514 make_compound_operation
6515 (XEXP (XEXP (x, 0), 0), next_code),
6516 XEXP (XEXP (x, 0), 1)));
6519 /* If the constant is one less than a power of two, this might be
6520 representable by an extraction even if no shift is present.
6521 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6522 we are in a COMPARE. */
6523 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6524 new = make_extraction (mode,
6525 make_compound_operation (XEXP (x, 0),
6526 next_code),
6527 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6529 /* If we are in a comparison and this is an AND with a power of two,
6530 convert this into the appropriate bit extract. */
6531 else if (in_code == COMPARE
6532 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6533 new = make_extraction (mode,
6534 make_compound_operation (XEXP (x, 0),
6535 next_code),
6536 i, NULL_RTX, 1, 1, 0, 1);
6538 break;
6540 case LSHIFTRT:
6541 /* If the sign bit is known to be zero, replace this with an
6542 arithmetic shift. */
6543 if (have_insn_for (ASHIFTRT, mode)
6544 && ! have_insn_for (LSHIFTRT, mode)
6545 && mode_width <= HOST_BITS_PER_WIDE_INT
6546 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6548 new = gen_rtx_ASHIFTRT (mode,
6549 make_compound_operation (XEXP (x, 0),
6550 next_code),
6551 XEXP (x, 1));
6552 break;
6555 /* ... fall through ... */
6557 case ASHIFTRT:
6558 lhs = XEXP (x, 0);
6559 rhs = XEXP (x, 1);
6561 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6562 this is a SIGN_EXTRACT. */
6563 if (GET_CODE (rhs) == CONST_INT
6564 && GET_CODE (lhs) == ASHIFT
6565 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6566 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6568 new = make_compound_operation (XEXP (lhs, 0), next_code);
6569 new = make_extraction (mode, new,
6570 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6571 NULL_RTX, mode_width - INTVAL (rhs),
6572 code == LSHIFTRT, 0, in_code == COMPARE);
6573 break;
6576 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6577 If so, try to merge the shifts into a SIGN_EXTEND. We could
6578 also do this for some cases of SIGN_EXTRACT, but it doesn't
6579 seem worth the effort; the case checked for occurs on Alpha. */
6581 if (!OBJECT_P (lhs)
6582 && ! (GET_CODE (lhs) == SUBREG
6583 && (OBJECT_P (SUBREG_REG (lhs))))
6584 && GET_CODE (rhs) == CONST_INT
6585 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6586 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6587 new = make_extraction (mode, make_compound_operation (new, next_code),
6588 0, NULL_RTX, mode_width - INTVAL (rhs),
6589 code == LSHIFTRT, 0, in_code == COMPARE);
6591 break;
6593 case SUBREG:
6594 /* Call ourselves recursively on the inner expression. If we are
6595 narrowing the object and it has a different RTL code from
6596 what it originally did, do this SUBREG as a force_to_mode. */
6598 tem = make_compound_operation (SUBREG_REG (x), in_code);
6599 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6600 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6601 && subreg_lowpart_p (x))
6603 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6604 NULL_RTX, 0);
6606 /* If we have something other than a SUBREG, we might have
6607 done an expansion, so rerun ourselves. */
6608 if (GET_CODE (newer) != SUBREG)
6609 newer = make_compound_operation (newer, in_code);
6611 return newer;
6614 /* If this is a paradoxical subreg, and the new code is a sign or
6615 zero extension, omit the subreg and widen the extension. If it
6616 is a regular subreg, we can still get rid of the subreg by not
6617 widening so much, or in fact removing the extension entirely. */
6618 if ((GET_CODE (tem) == SIGN_EXTEND
6619 || GET_CODE (tem) == ZERO_EXTEND)
6620 && subreg_lowpart_p (x))
6622 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6623 || (GET_MODE_SIZE (mode) >
6624 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6626 if (! SCALAR_INT_MODE_P (mode))
6627 break;
6628 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6630 else
6631 tem = gen_lowpart (mode, XEXP (tem, 0));
6632 return tem;
6634 break;
6636 default:
6637 break;
6640 if (new)
6642 x = gen_lowpart (mode, new);
6643 code = GET_CODE (x);
6646 /* Now recursively process each operand of this operation. */
6647 fmt = GET_RTX_FORMAT (code);
6648 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6649 if (fmt[i] == 'e')
6651 new = make_compound_operation (XEXP (x, i), next_code);
6652 SUBST (XEXP (x, i), new);
6655 return x;
6658 /* Given M see if it is a value that would select a field of bits
6659 within an item, but not the entire word. Return -1 if not.
6660 Otherwise, return the starting position of the field, where 0 is the
6661 low-order bit.
6663 *PLEN is set to the length of the field. */
6665 static int
6666 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6668 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6669 int pos = exact_log2 (m & -m);
6670 int len;
6672 if (pos < 0)
6673 return -1;
6675 /* Now shift off the low-order zero bits and see if we have a power of
6676 two minus 1. */
6677 len = exact_log2 ((m >> pos) + 1);
6679 if (len <= 0)
6680 return -1;
6682 *plen = len;
6683 return pos;
6686 /* See if X can be simplified knowing that we will only refer to it in
6687 MODE and will only refer to those bits that are nonzero in MASK.
6688 If other bits are being computed or if masking operations are done
6689 that select a superset of the bits in MASK, they can sometimes be
6690 ignored.
6692 Return a possibly simplified expression, but always convert X to
6693 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6695 Also, if REG is nonzero and X is a register equal in value to REG,
6696 replace X with REG.
6698 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6699 are all off in X. This is used when X will be complemented, by either
6700 NOT, NEG, or XOR. */
6702 static rtx
6703 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6704 rtx reg, int just_select)
6706 enum rtx_code code = GET_CODE (x);
6707 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6708 enum machine_mode op_mode;
6709 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6710 rtx op0, op1, temp;
6712 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6713 code below will do the wrong thing since the mode of such an
6714 expression is VOIDmode.
6716 Also do nothing if X is a CLOBBER; this can happen if X was
6717 the return value from a call to gen_lowpart. */
6718 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6719 return x;
6721 /* We want to perform the operation is its present mode unless we know
6722 that the operation is valid in MODE, in which case we do the operation
6723 in MODE. */
6724 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6725 && have_insn_for (code, mode))
6726 ? mode : GET_MODE (x));
6728 /* It is not valid to do a right-shift in a narrower mode
6729 than the one it came in with. */
6730 if ((code == LSHIFTRT || code == ASHIFTRT)
6731 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6732 op_mode = GET_MODE (x);
6734 /* Truncate MASK to fit OP_MODE. */
6735 if (op_mode)
6736 mask &= GET_MODE_MASK (op_mode);
6738 /* When we have an arithmetic operation, or a shift whose count we
6739 do not know, we need to assume that all bits up to the highest-order
6740 bit in MASK will be needed. This is how we form such a mask. */
6741 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6742 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6743 else
6744 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6745 - 1);
6747 /* Determine what bits of X are guaranteed to be (non)zero. */
6748 nonzero = nonzero_bits (x, mode);
6750 /* If none of the bits in X are needed, return a zero. */
6751 if (! just_select && (nonzero & mask) == 0)
6752 x = const0_rtx;
6754 /* If X is a CONST_INT, return a new one. Do this here since the
6755 test below will fail. */
6756 if (GET_CODE (x) == CONST_INT)
6758 if (SCALAR_INT_MODE_P (mode))
6759 return gen_int_mode (INTVAL (x) & mask, mode);
6760 else
6762 x = GEN_INT (INTVAL (x) & mask);
6763 return gen_lowpart_common (mode, x);
6767 /* If X is narrower than MODE and we want all the bits in X's mode, just
6768 get X in the proper mode. */
6769 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6770 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6771 return gen_lowpart (mode, x);
6773 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6774 MASK are already known to be zero in X, we need not do anything. */
6775 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6776 return x;
6778 switch (code)
6780 case CLOBBER:
6781 /* If X is a (clobber (const_int)), return it since we know we are
6782 generating something that won't match. */
6783 return x;
6785 case USE:
6786 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6787 spanned the boundary of the MEM. If we are now masking so it is
6788 within that boundary, we don't need the USE any more. */
6789 if (! BITS_BIG_ENDIAN
6790 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6791 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6792 break;
6794 case SIGN_EXTEND:
6795 case ZERO_EXTEND:
6796 case ZERO_EXTRACT:
6797 case SIGN_EXTRACT:
6798 x = expand_compound_operation (x);
6799 if (GET_CODE (x) != code)
6800 return force_to_mode (x, mode, mask, reg, next_select);
6801 break;
6803 case REG:
6804 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6805 || rtx_equal_p (reg, get_last_value (x))))
6806 x = reg;
6807 break;
6809 case SUBREG:
6810 if (subreg_lowpart_p (x)
6811 /* We can ignore the effect of this SUBREG if it narrows the mode or
6812 if the constant masks to zero all the bits the mode doesn't
6813 have. */
6814 && ((GET_MODE_SIZE (GET_MODE (x))
6815 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6816 || (0 == (mask
6817 & GET_MODE_MASK (GET_MODE (x))
6818 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6819 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6820 break;
6822 case AND:
6823 /* If this is an AND with a constant, convert it into an AND
6824 whose constant is the AND of that constant with MASK. If it
6825 remains an AND of MASK, delete it since it is redundant. */
6827 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6829 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6830 mask & INTVAL (XEXP (x, 1)));
6832 /* If X is still an AND, see if it is an AND with a mask that
6833 is just some low-order bits. If so, and it is MASK, we don't
6834 need it. */
6836 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6837 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6838 == mask))
6839 x = XEXP (x, 0);
6841 /* If it remains an AND, try making another AND with the bits
6842 in the mode mask that aren't in MASK turned on. If the
6843 constant in the AND is wide enough, this might make a
6844 cheaper constant. */
6846 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6847 && GET_MODE_MASK (GET_MODE (x)) != mask
6848 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6850 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6851 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6852 int width = GET_MODE_BITSIZE (GET_MODE (x));
6853 rtx y;
6855 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6856 number, sign extend it. */
6857 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6858 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6859 cval |= (HOST_WIDE_INT) -1 << width;
6861 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6862 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6863 x = y;
6866 break;
6869 goto binop;
6871 case PLUS:
6872 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6873 low-order bits (as in an alignment operation) and FOO is already
6874 aligned to that boundary, mask C1 to that boundary as well.
6875 This may eliminate that PLUS and, later, the AND. */
6878 unsigned int width = GET_MODE_BITSIZE (mode);
6879 unsigned HOST_WIDE_INT smask = mask;
6881 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6882 number, sign extend it. */
6884 if (width < HOST_BITS_PER_WIDE_INT
6885 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6886 smask |= (HOST_WIDE_INT) -1 << width;
6888 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6889 && exact_log2 (- smask) >= 0
6890 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6891 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6892 return force_to_mode (plus_constant (XEXP (x, 0),
6893 (INTVAL (XEXP (x, 1)) & smask)),
6894 mode, smask, reg, next_select);
6897 /* ... fall through ... */
6899 case MULT:
6900 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6901 most significant bit in MASK since carries from those bits will
6902 affect the bits we are interested in. */
6903 mask = fuller_mask;
6904 goto binop;
6906 case MINUS:
6907 /* If X is (minus C Y) where C's least set bit is larger than any bit
6908 in the mask, then we may replace with (neg Y). */
6909 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6910 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6911 & -INTVAL (XEXP (x, 0))))
6912 > mask))
6914 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6915 GET_MODE (x));
6916 return force_to_mode (x, mode, mask, reg, next_select);
6919 /* Similarly, if C contains every bit in the fuller_mask, then we may
6920 replace with (not Y). */
6921 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6922 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6923 == INTVAL (XEXP (x, 0))))
6925 x = simplify_gen_unary (NOT, GET_MODE (x),
6926 XEXP (x, 1), GET_MODE (x));
6927 return force_to_mode (x, mode, mask, reg, next_select);
6930 mask = fuller_mask;
6931 goto binop;
6933 case IOR:
6934 case XOR:
6935 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6936 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6937 operation which may be a bitfield extraction. Ensure that the
6938 constant we form is not wider than the mode of X. */
6940 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6941 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6942 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6943 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6944 && GET_CODE (XEXP (x, 1)) == CONST_INT
6945 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6946 + floor_log2 (INTVAL (XEXP (x, 1))))
6947 < GET_MODE_BITSIZE (GET_MODE (x)))
6948 && (INTVAL (XEXP (x, 1))
6949 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6951 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6952 << INTVAL (XEXP (XEXP (x, 0), 1)));
6953 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6954 XEXP (XEXP (x, 0), 0), temp);
6955 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6956 XEXP (XEXP (x, 0), 1));
6957 return force_to_mode (x, mode, mask, reg, next_select);
6960 binop:
6961 /* For most binary operations, just propagate into the operation and
6962 change the mode if we have an operation of that mode. */
6964 op0 = gen_lowpart (op_mode,
6965 force_to_mode (XEXP (x, 0), mode, mask,
6966 reg, next_select));
6967 op1 = gen_lowpart (op_mode,
6968 force_to_mode (XEXP (x, 1), mode, mask,
6969 reg, next_select));
6971 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6972 x = gen_binary (code, op_mode, op0, op1);
6973 break;
6975 case ASHIFT:
6976 /* For left shifts, do the same, but just for the first operand.
6977 However, we cannot do anything with shifts where we cannot
6978 guarantee that the counts are smaller than the size of the mode
6979 because such a count will have a different meaning in a
6980 wider mode. */
6982 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6983 && INTVAL (XEXP (x, 1)) >= 0
6984 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6985 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6986 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6987 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6988 break;
6990 /* If the shift count is a constant and we can do arithmetic in
6991 the mode of the shift, refine which bits we need. Otherwise, use the
6992 conservative form of the mask. */
6993 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6994 && INTVAL (XEXP (x, 1)) >= 0
6995 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6996 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6997 mask >>= INTVAL (XEXP (x, 1));
6998 else
6999 mask = fuller_mask;
7001 op0 = gen_lowpart (op_mode,
7002 force_to_mode (XEXP (x, 0), op_mode,
7003 mask, reg, next_select));
7005 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7006 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7007 break;
7009 case LSHIFTRT:
7010 /* Here we can only do something if the shift count is a constant,
7011 this shift constant is valid for the host, and we can do arithmetic
7012 in OP_MODE. */
7014 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7015 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7016 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7018 rtx inner = XEXP (x, 0);
7019 unsigned HOST_WIDE_INT inner_mask;
7021 /* Select the mask of the bits we need for the shift operand. */
7022 inner_mask = mask << INTVAL (XEXP (x, 1));
7024 /* We can only change the mode of the shift if we can do arithmetic
7025 in the mode of the shift and INNER_MASK is no wider than the
7026 width of OP_MODE. */
7027 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7028 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7029 op_mode = GET_MODE (x);
7031 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7033 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7034 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7037 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7038 shift and AND produces only copies of the sign bit (C2 is one less
7039 than a power of two), we can do this with just a shift. */
7041 if (GET_CODE (x) == LSHIFTRT
7042 && GET_CODE (XEXP (x, 1)) == CONST_INT
7043 /* The shift puts one of the sign bit copies in the least significant
7044 bit. */
7045 && ((INTVAL (XEXP (x, 1))
7046 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7047 >= GET_MODE_BITSIZE (GET_MODE (x)))
7048 && exact_log2 (mask + 1) >= 0
7049 /* Number of bits left after the shift must be more than the mask
7050 needs. */
7051 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7052 <= GET_MODE_BITSIZE (GET_MODE (x)))
7053 /* Must be more sign bit copies than the mask needs. */
7054 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7055 >= exact_log2 (mask + 1)))
7056 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7057 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7058 - exact_log2 (mask + 1)));
7060 goto shiftrt;
7062 case ASHIFTRT:
7063 /* If we are just looking for the sign bit, we don't need this shift at
7064 all, even if it has a variable count. */
7065 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7066 && (mask == ((unsigned HOST_WIDE_INT) 1
7067 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7068 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7070 /* If this is a shift by a constant, get a mask that contains those bits
7071 that are not copies of the sign bit. We then have two cases: If
7072 MASK only includes those bits, this can be a logical shift, which may
7073 allow simplifications. If MASK is a single-bit field not within
7074 those bits, we are requesting a copy of the sign bit and hence can
7075 shift the sign bit to the appropriate location. */
7077 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7078 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7080 int i = -1;
7082 /* If the considered data is wider than HOST_WIDE_INT, we can't
7083 represent a mask for all its bits in a single scalar.
7084 But we only care about the lower bits, so calculate these. */
7086 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7088 nonzero = ~(HOST_WIDE_INT) 0;
7090 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7091 is the number of bits a full-width mask would have set.
7092 We need only shift if these are fewer than nonzero can
7093 hold. If not, we must keep all bits set in nonzero. */
7095 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7096 < HOST_BITS_PER_WIDE_INT)
7097 nonzero >>= INTVAL (XEXP (x, 1))
7098 + HOST_BITS_PER_WIDE_INT
7099 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7101 else
7103 nonzero = GET_MODE_MASK (GET_MODE (x));
7104 nonzero >>= INTVAL (XEXP (x, 1));
7107 if ((mask & ~nonzero) == 0
7108 || (i = exact_log2 (mask)) >= 0)
7110 x = simplify_shift_const
7111 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7112 i < 0 ? INTVAL (XEXP (x, 1))
7113 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7115 if (GET_CODE (x) != ASHIFTRT)
7116 return force_to_mode (x, mode, mask, reg, next_select);
7120 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7121 even if the shift count isn't a constant. */
7122 if (mask == 1)
7123 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7125 shiftrt:
7127 /* If this is a zero- or sign-extension operation that just affects bits
7128 we don't care about, remove it. Be sure the call above returned
7129 something that is still a shift. */
7131 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7132 && GET_CODE (XEXP (x, 1)) == CONST_INT
7133 && INTVAL (XEXP (x, 1)) >= 0
7134 && (INTVAL (XEXP (x, 1))
7135 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7136 && GET_CODE (XEXP (x, 0)) == ASHIFT
7137 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7138 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7139 reg, next_select);
7141 break;
7143 case ROTATE:
7144 case ROTATERT:
7145 /* If the shift count is constant and we can do computations
7146 in the mode of X, compute where the bits we care about are.
7147 Otherwise, we can't do anything. Don't change the mode of
7148 the shift or propagate MODE into the shift, though. */
7149 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7150 && INTVAL (XEXP (x, 1)) >= 0)
7152 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7153 GET_MODE (x), GEN_INT (mask),
7154 XEXP (x, 1));
7155 if (temp && GET_CODE (temp) == CONST_INT)
7156 SUBST (XEXP (x, 0),
7157 force_to_mode (XEXP (x, 0), GET_MODE (x),
7158 INTVAL (temp), reg, next_select));
7160 break;
7162 case NEG:
7163 /* If we just want the low-order bit, the NEG isn't needed since it
7164 won't change the low-order bit. */
7165 if (mask == 1)
7166 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7168 /* We need any bits less significant than the most significant bit in
7169 MASK since carries from those bits will affect the bits we are
7170 interested in. */
7171 mask = fuller_mask;
7172 goto unop;
7174 case NOT:
7175 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7176 same as the XOR case above. Ensure that the constant we form is not
7177 wider than the mode of X. */
7179 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7180 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7181 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7182 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7183 < GET_MODE_BITSIZE (GET_MODE (x)))
7184 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7186 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7187 GET_MODE (x));
7188 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7189 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7191 return force_to_mode (x, mode, mask, reg, next_select);
7194 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7195 use the full mask inside the NOT. */
7196 mask = fuller_mask;
7198 unop:
7199 op0 = gen_lowpart (op_mode,
7200 force_to_mode (XEXP (x, 0), mode, mask,
7201 reg, next_select));
7202 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7203 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7204 break;
7206 case NE:
7207 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7208 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7209 which is equal to STORE_FLAG_VALUE. */
7210 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7211 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7212 && (nonzero_bits (XEXP (x, 0), mode)
7213 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7214 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7216 break;
7218 case IF_THEN_ELSE:
7219 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7220 written in a narrower mode. We play it safe and do not do so. */
7222 SUBST (XEXP (x, 1),
7223 gen_lowpart (GET_MODE (x),
7224 force_to_mode (XEXP (x, 1), mode,
7225 mask, reg, next_select)));
7226 SUBST (XEXP (x, 2),
7227 gen_lowpart (GET_MODE (x),
7228 force_to_mode (XEXP (x, 2), mode,
7229 mask, reg, next_select)));
7230 break;
7232 default:
7233 break;
7236 /* Ensure we return a value of the proper mode. */
7237 return gen_lowpart (mode, x);
7240 /* Return nonzero if X is an expression that has one of two values depending on
7241 whether some other value is zero or nonzero. In that case, we return the
7242 value that is being tested, *PTRUE is set to the value if the rtx being
7243 returned has a nonzero value, and *PFALSE is set to the other alternative.
7245 If we return zero, we set *PTRUE and *PFALSE to X. */
7247 static rtx
7248 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7250 enum machine_mode mode = GET_MODE (x);
7251 enum rtx_code code = GET_CODE (x);
7252 rtx cond0, cond1, true0, true1, false0, false1;
7253 unsigned HOST_WIDE_INT nz;
7255 /* If we are comparing a value against zero, we are done. */
7256 if ((code == NE || code == EQ)
7257 && XEXP (x, 1) == const0_rtx)
7259 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7260 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7261 return XEXP (x, 0);
7264 /* If this is a unary operation whose operand has one of two values, apply
7265 our opcode to compute those values. */
7266 else if (UNARY_P (x)
7267 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7269 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7270 *pfalse = simplify_gen_unary (code, mode, false0,
7271 GET_MODE (XEXP (x, 0)));
7272 return cond0;
7275 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7276 make can't possibly match and would suppress other optimizations. */
7277 else if (code == COMPARE)
7280 /* If this is a binary operation, see if either side has only one of two
7281 values. If either one does or if both do and they are conditional on
7282 the same value, compute the new true and false values. */
7283 else if (BINARY_P (x))
7285 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7286 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7288 if ((cond0 != 0 || cond1 != 0)
7289 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7291 /* If if_then_else_cond returned zero, then true/false are the
7292 same rtl. We must copy one of them to prevent invalid rtl
7293 sharing. */
7294 if (cond0 == 0)
7295 true0 = copy_rtx (true0);
7296 else if (cond1 == 0)
7297 true1 = copy_rtx (true1);
7299 *ptrue = gen_binary (code, mode, true0, true1);
7300 *pfalse = gen_binary (code, mode, false0, false1);
7301 return cond0 ? cond0 : cond1;
7304 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7305 operands is zero when the other is nonzero, and vice-versa,
7306 and STORE_FLAG_VALUE is 1 or -1. */
7308 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7309 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7310 || code == UMAX)
7311 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7313 rtx op0 = XEXP (XEXP (x, 0), 1);
7314 rtx op1 = XEXP (XEXP (x, 1), 1);
7316 cond0 = XEXP (XEXP (x, 0), 0);
7317 cond1 = XEXP (XEXP (x, 1), 0);
7319 if (COMPARISON_P (cond0)
7320 && COMPARISON_P (cond1)
7321 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7322 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7323 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7324 || ((swap_condition (GET_CODE (cond0))
7325 == combine_reversed_comparison_code (cond1))
7326 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7327 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7328 && ! side_effects_p (x))
7330 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7331 *pfalse = gen_binary (MULT, mode,
7332 (code == MINUS
7333 ? simplify_gen_unary (NEG, mode, op1,
7334 mode)
7335 : op1),
7336 const_true_rtx);
7337 return cond0;
7341 /* Similarly for MULT, AND and UMIN, except that for these the result
7342 is always zero. */
7343 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7344 && (code == MULT || code == AND || code == UMIN)
7345 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7347 cond0 = XEXP (XEXP (x, 0), 0);
7348 cond1 = XEXP (XEXP (x, 1), 0);
7350 if (COMPARISON_P (cond0)
7351 && COMPARISON_P (cond1)
7352 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7353 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7354 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7355 || ((swap_condition (GET_CODE (cond0))
7356 == combine_reversed_comparison_code (cond1))
7357 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7358 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7359 && ! side_effects_p (x))
7361 *ptrue = *pfalse = const0_rtx;
7362 return cond0;
7367 else if (code == IF_THEN_ELSE)
7369 /* If we have IF_THEN_ELSE already, extract the condition and
7370 canonicalize it if it is NE or EQ. */
7371 cond0 = XEXP (x, 0);
7372 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7373 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7374 return XEXP (cond0, 0);
7375 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7377 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7378 return XEXP (cond0, 0);
7380 else
7381 return cond0;
7384 /* If X is a SUBREG, we can narrow both the true and false values
7385 if the inner expression, if there is a condition. */
7386 else if (code == SUBREG
7387 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7388 &true0, &false0)))
7390 *ptrue = simplify_gen_subreg (mode, true0,
7391 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7392 *pfalse = simplify_gen_subreg (mode, false0,
7393 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7395 return cond0;
7398 /* If X is a constant, this isn't special and will cause confusions
7399 if we treat it as such. Likewise if it is equivalent to a constant. */
7400 else if (CONSTANT_P (x)
7401 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7404 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7405 will be least confusing to the rest of the compiler. */
7406 else if (mode == BImode)
7408 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7409 return x;
7412 /* If X is known to be either 0 or -1, those are the true and
7413 false values when testing X. */
7414 else if (x == constm1_rtx || x == const0_rtx
7415 || (mode != VOIDmode
7416 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7418 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7419 return x;
7422 /* Likewise for 0 or a single bit. */
7423 else if (SCALAR_INT_MODE_P (mode)
7424 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7425 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7427 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7428 return x;
7431 /* Otherwise fail; show no condition with true and false values the same. */
7432 *ptrue = *pfalse = x;
7433 return 0;
7436 /* Return the value of expression X given the fact that condition COND
7437 is known to be true when applied to REG as its first operand and VAL
7438 as its second. X is known to not be shared and so can be modified in
7439 place.
7441 We only handle the simplest cases, and specifically those cases that
7442 arise with IF_THEN_ELSE expressions. */
7444 static rtx
7445 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7447 enum rtx_code code = GET_CODE (x);
7448 rtx temp;
7449 const char *fmt;
7450 int i, j;
7452 if (side_effects_p (x))
7453 return x;
7455 /* If either operand of the condition is a floating point value,
7456 then we have to avoid collapsing an EQ comparison. */
7457 if (cond == EQ
7458 && rtx_equal_p (x, reg)
7459 && ! FLOAT_MODE_P (GET_MODE (x))
7460 && ! FLOAT_MODE_P (GET_MODE (val)))
7461 return val;
7463 if (cond == UNEQ && rtx_equal_p (x, reg))
7464 return val;
7466 /* If X is (abs REG) and we know something about REG's relationship
7467 with zero, we may be able to simplify this. */
7469 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7470 switch (cond)
7472 case GE: case GT: case EQ:
7473 return XEXP (x, 0);
7474 case LT: case LE:
7475 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7476 XEXP (x, 0),
7477 GET_MODE (XEXP (x, 0)));
7478 default:
7479 break;
7482 /* The only other cases we handle are MIN, MAX, and comparisons if the
7483 operands are the same as REG and VAL. */
7485 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7487 if (rtx_equal_p (XEXP (x, 0), val))
7488 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7490 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7492 if (COMPARISON_P (x))
7494 if (comparison_dominates_p (cond, code))
7495 return const_true_rtx;
7497 code = combine_reversed_comparison_code (x);
7498 if (code != UNKNOWN
7499 && comparison_dominates_p (cond, code))
7500 return const0_rtx;
7501 else
7502 return x;
7504 else if (code == SMAX || code == SMIN
7505 || code == UMIN || code == UMAX)
7507 int unsignedp = (code == UMIN || code == UMAX);
7509 /* Do not reverse the condition when it is NE or EQ.
7510 This is because we cannot conclude anything about
7511 the value of 'SMAX (x, y)' when x is not equal to y,
7512 but we can when x equals y. */
7513 if ((code == SMAX || code == UMAX)
7514 && ! (cond == EQ || cond == NE))
7515 cond = reverse_condition (cond);
7517 switch (cond)
7519 case GE: case GT:
7520 return unsignedp ? x : XEXP (x, 1);
7521 case LE: case LT:
7522 return unsignedp ? x : XEXP (x, 0);
7523 case GEU: case GTU:
7524 return unsignedp ? XEXP (x, 1) : x;
7525 case LEU: case LTU:
7526 return unsignedp ? XEXP (x, 0) : x;
7527 default:
7528 break;
7533 else if (code == SUBREG)
7535 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7536 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7538 if (SUBREG_REG (x) != r)
7540 /* We must simplify subreg here, before we lose track of the
7541 original inner_mode. */
7542 new = simplify_subreg (GET_MODE (x), r,
7543 inner_mode, SUBREG_BYTE (x));
7544 if (new)
7545 return new;
7546 else
7547 SUBST (SUBREG_REG (x), r);
7550 return x;
7552 /* We don't have to handle SIGN_EXTEND here, because even in the
7553 case of replacing something with a modeless CONST_INT, a
7554 CONST_INT is already (supposed to be) a valid sign extension for
7555 its narrower mode, which implies it's already properly
7556 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7557 story is different. */
7558 else if (code == ZERO_EXTEND)
7560 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7561 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7563 if (XEXP (x, 0) != r)
7565 /* We must simplify the zero_extend here, before we lose
7566 track of the original inner_mode. */
7567 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7568 r, inner_mode);
7569 if (new)
7570 return new;
7571 else
7572 SUBST (XEXP (x, 0), r);
7575 return x;
7578 fmt = GET_RTX_FORMAT (code);
7579 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7581 if (fmt[i] == 'e')
7582 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7583 else if (fmt[i] == 'E')
7584 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7585 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7586 cond, reg, val));
7589 return x;
7592 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7593 assignment as a field assignment. */
7595 static int
7596 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7598 if (x == y || rtx_equal_p (x, y))
7599 return 1;
7601 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7602 return 0;
7604 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7605 Note that all SUBREGs of MEM are paradoxical; otherwise they
7606 would have been rewritten. */
7607 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7608 && GET_CODE (SUBREG_REG (y)) == MEM
7609 && rtx_equal_p (SUBREG_REG (y),
7610 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7611 return 1;
7613 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7614 && GET_CODE (SUBREG_REG (x)) == MEM
7615 && rtx_equal_p (SUBREG_REG (x),
7616 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7617 return 1;
7619 /* We used to see if get_last_value of X and Y were the same but that's
7620 not correct. In one direction, we'll cause the assignment to have
7621 the wrong destination and in the case, we'll import a register into this
7622 insn that might have already have been dead. So fail if none of the
7623 above cases are true. */
7624 return 0;
7627 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7628 Return that assignment if so.
7630 We only handle the most common cases. */
7632 static rtx
7633 make_field_assignment (rtx x)
7635 rtx dest = SET_DEST (x);
7636 rtx src = SET_SRC (x);
7637 rtx assign;
7638 rtx rhs, lhs;
7639 HOST_WIDE_INT c1;
7640 HOST_WIDE_INT pos;
7641 unsigned HOST_WIDE_INT len;
7642 rtx other;
7643 enum machine_mode mode;
7645 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7646 a clear of a one-bit field. We will have changed it to
7647 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7648 for a SUBREG. */
7650 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7651 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7652 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7653 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7655 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7656 1, 1, 1, 0);
7657 if (assign != 0)
7658 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7659 return x;
7662 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7663 && subreg_lowpart_p (XEXP (src, 0))
7664 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7665 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7666 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7667 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7668 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7669 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7671 assign = make_extraction (VOIDmode, dest, 0,
7672 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7673 1, 1, 1, 0);
7674 if (assign != 0)
7675 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7676 return x;
7679 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7680 one-bit field. */
7681 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7682 && XEXP (XEXP (src, 0), 0) == const1_rtx
7683 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7685 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7686 1, 1, 1, 0);
7687 if (assign != 0)
7688 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7689 return x;
7692 /* The other case we handle is assignments into a constant-position
7693 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7694 a mask that has all one bits except for a group of zero bits and
7695 OTHER is known to have zeros where C1 has ones, this is such an
7696 assignment. Compute the position and length from C1. Shift OTHER
7697 to the appropriate position, force it to the required mode, and
7698 make the extraction. Check for the AND in both operands. */
7700 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7701 return x;
7703 rhs = expand_compound_operation (XEXP (src, 0));
7704 lhs = expand_compound_operation (XEXP (src, 1));
7706 if (GET_CODE (rhs) == AND
7707 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7708 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7709 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7710 else if (GET_CODE (lhs) == AND
7711 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7712 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7713 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7714 else
7715 return x;
7717 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7718 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7719 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7720 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7721 return x;
7723 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7724 if (assign == 0)
7725 return x;
7727 /* The mode to use for the source is the mode of the assignment, or of
7728 what is inside a possible STRICT_LOW_PART. */
7729 mode = (GET_CODE (assign) == STRICT_LOW_PART
7730 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7732 /* Shift OTHER right POS places and make it the source, restricting it
7733 to the proper length and mode. */
7735 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7736 GET_MODE (src), other, pos),
7737 mode,
7738 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7739 ? ~(unsigned HOST_WIDE_INT) 0
7740 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7741 dest, 0);
7743 /* If SRC is masked by an AND that does not make a difference in
7744 the value being stored, strip it. */
7745 if (GET_CODE (assign) == ZERO_EXTRACT
7746 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7747 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7748 && GET_CODE (src) == AND
7749 && GET_CODE (XEXP (src, 1)) == CONST_INT
7750 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7751 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7752 src = XEXP (src, 0);
7754 return gen_rtx_SET (VOIDmode, assign, src);
7757 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7758 if so. */
7760 static rtx
7761 apply_distributive_law (rtx x)
7763 enum rtx_code code = GET_CODE (x);
7764 enum rtx_code inner_code;
7765 rtx lhs, rhs, other;
7766 rtx tem;
7768 /* Distributivity is not true for floating point as it can change the
7769 value. So we don't do it unless -funsafe-math-optimizations. */
7770 if (FLOAT_MODE_P (GET_MODE (x))
7771 && ! flag_unsafe_math_optimizations)
7772 return x;
7774 /* The outer operation can only be one of the following: */
7775 if (code != IOR && code != AND && code != XOR
7776 && code != PLUS && code != MINUS)
7777 return x;
7779 lhs = XEXP (x, 0);
7780 rhs = XEXP (x, 1);
7782 /* If either operand is a primitive we can't do anything, so get out
7783 fast. */
7784 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7785 return x;
7787 lhs = expand_compound_operation (lhs);
7788 rhs = expand_compound_operation (rhs);
7789 inner_code = GET_CODE (lhs);
7790 if (inner_code != GET_CODE (rhs))
7791 return x;
7793 /* See if the inner and outer operations distribute. */
7794 switch (inner_code)
7796 case LSHIFTRT:
7797 case ASHIFTRT:
7798 case AND:
7799 case IOR:
7800 /* These all distribute except over PLUS. */
7801 if (code == PLUS || code == MINUS)
7802 return x;
7803 break;
7805 case MULT:
7806 if (code != PLUS && code != MINUS)
7807 return x;
7808 break;
7810 case ASHIFT:
7811 /* This is also a multiply, so it distributes over everything. */
7812 break;
7814 case SUBREG:
7815 /* Non-paradoxical SUBREGs distributes over all operations, provided
7816 the inner modes and byte offsets are the same, this is an extraction
7817 of a low-order part, we don't convert an fp operation to int or
7818 vice versa, and we would not be converting a single-word
7819 operation into a multi-word operation. The latter test is not
7820 required, but it prevents generating unneeded multi-word operations.
7821 Some of the previous tests are redundant given the latter test, but
7822 are retained because they are required for correctness.
7824 We produce the result slightly differently in this case. */
7826 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7827 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7828 || ! subreg_lowpart_p (lhs)
7829 || (GET_MODE_CLASS (GET_MODE (lhs))
7830 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7831 || (GET_MODE_SIZE (GET_MODE (lhs))
7832 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7833 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7834 return x;
7836 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7837 SUBREG_REG (lhs), SUBREG_REG (rhs));
7838 return gen_lowpart (GET_MODE (x), tem);
7840 default:
7841 return x;
7844 /* Set LHS and RHS to the inner operands (A and B in the example
7845 above) and set OTHER to the common operand (C in the example).
7846 There is only one way to do this unless the inner operation is
7847 commutative. */
7848 if (COMMUTATIVE_ARITH_P (lhs)
7849 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7850 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7851 else if (COMMUTATIVE_ARITH_P (lhs)
7852 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7853 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7854 else if (COMMUTATIVE_ARITH_P (lhs)
7855 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7856 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7857 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7858 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7859 else
7860 return x;
7862 /* Form the new inner operation, seeing if it simplifies first. */
7863 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7865 /* There is one exception to the general way of distributing:
7866 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7867 if (code == XOR && inner_code == IOR)
7869 inner_code = AND;
7870 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7873 /* We may be able to continuing distributing the result, so call
7874 ourselves recursively on the inner operation before forming the
7875 outer operation, which we return. */
7876 return gen_binary (inner_code, GET_MODE (x),
7877 apply_distributive_law (tem), other);
7880 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7881 in MODE.
7883 Return an equivalent form, if different from X. Otherwise, return X. If
7884 X is zero, we are to always construct the equivalent form. */
7886 static rtx
7887 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7888 unsigned HOST_WIDE_INT constop)
7890 unsigned HOST_WIDE_INT nonzero;
7891 int i;
7893 /* Simplify VAROP knowing that we will be only looking at some of the
7894 bits in it.
7896 Note by passing in CONSTOP, we guarantee that the bits not set in
7897 CONSTOP are not significant and will never be examined. We must
7898 ensure that is the case by explicitly masking out those bits
7899 before returning. */
7900 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7902 /* If VAROP is a CLOBBER, we will fail so return it. */
7903 if (GET_CODE (varop) == CLOBBER)
7904 return varop;
7906 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7907 to VAROP and return the new constant. */
7908 if (GET_CODE (varop) == CONST_INT)
7909 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7911 /* See what bits may be nonzero in VAROP. Unlike the general case of
7912 a call to nonzero_bits, here we don't care about bits outside
7913 MODE. */
7915 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7917 /* Turn off all bits in the constant that are known to already be zero.
7918 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7919 which is tested below. */
7921 constop &= nonzero;
7923 /* If we don't have any bits left, return zero. */
7924 if (constop == 0)
7925 return const0_rtx;
7927 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7928 a power of two, we can replace this with an ASHIFT. */
7929 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7930 && (i = exact_log2 (constop)) >= 0)
7931 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7933 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7934 or XOR, then try to apply the distributive law. This may eliminate
7935 operations if either branch can be simplified because of the AND.
7936 It may also make some cases more complex, but those cases probably
7937 won't match a pattern either with or without this. */
7939 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7940 return
7941 gen_lowpart
7942 (mode,
7943 apply_distributive_law
7944 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7945 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7946 XEXP (varop, 0), constop),
7947 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7948 XEXP (varop, 1), constop))));
7950 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7951 the AND and see if one of the operands simplifies to zero. If so, we
7952 may eliminate it. */
7954 if (GET_CODE (varop) == PLUS
7955 && exact_log2 (constop + 1) >= 0)
7957 rtx o0, o1;
7959 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7960 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7961 if (o0 == const0_rtx)
7962 return o1;
7963 if (o1 == const0_rtx)
7964 return o0;
7967 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7968 if we already had one (just check for the simplest cases). */
7969 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7970 && GET_MODE (XEXP (x, 0)) == mode
7971 && SUBREG_REG (XEXP (x, 0)) == varop)
7972 varop = XEXP (x, 0);
7973 else
7974 varop = gen_lowpart (mode, varop);
7976 /* If we can't make the SUBREG, try to return what we were given. */
7977 if (GET_CODE (varop) == CLOBBER)
7978 return x ? x : varop;
7980 /* If we are only masking insignificant bits, return VAROP. */
7981 if (constop == nonzero)
7982 x = varop;
7983 else
7985 /* Otherwise, return an AND. */
7986 constop = trunc_int_for_mode (constop, mode);
7987 /* See how much, if any, of X we can use. */
7988 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7989 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7991 else
7993 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7994 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7995 SUBST (XEXP (x, 1), GEN_INT (constop));
7997 SUBST (XEXP (x, 0), varop);
8001 return x;
8004 #define nonzero_bits_with_known(X, MODE) \
8005 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8007 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8008 It avoids exponential behavior in nonzero_bits1 when X has
8009 identical subexpressions on the first or the second level. */
8011 static unsigned HOST_WIDE_INT
8012 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8013 enum machine_mode known_mode,
8014 unsigned HOST_WIDE_INT known_ret)
8016 if (x == known_x && mode == known_mode)
8017 return known_ret;
8019 /* Try to find identical subexpressions. If found call
8020 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8021 precomputed value for the subexpression as KNOWN_RET. */
8023 if (ARITHMETIC_P (x))
8025 rtx x0 = XEXP (x, 0);
8026 rtx x1 = XEXP (x, 1);
8028 /* Check the first level. */
8029 if (x0 == x1)
8030 return nonzero_bits1 (x, mode, x0, mode,
8031 nonzero_bits_with_known (x0, mode));
8033 /* Check the second level. */
8034 if (ARITHMETIC_P (x0)
8035 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8036 return nonzero_bits1 (x, mode, x1, mode,
8037 nonzero_bits_with_known (x1, mode));
8039 if (ARITHMETIC_P (x1)
8040 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8041 return nonzero_bits1 (x, mode, x0, mode,
8042 nonzero_bits_with_known (x0, mode));
8045 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8048 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8049 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8050 is less useful. We can't allow both, because that results in exponential
8051 run time recursion. There is a nullstone testcase that triggered
8052 this. This macro avoids accidental uses of num_sign_bit_copies. */
8053 #define cached_num_sign_bit_copies()
8055 /* Given an expression, X, compute which bits in X can be nonzero.
8056 We don't care about bits outside of those defined in MODE.
8058 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8059 a shift, AND, or zero_extract, we can do better. */
8061 static unsigned HOST_WIDE_INT
8062 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8063 enum machine_mode known_mode,
8064 unsigned HOST_WIDE_INT known_ret)
8066 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8067 unsigned HOST_WIDE_INT inner_nz;
8068 enum rtx_code code;
8069 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8070 rtx tem;
8072 /* For floating-point values, assume all bits are needed. */
8073 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8074 return nonzero;
8076 /* If X is wider than MODE, use its mode instead. */
8077 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8079 mode = GET_MODE (x);
8080 nonzero = GET_MODE_MASK (mode);
8081 mode_width = GET_MODE_BITSIZE (mode);
8084 if (mode_width > HOST_BITS_PER_WIDE_INT)
8085 /* Our only callers in this case look for single bit values. So
8086 just return the mode mask. Those tests will then be false. */
8087 return nonzero;
8089 #ifndef WORD_REGISTER_OPERATIONS
8090 /* If MODE is wider than X, but both are a single word for both the host
8091 and target machines, we can compute this from which bits of the
8092 object might be nonzero in its own mode, taking into account the fact
8093 that on many CISC machines, accessing an object in a wider mode
8094 causes the high-order bits to become undefined. So they are
8095 not known to be zero. */
8097 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8098 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8099 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8100 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8102 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8103 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8104 return nonzero;
8106 #endif
8108 code = GET_CODE (x);
8109 switch (code)
8111 case REG:
8112 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8113 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8114 all the bits above ptr_mode are known to be zero. */
8115 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8116 && REG_POINTER (x))
8117 nonzero &= GET_MODE_MASK (ptr_mode);
8118 #endif
8120 /* Include declared information about alignment of pointers. */
8121 /* ??? We don't properly preserve REG_POINTER changes across
8122 pointer-to-integer casts, so we can't trust it except for
8123 things that we know must be pointers. See execute/960116-1.c. */
8124 if ((x == stack_pointer_rtx
8125 || x == frame_pointer_rtx
8126 || x == arg_pointer_rtx)
8127 && REGNO_POINTER_ALIGN (REGNO (x)))
8129 unsigned HOST_WIDE_INT alignment
8130 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8132 #ifdef PUSH_ROUNDING
8133 /* If PUSH_ROUNDING is defined, it is possible for the
8134 stack to be momentarily aligned only to that amount,
8135 so we pick the least alignment. */
8136 if (x == stack_pointer_rtx && PUSH_ARGS)
8137 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
8138 alignment);
8139 #endif
8141 nonzero &= ~(alignment - 1);
8144 /* If X is a register whose nonzero bits value is current, use it.
8145 Otherwise, if X is a register whose value we can find, use that
8146 value. Otherwise, use the previously-computed global nonzero bits
8147 for this register. */
8149 if (reg_last_set_value[REGNO (x)] != 0
8150 && (reg_last_set_mode[REGNO (x)] == mode
8151 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8152 && GET_MODE_CLASS (mode) == MODE_INT))
8153 && (reg_last_set_label[REGNO (x)] == label_tick
8154 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8155 && REG_N_SETS (REGNO (x)) == 1
8156 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8157 REGNO (x))))
8158 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8159 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8161 tem = get_last_value (x);
8163 if (tem)
8165 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8166 /* If X is narrower than MODE and TEM is a non-negative
8167 constant that would appear negative in the mode of X,
8168 sign-extend it for use in reg_nonzero_bits because some
8169 machines (maybe most) will actually do the sign-extension
8170 and this is the conservative approach.
8172 ??? For 2.5, try to tighten up the MD files in this regard
8173 instead of this kludge. */
8175 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8176 && GET_CODE (tem) == CONST_INT
8177 && INTVAL (tem) > 0
8178 && 0 != (INTVAL (tem)
8179 & ((HOST_WIDE_INT) 1
8180 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8181 tem = GEN_INT (INTVAL (tem)
8182 | ((HOST_WIDE_INT) (-1)
8183 << GET_MODE_BITSIZE (GET_MODE (x))));
8184 #endif
8185 return nonzero_bits_with_known (tem, mode) & nonzero;
8187 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8189 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8191 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8192 /* We don't know anything about the upper bits. */
8193 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8194 return nonzero & mask;
8196 else
8197 return nonzero;
8199 case CONST_INT:
8200 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8201 /* If X is negative in MODE, sign-extend the value. */
8202 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8203 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8204 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8205 #endif
8207 return INTVAL (x);
8209 case MEM:
8210 #ifdef LOAD_EXTEND_OP
8211 /* In many, if not most, RISC machines, reading a byte from memory
8212 zeros the rest of the register. Noticing that fact saves a lot
8213 of extra zero-extends. */
8214 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8215 nonzero &= GET_MODE_MASK (GET_MODE (x));
8216 #endif
8217 break;
8219 case EQ: case NE:
8220 case UNEQ: case LTGT:
8221 case GT: case GTU: case UNGT:
8222 case LT: case LTU: case UNLT:
8223 case GE: case GEU: case UNGE:
8224 case LE: case LEU: case UNLE:
8225 case UNORDERED: case ORDERED:
8227 /* If this produces an integer result, we know which bits are set.
8228 Code here used to clear bits outside the mode of X, but that is
8229 now done above. */
8231 if (GET_MODE_CLASS (mode) == MODE_INT
8232 && mode_width <= HOST_BITS_PER_WIDE_INT)
8233 nonzero = STORE_FLAG_VALUE;
8234 break;
8236 case NEG:
8237 #if 0
8238 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8239 and num_sign_bit_copies. */
8240 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8241 == GET_MODE_BITSIZE (GET_MODE (x)))
8242 nonzero = 1;
8243 #endif
8245 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8246 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8247 break;
8249 case ABS:
8250 #if 0
8251 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8252 and num_sign_bit_copies. */
8253 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8254 == GET_MODE_BITSIZE (GET_MODE (x)))
8255 nonzero = 1;
8256 #endif
8257 break;
8259 case TRUNCATE:
8260 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8261 & GET_MODE_MASK (mode));
8262 break;
8264 case ZERO_EXTEND:
8265 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8266 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8267 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8268 break;
8270 case SIGN_EXTEND:
8271 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8272 Otherwise, show all the bits in the outer mode but not the inner
8273 may be nonzero. */
8274 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8275 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8277 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8278 if (inner_nz
8279 & (((HOST_WIDE_INT) 1
8280 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8281 inner_nz |= (GET_MODE_MASK (mode)
8282 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8285 nonzero &= inner_nz;
8286 break;
8288 case AND:
8289 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8290 & nonzero_bits_with_known (XEXP (x, 1), mode));
8291 break;
8293 case XOR: case IOR:
8294 case UMIN: case UMAX: case SMIN: case SMAX:
8296 unsigned HOST_WIDE_INT nonzero0 =
8297 nonzero_bits_with_known (XEXP (x, 0), mode);
8299 /* Don't call nonzero_bits for the second time if it cannot change
8300 anything. */
8301 if ((nonzero & nonzero0) != nonzero)
8302 nonzero &= (nonzero0
8303 | nonzero_bits_with_known (XEXP (x, 1), mode));
8305 break;
8307 case PLUS: case MINUS:
8308 case MULT:
8309 case DIV: case UDIV:
8310 case MOD: case UMOD:
8311 /* We can apply the rules of arithmetic to compute the number of
8312 high- and low-order zero bits of these operations. We start by
8313 computing the width (position of the highest-order nonzero bit)
8314 and the number of low-order zero bits for each value. */
8316 unsigned HOST_WIDE_INT nz0 =
8317 nonzero_bits_with_known (XEXP (x, 0), mode);
8318 unsigned HOST_WIDE_INT nz1 =
8319 nonzero_bits_with_known (XEXP (x, 1), mode);
8320 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8321 int width0 = floor_log2 (nz0) + 1;
8322 int width1 = floor_log2 (nz1) + 1;
8323 int low0 = floor_log2 (nz0 & -nz0);
8324 int low1 = floor_log2 (nz1 & -nz1);
8325 HOST_WIDE_INT op0_maybe_minusp
8326 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8327 HOST_WIDE_INT op1_maybe_minusp
8328 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8329 unsigned int result_width = mode_width;
8330 int result_low = 0;
8332 switch (code)
8334 case PLUS:
8335 result_width = MAX (width0, width1) + 1;
8336 result_low = MIN (low0, low1);
8337 break;
8338 case MINUS:
8339 result_low = MIN (low0, low1);
8340 break;
8341 case MULT:
8342 result_width = width0 + width1;
8343 result_low = low0 + low1;
8344 break;
8345 case DIV:
8346 if (width1 == 0)
8347 break;
8348 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8349 result_width = width0;
8350 break;
8351 case UDIV:
8352 if (width1 == 0)
8353 break;
8354 result_width = width0;
8355 break;
8356 case MOD:
8357 if (width1 == 0)
8358 break;
8359 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8360 result_width = MIN (width0, width1);
8361 result_low = MIN (low0, low1);
8362 break;
8363 case UMOD:
8364 if (width1 == 0)
8365 break;
8366 result_width = MIN (width0, width1);
8367 result_low = MIN (low0, low1);
8368 break;
8369 default:
8370 abort ();
8373 if (result_width < mode_width)
8374 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8376 if (result_low > 0)
8377 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8379 #ifdef POINTERS_EXTEND_UNSIGNED
8380 /* If pointers extend unsigned and this is an addition or subtraction
8381 to a pointer in Pmode, all the bits above ptr_mode are known to be
8382 zero. */
8383 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8384 && (code == PLUS || code == MINUS)
8385 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8386 nonzero &= GET_MODE_MASK (ptr_mode);
8387 #endif
8389 break;
8391 case ZERO_EXTRACT:
8392 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8393 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8394 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8395 break;
8397 case SUBREG:
8398 /* If this is a SUBREG formed for a promoted variable that has
8399 been zero-extended, we know that at least the high-order bits
8400 are zero, though others might be too. */
8402 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8403 nonzero = (GET_MODE_MASK (GET_MODE (x))
8404 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8406 /* If the inner mode is a single word for both the host and target
8407 machines, we can compute this from which bits of the inner
8408 object might be nonzero. */
8409 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8410 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8411 <= HOST_BITS_PER_WIDE_INT))
8413 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8415 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8416 /* If this is a typical RISC machine, we only have to worry
8417 about the way loads are extended. */
8418 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8419 ? (((nonzero
8420 & (((unsigned HOST_WIDE_INT) 1
8421 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8422 != 0))
8423 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8424 || GET_CODE (SUBREG_REG (x)) != MEM)
8425 #endif
8427 /* On many CISC machines, accessing an object in a wider mode
8428 causes the high-order bits to become undefined. So they are
8429 not known to be zero. */
8430 if (GET_MODE_SIZE (GET_MODE (x))
8431 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8432 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8433 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8436 break;
8438 case ASHIFTRT:
8439 case LSHIFTRT:
8440 case ASHIFT:
8441 case ROTATE:
8442 /* The nonzero bits are in two classes: any bits within MODE
8443 that aren't in GET_MODE (x) are always significant. The rest of the
8444 nonzero bits are those that are significant in the operand of
8445 the shift when shifted the appropriate number of bits. This
8446 shows that high-order bits are cleared by the right shift and
8447 low-order bits by left shifts. */
8448 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8449 && INTVAL (XEXP (x, 1)) >= 0
8450 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8452 enum machine_mode inner_mode = GET_MODE (x);
8453 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8454 int count = INTVAL (XEXP (x, 1));
8455 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8456 unsigned HOST_WIDE_INT op_nonzero =
8457 nonzero_bits_with_known (XEXP (x, 0), mode);
8458 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8459 unsigned HOST_WIDE_INT outer = 0;
8461 if (mode_width > width)
8462 outer = (op_nonzero & nonzero & ~mode_mask);
8464 if (code == LSHIFTRT)
8465 inner >>= count;
8466 else if (code == ASHIFTRT)
8468 inner >>= count;
8470 /* If the sign bit may have been nonzero before the shift, we
8471 need to mark all the places it could have been copied to
8472 by the shift as possibly nonzero. */
8473 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8474 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8476 else if (code == ASHIFT)
8477 inner <<= count;
8478 else
8479 inner = ((inner << (count % width)
8480 | (inner >> (width - (count % width)))) & mode_mask);
8482 nonzero &= (outer | inner);
8484 break;
8486 case FFS:
8487 case POPCOUNT:
8488 /* This is at most the number of bits in the mode. */
8489 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8490 break;
8492 case CLZ:
8493 /* If CLZ has a known value at zero, then the nonzero bits are
8494 that value, plus the number of bits in the mode minus one. */
8495 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8496 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8497 else
8498 nonzero = -1;
8499 break;
8501 case CTZ:
8502 /* If CTZ has a known value at zero, then the nonzero bits are
8503 that value, plus the number of bits in the mode minus one. */
8504 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8505 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8506 else
8507 nonzero = -1;
8508 break;
8510 case PARITY:
8511 nonzero = 1;
8512 break;
8514 case IF_THEN_ELSE:
8515 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8516 | nonzero_bits_with_known (XEXP (x, 2), mode));
8517 break;
8519 default:
8520 break;
8523 return nonzero;
8526 /* See the macro definition above. */
8527 #undef cached_num_sign_bit_copies
8529 #define num_sign_bit_copies_with_known(X, M) \
8530 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8532 /* The function cached_num_sign_bit_copies is a wrapper around
8533 num_sign_bit_copies1. It avoids exponential behavior in
8534 num_sign_bit_copies1 when X has identical subexpressions on the
8535 first or the second level. */
8537 static unsigned int
8538 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8539 enum machine_mode known_mode,
8540 unsigned int known_ret)
8542 if (x == known_x && mode == known_mode)
8543 return known_ret;
8545 /* Try to find identical subexpressions. If found call
8546 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8547 the precomputed value for the subexpression as KNOWN_RET. */
8549 if (ARITHMETIC_P (x))
8551 rtx x0 = XEXP (x, 0);
8552 rtx x1 = XEXP (x, 1);
8554 /* Check the first level. */
8555 if (x0 == x1)
8556 return
8557 num_sign_bit_copies1 (x, mode, x0, mode,
8558 num_sign_bit_copies_with_known (x0, mode));
8560 /* Check the second level. */
8561 if (ARITHMETIC_P (x0)
8562 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8563 return
8564 num_sign_bit_copies1 (x, mode, x1, mode,
8565 num_sign_bit_copies_with_known (x1, mode));
8567 if (ARITHMETIC_P (x1)
8568 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8569 return
8570 num_sign_bit_copies1 (x, mode, x0, mode,
8571 num_sign_bit_copies_with_known (x0, mode));
8574 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8577 /* Return the number of bits at the high-order end of X that are known to
8578 be equal to the sign bit. X will be used in mode MODE; if MODE is
8579 VOIDmode, X will be used in its own mode. The returned value will always
8580 be between 1 and the number of bits in MODE. */
8582 static unsigned int
8583 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8584 enum machine_mode known_mode,
8585 unsigned int known_ret)
8587 enum rtx_code code = GET_CODE (x);
8588 unsigned int bitwidth;
8589 int num0, num1, result;
8590 unsigned HOST_WIDE_INT nonzero;
8591 rtx tem;
8593 /* If we weren't given a mode, use the mode of X. If the mode is still
8594 VOIDmode, we don't know anything. Likewise if one of the modes is
8595 floating-point. */
8597 if (mode == VOIDmode)
8598 mode = GET_MODE (x);
8600 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8601 return 1;
8603 bitwidth = GET_MODE_BITSIZE (mode);
8605 /* For a smaller object, just ignore the high bits. */
8606 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8608 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8609 return MAX (1,
8610 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8613 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8615 #ifndef WORD_REGISTER_OPERATIONS
8616 /* If this machine does not do all register operations on the entire
8617 register and MODE is wider than the mode of X, we can say nothing
8618 at all about the high-order bits. */
8619 return 1;
8620 #else
8621 /* Likewise on machines that do, if the mode of the object is smaller
8622 than a word and loads of that size don't sign extend, we can say
8623 nothing about the high order bits. */
8624 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8625 #ifdef LOAD_EXTEND_OP
8626 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8627 #endif
8629 return 1;
8630 #endif
8633 switch (code)
8635 case REG:
8637 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8638 /* If pointers extend signed and this is a pointer in Pmode, say that
8639 all the bits above ptr_mode are known to be sign bit copies. */
8640 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8641 && REG_POINTER (x))
8642 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8643 #endif
8645 if (reg_last_set_value[REGNO (x)] != 0
8646 && reg_last_set_mode[REGNO (x)] == mode
8647 && (reg_last_set_label[REGNO (x)] == label_tick
8648 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8649 && REG_N_SETS (REGNO (x)) == 1
8650 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8651 REGNO (x))))
8652 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8653 return reg_last_set_sign_bit_copies[REGNO (x)];
8655 tem = get_last_value (x);
8656 if (tem != 0)
8657 return num_sign_bit_copies_with_known (tem, mode);
8659 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8660 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8661 return reg_sign_bit_copies[REGNO (x)];
8662 break;
8664 case MEM:
8665 #ifdef LOAD_EXTEND_OP
8666 /* Some RISC machines sign-extend all loads of smaller than a word. */
8667 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8668 return MAX (1, ((int) bitwidth
8669 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8670 #endif
8671 break;
8673 case CONST_INT:
8674 /* If the constant is negative, take its 1's complement and remask.
8675 Then see how many zero bits we have. */
8676 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8677 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8678 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8679 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8681 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8683 case SUBREG:
8684 /* If this is a SUBREG for a promoted object that is sign-extended
8685 and we are looking at it in a wider mode, we know that at least the
8686 high-order bits are known to be sign bit copies. */
8688 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8690 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8691 return MAX ((int) bitwidth
8692 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8693 num0);
8696 /* For a smaller object, just ignore the high bits. */
8697 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8699 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8700 return MAX (1, (num0
8701 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8702 - bitwidth)));
8705 #ifdef WORD_REGISTER_OPERATIONS
8706 #ifdef LOAD_EXTEND_OP
8707 /* For paradoxical SUBREGs on machines where all register operations
8708 affect the entire register, just look inside. Note that we are
8709 passing MODE to the recursive call, so the number of sign bit copies
8710 will remain relative to that mode, not the inner mode. */
8712 /* This works only if loads sign extend. Otherwise, if we get a
8713 reload for the inner part, it may be loaded from the stack, and
8714 then we lose all sign bit copies that existed before the store
8715 to the stack. */
8717 if ((GET_MODE_SIZE (GET_MODE (x))
8718 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8719 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8720 && GET_CODE (SUBREG_REG (x)) == MEM)
8721 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8722 #endif
8723 #endif
8724 break;
8726 case SIGN_EXTRACT:
8727 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8728 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8729 break;
8731 case SIGN_EXTEND:
8732 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8733 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8735 case TRUNCATE:
8736 /* For a smaller object, just ignore the high bits. */
8737 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8738 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8739 - bitwidth)));
8741 case NOT:
8742 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8744 case ROTATE: case ROTATERT:
8745 /* If we are rotating left by a number of bits less than the number
8746 of sign bit copies, we can just subtract that amount from the
8747 number. */
8748 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8749 && INTVAL (XEXP (x, 1)) >= 0
8750 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8752 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8753 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8754 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8756 break;
8758 case NEG:
8759 /* In general, this subtracts one sign bit copy. But if the value
8760 is known to be positive, the number of sign bit copies is the
8761 same as that of the input. Finally, if the input has just one bit
8762 that might be nonzero, all the bits are copies of the sign bit. */
8763 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8764 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8765 return num0 > 1 ? num0 - 1 : 1;
8767 nonzero = nonzero_bits (XEXP (x, 0), mode);
8768 if (nonzero == 1)
8769 return bitwidth;
8771 if (num0 > 1
8772 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8773 num0--;
8775 return num0;
8777 case IOR: case AND: case XOR:
8778 case SMIN: case SMAX: case UMIN: case UMAX:
8779 /* Logical operations will preserve the number of sign-bit copies.
8780 MIN and MAX operations always return one of the operands. */
8781 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8782 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8783 return MIN (num0, num1);
8785 case PLUS: case MINUS:
8786 /* For addition and subtraction, we can have a 1-bit carry. However,
8787 if we are subtracting 1 from a positive number, there will not
8788 be such a carry. Furthermore, if the positive number is known to
8789 be 0 or 1, we know the result is either -1 or 0. */
8791 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8792 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8794 nonzero = nonzero_bits (XEXP (x, 0), mode);
8795 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8796 return (nonzero == 1 || nonzero == 0 ? bitwidth
8797 : bitwidth - floor_log2 (nonzero) - 1);
8800 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8801 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8802 result = MAX (1, MIN (num0, num1) - 1);
8804 #ifdef POINTERS_EXTEND_UNSIGNED
8805 /* If pointers extend signed and this is an addition or subtraction
8806 to a pointer in Pmode, all the bits above ptr_mode are known to be
8807 sign bit copies. */
8808 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8809 && (code == PLUS || code == MINUS)
8810 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8811 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8812 - GET_MODE_BITSIZE (ptr_mode) + 1),
8813 result);
8814 #endif
8815 return result;
8817 case MULT:
8818 /* The number of bits of the product is the sum of the number of
8819 bits of both terms. However, unless one of the terms if known
8820 to be positive, we must allow for an additional bit since negating
8821 a negative number can remove one sign bit copy. */
8823 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8824 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8826 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8827 if (result > 0
8828 && (bitwidth > HOST_BITS_PER_WIDE_INT
8829 || (((nonzero_bits (XEXP (x, 0), mode)
8830 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8831 && ((nonzero_bits (XEXP (x, 1), mode)
8832 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8833 result--;
8835 return MAX (1, result);
8837 case UDIV:
8838 /* The result must be <= the first operand. If the first operand
8839 has the high bit set, we know nothing about the number of sign
8840 bit copies. */
8841 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8842 return 1;
8843 else if ((nonzero_bits (XEXP (x, 0), mode)
8844 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8845 return 1;
8846 else
8847 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8849 case UMOD:
8850 /* The result must be <= the second operand. */
8851 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8853 case DIV:
8854 /* Similar to unsigned division, except that we have to worry about
8855 the case where the divisor is negative, in which case we have
8856 to add 1. */
8857 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8858 if (result > 1
8859 && (bitwidth > HOST_BITS_PER_WIDE_INT
8860 || (nonzero_bits (XEXP (x, 1), mode)
8861 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8862 result--;
8864 return result;
8866 case MOD:
8867 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8868 if (result > 1
8869 && (bitwidth > HOST_BITS_PER_WIDE_INT
8870 || (nonzero_bits (XEXP (x, 1), mode)
8871 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8872 result--;
8874 return result;
8876 case ASHIFTRT:
8877 /* Shifts by a constant add to the number of bits equal to the
8878 sign bit. */
8879 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8880 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8881 && INTVAL (XEXP (x, 1)) > 0)
8882 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8884 return num0;
8886 case ASHIFT:
8887 /* Left shifts destroy copies. */
8888 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8889 || INTVAL (XEXP (x, 1)) < 0
8890 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8891 return 1;
8893 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8894 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8896 case IF_THEN_ELSE:
8897 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8898 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
8899 return MIN (num0, num1);
8901 case EQ: case NE: case GE: case GT: case LE: case LT:
8902 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8903 case GEU: case GTU: case LEU: case LTU:
8904 case UNORDERED: case ORDERED:
8905 /* If the constant is negative, take its 1's complement and remask.
8906 Then see how many zero bits we have. */
8907 nonzero = STORE_FLAG_VALUE;
8908 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8909 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8910 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8912 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8913 break;
8915 default:
8916 break;
8919 /* If we haven't been able to figure it out by one of the above rules,
8920 see if some of the high-order bits are known to be zero. If so,
8921 count those bits and return one less than that amount. If we can't
8922 safely compute the mask for this mode, always return BITWIDTH. */
8924 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8925 return 1;
8927 nonzero = nonzero_bits (x, mode);
8928 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8929 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8932 /* Return the number of "extended" bits there are in X, when interpreted
8933 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8934 unsigned quantities, this is the number of high-order zero bits.
8935 For signed quantities, this is the number of copies of the sign bit
8936 minus 1. In both case, this function returns the number of "spare"
8937 bits. For example, if two quantities for which this function returns
8938 at least 1 are added, the addition is known not to overflow.
8940 This function will always return 0 unless called during combine, which
8941 implies that it must be called from a define_split. */
8943 unsigned int
8944 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8946 if (nonzero_sign_valid == 0)
8947 return 0;
8949 return (unsignedp
8950 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8951 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8952 - floor_log2 (nonzero_bits (x, mode)))
8953 : 0)
8954 : num_sign_bit_copies (x, mode) - 1);
8957 /* This function is called from `simplify_shift_const' to merge two
8958 outer operations. Specifically, we have already found that we need
8959 to perform operation *POP0 with constant *PCONST0 at the outermost
8960 position. We would now like to also perform OP1 with constant CONST1
8961 (with *POP0 being done last).
8963 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8964 the resulting operation. *PCOMP_P is set to 1 if we would need to
8965 complement the innermost operand, otherwise it is unchanged.
8967 MODE is the mode in which the operation will be done. No bits outside
8968 the width of this mode matter. It is assumed that the width of this mode
8969 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8971 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8972 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8973 result is simply *PCONST0.
8975 If the resulting operation cannot be expressed as one operation, we
8976 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8978 static int
8979 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8981 enum rtx_code op0 = *pop0;
8982 HOST_WIDE_INT const0 = *pconst0;
8984 const0 &= GET_MODE_MASK (mode);
8985 const1 &= GET_MODE_MASK (mode);
8987 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8988 if (op0 == AND)
8989 const1 &= const0;
8991 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8992 if OP0 is SET. */
8994 if (op1 == NIL || op0 == SET)
8995 return 1;
8997 else if (op0 == NIL)
8998 op0 = op1, const0 = const1;
9000 else if (op0 == op1)
9002 switch (op0)
9004 case AND:
9005 const0 &= const1;
9006 break;
9007 case IOR:
9008 const0 |= const1;
9009 break;
9010 case XOR:
9011 const0 ^= const1;
9012 break;
9013 case PLUS:
9014 const0 += const1;
9015 break;
9016 case NEG:
9017 op0 = NIL;
9018 break;
9019 default:
9020 break;
9024 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9025 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9026 return 0;
9028 /* If the two constants aren't the same, we can't do anything. The
9029 remaining six cases can all be done. */
9030 else if (const0 != const1)
9031 return 0;
9033 else
9034 switch (op0)
9036 case IOR:
9037 if (op1 == AND)
9038 /* (a & b) | b == b */
9039 op0 = SET;
9040 else /* op1 == XOR */
9041 /* (a ^ b) | b == a | b */
9043 break;
9045 case XOR:
9046 if (op1 == AND)
9047 /* (a & b) ^ b == (~a) & b */
9048 op0 = AND, *pcomp_p = 1;
9049 else /* op1 == IOR */
9050 /* (a | b) ^ b == a & ~b */
9051 op0 = AND, const0 = ~const0;
9052 break;
9054 case AND:
9055 if (op1 == IOR)
9056 /* (a | b) & b == b */
9057 op0 = SET;
9058 else /* op1 == XOR */
9059 /* (a ^ b) & b) == (~a) & b */
9060 *pcomp_p = 1;
9061 break;
9062 default:
9063 break;
9066 /* Check for NO-OP cases. */
9067 const0 &= GET_MODE_MASK (mode);
9068 if (const0 == 0
9069 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9070 op0 = NIL;
9071 else if (const0 == 0 && op0 == AND)
9072 op0 = SET;
9073 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9074 && op0 == AND)
9075 op0 = NIL;
9077 /* ??? Slightly redundant with the above mask, but not entirely.
9078 Moving this above means we'd have to sign-extend the mode mask
9079 for the final test. */
9080 const0 = trunc_int_for_mode (const0, mode);
9082 *pop0 = op0;
9083 *pconst0 = const0;
9085 return 1;
9088 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9089 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9090 that we started with.
9092 The shift is normally computed in the widest mode we find in VAROP, as
9093 long as it isn't a different number of words than RESULT_MODE. Exceptions
9094 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9096 static rtx
9097 simplify_shift_const (rtx x, enum rtx_code code,
9098 enum machine_mode result_mode, rtx varop,
9099 int orig_count)
9101 enum rtx_code orig_code = code;
9102 unsigned int count;
9103 int signed_count;
9104 enum machine_mode mode = result_mode;
9105 enum machine_mode shift_mode, tmode;
9106 unsigned int mode_words
9107 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9108 /* We form (outer_op (code varop count) (outer_const)). */
9109 enum rtx_code outer_op = NIL;
9110 HOST_WIDE_INT outer_const = 0;
9111 rtx const_rtx;
9112 int complement_p = 0;
9113 rtx new;
9115 /* Make sure and truncate the "natural" shift on the way in. We don't
9116 want to do this inside the loop as it makes it more difficult to
9117 combine shifts. */
9118 if (SHIFT_COUNT_TRUNCATED)
9119 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9121 /* If we were given an invalid count, don't do anything except exactly
9122 what was requested. */
9124 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9126 if (x)
9127 return x;
9129 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9132 count = orig_count;
9134 /* Unless one of the branches of the `if' in this loop does a `continue',
9135 we will `break' the loop after the `if'. */
9137 while (count != 0)
9139 /* If we have an operand of (clobber (const_int 0)), just return that
9140 value. */
9141 if (GET_CODE (varop) == CLOBBER)
9142 return varop;
9144 /* If we discovered we had to complement VAROP, leave. Making a NOT
9145 here would cause an infinite loop. */
9146 if (complement_p)
9147 break;
9149 /* Convert ROTATERT to ROTATE. */
9150 if (code == ROTATERT)
9152 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9153 code = ROTATE;
9154 if (VECTOR_MODE_P (result_mode))
9155 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9156 else
9157 count = bitsize - count;
9160 /* We need to determine what mode we will do the shift in. If the
9161 shift is a right shift or a ROTATE, we must always do it in the mode
9162 it was originally done in. Otherwise, we can do it in MODE, the
9163 widest mode encountered. */
9164 shift_mode
9165 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9166 ? result_mode : mode);
9168 /* Handle cases where the count is greater than the size of the mode
9169 minus 1. For ASHIFT, use the size minus one as the count (this can
9170 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9171 take the count modulo the size. For other shifts, the result is
9172 zero.
9174 Since these shifts are being produced by the compiler by combining
9175 multiple operations, each of which are defined, we know what the
9176 result is supposed to be. */
9178 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9180 if (code == ASHIFTRT)
9181 count = GET_MODE_BITSIZE (shift_mode) - 1;
9182 else if (code == ROTATE || code == ROTATERT)
9183 count %= GET_MODE_BITSIZE (shift_mode);
9184 else
9186 /* We can't simply return zero because there may be an
9187 outer op. */
9188 varop = const0_rtx;
9189 count = 0;
9190 break;
9194 /* An arithmetic right shift of a quantity known to be -1 or 0
9195 is a no-op. */
9196 if (code == ASHIFTRT
9197 && (num_sign_bit_copies (varop, shift_mode)
9198 == GET_MODE_BITSIZE (shift_mode)))
9200 count = 0;
9201 break;
9204 /* If we are doing an arithmetic right shift and discarding all but
9205 the sign bit copies, this is equivalent to doing a shift by the
9206 bitsize minus one. Convert it into that shift because it will often
9207 allow other simplifications. */
9209 if (code == ASHIFTRT
9210 && (count + num_sign_bit_copies (varop, shift_mode)
9211 >= GET_MODE_BITSIZE (shift_mode)))
9212 count = GET_MODE_BITSIZE (shift_mode) - 1;
9214 /* We simplify the tests below and elsewhere by converting
9215 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9216 `make_compound_operation' will convert it to an ASHIFTRT for
9217 those machines (such as VAX) that don't have an LSHIFTRT. */
9218 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9219 && code == ASHIFTRT
9220 && ((nonzero_bits (varop, shift_mode)
9221 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9222 == 0))
9223 code = LSHIFTRT;
9225 if (code == LSHIFTRT
9226 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9227 && !(nonzero_bits (varop, shift_mode) >> count))
9228 varop = const0_rtx;
9229 if (code == ASHIFT
9230 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9231 && !((nonzero_bits (varop, shift_mode) << count)
9232 & GET_MODE_MASK (shift_mode)))
9233 varop = const0_rtx;
9235 switch (GET_CODE (varop))
9237 case SIGN_EXTEND:
9238 case ZERO_EXTEND:
9239 case SIGN_EXTRACT:
9240 case ZERO_EXTRACT:
9241 new = expand_compound_operation (varop);
9242 if (new != varop)
9244 varop = new;
9245 continue;
9247 break;
9249 case MEM:
9250 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9251 minus the width of a smaller mode, we can do this with a
9252 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9253 if ((code == ASHIFTRT || code == LSHIFTRT)
9254 && ! mode_dependent_address_p (XEXP (varop, 0))
9255 && ! MEM_VOLATILE_P (varop)
9256 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9257 MODE_INT, 1)) != BLKmode)
9259 new = adjust_address_nv (varop, tmode,
9260 BYTES_BIG_ENDIAN ? 0
9261 : count / BITS_PER_UNIT);
9263 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9264 : ZERO_EXTEND, mode, new);
9265 count = 0;
9266 continue;
9268 break;
9270 case USE:
9271 /* Similar to the case above, except that we can only do this if
9272 the resulting mode is the same as that of the underlying
9273 MEM and adjust the address depending on the *bits* endianness
9274 because of the way that bit-field extract insns are defined. */
9275 if ((code == ASHIFTRT || code == LSHIFTRT)
9276 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9277 MODE_INT, 1)) != BLKmode
9278 && tmode == GET_MODE (XEXP (varop, 0)))
9280 if (BITS_BIG_ENDIAN)
9281 new = XEXP (varop, 0);
9282 else
9284 new = copy_rtx (XEXP (varop, 0));
9285 SUBST (XEXP (new, 0),
9286 plus_constant (XEXP (new, 0),
9287 count / BITS_PER_UNIT));
9290 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9291 : ZERO_EXTEND, mode, new);
9292 count = 0;
9293 continue;
9295 break;
9297 case SUBREG:
9298 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9299 the same number of words as what we've seen so far. Then store
9300 the widest mode in MODE. */
9301 if (subreg_lowpart_p (varop)
9302 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9303 > GET_MODE_SIZE (GET_MODE (varop)))
9304 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9305 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9306 == mode_words)
9308 varop = SUBREG_REG (varop);
9309 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9310 mode = GET_MODE (varop);
9311 continue;
9313 break;
9315 case MULT:
9316 /* Some machines use MULT instead of ASHIFT because MULT
9317 is cheaper. But it is still better on those machines to
9318 merge two shifts into one. */
9319 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9320 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9322 varop
9323 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9324 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9325 continue;
9327 break;
9329 case UDIV:
9330 /* Similar, for when divides are cheaper. */
9331 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9332 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9334 varop
9335 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9336 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9337 continue;
9339 break;
9341 case ASHIFTRT:
9342 /* If we are extracting just the sign bit of an arithmetic
9343 right shift, that shift is not needed. However, the sign
9344 bit of a wider mode may be different from what would be
9345 interpreted as the sign bit in a narrower mode, so, if
9346 the result is narrower, don't discard the shift. */
9347 if (code == LSHIFTRT
9348 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9349 && (GET_MODE_BITSIZE (result_mode)
9350 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9352 varop = XEXP (varop, 0);
9353 continue;
9356 /* ... fall through ... */
9358 case LSHIFTRT:
9359 case ASHIFT:
9360 case ROTATE:
9361 /* Here we have two nested shifts. The result is usually the
9362 AND of a new shift with a mask. We compute the result below. */
9363 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9364 && INTVAL (XEXP (varop, 1)) >= 0
9365 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9366 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9367 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9369 enum rtx_code first_code = GET_CODE (varop);
9370 unsigned int first_count = INTVAL (XEXP (varop, 1));
9371 unsigned HOST_WIDE_INT mask;
9372 rtx mask_rtx;
9374 /* We have one common special case. We can't do any merging if
9375 the inner code is an ASHIFTRT of a smaller mode. However, if
9376 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9377 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9378 we can convert it to
9379 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9380 This simplifies certain SIGN_EXTEND operations. */
9381 if (code == ASHIFT && first_code == ASHIFTRT
9382 && count == (unsigned int)
9383 (GET_MODE_BITSIZE (result_mode)
9384 - GET_MODE_BITSIZE (GET_MODE (varop))))
9386 /* C3 has the low-order C1 bits zero. */
9388 mask = (GET_MODE_MASK (mode)
9389 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9391 varop = simplify_and_const_int (NULL_RTX, result_mode,
9392 XEXP (varop, 0), mask);
9393 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9394 varop, count);
9395 count = first_count;
9396 code = ASHIFTRT;
9397 continue;
9400 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9401 than C1 high-order bits equal to the sign bit, we can convert
9402 this to either an ASHIFT or an ASHIFTRT depending on the
9403 two counts.
9405 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9407 if (code == ASHIFTRT && first_code == ASHIFT
9408 && GET_MODE (varop) == shift_mode
9409 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9410 > first_count))
9412 varop = XEXP (varop, 0);
9414 signed_count = count - first_count;
9415 if (signed_count < 0)
9416 count = -signed_count, code = ASHIFT;
9417 else
9418 count = signed_count;
9420 continue;
9423 /* There are some cases we can't do. If CODE is ASHIFTRT,
9424 we can only do this if FIRST_CODE is also ASHIFTRT.
9426 We can't do the case when CODE is ROTATE and FIRST_CODE is
9427 ASHIFTRT.
9429 If the mode of this shift is not the mode of the outer shift,
9430 we can't do this if either shift is a right shift or ROTATE.
9432 Finally, we can't do any of these if the mode is too wide
9433 unless the codes are the same.
9435 Handle the case where the shift codes are the same
9436 first. */
9438 if (code == first_code)
9440 if (GET_MODE (varop) != result_mode
9441 && (code == ASHIFTRT || code == LSHIFTRT
9442 || code == ROTATE))
9443 break;
9445 count += first_count;
9446 varop = XEXP (varop, 0);
9447 continue;
9450 if (code == ASHIFTRT
9451 || (code == ROTATE && first_code == ASHIFTRT)
9452 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9453 || (GET_MODE (varop) != result_mode
9454 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9455 || first_code == ROTATE
9456 || code == ROTATE)))
9457 break;
9459 /* To compute the mask to apply after the shift, shift the
9460 nonzero bits of the inner shift the same way the
9461 outer shift will. */
9463 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9465 mask_rtx
9466 = simplify_binary_operation (code, result_mode, mask_rtx,
9467 GEN_INT (count));
9469 /* Give up if we can't compute an outer operation to use. */
9470 if (mask_rtx == 0
9471 || GET_CODE (mask_rtx) != CONST_INT
9472 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9473 INTVAL (mask_rtx),
9474 result_mode, &complement_p))
9475 break;
9477 /* If the shifts are in the same direction, we add the
9478 counts. Otherwise, we subtract them. */
9479 signed_count = count;
9480 if ((code == ASHIFTRT || code == LSHIFTRT)
9481 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9482 signed_count += first_count;
9483 else
9484 signed_count -= first_count;
9486 /* If COUNT is positive, the new shift is usually CODE,
9487 except for the two exceptions below, in which case it is
9488 FIRST_CODE. If the count is negative, FIRST_CODE should
9489 always be used */
9490 if (signed_count > 0
9491 && ((first_code == ROTATE && code == ASHIFT)
9492 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9493 code = first_code, count = signed_count;
9494 else if (signed_count < 0)
9495 code = first_code, count = -signed_count;
9496 else
9497 count = signed_count;
9499 varop = XEXP (varop, 0);
9500 continue;
9503 /* If we have (A << B << C) for any shift, we can convert this to
9504 (A << C << B). This wins if A is a constant. Only try this if
9505 B is not a constant. */
9507 else if (GET_CODE (varop) == code
9508 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9509 && 0 != (new
9510 = simplify_binary_operation (code, mode,
9511 XEXP (varop, 0),
9512 GEN_INT (count))))
9514 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9515 count = 0;
9516 continue;
9518 break;
9520 case NOT:
9521 /* Make this fit the case below. */
9522 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9523 GEN_INT (GET_MODE_MASK (mode)));
9524 continue;
9526 case IOR:
9527 case AND:
9528 case XOR:
9529 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9530 with C the size of VAROP - 1 and the shift is logical if
9531 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9532 we have an (le X 0) operation. If we have an arithmetic shift
9533 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9534 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9536 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9537 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9538 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9539 && (code == LSHIFTRT || code == ASHIFTRT)
9540 && count == (unsigned int)
9541 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9542 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9544 count = 0;
9545 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9546 const0_rtx);
9548 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9549 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9551 continue;
9554 /* If we have (shift (logical)), move the logical to the outside
9555 to allow it to possibly combine with another logical and the
9556 shift to combine with another shift. This also canonicalizes to
9557 what a ZERO_EXTRACT looks like. Also, some machines have
9558 (and (shift)) insns. */
9560 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9561 /* We can't do this if we have (ashiftrt (xor)) and the
9562 constant has its sign bit set in shift_mode. */
9563 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9564 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9565 shift_mode))
9566 && (new = simplify_binary_operation (code, result_mode,
9567 XEXP (varop, 1),
9568 GEN_INT (count))) != 0
9569 && GET_CODE (new) == CONST_INT
9570 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9571 INTVAL (new), result_mode, &complement_p))
9573 varop = XEXP (varop, 0);
9574 continue;
9577 /* If we can't do that, try to simplify the shift in each arm of the
9578 logical expression, make a new logical expression, and apply
9579 the inverse distributive law. This also can't be done
9580 for some (ashiftrt (xor)). */
9581 if (code != ASHIFTRT || GET_CODE (varop)!= XOR
9582 || 0 <= trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9583 shift_mode))
9585 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9586 XEXP (varop, 0), count);
9587 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9588 XEXP (varop, 1), count);
9590 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9591 varop = apply_distributive_law (varop);
9593 count = 0;
9595 break;
9597 case EQ:
9598 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9599 says that the sign bit can be tested, FOO has mode MODE, C is
9600 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9601 that may be nonzero. */
9602 if (code == LSHIFTRT
9603 && XEXP (varop, 1) == const0_rtx
9604 && GET_MODE (XEXP (varop, 0)) == result_mode
9605 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9606 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9607 && ((STORE_FLAG_VALUE
9608 & ((HOST_WIDE_INT) 1
9609 < (GET_MODE_BITSIZE (result_mode) - 1))))
9610 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9611 && merge_outer_ops (&outer_op, &outer_const, XOR,
9612 (HOST_WIDE_INT) 1, result_mode,
9613 &complement_p))
9615 varop = XEXP (varop, 0);
9616 count = 0;
9617 continue;
9619 break;
9621 case NEG:
9622 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9623 than the number of bits in the mode is equivalent to A. */
9624 if (code == LSHIFTRT
9625 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9626 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9628 varop = XEXP (varop, 0);
9629 count = 0;
9630 continue;
9633 /* NEG commutes with ASHIFT since it is multiplication. Move the
9634 NEG outside to allow shifts to combine. */
9635 if (code == ASHIFT
9636 && merge_outer_ops (&outer_op, &outer_const, NEG,
9637 (HOST_WIDE_INT) 0, result_mode,
9638 &complement_p))
9640 varop = XEXP (varop, 0);
9641 continue;
9643 break;
9645 case PLUS:
9646 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9647 is one less than the number of bits in the mode is
9648 equivalent to (xor A 1). */
9649 if (code == LSHIFTRT
9650 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9651 && XEXP (varop, 1) == constm1_rtx
9652 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9653 && merge_outer_ops (&outer_op, &outer_const, XOR,
9654 (HOST_WIDE_INT) 1, result_mode,
9655 &complement_p))
9657 count = 0;
9658 varop = XEXP (varop, 0);
9659 continue;
9662 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9663 that might be nonzero in BAR are those being shifted out and those
9664 bits are known zero in FOO, we can replace the PLUS with FOO.
9665 Similarly in the other operand order. This code occurs when
9666 we are computing the size of a variable-size array. */
9668 if ((code == ASHIFTRT || code == LSHIFTRT)
9669 && count < HOST_BITS_PER_WIDE_INT
9670 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9671 && (nonzero_bits (XEXP (varop, 1), result_mode)
9672 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9674 varop = XEXP (varop, 0);
9675 continue;
9677 else if ((code == ASHIFTRT || code == LSHIFTRT)
9678 && count < HOST_BITS_PER_WIDE_INT
9679 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9680 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9681 >> count)
9682 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9683 & nonzero_bits (XEXP (varop, 1),
9684 result_mode)))
9686 varop = XEXP (varop, 1);
9687 continue;
9690 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9691 if (code == ASHIFT
9692 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9693 && (new = simplify_binary_operation (ASHIFT, result_mode,
9694 XEXP (varop, 1),
9695 GEN_INT (count))) != 0
9696 && GET_CODE (new) == CONST_INT
9697 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9698 INTVAL (new), result_mode, &complement_p))
9700 varop = XEXP (varop, 0);
9701 continue;
9703 break;
9705 case MINUS:
9706 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9707 with C the size of VAROP - 1 and the shift is logical if
9708 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9709 we have a (gt X 0) operation. If the shift is arithmetic with
9710 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9711 we have a (neg (gt X 0)) operation. */
9713 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9714 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9715 && count == (unsigned int)
9716 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9717 && (code == LSHIFTRT || code == ASHIFTRT)
9718 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9719 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9720 == count
9721 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9723 count = 0;
9724 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9725 const0_rtx);
9727 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9728 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9730 continue;
9732 break;
9734 case TRUNCATE:
9735 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9736 if the truncate does not affect the value. */
9737 if (code == LSHIFTRT
9738 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9739 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9740 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9741 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9742 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9744 rtx varop_inner = XEXP (varop, 0);
9746 varop_inner
9747 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9748 XEXP (varop_inner, 0),
9749 GEN_INT
9750 (count + INTVAL (XEXP (varop_inner, 1))));
9751 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9752 count = 0;
9753 continue;
9755 break;
9757 default:
9758 break;
9761 break;
9764 /* We need to determine what mode to do the shift in. If the shift is
9765 a right shift or ROTATE, we must always do it in the mode it was
9766 originally done in. Otherwise, we can do it in MODE, the widest mode
9767 encountered. The code we care about is that of the shift that will
9768 actually be done, not the shift that was originally requested. */
9769 shift_mode
9770 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9771 ? result_mode : mode);
9773 /* We have now finished analyzing the shift. The result should be
9774 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9775 OUTER_OP is non-NIL, it is an operation that needs to be applied
9776 to the result of the shift. OUTER_CONST is the relevant constant,
9777 but we must turn off all bits turned off in the shift.
9779 If we were passed a value for X, see if we can use any pieces of
9780 it. If not, make new rtx. */
9782 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9783 && GET_CODE (XEXP (x, 1)) == CONST_INT
9784 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9785 const_rtx = XEXP (x, 1);
9786 else
9787 const_rtx = GEN_INT (count);
9789 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9790 && GET_MODE (XEXP (x, 0)) == shift_mode
9791 && SUBREG_REG (XEXP (x, 0)) == varop)
9792 varop = XEXP (x, 0);
9793 else if (GET_MODE (varop) != shift_mode)
9794 varop = gen_lowpart (shift_mode, varop);
9796 /* If we can't make the SUBREG, try to return what we were given. */
9797 if (GET_CODE (varop) == CLOBBER)
9798 return x ? x : varop;
9800 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9801 if (new != 0)
9802 x = new;
9803 else
9804 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9806 /* If we have an outer operation and we just made a shift, it is
9807 possible that we could have simplified the shift were it not
9808 for the outer operation. So try to do the simplification
9809 recursively. */
9811 if (outer_op != NIL && GET_CODE (x) == code
9812 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9813 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9814 INTVAL (XEXP (x, 1)));
9816 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9817 turn off all the bits that the shift would have turned off. */
9818 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9819 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9820 GET_MODE_MASK (result_mode) >> orig_count);
9822 /* Do the remainder of the processing in RESULT_MODE. */
9823 x = gen_lowpart (result_mode, x);
9825 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9826 operation. */
9827 if (complement_p)
9828 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9830 if (outer_op != NIL)
9832 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9833 outer_const = trunc_int_for_mode (outer_const, result_mode);
9835 if (outer_op == AND)
9836 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9837 else if (outer_op == SET)
9838 /* This means that we have determined that the result is
9839 equivalent to a constant. This should be rare. */
9840 x = GEN_INT (outer_const);
9841 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9842 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9843 else
9844 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9847 return x;
9850 /* Like recog, but we receive the address of a pointer to a new pattern.
9851 We try to match the rtx that the pointer points to.
9852 If that fails, we may try to modify or replace the pattern,
9853 storing the replacement into the same pointer object.
9855 Modifications include deletion or addition of CLOBBERs.
9857 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9858 the CLOBBERs are placed.
9860 The value is the final insn code from the pattern ultimately matched,
9861 or -1. */
9863 static int
9864 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9866 rtx pat = *pnewpat;
9867 int insn_code_number;
9868 int num_clobbers_to_add = 0;
9869 int i;
9870 rtx notes = 0;
9871 rtx old_notes, old_pat;
9873 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9874 we use to indicate that something didn't match. If we find such a
9875 thing, force rejection. */
9876 if (GET_CODE (pat) == PARALLEL)
9877 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9878 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9879 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9880 return -1;
9882 old_pat = PATTERN (insn);
9883 old_notes = REG_NOTES (insn);
9884 PATTERN (insn) = pat;
9885 REG_NOTES (insn) = 0;
9887 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9889 /* If it isn't, there is the possibility that we previously had an insn
9890 that clobbered some register as a side effect, but the combined
9891 insn doesn't need to do that. So try once more without the clobbers
9892 unless this represents an ASM insn. */
9894 if (insn_code_number < 0 && ! check_asm_operands (pat)
9895 && GET_CODE (pat) == PARALLEL)
9897 int pos;
9899 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9900 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9902 if (i != pos)
9903 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9904 pos++;
9907 SUBST_INT (XVECLEN (pat, 0), pos);
9909 if (pos == 1)
9910 pat = XVECEXP (pat, 0, 0);
9912 PATTERN (insn) = pat;
9913 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9915 PATTERN (insn) = old_pat;
9916 REG_NOTES (insn) = old_notes;
9918 /* Recognize all noop sets, these will be killed by followup pass. */
9919 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9920 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9922 /* If we had any clobbers to add, make a new pattern than contains
9923 them. Then check to make sure that all of them are dead. */
9924 if (num_clobbers_to_add)
9926 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9927 rtvec_alloc (GET_CODE (pat) == PARALLEL
9928 ? (XVECLEN (pat, 0)
9929 + num_clobbers_to_add)
9930 : num_clobbers_to_add + 1));
9932 if (GET_CODE (pat) == PARALLEL)
9933 for (i = 0; i < XVECLEN (pat, 0); i++)
9934 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9935 else
9936 XVECEXP (newpat, 0, 0) = pat;
9938 add_clobbers (newpat, insn_code_number);
9940 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9941 i < XVECLEN (newpat, 0); i++)
9943 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9944 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9945 return -1;
9946 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9947 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9949 pat = newpat;
9952 *pnewpat = pat;
9953 *pnotes = notes;
9955 return insn_code_number;
9958 /* Like gen_lowpart_general but for use by combine. In combine it
9959 is not possible to create any new pseudoregs. However, it is
9960 safe to create invalid memory addresses, because combine will
9961 try to recognize them and all they will do is make the combine
9962 attempt fail.
9964 If for some reason this cannot do its job, an rtx
9965 (clobber (const_int 0)) is returned.
9966 An insn containing that will not be recognized. */
9968 static rtx
9969 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9971 rtx result;
9973 if (GET_MODE (x) == mode)
9974 return x;
9976 /* Return identity if this is a CONST or symbolic
9977 reference. */
9978 if (mode == Pmode
9979 && (GET_CODE (x) == CONST
9980 || GET_CODE (x) == SYMBOL_REF
9981 || GET_CODE (x) == LABEL_REF))
9982 return x;
9984 /* We can only support MODE being wider than a word if X is a
9985 constant integer or has a mode the same size. */
9987 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9988 && ! ((GET_MODE (x) == VOIDmode
9989 && (GET_CODE (x) == CONST_INT
9990 || GET_CODE (x) == CONST_DOUBLE))
9991 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9992 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9994 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9995 won't know what to do. So we will strip off the SUBREG here and
9996 process normally. */
9997 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9999 x = SUBREG_REG (x);
10000 if (GET_MODE (x) == mode)
10001 return x;
10004 result = gen_lowpart_common (mode, x);
10005 #ifdef CANNOT_CHANGE_MODE_CLASS
10006 if (result != 0
10007 && GET_CODE (result) == SUBREG
10008 && GET_CODE (SUBREG_REG (result)) == REG
10009 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10010 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10011 * MAX_MACHINE_MODE
10012 + GET_MODE (result));
10013 #endif
10015 if (result)
10016 return result;
10018 if (GET_CODE (x) == MEM)
10020 int offset = 0;
10022 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10023 address. */
10024 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10025 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10027 /* If we want to refer to something bigger than the original memref,
10028 generate a paradoxical subreg instead. That will force a reload
10029 of the original memref X. */
10030 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10031 return gen_rtx_SUBREG (mode, x, 0);
10033 if (WORDS_BIG_ENDIAN)
10034 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10035 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10037 if (BYTES_BIG_ENDIAN)
10039 /* Adjust the address so that the address-after-the-data is
10040 unchanged. */
10041 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10042 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10045 return adjust_address_nv (x, mode, offset);
10048 /* If X is a comparison operator, rewrite it in a new mode. This
10049 probably won't match, but may allow further simplifications. */
10050 else if (COMPARISON_P (x))
10051 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10053 /* If we couldn't simplify X any other way, just enclose it in a
10054 SUBREG. Normally, this SUBREG won't match, but some patterns may
10055 include an explicit SUBREG or we may simplify it further in combine. */
10056 else
10058 int offset = 0;
10059 rtx res;
10060 enum machine_mode sub_mode = GET_MODE (x);
10062 offset = subreg_lowpart_offset (mode, sub_mode);
10063 if (sub_mode == VOIDmode)
10065 sub_mode = int_mode_for_mode (mode);
10066 x = gen_lowpart_common (sub_mode, x);
10067 if (x == 0)
10068 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10070 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10071 if (res)
10072 return res;
10073 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10077 /* These routines make binary and unary operations by first seeing if they
10078 fold; if not, a new expression is allocated. */
10080 static rtx
10081 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10083 rtx result;
10084 rtx tem;
10086 if (GET_CODE (op0) == CLOBBER)
10087 return op0;
10088 else if (GET_CODE (op1) == CLOBBER)
10089 return op1;
10091 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
10092 && swap_commutative_operands_p (op0, op1))
10093 tem = op0, op0 = op1, op1 = tem;
10095 if (GET_RTX_CLASS (code) == RTX_COMPARE
10096 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
10098 enum machine_mode op_mode = GET_MODE (op0);
10100 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10101 just (REL_OP X Y). */
10102 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10104 op1 = XEXP (op0, 1);
10105 op0 = XEXP (op0, 0);
10106 op_mode = GET_MODE (op0);
10109 if (op_mode == VOIDmode)
10110 op_mode = GET_MODE (op1);
10111 result = simplify_relational_operation (code, op_mode, op0, op1);
10113 else
10114 result = simplify_binary_operation (code, mode, op0, op1);
10116 if (result)
10117 return result;
10119 /* Put complex operands first and constants second. */
10120 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
10121 && swap_commutative_operands_p (op0, op1))
10122 return gen_rtx_fmt_ee (code, mode, op1, op0);
10124 /* If we are turning off bits already known off in OP0, we need not do
10125 an AND. */
10126 else if (code == AND && GET_CODE (op1) == CONST_INT
10127 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10128 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10129 return op0;
10131 return gen_rtx_fmt_ee (code, mode, op0, op1);
10134 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10135 comparison code that will be tested.
10137 The result is a possibly different comparison code to use. *POP0 and
10138 *POP1 may be updated.
10140 It is possible that we might detect that a comparison is either always
10141 true or always false. However, we do not perform general constant
10142 folding in combine, so this knowledge isn't useful. Such tautologies
10143 should have been detected earlier. Hence we ignore all such cases. */
10145 static enum rtx_code
10146 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10148 rtx op0 = *pop0;
10149 rtx op1 = *pop1;
10150 rtx tem, tem1;
10151 int i;
10152 enum machine_mode mode, tmode;
10154 /* Try a few ways of applying the same transformation to both operands. */
10155 while (1)
10157 #ifndef WORD_REGISTER_OPERATIONS
10158 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10159 so check specially. */
10160 if (code != GTU && code != GEU && code != LTU && code != LEU
10161 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10162 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10163 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10164 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10165 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10166 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10167 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10168 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10169 && XEXP (op0, 1) == XEXP (op1, 1)
10170 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10171 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10172 && (INTVAL (XEXP (op0, 1))
10173 == (GET_MODE_BITSIZE (GET_MODE (op0))
10174 - (GET_MODE_BITSIZE
10175 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10177 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10178 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10180 #endif
10182 /* If both operands are the same constant shift, see if we can ignore the
10183 shift. We can if the shift is a rotate or if the bits shifted out of
10184 this shift are known to be zero for both inputs and if the type of
10185 comparison is compatible with the shift. */
10186 if (GET_CODE (op0) == GET_CODE (op1)
10187 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10188 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10189 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10190 && (code != GT && code != LT && code != GE && code != LE))
10191 || (GET_CODE (op0) == ASHIFTRT
10192 && (code != GTU && code != LTU
10193 && code != GEU && code != LEU)))
10194 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10195 && INTVAL (XEXP (op0, 1)) >= 0
10196 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10197 && XEXP (op0, 1) == XEXP (op1, 1))
10199 enum machine_mode mode = GET_MODE (op0);
10200 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10201 int shift_count = INTVAL (XEXP (op0, 1));
10203 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10204 mask &= (mask >> shift_count) << shift_count;
10205 else if (GET_CODE (op0) == ASHIFT)
10206 mask = (mask & (mask << shift_count)) >> shift_count;
10208 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10209 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10210 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10211 else
10212 break;
10215 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10216 SUBREGs are of the same mode, and, in both cases, the AND would
10217 be redundant if the comparison was done in the narrower mode,
10218 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10219 and the operand's possibly nonzero bits are 0xffffff01; in that case
10220 if we only care about QImode, we don't need the AND). This case
10221 occurs if the output mode of an scc insn is not SImode and
10222 STORE_FLAG_VALUE == 1 (e.g., the 386).
10224 Similarly, check for a case where the AND's are ZERO_EXTEND
10225 operations from some narrower mode even though a SUBREG is not
10226 present. */
10228 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10229 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10230 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10232 rtx inner_op0 = XEXP (op0, 0);
10233 rtx inner_op1 = XEXP (op1, 0);
10234 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10235 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10236 int changed = 0;
10238 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10239 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10240 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10241 && (GET_MODE (SUBREG_REG (inner_op0))
10242 == GET_MODE (SUBREG_REG (inner_op1)))
10243 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10244 <= HOST_BITS_PER_WIDE_INT)
10245 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10246 GET_MODE (SUBREG_REG (inner_op0)))))
10247 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10248 GET_MODE (SUBREG_REG (inner_op1))))))
10250 op0 = SUBREG_REG (inner_op0);
10251 op1 = SUBREG_REG (inner_op1);
10253 /* The resulting comparison is always unsigned since we masked
10254 off the original sign bit. */
10255 code = unsigned_condition (code);
10257 changed = 1;
10260 else if (c0 == c1)
10261 for (tmode = GET_CLASS_NARROWEST_MODE
10262 (GET_MODE_CLASS (GET_MODE (op0)));
10263 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10264 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10266 op0 = gen_lowpart (tmode, inner_op0);
10267 op1 = gen_lowpart (tmode, inner_op1);
10268 code = unsigned_condition (code);
10269 changed = 1;
10270 break;
10273 if (! changed)
10274 break;
10277 /* If both operands are NOT, we can strip off the outer operation
10278 and adjust the comparison code for swapped operands; similarly for
10279 NEG, except that this must be an equality comparison. */
10280 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10281 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10282 && (code == EQ || code == NE)))
10283 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10285 else
10286 break;
10289 /* If the first operand is a constant, swap the operands and adjust the
10290 comparison code appropriately, but don't do this if the second operand
10291 is already a constant integer. */
10292 if (swap_commutative_operands_p (op0, op1))
10294 tem = op0, op0 = op1, op1 = tem;
10295 code = swap_condition (code);
10298 /* We now enter a loop during which we will try to simplify the comparison.
10299 For the most part, we only are concerned with comparisons with zero,
10300 but some things may really be comparisons with zero but not start
10301 out looking that way. */
10303 while (GET_CODE (op1) == CONST_INT)
10305 enum machine_mode mode = GET_MODE (op0);
10306 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10307 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10308 int equality_comparison_p;
10309 int sign_bit_comparison_p;
10310 int unsigned_comparison_p;
10311 HOST_WIDE_INT const_op;
10313 /* We only want to handle integral modes. This catches VOIDmode,
10314 CCmode, and the floating-point modes. An exception is that we
10315 can handle VOIDmode if OP0 is a COMPARE or a comparison
10316 operation. */
10318 if (GET_MODE_CLASS (mode) != MODE_INT
10319 && ! (mode == VOIDmode
10320 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10321 break;
10323 /* Get the constant we are comparing against and turn off all bits
10324 not on in our mode. */
10325 const_op = INTVAL (op1);
10326 if (mode != VOIDmode)
10327 const_op = trunc_int_for_mode (const_op, mode);
10328 op1 = GEN_INT (const_op);
10330 /* If we are comparing against a constant power of two and the value
10331 being compared can only have that single bit nonzero (e.g., it was
10332 `and'ed with that bit), we can replace this with a comparison
10333 with zero. */
10334 if (const_op
10335 && (code == EQ || code == NE || code == GE || code == GEU
10336 || code == LT || code == LTU)
10337 && mode_width <= HOST_BITS_PER_WIDE_INT
10338 && exact_log2 (const_op) >= 0
10339 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10341 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10342 op1 = const0_rtx, const_op = 0;
10345 /* Similarly, if we are comparing a value known to be either -1 or
10346 0 with -1, change it to the opposite comparison against zero. */
10348 if (const_op == -1
10349 && (code == EQ || code == NE || code == GT || code == LE
10350 || code == GEU || code == LTU)
10351 && num_sign_bit_copies (op0, mode) == mode_width)
10353 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10354 op1 = const0_rtx, const_op = 0;
10357 /* Do some canonicalizations based on the comparison code. We prefer
10358 comparisons against zero and then prefer equality comparisons.
10359 If we can reduce the size of a constant, we will do that too. */
10361 switch (code)
10363 case LT:
10364 /* < C is equivalent to <= (C - 1) */
10365 if (const_op > 0)
10367 const_op -= 1;
10368 op1 = GEN_INT (const_op);
10369 code = LE;
10370 /* ... fall through to LE case below. */
10372 else
10373 break;
10375 case LE:
10376 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10377 if (const_op < 0)
10379 const_op += 1;
10380 op1 = GEN_INT (const_op);
10381 code = LT;
10384 /* If we are doing a <= 0 comparison on a value known to have
10385 a zero sign bit, we can replace this with == 0. */
10386 else if (const_op == 0
10387 && mode_width <= HOST_BITS_PER_WIDE_INT
10388 && (nonzero_bits (op0, mode)
10389 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10390 code = EQ;
10391 break;
10393 case GE:
10394 /* >= C is equivalent to > (C - 1). */
10395 if (const_op > 0)
10397 const_op -= 1;
10398 op1 = GEN_INT (const_op);
10399 code = GT;
10400 /* ... fall through to GT below. */
10402 else
10403 break;
10405 case GT:
10406 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10407 if (const_op < 0)
10409 const_op += 1;
10410 op1 = GEN_INT (const_op);
10411 code = GE;
10414 /* If we are doing a > 0 comparison on a value known to have
10415 a zero sign bit, we can replace this with != 0. */
10416 else if (const_op == 0
10417 && mode_width <= HOST_BITS_PER_WIDE_INT
10418 && (nonzero_bits (op0, mode)
10419 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10420 code = NE;
10421 break;
10423 case LTU:
10424 /* < C is equivalent to <= (C - 1). */
10425 if (const_op > 0)
10427 const_op -= 1;
10428 op1 = GEN_INT (const_op);
10429 code = LEU;
10430 /* ... fall through ... */
10433 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10434 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10435 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10437 const_op = 0, op1 = const0_rtx;
10438 code = GE;
10439 break;
10441 else
10442 break;
10444 case LEU:
10445 /* unsigned <= 0 is equivalent to == 0 */
10446 if (const_op == 0)
10447 code = EQ;
10449 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10450 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10451 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10453 const_op = 0, op1 = const0_rtx;
10454 code = GE;
10456 break;
10458 case GEU:
10459 /* >= C is equivalent to < (C - 1). */
10460 if (const_op > 1)
10462 const_op -= 1;
10463 op1 = GEN_INT (const_op);
10464 code = GTU;
10465 /* ... fall through ... */
10468 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10469 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10470 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10472 const_op = 0, op1 = const0_rtx;
10473 code = LT;
10474 break;
10476 else
10477 break;
10479 case GTU:
10480 /* unsigned > 0 is equivalent to != 0 */
10481 if (const_op == 0)
10482 code = NE;
10484 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10485 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10486 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10488 const_op = 0, op1 = const0_rtx;
10489 code = LT;
10491 break;
10493 default:
10494 break;
10497 /* Compute some predicates to simplify code below. */
10499 equality_comparison_p = (code == EQ || code == NE);
10500 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10501 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10502 || code == GEU);
10504 /* If this is a sign bit comparison and we can do arithmetic in
10505 MODE, say that we will only be needing the sign bit of OP0. */
10506 if (sign_bit_comparison_p
10507 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10508 op0 = force_to_mode (op0, mode,
10509 ((HOST_WIDE_INT) 1
10510 << (GET_MODE_BITSIZE (mode) - 1)),
10511 NULL_RTX, 0);
10513 /* Now try cases based on the opcode of OP0. If none of the cases
10514 does a "continue", we exit this loop immediately after the
10515 switch. */
10517 switch (GET_CODE (op0))
10519 case ZERO_EXTRACT:
10520 /* If we are extracting a single bit from a variable position in
10521 a constant that has only a single bit set and are comparing it
10522 with zero, we can convert this into an equality comparison
10523 between the position and the location of the single bit. */
10524 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10525 have already reduced the shift count modulo the word size. */
10526 if (!SHIFT_COUNT_TRUNCATED
10527 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10528 && XEXP (op0, 1) == const1_rtx
10529 && equality_comparison_p && const_op == 0
10530 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10532 if (BITS_BIG_ENDIAN)
10534 enum machine_mode new_mode
10535 = mode_for_extraction (EP_extzv, 1);
10536 if (new_mode == MAX_MACHINE_MODE)
10537 i = BITS_PER_WORD - 1 - i;
10538 else
10540 mode = new_mode;
10541 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10545 op0 = XEXP (op0, 2);
10546 op1 = GEN_INT (i);
10547 const_op = i;
10549 /* Result is nonzero iff shift count is equal to I. */
10550 code = reverse_condition (code);
10551 continue;
10554 /* ... fall through ... */
10556 case SIGN_EXTRACT:
10557 tem = expand_compound_operation (op0);
10558 if (tem != op0)
10560 op0 = tem;
10561 continue;
10563 break;
10565 case NOT:
10566 /* If testing for equality, we can take the NOT of the constant. */
10567 if (equality_comparison_p
10568 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10570 op0 = XEXP (op0, 0);
10571 op1 = tem;
10572 continue;
10575 /* If just looking at the sign bit, reverse the sense of the
10576 comparison. */
10577 if (sign_bit_comparison_p)
10579 op0 = XEXP (op0, 0);
10580 code = (code == GE ? LT : GE);
10581 continue;
10583 break;
10585 case NEG:
10586 /* If testing for equality, we can take the NEG of the constant. */
10587 if (equality_comparison_p
10588 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10590 op0 = XEXP (op0, 0);
10591 op1 = tem;
10592 continue;
10595 /* The remaining cases only apply to comparisons with zero. */
10596 if (const_op != 0)
10597 break;
10599 /* When X is ABS or is known positive,
10600 (neg X) is < 0 if and only if X != 0. */
10602 if (sign_bit_comparison_p
10603 && (GET_CODE (XEXP (op0, 0)) == ABS
10604 || (mode_width <= HOST_BITS_PER_WIDE_INT
10605 && (nonzero_bits (XEXP (op0, 0), mode)
10606 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10608 op0 = XEXP (op0, 0);
10609 code = (code == LT ? NE : EQ);
10610 continue;
10613 /* If we have NEG of something whose two high-order bits are the
10614 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10615 if (num_sign_bit_copies (op0, mode) >= 2)
10617 op0 = XEXP (op0, 0);
10618 code = swap_condition (code);
10619 continue;
10621 break;
10623 case ROTATE:
10624 /* If we are testing equality and our count is a constant, we
10625 can perform the inverse operation on our RHS. */
10626 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10627 && (tem = simplify_binary_operation (ROTATERT, mode,
10628 op1, XEXP (op0, 1))) != 0)
10630 op0 = XEXP (op0, 0);
10631 op1 = tem;
10632 continue;
10635 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10636 a particular bit. Convert it to an AND of a constant of that
10637 bit. This will be converted into a ZERO_EXTRACT. */
10638 if (const_op == 0 && sign_bit_comparison_p
10639 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10640 && mode_width <= HOST_BITS_PER_WIDE_INT)
10642 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10643 ((HOST_WIDE_INT) 1
10644 << (mode_width - 1
10645 - INTVAL (XEXP (op0, 1)))));
10646 code = (code == LT ? NE : EQ);
10647 continue;
10650 /* Fall through. */
10652 case ABS:
10653 /* ABS is ignorable inside an equality comparison with zero. */
10654 if (const_op == 0 && equality_comparison_p)
10656 op0 = XEXP (op0, 0);
10657 continue;
10659 break;
10661 case SIGN_EXTEND:
10662 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10663 to (compare FOO CONST) if CONST fits in FOO's mode and we
10664 are either testing inequality or have an unsigned comparison
10665 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10666 if (! unsigned_comparison_p
10667 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10668 <= HOST_BITS_PER_WIDE_INT)
10669 && ((unsigned HOST_WIDE_INT) const_op
10670 < (((unsigned HOST_WIDE_INT) 1
10671 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10673 op0 = XEXP (op0, 0);
10674 continue;
10676 break;
10678 case SUBREG:
10679 /* Check for the case where we are comparing A - C1 with C2,
10680 both constants are smaller than 1/2 the maximum positive
10681 value in MODE, and the comparison is equality or unsigned.
10682 In that case, if A is either zero-extended to MODE or has
10683 sufficient sign bits so that the high-order bit in MODE
10684 is a copy of the sign in the inner mode, we can prove that it is
10685 safe to do the operation in the wider mode. This simplifies
10686 many range checks. */
10688 if (mode_width <= HOST_BITS_PER_WIDE_INT
10689 && subreg_lowpart_p (op0)
10690 && GET_CODE (SUBREG_REG (op0)) == PLUS
10691 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10692 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10693 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10694 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10695 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10696 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10697 GET_MODE (SUBREG_REG (op0)))
10698 & ~GET_MODE_MASK (mode))
10699 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10700 GET_MODE (SUBREG_REG (op0)))
10701 > (unsigned int)
10702 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10703 - GET_MODE_BITSIZE (mode)))))
10705 op0 = SUBREG_REG (op0);
10706 continue;
10709 /* If the inner mode is narrower and we are extracting the low part,
10710 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10711 if (subreg_lowpart_p (op0)
10712 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10713 /* Fall through */ ;
10714 else
10715 break;
10717 /* ... fall through ... */
10719 case ZERO_EXTEND:
10720 if ((unsigned_comparison_p || equality_comparison_p)
10721 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10722 <= HOST_BITS_PER_WIDE_INT)
10723 && ((unsigned HOST_WIDE_INT) const_op
10724 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10726 op0 = XEXP (op0, 0);
10727 continue;
10729 break;
10731 case PLUS:
10732 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10733 this for equality comparisons due to pathological cases involving
10734 overflows. */
10735 if (equality_comparison_p
10736 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10737 op1, XEXP (op0, 1))))
10739 op0 = XEXP (op0, 0);
10740 op1 = tem;
10741 continue;
10744 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10745 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10746 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10748 op0 = XEXP (XEXP (op0, 0), 0);
10749 code = (code == LT ? EQ : NE);
10750 continue;
10752 break;
10754 case MINUS:
10755 /* We used to optimize signed comparisons against zero, but that
10756 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10757 arrive here as equality comparisons, or (GEU, LTU) are
10758 optimized away. No need to special-case them. */
10760 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10761 (eq B (minus A C)), whichever simplifies. We can only do
10762 this for equality comparisons due to pathological cases involving
10763 overflows. */
10764 if (equality_comparison_p
10765 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10766 XEXP (op0, 1), op1)))
10768 op0 = XEXP (op0, 0);
10769 op1 = tem;
10770 continue;
10773 if (equality_comparison_p
10774 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10775 XEXP (op0, 0), op1)))
10777 op0 = XEXP (op0, 1);
10778 op1 = tem;
10779 continue;
10782 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10783 of bits in X minus 1, is one iff X > 0. */
10784 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10785 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10786 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10787 == mode_width - 1
10788 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10790 op0 = XEXP (op0, 1);
10791 code = (code == GE ? LE : GT);
10792 continue;
10794 break;
10796 case XOR:
10797 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10798 if C is zero or B is a constant. */
10799 if (equality_comparison_p
10800 && 0 != (tem = simplify_binary_operation (XOR, mode,
10801 XEXP (op0, 1), op1)))
10803 op0 = XEXP (op0, 0);
10804 op1 = tem;
10805 continue;
10807 break;
10809 case EQ: case NE:
10810 case UNEQ: case LTGT:
10811 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10812 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10813 case UNORDERED: case ORDERED:
10814 /* We can't do anything if OP0 is a condition code value, rather
10815 than an actual data value. */
10816 if (const_op != 0
10817 || CC0_P (XEXP (op0, 0))
10818 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10819 break;
10821 /* Get the two operands being compared. */
10822 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10823 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10824 else
10825 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10827 /* Check for the cases where we simply want the result of the
10828 earlier test or the opposite of that result. */
10829 if (code == NE || code == EQ
10830 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10831 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10832 && (STORE_FLAG_VALUE
10833 & (((HOST_WIDE_INT) 1
10834 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10835 && (code == LT || code == GE)))
10837 enum rtx_code new_code;
10838 if (code == LT || code == NE)
10839 new_code = GET_CODE (op0);
10840 else
10841 new_code = combine_reversed_comparison_code (op0);
10843 if (new_code != UNKNOWN)
10845 code = new_code;
10846 op0 = tem;
10847 op1 = tem1;
10848 continue;
10851 break;
10853 case IOR:
10854 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10855 iff X <= 0. */
10856 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10857 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10858 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10860 op0 = XEXP (op0, 1);
10861 code = (code == GE ? GT : LE);
10862 continue;
10864 break;
10866 case AND:
10867 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10868 will be converted to a ZERO_EXTRACT later. */
10869 if (const_op == 0 && equality_comparison_p
10870 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10871 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10873 op0 = simplify_and_const_int
10874 (op0, mode, gen_rtx_LSHIFTRT (mode,
10875 XEXP (op0, 1),
10876 XEXP (XEXP (op0, 0), 1)),
10877 (HOST_WIDE_INT) 1);
10878 continue;
10881 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10882 zero and X is a comparison and C1 and C2 describe only bits set
10883 in STORE_FLAG_VALUE, we can compare with X. */
10884 if (const_op == 0 && equality_comparison_p
10885 && mode_width <= HOST_BITS_PER_WIDE_INT
10886 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10887 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10888 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10889 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10890 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10892 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10893 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10894 if ((~STORE_FLAG_VALUE & mask) == 0
10895 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10896 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10897 && COMPARISON_P (tem))))
10899 op0 = XEXP (XEXP (op0, 0), 0);
10900 continue;
10904 /* If we are doing an equality comparison of an AND of a bit equal
10905 to the sign bit, replace this with a LT or GE comparison of
10906 the underlying value. */
10907 if (equality_comparison_p
10908 && const_op == 0
10909 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10910 && mode_width <= HOST_BITS_PER_WIDE_INT
10911 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10912 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10914 op0 = XEXP (op0, 0);
10915 code = (code == EQ ? GE : LT);
10916 continue;
10919 /* If this AND operation is really a ZERO_EXTEND from a narrower
10920 mode, the constant fits within that mode, and this is either an
10921 equality or unsigned comparison, try to do this comparison in
10922 the narrower mode. */
10923 if ((equality_comparison_p || unsigned_comparison_p)
10924 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10925 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10926 & GET_MODE_MASK (mode))
10927 + 1)) >= 0
10928 && const_op >> i == 0
10929 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10931 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10932 continue;
10935 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10936 fits in both M1 and M2 and the SUBREG is either paradoxical
10937 or represents the low part, permute the SUBREG and the AND
10938 and try again. */
10939 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10941 unsigned HOST_WIDE_INT c1;
10942 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10943 /* Require an integral mode, to avoid creating something like
10944 (AND:SF ...). */
10945 if (SCALAR_INT_MODE_P (tmode)
10946 /* It is unsafe to commute the AND into the SUBREG if the
10947 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10948 not defined. As originally written the upper bits
10949 have a defined value due to the AND operation.
10950 However, if we commute the AND inside the SUBREG then
10951 they no longer have defined values and the meaning of
10952 the code has been changed. */
10953 && (0
10954 #ifdef WORD_REGISTER_OPERATIONS
10955 || (mode_width > GET_MODE_BITSIZE (tmode)
10956 && mode_width <= BITS_PER_WORD)
10957 #endif
10958 || (mode_width <= GET_MODE_BITSIZE (tmode)
10959 && subreg_lowpart_p (XEXP (op0, 0))))
10960 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10961 && mode_width <= HOST_BITS_PER_WIDE_INT
10962 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10963 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10964 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10965 && c1 != mask
10966 && c1 != GET_MODE_MASK (tmode))
10968 op0 = gen_binary (AND, tmode,
10969 SUBREG_REG (XEXP (op0, 0)),
10970 gen_int_mode (c1, tmode));
10971 op0 = gen_lowpart (mode, op0);
10972 continue;
10976 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10977 if (const_op == 0 && equality_comparison_p
10978 && XEXP (op0, 1) == const1_rtx
10979 && GET_CODE (XEXP (op0, 0)) == NOT)
10981 op0 = simplify_and_const_int
10982 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10983 code = (code == NE ? EQ : NE);
10984 continue;
10987 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10988 (eq (and (lshiftrt X) 1) 0).
10989 Also handle the case where (not X) is expressed using xor. */
10990 if (const_op == 0 && equality_comparison_p
10991 && XEXP (op0, 1) == const1_rtx
10992 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10994 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10995 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10997 if (GET_CODE (shift_op) == NOT
10998 || (GET_CODE (shift_op) == XOR
10999 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
11000 && GET_CODE (shift_count) == CONST_INT
11001 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11002 && (INTVAL (XEXP (shift_op, 1))
11003 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11005 op0 = simplify_and_const_int
11006 (NULL_RTX, mode,
11007 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11008 (HOST_WIDE_INT) 1);
11009 code = (code == NE ? EQ : NE);
11010 continue;
11013 break;
11015 case ASHIFT:
11016 /* If we have (compare (ashift FOO N) (const_int C)) and
11017 the high order N bits of FOO (N+1 if an inequality comparison)
11018 are known to be zero, we can do this by comparing FOO with C
11019 shifted right N bits so long as the low-order N bits of C are
11020 zero. */
11021 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11022 && INTVAL (XEXP (op0, 1)) >= 0
11023 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11024 < HOST_BITS_PER_WIDE_INT)
11025 && ((const_op
11026 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11027 && mode_width <= HOST_BITS_PER_WIDE_INT
11028 && (nonzero_bits (XEXP (op0, 0), mode)
11029 & ~(mask >> (INTVAL (XEXP (op0, 1))
11030 + ! equality_comparison_p))) == 0)
11032 /* We must perform a logical shift, not an arithmetic one,
11033 as we want the top N bits of C to be zero. */
11034 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11036 temp >>= INTVAL (XEXP (op0, 1));
11037 op1 = gen_int_mode (temp, mode);
11038 op0 = XEXP (op0, 0);
11039 continue;
11042 /* If we are doing a sign bit comparison, it means we are testing
11043 a particular bit. Convert it to the appropriate AND. */
11044 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11045 && mode_width <= HOST_BITS_PER_WIDE_INT)
11047 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11048 ((HOST_WIDE_INT) 1
11049 << (mode_width - 1
11050 - INTVAL (XEXP (op0, 1)))));
11051 code = (code == LT ? NE : EQ);
11052 continue;
11055 /* If this an equality comparison with zero and we are shifting
11056 the low bit to the sign bit, we can convert this to an AND of the
11057 low-order bit. */
11058 if (const_op == 0 && equality_comparison_p
11059 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11060 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11061 == mode_width - 1)
11063 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11064 (HOST_WIDE_INT) 1);
11065 continue;
11067 break;
11069 case ASHIFTRT:
11070 /* If this is an equality comparison with zero, we can do this
11071 as a logical shift, which might be much simpler. */
11072 if (equality_comparison_p && const_op == 0
11073 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11075 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11076 XEXP (op0, 0),
11077 INTVAL (XEXP (op0, 1)));
11078 continue;
11081 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11082 do the comparison in a narrower mode. */
11083 if (! unsigned_comparison_p
11084 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11085 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11086 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11087 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11088 MODE_INT, 1)) != BLKmode
11089 && (((unsigned HOST_WIDE_INT) const_op
11090 + (GET_MODE_MASK (tmode) >> 1) + 1)
11091 <= GET_MODE_MASK (tmode)))
11093 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11094 continue;
11097 /* Likewise if OP0 is a PLUS of a sign extension with a
11098 constant, which is usually represented with the PLUS
11099 between the shifts. */
11100 if (! unsigned_comparison_p
11101 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11102 && GET_CODE (XEXP (op0, 0)) == PLUS
11103 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11104 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11105 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11106 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11107 MODE_INT, 1)) != BLKmode
11108 && (((unsigned HOST_WIDE_INT) const_op
11109 + (GET_MODE_MASK (tmode) >> 1) + 1)
11110 <= GET_MODE_MASK (tmode)))
11112 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11113 rtx add_const = XEXP (XEXP (op0, 0), 1);
11114 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11115 XEXP (op0, 1));
11117 op0 = gen_binary (PLUS, tmode,
11118 gen_lowpart (tmode, inner),
11119 new_const);
11120 continue;
11123 /* ... fall through ... */
11124 case LSHIFTRT:
11125 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11126 the low order N bits of FOO are known to be zero, we can do this
11127 by comparing FOO with C shifted left N bits so long as no
11128 overflow occurs. */
11129 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11130 && INTVAL (XEXP (op0, 1)) >= 0
11131 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11132 && mode_width <= HOST_BITS_PER_WIDE_INT
11133 && (nonzero_bits (XEXP (op0, 0), mode)
11134 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11135 && (((unsigned HOST_WIDE_INT) const_op
11136 + (GET_CODE (op0) != LSHIFTRT
11137 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11138 + 1)
11139 : 0))
11140 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11142 /* If the shift was logical, then we must make the condition
11143 unsigned. */
11144 if (GET_CODE (op0) == LSHIFTRT)
11145 code = unsigned_condition (code);
11147 const_op <<= INTVAL (XEXP (op0, 1));
11148 op1 = GEN_INT (const_op);
11149 op0 = XEXP (op0, 0);
11150 continue;
11153 /* If we are using this shift to extract just the sign bit, we
11154 can replace this with an LT or GE comparison. */
11155 if (const_op == 0
11156 && (equality_comparison_p || sign_bit_comparison_p)
11157 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11158 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11159 == mode_width - 1)
11161 op0 = XEXP (op0, 0);
11162 code = (code == NE || code == GT ? LT : GE);
11163 continue;
11165 break;
11167 default:
11168 break;
11171 break;
11174 /* Now make any compound operations involved in this comparison. Then,
11175 check for an outmost SUBREG on OP0 that is not doing anything or is
11176 paradoxical. The latter transformation must only be performed when
11177 it is known that the "extra" bits will be the same in op0 and op1 or
11178 that they don't matter. There are three cases to consider:
11180 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11181 care bits and we can assume they have any convenient value. So
11182 making the transformation is safe.
11184 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11185 In this case the upper bits of op0 are undefined. We should not make
11186 the simplification in that case as we do not know the contents of
11187 those bits.
11189 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11190 NIL. In that case we know those bits are zeros or ones. We must
11191 also be sure that they are the same as the upper bits of op1.
11193 We can never remove a SUBREG for a non-equality comparison because
11194 the sign bit is in a different place in the underlying object. */
11196 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11197 op1 = make_compound_operation (op1, SET);
11199 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11200 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11201 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11202 && (code == NE || code == EQ))
11204 if (GET_MODE_SIZE (GET_MODE (op0))
11205 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11207 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11208 implemented. */
11209 if (GET_CODE (SUBREG_REG (op0)) == REG)
11211 op0 = SUBREG_REG (op0);
11212 op1 = gen_lowpart (GET_MODE (op0), op1);
11215 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11216 <= HOST_BITS_PER_WIDE_INT)
11217 && (nonzero_bits (SUBREG_REG (op0),
11218 GET_MODE (SUBREG_REG (op0)))
11219 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11221 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11223 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11224 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11225 op0 = SUBREG_REG (op0), op1 = tem;
11229 /* We now do the opposite procedure: Some machines don't have compare
11230 insns in all modes. If OP0's mode is an integer mode smaller than a
11231 word and we can't do a compare in that mode, see if there is a larger
11232 mode for which we can do the compare. There are a number of cases in
11233 which we can use the wider mode. */
11235 mode = GET_MODE (op0);
11236 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11237 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11238 && ! have_insn_for (COMPARE, mode))
11239 for (tmode = GET_MODE_WIDER_MODE (mode);
11240 (tmode != VOIDmode
11241 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11242 tmode = GET_MODE_WIDER_MODE (tmode))
11243 if (have_insn_for (COMPARE, tmode))
11245 int zero_extended;
11247 /* If the only nonzero bits in OP0 and OP1 are those in the
11248 narrower mode and this is an equality or unsigned comparison,
11249 we can use the wider mode. Similarly for sign-extended
11250 values, in which case it is true for all comparisons. */
11251 zero_extended = ((code == EQ || code == NE
11252 || code == GEU || code == GTU
11253 || code == LEU || code == LTU)
11254 && (nonzero_bits (op0, tmode)
11255 & ~GET_MODE_MASK (mode)) == 0
11256 && ((GET_CODE (op1) == CONST_INT
11257 || (nonzero_bits (op1, tmode)
11258 & ~GET_MODE_MASK (mode)) == 0)));
11260 if (zero_extended
11261 || ((num_sign_bit_copies (op0, tmode)
11262 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11263 - GET_MODE_BITSIZE (mode)))
11264 && (num_sign_bit_copies (op1, tmode)
11265 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11266 - GET_MODE_BITSIZE (mode)))))
11268 /* If OP0 is an AND and we don't have an AND in MODE either,
11269 make a new AND in the proper mode. */
11270 if (GET_CODE (op0) == AND
11271 && !have_insn_for (AND, mode))
11272 op0 = gen_binary (AND, tmode,
11273 gen_lowpart (tmode,
11274 XEXP (op0, 0)),
11275 gen_lowpart (tmode,
11276 XEXP (op0, 1)));
11278 op0 = gen_lowpart (tmode, op0);
11279 if (zero_extended && GET_CODE (op1) == CONST_INT)
11280 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11281 op1 = gen_lowpart (tmode, op1);
11282 break;
11285 /* If this is a test for negative, we can make an explicit
11286 test of the sign bit. */
11288 if (op1 == const0_rtx && (code == LT || code == GE)
11289 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11291 op0 = gen_binary (AND, tmode,
11292 gen_lowpart (tmode, op0),
11293 GEN_INT ((HOST_WIDE_INT) 1
11294 << (GET_MODE_BITSIZE (mode) - 1)));
11295 code = (code == LT) ? NE : EQ;
11296 break;
11300 #ifdef CANONICALIZE_COMPARISON
11301 /* If this machine only supports a subset of valid comparisons, see if we
11302 can convert an unsupported one into a supported one. */
11303 CANONICALIZE_COMPARISON (code, op0, op1);
11304 #endif
11306 *pop0 = op0;
11307 *pop1 = op1;
11309 return code;
11312 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11313 searching backward. */
11314 static enum rtx_code
11315 combine_reversed_comparison_code (rtx exp)
11317 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11318 rtx x;
11320 if (code1 != UNKNOWN
11321 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11322 return code1;
11323 /* Otherwise try and find where the condition codes were last set and
11324 use that. */
11325 x = get_last_value (XEXP (exp, 0));
11326 if (!x || GET_CODE (x) != COMPARE)
11327 return UNKNOWN;
11328 return reversed_comparison_code_parts (GET_CODE (exp),
11329 XEXP (x, 0), XEXP (x, 1), NULL);
11332 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11333 Return NULL_RTX in case we fail to do the reversal. */
11334 static rtx
11335 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11337 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11338 if (reversed_code == UNKNOWN)
11339 return NULL_RTX;
11340 else
11341 return gen_binary (reversed_code, mode, op0, op1);
11344 /* Utility function for following routine. Called when X is part of a value
11345 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11346 for each register mentioned. Similar to mention_regs in cse.c */
11348 static void
11349 update_table_tick (rtx x)
11351 enum rtx_code code = GET_CODE (x);
11352 const char *fmt = GET_RTX_FORMAT (code);
11353 int i;
11355 if (code == REG)
11357 unsigned int regno = REGNO (x);
11358 unsigned int endregno
11359 = regno + (regno < FIRST_PSEUDO_REGISTER
11360 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11361 unsigned int r;
11363 for (r = regno; r < endregno; r++)
11364 reg_last_set_table_tick[r] = label_tick;
11366 return;
11369 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11370 /* Note that we can't have an "E" in values stored; see
11371 get_last_value_validate. */
11372 if (fmt[i] == 'e')
11374 /* Check for identical subexpressions. If x contains
11375 identical subexpression we only have to traverse one of
11376 them. */
11377 if (i == 0 && ARITHMETIC_P (x))
11379 /* Note that at this point x1 has already been
11380 processed. */
11381 rtx x0 = XEXP (x, 0);
11382 rtx x1 = XEXP (x, 1);
11384 /* If x0 and x1 are identical then there is no need to
11385 process x0. */
11386 if (x0 == x1)
11387 break;
11389 /* If x0 is identical to a subexpression of x1 then while
11390 processing x1, x0 has already been processed. Thus we
11391 are done with x. */
11392 if (ARITHMETIC_P (x1)
11393 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11394 break;
11396 /* If x1 is identical to a subexpression of x0 then we
11397 still have to process the rest of x0. */
11398 if (ARITHMETIC_P (x0)
11399 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11401 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11402 break;
11406 update_table_tick (XEXP (x, i));
11410 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11411 are saying that the register is clobbered and we no longer know its
11412 value. If INSN is zero, don't update reg_last_set; this is only permitted
11413 with VALUE also zero and is used to invalidate the register. */
11415 static void
11416 record_value_for_reg (rtx reg, rtx insn, rtx value)
11418 unsigned int regno = REGNO (reg);
11419 unsigned int endregno
11420 = regno + (regno < FIRST_PSEUDO_REGISTER
11421 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
11422 unsigned int i;
11424 /* If VALUE contains REG and we have a previous value for REG, substitute
11425 the previous value. */
11426 if (value && insn && reg_overlap_mentioned_p (reg, value))
11428 rtx tem;
11430 /* Set things up so get_last_value is allowed to see anything set up to
11431 our insn. */
11432 subst_low_cuid = INSN_CUID (insn);
11433 tem = get_last_value (reg);
11435 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11436 it isn't going to be useful and will take a lot of time to process,
11437 so just use the CLOBBER. */
11439 if (tem)
11441 if (ARITHMETIC_P (tem)
11442 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11443 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11444 tem = XEXP (tem, 0);
11446 value = replace_rtx (copy_rtx (value), reg, tem);
11450 /* For each register modified, show we don't know its value, that
11451 we don't know about its bitwise content, that its value has been
11452 updated, and that we don't know the location of the death of the
11453 register. */
11454 for (i = regno; i < endregno; i++)
11456 if (insn)
11457 reg_last_set[i] = insn;
11459 reg_last_set_value[i] = 0;
11460 reg_last_set_mode[i] = 0;
11461 reg_last_set_nonzero_bits[i] = 0;
11462 reg_last_set_sign_bit_copies[i] = 0;
11463 reg_last_death[i] = 0;
11466 /* Mark registers that are being referenced in this value. */
11467 if (value)
11468 update_table_tick (value);
11470 /* Now update the status of each register being set.
11471 If someone is using this register in this block, set this register
11472 to invalid since we will get confused between the two lives in this
11473 basic block. This makes using this register always invalid. In cse, we
11474 scan the table to invalidate all entries using this register, but this
11475 is too much work for us. */
11477 for (i = regno; i < endregno; i++)
11479 reg_last_set_label[i] = label_tick;
11480 if (value && reg_last_set_table_tick[i] == label_tick)
11481 reg_last_set_invalid[i] = 1;
11482 else
11483 reg_last_set_invalid[i] = 0;
11486 /* The value being assigned might refer to X (like in "x++;"). In that
11487 case, we must replace it with (clobber (const_int 0)) to prevent
11488 infinite loops. */
11489 if (value && ! get_last_value_validate (&value, insn,
11490 reg_last_set_label[regno], 0))
11492 value = copy_rtx (value);
11493 if (! get_last_value_validate (&value, insn,
11494 reg_last_set_label[regno], 1))
11495 value = 0;
11498 /* For the main register being modified, update the value, the mode, the
11499 nonzero bits, and the number of sign bit copies. */
11501 reg_last_set_value[regno] = value;
11503 if (value)
11505 enum machine_mode mode = GET_MODE (reg);
11506 subst_low_cuid = INSN_CUID (insn);
11507 reg_last_set_mode[regno] = mode;
11508 if (GET_MODE_CLASS (mode) == MODE_INT
11509 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11510 mode = nonzero_bits_mode;
11511 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11512 reg_last_set_sign_bit_copies[regno]
11513 = num_sign_bit_copies (value, GET_MODE (reg));
11517 /* Called via note_stores from record_dead_and_set_regs to handle one
11518 SET or CLOBBER in an insn. DATA is the instruction in which the
11519 set is occurring. */
11521 static void
11522 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11524 rtx record_dead_insn = (rtx) data;
11526 if (GET_CODE (dest) == SUBREG)
11527 dest = SUBREG_REG (dest);
11529 if (GET_CODE (dest) == REG)
11531 /* If we are setting the whole register, we know its value. Otherwise
11532 show that we don't know the value. We can handle SUBREG in
11533 some cases. */
11534 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11535 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11536 else if (GET_CODE (setter) == SET
11537 && GET_CODE (SET_DEST (setter)) == SUBREG
11538 && SUBREG_REG (SET_DEST (setter)) == dest
11539 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11540 && subreg_lowpart_p (SET_DEST (setter)))
11541 record_value_for_reg (dest, record_dead_insn,
11542 gen_lowpart (GET_MODE (dest),
11543 SET_SRC (setter)));
11544 else
11545 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11547 else if (GET_CODE (dest) == MEM
11548 /* Ignore pushes, they clobber nothing. */
11549 && ! push_operand (dest, GET_MODE (dest)))
11550 mem_last_set = INSN_CUID (record_dead_insn);
11553 /* Update the records of when each REG was most recently set or killed
11554 for the things done by INSN. This is the last thing done in processing
11555 INSN in the combiner loop.
11557 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11558 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11559 and also the similar information mem_last_set (which insn most recently
11560 modified memory) and last_call_cuid (which insn was the most recent
11561 subroutine call). */
11563 static void
11564 record_dead_and_set_regs (rtx insn)
11566 rtx link;
11567 unsigned int i;
11569 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11571 if (REG_NOTE_KIND (link) == REG_DEAD
11572 && GET_CODE (XEXP (link, 0)) == REG)
11574 unsigned int regno = REGNO (XEXP (link, 0));
11575 unsigned int endregno
11576 = regno + (regno < FIRST_PSEUDO_REGISTER
11577 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11578 : 1);
11580 for (i = regno; i < endregno; i++)
11581 reg_last_death[i] = insn;
11583 else if (REG_NOTE_KIND (link) == REG_INC)
11584 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11587 if (GET_CODE (insn) == CALL_INSN)
11589 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11590 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11592 reg_last_set_value[i] = 0;
11593 reg_last_set_mode[i] = 0;
11594 reg_last_set_nonzero_bits[i] = 0;
11595 reg_last_set_sign_bit_copies[i] = 0;
11596 reg_last_death[i] = 0;
11599 last_call_cuid = mem_last_set = INSN_CUID (insn);
11601 /* Don't bother recording what this insn does. It might set the
11602 return value register, but we can't combine into a call
11603 pattern anyway, so there's no point trying (and it may cause
11604 a crash, if e.g. we wind up asking for last_set_value of a
11605 SUBREG of the return value register). */
11606 return;
11609 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11612 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11613 register present in the SUBREG, so for each such SUBREG go back and
11614 adjust nonzero and sign bit information of the registers that are
11615 known to have some zero/sign bits set.
11617 This is needed because when combine blows the SUBREGs away, the
11618 information on zero/sign bits is lost and further combines can be
11619 missed because of that. */
11621 static void
11622 record_promoted_value (rtx insn, rtx subreg)
11624 rtx links, set;
11625 unsigned int regno = REGNO (SUBREG_REG (subreg));
11626 enum machine_mode mode = GET_MODE (subreg);
11628 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11629 return;
11631 for (links = LOG_LINKS (insn); links;)
11633 insn = XEXP (links, 0);
11634 set = single_set (insn);
11636 if (! set || GET_CODE (SET_DEST (set)) != REG
11637 || REGNO (SET_DEST (set)) != regno
11638 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11640 links = XEXP (links, 1);
11641 continue;
11644 if (reg_last_set[regno] == insn)
11646 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11647 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11650 if (GET_CODE (SET_SRC (set)) == REG)
11652 regno = REGNO (SET_SRC (set));
11653 links = LOG_LINKS (insn);
11655 else
11656 break;
11660 /* Scan X for promoted SUBREGs. For each one found,
11661 note what it implies to the registers used in it. */
11663 static void
11664 check_promoted_subreg (rtx insn, rtx x)
11666 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11667 && GET_CODE (SUBREG_REG (x)) == REG)
11668 record_promoted_value (insn, x);
11669 else
11671 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11672 int i, j;
11674 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11675 switch (format[i])
11677 case 'e':
11678 check_promoted_subreg (insn, XEXP (x, i));
11679 break;
11680 case 'V':
11681 case 'E':
11682 if (XVEC (x, i) != 0)
11683 for (j = 0; j < XVECLEN (x, i); j++)
11684 check_promoted_subreg (insn, XVECEXP (x, i, j));
11685 break;
11690 /* Utility routine for the following function. Verify that all the registers
11691 mentioned in *LOC are valid when *LOC was part of a value set when
11692 label_tick == TICK. Return 0 if some are not.
11694 If REPLACE is nonzero, replace the invalid reference with
11695 (clobber (const_int 0)) and return 1. This replacement is useful because
11696 we often can get useful information about the form of a value (e.g., if
11697 it was produced by a shift that always produces -1 or 0) even though
11698 we don't know exactly what registers it was produced from. */
11700 static int
11701 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11703 rtx x = *loc;
11704 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11705 int len = GET_RTX_LENGTH (GET_CODE (x));
11706 int i;
11708 if (GET_CODE (x) == REG)
11710 unsigned int regno = REGNO (x);
11711 unsigned int endregno
11712 = regno + (regno < FIRST_PSEUDO_REGISTER
11713 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11714 unsigned int j;
11716 for (j = regno; j < endregno; j++)
11717 if (reg_last_set_invalid[j]
11718 /* If this is a pseudo-register that was only set once and not
11719 live at the beginning of the function, it is always valid. */
11720 || (! (regno >= FIRST_PSEUDO_REGISTER
11721 && REG_N_SETS (regno) == 1
11722 && (! REGNO_REG_SET_P
11723 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11724 && reg_last_set_label[j] > tick))
11726 if (replace)
11727 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11728 return replace;
11731 return 1;
11733 /* If this is a memory reference, make sure that there were
11734 no stores after it that might have clobbered the value. We don't
11735 have alias info, so we assume any store invalidates it. */
11736 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11737 && INSN_CUID (insn) <= mem_last_set)
11739 if (replace)
11740 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11741 return replace;
11744 for (i = 0; i < len; i++)
11746 if (fmt[i] == 'e')
11748 /* Check for identical subexpressions. If x contains
11749 identical subexpression we only have to traverse one of
11750 them. */
11751 if (i == 1 && ARITHMETIC_P (x))
11753 /* Note that at this point x0 has already been checked
11754 and found valid. */
11755 rtx x0 = XEXP (x, 0);
11756 rtx x1 = XEXP (x, 1);
11758 /* If x0 and x1 are identical then x is also valid. */
11759 if (x0 == x1)
11760 return 1;
11762 /* If x1 is identical to a subexpression of x0 then
11763 while checking x0, x1 has already been checked. Thus
11764 it is valid and so as x. */
11765 if (ARITHMETIC_P (x0)
11766 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11767 return 1;
11769 /* If x0 is identical to a subexpression of x1 then x is
11770 valid iff the rest of x1 is valid. */
11771 if (ARITHMETIC_P (x1)
11772 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11773 return
11774 get_last_value_validate (&XEXP (x1,
11775 x0 == XEXP (x1, 0) ? 1 : 0),
11776 insn, tick, replace);
11779 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11780 replace) == 0)
11781 return 0;
11783 /* Don't bother with these. They shouldn't occur anyway. */
11784 else if (fmt[i] == 'E')
11785 return 0;
11788 /* If we haven't found a reason for it to be invalid, it is valid. */
11789 return 1;
11792 /* Get the last value assigned to X, if known. Some registers
11793 in the value may be replaced with (clobber (const_int 0)) if their value
11794 is known longer known reliably. */
11796 static rtx
11797 get_last_value (rtx x)
11799 unsigned int regno;
11800 rtx value;
11802 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11803 then convert it to the desired mode. If this is a paradoxical SUBREG,
11804 we cannot predict what values the "extra" bits might have. */
11805 if (GET_CODE (x) == SUBREG
11806 && subreg_lowpart_p (x)
11807 && (GET_MODE_SIZE (GET_MODE (x))
11808 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11809 && (value = get_last_value (SUBREG_REG (x))) != 0)
11810 return gen_lowpart (GET_MODE (x), value);
11812 if (GET_CODE (x) != REG)
11813 return 0;
11815 regno = REGNO (x);
11816 value = reg_last_set_value[regno];
11818 /* If we don't have a value, or if it isn't for this basic block and
11819 it's either a hard register, set more than once, or it's a live
11820 at the beginning of the function, return 0.
11822 Because if it's not live at the beginning of the function then the reg
11823 is always set before being used (is never used without being set).
11824 And, if it's set only once, and it's always set before use, then all
11825 uses must have the same last value, even if it's not from this basic
11826 block. */
11828 if (value == 0
11829 || (reg_last_set_label[regno] != label_tick
11830 && (regno < FIRST_PSEUDO_REGISTER
11831 || REG_N_SETS (regno) != 1
11832 || (REGNO_REG_SET_P
11833 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11834 return 0;
11836 /* If the value was set in a later insn than the ones we are processing,
11837 we can't use it even if the register was only set once. */
11838 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11839 return 0;
11841 /* If the value has all its registers valid, return it. */
11842 if (get_last_value_validate (&value, reg_last_set[regno],
11843 reg_last_set_label[regno], 0))
11844 return value;
11846 /* Otherwise, make a copy and replace any invalid register with
11847 (clobber (const_int 0)). If that fails for some reason, return 0. */
11849 value = copy_rtx (value);
11850 if (get_last_value_validate (&value, reg_last_set[regno],
11851 reg_last_set_label[regno], 1))
11852 return value;
11854 return 0;
11857 /* Return nonzero if expression X refers to a REG or to memory
11858 that is set in an instruction more recent than FROM_CUID. */
11860 static int
11861 use_crosses_set_p (rtx x, int from_cuid)
11863 const char *fmt;
11864 int i;
11865 enum rtx_code code = GET_CODE (x);
11867 if (code == REG)
11869 unsigned int regno = REGNO (x);
11870 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11871 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11873 #ifdef PUSH_ROUNDING
11874 /* Don't allow uses of the stack pointer to be moved,
11875 because we don't know whether the move crosses a push insn. */
11876 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11877 return 1;
11878 #endif
11879 for (; regno < endreg; regno++)
11880 if (reg_last_set[regno]
11881 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11882 return 1;
11883 return 0;
11886 if (code == MEM && mem_last_set > from_cuid)
11887 return 1;
11889 fmt = GET_RTX_FORMAT (code);
11891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11893 if (fmt[i] == 'E')
11895 int j;
11896 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11897 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11898 return 1;
11900 else if (fmt[i] == 'e'
11901 && use_crosses_set_p (XEXP (x, i), from_cuid))
11902 return 1;
11904 return 0;
11907 /* Define three variables used for communication between the following
11908 routines. */
11910 static unsigned int reg_dead_regno, reg_dead_endregno;
11911 static int reg_dead_flag;
11913 /* Function called via note_stores from reg_dead_at_p.
11915 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11916 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11918 static void
11919 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11921 unsigned int regno, endregno;
11923 if (GET_CODE (dest) != REG)
11924 return;
11926 regno = REGNO (dest);
11927 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11928 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11930 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11931 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11934 /* Return nonzero if REG is known to be dead at INSN.
11936 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11937 referencing REG, it is dead. If we hit a SET referencing REG, it is
11938 live. Otherwise, see if it is live or dead at the start of the basic
11939 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11940 must be assumed to be always live. */
11942 static int
11943 reg_dead_at_p (rtx reg, rtx insn)
11945 basic_block block;
11946 unsigned int i;
11948 /* Set variables for reg_dead_at_p_1. */
11949 reg_dead_regno = REGNO (reg);
11950 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11951 ? hard_regno_nregs[reg_dead_regno]
11952 [GET_MODE (reg)]
11953 : 1);
11955 reg_dead_flag = 0;
11957 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11958 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11960 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11961 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11962 return 0;
11965 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11966 beginning of function. */
11967 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11968 insn = prev_nonnote_insn (insn))
11970 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11971 if (reg_dead_flag)
11972 return reg_dead_flag == 1 ? 1 : 0;
11974 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11975 return 1;
11978 /* Get the basic block that we were in. */
11979 if (insn == 0)
11980 block = ENTRY_BLOCK_PTR->next_bb;
11981 else
11983 FOR_EACH_BB (block)
11984 if (insn == BB_HEAD (block))
11985 break;
11987 if (block == EXIT_BLOCK_PTR)
11988 return 0;
11991 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11992 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11993 return 0;
11995 return 1;
11998 /* Note hard registers in X that are used. This code is similar to
11999 that in flow.c, but much simpler since we don't care about pseudos. */
12001 static void
12002 mark_used_regs_combine (rtx x)
12004 RTX_CODE code = GET_CODE (x);
12005 unsigned int regno;
12006 int i;
12008 switch (code)
12010 case LABEL_REF:
12011 case SYMBOL_REF:
12012 case CONST_INT:
12013 case CONST:
12014 case CONST_DOUBLE:
12015 case CONST_VECTOR:
12016 case PC:
12017 case ADDR_VEC:
12018 case ADDR_DIFF_VEC:
12019 case ASM_INPUT:
12020 #ifdef HAVE_cc0
12021 /* CC0 must die in the insn after it is set, so we don't need to take
12022 special note of it here. */
12023 case CC0:
12024 #endif
12025 return;
12027 case CLOBBER:
12028 /* If we are clobbering a MEM, mark any hard registers inside the
12029 address as used. */
12030 if (GET_CODE (XEXP (x, 0)) == MEM)
12031 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12032 return;
12034 case REG:
12035 regno = REGNO (x);
12036 /* A hard reg in a wide mode may really be multiple registers.
12037 If so, mark all of them just like the first. */
12038 if (regno < FIRST_PSEUDO_REGISTER)
12040 unsigned int endregno, r;
12042 /* None of this applies to the stack, frame or arg pointers. */
12043 if (regno == STACK_POINTER_REGNUM
12044 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12045 || regno == HARD_FRAME_POINTER_REGNUM
12046 #endif
12047 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12048 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12049 #endif
12050 || regno == FRAME_POINTER_REGNUM)
12051 return;
12053 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
12054 for (r = regno; r < endregno; r++)
12055 SET_HARD_REG_BIT (newpat_used_regs, r);
12057 return;
12059 case SET:
12061 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12062 the address. */
12063 rtx testreg = SET_DEST (x);
12065 while (GET_CODE (testreg) == SUBREG
12066 || GET_CODE (testreg) == ZERO_EXTRACT
12067 || GET_CODE (testreg) == SIGN_EXTRACT
12068 || GET_CODE (testreg) == STRICT_LOW_PART)
12069 testreg = XEXP (testreg, 0);
12071 if (GET_CODE (testreg) == MEM)
12072 mark_used_regs_combine (XEXP (testreg, 0));
12074 mark_used_regs_combine (SET_SRC (x));
12076 return;
12078 default:
12079 break;
12082 /* Recursively scan the operands of this expression. */
12085 const char *fmt = GET_RTX_FORMAT (code);
12087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12089 if (fmt[i] == 'e')
12090 mark_used_regs_combine (XEXP (x, i));
12091 else if (fmt[i] == 'E')
12093 int j;
12095 for (j = 0; j < XVECLEN (x, i); j++)
12096 mark_used_regs_combine (XVECEXP (x, i, j));
12102 /* Remove register number REGNO from the dead registers list of INSN.
12104 Return the note used to record the death, if there was one. */
12107 remove_death (unsigned int regno, rtx insn)
12109 rtx note = find_regno_note (insn, REG_DEAD, regno);
12111 if (note)
12113 REG_N_DEATHS (regno)--;
12114 remove_note (insn, note);
12117 return note;
12120 /* For each register (hardware or pseudo) used within expression X, if its
12121 death is in an instruction with cuid between FROM_CUID (inclusive) and
12122 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12123 list headed by PNOTES.
12125 That said, don't move registers killed by maybe_kill_insn.
12127 This is done when X is being merged by combination into TO_INSN. These
12128 notes will then be distributed as needed. */
12130 static void
12131 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12132 rtx *pnotes)
12134 const char *fmt;
12135 int len, i;
12136 enum rtx_code code = GET_CODE (x);
12138 if (code == REG)
12140 unsigned int regno = REGNO (x);
12141 rtx where_dead = reg_last_death[regno];
12142 rtx before_dead, after_dead;
12144 /* Don't move the register if it gets killed in between from and to. */
12145 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12146 && ! reg_referenced_p (x, maybe_kill_insn))
12147 return;
12149 /* WHERE_DEAD could be a USE insn made by combine, so first we
12150 make sure that we have insns with valid INSN_CUID values. */
12151 before_dead = where_dead;
12152 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12153 before_dead = PREV_INSN (before_dead);
12155 after_dead = where_dead;
12156 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12157 after_dead = NEXT_INSN (after_dead);
12159 if (before_dead && after_dead
12160 && INSN_CUID (before_dead) >= from_cuid
12161 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12162 || (where_dead != after_dead
12163 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12165 rtx note = remove_death (regno, where_dead);
12167 /* It is possible for the call above to return 0. This can occur
12168 when reg_last_death points to I2 or I1 that we combined with.
12169 In that case make a new note.
12171 We must also check for the case where X is a hard register
12172 and NOTE is a death note for a range of hard registers
12173 including X. In that case, we must put REG_DEAD notes for
12174 the remaining registers in place of NOTE. */
12176 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12177 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12178 > GET_MODE_SIZE (GET_MODE (x))))
12180 unsigned int deadregno = REGNO (XEXP (note, 0));
12181 unsigned int deadend
12182 = (deadregno + hard_regno_nregs[deadregno]
12183 [GET_MODE (XEXP (note, 0))]);
12184 unsigned int ourend
12185 = regno + hard_regno_nregs[regno][GET_MODE (x)];
12186 unsigned int i;
12188 for (i = deadregno; i < deadend; i++)
12189 if (i < regno || i >= ourend)
12190 REG_NOTES (where_dead)
12191 = gen_rtx_EXPR_LIST (REG_DEAD,
12192 regno_reg_rtx[i],
12193 REG_NOTES (where_dead));
12196 /* If we didn't find any note, or if we found a REG_DEAD note that
12197 covers only part of the given reg, and we have a multi-reg hard
12198 register, then to be safe we must check for REG_DEAD notes
12199 for each register other than the first. They could have
12200 their own REG_DEAD notes lying around. */
12201 else if ((note == 0
12202 || (note != 0
12203 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12204 < GET_MODE_SIZE (GET_MODE (x)))))
12205 && regno < FIRST_PSEUDO_REGISTER
12206 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12208 unsigned int ourend
12209 = regno + hard_regno_nregs[regno][GET_MODE (x)];
12210 unsigned int i, offset;
12211 rtx oldnotes = 0;
12213 if (note)
12214 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12215 else
12216 offset = 1;
12218 for (i = regno + offset; i < ourend; i++)
12219 move_deaths (regno_reg_rtx[i],
12220 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12223 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12225 XEXP (note, 1) = *pnotes;
12226 *pnotes = note;
12228 else
12229 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12231 REG_N_DEATHS (regno)++;
12234 return;
12237 else if (GET_CODE (x) == SET)
12239 rtx dest = SET_DEST (x);
12241 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12243 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12244 that accesses one word of a multi-word item, some
12245 piece of everything register in the expression is used by
12246 this insn, so remove any old death. */
12247 /* ??? So why do we test for equality of the sizes? */
12249 if (GET_CODE (dest) == ZERO_EXTRACT
12250 || GET_CODE (dest) == STRICT_LOW_PART
12251 || (GET_CODE (dest) == SUBREG
12252 && (((GET_MODE_SIZE (GET_MODE (dest))
12253 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12254 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12255 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12257 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12258 return;
12261 /* If this is some other SUBREG, we know it replaces the entire
12262 value, so use that as the destination. */
12263 if (GET_CODE (dest) == SUBREG)
12264 dest = SUBREG_REG (dest);
12266 /* If this is a MEM, adjust deaths of anything used in the address.
12267 For a REG (the only other possibility), the entire value is
12268 being replaced so the old value is not used in this insn. */
12270 if (GET_CODE (dest) == MEM)
12271 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12272 to_insn, pnotes);
12273 return;
12276 else if (GET_CODE (x) == CLOBBER)
12277 return;
12279 len = GET_RTX_LENGTH (code);
12280 fmt = GET_RTX_FORMAT (code);
12282 for (i = 0; i < len; i++)
12284 if (fmt[i] == 'E')
12286 int j;
12287 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12288 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12289 to_insn, pnotes);
12291 else if (fmt[i] == 'e')
12292 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12296 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12297 pattern of an insn. X must be a REG. */
12299 static int
12300 reg_bitfield_target_p (rtx x, rtx body)
12302 int i;
12304 if (GET_CODE (body) == SET)
12306 rtx dest = SET_DEST (body);
12307 rtx target;
12308 unsigned int regno, tregno, endregno, endtregno;
12310 if (GET_CODE (dest) == ZERO_EXTRACT)
12311 target = XEXP (dest, 0);
12312 else if (GET_CODE (dest) == STRICT_LOW_PART)
12313 target = SUBREG_REG (XEXP (dest, 0));
12314 else
12315 return 0;
12317 if (GET_CODE (target) == SUBREG)
12318 target = SUBREG_REG (target);
12320 if (GET_CODE (target) != REG)
12321 return 0;
12323 tregno = REGNO (target), regno = REGNO (x);
12324 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12325 return target == x;
12327 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
12328 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
12330 return endregno > tregno && regno < endtregno;
12333 else if (GET_CODE (body) == PARALLEL)
12334 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12335 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12336 return 1;
12338 return 0;
12341 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12342 as appropriate. I3 and I2 are the insns resulting from the combination
12343 insns including FROM (I2 may be zero).
12345 Each note in the list is either ignored or placed on some insns, depending
12346 on the type of note. */
12348 static void
12349 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12351 rtx note, next_note;
12352 rtx tem;
12354 for (note = notes; note; note = next_note)
12356 rtx place = 0, place2 = 0;
12358 /* If this NOTE references a pseudo register, ensure it references
12359 the latest copy of that register. */
12360 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12361 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12362 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12364 next_note = XEXP (note, 1);
12365 switch (REG_NOTE_KIND (note))
12367 case REG_BR_PROB:
12368 case REG_BR_PRED:
12369 /* Doesn't matter much where we put this, as long as it's somewhere.
12370 It is preferable to keep these notes on branches, which is most
12371 likely to be i3. */
12372 place = i3;
12373 break;
12375 case REG_VALUE_PROFILE:
12376 /* Just get rid of this note, as it is unused later anyway. */
12377 break;
12379 case REG_VTABLE_REF:
12380 /* ??? Should remain with *a particular* memory load. Given the
12381 nature of vtable data, the last insn seems relatively safe. */
12382 place = i3;
12383 break;
12385 case REG_NON_LOCAL_GOTO:
12386 if (GET_CODE (i3) == JUMP_INSN)
12387 place = i3;
12388 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12389 place = i2;
12390 else
12391 abort ();
12392 break;
12394 case REG_EH_REGION:
12395 /* These notes must remain with the call or trapping instruction. */
12396 if (GET_CODE (i3) == CALL_INSN)
12397 place = i3;
12398 else if (i2 && GET_CODE (i2) == CALL_INSN)
12399 place = i2;
12400 else if (flag_non_call_exceptions)
12402 if (may_trap_p (i3))
12403 place = i3;
12404 else if (i2 && may_trap_p (i2))
12405 place = i2;
12406 /* ??? Otherwise assume we've combined things such that we
12407 can now prove that the instructions can't trap. Drop the
12408 note in this case. */
12410 else
12411 abort ();
12412 break;
12414 case REG_ALWAYS_RETURN:
12415 case REG_NORETURN:
12416 case REG_SETJMP:
12417 /* These notes must remain with the call. It should not be
12418 possible for both I2 and I3 to be a call. */
12419 if (GET_CODE (i3) == CALL_INSN)
12420 place = i3;
12421 else if (i2 && GET_CODE (i2) == CALL_INSN)
12422 place = i2;
12423 else
12424 abort ();
12425 break;
12427 case REG_UNUSED:
12428 /* Any clobbers for i3 may still exist, and so we must process
12429 REG_UNUSED notes from that insn.
12431 Any clobbers from i2 or i1 can only exist if they were added by
12432 recog_for_combine. In that case, recog_for_combine created the
12433 necessary REG_UNUSED notes. Trying to keep any original
12434 REG_UNUSED notes from these insns can cause incorrect output
12435 if it is for the same register as the original i3 dest.
12436 In that case, we will notice that the register is set in i3,
12437 and then add a REG_UNUSED note for the destination of i3, which
12438 is wrong. However, it is possible to have REG_UNUSED notes from
12439 i2 or i1 for register which were both used and clobbered, so
12440 we keep notes from i2 or i1 if they will turn into REG_DEAD
12441 notes. */
12443 /* If this register is set or clobbered in I3, put the note there
12444 unless there is one already. */
12445 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12447 if (from_insn != i3)
12448 break;
12450 if (! (GET_CODE (XEXP (note, 0)) == REG
12451 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12452 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12453 place = i3;
12455 /* Otherwise, if this register is used by I3, then this register
12456 now dies here, so we must put a REG_DEAD note here unless there
12457 is one already. */
12458 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12459 && ! (GET_CODE (XEXP (note, 0)) == REG
12460 ? find_regno_note (i3, REG_DEAD,
12461 REGNO (XEXP (note, 0)))
12462 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12464 PUT_REG_NOTE_KIND (note, REG_DEAD);
12465 place = i3;
12467 break;
12469 case REG_EQUAL:
12470 case REG_EQUIV:
12471 case REG_NOALIAS:
12472 /* These notes say something about results of an insn. We can
12473 only support them if they used to be on I3 in which case they
12474 remain on I3. Otherwise they are ignored.
12476 If the note refers to an expression that is not a constant, we
12477 must also ignore the note since we cannot tell whether the
12478 equivalence is still true. It might be possible to do
12479 slightly better than this (we only have a problem if I2DEST
12480 or I1DEST is present in the expression), but it doesn't
12481 seem worth the trouble. */
12483 if (from_insn == i3
12484 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12485 place = i3;
12486 break;
12488 case REG_INC:
12489 case REG_NO_CONFLICT:
12490 /* These notes say something about how a register is used. They must
12491 be present on any use of the register in I2 or I3. */
12492 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12493 place = i3;
12495 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12497 if (place)
12498 place2 = i2;
12499 else
12500 place = i2;
12502 break;
12504 case REG_LABEL:
12505 /* This can show up in several ways -- either directly in the
12506 pattern, or hidden off in the constant pool with (or without?)
12507 a REG_EQUAL note. */
12508 /* ??? Ignore the without-reg_equal-note problem for now. */
12509 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12510 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12511 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12512 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12513 place = i3;
12515 if (i2
12516 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12517 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12518 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12519 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12521 if (place)
12522 place2 = i2;
12523 else
12524 place = i2;
12527 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12528 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12529 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12531 if (JUMP_LABEL (place) != XEXP (note, 0))
12532 abort ();
12533 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12534 LABEL_NUSES (JUMP_LABEL (place))--;
12535 place = 0;
12537 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12539 if (JUMP_LABEL (place2) != XEXP (note, 0))
12540 abort ();
12541 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12542 LABEL_NUSES (JUMP_LABEL (place2))--;
12543 place2 = 0;
12545 break;
12547 case REG_NONNEG:
12548 /* This note says something about the value of a register prior
12549 to the execution of an insn. It is too much trouble to see
12550 if the note is still correct in all situations. It is better
12551 to simply delete it. */
12552 break;
12554 case REG_RETVAL:
12555 /* If the insn previously containing this note still exists,
12556 put it back where it was. Otherwise move it to the previous
12557 insn. Adjust the corresponding REG_LIBCALL note. */
12558 if (GET_CODE (from_insn) != NOTE)
12559 place = from_insn;
12560 else
12562 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12563 place = prev_real_insn (from_insn);
12564 if (tem && place)
12565 XEXP (tem, 0) = place;
12566 /* If we're deleting the last remaining instruction of a
12567 libcall sequence, don't add the notes. */
12568 else if (XEXP (note, 0) == from_insn)
12569 tem = place = 0;
12571 break;
12573 case REG_LIBCALL:
12574 /* This is handled similarly to REG_RETVAL. */
12575 if (GET_CODE (from_insn) != NOTE)
12576 place = from_insn;
12577 else
12579 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12580 place = next_real_insn (from_insn);
12581 if (tem && place)
12582 XEXP (tem, 0) = place;
12583 /* If we're deleting the last remaining instruction of a
12584 libcall sequence, don't add the notes. */
12585 else if (XEXP (note, 0) == from_insn)
12586 tem = place = 0;
12588 break;
12590 case REG_DEAD:
12591 /* If the register is used as an input in I3, it dies there.
12592 Similarly for I2, if it is nonzero and adjacent to I3.
12594 If the register is not used as an input in either I3 or I2
12595 and it is not one of the registers we were supposed to eliminate,
12596 there are two possibilities. We might have a non-adjacent I2
12597 or we might have somehow eliminated an additional register
12598 from a computation. For example, we might have had A & B where
12599 we discover that B will always be zero. In this case we will
12600 eliminate the reference to A.
12602 In both cases, we must search to see if we can find a previous
12603 use of A and put the death note there. */
12605 if (from_insn
12606 && GET_CODE (from_insn) == CALL_INSN
12607 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12608 place = from_insn;
12609 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12610 place = i3;
12611 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12612 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12613 place = i2;
12615 if (place == 0)
12617 basic_block bb = this_basic_block;
12619 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12621 if (! INSN_P (tem))
12623 if (tem == BB_HEAD (bb))
12624 break;
12625 continue;
12628 /* If the register is being set at TEM, see if that is all
12629 TEM is doing. If so, delete TEM. Otherwise, make this
12630 into a REG_UNUSED note instead. */
12631 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12633 rtx set = single_set (tem);
12634 rtx inner_dest = 0;
12635 #ifdef HAVE_cc0
12636 rtx cc0_setter = NULL_RTX;
12637 #endif
12639 if (set != 0)
12640 for (inner_dest = SET_DEST (set);
12641 (GET_CODE (inner_dest) == STRICT_LOW_PART
12642 || GET_CODE (inner_dest) == SUBREG
12643 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12644 inner_dest = XEXP (inner_dest, 0))
12647 /* Verify that it was the set, and not a clobber that
12648 modified the register.
12650 CC0 targets must be careful to maintain setter/user
12651 pairs. If we cannot delete the setter due to side
12652 effects, mark the user with an UNUSED note instead
12653 of deleting it. */
12655 if (set != 0 && ! side_effects_p (SET_SRC (set))
12656 && rtx_equal_p (XEXP (note, 0), inner_dest)
12657 #ifdef HAVE_cc0
12658 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12659 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12660 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12661 #endif
12664 /* Move the notes and links of TEM elsewhere.
12665 This might delete other dead insns recursively.
12666 First set the pattern to something that won't use
12667 any register. */
12668 rtx old_notes = REG_NOTES (tem);
12670 PATTERN (tem) = pc_rtx;
12671 REG_NOTES (tem) = NULL;
12673 distribute_notes (old_notes, tem, tem, NULL_RTX);
12674 distribute_links (LOG_LINKS (tem));
12676 PUT_CODE (tem, NOTE);
12677 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12678 NOTE_SOURCE_FILE (tem) = 0;
12680 #ifdef HAVE_cc0
12681 /* Delete the setter too. */
12682 if (cc0_setter)
12684 PATTERN (cc0_setter) = pc_rtx;
12685 old_notes = REG_NOTES (cc0_setter);
12686 REG_NOTES (cc0_setter) = NULL;
12688 distribute_notes (old_notes, cc0_setter,
12689 cc0_setter, NULL_RTX);
12690 distribute_links (LOG_LINKS (cc0_setter));
12692 PUT_CODE (cc0_setter, NOTE);
12693 NOTE_LINE_NUMBER (cc0_setter)
12694 = NOTE_INSN_DELETED;
12695 NOTE_SOURCE_FILE (cc0_setter) = 0;
12697 #endif
12699 else
12701 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12703 /* If there isn't already a REG_UNUSED note, put one
12704 here. Do not place a REG_DEAD note, even if
12705 the register is also used here; that would not
12706 match the algorithm used in lifetime analysis
12707 and can cause the consistency check in the
12708 scheduler to fail. */
12709 if (! find_regno_note (tem, REG_UNUSED,
12710 REGNO (XEXP (note, 0))))
12711 place = tem;
12712 break;
12715 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12716 || (GET_CODE (tem) == CALL_INSN
12717 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12719 place = tem;
12721 /* If we are doing a 3->2 combination, and we have a
12722 register which formerly died in i3 and was not used
12723 by i2, which now no longer dies in i3 and is used in
12724 i2 but does not die in i2, and place is between i2
12725 and i3, then we may need to move a link from place to
12726 i2. */
12727 if (i2 && INSN_UID (place) <= max_uid_cuid
12728 && INSN_CUID (place) > INSN_CUID (i2)
12729 && from_insn
12730 && INSN_CUID (from_insn) > INSN_CUID (i2)
12731 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12733 rtx links = LOG_LINKS (place);
12734 LOG_LINKS (place) = 0;
12735 distribute_links (links);
12737 break;
12740 if (tem == BB_HEAD (bb))
12741 break;
12744 /* We haven't found an insn for the death note and it
12745 is still a REG_DEAD note, but we have hit the beginning
12746 of the block. If the existing life info says the reg
12747 was dead, there's nothing left to do. Otherwise, we'll
12748 need to do a global life update after combine. */
12749 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12750 && REGNO_REG_SET_P (bb->global_live_at_start,
12751 REGNO (XEXP (note, 0))))
12752 SET_BIT (refresh_blocks, this_basic_block->index);
12755 /* If the register is set or already dead at PLACE, we needn't do
12756 anything with this note if it is still a REG_DEAD note.
12757 We can here if it is set at all, not if is it totally replace,
12758 which is what `dead_or_set_p' checks, so also check for it being
12759 set partially. */
12761 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12763 unsigned int regno = REGNO (XEXP (note, 0));
12765 /* Similarly, if the instruction on which we want to place
12766 the note is a noop, we'll need do a global live update
12767 after we remove them in delete_noop_moves. */
12768 if (noop_move_p (place))
12769 SET_BIT (refresh_blocks, this_basic_block->index);
12771 if (dead_or_set_p (place, XEXP (note, 0))
12772 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12774 /* Unless the register previously died in PLACE, clear
12775 reg_last_death. [I no longer understand why this is
12776 being done.] */
12777 if (reg_last_death[regno] != place)
12778 reg_last_death[regno] = 0;
12779 place = 0;
12781 else
12782 reg_last_death[regno] = place;
12784 /* If this is a death note for a hard reg that is occupying
12785 multiple registers, ensure that we are still using all
12786 parts of the object. If we find a piece of the object
12787 that is unused, we must arrange for an appropriate REG_DEAD
12788 note to be added for it. However, we can't just emit a USE
12789 and tag the note to it, since the register might actually
12790 be dead; so we recourse, and the recursive call then finds
12791 the previous insn that used this register. */
12793 if (place && regno < FIRST_PSEUDO_REGISTER
12794 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12796 unsigned int endregno
12797 = regno + hard_regno_nregs[regno]
12798 [GET_MODE (XEXP (note, 0))];
12799 int all_used = 1;
12800 unsigned int i;
12802 for (i = regno; i < endregno; i++)
12803 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12804 && ! find_regno_fusage (place, USE, i))
12805 || dead_or_set_regno_p (place, i))
12806 all_used = 0;
12808 if (! all_used)
12810 /* Put only REG_DEAD notes for pieces that are
12811 not already dead or set. */
12813 for (i = regno; i < endregno;
12814 i += hard_regno_nregs[i][reg_raw_mode[i]])
12816 rtx piece = regno_reg_rtx[i];
12817 basic_block bb = this_basic_block;
12819 if (! dead_or_set_p (place, piece)
12820 && ! reg_bitfield_target_p (piece,
12821 PATTERN (place)))
12823 rtx new_note
12824 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12826 distribute_notes (new_note, place, place,
12827 NULL_RTX);
12829 else if (! refers_to_regno_p (i, i + 1,
12830 PATTERN (place), 0)
12831 && ! find_regno_fusage (place, USE, i))
12832 for (tem = PREV_INSN (place); ;
12833 tem = PREV_INSN (tem))
12835 if (! INSN_P (tem))
12837 if (tem == BB_HEAD (bb))
12839 SET_BIT (refresh_blocks,
12840 this_basic_block->index);
12841 break;
12843 continue;
12845 if (dead_or_set_p (tem, piece)
12846 || reg_bitfield_target_p (piece,
12847 PATTERN (tem)))
12849 REG_NOTES (tem)
12850 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12851 REG_NOTES (tem));
12852 break;
12858 place = 0;
12862 break;
12864 default:
12865 /* Any other notes should not be present at this point in the
12866 compilation. */
12867 abort ();
12870 if (place)
12872 XEXP (note, 1) = REG_NOTES (place);
12873 REG_NOTES (place) = note;
12875 else if ((REG_NOTE_KIND (note) == REG_DEAD
12876 || REG_NOTE_KIND (note) == REG_UNUSED)
12877 && GET_CODE (XEXP (note, 0)) == REG)
12878 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12880 if (place2)
12882 if ((REG_NOTE_KIND (note) == REG_DEAD
12883 || REG_NOTE_KIND (note) == REG_UNUSED)
12884 && GET_CODE (XEXP (note, 0)) == REG)
12885 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12887 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12888 REG_NOTE_KIND (note),
12889 XEXP (note, 0),
12890 REG_NOTES (place2));
12895 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12896 I3, I2, and I1 to new locations. This is also called to add a link
12897 pointing at I3 when I3's destination is changed. */
12899 static void
12900 distribute_links (rtx links)
12902 rtx link, next_link;
12904 for (link = links; link; link = next_link)
12906 rtx place = 0;
12907 rtx insn;
12908 rtx set, reg;
12910 next_link = XEXP (link, 1);
12912 /* If the insn that this link points to is a NOTE or isn't a single
12913 set, ignore it. In the latter case, it isn't clear what we
12914 can do other than ignore the link, since we can't tell which
12915 register it was for. Such links wouldn't be used by combine
12916 anyway.
12918 It is not possible for the destination of the target of the link to
12919 have been changed by combine. The only potential of this is if we
12920 replace I3, I2, and I1 by I3 and I2. But in that case the
12921 destination of I2 also remains unchanged. */
12923 if (GET_CODE (XEXP (link, 0)) == NOTE
12924 || (set = single_set (XEXP (link, 0))) == 0)
12925 continue;
12927 reg = SET_DEST (set);
12928 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12929 || GET_CODE (reg) == SIGN_EXTRACT
12930 || GET_CODE (reg) == STRICT_LOW_PART)
12931 reg = XEXP (reg, 0);
12933 /* A LOG_LINK is defined as being placed on the first insn that uses
12934 a register and points to the insn that sets the register. Start
12935 searching at the next insn after the target of the link and stop
12936 when we reach a set of the register or the end of the basic block.
12938 Note that this correctly handles the link that used to point from
12939 I3 to I2. Also note that not much searching is typically done here
12940 since most links don't point very far away. */
12942 for (insn = NEXT_INSN (XEXP (link, 0));
12943 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12944 || BB_HEAD (this_basic_block->next_bb) != insn));
12945 insn = NEXT_INSN (insn))
12946 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12948 if (reg_referenced_p (reg, PATTERN (insn)))
12949 place = insn;
12950 break;
12952 else if (GET_CODE (insn) == CALL_INSN
12953 && find_reg_fusage (insn, USE, reg))
12955 place = insn;
12956 break;
12958 else if (INSN_P (insn) && reg_set_p (reg, insn))
12959 break;
12961 /* If we found a place to put the link, place it there unless there
12962 is already a link to the same insn as LINK at that point. */
12964 if (place)
12966 rtx link2;
12968 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12969 if (XEXP (link2, 0) == XEXP (link, 0))
12970 break;
12972 if (link2 == 0)
12974 XEXP (link, 1) = LOG_LINKS (place);
12975 LOG_LINKS (place) = link;
12977 /* Set added_links_insn to the earliest insn we added a
12978 link to. */
12979 if (added_links_insn == 0
12980 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12981 added_links_insn = place;
12987 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12989 static int
12990 insn_cuid (rtx insn)
12992 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12993 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12994 insn = NEXT_INSN (insn);
12996 if (INSN_UID (insn) > max_uid_cuid)
12997 abort ();
12999 return INSN_CUID (insn);
13002 void
13003 dump_combine_stats (FILE *file)
13005 fnotice
13006 (file,
13007 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13008 combine_attempts, combine_merges, combine_extras, combine_successes);
13011 void
13012 dump_combine_total_stats (FILE *file)
13014 fnotice
13015 (file,
13016 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13017 total_attempts, total_merges, total_extras, total_successes);