* config/h8300/h8300.h (ENCODE_SECTION_INFO): Check to see if DECL
[official-gcc.git] / gcc / regclass.c
blobbfde1e96bc7db5a4697dd88a41c2b081eb69f34e
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* Indexed by hard register number, contains 1 for registers that are
99 fixed use or call used registers that cannot hold quantities across
100 calls even if we are willing to save and restore them. call fixed
101 registers are a subset of call used registers. */
103 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
105 /* The same info as a HARD_REG_SET. */
107 HARD_REG_SET call_fixed_reg_set;
109 /* Number of non-fixed registers. */
111 int n_non_fixed_regs;
113 /* Indexed by hard register number, contains 1 for registers
114 that are being used for global register decls.
115 These must be exempt from ordinary flow analysis
116 and are also considered fixed. */
118 char global_regs[FIRST_PSEUDO_REGISTER];
120 /* Contains 1 for registers that are set or clobbered by calls. */
121 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
122 for someone's bright idea to have call_used_regs strictly include
123 fixed_regs. Which leaves us guessing as to the set of fixed_regs
124 that are actually preserved. We know for sure that those associated
125 with the local stack frame are safe, but scant others. */
127 HARD_REG_SET regs_invalidated_by_call;
129 /* Table of register numbers in the order in which to try to use them. */
130 #ifdef REG_ALLOC_ORDER
131 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
133 /* The inverse of reg_alloc_order. */
134 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
135 #endif
137 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
139 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
141 /* The same information, but as an array of unsigned ints. We copy from
142 these unsigned ints to the table above. We do this so the tm.h files
143 do not have to be aware of the wordsize for machines with <= 64 regs.
144 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
146 #define N_REG_INTS \
147 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
149 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
150 = REG_CLASS_CONTENTS;
152 /* For each reg class, number of regs it contains. */
154 unsigned int reg_class_size[N_REG_CLASSES];
156 /* For each reg class, table listing all the containing classes. */
158 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
160 /* For each reg class, table listing all the classes contained in it. */
162 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
164 /* For each pair of reg classes,
165 a largest reg class contained in their union. */
167 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each pair of reg classes,
170 the smallest reg class containing their union. */
172 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
174 /* Array containing all of the register names. Unless
175 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
177 #ifdef DEBUG_REGISTER_NAMES
178 const char * reg_names[] = REGISTER_NAMES;
179 #endif
181 /* For each hard register, the widest mode object that it can contain.
182 This will be a MODE_INT mode if the register can hold integers. Otherwise
183 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
184 register. */
186 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
188 /* 1 if class does contain register of given mode. */
190 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
192 /* Maximum cost of moving from a register in one class to a register in
193 another class. Based on REGISTER_MOVE_COST. */
195 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
197 /* Similar, but here we don't have to move if the first index is a subset
198 of the second so in that case the cost is zero. */
200 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
202 /* Similar, but here we don't have to move if the first index is a superset
203 of the second so in that case the cost is zero. */
205 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
207 #ifdef FORBIDDEN_INC_DEC_CLASSES
209 /* These are the classes that regs which are auto-incremented or decremented
210 cannot be put in. */
212 static int forbidden_inc_dec_class[N_REG_CLASSES];
214 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
215 context. */
217 static char *in_inc_dec;
219 #endif /* FORBIDDEN_INC_DEC_CLASSES */
221 #ifdef CLASS_CANNOT_CHANGE_MODE
223 /* These are the classes containing only registers that can be used in
224 a SUBREG expression that changes the mode of the register in some
225 way that is illegal. */
227 static int class_can_change_mode[N_REG_CLASSES];
229 /* Registers, including pseudos, which change modes in some way that
230 is illegal. */
232 static regset reg_changes_mode;
234 #endif /* CLASS_CANNOT_CHANGE_MODE */
236 #ifdef HAVE_SECONDARY_RELOADS
238 /* Sample MEM values for use by memory_move_secondary_cost. */
240 static rtx top_of_stack[MAX_MACHINE_MODE];
242 #endif /* HAVE_SECONDARY_RELOADS */
244 /* Linked list of reg_info structures allocated for reg_n_info array.
245 Grouping all of the allocated structures together in one lump
246 means only one call to bzero to clear them, rather than n smaller
247 calls. */
248 struct reg_info_data {
249 struct reg_info_data *next; /* next set of reg_info structures */
250 size_t min_index; /* minimum index # */
251 size_t max_index; /* maximum index # */
252 char used_p; /* non-zero if this has been used previously */
253 reg_info data[1]; /* beginning of the reg_info data */
256 static struct reg_info_data *reg_info_head;
258 /* No more global register variables may be declared; true once
259 regclass has been initialized. */
261 static int no_global_reg_vars = 0;
264 /* Function called only once to initialize the above data on reg usage.
265 Once this is done, various switches may override. */
267 void
268 init_reg_sets ()
270 register int i, j;
272 /* First copy the register information from the initial int form into
273 the regsets. */
275 for (i = 0; i < N_REG_CLASSES; i++)
277 CLEAR_HARD_REG_SET (reg_class_contents[i]);
279 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
280 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
281 if (int_reg_class_contents[i][j / 32]
282 & ((unsigned) 1 << (j % 32)))
283 SET_HARD_REG_BIT (reg_class_contents[i], j);
286 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
287 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
288 memset (global_regs, 0, sizeof global_regs);
290 /* Do any additional initialization regsets may need */
291 INIT_ONCE_REG_SET ();
293 #ifdef REG_ALLOC_ORDER
294 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
295 inv_reg_alloc_order[reg_alloc_order[i]] = i;
296 #endif
299 /* After switches have been processed, which perhaps alter
300 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
302 static void
303 init_reg_sets_1 ()
305 register unsigned int i, j;
306 register unsigned int /* enum machine_mode */ m;
307 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
309 /* This macro allows the fixed or call-used registers
310 and the register classes to depend on target flags. */
312 #ifdef CONDITIONAL_REGISTER_USAGE
313 CONDITIONAL_REGISTER_USAGE;
314 #endif
316 /* Compute number of hard regs in each class. */
318 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
319 for (i = 0; i < N_REG_CLASSES; i++)
320 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
321 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
322 reg_class_size[i]++;
324 /* Initialize the table of subunions.
325 reg_class_subunion[I][J] gets the largest-numbered reg-class
326 that is contained in the union of classes I and J. */
328 for (i = 0; i < N_REG_CLASSES; i++)
330 for (j = 0; j < N_REG_CLASSES; j++)
332 #ifdef HARD_REG_SET
333 register /* Declare it register if it's a scalar. */
334 #endif
335 HARD_REG_SET c;
336 register int k;
338 COPY_HARD_REG_SET (c, reg_class_contents[i]);
339 IOR_HARD_REG_SET (c, reg_class_contents[j]);
340 for (k = 0; k < N_REG_CLASSES; k++)
342 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
343 subclass1);
344 continue;
346 subclass1:
347 /* keep the largest subclass */ /* SPEE 900308 */
348 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
349 reg_class_contents[(int) reg_class_subunion[i][j]],
350 subclass2);
351 reg_class_subunion[i][j] = (enum reg_class) k;
352 subclass2:
358 /* Initialize the table of superunions.
359 reg_class_superunion[I][J] gets the smallest-numbered reg-class
360 containing the union of classes I and J. */
362 for (i = 0; i < N_REG_CLASSES; i++)
364 for (j = 0; j < N_REG_CLASSES; j++)
366 #ifdef HARD_REG_SET
367 register /* Declare it register if it's a scalar. */
368 #endif
369 HARD_REG_SET c;
370 register int k;
372 COPY_HARD_REG_SET (c, reg_class_contents[i]);
373 IOR_HARD_REG_SET (c, reg_class_contents[j]);
374 for (k = 0; k < N_REG_CLASSES; k++)
375 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
377 superclass:
378 reg_class_superunion[i][j] = (enum reg_class) k;
382 /* Initialize the tables of subclasses and superclasses of each reg class.
383 First clear the whole table, then add the elements as they are found. */
385 for (i = 0; i < N_REG_CLASSES; i++)
387 for (j = 0; j < N_REG_CLASSES; j++)
389 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
390 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
394 for (i = 0; i < N_REG_CLASSES; i++)
396 if (i == (int) NO_REGS)
397 continue;
399 for (j = i + 1; j < N_REG_CLASSES; j++)
401 enum reg_class *p;
403 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
404 subclass);
405 continue;
406 subclass:
407 /* Reg class I is a subclass of J.
408 Add J to the table of superclasses of I. */
409 p = &reg_class_superclasses[i][0];
410 while (*p != LIM_REG_CLASSES) p++;
411 *p = (enum reg_class) j;
412 /* Add I to the table of superclasses of J. */
413 p = &reg_class_subclasses[j][0];
414 while (*p != LIM_REG_CLASSES) p++;
415 *p = (enum reg_class) i;
419 /* Initialize "constant" tables. */
421 CLEAR_HARD_REG_SET (fixed_reg_set);
422 CLEAR_HARD_REG_SET (call_used_reg_set);
423 CLEAR_HARD_REG_SET (call_fixed_reg_set);
424 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
426 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
428 n_non_fixed_regs = 0;
430 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
432 if (fixed_regs[i])
433 SET_HARD_REG_BIT (fixed_reg_set, i);
434 else
435 n_non_fixed_regs++;
437 if (call_used_regs[i])
438 SET_HARD_REG_BIT (call_used_reg_set, i);
439 if (call_fixed_regs[i])
440 SET_HARD_REG_BIT (call_fixed_reg_set, i);
441 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
442 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
444 /* There are a couple of fixed registers that we know are safe to
445 exclude from being clobbered by calls:
447 The frame pointer is always preserved across calls. The arg pointer
448 is if it is fixed. The stack pointer usually is, unless
449 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
450 If we are generating PIC code, the PIC offset table register is
451 preserved across calls, though the target can override that. */
453 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
455 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
456 else if (i == HARD_FRAME_POINTER_REGNUM)
458 #endif
459 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
460 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
462 #endif
463 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
464 else if (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
466 #endif
467 else if (call_used_regs[i] || global_regs[i])
468 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
471 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
472 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
473 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
474 for (i = 0; i < N_REG_CLASSES; i++)
475 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
476 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
477 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
478 && HARD_REGNO_MODE_OK (j, m))
480 contains_reg_of_mode [i][m] = 1;
481 allocatable_regs_of_mode [m] = 1;
482 break;
485 /* Initialize the move cost table. Find every subset of each class
486 and take the maximum cost of moving any subset to any other. */
488 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
489 if (allocatable_regs_of_mode [m])
491 for (i = 0; i < N_REG_CLASSES; i++)
492 if (contains_reg_of_mode [i][m])
493 for (j = 0; j < N_REG_CLASSES; j++)
495 int cost;
496 enum reg_class *p1, *p2;
498 if (!contains_reg_of_mode [j][m])
500 move_cost[m][i][j] = 65536;
501 may_move_in_cost[m][i][j] = 65536;
502 may_move_out_cost[m][i][j] = 65536;
504 else
506 cost = i == j ? 2 : REGISTER_MOVE_COST (m, i, j);
508 for (p2 = &reg_class_subclasses[j][0];
509 *p2 != LIM_REG_CLASSES;
510 p2++)
511 if (*p2 != i && contains_reg_of_mode [*p2][m])
512 cost = MAX (cost, move_cost [m][i][*p2]);
514 for (p1 = &reg_class_subclasses[i][0];
515 *p1 != LIM_REG_CLASSES;
516 p1++)
517 if (*p1 != j && contains_reg_of_mode [*p1][m])
518 cost = MAX (cost, move_cost [m][*p1][j]);
520 move_cost[m][i][j] = cost;
522 if (reg_class_subset_p (i, j))
523 may_move_in_cost[m][i][j] = 0;
524 else
525 may_move_in_cost[m][i][j] = cost;
527 if (reg_class_subset_p (j, i))
528 may_move_out_cost[m][i][j] = 0;
529 else
530 may_move_out_cost[m][i][j] = cost;
533 else
534 for (j = 0; j < N_REG_CLASSES; j++)
536 move_cost[m][i][j] = 65536;
537 may_move_in_cost[m][i][j] = 65536;
538 may_move_out_cost[m][i][j] = 65536;
542 #ifdef CLASS_CANNOT_CHANGE_MODE
544 HARD_REG_SET c;
545 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
547 for (i = 0; i < N_REG_CLASSES; i++)
549 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
550 class_can_change_mode [i] = 0;
551 continue;
552 ok_class:
553 class_can_change_mode [i] = 1;
556 #endif /* CLASS_CANNOT_CHANGE_MODE */
559 /* Compute the table of register modes.
560 These values are used to record death information for individual registers
561 (as opposed to a multi-register mode). */
563 static void
564 init_reg_modes ()
566 register int i;
568 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
570 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
572 /* If we couldn't find a valid mode, just use the previous mode.
573 ??? One situation in which we need to do this is on the mips where
574 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
575 to use DF mode for the even registers and VOIDmode for the odd
576 (for the cpu models where the odd ones are inaccessible). */
577 if (reg_raw_mode[i] == VOIDmode)
578 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
582 /* Finish initializing the register sets and
583 initialize the register modes. */
585 void
586 init_regs ()
588 /* This finishes what was started by init_reg_sets, but couldn't be done
589 until after register usage was specified. */
590 init_reg_sets_1 ();
592 init_reg_modes ();
594 #ifdef HAVE_SECONDARY_RELOADS
596 /* Make some fake stack-frame MEM references for use in
597 memory_move_secondary_cost. */
598 int i;
600 for (i = 0; i < MAX_MACHINE_MODE; i++)
601 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
602 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
604 #endif
607 #ifdef HAVE_SECONDARY_RELOADS
609 /* Compute extra cost of moving registers to/from memory due to reloads.
610 Only needed if secondary reloads are required for memory moves. */
613 memory_move_secondary_cost (mode, class, in)
614 enum machine_mode mode;
615 enum reg_class class;
616 int in;
618 enum reg_class altclass;
619 int partial_cost = 0;
620 /* We need a memory reference to feed to SECONDARY... macros. */
621 /* mem may be unused even if the SECONDARY_ macros are defined. */
622 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
625 if (in)
627 #ifdef SECONDARY_INPUT_RELOAD_CLASS
628 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
629 #else
630 altclass = NO_REGS;
631 #endif
633 else
635 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
636 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
637 #else
638 altclass = NO_REGS;
639 #endif
642 if (altclass == NO_REGS)
643 return 0;
645 if (in)
646 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
647 else
648 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
650 if (class == altclass)
651 /* This isn't simply a copy-to-temporary situation. Can't guess
652 what it is, so MEMORY_MOVE_COST really ought not to be calling
653 here in that case.
655 I'm tempted to put in an abort here, but returning this will
656 probably only give poor estimates, which is what we would've
657 had before this code anyways. */
658 return partial_cost;
660 /* Check if the secondary reload register will also need a
661 secondary reload. */
662 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
664 #endif
666 /* Return a machine mode that is legitimate for hard reg REGNO and large
667 enough to save nregs. If we can't find one, return VOIDmode. */
669 enum machine_mode
670 choose_hard_reg_mode (regno, nregs)
671 unsigned int regno ATTRIBUTE_UNUSED;
672 unsigned int nregs;
674 unsigned int /* enum machine_mode */ m;
675 enum machine_mode found_mode = VOIDmode, mode;
677 /* We first look for the largest integer mode that can be validly
678 held in REGNO. If none, we look for the largest floating-point mode.
679 If we still didn't find a valid mode, try CCmode. */
681 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
682 mode != VOIDmode;
683 mode = GET_MODE_WIDER_MODE (mode))
684 if (HARD_REGNO_NREGS (regno, mode) == nregs
685 && HARD_REGNO_MODE_OK (regno, mode))
686 found_mode = mode;
688 if (found_mode != VOIDmode)
689 return found_mode;
691 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
692 mode != VOIDmode;
693 mode = GET_MODE_WIDER_MODE (mode))
694 if (HARD_REGNO_NREGS (regno, mode) == nregs
695 && HARD_REGNO_MODE_OK (regno, mode))
696 found_mode = mode;
698 if (found_mode != VOIDmode)
699 return found_mode;
701 /* Iterate over all of the CCmodes. */
702 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
704 mode = (enum machine_mode) m;
705 if (HARD_REGNO_NREGS (regno, mode) == nregs
706 && HARD_REGNO_MODE_OK (regno, mode))
707 return mode;
710 /* We can't find a mode valid for this register. */
711 return VOIDmode;
714 /* Specify the usage characteristics of the register named NAME.
715 It should be a fixed register if FIXED and a
716 call-used register if CALL_USED. */
718 void
719 fix_register (name, fixed, call_used)
720 const char *name;
721 int fixed, call_used;
723 int i;
725 /* Decode the name and update the primary form of
726 the register info. */
728 if ((i = decode_reg_name (name)) >= 0)
730 if ((i == STACK_POINTER_REGNUM
731 #ifdef HARD_FRAME_POINTER_REGNUM
732 || i == HARD_FRAME_POINTER_REGNUM
733 #else
734 || i == FRAME_POINTER_REGNUM
735 #endif
737 && (fixed == 0 || call_used == 0))
739 static const char * const what_option[2][2] = {
740 { "call-saved", "call-used" },
741 { "no-such-option", "fixed" }};
743 error ("can't use '%s' as a %s register", name,
744 what_option[fixed][call_used]);
746 else
748 fixed_regs[i] = fixed;
749 call_used_regs[i] = call_used;
752 else
754 warning ("unknown register name: %s", name);
758 /* Mark register number I as global. */
760 void
761 globalize_reg (i)
762 int i;
764 if (fixed_regs[i] == 0 && no_global_reg_vars)
765 error ("global register variable follows a function definition");
767 if (global_regs[i])
769 warning ("register used for two global register variables");
770 return;
773 if (call_used_regs[i] && ! fixed_regs[i])
774 warning ("call-clobbered register used for global register variable");
776 global_regs[i] = 1;
778 /* If already fixed, nothing else to do. */
779 if (fixed_regs[i])
780 return;
782 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
783 n_non_fixed_regs--;
785 SET_HARD_REG_BIT (fixed_reg_set, i);
786 SET_HARD_REG_BIT (call_used_reg_set, i);
787 SET_HARD_REG_BIT (call_fixed_reg_set, i);
790 /* Now the data and code for the `regclass' pass, which happens
791 just before local-alloc. */
793 /* The `costs' struct records the cost of using a hard register of each class
794 and of using memory for each pseudo. We use this data to set up
795 register class preferences. */
797 struct costs
799 int cost[N_REG_CLASSES];
800 int mem_cost;
803 /* Structure used to record preferrences of given pseudo. */
804 struct reg_pref
806 /* (enum reg_class) prefclass is the preferred class. */
807 char prefclass;
809 /* altclass is a register class that we should use for allocating
810 pseudo if no register in the preferred class is available.
811 If no register in this class is available, memory is preferred.
813 It might appear to be more general to have a bitmask of classes here,
814 but since it is recommended that there be a class corresponding to the
815 union of most major pair of classes, that generality is not required. */
816 char altclass;
819 /* Record the cost of each class for each pseudo. */
821 static struct costs *costs;
823 /* Initialized once, and used to initialize cost values for each insn. */
825 static struct costs init_cost;
827 /* Record preferrences of each pseudo.
828 This is available after `regclass' is run. */
830 static struct reg_pref *reg_pref;
832 /* Allocated buffers for reg_pref. */
834 static struct reg_pref *reg_pref_buffer;
836 /* Frequency of executions of current insn. */
838 static int frequency;
840 static rtx scan_one_insn PARAMS ((rtx, int));
841 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
842 static void dump_regclass PARAMS ((FILE *));
843 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
844 const char **, rtx,
845 struct costs *, struct reg_pref *));
846 static int copy_cost PARAMS ((rtx, enum machine_mode,
847 enum reg_class, int));
848 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
849 #ifdef FORBIDDEN_INC_DEC_CLASSES
850 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
851 #endif
852 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
854 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
855 This function is sometimes called before the info has been computed.
856 When that happens, just return GENERAL_REGS, which is innocuous. */
858 enum reg_class
859 reg_preferred_class (regno)
860 int regno;
862 if (reg_pref == 0)
863 return GENERAL_REGS;
864 return (enum reg_class) reg_pref[regno].prefclass;
867 enum reg_class
868 reg_alternate_class (regno)
869 int regno;
871 if (reg_pref == 0)
872 return ALL_REGS;
874 return (enum reg_class) reg_pref[regno].altclass;
877 /* Initialize some global data for this pass. */
879 void
880 regclass_init ()
882 int i;
884 init_cost.mem_cost = 10000;
885 for (i = 0; i < N_REG_CLASSES; i++)
886 init_cost.cost[i] = 10000;
888 /* This prevents dump_flow_info from losing if called
889 before regclass is run. */
890 reg_pref = NULL;
892 /* No more global register variables may be declared. */
893 no_global_reg_vars = 1;
896 /* Dump register costs. */
897 static void
898 dump_regclass (dump)
899 FILE *dump;
901 static const char *const reg_class_names[] = REG_CLASS_NAMES;
902 int i;
903 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
905 int /* enum reg_class */ class;
906 if (REG_N_REFS (i))
908 fprintf (dump, " Register %i costs:", i);
909 for (class = 0; class < (int) N_REG_CLASSES; class++)
910 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
911 #ifdef FORBIDDEN_INC_DEC_CLASSES
912 && (!in_inc_dec[i]
913 || !forbidden_inc_dec_class[(enum reg_class) class])
914 #endif
915 #ifdef CLASS_CANNOT_CHANGE_MODE
916 && (!REGNO_REG_SET_P (reg_changes_mode, i)
917 || class_can_change_mode [(enum reg_class) class])
918 #endif
920 fprintf (dump, " %s:%i", reg_class_names[class],
921 costs[i].cost[(enum reg_class) class]);
922 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
928 /* Calculate the costs of insn operands. */
930 static void
931 record_operand_costs (insn, op_costs, reg_pref)
932 rtx insn;
933 struct costs *op_costs;
934 struct reg_pref *reg_pref;
936 const char *constraints[MAX_RECOG_OPERANDS];
937 enum machine_mode modes[MAX_RECOG_OPERANDS];
938 int i;
940 for (i = 0; i < recog_data.n_operands; i++)
942 constraints[i] = recog_data.constraints[i];
943 modes[i] = recog_data.operand_mode[i];
946 /* If we get here, we are set up to record the costs of all the
947 operands for this insn. Start by initializing the costs.
948 Then handle any address registers. Finally record the desired
949 classes for any pseudos, doing it twice if some pair of
950 operands are commutative. */
952 for (i = 0; i < recog_data.n_operands; i++)
954 op_costs[i] = init_cost;
956 if (GET_CODE (recog_data.operand[i]) == SUBREG)
958 rtx inner = SUBREG_REG (recog_data.operand[i]);
959 #ifdef CLASS_CANNOT_CHANGE_MODE
960 if (GET_CODE (inner) == REG
961 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
962 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
963 #endif
964 recog_data.operand[i] = inner;
967 if (GET_CODE (recog_data.operand[i]) == MEM)
968 record_address_regs (XEXP (recog_data.operand[i], 0),
969 BASE_REG_CLASS, frequency * 2);
970 else if (constraints[i][0] == 'p')
971 record_address_regs (recog_data.operand[i],
972 BASE_REG_CLASS, frequency * 2);
975 /* Check for commutative in a separate loop so everything will
976 have been initialized. We must do this even if one operand
977 is a constant--see addsi3 in m68k.md. */
979 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
980 if (constraints[i][0] == '%')
982 const char *xconstraints[MAX_RECOG_OPERANDS];
983 int j;
985 /* Handle commutative operands by swapping the constraints.
986 We assume the modes are the same. */
988 for (j = 0; j < recog_data.n_operands; j++)
989 xconstraints[j] = constraints[j];
991 xconstraints[i] = constraints[i+1];
992 xconstraints[i+1] = constraints[i];
993 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
994 recog_data.operand, modes,
995 xconstraints, insn, op_costs, reg_pref);
998 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
999 recog_data.operand, modes,
1000 constraints, insn, op_costs, reg_pref);
1003 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1004 time it would save code to put a certain register in a certain class.
1005 PASS, when nonzero, inhibits some optimizations which need only be done
1006 once.
1007 Return the last insn processed, so that the scan can be continued from
1008 there. */
1010 static rtx
1011 scan_one_insn (insn, pass)
1012 rtx insn;
1013 int pass;
1015 enum rtx_code code = GET_CODE (insn);
1016 enum rtx_code pat_code;
1017 rtx set, note;
1018 int i, j;
1019 struct costs op_costs[MAX_RECOG_OPERANDS];
1021 if (GET_RTX_CLASS (code) != 'i')
1022 return insn;
1024 pat_code = GET_CODE (PATTERN (insn));
1025 if (pat_code == USE
1026 || pat_code == CLOBBER
1027 || pat_code == ASM_INPUT
1028 || pat_code == ADDR_VEC
1029 || pat_code == ADDR_DIFF_VEC)
1030 return insn;
1032 set = single_set (insn);
1033 extract_insn (insn);
1035 /* If this insn loads a parameter from its stack slot, then
1036 it represents a savings, rather than a cost, if the
1037 parameter is stored in memory. Record this fact. */
1039 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1040 && GET_CODE (SET_SRC (set)) == MEM
1041 && (note = find_reg_note (insn, REG_EQUIV,
1042 NULL_RTX)) != 0
1043 && GET_CODE (XEXP (note, 0)) == MEM)
1045 costs[REGNO (SET_DEST (set))].mem_cost
1046 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1047 GENERAL_REGS, 1)
1048 * frequency);
1049 record_address_regs (XEXP (SET_SRC (set), 0),
1050 BASE_REG_CLASS, frequency * 2);
1051 return insn;
1054 /* Improve handling of two-address insns such as
1055 (set X (ashift CONST Y)) where CONST must be made to
1056 match X. Change it into two insns: (set X CONST)
1057 (set X (ashift X Y)). If we left this for reloading, it
1058 would probably get three insns because X and Y might go
1059 in the same place. This prevents X and Y from receiving
1060 the same hard reg.
1062 We can only do this if the modes of operands 0 and 1
1063 (which might not be the same) are tieable and we only need
1064 do this during our first pass. */
1066 if (pass == 0 && optimize
1067 && recog_data.n_operands >= 3
1068 && recog_data.constraints[1][0] == '0'
1069 && recog_data.constraints[1][1] == 0
1070 && CONSTANT_P (recog_data.operand[1])
1071 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1072 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1073 && GET_CODE (recog_data.operand[0]) == REG
1074 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1075 recog_data.operand_mode[1]))
1077 rtx previnsn = prev_real_insn (insn);
1078 rtx dest
1079 = gen_lowpart (recog_data.operand_mode[1],
1080 recog_data.operand[0]);
1081 rtx newinsn
1082 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1084 /* If this insn was the start of a basic block,
1085 include the new insn in that block.
1086 We need not check for code_label here;
1087 while a basic block can start with a code_label,
1088 INSN could not be at the beginning of that block. */
1089 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1091 int b;
1092 for (b = 0; b < n_basic_blocks; b++)
1093 if (insn == BLOCK_HEAD (b))
1094 BLOCK_HEAD (b) = newinsn;
1097 /* This makes one more setting of new insns's dest. */
1098 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1099 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1100 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1102 *recog_data.operand_loc[1] = recog_data.operand[0];
1103 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1104 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1105 for (i = recog_data.n_dups - 1; i >= 0; i--)
1106 if (recog_data.dup_num[i] == 1)
1108 *recog_data.dup_loc[i] = recog_data.operand[0];
1109 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1110 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1113 return PREV_INSN (newinsn);
1116 record_operand_costs (insn, op_costs, reg_pref);
1118 /* Now add the cost for each operand to the total costs for
1119 its register. */
1121 for (i = 0; i < recog_data.n_operands; i++)
1122 if (GET_CODE (recog_data.operand[i]) == REG
1123 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1125 int regno = REGNO (recog_data.operand[i]);
1126 struct costs *p = &costs[regno], *q = &op_costs[i];
1128 p->mem_cost += q->mem_cost * frequency;
1129 for (j = 0; j < N_REG_CLASSES; j++)
1130 p->cost[j] += q->cost[j] * frequency;
1133 return insn;
1136 /* This is a pass of the compiler that scans all instructions
1137 and calculates the preferred class for each pseudo-register.
1138 This information can be accessed later by calling `reg_preferred_class'.
1139 This pass comes just before local register allocation. */
1141 void
1142 regclass (f, nregs, dump)
1143 rtx f;
1144 int nregs;
1145 FILE *dump;
1147 register rtx insn;
1148 register int i;
1149 int pass;
1151 init_recog ();
1153 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1155 #ifdef CLASS_CANNOT_CHANGE_MODE
1156 reg_changes_mode = BITMAP_XMALLOC();
1157 #endif
1159 #ifdef FORBIDDEN_INC_DEC_CLASSES
1161 in_inc_dec = (char *) xmalloc (nregs);
1163 /* Initialize information about which register classes can be used for
1164 pseudos that are auto-incremented or auto-decremented. It would
1165 seem better to put this in init_reg_sets, but we need to be able
1166 to allocate rtx, which we can't do that early. */
1168 for (i = 0; i < N_REG_CLASSES; i++)
1170 rtx r = gen_rtx_REG (VOIDmode, 0);
1171 enum machine_mode m;
1172 register int j;
1174 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1175 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1177 REGNO (r) = j;
1179 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1180 m = (enum machine_mode) ((int) m + 1))
1181 if (HARD_REGNO_MODE_OK (j, m))
1183 PUT_MODE (r, m);
1185 /* If a register is not directly suitable for an
1186 auto-increment or decrement addressing mode and
1187 requires secondary reloads, disallow its class from
1188 being used in such addresses. */
1190 if ((0
1191 #ifdef SECONDARY_RELOAD_CLASS
1192 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1193 != NO_REGS)
1194 #else
1195 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1196 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1197 != NO_REGS)
1198 #endif
1199 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1200 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1201 != NO_REGS)
1202 #endif
1203 #endif
1205 && ! auto_inc_dec_reg_p (r, m))
1206 forbidden_inc_dec_class[i] = 1;
1210 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1212 /* Normally we scan the insns once and determine the best class to use for
1213 each register. However, if -fexpensive_optimizations are on, we do so
1214 twice, the second time using the tentative best classes to guide the
1215 selection. */
1217 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1219 int index;
1221 if (dump)
1222 fprintf (dump, "\n\nPass %i\n\n",pass);
1223 /* Zero out our accumulation of the cost of each class for each reg. */
1225 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1227 #ifdef FORBIDDEN_INC_DEC_CLASSES
1228 memset (in_inc_dec, 0, nregs);
1229 #endif
1231 /* Scan the instructions and record each time it would
1232 save code to put a certain register in a certain class. */
1234 if (!optimize)
1236 frequency = 1;
1237 for (insn = f; insn; insn = NEXT_INSN (insn))
1238 insn = scan_one_insn (insn, pass);
1240 else
1241 for (index = 0; index < n_basic_blocks; index++)
1243 basic_block bb = BASIC_BLOCK (index);
1245 /* Show that an insn inside a loop is likely to be executed three
1246 times more than insns outside a loop. This is much more
1247 aggressive than the assumptions made elsewhere and is being
1248 tried as an experiment. */
1249 if (optimize_size)
1250 frequency = 1;
1251 else
1252 frequency = bb->frequency ? bb->frequency : 1;
1253 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1255 insn = scan_one_insn (insn, pass);
1256 if (insn == bb->end)
1257 break;
1261 /* Now for each register look at how desirable each class is
1262 and find which class is preferred. Store that in
1263 `prefclass'. Record in `altclass' the largest register
1264 class any of whose registers is better than memory. */
1266 if (pass == 0)
1267 reg_pref = reg_pref_buffer;
1269 if (dump)
1271 dump_regclass (dump);
1272 fprintf (dump,"\n");
1274 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1276 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1277 enum reg_class best = ALL_REGS, alt = NO_REGS;
1278 /* This is an enum reg_class, but we call it an int
1279 to save lots of casts. */
1280 register int class;
1281 register struct costs *p = &costs[i];
1283 /* In non-optimizing compilation REG_N_REFS is not initialized
1284 yet. */
1285 if (optimize && !REG_N_REFS (i))
1286 continue;
1288 for (class = (int) ALL_REGS - 1; class > 0; class--)
1290 /* Ignore classes that are too small for this operand or
1291 invalid for a operand that was auto-incremented. */
1292 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1293 #ifdef FORBIDDEN_INC_DEC_CLASSES
1294 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1295 #endif
1296 #ifdef CLASS_CANNOT_CHANGE_MODE
1297 || (REGNO_REG_SET_P (reg_changes_mode, i)
1298 && ! class_can_change_mode [class])
1299 #endif
1302 else if (p->cost[class] < best_cost)
1304 best_cost = p->cost[class];
1305 best = (enum reg_class) class;
1307 else if (p->cost[class] == best_cost)
1308 best = reg_class_subunion[(int)best][class];
1311 /* Record the alternate register class; i.e., a class for which
1312 every register in it is better than using memory. If adding a
1313 class would make a smaller class (i.e., no union of just those
1314 classes exists), skip that class. The major unions of classes
1315 should be provided as a register class. Don't do this if we
1316 will be doing it again later. */
1318 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1319 for (class = 0; class < N_REG_CLASSES; class++)
1320 if (p->cost[class] < p->mem_cost
1321 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1322 > reg_class_size[(int) alt])
1323 #ifdef FORBIDDEN_INC_DEC_CLASSES
1324 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1325 #endif
1326 #ifdef CLASS_CANNOT_CHANGE_MODE
1327 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1328 && ! class_can_change_mode [class])
1329 #endif
1331 alt = reg_class_subunion[(int) alt][class];
1333 /* If we don't add any classes, nothing to try. */
1334 if (alt == best)
1335 alt = NO_REGS;
1337 if (dump
1338 && (reg_pref[i].prefclass != (int) best
1339 || reg_pref[i].altclass != (int) alt))
1341 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1342 fprintf (dump, " Register %i", i);
1343 if (alt == ALL_REGS || best == ALL_REGS)
1344 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1345 else if (alt == NO_REGS)
1346 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1347 else
1348 fprintf (dump, " pref %s, else %s\n",
1349 reg_class_names[(int) best],
1350 reg_class_names[(int) alt]);
1353 /* We cast to (int) because (char) hits bugs in some compilers. */
1354 reg_pref[i].prefclass = (int) best;
1355 reg_pref[i].altclass = (int) alt;
1359 #ifdef FORBIDDEN_INC_DEC_CLASSES
1360 free (in_inc_dec);
1361 #endif
1362 #ifdef CLASS_CANNOT_CHANGE_MODE
1363 BITMAP_XFREE (reg_changes_mode);
1364 #endif
1365 free (costs);
1368 /* Record the cost of using memory or registers of various classes for
1369 the operands in INSN.
1371 N_ALTS is the number of alternatives.
1373 N_OPS is the number of operands.
1375 OPS is an array of the operands.
1377 MODES are the modes of the operands, in case any are VOIDmode.
1379 CONSTRAINTS are the constraints to use for the operands. This array
1380 is modified by this procedure.
1382 This procedure works alternative by alternative. For each alternative
1383 we assume that we will be able to allocate all pseudos to their ideal
1384 register class and calculate the cost of using that alternative. Then
1385 we compute for each operand that is a pseudo-register, the cost of
1386 having the pseudo allocated to each register class and using it in that
1387 alternative. To this cost is added the cost of the alternative.
1389 The cost of each class for this insn is its lowest cost among all the
1390 alternatives. */
1392 static void
1393 record_reg_classes (n_alts, n_ops, ops, modes,
1394 constraints, insn, op_costs, reg_pref)
1395 int n_alts;
1396 int n_ops;
1397 rtx *ops;
1398 enum machine_mode *modes;
1399 const char **constraints;
1400 rtx insn;
1401 struct costs *op_costs;
1402 struct reg_pref *reg_pref;
1404 int alt;
1405 int i, j;
1406 rtx set;
1408 /* Process each alternative, each time minimizing an operand's cost with
1409 the cost for each operand in that alternative. */
1411 for (alt = 0; alt < n_alts; alt++)
1413 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1414 int alt_fail = 0;
1415 int alt_cost = 0;
1416 enum reg_class classes[MAX_RECOG_OPERANDS];
1417 int allows_mem[MAX_RECOG_OPERANDS];
1418 int class;
1420 for (i = 0; i < n_ops; i++)
1422 const char *p = constraints[i];
1423 rtx op = ops[i];
1424 enum machine_mode mode = modes[i];
1425 int allows_addr = 0;
1426 int win = 0;
1427 unsigned char c;
1429 /* Initially show we know nothing about the register class. */
1430 classes[i] = NO_REGS;
1431 allows_mem[i] = 0;
1433 /* If this operand has no constraints at all, we can conclude
1434 nothing about it since anything is valid. */
1436 if (*p == 0)
1438 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1439 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1441 continue;
1444 /* If this alternative is only relevant when this operand
1445 matches a previous operand, we do different things depending
1446 on whether this operand is a pseudo-reg or not. We must process
1447 any modifiers for the operand before we can make this test. */
1449 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1450 p++;
1452 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1454 /* Copy class and whether memory is allowed from the matching
1455 alternative. Then perform any needed cost computations
1456 and/or adjustments. */
1457 j = p[0] - '0';
1458 classes[i] = classes[j];
1459 allows_mem[i] = allows_mem[j];
1461 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1463 /* If this matches the other operand, we have no added
1464 cost and we win. */
1465 if (rtx_equal_p (ops[j], op))
1466 win = 1;
1468 /* If we can put the other operand into a register, add to
1469 the cost of this alternative the cost to copy this
1470 operand to the register used for the other operand. */
1472 else if (classes[j] != NO_REGS)
1473 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1475 else if (GET_CODE (ops[j]) != REG
1476 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1478 /* This op is a pseudo but the one it matches is not. */
1480 /* If we can't put the other operand into a register, this
1481 alternative can't be used. */
1483 if (classes[j] == NO_REGS)
1484 alt_fail = 1;
1486 /* Otherwise, add to the cost of this alternative the cost
1487 to copy the other operand to the register used for this
1488 operand. */
1490 else
1491 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1493 else
1495 /* The costs of this operand are not the same as the other
1496 operand since move costs are not symmetric. Moreover,
1497 if we cannot tie them, this alternative needs to do a
1498 copy, which is one instruction. */
1500 struct costs *pp = &this_op_costs[i];
1502 for (class = 0; class < N_REG_CLASSES; class++)
1503 pp->cost[class]
1504 = ((recog_data.operand_type[i] != OP_OUT
1505 ? may_move_in_cost[mode][class][(int) classes[i]]
1506 : 0)
1507 + (recog_data.operand_type[i] != OP_IN
1508 ? may_move_out_cost[mode][(int) classes[i]][class]
1509 : 0));
1511 /* If the alternative actually allows memory, make things
1512 a bit cheaper since we won't need an extra insn to
1513 load it. */
1515 pp->mem_cost
1516 = ((recog_data.operand_type[i] != OP_IN
1517 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1518 : 0)
1519 + (recog_data.operand_type[i] != OP_OUT
1520 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1521 : 0) - allows_mem[i]);
1523 /* If we have assigned a class to this register in our
1524 first pass, add a cost to this alternative corresponding
1525 to what we would add if this register were not in the
1526 appropriate class. */
1528 if (reg_pref)
1529 alt_cost
1530 += (may_move_in_cost[mode]
1531 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1532 [(int) classes[i]]);
1534 if (REGNO (ops[i]) != REGNO (ops[j])
1535 && ! find_reg_note (insn, REG_DEAD, op))
1536 alt_cost += 2;
1538 /* This is in place of ordinary cost computation
1539 for this operand, so skip to the end of the
1540 alternative (should be just one character). */
1541 while (*p && *p++ != ',')
1544 constraints[i] = p;
1545 continue;
1549 /* Scan all the constraint letters. See if the operand matches
1550 any of the constraints. Collect the valid register classes
1551 and see if this operand accepts memory. */
1553 while (*p && (c = *p++) != ',')
1554 switch (c)
1556 case '*':
1557 /* Ignore the next letter for this pass. */
1558 p++;
1559 break;
1561 case '?':
1562 alt_cost += 2;
1563 case '!': case '#': case '&':
1564 case '0': case '1': case '2': case '3': case '4':
1565 case '5': case '6': case '7': case '8': case '9':
1566 break;
1568 case 'p':
1569 allows_addr = 1;
1570 win = address_operand (op, GET_MODE (op));
1571 /* We know this operand is an address, so we want it to be
1572 allocated to a register that can be the base of an
1573 address, ie BASE_REG_CLASS. */
1574 classes[i]
1575 = reg_class_subunion[(int) classes[i]]
1576 [(int) BASE_REG_CLASS];
1577 break;
1579 case 'm': case 'o': case 'V':
1580 /* It doesn't seem worth distinguishing between offsettable
1581 and non-offsettable addresses here. */
1582 allows_mem[i] = 1;
1583 if (GET_CODE (op) == MEM)
1584 win = 1;
1585 break;
1587 case '<':
1588 if (GET_CODE (op) == MEM
1589 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1590 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1591 win = 1;
1592 break;
1594 case '>':
1595 if (GET_CODE (op) == MEM
1596 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1597 || GET_CODE (XEXP (op, 0)) == POST_INC))
1598 win = 1;
1599 break;
1601 case 'E':
1602 #ifndef REAL_ARITHMETIC
1603 /* Match any floating double constant, but only if
1604 we can examine the bits of it reliably. */
1605 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1606 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1607 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1608 break;
1609 #endif
1610 if (GET_CODE (op) == CONST_DOUBLE)
1611 win = 1;
1612 break;
1614 case 'F':
1615 if (GET_CODE (op) == CONST_DOUBLE)
1616 win = 1;
1617 break;
1619 case 'G':
1620 case 'H':
1621 if (GET_CODE (op) == CONST_DOUBLE
1622 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1623 win = 1;
1624 break;
1626 case 's':
1627 if (GET_CODE (op) == CONST_INT
1628 || (GET_CODE (op) == CONST_DOUBLE
1629 && GET_MODE (op) == VOIDmode))
1630 break;
1631 case 'i':
1632 if (CONSTANT_P (op)
1633 #ifdef LEGITIMATE_PIC_OPERAND_P
1634 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1635 #endif
1637 win = 1;
1638 break;
1640 case 'n':
1641 if (GET_CODE (op) == CONST_INT
1642 || (GET_CODE (op) == CONST_DOUBLE
1643 && GET_MODE (op) == VOIDmode))
1644 win = 1;
1645 break;
1647 case 'I':
1648 case 'J':
1649 case 'K':
1650 case 'L':
1651 case 'M':
1652 case 'N':
1653 case 'O':
1654 case 'P':
1655 if (GET_CODE (op) == CONST_INT
1656 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1657 win = 1;
1658 break;
1660 case 'X':
1661 win = 1;
1662 break;
1664 case 'g':
1665 if (GET_CODE (op) == MEM
1666 || (CONSTANT_P (op)
1667 #ifdef LEGITIMATE_PIC_OPERAND_P
1668 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1669 #endif
1671 win = 1;
1672 allows_mem[i] = 1;
1673 case 'r':
1674 classes[i]
1675 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1676 break;
1678 default:
1679 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1680 classes[i]
1681 = reg_class_subunion[(int) classes[i]]
1682 [(int) REG_CLASS_FROM_LETTER (c)];
1683 #ifdef EXTRA_CONSTRAINT
1684 else if (EXTRA_CONSTRAINT (op, c))
1685 win = 1;
1686 #endif
1687 break;
1690 constraints[i] = p;
1692 /* How we account for this operand now depends on whether it is a
1693 pseudo register or not. If it is, we first check if any
1694 register classes are valid. If not, we ignore this alternative,
1695 since we want to assume that all pseudos get allocated for
1696 register preferencing. If some register class is valid, compute
1697 the costs of moving the pseudo into that class. */
1699 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1701 if (classes[i] == NO_REGS)
1703 /* We must always fail if the operand is a REG, but
1704 we did not find a suitable class.
1706 Otherwise we may perform an uninitialized read
1707 from this_op_costs after the `continue' statement
1708 below. */
1709 alt_fail = 1;
1711 else
1713 struct costs *pp = &this_op_costs[i];
1715 for (class = 0; class < N_REG_CLASSES; class++)
1716 pp->cost[class]
1717 = ((recog_data.operand_type[i] != OP_OUT
1718 ? may_move_in_cost[mode][class][(int) classes[i]]
1719 : 0)
1720 + (recog_data.operand_type[i] != OP_IN
1721 ? may_move_out_cost[mode][(int) classes[i]][class]
1722 : 0));
1724 /* If the alternative actually allows memory, make things
1725 a bit cheaper since we won't need an extra insn to
1726 load it. */
1728 pp->mem_cost
1729 = ((recog_data.operand_type[i] != OP_IN
1730 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1731 : 0)
1732 + (recog_data.operand_type[i] != OP_OUT
1733 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1734 : 0) - allows_mem[i]);
1736 /* If we have assigned a class to this register in our
1737 first pass, add a cost to this alternative corresponding
1738 to what we would add if this register were not in the
1739 appropriate class. */
1741 if (reg_pref)
1742 alt_cost
1743 += (may_move_in_cost[mode]
1744 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1745 [(int) classes[i]]);
1749 /* Otherwise, if this alternative wins, either because we
1750 have already determined that or if we have a hard register of
1751 the proper class, there is no cost for this alternative. */
1753 else if (win
1754 || (GET_CODE (op) == REG
1755 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1758 /* If registers are valid, the cost of this alternative includes
1759 copying the object to and/or from a register. */
1761 else if (classes[i] != NO_REGS)
1763 if (recog_data.operand_type[i] != OP_OUT)
1764 alt_cost += copy_cost (op, mode, classes[i], 1);
1766 if (recog_data.operand_type[i] != OP_IN)
1767 alt_cost += copy_cost (op, mode, classes[i], 0);
1770 /* The only other way this alternative can be used is if this is a
1771 constant that could be placed into memory. */
1773 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1774 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1775 else
1776 alt_fail = 1;
1779 if (alt_fail)
1780 continue;
1782 /* Finally, update the costs with the information we've calculated
1783 about this alternative. */
1785 for (i = 0; i < n_ops; i++)
1786 if (GET_CODE (ops[i]) == REG
1787 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1789 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1790 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1792 pp->mem_cost = MIN (pp->mem_cost,
1793 (qq->mem_cost + alt_cost) * scale);
1795 for (class = 0; class < N_REG_CLASSES; class++)
1796 pp->cost[class] = MIN (pp->cost[class],
1797 (qq->cost[class] + alt_cost) * scale);
1801 /* If this insn is a single set copying operand 1 to operand 0
1802 and one operand is a pseudo with the other a hard reg or a pseudo
1803 that prefers a register that is in its own register class then
1804 we may want to adjust the cost of that register class to -1.
1806 Avoid the adjustment if the source does not die to avoid stressing of
1807 register allocator by preferrencing two coliding registers into single
1808 class.
1810 Also avoid the adjustment if a copy between registers of the class
1811 is expensive (ten times the cost of a default copy is considered
1812 arbitrarily expensive). This avoids losing when the preferred class
1813 is very expensive as the source of a copy instruction. */
1815 if ((set = single_set (insn)) != 0
1816 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1817 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1818 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1819 for (i = 0; i <= 1; i++)
1820 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1822 unsigned int regno = REGNO (ops[!i]);
1823 enum machine_mode mode = GET_MODE (ops[!i]);
1824 int class;
1825 unsigned int nr;
1827 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1829 enum reg_class pref = reg_pref[regno].prefclass;
1831 if ((reg_class_size[(unsigned char) pref]
1832 == CLASS_MAX_NREGS (pref, mode))
1833 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1834 op_costs[i].cost[(unsigned char) pref] = -1;
1836 else if (regno < FIRST_PSEUDO_REGISTER)
1837 for (class = 0; class < N_REG_CLASSES; class++)
1838 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1839 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1841 if (reg_class_size[class] == 1)
1842 op_costs[i].cost[class] = -1;
1843 else
1845 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1847 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1848 regno + nr))
1849 break;
1852 if (nr == HARD_REGNO_NREGS (regno,mode))
1853 op_costs[i].cost[class] = -1;
1859 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1860 TO_P is zero) a register of class CLASS in mode MODE.
1862 X must not be a pseudo. */
1864 static int
1865 copy_cost (x, mode, class, to_p)
1866 rtx x;
1867 enum machine_mode mode ATTRIBUTE_UNUSED;
1868 enum reg_class class;
1869 int to_p ATTRIBUTE_UNUSED;
1871 #ifdef HAVE_SECONDARY_RELOADS
1872 enum reg_class secondary_class = NO_REGS;
1873 #endif
1875 /* If X is a SCRATCH, there is actually nothing to move since we are
1876 assuming optimal allocation. */
1878 if (GET_CODE (x) == SCRATCH)
1879 return 0;
1881 /* Get the class we will actually use for a reload. */
1882 class = PREFERRED_RELOAD_CLASS (x, class);
1884 #ifdef HAVE_SECONDARY_RELOADS
1885 /* If we need a secondary reload (we assume here that we are using
1886 the secondary reload as an intermediate, not a scratch register), the
1887 cost is that to load the input into the intermediate register, then
1888 to copy them. We use a special value of TO_P to avoid recursion. */
1890 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1891 if (to_p == 1)
1892 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1893 #endif
1895 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1896 if (! to_p)
1897 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1898 #endif
1900 if (secondary_class != NO_REGS)
1901 return (move_cost[mode][(int) secondary_class][(int) class]
1902 + copy_cost (x, mode, secondary_class, 2));
1903 #endif /* HAVE_SECONDARY_RELOADS */
1905 /* For memory, use the memory move cost, for (hard) registers, use the
1906 cost to move between the register classes, and use 2 for everything
1907 else (constants). */
1909 if (GET_CODE (x) == MEM || class == NO_REGS)
1910 return MEMORY_MOVE_COST (mode, class, to_p);
1912 else if (GET_CODE (x) == REG)
1913 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1915 else
1916 /* If this is a constant, we may eventually want to call rtx_cost here. */
1917 return COSTS_N_INSNS (1);
1920 /* Record the pseudo registers we must reload into hard registers
1921 in a subexpression of a memory address, X.
1923 CLASS is the class that the register needs to be in and is either
1924 BASE_REG_CLASS or INDEX_REG_CLASS.
1926 SCALE is twice the amount to multiply the cost by (it is twice so we
1927 can represent half-cost adjustments). */
1929 static void
1930 record_address_regs (x, class, scale)
1931 rtx x;
1932 enum reg_class class;
1933 int scale;
1935 register enum rtx_code code = GET_CODE (x);
1937 switch (code)
1939 case CONST_INT:
1940 case CONST:
1941 case CC0:
1942 case PC:
1943 case SYMBOL_REF:
1944 case LABEL_REF:
1945 return;
1947 case PLUS:
1948 /* When we have an address that is a sum,
1949 we must determine whether registers are "base" or "index" regs.
1950 If there is a sum of two registers, we must choose one to be
1951 the "base". Luckily, we can use the REG_POINTER to make a good
1952 choice most of the time. We only need to do this on machines
1953 that can have two registers in an address and where the base
1954 and index register classes are different.
1956 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1957 that seems bogus since it should only be set when we are sure
1958 the register is being used as a pointer. */
1961 rtx arg0 = XEXP (x, 0);
1962 rtx arg1 = XEXP (x, 1);
1963 register enum rtx_code code0 = GET_CODE (arg0);
1964 register enum rtx_code code1 = GET_CODE (arg1);
1966 /* Look inside subregs. */
1967 if (code0 == SUBREG)
1968 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1969 if (code1 == SUBREG)
1970 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1972 /* If this machine only allows one register per address, it must
1973 be in the first operand. */
1975 if (MAX_REGS_PER_ADDRESS == 1)
1976 record_address_regs (arg0, class, scale);
1978 /* If index and base registers are the same on this machine, just
1979 record registers in any non-constant operands. We assume here,
1980 as well as in the tests below, that all addresses are in
1981 canonical form. */
1983 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1985 record_address_regs (arg0, class, scale);
1986 if (! CONSTANT_P (arg1))
1987 record_address_regs (arg1, class, scale);
1990 /* If the second operand is a constant integer, it doesn't change
1991 what class the first operand must be. */
1993 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1994 record_address_regs (arg0, class, scale);
1996 /* If the second operand is a symbolic constant, the first operand
1997 must be an index register. */
1999 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2000 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2002 /* If both operands are registers but one is already a hard register
2003 of index or base class, give the other the class that the hard
2004 register is not. */
2006 #ifdef REG_OK_FOR_BASE_P
2007 else if (code0 == REG && code1 == REG
2008 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2009 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2010 record_address_regs (arg1,
2011 REG_OK_FOR_BASE_P (arg0)
2012 ? INDEX_REG_CLASS : BASE_REG_CLASS,
2013 scale);
2014 else if (code0 == REG && code1 == REG
2015 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2016 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2017 record_address_regs (arg0,
2018 REG_OK_FOR_BASE_P (arg1)
2019 ? INDEX_REG_CLASS : BASE_REG_CLASS,
2020 scale);
2021 #endif
2023 /* If one operand is known to be a pointer, it must be the base
2024 with the other operand the index. Likewise if the other operand
2025 is a MULT. */
2027 else if ((code0 == REG && REG_POINTER (arg0))
2028 || code1 == MULT)
2030 record_address_regs (arg0, BASE_REG_CLASS, scale);
2031 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2033 else if ((code1 == REG && REG_POINTER (arg1))
2034 || code0 == MULT)
2036 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2037 record_address_regs (arg1, BASE_REG_CLASS, scale);
2040 /* Otherwise, count equal chances that each might be a base
2041 or index register. This case should be rare. */
2043 else
2045 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
2046 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2047 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
2048 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2051 break;
2053 /* Double the importance of a pseudo register that is incremented
2054 or decremented, since it would take two extra insns
2055 if it ends up in the wrong place. */
2056 case POST_MODIFY:
2057 case PRE_MODIFY:
2058 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
2059 if (REG_P (XEXP (XEXP (x, 1), 1)))
2060 record_address_regs (XEXP (XEXP (x, 1), 1),
2061 INDEX_REG_CLASS, 2 * scale);
2062 break;
2064 case POST_INC:
2065 case PRE_INC:
2066 case POST_DEC:
2067 case PRE_DEC:
2068 /* Double the importance of a pseudo register that is incremented
2069 or decremented, since it would take two extra insns
2070 if it ends up in the wrong place. If the operand is a pseudo,
2071 show it is being used in an INC_DEC context. */
2073 #ifdef FORBIDDEN_INC_DEC_CLASSES
2074 if (GET_CODE (XEXP (x, 0)) == REG
2075 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2076 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2077 #endif
2079 record_address_regs (XEXP (x, 0), class, 2 * scale);
2080 break;
2082 case REG:
2084 register struct costs *pp = &costs[REGNO (x)];
2085 register int i;
2087 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2089 for (i = 0; i < N_REG_CLASSES; i++)
2090 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2092 break;
2094 default:
2096 register const char *fmt = GET_RTX_FORMAT (code);
2097 register int i;
2098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2099 if (fmt[i] == 'e')
2100 record_address_regs (XEXP (x, i), class, scale);
2105 #ifdef FORBIDDEN_INC_DEC_CLASSES
2107 /* Return 1 if REG is valid as an auto-increment memory reference
2108 to an object of MODE. */
2110 static int
2111 auto_inc_dec_reg_p (reg, mode)
2112 rtx reg;
2113 enum machine_mode mode;
2115 if (HAVE_POST_INCREMENT
2116 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2117 return 1;
2119 if (HAVE_POST_DECREMENT
2120 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2121 return 1;
2123 if (HAVE_PRE_INCREMENT
2124 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2125 return 1;
2127 if (HAVE_PRE_DECREMENT
2128 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2129 return 1;
2131 return 0;
2133 #endif
2135 static short *renumber;
2136 static size_t regno_allocated;
2137 static unsigned int reg_n_max;
2139 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2140 reg_scan and flow_analysis that are indexed by the register number. If
2141 NEW_P is non zero, initialize all of the registers, otherwise only
2142 initialize the new registers allocated. The same table is kept from
2143 function to function, only reallocating it when we need more room. If
2144 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2146 void
2147 allocate_reg_info (num_regs, new_p, renumber_p)
2148 size_t num_regs;
2149 int new_p;
2150 int renumber_p;
2152 size_t size_info;
2153 size_t size_renumber;
2154 size_t min = (new_p) ? 0 : reg_n_max;
2155 struct reg_info_data *reg_data;
2157 if (num_regs > regno_allocated)
2159 size_t old_allocated = regno_allocated;
2161 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2162 size_renumber = regno_allocated * sizeof (short);
2164 if (!reg_n_info)
2166 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2167 renumber = (short *) xmalloc (size_renumber);
2168 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2169 * sizeof (struct reg_pref));
2172 else
2174 VARRAY_GROW (reg_n_info, regno_allocated);
2176 if (new_p) /* if we're zapping everything, no need to realloc */
2178 free ((char *)renumber);
2179 free ((char *)reg_pref);
2180 renumber = (short *) xmalloc (size_renumber);
2181 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2182 * sizeof (struct reg_pref));
2185 else
2187 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2188 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2189 regno_allocated
2190 * sizeof (struct reg_pref));
2194 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2195 + sizeof (struct reg_info_data) - sizeof (reg_info);
2196 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2197 reg_data->min_index = old_allocated;
2198 reg_data->max_index = regno_allocated - 1;
2199 reg_data->next = reg_info_head;
2200 reg_info_head = reg_data;
2203 reg_n_max = num_regs;
2204 if (min < num_regs)
2206 /* Loop through each of the segments allocated for the actual
2207 reg_info pages, and set up the pointers, zero the pages, etc. */
2208 for (reg_data = reg_info_head;
2209 reg_data && reg_data->max_index >= min;
2210 reg_data = reg_data->next)
2212 size_t min_index = reg_data->min_index;
2213 size_t max_index = reg_data->max_index;
2214 size_t max = MIN (max_index, num_regs);
2215 size_t local_min = min - min_index;
2216 size_t i;
2218 if (reg_data->min_index > num_regs)
2219 continue;
2221 if (min < min_index)
2222 local_min = 0;
2223 if (!reg_data->used_p) /* page just allocated with calloc */
2224 reg_data->used_p = 1; /* no need to zero */
2225 else
2226 memset ((char *) &reg_data->data[local_min], 0,
2227 sizeof (reg_info) * (max - min_index - local_min + 1));
2229 for (i = min_index+local_min; i <= max; i++)
2231 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2232 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2233 renumber[i] = -1;
2234 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2235 reg_pref_buffer[i].altclass = (char) NO_REGS;
2240 /* If {pref,alt}class have already been allocated, update the pointers to
2241 the newly realloced ones. */
2242 if (reg_pref)
2243 reg_pref = reg_pref_buffer;
2245 if (renumber_p)
2246 reg_renumber = renumber;
2248 /* Tell the regset code about the new number of registers */
2249 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2252 /* Free up the space allocated by allocate_reg_info. */
2253 void
2254 free_reg_info ()
2256 if (reg_n_info)
2258 struct reg_info_data *reg_data;
2259 struct reg_info_data *reg_next;
2261 VARRAY_FREE (reg_n_info);
2262 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2264 reg_next = reg_data->next;
2265 free ((char *)reg_data);
2268 free (reg_pref_buffer);
2269 reg_pref_buffer = (struct reg_pref *)0;
2270 reg_info_head = (struct reg_info_data *)0;
2271 renumber = (short *)0;
2273 regno_allocated = 0;
2274 reg_n_max = 0;
2277 /* This is the `regscan' pass of the compiler, run just before cse
2278 and again just before loop.
2280 It finds the first and last use of each pseudo-register
2281 and records them in the vectors regno_first_uid, regno_last_uid
2282 and counts the number of sets in the vector reg_n_sets.
2284 REPEAT is nonzero the second time this is called. */
2286 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2287 Always at least 3, since the combiner could put that many together
2288 and we want this to remain correct for all the remaining passes.
2289 This corresponds to the maximum number of times note_stores will call
2290 a function for any insn. */
2292 int max_parallel;
2294 /* Used as a temporary to record the largest number of registers in
2295 PARALLEL in a SET_DEST. This is added to max_parallel. */
2297 static int max_set_parallel;
2299 void
2300 reg_scan (f, nregs, repeat)
2301 rtx f;
2302 unsigned int nregs;
2303 int repeat ATTRIBUTE_UNUSED;
2305 register rtx insn;
2307 allocate_reg_info (nregs, TRUE, FALSE);
2308 max_parallel = 3;
2309 max_set_parallel = 0;
2311 for (insn = f; insn; insn = NEXT_INSN (insn))
2312 if (GET_CODE (insn) == INSN
2313 || GET_CODE (insn) == CALL_INSN
2314 || GET_CODE (insn) == JUMP_INSN)
2316 if (GET_CODE (PATTERN (insn)) == PARALLEL
2317 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2318 max_parallel = XVECLEN (PATTERN (insn), 0);
2319 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2321 if (REG_NOTES (insn))
2322 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2325 max_parallel += max_set_parallel;
2328 /* Update 'regscan' information by looking at the insns
2329 from FIRST to LAST. Some new REGs have been created,
2330 and any REG with number greater than OLD_MAX_REGNO is
2331 such a REG. We only update information for those. */
2333 void
2334 reg_scan_update (first, last, old_max_regno)
2335 rtx first;
2336 rtx last;
2337 unsigned int old_max_regno;
2339 register rtx insn;
2341 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2343 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2344 if (GET_CODE (insn) == INSN
2345 || GET_CODE (insn) == CALL_INSN
2346 || GET_CODE (insn) == JUMP_INSN)
2348 if (GET_CODE (PATTERN (insn)) == PARALLEL
2349 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2350 max_parallel = XVECLEN (PATTERN (insn), 0);
2351 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2353 if (REG_NOTES (insn))
2354 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2358 /* X is the expression to scan. INSN is the insn it appears in.
2359 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2360 We should only record information for REGs with numbers
2361 greater than or equal to MIN_REGNO. */
2363 static void
2364 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2365 rtx x;
2366 rtx insn;
2367 int note_flag;
2368 unsigned int min_regno;
2370 register enum rtx_code code;
2371 register rtx dest;
2372 register rtx note;
2374 code = GET_CODE (x);
2375 switch (code)
2377 case CONST:
2378 case CONST_INT:
2379 case CONST_DOUBLE:
2380 case CC0:
2381 case PC:
2382 case SYMBOL_REF:
2383 case LABEL_REF:
2384 case ADDR_VEC:
2385 case ADDR_DIFF_VEC:
2386 return;
2388 case REG:
2390 unsigned int regno = REGNO (x);
2392 if (regno >= min_regno)
2394 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2395 if (!note_flag)
2396 REGNO_LAST_UID (regno) = INSN_UID (insn);
2397 if (REGNO_FIRST_UID (regno) == 0)
2398 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2401 break;
2403 case EXPR_LIST:
2404 if (XEXP (x, 0))
2405 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2406 if (XEXP (x, 1))
2407 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2408 break;
2410 case INSN_LIST:
2411 if (XEXP (x, 1))
2412 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2413 break;
2415 case SET:
2416 /* Count a set of the destination if it is a register. */
2417 for (dest = SET_DEST (x);
2418 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2419 || GET_CODE (dest) == ZERO_EXTEND;
2420 dest = XEXP (dest, 0))
2423 /* For a PARALLEL, record the number of things (less the usual one for a
2424 SET) that are set. */
2425 if (GET_CODE (dest) == PARALLEL)
2426 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2428 if (GET_CODE (dest) == REG
2429 && REGNO (dest) >= min_regno)
2430 REG_N_SETS (REGNO (dest))++;
2432 /* If this is setting a pseudo from another pseudo or the sum of a
2433 pseudo and a constant integer and the other pseudo is known to be
2434 a pointer, set the destination to be a pointer as well.
2436 Likewise if it is setting the destination from an address or from a
2437 value equivalent to an address or to the sum of an address and
2438 something else.
2440 But don't do any of this if the pseudo corresponds to a user
2441 variable since it should have already been set as a pointer based
2442 on the type. */
2444 if (GET_CODE (SET_DEST (x)) == REG
2445 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2446 && REGNO (SET_DEST (x)) >= min_regno
2447 /* If the destination pseudo is set more than once, then other
2448 sets might not be to a pointer value (consider access to a
2449 union in two threads of control in the presense of global
2450 optimizations). So only set REG_POINTER on the destination
2451 pseudo if this is the only set of that pseudo. */
2452 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2453 && ! REG_USERVAR_P (SET_DEST (x))
2454 && ! REG_POINTER (SET_DEST (x))
2455 && ((GET_CODE (SET_SRC (x)) == REG
2456 && REG_POINTER (SET_SRC (x)))
2457 || ((GET_CODE (SET_SRC (x)) == PLUS
2458 || GET_CODE (SET_SRC (x)) == LO_SUM)
2459 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2460 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2461 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2462 || GET_CODE (SET_SRC (x)) == CONST
2463 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2464 || GET_CODE (SET_SRC (x)) == LABEL_REF
2465 || (GET_CODE (SET_SRC (x)) == HIGH
2466 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2467 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2468 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2469 || ((GET_CODE (SET_SRC (x)) == PLUS
2470 || GET_CODE (SET_SRC (x)) == LO_SUM)
2471 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2472 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2473 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2474 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2475 && (GET_CODE (XEXP (note, 0)) == CONST
2476 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2477 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2478 REG_POINTER (SET_DEST (x)) = 1;
2480 /* ... fall through ... */
2482 default:
2484 register const char *fmt = GET_RTX_FORMAT (code);
2485 register int i;
2486 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2488 if (fmt[i] == 'e')
2489 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2490 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2492 register int j;
2493 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2494 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2501 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2502 is also in C2. */
2505 reg_class_subset_p (c1, c2)
2506 register enum reg_class c1;
2507 register enum reg_class c2;
2509 if (c1 == c2) return 1;
2511 if (c2 == ALL_REGS)
2512 win:
2513 return 1;
2514 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2515 reg_class_contents[(int)c2],
2516 win);
2517 return 0;
2520 /* Return nonzero if there is a register that is in both C1 and C2. */
2523 reg_classes_intersect_p (c1, c2)
2524 register enum reg_class c1;
2525 register enum reg_class c2;
2527 #ifdef HARD_REG_SET
2528 register
2529 #endif
2530 HARD_REG_SET c;
2532 if (c1 == c2) return 1;
2534 if (c1 == ALL_REGS || c2 == ALL_REGS)
2535 return 1;
2537 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2538 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2540 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2541 return 1;
2543 lose:
2544 return 0;
2547 /* Release any memory allocated by register sets. */
2549 void
2550 regset_release_memory ()
2552 bitmap_release_memory ();