1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
159 #include "function.h"
160 #include "insn-config.h"
162 #include "hard-reg-set.h"
167 #include "basic-block.h"
173 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
175 /* This is the basic stack record. TOP is an index into REG[] such
176 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
178 If TOP is -2, REG[] is not yet initialized. Stack initialization
179 consists of placing each live reg in array `reg' and setting `top'
182 REG_SET indicates which registers are live. */
184 typedef struct stack_def
186 int top
; /* index to top stack element */
187 HARD_REG_SET reg_set
; /* set of live registers */
188 unsigned char reg
[REG_STACK_SIZE
];/* register - stack mapping */
191 /* This is used to carry information about basic blocks. It is
192 attached to the AUX field of the standard CFG block. */
194 typedef struct block_info_def
196 struct stack_def stack_in
; /* Input stack configuration. */
197 HARD_REG_SET out_reg_set
; /* Stack regs live on output. */
198 int done
; /* True if block already converted. */
201 #define BLOCK_INFO(B) ((block_info) (B)->aux)
203 /* Passed to change_stack to indicate where to emit insns. */
210 /* We use this array to cache info about insns, because otherwise we
211 spend too much time in stack_regs_mentioned_p.
213 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
214 the insn uses stack registers, two indicates the insn does not use
216 static varray_type stack_regs_mentioned_data
;
218 /* The block we're currently working on. */
219 static basic_block current_block
;
221 /* This is the register file for all register after conversion */
223 FP_mode_reg
[LAST_STACK_REG
+1-FIRST_STACK_REG
][(int) MAX_MACHINE_MODE
];
225 #define FP_MODE_REG(regno,mode) \
226 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int)(mode)])
228 /* Used to initialize uninitialized registers. */
231 /* Forward declarations */
233 static int stack_regs_mentioned_p
PARAMS ((rtx pat
));
234 static void straighten_stack
PARAMS ((rtx
, stack
));
235 static void pop_stack
PARAMS ((stack
, int));
236 static rtx
*get_true_reg
PARAMS ((rtx
*));
238 static int check_asm_stack_operands
PARAMS ((rtx
));
239 static int get_asm_operand_n_inputs
PARAMS ((rtx
));
240 static rtx stack_result
PARAMS ((tree
));
241 static void replace_reg
PARAMS ((rtx
*, int));
242 static void remove_regno_note
PARAMS ((rtx
, enum reg_note
,
244 static int get_hard_regnum
PARAMS ((stack
, rtx
));
245 static void delete_insn_for_stacker
PARAMS ((rtx
));
246 static rtx emit_pop_insn
PARAMS ((rtx
, stack
, rtx
,
248 static void emit_swap_insn
PARAMS ((rtx
, stack
, rtx
));
249 static void move_for_stack_reg
PARAMS ((rtx
, stack
, rtx
));
250 static int swap_rtx_condition_1
PARAMS ((rtx
));
251 static int swap_rtx_condition
PARAMS ((rtx
));
252 static void compare_for_stack_reg
PARAMS ((rtx
, stack
, rtx
));
253 static void subst_stack_regs_pat
PARAMS ((rtx
, stack
, rtx
));
254 static void subst_asm_stack_regs
PARAMS ((rtx
, stack
));
255 static void subst_stack_regs
PARAMS ((rtx
, stack
));
256 static void change_stack
PARAMS ((rtx
, stack
, stack
,
258 static int convert_regs_entry
PARAMS ((void));
259 static void convert_regs_exit
PARAMS ((void));
260 static int convert_regs_1
PARAMS ((FILE *, basic_block
));
261 static int convert_regs_2
PARAMS ((FILE *, basic_block
));
262 static int convert_regs
PARAMS ((FILE *));
263 static void print_stack
PARAMS ((FILE *, stack
));
264 static rtx next_flags_user
PARAMS ((rtx
));
265 static void record_label_references
PARAMS ((rtx
, rtx
));
267 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
270 stack_regs_mentioned_p (pat
)
273 register const char *fmt
;
276 if (STACK_REG_P (pat
))
279 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
280 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
286 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
287 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
290 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
297 /* Return nonzero if INSN mentions stacked registers, else return zero. */
300 stack_regs_mentioned (insn
)
303 unsigned int uid
, max
;
306 if (! INSN_P (insn
) || !stack_regs_mentioned_data
)
309 uid
= INSN_UID (insn
);
310 max
= VARRAY_SIZE (stack_regs_mentioned_data
);
313 /* Allocate some extra size to avoid too many reallocs, but
314 do not grow too quickly. */
315 max
= uid
+ uid
/ 20;
316 VARRAY_GROW (stack_regs_mentioned_data
, max
);
319 test
= VARRAY_CHAR (stack_regs_mentioned_data
, uid
);
322 /* This insn has yet to be examined. Do so now. */
323 test
= stack_regs_mentioned_p (PATTERN (insn
)) ? 1 : 2;
324 VARRAY_CHAR (stack_regs_mentioned_data
, uid
) = test
;
330 static rtx ix86_flags_rtx
;
333 next_flags_user (insn
)
336 /* Search forward looking for the first use of this value.
337 Stop at block boundaries. */
339 while (insn
!= current_block
->end
)
341 insn
= NEXT_INSN (insn
);
343 if (INSN_P (insn
) && reg_mentioned_p (ix86_flags_rtx
, PATTERN (insn
)))
346 if (GET_CODE (insn
) == CALL_INSN
)
352 /* Reorganise the stack into ascending numbers,
356 straighten_stack (insn
, regstack
)
360 struct stack_def temp_stack
;
363 /* If there is only a single register on the stack, then the stack is
364 already in increasing order and no reorganization is needed.
366 Similarly if the stack is empty. */
367 if (regstack
->top
<= 0)
370 COPY_HARD_REG_SET (temp_stack
.reg_set
, regstack
->reg_set
);
372 for (top
= temp_stack
.top
= regstack
->top
; top
>= 0; top
--)
373 temp_stack
.reg
[top
] = FIRST_STACK_REG
+ temp_stack
.top
- top
;
375 change_stack (insn
, regstack
, &temp_stack
, EMIT_AFTER
);
378 /* Pop a register from the stack */
381 pop_stack (regstack
, regno
)
385 int top
= regstack
->top
;
387 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
389 /* If regno was not at the top of stack then adjust stack */
390 if (regstack
->reg
[top
] != regno
)
393 for (i
= regstack
->top
; i
>= 0; i
--)
394 if (regstack
->reg
[i
] == regno
)
397 for (j
= i
; j
< top
; j
++)
398 regstack
->reg
[j
] = regstack
->reg
[j
+ 1];
404 /* Convert register usage from "flat" register file usage to a "stack
405 register file. FIRST is the first insn in the function, FILE is the
408 Construct a CFG and run life analysis. Then convert each insn one
409 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
410 code duplication created when the converter inserts pop insns on
414 reg_to_stack (first
, file
)
422 /* Clean up previous run. */
423 if (stack_regs_mentioned_data
)
425 VARRAY_FREE (stack_regs_mentioned_data
);
426 stack_regs_mentioned_data
= 0;
432 /* See if there is something to do. Flow analysis is quite
433 expensive so we might save some compilation time. */
434 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
435 if (regs_ever_live
[i
])
437 if (i
> LAST_STACK_REG
)
440 /* Ok, floating point instructions exist. If not optimizing,
441 build the CFG and run life analysis. */
443 find_basic_blocks (first
, max_reg_num (), file
);
444 count_or_remove_death_notes (NULL
, 1);
445 life_analysis (first
, file
, PROP_DEATH_NOTES
);
447 /* Set up block info for each basic block. */
448 bi
= (block_info
) xcalloc ((n_basic_blocks
+ 1), sizeof (*bi
));
449 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
450 BASIC_BLOCK (i
)->aux
= bi
+ i
;
451 EXIT_BLOCK_PTR
->aux
= bi
+ n_basic_blocks
;
453 /* Create the replacement registers up front. */
454 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
456 enum machine_mode mode
;
457 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
459 mode
= GET_MODE_WIDER_MODE (mode
))
460 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
461 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
463 mode
= GET_MODE_WIDER_MODE (mode
))
464 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
467 ix86_flags_rtx
= gen_rtx_REG (CCmode
, FLAGS_REG
);
469 /* A QNaN for initializing uninitialized variables.
471 ??? We can't load from constant memory in PIC mode, because
472 we're insertting these instructions before the prologue and
473 the PIC register hasn't been set up. In that case, fall back
474 on zero, which we can get from `ldz'. */
477 nan
= CONST0_RTX (SFmode
);
480 nan
= gen_lowpart (SFmode
, GEN_INT (0x7fc00000));
481 nan
= force_const_mem (SFmode
, nan
);
484 /* Allocate a cache for stack_regs_mentioned. */
485 max_uid
= get_max_uid ();
486 VARRAY_CHAR_INIT (stack_regs_mentioned_data
, max_uid
+ 1,
487 "stack_regs_mentioned cache");
494 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
495 label's chain of references, and note which insn contains each
499 record_label_references (insn
, pat
)
502 register enum rtx_code code
= GET_CODE (pat
);
504 register const char *fmt
;
506 if (code
== LABEL_REF
)
508 register rtx label
= XEXP (pat
, 0);
511 if (GET_CODE (label
) != CODE_LABEL
)
514 /* If this is an undefined label, LABEL_REFS (label) contains
516 if (INSN_UID (label
) == 0)
519 /* Don't make a duplicate in the code_label's chain. */
521 for (ref
= LABEL_REFS (label
);
523 ref
= LABEL_NEXTREF (ref
))
524 if (CONTAINING_INSN (ref
) == insn
)
527 CONTAINING_INSN (pat
) = insn
;
528 LABEL_NEXTREF (pat
) = LABEL_REFS (label
);
529 LABEL_REFS (label
) = pat
;
534 fmt
= GET_RTX_FORMAT (code
);
535 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
538 record_label_references (insn
, XEXP (pat
, i
));
542 for (j
= 0; j
< XVECLEN (pat
, i
); j
++)
543 record_label_references (insn
, XVECEXP (pat
, i
, j
));
548 /* Return a pointer to the REG expression within PAT. If PAT is not a
549 REG, possible enclosed by a conversion rtx, return the inner part of
550 PAT that stopped the search. */
557 switch (GET_CODE (*pat
))
560 /* Eliminate FP subregister accesses in favour of the
561 actual FP register in use. */
564 if (FP_REG_P (subreg
= SUBREG_REG (*pat
)))
566 int regno_off
= subreg_regno_offset (REGNO (subreg
),
570 *pat
= FP_MODE_REG (REGNO (subreg
) + regno_off
,
579 pat
= & XEXP (*pat
, 0);
583 /* There are many rules that an asm statement for stack-like regs must
584 follow. Those rules are explained at the top of this file: the rule
585 numbers below refer to that explanation. */
588 check_asm_stack_operands (insn
)
593 int malformed_asm
= 0;
594 rtx body
= PATTERN (insn
);
596 char reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
597 char implicitly_dies
[FIRST_PSEUDO_REGISTER
];
600 rtx
*clobber_reg
= 0;
601 int n_inputs
, n_outputs
;
603 /* Find out what the constraints require. If no constraint
604 alternative matches, this asm is malformed. */
606 constrain_operands (1);
607 alt
= which_alternative
;
609 preprocess_constraints ();
611 n_inputs
= get_asm_operand_n_inputs (body
);
612 n_outputs
= recog_data
.n_operands
- n_inputs
;
617 /* Avoid further trouble with this insn. */
618 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
622 /* Strip SUBREGs here to make the following code simpler. */
623 for (i
= 0; i
< recog_data
.n_operands
; i
++)
624 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
625 && GET_CODE (SUBREG_REG (recog_data
.operand
[i
])) == REG
)
626 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
628 /* Set up CLOBBER_REG. */
632 if (GET_CODE (body
) == PARALLEL
)
634 clobber_reg
= (rtx
*) alloca (XVECLEN (body
, 0) * sizeof (rtx
));
636 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
637 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
639 rtx clobber
= XVECEXP (body
, 0, i
);
640 rtx reg
= XEXP (clobber
, 0);
642 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
643 reg
= SUBREG_REG (reg
);
645 if (STACK_REG_P (reg
))
647 clobber_reg
[n_clobbers
] = reg
;
653 /* Enforce rule #4: Output operands must specifically indicate which
654 reg an output appears in after an asm. "=f" is not allowed: the
655 operand constraints must select a class with a single reg.
657 Also enforce rule #5: Output operands must start at the top of
658 the reg-stack: output operands may not "skip" a reg. */
660 memset (reg_used_as_output
, 0, sizeof (reg_used_as_output
));
661 for (i
= 0; i
< n_outputs
; i
++)
662 if (STACK_REG_P (recog_data
.operand
[i
]))
664 if (reg_class_size
[(int) recog_op_alt
[i
][alt
].class] != 1)
666 error_for_asm (insn
, "Output constraint %d must specify a single register", i
);
673 for (j
= 0; j
< n_clobbers
; j
++)
674 if (REGNO (recog_data
.operand
[i
]) == REGNO (clobber_reg
[j
]))
676 error_for_asm (insn
, "Output constraint %d cannot be specified together with \"%s\" clobber",
677 i
, reg_names
[REGNO (clobber_reg
[j
])]);
682 reg_used_as_output
[REGNO (recog_data
.operand
[i
])] = 1;
687 /* Search for first non-popped reg. */
688 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
689 if (! reg_used_as_output
[i
])
692 /* If there are any other popped regs, that's an error. */
693 for (; i
< LAST_STACK_REG
+ 1; i
++)
694 if (reg_used_as_output
[i
])
697 if (i
!= LAST_STACK_REG
+ 1)
699 error_for_asm (insn
, "Output regs must be grouped at top of stack");
703 /* Enforce rule #2: All implicitly popped input regs must be closer
704 to the top of the reg-stack than any input that is not implicitly
707 memset (implicitly_dies
, 0, sizeof (implicitly_dies
));
708 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
709 if (STACK_REG_P (recog_data
.operand
[i
]))
711 /* An input reg is implicitly popped if it is tied to an
712 output, or if there is a CLOBBER for it. */
715 for (j
= 0; j
< n_clobbers
; j
++)
716 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
719 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
720 implicitly_dies
[REGNO (recog_data
.operand
[i
])] = 1;
723 /* Search for first non-popped reg. */
724 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
725 if (! implicitly_dies
[i
])
728 /* If there are any other popped regs, that's an error. */
729 for (; i
< LAST_STACK_REG
+ 1; i
++)
730 if (implicitly_dies
[i
])
733 if (i
!= LAST_STACK_REG
+ 1)
736 "Implicitly popped regs must be grouped at top of stack");
740 /* Enfore rule #3: If any input operand uses the "f" constraint, all
741 output constraints must use the "&" earlyclobber.
743 ??? Detect this more deterministically by having constrain_asm_operands
744 record any earlyclobber. */
746 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
747 if (recog_op_alt
[i
][alt
].matches
== -1)
751 for (j
= 0; j
< n_outputs
; j
++)
752 if (operands_match_p (recog_data
.operand
[j
], recog_data
.operand
[i
]))
755 "Output operand %d must use `&' constraint", j
);
762 /* Avoid further trouble with this insn. */
763 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
770 /* Calculate the number of inputs and outputs in BODY, an
771 asm_operands. N_OPERANDS is the total number of operands, and
772 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
776 get_asm_operand_n_inputs (body
)
779 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
780 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
));
782 else if (GET_CODE (body
) == ASM_OPERANDS
)
783 return ASM_OPERANDS_INPUT_LENGTH (body
);
785 else if (GET_CODE (body
) == PARALLEL
786 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
787 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)));
789 else if (GET_CODE (body
) == PARALLEL
790 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
791 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
796 /* If current function returns its result in an fp stack register,
797 return the REG. Otherwise, return 0. */
805 /* If the value is supposed to be returned in memory, then clearly
806 it is not returned in a stack register. */
807 if (aggregate_value_p (DECL_RESULT (decl
)))
810 result
= DECL_RTL_IF_SET (DECL_RESULT (decl
));
813 #ifdef FUNCTION_OUTGOING_VALUE
815 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
817 result
= FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
821 return result
!= 0 && STACK_REG_P (result
) ? result
: 0;
826 * This section deals with stack register substitution, and forms the second
830 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
831 the desired hard REGNO. */
834 replace_reg (reg
, regno
)
838 if (regno
< FIRST_STACK_REG
|| regno
> LAST_STACK_REG
839 || ! STACK_REG_P (*reg
))
842 switch (GET_MODE_CLASS (GET_MODE (*reg
)))
846 case MODE_COMPLEX_FLOAT
:;
849 *reg
= FP_MODE_REG (regno
, GET_MODE (*reg
));
852 /* Remove a note of type NOTE, which must be found, for register
853 number REGNO from INSN. Remove only one such note. */
856 remove_regno_note (insn
, note
, regno
)
861 register rtx
*note_link
, this;
863 note_link
= ®_NOTES(insn
);
864 for (this = *note_link
; this; this = XEXP (this, 1))
865 if (REG_NOTE_KIND (this) == note
866 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno
)
868 *note_link
= XEXP (this, 1);
872 note_link
= &XEXP (this, 1);
877 /* Find the hard register number of virtual register REG in REGSTACK.
878 The hard register number is relative to the top of the stack. -1 is
879 returned if the register is not found. */
882 get_hard_regnum (regstack
, reg
)
888 if (! STACK_REG_P (reg
))
891 for (i
= regstack
->top
; i
>= 0; i
--)
892 if (regstack
->reg
[i
] == REGNO (reg
))
895 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
898 /* Delete INSN from the RTL. Mark the insn, but don't remove it from
899 the chain of insns. Doing so could confuse block_begin and block_end
900 if this were the only insn in the block. */
903 delete_insn_for_stacker (insn
)
906 PUT_CODE (insn
, NOTE
);
907 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
908 NOTE_SOURCE_FILE (insn
) = 0;
911 /* Emit an insn to pop virtual register REG before or after INSN.
912 REGSTACK is the stack state after INSN and is updated to reflect this
913 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
914 is represented as a SET whose destination is the register to be popped
915 and source is the top of stack. A death note for the top of stack
916 cases the movdf pattern to pop. */
919 emit_pop_insn (insn
, regstack
, reg
, where
)
923 enum emit_where where
;
925 rtx pop_insn
, pop_rtx
;
928 /* For complex types take care to pop both halves. These may survive in
929 CLOBBER and USE expressions. */
930 if (COMPLEX_MODE_P (GET_MODE (reg
)))
932 rtx reg1
= FP_MODE_REG (REGNO (reg
), DFmode
);
933 rtx reg2
= FP_MODE_REG (REGNO (reg
) + 1, DFmode
);
936 if (get_hard_regnum (regstack
, reg1
) >= 0)
937 pop_insn
= emit_pop_insn (insn
, regstack
, reg1
, where
);
938 if (get_hard_regnum (regstack
, reg2
) >= 0)
939 pop_insn
= emit_pop_insn (insn
, regstack
, reg2
, where
);
945 hard_regno
= get_hard_regnum (regstack
, reg
);
947 if (hard_regno
< FIRST_STACK_REG
)
950 pop_rtx
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (hard_regno
, DFmode
),
951 FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
953 if (where
== EMIT_AFTER
)
954 pop_insn
= emit_block_insn_after (pop_rtx
, insn
, current_block
);
956 pop_insn
= emit_block_insn_before (pop_rtx
, insn
, current_block
);
959 = gen_rtx_EXPR_LIST (REG_DEAD
, FP_MODE_REG (FIRST_STACK_REG
, DFmode
),
960 REG_NOTES (pop_insn
));
962 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
963 = regstack
->reg
[regstack
->top
];
965 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
970 /* Emit an insn before or after INSN to swap virtual register REG with
971 the top of stack. REGSTACK is the stack state before the swap, and
972 is updated to reflect the swap. A swap insn is represented as a
973 PARALLEL of two patterns: each pattern moves one reg to the other.
975 If REG is already at the top of the stack, no insn is emitted. */
978 emit_swap_insn (insn
, regstack
, reg
)
985 int tmp
, other_reg
; /* swap regno temps */
986 rtx i1
; /* the stack-reg insn prior to INSN */
987 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
989 hard_regno
= get_hard_regnum (regstack
, reg
);
991 if (hard_regno
< FIRST_STACK_REG
)
993 if (hard_regno
== FIRST_STACK_REG
)
996 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
998 tmp
= regstack
->reg
[other_reg
];
999 regstack
->reg
[other_reg
] = regstack
->reg
[regstack
->top
];
1000 regstack
->reg
[regstack
->top
] = tmp
;
1002 /* Find the previous insn involving stack regs, but don't pass a
1005 if (current_block
&& insn
!= current_block
->head
)
1007 rtx tmp
= PREV_INSN (insn
);
1008 rtx limit
= PREV_INSN (current_block
->head
);
1009 while (tmp
!= limit
)
1011 if (GET_CODE (tmp
) == CODE_LABEL
1012 || GET_CODE (tmp
) == CALL_INSN
1013 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
1014 || (GET_CODE (tmp
) == INSN
1015 && stack_regs_mentioned (tmp
)))
1020 tmp
= PREV_INSN (tmp
);
1025 && (i1set
= single_set (i1
)) != NULL_RTX
)
1027 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
1028 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
1030 /* If the previous register stack push was from the reg we are to
1031 swap with, omit the swap. */
1033 if (GET_CODE (i1dest
) == REG
&& REGNO (i1dest
) == FIRST_STACK_REG
1034 && GET_CODE (i1src
) == REG
1035 && REGNO (i1src
) == (unsigned) hard_regno
- 1
1036 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1039 /* If the previous insn wrote to the reg we are to swap with,
1042 if (GET_CODE (i1dest
) == REG
&& REGNO (i1dest
) == (unsigned) hard_regno
1043 && GET_CODE (i1src
) == REG
&& REGNO (i1src
) == FIRST_STACK_REG
1044 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1048 swap_rtx
= gen_swapxf (FP_MODE_REG (hard_regno
, XFmode
),
1049 FP_MODE_REG (FIRST_STACK_REG
, XFmode
));
1052 emit_block_insn_after (swap_rtx
, i1
, current_block
);
1053 else if (current_block
)
1054 emit_block_insn_before (swap_rtx
, current_block
->head
, current_block
);
1056 emit_insn_before (swap_rtx
, insn
);
1059 /* Handle a move to or from a stack register in PAT, which is in INSN.
1060 REGSTACK is the current stack. */
1063 move_for_stack_reg (insn
, regstack
, pat
)
1068 rtx
*psrc
= get_true_reg (&SET_SRC (pat
));
1069 rtx
*pdest
= get_true_reg (&SET_DEST (pat
));
1073 src
= *psrc
; dest
= *pdest
;
1075 if (STACK_REG_P (src
) && STACK_REG_P (dest
))
1077 /* Write from one stack reg to another. If SRC dies here, then
1078 just change the register mapping and delete the insn. */
1080 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1085 /* If this is a no-op move, there must not be a REG_DEAD note. */
1086 if (REGNO (src
) == REGNO (dest
))
1089 for (i
= regstack
->top
; i
>= 0; i
--)
1090 if (regstack
->reg
[i
] == REGNO (src
))
1093 /* The source must be live, and the dest must be dead. */
1094 if (i
< 0 || get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1097 /* It is possible that the dest is unused after this insn.
1098 If so, just pop the src. */
1100 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1102 emit_pop_insn (insn
, regstack
, src
, EMIT_AFTER
);
1104 delete_insn_for_stacker (insn
);
1108 regstack
->reg
[i
] = REGNO (dest
);
1110 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1111 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1113 delete_insn_for_stacker (insn
);
1118 /* The source reg does not die. */
1120 /* If this appears to be a no-op move, delete it, or else it
1121 will confuse the machine description output patterns. But if
1122 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1123 for REG_UNUSED will not work for deleted insns. */
1125 if (REGNO (src
) == REGNO (dest
))
1127 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1128 emit_pop_insn (insn
, regstack
, dest
, EMIT_AFTER
);
1130 delete_insn_for_stacker (insn
);
1134 /* The destination ought to be dead */
1135 if (get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1138 replace_reg (psrc
, get_hard_regnum (regstack
, src
));
1140 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1141 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1142 replace_reg (pdest
, FIRST_STACK_REG
);
1144 else if (STACK_REG_P (src
))
1146 /* Save from a stack reg to MEM, or possibly integer reg. Since
1147 only top of stack may be saved, emit an exchange first if
1150 emit_swap_insn (insn
, regstack
, src
);
1152 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1155 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1157 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1159 else if ((GET_MODE (src
) == XFmode
|| GET_MODE (src
) == TFmode
)
1160 && regstack
->top
< REG_STACK_SIZE
- 1)
1162 /* A 387 cannot write an XFmode value to a MEM without
1163 clobbering the source reg. The output code can handle
1164 this by reading back the value from the MEM.
1165 But it is more efficient to use a temp register if one is
1166 available. Push the source value here if the register
1167 stack is not full, and then write the value to memory via
1169 rtx push_rtx
, push_insn
;
1170 rtx top_stack_reg
= FP_MODE_REG (FIRST_STACK_REG
, GET_MODE (src
));
1172 if (GET_MODE (src
) == TFmode
)
1173 push_rtx
= gen_movtf (top_stack_reg
, top_stack_reg
);
1175 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1176 push_insn
= emit_insn_before (push_rtx
, insn
);
1177 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_DEAD
, top_stack_reg
,
1181 replace_reg (psrc
, FIRST_STACK_REG
);
1183 else if (STACK_REG_P (dest
))
1185 /* Load from MEM, or possibly integer REG or constant, into the
1186 stack regs. The actual target is always the top of the
1187 stack. The stack mapping is changed to reflect that DEST is
1188 now at top of stack. */
1190 /* The destination ought to be dead */
1191 if (get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1194 if (regstack
->top
>= REG_STACK_SIZE
)
1197 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1198 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1199 replace_reg (pdest
, FIRST_STACK_REG
);
1205 /* Swap the condition on a branch, if there is one. Return true if we
1206 found a condition to swap. False if the condition was not used as
1210 swap_rtx_condition_1 (pat
)
1213 register const char *fmt
;
1214 register int i
, r
= 0;
1216 if (GET_RTX_CLASS (GET_CODE (pat
)) == '<')
1218 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1223 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1224 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1230 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1231 r
|= swap_rtx_condition_1 (XVECEXP (pat
, i
, j
));
1233 else if (fmt
[i
] == 'e')
1234 r
|= swap_rtx_condition_1 (XEXP (pat
, i
));
1242 swap_rtx_condition (insn
)
1245 rtx pat
= PATTERN (insn
);
1247 /* We're looking for a single set to cc0 or an HImode temporary. */
1249 if (GET_CODE (pat
) == SET
1250 && GET_CODE (SET_DEST (pat
)) == REG
1251 && REGNO (SET_DEST (pat
)) == FLAGS_REG
)
1253 insn
= next_flags_user (insn
);
1254 if (insn
== NULL_RTX
)
1256 pat
= PATTERN (insn
);
1259 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1260 not doing anything with the cc value right now. We may be able to
1261 search for one though. */
1263 if (GET_CODE (pat
) == SET
1264 && GET_CODE (SET_SRC (pat
)) == UNSPEC
1265 && XINT (SET_SRC (pat
), 1) == 9)
1267 rtx dest
= SET_DEST (pat
);
1269 /* Search forward looking for the first use of this value.
1270 Stop at block boundaries. */
1271 while (insn
!= current_block
->end
)
1273 insn
= NEXT_INSN (insn
);
1274 if (INSN_P (insn
) && reg_mentioned_p (dest
, insn
))
1276 if (GET_CODE (insn
) == CALL_INSN
)
1280 /* So we've found the insn using this value. If it is anything
1281 other than sahf, aka unspec 10, or the value does not die
1282 (meaning we'd have to search further), then we must give up. */
1283 pat
= PATTERN (insn
);
1284 if (GET_CODE (pat
) != SET
1285 || GET_CODE (SET_SRC (pat
)) != UNSPEC
1286 || XINT (SET_SRC (pat
), 1) != 10
1287 || ! dead_or_set_p (insn
, dest
))
1290 /* Now we are prepared to handle this as a normal cc0 setter. */
1291 insn
= next_flags_user (insn
);
1292 if (insn
== NULL_RTX
)
1294 pat
= PATTERN (insn
);
1297 if (swap_rtx_condition_1 (pat
))
1300 INSN_CODE (insn
) = -1;
1301 if (recog_memoized (insn
) == -1)
1303 /* In case the flags don't die here, recurse to try fix
1304 following user too. */
1305 else if (! dead_or_set_p (insn
, ix86_flags_rtx
))
1307 insn
= next_flags_user (insn
);
1308 if (!insn
|| !swap_rtx_condition (insn
))
1313 swap_rtx_condition_1 (pat
);
1321 /* Handle a comparison. Special care needs to be taken to avoid
1322 causing comparisons that a 387 cannot do correctly, such as EQ.
1324 Also, a pop insn may need to be emitted. The 387 does have an
1325 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1326 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1330 compare_for_stack_reg (insn
, regstack
, pat_src
)
1336 rtx src1_note
, src2_note
;
1339 src1
= get_true_reg (&XEXP (pat_src
, 0));
1340 src2
= get_true_reg (&XEXP (pat_src
, 1));
1341 flags_user
= next_flags_user (insn
);
1343 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1344 registers that die in this insn - move those to stack top first. */
1345 if ((! STACK_REG_P (*src1
)
1346 || (STACK_REG_P (*src2
)
1347 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1348 && swap_rtx_condition (insn
))
1351 temp
= XEXP (pat_src
, 0);
1352 XEXP (pat_src
, 0) = XEXP (pat_src
, 1);
1353 XEXP (pat_src
, 1) = temp
;
1355 src1
= get_true_reg (&XEXP (pat_src
, 0));
1356 src2
= get_true_reg (&XEXP (pat_src
, 1));
1358 INSN_CODE (insn
) = -1;
1361 /* We will fix any death note later. */
1363 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1365 if (STACK_REG_P (*src2
))
1366 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1368 src2_note
= NULL_RTX
;
1370 emit_swap_insn (insn
, regstack
, *src1
);
1372 replace_reg (src1
, FIRST_STACK_REG
);
1374 if (STACK_REG_P (*src2
))
1375 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1379 pop_stack (regstack
, REGNO (XEXP (src1_note
, 0)));
1380 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1383 /* If the second operand dies, handle that. But if the operands are
1384 the same stack register, don't bother, because only one death is
1385 needed, and it was just handled. */
1388 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1389 && REGNO (*src1
) == REGNO (*src2
)))
1391 /* As a special case, two regs may die in this insn if src2 is
1392 next to top of stack and the top of stack also dies. Since
1393 we have already popped src1, "next to top of stack" is really
1394 at top (FIRST_STACK_REG) now. */
1396 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1399 pop_stack (regstack
, REGNO (XEXP (src2_note
, 0)));
1400 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1404 /* The 386 can only represent death of the first operand in
1405 the case handled above. In all other cases, emit a separate
1406 pop and remove the death note from here. */
1408 /* link_cc0_insns (insn); */
1410 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1412 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1418 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1419 is the current register layout. */
1422 subst_stack_regs_pat (insn
, regstack
, pat
)
1429 switch (GET_CODE (pat
))
1432 /* Deaths in USE insns can happen in non optimizing compilation.
1433 Handle them by popping the dying register. */
1434 src
= get_true_reg (&XEXP (pat
, 0));
1435 if (STACK_REG_P (*src
)
1436 && find_regno_note (insn
, REG_DEAD
, REGNO (*src
)))
1438 emit_pop_insn (insn
, regstack
, *src
, EMIT_AFTER
);
1441 /* ??? Uninitialized USE should not happen. */
1442 else if (get_hard_regnum (regstack
, *src
) == -1)
1450 dest
= get_true_reg (&XEXP (pat
, 0));
1451 if (STACK_REG_P (*dest
))
1453 note
= find_reg_note (insn
, REG_DEAD
, *dest
);
1455 if (pat
!= PATTERN (insn
))
1457 /* The fix_truncdi_1 pattern wants to be able to allocate
1458 it's own scratch register. It does this by clobbering
1459 an fp reg so that it is assured of an empty reg-stack
1460 register. If the register is live, kill it now.
1461 Remove the DEAD/UNUSED note so we don't try to kill it
1465 emit_pop_insn (insn
, regstack
, *dest
, EMIT_BEFORE
);
1468 note
= find_reg_note (insn
, REG_UNUSED
, *dest
);
1472 remove_note (insn
, note
);
1473 replace_reg (dest
, LAST_STACK_REG
);
1477 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1478 indicates an uninitialized value. Because reload removed
1479 all other clobbers, this must be due to a function
1480 returning without a value. Load up a NaN. */
1483 && get_hard_regnum (regstack
, *dest
) == -1)
1485 pat
= gen_rtx_SET (VOIDmode
,
1486 FP_MODE_REG (REGNO (*dest
), SFmode
),
1488 PATTERN (insn
) = pat
;
1489 move_for_stack_reg (insn
, regstack
, pat
);
1491 if (! note
&& COMPLEX_MODE_P (GET_MODE (*dest
))
1492 && get_hard_regnum (regstack
, FP_MODE_REG (REGNO (*dest
), DFmode
)) == -1)
1494 pat
= gen_rtx_SET (VOIDmode
,
1495 FP_MODE_REG (REGNO (*dest
) + 1, SFmode
),
1497 PATTERN (insn
) = pat
;
1498 move_for_stack_reg (insn
, regstack
, pat
);
1507 rtx
*src1
= (rtx
*) 0, *src2
;
1508 rtx src1_note
, src2_note
;
1511 dest
= get_true_reg (&SET_DEST (pat
));
1512 src
= get_true_reg (&SET_SRC (pat
));
1513 pat_src
= SET_SRC (pat
);
1515 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1516 if (STACK_REG_P (*src
)
1517 || (STACK_REG_P (*dest
)
1518 && (GET_CODE (*src
) == REG
|| GET_CODE (*src
) == MEM
1519 || GET_CODE (*src
) == CONST_DOUBLE
)))
1521 move_for_stack_reg (insn
, regstack
, pat
);
1525 switch (GET_CODE (pat_src
))
1528 compare_for_stack_reg (insn
, regstack
, pat_src
);
1534 for (count
= HARD_REGNO_NREGS (REGNO (*dest
), GET_MODE (*dest
));
1537 regstack
->reg
[++regstack
->top
] = REGNO (*dest
) + count
;
1538 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
) + count
);
1541 replace_reg (dest
, FIRST_STACK_REG
);
1545 /* This is a `tstM2' case. */
1546 if (*dest
!= cc0_rtx
)
1552 case FLOAT_TRUNCATE
:
1556 /* These insns only operate on the top of the stack. DEST might
1557 be cc0_rtx if we're processing a tstM pattern. Also, it's
1558 possible that the tstM case results in a REG_DEAD note on the
1562 src1
= get_true_reg (&XEXP (pat_src
, 0));
1564 emit_swap_insn (insn
, regstack
, *src1
);
1566 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1568 if (STACK_REG_P (*dest
))
1569 replace_reg (dest
, FIRST_STACK_REG
);
1573 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1575 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1578 replace_reg (src1
, FIRST_STACK_REG
);
1583 /* On i386, reversed forms of subM3 and divM3 exist for
1584 MODE_FLOAT, so the same code that works for addM3 and mulM3
1588 /* These insns can accept the top of stack as a destination
1589 from a stack reg or mem, or can use the top of stack as a
1590 source and some other stack register (possibly top of stack)
1591 as a destination. */
1593 src1
= get_true_reg (&XEXP (pat_src
, 0));
1594 src2
= get_true_reg (&XEXP (pat_src
, 1));
1596 /* We will fix any death note later. */
1598 if (STACK_REG_P (*src1
))
1599 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1601 src1_note
= NULL_RTX
;
1602 if (STACK_REG_P (*src2
))
1603 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1605 src2_note
= NULL_RTX
;
1607 /* If either operand is not a stack register, then the dest
1608 must be top of stack. */
1610 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
1611 emit_swap_insn (insn
, regstack
, *dest
);
1614 /* Both operands are REG. If neither operand is already
1615 at the top of stack, choose to make the one that is the dest
1616 the new top of stack. */
1618 int src1_hard_regnum
, src2_hard_regnum
;
1620 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
1621 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
1622 if (src1_hard_regnum
== -1 || src2_hard_regnum
== -1)
1625 if (src1_hard_regnum
!= FIRST_STACK_REG
1626 && src2_hard_regnum
!= FIRST_STACK_REG
)
1627 emit_swap_insn (insn
, regstack
, *dest
);
1630 if (STACK_REG_P (*src1
))
1631 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1632 if (STACK_REG_P (*src2
))
1633 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1637 rtx src1_reg
= XEXP (src1_note
, 0);
1639 /* If the register that dies is at the top of stack, then
1640 the destination is somewhere else - merely substitute it.
1641 But if the reg that dies is not at top of stack, then
1642 move the top of stack to the dead reg, as though we had
1643 done the insn and then a store-with-pop. */
1645 if (REGNO (src1_reg
) == regstack
->reg
[regstack
->top
])
1647 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1648 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1652 int regno
= get_hard_regnum (regstack
, src1_reg
);
1654 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1655 replace_reg (dest
, regno
);
1657 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1658 = regstack
->reg
[regstack
->top
];
1661 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1662 REGNO (XEXP (src1_note
, 0)));
1663 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1668 rtx src2_reg
= XEXP (src2_note
, 0);
1669 if (REGNO (src2_reg
) == regstack
->reg
[regstack
->top
])
1671 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1672 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1676 int regno
= get_hard_regnum (regstack
, src2_reg
);
1678 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1679 replace_reg (dest
, regno
);
1681 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1682 = regstack
->reg
[regstack
->top
];
1685 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1686 REGNO (XEXP (src2_note
, 0)));
1687 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
1692 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1693 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1696 /* Keep operand 1 maching with destination. */
1697 if (GET_RTX_CLASS (GET_CODE (pat_src
)) == 'c'
1698 && REG_P (*src1
) && REG_P (*src2
)
1699 && REGNO (*src1
) != REGNO (*dest
))
1701 int tmp
= REGNO (*src1
);
1702 replace_reg (src1
, REGNO (*src2
));
1703 replace_reg (src2
, tmp
);
1708 switch (XINT (pat_src
, 1))
1712 /* These insns only operate on the top of the stack. */
1714 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1716 emit_swap_insn (insn
, regstack
, *src1
);
1718 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1720 if (STACK_REG_P (*dest
))
1721 replace_reg (dest
, FIRST_STACK_REG
);
1725 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1727 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1730 replace_reg (src1
, FIRST_STACK_REG
);
1734 /* (unspec [(unspec [(compare ..)] 9)] 10)
1735 Unspec 9 is fnstsw; unspec 10 is sahf. The combination
1736 matches the PPRO fcomi instruction. */
1738 pat_src
= XVECEXP (pat_src
, 0, 0);
1739 if (GET_CODE (pat_src
) != UNSPEC
1740 || XINT (pat_src
, 1) != 9)
1745 /* (unspec [(compare ..)] 9) */
1746 /* Combined fcomp+fnstsw generated for doing well with
1747 CSE. When optimizing this would have been broken
1750 pat_src
= XVECEXP (pat_src
, 0, 0);
1751 if (GET_CODE (pat_src
) != COMPARE
)
1754 compare_for_stack_reg (insn
, regstack
, pat_src
);
1763 /* This insn requires the top of stack to be the destination. */
1765 /* If the comparison operator is an FP comparison operator,
1766 it is handled correctly by compare_for_stack_reg () who
1767 will move the destination to the top of stack. But if the
1768 comparison operator is not an FP comparison operator, we
1769 have to handle it here. */
1770 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
1771 && REGNO (*dest
) != regstack
->reg
[regstack
->top
])
1772 emit_swap_insn (insn
, regstack
, *dest
);
1774 src1
= get_true_reg (&XEXP (pat_src
, 1));
1775 src2
= get_true_reg (&XEXP (pat_src
, 2));
1777 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1778 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1785 src_note
[1] = src1_note
;
1786 src_note
[2] = src2_note
;
1788 if (STACK_REG_P (*src1
))
1789 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1790 if (STACK_REG_P (*src2
))
1791 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1793 for (i
= 1; i
<= 2; i
++)
1796 int regno
= REGNO (XEXP (src_note
[i
], 0));
1798 /* If the register that dies is not at the top of
1799 stack, then move the top of stack to the dead reg */
1800 if (regno
!= regstack
->reg
[regstack
->top
])
1802 remove_regno_note (insn
, REG_DEAD
, regno
);
1803 emit_pop_insn (insn
, regstack
, XEXP (src_note
[i
], 0),
1808 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
1809 replace_reg (&XEXP (src_note
[i
], 0), FIRST_STACK_REG
);
1815 /* Make dest the top of stack. Add dest to regstack if
1817 if (get_hard_regnum (regstack
, *dest
) < FIRST_STACK_REG
)
1818 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1819 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1820 replace_reg (dest
, FIRST_STACK_REG
);
1834 /* Substitute hard regnums for any stack regs in INSN, which has
1835 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1836 before the insn, and is updated with changes made here.
1838 There are several requirements and assumptions about the use of
1839 stack-like regs in asm statements. These rules are enforced by
1840 record_asm_stack_regs; see comments there for details. Any
1841 asm_operands left in the RTL at this point may be assume to meet the
1842 requirements, since record_asm_stack_regs removes any problem asm. */
1845 subst_asm_stack_regs (insn
, regstack
)
1849 rtx body
= PATTERN (insn
);
1852 rtx
*note_reg
; /* Array of note contents */
1853 rtx
**note_loc
; /* Address of REG field of each note */
1854 enum reg_note
*note_kind
; /* The type of each note */
1856 rtx
*clobber_reg
= 0;
1857 rtx
**clobber_loc
= 0;
1859 struct stack_def temp_stack
;
1864 int n_inputs
, n_outputs
;
1866 if (! check_asm_stack_operands (insn
))
1869 /* Find out what the constraints required. If no constraint
1870 alternative matches, that is a compiler bug: we should have caught
1871 such an insn in check_asm_stack_operands. */
1872 extract_insn (insn
);
1873 constrain_operands (1);
1874 alt
= which_alternative
;
1876 preprocess_constraints ();
1878 n_inputs
= get_asm_operand_n_inputs (body
);
1879 n_outputs
= recog_data
.n_operands
- n_inputs
;
1884 /* Strip SUBREGs here to make the following code simpler. */
1885 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1886 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
1887 && GET_CODE (SUBREG_REG (recog_data
.operand
[i
])) == REG
)
1889 recog_data
.operand_loc
[i
] = & SUBREG_REG (recog_data
.operand
[i
]);
1890 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
1893 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1895 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1898 note_reg
= (rtx
*) alloca (i
* sizeof (rtx
));
1899 note_loc
= (rtx
**) alloca (i
* sizeof (rtx
*));
1900 note_kind
= (enum reg_note
*) alloca (i
* sizeof (enum reg_note
));
1903 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1905 rtx reg
= XEXP (note
, 0);
1906 rtx
*loc
= & XEXP (note
, 0);
1908 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
1910 loc
= & SUBREG_REG (reg
);
1911 reg
= SUBREG_REG (reg
);
1914 if (STACK_REG_P (reg
)
1915 && (REG_NOTE_KIND (note
) == REG_DEAD
1916 || REG_NOTE_KIND (note
) == REG_UNUSED
))
1918 note_reg
[n_notes
] = reg
;
1919 note_loc
[n_notes
] = loc
;
1920 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
1925 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1929 if (GET_CODE (body
) == PARALLEL
)
1931 clobber_reg
= (rtx
*) alloca (XVECLEN (body
, 0) * sizeof (rtx
));
1932 clobber_loc
= (rtx
**) alloca (XVECLEN (body
, 0) * sizeof (rtx
*));
1934 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1935 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1937 rtx clobber
= XVECEXP (body
, 0, i
);
1938 rtx reg
= XEXP (clobber
, 0);
1939 rtx
*loc
= & XEXP (clobber
, 0);
1941 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
1943 loc
= & SUBREG_REG (reg
);
1944 reg
= SUBREG_REG (reg
);
1947 if (STACK_REG_P (reg
))
1949 clobber_reg
[n_clobbers
] = reg
;
1950 clobber_loc
[n_clobbers
] = loc
;
1956 temp_stack
= *regstack
;
1958 /* Put the input regs into the desired place in TEMP_STACK. */
1960 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
1961 if (STACK_REG_P (recog_data
.operand
[i
])
1962 && reg_class_subset_p (recog_op_alt
[i
][alt
].class,
1964 && recog_op_alt
[i
][alt
].class != FLOAT_REGS
)
1966 /* If an operand needs to be in a particular reg in
1967 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1968 these constraints are for single register classes, and
1969 reload guaranteed that operand[i] is already in that class,
1970 we can just use REGNO (recog_data.operand[i]) to know which
1971 actual reg this operand needs to be in. */
1973 int regno
= get_hard_regnum (&temp_stack
, recog_data
.operand
[i
]);
1978 if ((unsigned int) regno
!= REGNO (recog_data
.operand
[i
]))
1980 /* recog_data.operand[i] is not in the right place. Find
1981 it and swap it with whatever is already in I's place.
1982 K is where recog_data.operand[i] is now. J is where it
1986 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
1988 - (REGNO (recog_data
.operand
[i
]) - FIRST_STACK_REG
));
1990 temp
= temp_stack
.reg
[k
];
1991 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
1992 temp_stack
.reg
[j
] = temp
;
1996 /* Emit insns before INSN to make sure the reg-stack is in the right
1999 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
2001 /* Make the needed input register substitutions. Do death notes and
2002 clobbers too, because these are for inputs, not outputs. */
2004 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2005 if (STACK_REG_P (recog_data
.operand
[i
]))
2007 int regnum
= get_hard_regnum (regstack
, recog_data
.operand
[i
]);
2012 replace_reg (recog_data
.operand_loc
[i
], regnum
);
2015 for (i
= 0; i
< n_notes
; i
++)
2016 if (note_kind
[i
] == REG_DEAD
)
2018 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2023 replace_reg (note_loc
[i
], regnum
);
2026 for (i
= 0; i
< n_clobbers
; i
++)
2028 /* It's OK for a CLOBBER to reference a reg that is not live.
2029 Don't try to replace it in that case. */
2030 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2034 /* Sigh - clobbers always have QImode. But replace_reg knows
2035 that these regs can't be MODE_INT and will abort. Just put
2036 the right reg there without calling replace_reg. */
2038 *clobber_loc
[i
] = FP_MODE_REG (regnum
, DFmode
);
2042 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2044 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2045 if (STACK_REG_P (recog_data
.operand
[i
]))
2047 /* An input reg is implicitly popped if it is tied to an
2048 output, or if there is a CLOBBER for it. */
2051 for (j
= 0; j
< n_clobbers
; j
++)
2052 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
2055 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
2057 /* recog_data.operand[i] might not be at the top of stack.
2058 But that's OK, because all we need to do is pop the
2059 right number of regs off of the top of the reg-stack.
2060 record_asm_stack_regs guaranteed that all implicitly
2061 popped regs were grouped at the top of the reg-stack. */
2063 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2064 regstack
->reg
[regstack
->top
]);
2069 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2070 Note that there isn't any need to substitute register numbers.
2071 ??? Explain why this is true. */
2073 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2075 /* See if there is an output for this hard reg. */
2078 for (j
= 0; j
< n_outputs
; j
++)
2079 if (STACK_REG_P (recog_data
.operand
[j
])
2080 && REGNO (recog_data
.operand
[j
]) == (unsigned) i
)
2082 regstack
->reg
[++regstack
->top
] = i
;
2083 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2088 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2089 input that the asm didn't implicitly pop. If the asm didn't
2090 implicitly pop an input reg, that reg will still be live.
2092 Note that we can't use find_regno_note here: the register numbers
2093 in the death notes have already been substituted. */
2095 for (i
= 0; i
< n_outputs
; i
++)
2096 if (STACK_REG_P (recog_data
.operand
[i
]))
2100 for (j
= 0; j
< n_notes
; j
++)
2101 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2102 && note_kind
[j
] == REG_UNUSED
)
2104 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2110 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2111 if (STACK_REG_P (recog_data
.operand
[i
]))
2115 for (j
= 0; j
< n_notes
; j
++)
2116 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2117 && note_kind
[j
] == REG_DEAD
2118 && TEST_HARD_REG_BIT (regstack
->reg_set
,
2119 REGNO (recog_data
.operand
[i
])))
2121 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2128 /* Substitute stack hard reg numbers for stack virtual registers in
2129 INSN. Non-stack register numbers are not changed. REGSTACK is the
2130 current stack content. Insns may be emitted as needed to arrange the
2131 stack for the 387 based on the contents of the insn. */
2134 subst_stack_regs (insn
, regstack
)
2138 register rtx
*note_link
, note
;
2141 if (GET_CODE (insn
) == CALL_INSN
)
2143 int top
= regstack
->top
;
2145 /* If there are any floating point parameters to be passed in
2146 registers for this call, make sure they are in the right
2151 straighten_stack (PREV_INSN (insn
), regstack
);
2153 /* Now mark the arguments as dead after the call. */
2155 while (regstack
->top
>= 0)
2157 CLEAR_HARD_REG_BIT (regstack
->reg_set
, FIRST_STACK_REG
+ regstack
->top
);
2163 /* Do the actual substitution if any stack regs are mentioned.
2164 Since we only record whether entire insn mentions stack regs, and
2165 subst_stack_regs_pat only works for patterns that contain stack regs,
2166 we must check each pattern in a parallel here. A call_value_pop could
2169 if (stack_regs_mentioned (insn
))
2171 int n_operands
= asm_noperands (PATTERN (insn
));
2172 if (n_operands
>= 0)
2174 /* This insn is an `asm' with operands. Decode the operands,
2175 decide how many are inputs, and do register substitution.
2176 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2178 subst_asm_stack_regs (insn
, regstack
);
2182 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2183 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2185 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2186 subst_stack_regs_pat (insn
, regstack
,
2187 XVECEXP (PATTERN (insn
), 0, i
));
2190 subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2193 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2194 REG_UNUSED will already have been dealt with, so just return. */
2196 if (GET_CODE (insn
) == NOTE
)
2199 /* If there is a REG_UNUSED note on a stack register on this insn,
2200 the indicated reg must be popped. The REG_UNUSED note is removed,
2201 since the form of the newly emitted pop insn references the reg,
2202 making it no longer `unset'. */
2204 note_link
= ®_NOTES(insn
);
2205 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2206 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2208 *note_link
= XEXP (note
, 1);
2209 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), EMIT_AFTER
);
2212 note_link
= &XEXP (note
, 1);
2215 /* Change the organization of the stack so that it fits a new basic
2216 block. Some registers might have to be popped, but there can never be
2217 a register live in the new block that is not now live.
2219 Insert any needed insns before or after INSN, as indicated by
2220 WHERE. OLD is the original stack layout, and NEW is the desired
2221 form. OLD is updated to reflect the code emitted, ie, it will be
2222 the same as NEW upon return.
2224 This function will not preserve block_end[]. But that information
2225 is no longer needed once this has executed. */
2228 change_stack (insn
, old
, new, where
)
2232 enum emit_where where
;
2237 /* We will be inserting new insns "backwards". If we are to insert
2238 after INSN, find the next insn, and insert before it. */
2240 if (where
== EMIT_AFTER
)
2242 if (current_block
&& current_block
->end
== insn
)
2244 insn
= NEXT_INSN (insn
);
2247 /* Pop any registers that are not needed in the new block. */
2249 for (reg
= old
->top
; reg
>= 0; reg
--)
2250 if (! TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[reg
]))
2251 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[reg
], DFmode
),
2256 /* If the new block has never been processed, then it can inherit
2257 the old stack order. */
2259 new->top
= old
->top
;
2260 memcpy (new->reg
, old
->reg
, sizeof (new->reg
));
2264 /* This block has been entered before, and we must match the
2265 previously selected stack order. */
2267 /* By now, the only difference should be the order of the stack,
2268 not their depth or liveliness. */
2270 GO_IF_HARD_REG_EQUAL (old
->reg_set
, new->reg_set
, win
);
2273 if (old
->top
!= new->top
)
2276 /* If the stack is not empty (new->top != -1), loop here emitting
2277 swaps until the stack is correct.
2279 The worst case number of swaps emitted is N + 2, where N is the
2280 depth of the stack. In some cases, the reg at the top of
2281 stack may be correct, but swapped anyway in order to fix
2282 other regs. But since we never swap any other reg away from
2283 its correct slot, this algorithm will converge. */
2288 /* Swap the reg at top of stack into the position it is
2289 supposed to be in, until the correct top of stack appears. */
2291 while (old
->reg
[old
->top
] != new->reg
[new->top
])
2293 for (reg
= new->top
; reg
>= 0; reg
--)
2294 if (new->reg
[reg
] == old
->reg
[old
->top
])
2300 emit_swap_insn (insn
, old
,
2301 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2304 /* See if any regs remain incorrect. If so, bring an
2305 incorrect reg to the top of stack, and let the while loop
2308 for (reg
= new->top
; reg
>= 0; reg
--)
2309 if (new->reg
[reg
] != old
->reg
[reg
])
2311 emit_swap_insn (insn
, old
,
2312 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2317 /* At this point there must be no differences. */
2319 for (reg
= old
->top
; reg
>= 0; reg
--)
2320 if (old
->reg
[reg
] != new->reg
[reg
])
2325 current_block
->end
= PREV_INSN (insn
);
2328 /* Print stack configuration. */
2331 print_stack (file
, s
)
2339 fprintf (file
, "uninitialized\n");
2340 else if (s
->top
== -1)
2341 fprintf (file
, "empty\n");
2346 for (i
= 0; i
<= s
->top
; ++i
)
2347 fprintf (file
, "%d ", s
->reg
[i
]);
2348 fputs ("]\n", file
);
2352 /* This function was doing life analysis. We now let the regular live
2353 code do it's job, so we only need to check some extra invariants
2354 that reg-stack expects. Primary among these being that all registers
2355 are initialized before use.
2357 The function returns true when code was emitted to CFG edges and
2358 commit_edge_insertions needs to be called. */
2361 convert_regs_entry ()
2363 int inserted
= 0, i
;
2366 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
2368 basic_block block
= BASIC_BLOCK (i
);
2369 block_info bi
= BLOCK_INFO (block
);
2372 /* Set current register status at last instruction `uninitialized'. */
2373 bi
->stack_in
.top
= -2;
2375 /* Copy live_at_end and live_at_start into temporaries. */
2376 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; reg
++)
2378 if (REGNO_REG_SET_P (block
->global_live_at_end
, reg
))
2379 SET_HARD_REG_BIT (bi
->out_reg_set
, reg
);
2380 if (REGNO_REG_SET_P (block
->global_live_at_start
, reg
))
2381 SET_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
);
2385 /* Load something into each stack register live at function entry.
2386 Such live registers can be caused by uninitialized variables or
2387 functions not returning values on all paths. In order to keep
2388 the push/pop code happy, and to not scrog the register stack, we
2389 must put something in these registers. Use a QNaN.
2391 Note that we are insertting converted code here. This code is
2392 never seen by the convert_regs pass. */
2394 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
2396 basic_block block
= e
->dest
;
2397 block_info bi
= BLOCK_INFO (block
);
2400 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2401 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2405 bi
->stack_in
.reg
[++top
] = reg
;
2407 init
= gen_rtx_SET (VOIDmode
,
2408 FP_MODE_REG (FIRST_STACK_REG
, SFmode
),
2410 insert_insn_on_edge (init
, e
);
2414 bi
->stack_in
.top
= top
;
2420 /* Construct the desired stack for function exit. This will either
2421 be `empty', or the function return value at top-of-stack. */
2424 convert_regs_exit ()
2426 int value_reg_low
, value_reg_high
;
2430 retvalue
= stack_result (current_function_decl
);
2431 value_reg_low
= value_reg_high
= -1;
2434 value_reg_low
= REGNO (retvalue
);
2435 value_reg_high
= value_reg_low
2436 + HARD_REGNO_NREGS (value_reg_low
, GET_MODE (retvalue
)) - 1;
2439 output_stack
= &BLOCK_INFO (EXIT_BLOCK_PTR
)->stack_in
;
2440 if (value_reg_low
== -1)
2441 output_stack
->top
= -1;
2446 output_stack
->top
= value_reg_high
- value_reg_low
;
2447 for (reg
= value_reg_low
; reg
<= value_reg_high
; ++reg
)
2449 output_stack
->reg
[reg
- value_reg_low
] = reg
;
2450 SET_HARD_REG_BIT (output_stack
->reg_set
, reg
);
2455 /* Convert stack register references in one block. */
2458 convert_regs_1 (file
, block
)
2462 struct stack_def regstack
, tmpstack
;
2463 block_info bi
= BLOCK_INFO (block
);
2468 current_block
= block
;
2472 fprintf (file
, "\nBasic block %d\nInput stack: ", block
->index
);
2473 print_stack (file
, &bi
->stack_in
);
2476 /* Process all insns in this block. Keep track of NEXT so that we
2477 don't process insns emitted while substituting in INSN. */
2479 regstack
= bi
->stack_in
;
2483 next
= NEXT_INSN (insn
);
2485 /* Ensure we have not missed a block boundary. */
2488 if (insn
== block
->end
)
2491 /* Don't bother processing unless there is a stack reg
2492 mentioned or if it's a CALL_INSN. */
2493 if (stack_regs_mentioned (insn
)
2494 || GET_CODE (insn
) == CALL_INSN
)
2498 fprintf (file
, " insn %d input stack: ",
2500 print_stack (file
, ®stack
);
2502 subst_stack_regs (insn
, ®stack
);
2509 fprintf (file
, "Expected live registers [");
2510 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2511 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
))
2512 fprintf (file
, " %d", reg
);
2513 fprintf (file
, " ]\nOutput stack: ");
2514 print_stack (file
, ®stack
);
2518 if (GET_CODE (insn
) == JUMP_INSN
)
2519 insn
= PREV_INSN (insn
);
2521 /* If the function is declared to return a value, but it returns one
2522 in only some cases, some registers might come live here. Emit
2523 necessary moves for them. */
2525 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2527 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
)
2528 && ! TEST_HARD_REG_BIT (regstack
.reg_set
, reg
))
2534 fprintf (file
, "Emitting insn initializing reg %d\n",
2538 set
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (reg
, SFmode
),
2540 insn
= emit_block_insn_after (set
, insn
, block
);
2541 subst_stack_regs (insn
, ®stack
);
2545 /* Something failed if the stack lives don't match. */
2546 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, bi
->out_reg_set
, win
);
2550 /* Adjust the stack of this block on exit to match the stack of the
2551 target block, or copy stack info into the stack of the successor
2552 of the successor hasn't been processed yet. */
2554 for (e
= block
->succ
; e
; e
= e
->succ_next
)
2556 basic_block target
= e
->dest
;
2557 stack target_stack
= &BLOCK_INFO (target
)->stack_in
;
2560 fprintf (file
, "Edge to block %d: ", target
->index
);
2562 if (target_stack
->top
== -2)
2564 /* The target block hasn't had a stack order selected.
2565 We need merely ensure that no pops are needed. */
2566 for (reg
= regstack
.top
; reg
>= 0; --reg
)
2567 if (! TEST_HARD_REG_BIT (target_stack
->reg_set
,
2574 fprintf (file
, "new block; copying stack position\n");
2576 /* change_stack kills values in regstack. */
2577 tmpstack
= regstack
;
2579 change_stack (block
->end
, &tmpstack
,
2580 target_stack
, EMIT_AFTER
);
2585 fprintf (file
, "new block; pops needed\n");
2589 if (target_stack
->top
== regstack
.top
)
2591 for (reg
= target_stack
->top
; reg
>= 0; --reg
)
2592 if (target_stack
->reg
[reg
] != regstack
.reg
[reg
])
2598 fprintf (file
, "no changes needed\n");
2605 fprintf (file
, "correcting stack to ");
2606 print_stack (file
, target_stack
);
2610 /* Care for non-call EH edges specially. The normal return path have
2611 values in registers. These will be popped en masse by the unwind
2613 if ((e
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
)) == EDGE_EH
)
2614 target_stack
->top
= -1;
2616 /* Other calls may appear to have values live in st(0), but the
2617 abnormal return path will not have actually loaded the values. */
2618 else if (e
->flags
& EDGE_ABNORMAL_CALL
)
2620 /* Assert that the lifetimes are as we expect -- one value
2621 live at st(0) on the end of the source block, and no
2622 values live at the beginning of the destination block. */
2625 CLEAR_HARD_REG_SET (tmp
);
2626 GO_IF_HARD_REG_EQUAL (target_stack
->reg_set
, tmp
, eh1
);
2630 SET_HARD_REG_BIT (tmp
, FIRST_STACK_REG
);
2631 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, tmp
, eh2
);
2635 target_stack
->top
= -1;
2638 /* It is better to output directly to the end of the block
2639 instead of to the edge, because emit_swap can do minimal
2640 insn scheduling. We can do this when there is only one
2641 edge out, and it is not abnormal. */
2642 else if (block
->succ
->succ_next
== NULL
2643 && ! (e
->flags
& EDGE_ABNORMAL
))
2645 /* change_stack kills values in regstack. */
2646 tmpstack
= regstack
;
2648 change_stack (block
->end
, &tmpstack
, target_stack
,
2649 (GET_CODE (block
->end
) == JUMP_INSN
2650 ? EMIT_BEFORE
: EMIT_AFTER
));
2656 /* We don't support abnormal edges. Global takes care to
2657 avoid any live register across them, so we should never
2658 have to insert instructions on such edges. */
2659 if (e
->flags
& EDGE_ABNORMAL
)
2662 current_block
= NULL
;
2665 /* ??? change_stack needs some point to emit insns after.
2666 Also needed to keep gen_sequence from returning a
2667 pattern as opposed to a sequence, which would lose
2669 after
= emit_note (NULL
, NOTE_INSN_DELETED
);
2671 tmpstack
= regstack
;
2672 change_stack (after
, &tmpstack
, target_stack
, EMIT_BEFORE
);
2674 seq
= gen_sequence ();
2677 insert_insn_on_edge (seq
, e
);
2679 current_block
= block
;
2686 /* Convert registers in all blocks reachable from BLOCK. */
2689 convert_regs_2 (file
, block
)
2693 basic_block
*stack
, *sp
;
2696 stack
= (basic_block
*) xmalloc (sizeof (*stack
) * n_basic_blocks
);
2700 BLOCK_INFO (block
)->done
= 1;
2708 inserted
|= convert_regs_1 (file
, block
);
2710 for (e
= block
->succ
; e
; e
= e
->succ_next
)
2711 if (! BLOCK_INFO (e
->dest
)->done
)
2714 BLOCK_INFO (e
->dest
)->done
= 1;
2717 while (sp
!= stack
);
2722 /* Traverse all basic blocks in a function, converting the register
2723 references in each insn from the "flat" register file that gcc uses,
2724 to the stack-like registers the 387 uses. */
2733 /* Initialize uninitialized registers on function entry. */
2734 inserted
= convert_regs_entry ();
2736 /* Construct the desired stack for function exit. */
2737 convert_regs_exit ();
2738 BLOCK_INFO (EXIT_BLOCK_PTR
)->done
= 1;
2740 /* ??? Future: process inner loops first, and give them arbitrary
2741 initial stacks which emit_swap_insn can modify. This ought to
2742 prevent double fxch that aften appears at the head of a loop. */
2744 /* Process all blocks reachable from all entry points. */
2745 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
2746 inserted
|= convert_regs_2 (file
, e
->dest
);
2748 /* ??? Process all unreachable blocks. Though there's no excuse
2749 for keeping these even when not optimizing. */
2750 for (i
= 0; i
< n_basic_blocks
; ++i
)
2752 basic_block b
= BASIC_BLOCK (i
);
2753 block_info bi
= BLOCK_INFO (b
);
2759 /* Create an arbitrary input stack. */
2760 bi
->stack_in
.top
= -1;
2761 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2762 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2763 bi
->stack_in
.reg
[++bi
->stack_in
.top
] = reg
;
2765 inserted
|= convert_regs_2 (file
, b
);
2770 commit_edge_insertions ();
2777 #endif /* STACK_REGS */