* config/h8300/h8300.h (ENCODE_SECTION_INFO): Check to see if DECL
[official-gcc.git] / gcc / cselib.c
blob252d68eb6917b5ebcdcc33803e523051ac966368
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include <setjmp.h>
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "obstack.h"
40 #include "hashtab.h"
41 #include "cselib.h"
43 static int entry_and_rtx_equal_p PARAMS ((const void *, const void *));
44 static unsigned int get_value_hash PARAMS ((const void *));
45 static struct elt_list *new_elt_list PARAMS ((struct elt_list *,
46 cselib_val *));
47 static struct elt_loc_list *new_elt_loc_list PARAMS ((struct elt_loc_list *,
48 rtx));
49 static void unchain_one_value PARAMS ((cselib_val *));
50 static void unchain_one_elt_list PARAMS ((struct elt_list **));
51 static void unchain_one_elt_loc_list PARAMS ((struct elt_loc_list **));
52 static void clear_table PARAMS ((int));
53 static int discard_useless_locs PARAMS ((void **, void *));
54 static int discard_useless_values PARAMS ((void **, void *));
55 static void remove_useless_values PARAMS ((void));
56 static rtx wrap_constant PARAMS ((enum machine_mode, rtx));
57 static unsigned int hash_rtx PARAMS ((rtx, enum machine_mode, int));
58 static cselib_val *new_cselib_val PARAMS ((unsigned int,
59 enum machine_mode));
60 static void add_mem_for_addr PARAMS ((cselib_val *, cselib_val *,
61 rtx));
62 static cselib_val *cselib_lookup_mem PARAMS ((rtx, int));
63 static rtx cselib_subst_to_values PARAMS ((rtx));
64 static void cselib_invalidate_regno PARAMS ((unsigned int,
65 enum machine_mode));
66 static int cselib_mem_conflict_p PARAMS ((rtx, rtx));
67 static int cselib_invalidate_mem_1 PARAMS ((void **, void *));
68 static void cselib_invalidate_mem PARAMS ((rtx));
69 static void cselib_invalidate_rtx PARAMS ((rtx, rtx, void *));
70 static void cselib_record_set PARAMS ((rtx, cselib_val *,
71 cselib_val *));
72 static void cselib_record_sets PARAMS ((rtx));
74 /* There are three ways in which cselib can look up an rtx:
75 - for a REG, the reg_values table (which is indexed by regno) is used
76 - for a MEM, we recursively look up its address and then follow the
77 addr_list of that value
78 - for everything else, we compute a hash value and go through the hash
79 table. Since different rtx's can still have the same hash value,
80 this involves walking the table entries for a given value and comparing
81 the locations of the entries with the rtx we are looking up. */
83 /* A table that enables us to look up elts by their value. */
84 static htab_t hash_table;
86 /* This is a global so we don't have to pass this through every function.
87 It is used in new_elt_loc_list to set SETTING_INSN. */
88 static rtx cselib_current_insn;
90 /* Every new unknown value gets a unique number. */
91 static unsigned int next_unknown_value;
93 /* The number of registers we had when the varrays were last resized. */
94 static unsigned int cselib_nregs;
96 /* Count values without known locations. Whenever this grows too big, we
97 remove these useless values from the table. */
98 static int n_useless_values;
100 /* Number of useless values before we remove them from the hash table. */
101 #define MAX_USELESS_VALUES 32
103 /* This table maps from register number to values. It does not contain
104 pointers to cselib_val structures, but rather elt_lists. The purpose is
105 to be able to refer to the same register in different modes. */
106 static varray_type reg_values;
107 #define REG_VALUES(I) VARRAY_ELT_LIST (reg_values, (I))
109 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
110 in clear_table() for fast emptying. */
111 static varray_type used_regs;
113 /* We pass this to cselib_invalidate_mem to invalidate all of
114 memory for a non-const call instruction. */
115 static rtx callmem;
117 /* Memory for our structures is allocated from this obstack. */
118 static struct obstack cselib_obstack;
120 /* Used to quickly free all memory. */
121 static char *cselib_startobj;
123 /* Caches for unused structures. */
124 static cselib_val *empty_vals;
125 static struct elt_list *empty_elt_lists;
126 static struct elt_loc_list *empty_elt_loc_lists;
128 /* Set by discard_useless_locs if it deleted the last location of any
129 value. */
130 static int values_became_useless;
133 /* Allocate a struct elt_list and fill in its two elements with the
134 arguments. */
136 static struct elt_list *
137 new_elt_list (next, elt)
138 struct elt_list *next;
139 cselib_val *elt;
141 struct elt_list *el = empty_elt_lists;
143 if (el)
144 empty_elt_lists = el->next;
145 else
146 el = (struct elt_list *) obstack_alloc (&cselib_obstack,
147 sizeof (struct elt_list));
148 el->next = next;
149 el->elt = elt;
150 return el;
153 /* Allocate a struct elt_loc_list and fill in its two elements with the
154 arguments. */
156 static struct elt_loc_list *
157 new_elt_loc_list (next, loc)
158 struct elt_loc_list *next;
159 rtx loc;
161 struct elt_loc_list *el = empty_elt_loc_lists;
163 if (el)
164 empty_elt_loc_lists = el->next;
165 else
166 el = (struct elt_loc_list *) obstack_alloc (&cselib_obstack,
167 sizeof (struct elt_loc_list));
168 el->next = next;
169 el->loc = loc;
170 el->setting_insn = cselib_current_insn;
171 return el;
174 /* The elt_list at *PL is no longer needed. Unchain it and free its
175 storage. */
177 static void
178 unchain_one_elt_list (pl)
179 struct elt_list **pl;
181 struct elt_list *l = *pl;
183 *pl = l->next;
184 l->next = empty_elt_lists;
185 empty_elt_lists = l;
188 /* Likewise for elt_loc_lists. */
190 static void
191 unchain_one_elt_loc_list (pl)
192 struct elt_loc_list **pl;
194 struct elt_loc_list *l = *pl;
196 *pl = l->next;
197 l->next = empty_elt_loc_lists;
198 empty_elt_loc_lists = l;
201 /* Likewise for cselib_vals. This also frees the addr_list associated with
202 V. */
204 static void
205 unchain_one_value (v)
206 cselib_val *v;
208 while (v->addr_list)
209 unchain_one_elt_list (&v->addr_list);
211 v->u.next_free = empty_vals;
212 empty_vals = v;
215 /* Remove all entries from the hash table. Also used during
216 initialization. If CLEAR_ALL isn't set, then only clear the entries
217 which are known to have been used. */
219 static void
220 clear_table (clear_all)
221 int clear_all;
223 unsigned int i;
225 if (clear_all)
226 for (i = 0; i < cselib_nregs; i++)
227 REG_VALUES (i) = 0;
228 else
229 for (i = 0; i < VARRAY_ACTIVE_SIZE (used_regs); i++)
230 REG_VALUES (VARRAY_UINT (used_regs, i)) = 0;
232 VARRAY_POP_ALL (used_regs);
234 htab_empty (hash_table);
235 obstack_free (&cselib_obstack, cselib_startobj);
237 empty_vals = 0;
238 empty_elt_lists = 0;
239 empty_elt_loc_lists = 0;
240 n_useless_values = 0;
242 next_unknown_value = 0;
245 /* The equality test for our hash table. The first argument ENTRY is a table
246 element (i.e. a cselib_val), while the second arg X is an rtx. We know
247 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
248 CONST of an appropriate mode. */
250 static int
251 entry_and_rtx_equal_p (entry, x_arg)
252 const void *entry, *x_arg;
254 struct elt_loc_list *l;
255 const cselib_val *v = (const cselib_val *) entry;
256 rtx x = (rtx) x_arg;
257 enum machine_mode mode = GET_MODE (x);
259 if (GET_CODE (x) == CONST_INT
260 || (mode == VOIDmode && GET_CODE (x) == CONST_DOUBLE))
261 abort ();
262 if (mode != GET_MODE (v->u.val_rtx))
263 return 0;
265 /* Unwrap X if necessary. */
266 if (GET_CODE (x) == CONST
267 && (GET_CODE (XEXP (x, 0)) == CONST_INT
268 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
269 x = XEXP (x, 0);
271 /* We don't guarantee that distinct rtx's have different hash values,
272 so we need to do a comparison. */
273 for (l = v->locs; l; l = l->next)
274 if (rtx_equal_for_cselib_p (l->loc, x))
275 return 1;
277 return 0;
280 /* The hash function for our hash table. The value is always computed with
281 hash_rtx when adding an element; this function just extracts the hash
282 value from a cselib_val structure. */
284 static unsigned int
285 get_value_hash (entry)
286 const void *entry;
288 const cselib_val *v = (const cselib_val *) entry;
289 return v->value;
292 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
293 only return true for values which point to a cselib_val whose value
294 element has been set to zero, which implies the cselib_val will be
295 removed. */
298 references_value_p (x, only_useless)
299 rtx x;
300 int only_useless;
302 enum rtx_code code = GET_CODE (x);
303 const char *fmt = GET_RTX_FORMAT (code);
304 int i, j;
306 if (GET_CODE (x) == VALUE
307 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
308 return 1;
310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
312 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
313 return 1;
314 else if (fmt[i] == 'E')
315 for (j = 0; j < XVECLEN (x, i); j++)
316 if (references_value_p (XVECEXP (x, i, j), only_useless))
317 return 1;
320 return 0;
323 /* For all locations found in X, delete locations that reference useless
324 values (i.e. values without any location). Called through
325 htab_traverse. */
327 static int
328 discard_useless_locs (x, info)
329 void **x;
330 void *info ATTRIBUTE_UNUSED;
332 cselib_val *v = (cselib_val *)*x;
333 struct elt_loc_list **p = &v->locs;
334 int had_locs = v->locs != 0;
336 while (*p)
338 if (references_value_p ((*p)->loc, 1))
339 unchain_one_elt_loc_list (p);
340 else
341 p = &(*p)->next;
344 if (had_locs && v->locs == 0)
346 n_useless_values++;
347 values_became_useless = 1;
349 return 1;
352 /* If X is a value with no locations, remove it from the hashtable. */
354 static int
355 discard_useless_values (x, info)
356 void **x;
357 void *info ATTRIBUTE_UNUSED;
359 cselib_val *v = (cselib_val *)*x;
361 if (v->locs == 0)
363 htab_clear_slot (hash_table, x);
364 unchain_one_value (v);
365 n_useless_values--;
368 return 1;
371 /* Clean out useless values (i.e. those which no longer have locations
372 associated with them) from the hash table. */
374 static void
375 remove_useless_values ()
377 /* First pass: eliminate locations that reference the value. That in
378 turn can make more values useless. */
381 values_became_useless = 0;
382 htab_traverse (hash_table, discard_useless_locs, 0);
384 while (values_became_useless);
386 /* Second pass: actually remove the values. */
387 htab_traverse (hash_table, discard_useless_values, 0);
389 if (n_useless_values != 0)
390 abort ();
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
397 rtx_equal_for_cselib_p (x, y)
398 rtx x, y;
400 enum rtx_code code;
401 const char *fmt;
402 int i;
404 if (GET_CODE (x) == REG || GET_CODE (x) == MEM)
406 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
408 if (e)
409 x = e->u.val_rtx;
412 if (GET_CODE (y) == REG || GET_CODE (y) == MEM)
414 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
416 if (e)
417 y = e->u.val_rtx;
420 if (x == y)
421 return 1;
423 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
424 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
426 if (GET_CODE (x) == VALUE)
428 cselib_val *e = CSELIB_VAL_PTR (x);
429 struct elt_loc_list *l;
431 for (l = e->locs; l; l = l->next)
433 rtx t = l->loc;
435 /* Avoid infinite recursion. */
436 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
437 continue;
438 else if (rtx_equal_for_cselib_p (t, y))
439 return 1;
442 return 0;
445 if (GET_CODE (y) == VALUE)
447 cselib_val *e = CSELIB_VAL_PTR (y);
448 struct elt_loc_list *l;
450 for (l = e->locs; l; l = l->next)
452 rtx t = l->loc;
454 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
455 continue;
456 else if (rtx_equal_for_cselib_p (x, t))
457 return 1;
460 return 0;
463 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
464 return 0;
466 /* This won't be handled correctly by the code below. */
467 if (GET_CODE (x) == LABEL_REF)
468 return XEXP (x, 0) == XEXP (y, 0);
470 code = GET_CODE (x);
471 fmt = GET_RTX_FORMAT (code);
473 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
475 int j;
477 switch (fmt[i])
479 case 'w':
480 if (XWINT (x, i) != XWINT (y, i))
481 return 0;
482 break;
484 case 'n':
485 case 'i':
486 if (XINT (x, i) != XINT (y, i))
487 return 0;
488 break;
490 case 'V':
491 case 'E':
492 /* Two vectors must have the same length. */
493 if (XVECLEN (x, i) != XVECLEN (y, i))
494 return 0;
496 /* And the corresponding elements must match. */
497 for (j = 0; j < XVECLEN (x, i); j++)
498 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
499 XVECEXP (y, i, j)))
500 return 0;
501 break;
503 case 'e':
504 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
505 return 0;
506 break;
508 case 'S':
509 case 's':
510 if (strcmp (XSTR (x, i), XSTR (y, i)))
511 return 0;
512 break;
514 case 'u':
515 /* These are just backpointers, so they don't matter. */
516 break;
518 case '0':
519 case 't':
520 break;
522 /* It is believed that rtx's at this level will never
523 contain anything but integers and other rtx's,
524 except for within LABEL_REFs and SYMBOL_REFs. */
525 default:
526 abort ();
529 return 1;
532 /* We need to pass down the mode of constants through the hash table
533 functions. For that purpose, wrap them in a CONST of the appropriate
534 mode. */
535 static rtx
536 wrap_constant (mode, x)
537 enum machine_mode mode;
538 rtx x;
540 if (GET_CODE (x) != CONST_INT
541 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
542 return x;
543 if (mode == VOIDmode)
544 abort ();
545 return gen_rtx_CONST (mode, x);
548 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
549 For registers and memory locations, we look up their cselib_val structure
550 and return its VALUE element.
551 Possible reasons for return 0 are: the object is volatile, or we couldn't
552 find a register or memory location in the table and CREATE is zero. If
553 CREATE is nonzero, table elts are created for regs and mem.
554 MODE is used in hashing for CONST_INTs only;
555 otherwise the mode of X is used. */
557 static unsigned int
558 hash_rtx (x, mode, create)
559 rtx x;
560 enum machine_mode mode;
561 int create;
563 cselib_val *e;
564 int i, j;
565 enum rtx_code code;
566 const char *fmt;
567 unsigned int hash = 0;
569 code = GET_CODE (x);
570 hash += (unsigned) code + (unsigned) GET_MODE (x);
572 switch (code)
574 case MEM:
575 case REG:
576 e = cselib_lookup (x, GET_MODE (x), create);
577 if (! e)
578 return 0;
580 return e->value;
582 case CONST_INT:
583 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
584 return hash ? hash : (unsigned int) CONST_INT;
586 case CONST_DOUBLE:
587 /* This is like the general case, except that it only counts
588 the integers representing the constant. */
589 hash += (unsigned) code + (unsigned) GET_MODE (x);
590 if (GET_MODE (x) != VOIDmode)
591 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
592 hash += XWINT (x, i);
593 else
594 hash += ((unsigned) CONST_DOUBLE_LOW (x)
595 + (unsigned) CONST_DOUBLE_HIGH (x));
596 return hash ? hash : (unsigned int) CONST_DOUBLE;
598 /* Assume there is only one rtx object for any given label. */
599 case LABEL_REF:
600 hash
601 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
602 return hash ? hash : (unsigned int) LABEL_REF;
604 case SYMBOL_REF:
605 hash
606 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
607 return hash ? hash : (unsigned int) SYMBOL_REF;
609 case PRE_DEC:
610 case PRE_INC:
611 case POST_DEC:
612 case POST_INC:
613 case POST_MODIFY:
614 case PRE_MODIFY:
615 case PC:
616 case CC0:
617 case CALL:
618 case UNSPEC_VOLATILE:
619 return 0;
621 case ASM_OPERANDS:
622 if (MEM_VOLATILE_P (x))
623 return 0;
625 break;
627 default:
628 break;
631 i = GET_RTX_LENGTH (code) - 1;
632 fmt = GET_RTX_FORMAT (code);
633 for (; i >= 0; i--)
635 if (fmt[i] == 'e')
637 rtx tem = XEXP (x, i);
638 unsigned int tem_hash = hash_rtx (tem, 0, create);
640 if (tem_hash == 0)
641 return 0;
643 hash += tem_hash;
645 else if (fmt[i] == 'E')
646 for (j = 0; j < XVECLEN (x, i); j++)
648 unsigned int tem_hash = hash_rtx (XVECEXP (x, i, j), 0, create);
650 if (tem_hash == 0)
651 return 0;
653 hash += tem_hash;
655 else if (fmt[i] == 's')
657 const unsigned char *p = (const unsigned char *) XSTR (x, i);
659 if (p)
660 while (*p)
661 hash += *p++;
663 else if (fmt[i] == 'i')
664 hash += XINT (x, i);
665 else if (fmt[i] == '0' || fmt[i] == 't')
666 /* unused */;
667 else
668 abort ();
671 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
674 /* Create a new value structure for VALUE and initialize it. The mode of the
675 value is MODE. */
677 static cselib_val *
678 new_cselib_val (value, mode)
679 unsigned int value;
680 enum machine_mode mode;
682 cselib_val *e = empty_vals;
684 if (e)
685 empty_vals = e->u.next_free;
686 else
687 e = (cselib_val *) obstack_alloc (&cselib_obstack, sizeof (cselib_val));
689 if (value == 0)
690 abort ();
692 e->value = value;
693 e->u.val_rtx = gen_rtx_VALUE (mode);
694 CSELIB_VAL_PTR (e->u.val_rtx) = e;
695 e->addr_list = 0;
696 e->locs = 0;
697 return e;
700 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
701 contains the data at this address. X is a MEM that represents the
702 value. Update the two value structures to represent this situation. */
704 static void
705 add_mem_for_addr (addr_elt, mem_elt, x)
706 cselib_val *addr_elt, *mem_elt;
707 rtx x;
709 struct elt_loc_list *l;
711 /* Avoid duplicates. */
712 for (l = mem_elt->locs; l; l = l->next)
713 if (GET_CODE (l->loc) == MEM
714 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
715 return;
717 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
718 mem_elt->locs
719 = new_elt_loc_list (mem_elt->locs,
720 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
723 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
724 If CREATE, make a new one if we haven't seen it before. */
726 static cselib_val *
727 cselib_lookup_mem (x, create)
728 rtx x;
729 int create;
731 enum machine_mode mode = GET_MODE (x);
732 void **slot;
733 cselib_val *addr;
734 cselib_val *mem_elt;
735 struct elt_list *l;
737 if (MEM_VOLATILE_P (x) || mode == BLKmode
738 || (FLOAT_MODE_P (mode) && flag_float_store))
739 return 0;
741 /* Look up the value for the address. */
742 addr = cselib_lookup (XEXP (x, 0), mode, create);
743 if (! addr)
744 return 0;
746 /* Find a value that describes a value of our mode at that address. */
747 for (l = addr->addr_list; l; l = l->next)
748 if (GET_MODE (l->elt->u.val_rtx) == mode)
749 return l->elt;
751 if (! create)
752 return 0;
754 mem_elt = new_cselib_val (++next_unknown_value, mode);
755 add_mem_for_addr (addr, mem_elt, x);
756 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
757 mem_elt->value, INSERT);
758 *slot = mem_elt;
759 return mem_elt;
762 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
763 with VALUE expressions. This way, it becomes independent of changes
764 to registers and memory.
765 X isn't actually modified; if modifications are needed, new rtl is
766 allocated. However, the return value can share rtl with X. */
768 static rtx
769 cselib_subst_to_values (x)
770 rtx x;
772 enum rtx_code code = GET_CODE (x);
773 const char *fmt = GET_RTX_FORMAT (code);
774 cselib_val *e;
775 struct elt_list *l;
776 rtx copy = x;
777 int i;
779 switch (code)
781 case REG:
782 for (l = REG_VALUES (REGNO (x)); l; l = l->next)
783 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
784 return l->elt->u.val_rtx;
786 abort ();
788 case MEM:
789 e = cselib_lookup_mem (x, 0);
790 if (! e)
791 abort ();
792 return e->u.val_rtx;
794 /* CONST_DOUBLEs must be special-cased here so that we won't try to
795 look up the CONST_DOUBLE_MEM inside. */
796 case CONST_DOUBLE:
797 case CONST_INT:
798 return x;
800 default:
801 break;
804 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
806 if (fmt[i] == 'e')
808 rtx t = cselib_subst_to_values (XEXP (x, i));
810 if (t != XEXP (x, i) && x == copy)
811 copy = shallow_copy_rtx (x);
813 XEXP (copy, i) = t;
815 else if (fmt[i] == 'E')
817 int j, k;
819 for (j = 0; j < XVECLEN (x, i); j++)
821 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
823 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
825 if (x == copy)
826 copy = shallow_copy_rtx (x);
828 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
829 for (k = 0; k < j; k++)
830 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
833 XVECEXP (copy, i, j) = t;
838 return copy;
841 /* Look up the rtl expression X in our tables and return the value it has.
842 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
843 we create a new one if possible, using mode MODE if X doesn't have a mode
844 (i.e. because it's a constant). */
846 cselib_val *
847 cselib_lookup (x, mode, create)
848 rtx x;
849 enum machine_mode mode;
850 int create;
852 void **slot;
853 cselib_val *e;
854 unsigned int hashval;
856 if (GET_MODE (x) != VOIDmode)
857 mode = GET_MODE (x);
859 if (GET_CODE (x) == VALUE)
860 return CSELIB_VAL_PTR (x);
862 if (GET_CODE (x) == REG)
864 struct elt_list *l;
865 unsigned int i = REGNO (x);
867 for (l = REG_VALUES (i); l; l = l->next)
868 if (mode == GET_MODE (l->elt->u.val_rtx))
869 return l->elt;
871 if (! create)
872 return 0;
874 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
875 e->locs = new_elt_loc_list (e->locs, x);
876 if (REG_VALUES (i) == 0)
877 VARRAY_PUSH_UINT (used_regs, i);
878 REG_VALUES (i) = new_elt_list (REG_VALUES (i), e);
879 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
880 *slot = e;
881 return e;
884 if (GET_CODE (x) == MEM)
885 return cselib_lookup_mem (x, create);
887 hashval = hash_rtx (x, mode, create);
888 /* Can't even create if hashing is not possible. */
889 if (! hashval)
890 return 0;
892 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
893 hashval, create ? INSERT : NO_INSERT);
894 if (slot == 0)
895 return 0;
897 e = (cselib_val *) *slot;
898 if (e)
899 return e;
901 e = new_cselib_val (hashval, mode);
903 /* We have to fill the slot before calling cselib_subst_to_values:
904 the hash table is inconsistent until we do so, and
905 cselib_subst_to_values will need to do lookups. */
906 *slot = (void *) e;
907 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
908 return e;
911 /* Invalidate any entries in reg_values that overlap REGNO. This is called
912 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
913 is used to determine how many hard registers are being changed. If MODE
914 is VOIDmode, then only REGNO is being changed; this is used when
915 invalidating call clobbered registers across a call. */
917 static void
918 cselib_invalidate_regno (regno, mode)
919 unsigned int regno;
920 enum machine_mode mode;
922 unsigned int endregno;
923 unsigned int i;
925 /* If we see pseudos after reload, something is _wrong_. */
926 if (reload_completed && regno >= FIRST_PSEUDO_REGISTER
927 && reg_renumber[regno] >= 0)
928 abort ();
930 /* Determine the range of registers that must be invalidated. For
931 pseudos, only REGNO is affected. For hard regs, we must take MODE
932 into account, and we must also invalidate lower register numbers
933 if they contain values that overlap REGNO. */
934 endregno = regno + 1;
935 if (regno < FIRST_PSEUDO_REGISTER && mode != VOIDmode)
936 endregno = regno + HARD_REGNO_NREGS (regno, mode);
938 for (i = 0; i < endregno; i++)
940 struct elt_list **l = &REG_VALUES (i);
942 /* Go through all known values for this reg; if it overlaps the range
943 we're invalidating, remove the value. */
944 while (*l)
946 cselib_val *v = (*l)->elt;
947 struct elt_loc_list **p;
948 unsigned int this_last = i;
950 if (i < FIRST_PSEUDO_REGISTER)
951 this_last += HARD_REGNO_NREGS (i, GET_MODE (v->u.val_rtx)) - 1;
953 if (this_last < regno)
955 l = &(*l)->next;
956 continue;
959 /* We have an overlap. */
960 unchain_one_elt_list (l);
962 /* Now, we clear the mapping from value to reg. It must exist, so
963 this code will crash intentionally if it doesn't. */
964 for (p = &v->locs; ; p = &(*p)->next)
966 rtx x = (*p)->loc;
968 if (GET_CODE (x) == REG && REGNO (x) == i)
970 unchain_one_elt_loc_list (p);
971 break;
974 if (v->locs == 0)
975 n_useless_values++;
980 /* The memory at address MEM_BASE is being changed.
981 Return whether this change will invalidate VAL. */
983 static int
984 cselib_mem_conflict_p (mem_base, val)
985 rtx mem_base;
986 rtx val;
988 enum rtx_code code;
989 const char *fmt;
990 int i, j;
992 code = GET_CODE (val);
993 switch (code)
995 /* Get rid of a few simple cases quickly. */
996 case REG:
997 case PC:
998 case CC0:
999 case SCRATCH:
1000 case CONST:
1001 case CONST_INT:
1002 case CONST_DOUBLE:
1003 case SYMBOL_REF:
1004 case LABEL_REF:
1005 return 0;
1007 case MEM:
1008 if (GET_MODE (mem_base) == BLKmode
1009 || GET_MODE (val) == BLKmode
1010 || anti_dependence (val, mem_base))
1011 return 1;
1013 /* The address may contain nested MEMs. */
1014 break;
1016 default:
1017 break;
1020 fmt = GET_RTX_FORMAT (code);
1021 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1023 if (fmt[i] == 'e')
1025 if (cselib_mem_conflict_p (mem_base, XEXP (val, i)))
1026 return 1;
1028 else if (fmt[i] == 'E')
1029 for (j = 0; j < XVECLEN (val, i); j++)
1030 if (cselib_mem_conflict_p (mem_base, XVECEXP (val, i, j)))
1031 return 1;
1034 return 0;
1037 /* For the value found in SLOT, walk its locations to determine if any overlap
1038 INFO (which is a MEM rtx). */
1040 static int
1041 cselib_invalidate_mem_1 (slot, info)
1042 void **slot;
1043 void *info;
1045 cselib_val *v = (cselib_val *) *slot;
1046 rtx mem_rtx = (rtx) info;
1047 struct elt_loc_list **p = &v->locs;
1048 int had_locs = v->locs != 0;
1050 while (*p)
1052 rtx x = (*p)->loc;
1053 cselib_val *addr;
1054 struct elt_list **mem_chain;
1056 /* MEMs may occur in locations only at the top level; below
1057 that every MEM or REG is substituted by its VALUE. */
1058 if (GET_CODE (x) != MEM
1059 || ! cselib_mem_conflict_p (mem_rtx, x))
1061 p = &(*p)->next;
1062 continue;
1065 /* This one overlaps. */
1066 /* We must have a mapping from this MEM's address to the
1067 value (E). Remove that, too. */
1068 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1069 mem_chain = &addr->addr_list;
1070 for (;;)
1072 if ((*mem_chain)->elt == v)
1074 unchain_one_elt_list (mem_chain);
1075 break;
1078 mem_chain = &(*mem_chain)->next;
1081 unchain_one_elt_loc_list (p);
1084 if (had_locs && v->locs == 0)
1085 n_useless_values++;
1087 return 1;
1090 /* Invalidate any locations in the table which are changed because of a
1091 store to MEM_RTX. If this is called because of a non-const call
1092 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1094 static void
1095 cselib_invalidate_mem (mem_rtx)
1096 rtx mem_rtx;
1098 htab_traverse (hash_table, cselib_invalidate_mem_1, mem_rtx);
1101 /* Invalidate DEST, which is being assigned to or clobbered. The second and
1102 the third parameter exist so that this function can be passed to
1103 note_stores; they are ignored. */
1105 static void
1106 cselib_invalidate_rtx (dest, ignore, data)
1107 rtx dest;
1108 rtx ignore ATTRIBUTE_UNUSED;
1109 void *data ATTRIBUTE_UNUSED;
1111 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1112 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1113 dest = XEXP (dest, 0);
1115 if (GET_CODE (dest) == REG)
1116 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1117 else if (GET_CODE (dest) == MEM)
1118 cselib_invalidate_mem (dest);
1120 /* Some machines don't define AUTO_INC_DEC, but they still use push
1121 instructions. We need to catch that case here in order to
1122 invalidate the stack pointer correctly. Note that invalidating
1123 the stack pointer is different from invalidating DEST. */
1124 if (push_operand (dest, GET_MODE (dest)))
1125 cselib_invalidate_rtx (stack_pointer_rtx, NULL_RTX, NULL);
1128 /* Record the result of a SET instruction. DEST is being set; the source
1129 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1130 describes its address. */
1132 static void
1133 cselib_record_set (dest, src_elt, dest_addr_elt)
1134 rtx dest;
1135 cselib_val *src_elt, *dest_addr_elt;
1137 int dreg = GET_CODE (dest) == REG ? (int) REGNO (dest) : -1;
1139 if (src_elt == 0 || side_effects_p (dest))
1140 return;
1142 if (dreg >= 0)
1144 if (REG_VALUES (dreg) == 0)
1145 VARRAY_PUSH_UINT (used_regs, dreg);
1147 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1148 if (src_elt->locs == 0)
1149 n_useless_values--;
1150 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1152 else if (GET_CODE (dest) == MEM && dest_addr_elt != 0)
1154 if (src_elt->locs == 0)
1155 n_useless_values--;
1156 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1160 /* Describe a single set that is part of an insn. */
1161 struct set
1163 rtx src;
1164 rtx dest;
1165 cselib_val *src_elt;
1166 cselib_val *dest_addr_elt;
1169 /* There is no good way to determine how many elements there can be
1170 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1171 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1173 /* Record the effects of any sets in INSN. */
1174 static void
1175 cselib_record_sets (insn)
1176 rtx insn;
1178 int n_sets = 0;
1179 int i;
1180 struct set sets[MAX_SETS];
1181 rtx body = PATTERN (insn);
1183 body = PATTERN (insn);
1184 /* Find all sets. */
1185 if (GET_CODE (body) == SET)
1187 sets[0].src = SET_SRC (body);
1188 sets[0].dest = SET_DEST (body);
1189 n_sets = 1;
1191 else if (GET_CODE (body) == PARALLEL)
1193 /* Look through the PARALLEL and record the values being
1194 set, if possible. Also handle any CLOBBERs. */
1195 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1197 rtx x = XVECEXP (body, 0, i);
1199 if (GET_CODE (x) == SET)
1201 sets[n_sets].src = SET_SRC (x);
1202 sets[n_sets].dest = SET_DEST (x);
1203 n_sets++;
1208 /* Look up the values that are read. Do this before invalidating the
1209 locations that are written. */
1210 for (i = 0; i < n_sets; i++)
1212 rtx dest = sets[i].dest;
1214 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1215 the low part after invalidating any knowledge about larger modes. */
1216 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1217 sets[i].dest = dest = XEXP (dest, 0);
1219 /* We don't know how to record anything but REG or MEM. */
1220 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1222 sets[i].src_elt = cselib_lookup (sets[i].src, GET_MODE (dest), 1);
1223 if (GET_CODE (dest) == MEM)
1224 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1225 else
1226 sets[i].dest_addr_elt = 0;
1230 /* Invalidate all locations written by this insn. Note that the elts we
1231 looked up in the previous loop aren't affected, just some of their
1232 locations may go away. */
1233 note_stores (body, cselib_invalidate_rtx, NULL);
1235 /* Now enter the equivalences in our tables. */
1236 for (i = 0; i < n_sets; i++)
1238 rtx dest = sets[i].dest;
1239 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1240 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1244 /* Record the effects of INSN. */
1246 void
1247 cselib_process_insn (insn)
1248 rtx insn;
1250 int i;
1251 rtx x;
1253 cselib_current_insn = insn;
1255 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1256 if (GET_CODE (insn) == CODE_LABEL
1257 || (GET_CODE (insn) == NOTE
1258 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1259 || (GET_CODE (insn) == INSN
1260 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1261 && MEM_VOLATILE_P (PATTERN (insn))))
1263 clear_table (0);
1264 return;
1267 if (! INSN_P (insn))
1269 cselib_current_insn = 0;
1270 return;
1273 /* If this is a call instruction, forget anything stored in a
1274 call clobbered register, or, if this is not a const call, in
1275 memory. */
1276 if (GET_CODE (insn) == CALL_INSN)
1278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1279 if (call_used_regs[i])
1280 cselib_invalidate_regno (i, VOIDmode);
1282 if (! CONST_CALL_P (insn))
1283 cselib_invalidate_mem (callmem);
1286 cselib_record_sets (insn);
1288 #ifdef AUTO_INC_DEC
1289 /* Clobber any registers which appear in REG_INC notes. We
1290 could keep track of the changes to their values, but it is
1291 unlikely to help. */
1292 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1293 if (REG_NOTE_KIND (x) == REG_INC)
1294 cselib_invalidate_rtx (XEXP (x, 0), NULL_RTX, NULL);
1295 #endif
1297 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1298 after we have processed the insn. */
1299 if (GET_CODE (insn) == CALL_INSN)
1300 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1301 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1302 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX, NULL);
1304 cselib_current_insn = 0;
1306 if (n_useless_values > MAX_USELESS_VALUES)
1307 remove_useless_values ();
1310 /* Make sure our varrays are big enough. Not called from any cselib routines;
1311 it must be called by the user if it allocated new registers. */
1313 void
1314 cselib_update_varray_sizes ()
1316 unsigned int nregs = max_reg_num ();
1318 if (nregs == cselib_nregs)
1319 return;
1321 cselib_nregs = nregs;
1322 VARRAY_GROW (reg_values, nregs);
1323 VARRAY_GROW (used_regs, nregs);
1326 /* Initialize cselib for one pass. The caller must also call
1327 init_alias_analysis. */
1329 void
1330 cselib_init ()
1332 /* These are only created once. */
1333 if (! callmem)
1335 gcc_obstack_init (&cselib_obstack);
1336 cselib_startobj = obstack_alloc (&cselib_obstack, 0);
1338 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1339 ggc_add_rtx_root (&callmem, 1);
1342 cselib_nregs = max_reg_num ();
1343 VARRAY_ELT_LIST_INIT (reg_values, cselib_nregs, "reg_values");
1344 VARRAY_UINT_INIT (used_regs, cselib_nregs, "used_regs");
1345 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1346 clear_table (1);
1349 /* Called when the current user is done with cselib. */
1351 void
1352 cselib_finish ()
1354 clear_table (0);
1355 VARRAY_FREE (reg_values);
1356 VARRAY_FREE (used_regs);
1357 htab_delete (hash_table);