PR target/62251
[official-gcc.git] / gcc / tree-ssa-dom.c
blobd230ce1c7b38637ce539a86f9c3f46206a04b501
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "hash-set.h"
27 #include "machmode.h"
28 #include "vec.h"
29 #include "double-int.h"
30 #include "input.h"
31 #include "alias.h"
32 #include "symtab.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "real.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "flags.h"
40 #include "tm_p.h"
41 #include "predict.h"
42 #include "hard-reg-set.h"
43 #include "input.h"
44 #include "function.h"
45 #include "dominance.h"
46 #include "cfg.h"
47 #include "cfganal.h"
48 #include "basic-block.h"
49 #include "cfgloop.h"
50 #include "inchash.h"
51 #include "gimple-pretty-print.h"
52 #include "tree-ssa-alias.h"
53 #include "internal-fn.h"
54 #include "gimple-fold.h"
55 #include "tree-eh.h"
56 #include "gimple-expr.h"
57 #include "is-a.h"
58 #include "gimple.h"
59 #include "gimple-iterator.h"
60 #include "gimple-ssa.h"
61 #include "tree-cfg.h"
62 #include "tree-phinodes.h"
63 #include "ssa-iterators.h"
64 #include "stringpool.h"
65 #include "tree-ssanames.h"
66 #include "tree-into-ssa.h"
67 #include "domwalk.h"
68 #include "tree-pass.h"
69 #include "tree-ssa-propagate.h"
70 #include "tree-ssa-threadupdate.h"
71 #include "langhooks.h"
72 #include "params.h"
73 #include "tree-ssa-threadedge.h"
74 #include "tree-ssa-dom.h"
75 #include "inchash.h"
76 #include "gimplify.h"
78 /* This file implements optimizations on the dominator tree. */
80 /* Representation of a "naked" right-hand-side expression, to be used
81 in recording available expressions in the expression hash table. */
83 enum expr_kind
85 EXPR_SINGLE,
86 EXPR_UNARY,
87 EXPR_BINARY,
88 EXPR_TERNARY,
89 EXPR_CALL,
90 EXPR_PHI
93 struct hashable_expr
95 tree type;
96 enum expr_kind kind;
97 union {
98 struct { tree rhs; } single;
99 struct { enum tree_code op; tree opnd; } unary;
100 struct { enum tree_code op; tree opnd0, opnd1; } binary;
101 struct { enum tree_code op; tree opnd0, opnd1, opnd2; } ternary;
102 struct { gcall *fn_from; bool pure; size_t nargs; tree *args; } call;
103 struct { size_t nargs; tree *args; } phi;
104 } ops;
107 /* Structure for recording known values of a conditional expression
108 at the exits from its block. */
110 typedef struct cond_equivalence_s
112 struct hashable_expr cond;
113 tree value;
114 } cond_equivalence;
117 /* Structure for recording edge equivalences as well as any pending
118 edge redirections during the dominator optimizer.
120 Computing and storing the edge equivalences instead of creating
121 them on-demand can save significant amounts of time, particularly
122 for pathological cases involving switch statements.
124 These structures live for a single iteration of the dominator
125 optimizer in the edge's AUX field. At the end of an iteration we
126 free each of these structures and update the AUX field to point
127 to any requested redirection target (the code for updating the
128 CFG and SSA graph for edge redirection expects redirection edge
129 targets to be in the AUX field for each edge. */
131 struct edge_info
133 /* If this edge creates a simple equivalence, the LHS and RHS of
134 the equivalence will be stored here. */
135 tree lhs;
136 tree rhs;
138 /* Traversing an edge may also indicate one or more particular conditions
139 are true or false. */
140 vec<cond_equivalence> cond_equivalences;
143 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
144 expressions it enters into the hash table along with a marker entry
145 (null). When we finish processing the block, we pop off entries and
146 remove the expressions from the global hash table until we hit the
147 marker. */
148 typedef struct expr_hash_elt * expr_hash_elt_t;
150 static vec<std::pair<expr_hash_elt_t, expr_hash_elt_t> > avail_exprs_stack;
152 /* Structure for entries in the expression hash table. */
154 struct expr_hash_elt
156 /* The value (lhs) of this expression. */
157 tree lhs;
159 /* The expression (rhs) we want to record. */
160 struct hashable_expr expr;
162 /* The virtual operand associated with the nearest dominating stmt
163 loading from or storing to expr. */
164 tree vop;
166 /* The hash value for RHS. */
167 hashval_t hash;
169 /* A unique stamp, typically the address of the hash
170 element itself, used in removing entries from the table. */
171 struct expr_hash_elt *stamp;
174 /* Hashtable helpers. */
176 static bool hashable_expr_equal_p (const struct hashable_expr *,
177 const struct hashable_expr *);
178 static void free_expr_hash_elt (void *);
180 struct expr_elt_hasher
182 typedef expr_hash_elt *value_type;
183 typedef expr_hash_elt *compare_type;
184 typedef int store_values_directly;
185 static inline hashval_t hash (const value_type &);
186 static inline bool equal (const value_type &, const compare_type &);
187 static inline void remove (value_type &);
190 inline hashval_t
191 expr_elt_hasher::hash (const value_type &p)
193 return p->hash;
196 inline bool
197 expr_elt_hasher::equal (const value_type &p1, const compare_type &p2)
199 const struct hashable_expr *expr1 = &p1->expr;
200 const struct expr_hash_elt *stamp1 = p1->stamp;
201 const struct hashable_expr *expr2 = &p2->expr;
202 const struct expr_hash_elt *stamp2 = p2->stamp;
204 /* This case should apply only when removing entries from the table. */
205 if (stamp1 == stamp2)
206 return true;
208 if (p1->hash != p2->hash)
209 return false;
211 /* In case of a collision, both RHS have to be identical and have the
212 same VUSE operands. */
213 if (hashable_expr_equal_p (expr1, expr2)
214 && types_compatible_p (expr1->type, expr2->type))
215 return true;
217 return false;
220 /* Delete an expr_hash_elt and reclaim its storage. */
222 inline void
223 expr_elt_hasher::remove (value_type &element)
225 free_expr_hash_elt (element);
228 /* Hash table with expressions made available during the renaming process.
229 When an assignment of the form X_i = EXPR is found, the statement is
230 stored in this table. If the same expression EXPR is later found on the
231 RHS of another statement, it is replaced with X_i (thus performing
232 global redundancy elimination). Similarly as we pass through conditionals
233 we record the conditional itself as having either a true or false value
234 in this table. */
235 static hash_table<expr_elt_hasher> *avail_exprs;
237 /* Stack of dest,src pairs that need to be restored during finalization.
239 A NULL entry is used to mark the end of pairs which need to be
240 restored during finalization of this block. */
241 static vec<tree> const_and_copies_stack;
243 /* Track whether or not we have changed the control flow graph. */
244 static bool cfg_altered;
246 /* Bitmap of blocks that have had EH statements cleaned. We should
247 remove their dead edges eventually. */
248 static bitmap need_eh_cleanup;
250 /* Statistics for dominator optimizations. */
251 struct opt_stats_d
253 long num_stmts;
254 long num_exprs_considered;
255 long num_re;
256 long num_const_prop;
257 long num_copy_prop;
260 static struct opt_stats_d opt_stats;
262 /* Local functions. */
263 static void optimize_stmt (basic_block, gimple_stmt_iterator);
264 static tree lookup_avail_expr (gimple, bool);
265 static hashval_t avail_expr_hash (const void *);
266 static void htab_statistics (FILE *,
267 const hash_table<expr_elt_hasher> &);
268 static void record_cond (cond_equivalence *);
269 static void record_const_or_copy (tree, tree);
270 static void record_equality (tree, tree);
271 static void record_equivalences_from_phis (basic_block);
272 static void record_equivalences_from_incoming_edge (basic_block);
273 static void eliminate_redundant_computations (gimple_stmt_iterator *);
274 static void record_equivalences_from_stmt (gimple, int);
275 static void remove_local_expressions_from_table (void);
276 static void restore_vars_to_original_value (void);
277 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
280 /* Given a statement STMT, initialize the hash table element pointed to
281 by ELEMENT. */
283 static void
284 initialize_hash_element (gimple stmt, tree lhs,
285 struct expr_hash_elt *element)
287 enum gimple_code code = gimple_code (stmt);
288 struct hashable_expr *expr = &element->expr;
290 if (code == GIMPLE_ASSIGN)
292 enum tree_code subcode = gimple_assign_rhs_code (stmt);
294 switch (get_gimple_rhs_class (subcode))
296 case GIMPLE_SINGLE_RHS:
297 expr->kind = EXPR_SINGLE;
298 expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
299 expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
300 break;
301 case GIMPLE_UNARY_RHS:
302 expr->kind = EXPR_UNARY;
303 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
304 if (CONVERT_EXPR_CODE_P (subcode))
305 subcode = NOP_EXPR;
306 expr->ops.unary.op = subcode;
307 expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
308 break;
309 case GIMPLE_BINARY_RHS:
310 expr->kind = EXPR_BINARY;
311 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
312 expr->ops.binary.op = subcode;
313 expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
314 expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
315 break;
316 case GIMPLE_TERNARY_RHS:
317 expr->kind = EXPR_TERNARY;
318 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
319 expr->ops.ternary.op = subcode;
320 expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
321 expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
322 expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
323 break;
324 default:
325 gcc_unreachable ();
328 else if (code == GIMPLE_COND)
330 expr->type = boolean_type_node;
331 expr->kind = EXPR_BINARY;
332 expr->ops.binary.op = gimple_cond_code (stmt);
333 expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
334 expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
336 else if (gcall *call_stmt = dyn_cast <gcall *> (stmt))
338 size_t nargs = gimple_call_num_args (call_stmt);
339 size_t i;
341 gcc_assert (gimple_call_lhs (call_stmt));
343 expr->type = TREE_TYPE (gimple_call_lhs (call_stmt));
344 expr->kind = EXPR_CALL;
345 expr->ops.call.fn_from = call_stmt;
347 if (gimple_call_flags (call_stmt) & (ECF_CONST | ECF_PURE))
348 expr->ops.call.pure = true;
349 else
350 expr->ops.call.pure = false;
352 expr->ops.call.nargs = nargs;
353 expr->ops.call.args = XCNEWVEC (tree, nargs);
354 for (i = 0; i < nargs; i++)
355 expr->ops.call.args[i] = gimple_call_arg (call_stmt, i);
357 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
359 expr->type = TREE_TYPE (gimple_switch_index (swtch_stmt));
360 expr->kind = EXPR_SINGLE;
361 expr->ops.single.rhs = gimple_switch_index (swtch_stmt);
363 else if (code == GIMPLE_GOTO)
365 expr->type = TREE_TYPE (gimple_goto_dest (stmt));
366 expr->kind = EXPR_SINGLE;
367 expr->ops.single.rhs = gimple_goto_dest (stmt);
369 else if (code == GIMPLE_PHI)
371 size_t nargs = gimple_phi_num_args (stmt);
372 size_t i;
374 expr->type = TREE_TYPE (gimple_phi_result (stmt));
375 expr->kind = EXPR_PHI;
376 expr->ops.phi.nargs = nargs;
377 expr->ops.phi.args = XCNEWVEC (tree, nargs);
379 for (i = 0; i < nargs; i++)
380 expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
382 else
383 gcc_unreachable ();
385 element->lhs = lhs;
386 element->vop = gimple_vuse (stmt);
387 element->hash = avail_expr_hash (element);
388 element->stamp = element;
391 /* Given a conditional expression COND as a tree, initialize
392 a hashable_expr expression EXPR. The conditional must be a
393 comparison or logical negation. A constant or a variable is
394 not permitted. */
396 static void
397 initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
399 expr->type = boolean_type_node;
401 if (COMPARISON_CLASS_P (cond))
403 expr->kind = EXPR_BINARY;
404 expr->ops.binary.op = TREE_CODE (cond);
405 expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
406 expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
408 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
410 expr->kind = EXPR_UNARY;
411 expr->ops.unary.op = TRUTH_NOT_EXPR;
412 expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
414 else
415 gcc_unreachable ();
418 /* Given a hashable_expr expression EXPR and an LHS,
419 initialize the hash table element pointed to by ELEMENT. */
421 static void
422 initialize_hash_element_from_expr (struct hashable_expr *expr,
423 tree lhs,
424 struct expr_hash_elt *element)
426 element->expr = *expr;
427 element->lhs = lhs;
428 element->vop = NULL_TREE;
429 element->hash = avail_expr_hash (element);
430 element->stamp = element;
433 /* Compare two hashable_expr structures for equivalence.
434 They are considered equivalent when the the expressions
435 they denote must necessarily be equal. The logic is intended
436 to follow that of operand_equal_p in fold-const.c */
438 static bool
439 hashable_expr_equal_p (const struct hashable_expr *expr0,
440 const struct hashable_expr *expr1)
442 tree type0 = expr0->type;
443 tree type1 = expr1->type;
445 /* If either type is NULL, there is nothing to check. */
446 if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
447 return false;
449 /* If both types don't have the same signedness, precision, and mode,
450 then we can't consider them equal. */
451 if (type0 != type1
452 && (TREE_CODE (type0) == ERROR_MARK
453 || TREE_CODE (type1) == ERROR_MARK
454 || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
455 || TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
456 || TYPE_MODE (type0) != TYPE_MODE (type1)))
457 return false;
459 if (expr0->kind != expr1->kind)
460 return false;
462 switch (expr0->kind)
464 case EXPR_SINGLE:
465 return operand_equal_p (expr0->ops.single.rhs,
466 expr1->ops.single.rhs, 0);
468 case EXPR_UNARY:
469 if (expr0->ops.unary.op != expr1->ops.unary.op)
470 return false;
472 if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
473 || expr0->ops.unary.op == NON_LVALUE_EXPR)
474 && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
475 return false;
477 return operand_equal_p (expr0->ops.unary.opnd,
478 expr1->ops.unary.opnd, 0);
480 case EXPR_BINARY:
481 if (expr0->ops.binary.op != expr1->ops.binary.op)
482 return false;
484 if (operand_equal_p (expr0->ops.binary.opnd0,
485 expr1->ops.binary.opnd0, 0)
486 && operand_equal_p (expr0->ops.binary.opnd1,
487 expr1->ops.binary.opnd1, 0))
488 return true;
490 /* For commutative ops, allow the other order. */
491 return (commutative_tree_code (expr0->ops.binary.op)
492 && operand_equal_p (expr0->ops.binary.opnd0,
493 expr1->ops.binary.opnd1, 0)
494 && operand_equal_p (expr0->ops.binary.opnd1,
495 expr1->ops.binary.opnd0, 0));
497 case EXPR_TERNARY:
498 if (expr0->ops.ternary.op != expr1->ops.ternary.op
499 || !operand_equal_p (expr0->ops.ternary.opnd2,
500 expr1->ops.ternary.opnd2, 0))
501 return false;
503 if (operand_equal_p (expr0->ops.ternary.opnd0,
504 expr1->ops.ternary.opnd0, 0)
505 && operand_equal_p (expr0->ops.ternary.opnd1,
506 expr1->ops.ternary.opnd1, 0))
507 return true;
509 /* For commutative ops, allow the other order. */
510 return (commutative_ternary_tree_code (expr0->ops.ternary.op)
511 && operand_equal_p (expr0->ops.ternary.opnd0,
512 expr1->ops.ternary.opnd1, 0)
513 && operand_equal_p (expr0->ops.ternary.opnd1,
514 expr1->ops.ternary.opnd0, 0));
516 case EXPR_CALL:
518 size_t i;
520 /* If the calls are to different functions, then they
521 clearly cannot be equal. */
522 if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
523 expr1->ops.call.fn_from))
524 return false;
526 if (! expr0->ops.call.pure)
527 return false;
529 if (expr0->ops.call.nargs != expr1->ops.call.nargs)
530 return false;
532 for (i = 0; i < expr0->ops.call.nargs; i++)
533 if (! operand_equal_p (expr0->ops.call.args[i],
534 expr1->ops.call.args[i], 0))
535 return false;
537 if (stmt_could_throw_p (expr0->ops.call.fn_from))
539 int lp0 = lookup_stmt_eh_lp (expr0->ops.call.fn_from);
540 int lp1 = lookup_stmt_eh_lp (expr1->ops.call.fn_from);
541 if ((lp0 > 0 || lp1 > 0) && lp0 != lp1)
542 return false;
545 return true;
548 case EXPR_PHI:
550 size_t i;
552 if (expr0->ops.phi.nargs != expr1->ops.phi.nargs)
553 return false;
555 for (i = 0; i < expr0->ops.phi.nargs; i++)
556 if (! operand_equal_p (expr0->ops.phi.args[i],
557 expr1->ops.phi.args[i], 0))
558 return false;
560 return true;
563 default:
564 gcc_unreachable ();
568 /* Generate a hash value for a pair of expressions. This can be used
569 iteratively by passing a previous result in HSTATE.
571 The same hash value is always returned for a given pair of expressions,
572 regardless of the order in which they are presented. This is useful in
573 hashing the operands of commutative functions. */
575 namespace inchash
578 static void
579 add_expr_commutative (const_tree t1, const_tree t2, hash &hstate)
581 hash one, two;
583 inchash::add_expr (t1, one);
584 inchash::add_expr (t2, two);
585 hstate.add_commutative (one, two);
588 /* Compute a hash value for a hashable_expr value EXPR and a
589 previously accumulated hash value VAL. If two hashable_expr
590 values compare equal with hashable_expr_equal_p, they must
591 hash to the same value, given an identical value of VAL.
592 The logic is intended to follow inchash::add_expr in tree.c. */
594 static void
595 add_hashable_expr (const struct hashable_expr *expr, hash &hstate)
597 switch (expr->kind)
599 case EXPR_SINGLE:
600 inchash::add_expr (expr->ops.single.rhs, hstate);
601 break;
603 case EXPR_UNARY:
604 hstate.add_object (expr->ops.unary.op);
606 /* Make sure to include signedness in the hash computation.
607 Don't hash the type, that can lead to having nodes which
608 compare equal according to operand_equal_p, but which
609 have different hash codes. */
610 if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
611 || expr->ops.unary.op == NON_LVALUE_EXPR)
612 hstate.add_int (TYPE_UNSIGNED (expr->type));
614 inchash::add_expr (expr->ops.unary.opnd, hstate);
615 break;
617 case EXPR_BINARY:
618 hstate.add_object (expr->ops.binary.op);
619 if (commutative_tree_code (expr->ops.binary.op))
620 inchash::add_expr_commutative (expr->ops.binary.opnd0,
621 expr->ops.binary.opnd1, hstate);
622 else
624 inchash::add_expr (expr->ops.binary.opnd0, hstate);
625 inchash::add_expr (expr->ops.binary.opnd1, hstate);
627 break;
629 case EXPR_TERNARY:
630 hstate.add_object (expr->ops.ternary.op);
631 if (commutative_ternary_tree_code (expr->ops.ternary.op))
632 inchash::add_expr_commutative (expr->ops.ternary.opnd0,
633 expr->ops.ternary.opnd1, hstate);
634 else
636 inchash::add_expr (expr->ops.ternary.opnd0, hstate);
637 inchash::add_expr (expr->ops.ternary.opnd1, hstate);
639 inchash::add_expr (expr->ops.ternary.opnd2, hstate);
640 break;
642 case EXPR_CALL:
644 size_t i;
645 enum tree_code code = CALL_EXPR;
646 gcall *fn_from;
648 hstate.add_object (code);
649 fn_from = expr->ops.call.fn_from;
650 if (gimple_call_internal_p (fn_from))
651 hstate.merge_hash ((hashval_t) gimple_call_internal_fn (fn_from));
652 else
653 inchash::add_expr (gimple_call_fn (fn_from), hstate);
654 for (i = 0; i < expr->ops.call.nargs; i++)
655 inchash::add_expr (expr->ops.call.args[i], hstate);
657 break;
659 case EXPR_PHI:
661 size_t i;
663 for (i = 0; i < expr->ops.phi.nargs; i++)
664 inchash::add_expr (expr->ops.phi.args[i], hstate);
666 break;
668 default:
669 gcc_unreachable ();
675 /* Print a diagnostic dump of an expression hash table entry. */
677 static void
678 print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
680 fprintf (stream, "STMT ");
682 if (element->lhs)
684 print_generic_expr (stream, element->lhs, 0);
685 fprintf (stream, " = ");
688 switch (element->expr.kind)
690 case EXPR_SINGLE:
691 print_generic_expr (stream, element->expr.ops.single.rhs, 0);
692 break;
694 case EXPR_UNARY:
695 fprintf (stream, "%s ", get_tree_code_name (element->expr.ops.unary.op));
696 print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
697 break;
699 case EXPR_BINARY:
700 print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
701 fprintf (stream, " %s ", get_tree_code_name (element->expr.ops.binary.op));
702 print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
703 break;
705 case EXPR_TERNARY:
706 fprintf (stream, " %s <", get_tree_code_name (element->expr.ops.ternary.op));
707 print_generic_expr (stream, element->expr.ops.ternary.opnd0, 0);
708 fputs (", ", stream);
709 print_generic_expr (stream, element->expr.ops.ternary.opnd1, 0);
710 fputs (", ", stream);
711 print_generic_expr (stream, element->expr.ops.ternary.opnd2, 0);
712 fputs (">", stream);
713 break;
715 case EXPR_CALL:
717 size_t i;
718 size_t nargs = element->expr.ops.call.nargs;
719 gcall *fn_from;
721 fn_from = element->expr.ops.call.fn_from;
722 if (gimple_call_internal_p (fn_from))
723 fputs (internal_fn_name (gimple_call_internal_fn (fn_from)),
724 stream);
725 else
726 print_generic_expr (stream, gimple_call_fn (fn_from), 0);
727 fprintf (stream, " (");
728 for (i = 0; i < nargs; i++)
730 print_generic_expr (stream, element->expr.ops.call.args[i], 0);
731 if (i + 1 < nargs)
732 fprintf (stream, ", ");
734 fprintf (stream, ")");
736 break;
738 case EXPR_PHI:
740 size_t i;
741 size_t nargs = element->expr.ops.phi.nargs;
743 fprintf (stream, "PHI <");
744 for (i = 0; i < nargs; i++)
746 print_generic_expr (stream, element->expr.ops.phi.args[i], 0);
747 if (i + 1 < nargs)
748 fprintf (stream, ", ");
750 fprintf (stream, ">");
752 break;
755 if (element->vop)
757 fprintf (stream, " with ");
758 print_generic_expr (stream, element->vop, 0);
761 fprintf (stream, "\n");
764 /* Delete variable sized pieces of the expr_hash_elt ELEMENT. */
766 static void
767 free_expr_hash_elt_contents (struct expr_hash_elt *element)
769 if (element->expr.kind == EXPR_CALL)
770 free (element->expr.ops.call.args);
771 else if (element->expr.kind == EXPR_PHI)
772 free (element->expr.ops.phi.args);
775 /* Delete an expr_hash_elt and reclaim its storage. */
777 static void
778 free_expr_hash_elt (void *elt)
780 struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);
781 free_expr_hash_elt_contents (element);
782 free (element);
785 /* Allocate an EDGE_INFO for edge E and attach it to E.
786 Return the new EDGE_INFO structure. */
788 static struct edge_info *
789 allocate_edge_info (edge e)
791 struct edge_info *edge_info;
793 edge_info = XCNEW (struct edge_info);
795 e->aux = edge_info;
796 return edge_info;
799 /* Free all EDGE_INFO structures associated with edges in the CFG.
800 If a particular edge can be threaded, copy the redirection
801 target from the EDGE_INFO structure into the edge's AUX field
802 as required by code to update the CFG and SSA graph for
803 jump threading. */
805 static void
806 free_all_edge_infos (void)
808 basic_block bb;
809 edge_iterator ei;
810 edge e;
812 FOR_EACH_BB_FN (bb, cfun)
814 FOR_EACH_EDGE (e, ei, bb->preds)
816 struct edge_info *edge_info = (struct edge_info *) e->aux;
818 if (edge_info)
820 edge_info->cond_equivalences.release ();
821 free (edge_info);
822 e->aux = NULL;
828 class dom_opt_dom_walker : public dom_walker
830 public:
831 dom_opt_dom_walker (cdi_direction direction)
832 : dom_walker (direction), m_dummy_cond (NULL) {}
834 virtual void before_dom_children (basic_block);
835 virtual void after_dom_children (basic_block);
837 private:
838 void thread_across_edge (edge);
840 gcond *m_dummy_cond;
843 /* Jump threading, redundancy elimination and const/copy propagation.
845 This pass may expose new symbols that need to be renamed into SSA. For
846 every new symbol exposed, its corresponding bit will be set in
847 VARS_TO_RENAME. */
849 namespace {
851 const pass_data pass_data_dominator =
853 GIMPLE_PASS, /* type */
854 "dom", /* name */
855 OPTGROUP_NONE, /* optinfo_flags */
856 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
857 ( PROP_cfg | PROP_ssa ), /* properties_required */
858 0, /* properties_provided */
859 0, /* properties_destroyed */
860 0, /* todo_flags_start */
861 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
864 class pass_dominator : public gimple_opt_pass
866 public:
867 pass_dominator (gcc::context *ctxt)
868 : gimple_opt_pass (pass_data_dominator, ctxt)
871 /* opt_pass methods: */
872 opt_pass * clone () { return new pass_dominator (m_ctxt); }
873 virtual bool gate (function *) { return flag_tree_dom != 0; }
874 virtual unsigned int execute (function *);
876 }; // class pass_dominator
878 unsigned int
879 pass_dominator::execute (function *fun)
881 memset (&opt_stats, 0, sizeof (opt_stats));
883 /* Create our hash tables. */
884 avail_exprs = new hash_table<expr_elt_hasher> (1024);
885 avail_exprs_stack.create (20);
886 const_and_copies_stack.create (20);
887 need_eh_cleanup = BITMAP_ALLOC (NULL);
889 calculate_dominance_info (CDI_DOMINATORS);
890 cfg_altered = false;
892 /* We need to know loop structures in order to avoid destroying them
893 in jump threading. Note that we still can e.g. thread through loop
894 headers to an exit edge, or through loop header to the loop body, assuming
895 that we update the loop info.
897 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
898 to several overly conservative bail-outs in jump threading, case
899 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
900 missing. We should improve jump threading in future then
901 LOOPS_HAVE_PREHEADERS won't be needed here. */
902 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
904 /* Initialize the value-handle array. */
905 threadedge_initialize_values ();
907 /* We need accurate information regarding back edges in the CFG
908 for jump threading; this may include back edges that are not part of
909 a single loop. */
910 mark_dfs_back_edges ();
912 /* Recursively walk the dominator tree optimizing statements. */
913 dom_opt_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
916 gimple_stmt_iterator gsi;
917 basic_block bb;
918 FOR_EACH_BB_FN (bb, fun)
920 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
921 update_stmt_if_modified (gsi_stmt (gsi));
925 /* If we exposed any new variables, go ahead and put them into
926 SSA form now, before we handle jump threading. This simplifies
927 interactions between rewriting of _DECL nodes into SSA form
928 and rewriting SSA_NAME nodes into SSA form after block
929 duplication and CFG manipulation. */
930 update_ssa (TODO_update_ssa);
932 free_all_edge_infos ();
934 /* Thread jumps, creating duplicate blocks as needed. */
935 cfg_altered |= thread_through_all_blocks (first_pass_instance);
937 if (cfg_altered)
938 free_dominance_info (CDI_DOMINATORS);
940 /* Removal of statements may make some EH edges dead. Purge
941 such edges from the CFG as needed. */
942 if (!bitmap_empty_p (need_eh_cleanup))
944 unsigned i;
945 bitmap_iterator bi;
947 /* Jump threading may have created forwarder blocks from blocks
948 needing EH cleanup; the new successor of these blocks, which
949 has inherited from the original block, needs the cleanup.
950 Don't clear bits in the bitmap, as that can break the bitmap
951 iterator. */
952 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
954 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
955 if (bb == NULL)
956 continue;
957 while (single_succ_p (bb)
958 && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
959 bb = single_succ (bb);
960 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
961 continue;
962 if ((unsigned) bb->index != i)
963 bitmap_set_bit (need_eh_cleanup, bb->index);
966 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
967 bitmap_clear (need_eh_cleanup);
970 statistics_counter_event (fun, "Redundant expressions eliminated",
971 opt_stats.num_re);
972 statistics_counter_event (fun, "Constants propagated",
973 opt_stats.num_const_prop);
974 statistics_counter_event (fun, "Copies propagated",
975 opt_stats.num_copy_prop);
977 /* Debugging dumps. */
978 if (dump_file && (dump_flags & TDF_STATS))
979 dump_dominator_optimization_stats (dump_file);
981 loop_optimizer_finalize ();
983 /* Delete our main hashtable. */
984 delete avail_exprs;
985 avail_exprs = NULL;
987 /* Free asserted bitmaps and stacks. */
988 BITMAP_FREE (need_eh_cleanup);
990 avail_exprs_stack.release ();
991 const_and_copies_stack.release ();
993 /* Free the value-handle array. */
994 threadedge_finalize_values ();
996 return 0;
999 } // anon namespace
1001 gimple_opt_pass *
1002 make_pass_dominator (gcc::context *ctxt)
1004 return new pass_dominator (ctxt);
1008 /* Given a conditional statement CONDSTMT, convert the
1009 condition to a canonical form. */
1011 static void
1012 canonicalize_comparison (gcond *condstmt)
1014 tree op0;
1015 tree op1;
1016 enum tree_code code;
1018 gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
1020 op0 = gimple_cond_lhs (condstmt);
1021 op1 = gimple_cond_rhs (condstmt);
1023 code = gimple_cond_code (condstmt);
1025 /* If it would be profitable to swap the operands, then do so to
1026 canonicalize the statement, enabling better optimization.
1028 By placing canonicalization of such expressions here we
1029 transparently keep statements in canonical form, even
1030 when the statement is modified. */
1031 if (tree_swap_operands_p (op0, op1, false))
1033 /* For relationals we need to swap the operands
1034 and change the code. */
1035 if (code == LT_EXPR
1036 || code == GT_EXPR
1037 || code == LE_EXPR
1038 || code == GE_EXPR)
1040 code = swap_tree_comparison (code);
1042 gimple_cond_set_code (condstmt, code);
1043 gimple_cond_set_lhs (condstmt, op1);
1044 gimple_cond_set_rhs (condstmt, op0);
1046 update_stmt (condstmt);
1051 /* Initialize local stacks for this optimizer and record equivalences
1052 upon entry to BB. Equivalences can come from the edge traversed to
1053 reach BB or they may come from PHI nodes at the start of BB. */
1055 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
1056 LIMIT entries left in LOCALs. */
1058 static void
1059 remove_local_expressions_from_table (void)
1061 /* Remove all the expressions made available in this block. */
1062 while (avail_exprs_stack.length () > 0)
1064 std::pair<expr_hash_elt_t, expr_hash_elt_t> victim
1065 = avail_exprs_stack.pop ();
1066 expr_hash_elt **slot;
1068 if (victim.first == NULL)
1069 break;
1071 /* This must precede the actual removal from the hash table,
1072 as ELEMENT and the table entry may share a call argument
1073 vector which will be freed during removal. */
1074 if (dump_file && (dump_flags & TDF_DETAILS))
1076 fprintf (dump_file, "<<<< ");
1077 print_expr_hash_elt (dump_file, victim.first);
1080 slot = avail_exprs->find_slot (victim.first, NO_INSERT);
1081 gcc_assert (slot && *slot == victim.first);
1082 if (victim.second != NULL)
1084 free_expr_hash_elt (*slot);
1085 *slot = victim.second;
1087 else
1088 avail_exprs->clear_slot (slot);
1092 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
1093 CONST_AND_COPIES to its original state, stopping when we hit a
1094 NULL marker. */
1096 static void
1097 restore_vars_to_original_value (void)
1099 while (const_and_copies_stack.length () > 0)
1101 tree prev_value, dest;
1103 dest = const_and_copies_stack.pop ();
1105 if (dest == NULL)
1106 break;
1108 if (dump_file && (dump_flags & TDF_DETAILS))
1110 fprintf (dump_file, "<<<< COPY ");
1111 print_generic_expr (dump_file, dest, 0);
1112 fprintf (dump_file, " = ");
1113 print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
1114 fprintf (dump_file, "\n");
1117 prev_value = const_and_copies_stack.pop ();
1118 set_ssa_name_value (dest, prev_value);
1122 /* A trivial wrapper so that we can present the generic jump
1123 threading code with a simple API for simplifying statements. */
1124 static tree
1125 simplify_stmt_for_jump_threading (gimple stmt,
1126 gimple within_stmt ATTRIBUTE_UNUSED)
1128 return lookup_avail_expr (stmt, false);
1131 /* Record into the equivalence tables any equivalences implied by
1132 traversing edge E (which are cached in E->aux).
1134 Callers are responsible for managing the unwinding markers. */
1135 static void
1136 record_temporary_equivalences (edge e)
1138 int i;
1139 struct edge_info *edge_info = (struct edge_info *) e->aux;
1141 /* If we have info associated with this edge, record it into
1142 our equivalence tables. */
1143 if (edge_info)
1145 cond_equivalence *eq;
1146 tree lhs = edge_info->lhs;
1147 tree rhs = edge_info->rhs;
1149 /* If we have a simple NAME = VALUE equivalence, record it. */
1150 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1151 record_const_or_copy (lhs, rhs);
1153 /* If we have 0 = COND or 1 = COND equivalences, record them
1154 into our expression hash tables. */
1155 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1156 record_cond (eq);
1160 /* Wrapper for common code to attempt to thread an edge. For example,
1161 it handles lazily building the dummy condition and the bookkeeping
1162 when jump threading is successful. */
1164 void
1165 dom_opt_dom_walker::thread_across_edge (edge e)
1167 if (! m_dummy_cond)
1168 m_dummy_cond =
1169 gimple_build_cond (NE_EXPR,
1170 integer_zero_node, integer_zero_node,
1171 NULL, NULL);
1173 /* Push a marker on both stacks so we can unwind the tables back to their
1174 current state. */
1175 avail_exprs_stack.safe_push
1176 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL));
1177 const_and_copies_stack.safe_push (NULL_TREE);
1179 /* Traversing E may result in equivalences we can utilize. */
1180 record_temporary_equivalences (e);
1182 /* With all the edge equivalences in the tables, go ahead and attempt
1183 to thread through E->dest. */
1184 ::thread_across_edge (m_dummy_cond, e, false,
1185 &const_and_copies_stack,
1186 simplify_stmt_for_jump_threading);
1188 /* And restore the various tables to their state before
1189 we threaded this edge.
1191 XXX The code in tree-ssa-threadedge.c will restore the state of
1192 the const_and_copies table. We we just have to restore the expression
1193 table. */
1194 remove_local_expressions_from_table ();
1197 /* PHI nodes can create equivalences too.
1199 Ignoring any alternatives which are the same as the result, if
1200 all the alternatives are equal, then the PHI node creates an
1201 equivalence. */
1203 static void
1204 record_equivalences_from_phis (basic_block bb)
1206 gphi_iterator gsi;
1208 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1210 gphi *phi = gsi.phi ();
1212 tree lhs = gimple_phi_result (phi);
1213 tree rhs = NULL;
1214 size_t i;
1216 for (i = 0; i < gimple_phi_num_args (phi); i++)
1218 tree t = gimple_phi_arg_def (phi, i);
1220 /* Ignore alternatives which are the same as our LHS. Since
1221 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1222 can simply compare pointers. */
1223 if (lhs == t)
1224 continue;
1226 /* If we have not processed an alternative yet, then set
1227 RHS to this alternative. */
1228 if (rhs == NULL)
1229 rhs = t;
1230 /* If we have processed an alternative (stored in RHS), then
1231 see if it is equal to this one. If it isn't, then stop
1232 the search. */
1233 else if (! operand_equal_for_phi_arg_p (rhs, t))
1234 break;
1237 /* If we had no interesting alternatives, then all the RHS alternatives
1238 must have been the same as LHS. */
1239 if (!rhs)
1240 rhs = lhs;
1242 /* If we managed to iterate through each PHI alternative without
1243 breaking out of the loop, then we have a PHI which may create
1244 a useful equivalence. We do not need to record unwind data for
1245 this, since this is a true assignment and not an equivalence
1246 inferred from a comparison. All uses of this ssa name are dominated
1247 by this assignment, so unwinding just costs time and space. */
1248 if (i == gimple_phi_num_args (phi)
1249 && may_propagate_copy (lhs, rhs))
1250 set_ssa_name_value (lhs, rhs);
1254 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1255 return that edge. Otherwise return NULL. */
1256 static edge
1257 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1259 edge retval = NULL;
1260 edge e;
1261 edge_iterator ei;
1263 FOR_EACH_EDGE (e, ei, bb->preds)
1265 /* A loop back edge can be identified by the destination of
1266 the edge dominating the source of the edge. */
1267 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1268 continue;
1270 /* If we have already seen a non-loop edge, then we must have
1271 multiple incoming non-loop edges and thus we return NULL. */
1272 if (retval)
1273 return NULL;
1275 /* This is the first non-loop incoming edge we have found. Record
1276 it. */
1277 retval = e;
1280 return retval;
1283 /* Record any equivalences created by the incoming edge to BB. If BB
1284 has more than one incoming edge, then no equivalence is created. */
1286 static void
1287 record_equivalences_from_incoming_edge (basic_block bb)
1289 edge e;
1290 basic_block parent;
1291 struct edge_info *edge_info;
1293 /* If our parent block ended with a control statement, then we may be
1294 able to record some equivalences based on which outgoing edge from
1295 the parent was followed. */
1296 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1298 e = single_incoming_edge_ignoring_loop_edges (bb);
1300 /* If we had a single incoming edge from our parent block, then enter
1301 any data associated with the edge into our tables. */
1302 if (e && e->src == parent)
1304 unsigned int i;
1306 edge_info = (struct edge_info *) e->aux;
1308 if (edge_info)
1310 tree lhs = edge_info->lhs;
1311 tree rhs = edge_info->rhs;
1312 cond_equivalence *eq;
1314 if (lhs)
1315 record_equality (lhs, rhs);
1317 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
1318 set via a widening type conversion, then we may be able to record
1319 additional equivalences. */
1320 if (lhs
1321 && TREE_CODE (lhs) == SSA_NAME
1322 && is_gimple_constant (rhs)
1323 && TREE_CODE (rhs) == INTEGER_CST)
1325 gimple defstmt = SSA_NAME_DEF_STMT (lhs);
1327 if (defstmt
1328 && is_gimple_assign (defstmt)
1329 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (defstmt)))
1331 tree old_rhs = gimple_assign_rhs1 (defstmt);
1333 /* If the conversion widens the original value and
1334 the constant is in the range of the type of OLD_RHS,
1335 then convert the constant and record the equivalence.
1337 Note that int_fits_type_p does not check the precision
1338 if the upper and lower bounds are OK. */
1339 if (INTEGRAL_TYPE_P (TREE_TYPE (old_rhs))
1340 && (TYPE_PRECISION (TREE_TYPE (lhs))
1341 > TYPE_PRECISION (TREE_TYPE (old_rhs)))
1342 && int_fits_type_p (rhs, TREE_TYPE (old_rhs)))
1344 tree newval = fold_convert (TREE_TYPE (old_rhs), rhs);
1345 record_equality (old_rhs, newval);
1350 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1351 record_cond (eq);
1356 /* Dump SSA statistics on FILE. */
1358 void
1359 dump_dominator_optimization_stats (FILE *file)
1361 fprintf (file, "Total number of statements: %6ld\n\n",
1362 opt_stats.num_stmts);
1363 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1364 opt_stats.num_exprs_considered);
1366 fprintf (file, "\nHash table statistics:\n");
1368 fprintf (file, " avail_exprs: ");
1369 htab_statistics (file, *avail_exprs);
1373 /* Dump SSA statistics on stderr. */
1375 DEBUG_FUNCTION void
1376 debug_dominator_optimization_stats (void)
1378 dump_dominator_optimization_stats (stderr);
1382 /* Dump statistics for the hash table HTAB. */
1384 static void
1385 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1387 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1388 (long) htab.size (),
1389 (long) htab.elements (),
1390 htab.collisions ());
1394 /* Enter condition equivalence into the expression hash table.
1395 This indicates that a conditional expression has a known
1396 boolean value. */
1398 static void
1399 record_cond (cond_equivalence *p)
1401 struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
1402 expr_hash_elt **slot;
1404 initialize_hash_element_from_expr (&p->cond, p->value, element);
1406 slot = avail_exprs->find_slot_with_hash (element, element->hash, INSERT);
1407 if (*slot == NULL)
1409 *slot = element;
1411 if (dump_file && (dump_flags & TDF_DETAILS))
1413 fprintf (dump_file, "1>>> ");
1414 print_expr_hash_elt (dump_file, element);
1417 avail_exprs_stack.safe_push
1418 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (element, NULL));
1420 else
1421 free_expr_hash_elt (element);
1424 /* Build a cond_equivalence record indicating that the comparison
1425 CODE holds between operands OP0 and OP1 and push it to **P. */
1427 static void
1428 build_and_record_new_cond (enum tree_code code,
1429 tree op0, tree op1,
1430 vec<cond_equivalence> *p)
1432 cond_equivalence c;
1433 struct hashable_expr *cond = &c.cond;
1435 gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
1437 cond->type = boolean_type_node;
1438 cond->kind = EXPR_BINARY;
1439 cond->ops.binary.op = code;
1440 cond->ops.binary.opnd0 = op0;
1441 cond->ops.binary.opnd1 = op1;
1443 c.value = boolean_true_node;
1444 p->safe_push (c);
1447 /* Record that COND is true and INVERTED is false into the edge information
1448 structure. Also record that any conditions dominated by COND are true
1449 as well.
1451 For example, if a < b is true, then a <= b must also be true. */
1453 static void
1454 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1456 tree op0, op1;
1457 cond_equivalence c;
1459 if (!COMPARISON_CLASS_P (cond))
1460 return;
1462 op0 = TREE_OPERAND (cond, 0);
1463 op1 = TREE_OPERAND (cond, 1);
1465 switch (TREE_CODE (cond))
1467 case LT_EXPR:
1468 case GT_EXPR:
1469 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1471 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1472 &edge_info->cond_equivalences);
1473 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1474 &edge_info->cond_equivalences);
1477 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1478 ? LE_EXPR : GE_EXPR),
1479 op0, op1, &edge_info->cond_equivalences);
1480 build_and_record_new_cond (NE_EXPR, op0, op1,
1481 &edge_info->cond_equivalences);
1482 break;
1484 case GE_EXPR:
1485 case LE_EXPR:
1486 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1488 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1489 &edge_info->cond_equivalences);
1491 break;
1493 case EQ_EXPR:
1494 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1496 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1497 &edge_info->cond_equivalences);
1499 build_and_record_new_cond (LE_EXPR, op0, op1,
1500 &edge_info->cond_equivalences);
1501 build_and_record_new_cond (GE_EXPR, op0, op1,
1502 &edge_info->cond_equivalences);
1503 break;
1505 case UNORDERED_EXPR:
1506 build_and_record_new_cond (NE_EXPR, op0, op1,
1507 &edge_info->cond_equivalences);
1508 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1509 &edge_info->cond_equivalences);
1510 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1511 &edge_info->cond_equivalences);
1512 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1513 &edge_info->cond_equivalences);
1514 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1515 &edge_info->cond_equivalences);
1516 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1517 &edge_info->cond_equivalences);
1518 break;
1520 case UNLT_EXPR:
1521 case UNGT_EXPR:
1522 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1523 ? UNLE_EXPR : UNGE_EXPR),
1524 op0, op1, &edge_info->cond_equivalences);
1525 build_and_record_new_cond (NE_EXPR, op0, op1,
1526 &edge_info->cond_equivalences);
1527 break;
1529 case UNEQ_EXPR:
1530 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1531 &edge_info->cond_equivalences);
1532 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1533 &edge_info->cond_equivalences);
1534 break;
1536 case LTGT_EXPR:
1537 build_and_record_new_cond (NE_EXPR, op0, op1,
1538 &edge_info->cond_equivalences);
1539 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1540 &edge_info->cond_equivalences);
1541 break;
1543 default:
1544 break;
1547 /* Now store the original true and false conditions into the first
1548 two slots. */
1549 initialize_expr_from_cond (cond, &c.cond);
1550 c.value = boolean_true_node;
1551 edge_info->cond_equivalences.safe_push (c);
1553 /* It is possible for INVERTED to be the negation of a comparison,
1554 and not a valid RHS or GIMPLE_COND condition. This happens because
1555 invert_truthvalue may return such an expression when asked to invert
1556 a floating-point comparison. These comparisons are not assumed to
1557 obey the trichotomy law. */
1558 initialize_expr_from_cond (inverted, &c.cond);
1559 c.value = boolean_false_node;
1560 edge_info->cond_equivalences.safe_push (c);
1563 /* A helper function for record_const_or_copy and record_equality.
1564 Do the work of recording the value and undo info. */
1566 static void
1567 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1569 set_ssa_name_value (x, y);
1571 if (dump_file && (dump_flags & TDF_DETAILS))
1573 fprintf (dump_file, "0>>> COPY ");
1574 print_generic_expr (dump_file, x, 0);
1575 fprintf (dump_file, " = ");
1576 print_generic_expr (dump_file, y, 0);
1577 fprintf (dump_file, "\n");
1580 const_and_copies_stack.reserve (2);
1581 const_and_copies_stack.quick_push (prev_x);
1582 const_and_copies_stack.quick_push (x);
1585 /* Record that X is equal to Y in const_and_copies. Record undo
1586 information in the block-local vector. */
1588 static void
1589 record_const_or_copy (tree x, tree y)
1591 tree prev_x = SSA_NAME_VALUE (x);
1593 gcc_assert (TREE_CODE (x) == SSA_NAME);
1595 if (TREE_CODE (y) == SSA_NAME)
1597 tree tmp = SSA_NAME_VALUE (y);
1598 if (tmp)
1599 y = tmp;
1602 record_const_or_copy_1 (x, y, prev_x);
1605 /* Return the loop depth of the basic block of the defining statement of X.
1606 This number should not be treated as absolutely correct because the loop
1607 information may not be completely up-to-date when dom runs. However, it
1608 will be relatively correct, and as more passes are taught to keep loop info
1609 up to date, the result will become more and more accurate. */
1611 static int
1612 loop_depth_of_name (tree x)
1614 gimple defstmt;
1615 basic_block defbb;
1617 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1618 if (TREE_CODE (x) != SSA_NAME)
1619 return 0;
1621 /* Otherwise return the loop depth of the defining statement's bb.
1622 Note that there may not actually be a bb for this statement, if the
1623 ssa_name is live on entry. */
1624 defstmt = SSA_NAME_DEF_STMT (x);
1625 defbb = gimple_bb (defstmt);
1626 if (!defbb)
1627 return 0;
1629 return bb_loop_depth (defbb);
1632 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1633 This constrains the cases in which we may treat this as assignment. */
1635 static void
1636 record_equality (tree x, tree y)
1638 tree prev_x = NULL, prev_y = NULL;
1640 if (TREE_CODE (x) == SSA_NAME)
1641 prev_x = SSA_NAME_VALUE (x);
1642 if (TREE_CODE (y) == SSA_NAME)
1643 prev_y = SSA_NAME_VALUE (y);
1645 /* If one of the previous values is invariant, or invariant in more loops
1646 (by depth), then use that.
1647 Otherwise it doesn't matter which value we choose, just so
1648 long as we canonicalize on one value. */
1649 if (is_gimple_min_invariant (y))
1651 else if (is_gimple_min_invariant (x)
1652 /* ??? When threading over backedges the following is important
1653 for correctness. See PR61757. */
1654 || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1655 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1656 else if (prev_x && is_gimple_min_invariant (prev_x))
1657 x = y, y = prev_x, prev_x = prev_y;
1658 else if (prev_y)
1659 y = prev_y;
1661 /* After the swapping, we must have one SSA_NAME. */
1662 if (TREE_CODE (x) != SSA_NAME)
1663 return;
1665 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1666 variable compared against zero. If we're honoring signed zeros,
1667 then we cannot record this value unless we know that the value is
1668 nonzero. */
1669 if (HONOR_SIGNED_ZEROS (x)
1670 && (TREE_CODE (y) != REAL_CST
1671 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1672 return;
1674 record_const_or_copy_1 (x, y, prev_x);
1677 /* Returns true when STMT is a simple iv increment. It detects the
1678 following situation:
1680 i_1 = phi (..., i_2)
1681 i_2 = i_1 +/- ... */
1683 bool
1684 simple_iv_increment_p (gimple stmt)
1686 enum tree_code code;
1687 tree lhs, preinc;
1688 gimple phi;
1689 size_t i;
1691 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1692 return false;
1694 lhs = gimple_assign_lhs (stmt);
1695 if (TREE_CODE (lhs) != SSA_NAME)
1696 return false;
1698 code = gimple_assign_rhs_code (stmt);
1699 if (code != PLUS_EXPR
1700 && code != MINUS_EXPR
1701 && code != POINTER_PLUS_EXPR)
1702 return false;
1704 preinc = gimple_assign_rhs1 (stmt);
1705 if (TREE_CODE (preinc) != SSA_NAME)
1706 return false;
1708 phi = SSA_NAME_DEF_STMT (preinc);
1709 if (gimple_code (phi) != GIMPLE_PHI)
1710 return false;
1712 for (i = 0; i < gimple_phi_num_args (phi); i++)
1713 if (gimple_phi_arg_def (phi, i) == lhs)
1714 return true;
1716 return false;
1719 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1720 known value for that SSA_NAME (or NULL if no value is known).
1722 Propagate values from CONST_AND_COPIES into the PHI nodes of the
1723 successors of BB. */
1725 static void
1726 cprop_into_successor_phis (basic_block bb)
1728 edge e;
1729 edge_iterator ei;
1731 FOR_EACH_EDGE (e, ei, bb->succs)
1733 int indx;
1734 gphi_iterator gsi;
1736 /* If this is an abnormal edge, then we do not want to copy propagate
1737 into the PHI alternative associated with this edge. */
1738 if (e->flags & EDGE_ABNORMAL)
1739 continue;
1741 gsi = gsi_start_phis (e->dest);
1742 if (gsi_end_p (gsi))
1743 continue;
1745 /* We may have an equivalence associated with this edge. While
1746 we can not propagate it into non-dominated blocks, we can
1747 propagate them into PHIs in non-dominated blocks. */
1749 /* Push the unwind marker so we can reset the const and copies
1750 table back to its original state after processing this edge. */
1751 const_and_copies_stack.safe_push (NULL_TREE);
1753 /* Extract and record any simple NAME = VALUE equivalences.
1755 Don't bother with [01] = COND equivalences, they're not useful
1756 here. */
1757 struct edge_info *edge_info = (struct edge_info *) e->aux;
1758 if (edge_info)
1760 tree lhs = edge_info->lhs;
1761 tree rhs = edge_info->rhs;
1763 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1764 record_const_or_copy (lhs, rhs);
1767 indx = e->dest_idx;
1768 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1770 tree new_val;
1771 use_operand_p orig_p;
1772 tree orig_val;
1773 gphi *phi = gsi.phi ();
1775 /* The alternative may be associated with a constant, so verify
1776 it is an SSA_NAME before doing anything with it. */
1777 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1778 orig_val = get_use_from_ptr (orig_p);
1779 if (TREE_CODE (orig_val) != SSA_NAME)
1780 continue;
1782 /* If we have *ORIG_P in our constant/copy table, then replace
1783 ORIG_P with its value in our constant/copy table. */
1784 new_val = SSA_NAME_VALUE (orig_val);
1785 if (new_val
1786 && new_val != orig_val
1787 && (TREE_CODE (new_val) == SSA_NAME
1788 || is_gimple_min_invariant (new_val))
1789 && may_propagate_copy (orig_val, new_val))
1790 propagate_value (orig_p, new_val);
1793 restore_vars_to_original_value ();
1797 /* We have finished optimizing BB, record any information implied by
1798 taking a specific outgoing edge from BB. */
1800 static void
1801 record_edge_info (basic_block bb)
1803 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1804 struct edge_info *edge_info;
1806 if (! gsi_end_p (gsi))
1808 gimple stmt = gsi_stmt (gsi);
1809 location_t loc = gimple_location (stmt);
1811 if (gimple_code (stmt) == GIMPLE_SWITCH)
1813 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1814 tree index = gimple_switch_index (switch_stmt);
1816 if (TREE_CODE (index) == SSA_NAME)
1818 int i;
1819 int n_labels = gimple_switch_num_labels (switch_stmt);
1820 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
1821 edge e;
1822 edge_iterator ei;
1824 for (i = 0; i < n_labels; i++)
1826 tree label = gimple_switch_label (switch_stmt, i);
1827 basic_block target_bb = label_to_block (CASE_LABEL (label));
1828 if (CASE_HIGH (label)
1829 || !CASE_LOW (label)
1830 || info[target_bb->index])
1831 info[target_bb->index] = error_mark_node;
1832 else
1833 info[target_bb->index] = label;
1836 FOR_EACH_EDGE (e, ei, bb->succs)
1838 basic_block target_bb = e->dest;
1839 tree label = info[target_bb->index];
1841 if (label != NULL && label != error_mark_node)
1843 tree x = fold_convert_loc (loc, TREE_TYPE (index),
1844 CASE_LOW (label));
1845 edge_info = allocate_edge_info (e);
1846 edge_info->lhs = index;
1847 edge_info->rhs = x;
1850 free (info);
1854 /* A COND_EXPR may create equivalences too. */
1855 if (gimple_code (stmt) == GIMPLE_COND)
1857 edge true_edge;
1858 edge false_edge;
1860 tree op0 = gimple_cond_lhs (stmt);
1861 tree op1 = gimple_cond_rhs (stmt);
1862 enum tree_code code = gimple_cond_code (stmt);
1864 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1866 /* Special case comparing booleans against a constant as we
1867 know the value of OP0 on both arms of the branch. i.e., we
1868 can record an equivalence for OP0 rather than COND. */
1869 if ((code == EQ_EXPR || code == NE_EXPR)
1870 && TREE_CODE (op0) == SSA_NAME
1871 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
1872 && is_gimple_min_invariant (op1))
1874 if (code == EQ_EXPR)
1876 edge_info = allocate_edge_info (true_edge);
1877 edge_info->lhs = op0;
1878 edge_info->rhs = (integer_zerop (op1)
1879 ? boolean_false_node
1880 : boolean_true_node);
1882 edge_info = allocate_edge_info (false_edge);
1883 edge_info->lhs = op0;
1884 edge_info->rhs = (integer_zerop (op1)
1885 ? boolean_true_node
1886 : boolean_false_node);
1888 else
1890 edge_info = allocate_edge_info (true_edge);
1891 edge_info->lhs = op0;
1892 edge_info->rhs = (integer_zerop (op1)
1893 ? boolean_true_node
1894 : boolean_false_node);
1896 edge_info = allocate_edge_info (false_edge);
1897 edge_info->lhs = op0;
1898 edge_info->rhs = (integer_zerop (op1)
1899 ? boolean_false_node
1900 : boolean_true_node);
1903 else if (is_gimple_min_invariant (op0)
1904 && (TREE_CODE (op1) == SSA_NAME
1905 || is_gimple_min_invariant (op1)))
1907 tree cond = build2 (code, boolean_type_node, op0, op1);
1908 tree inverted = invert_truthvalue_loc (loc, cond);
1909 bool can_infer_simple_equiv
1910 = !(HONOR_SIGNED_ZEROS (op0)
1911 && real_zerop (op0));
1912 struct edge_info *edge_info;
1914 edge_info = allocate_edge_info (true_edge);
1915 record_conditions (edge_info, cond, inverted);
1917 if (can_infer_simple_equiv && code == EQ_EXPR)
1919 edge_info->lhs = op1;
1920 edge_info->rhs = op0;
1923 edge_info = allocate_edge_info (false_edge);
1924 record_conditions (edge_info, inverted, cond);
1926 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
1928 edge_info->lhs = op1;
1929 edge_info->rhs = op0;
1933 else if (TREE_CODE (op0) == SSA_NAME
1934 && (TREE_CODE (op1) == SSA_NAME
1935 || is_gimple_min_invariant (op1)))
1937 tree cond = build2 (code, boolean_type_node, op0, op1);
1938 tree inverted = invert_truthvalue_loc (loc, cond);
1939 bool can_infer_simple_equiv
1940 = !(HONOR_SIGNED_ZEROS (op1)
1941 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
1942 struct edge_info *edge_info;
1944 edge_info = allocate_edge_info (true_edge);
1945 record_conditions (edge_info, cond, inverted);
1947 if (can_infer_simple_equiv && code == EQ_EXPR)
1949 edge_info->lhs = op0;
1950 edge_info->rhs = op1;
1953 edge_info = allocate_edge_info (false_edge);
1954 record_conditions (edge_info, inverted, cond);
1956 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
1958 edge_info->lhs = op0;
1959 edge_info->rhs = op1;
1964 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
1968 void
1969 dom_opt_dom_walker::before_dom_children (basic_block bb)
1971 gimple_stmt_iterator gsi;
1973 if (dump_file && (dump_flags & TDF_DETAILS))
1974 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1976 /* Push a marker on the stacks of local information so that we know how
1977 far to unwind when we finalize this block. */
1978 avail_exprs_stack.safe_push
1979 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL));
1980 const_and_copies_stack.safe_push (NULL_TREE);
1982 record_equivalences_from_incoming_edge (bb);
1984 /* PHI nodes can create equivalences too. */
1985 record_equivalences_from_phis (bb);
1987 /* Create equivalences from redundant PHIs. PHIs are only truly
1988 redundant when they exist in the same block, so push another
1989 marker and unwind right afterwards. */
1990 avail_exprs_stack.safe_push
1991 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL));
1992 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1993 eliminate_redundant_computations (&gsi);
1994 remove_local_expressions_from_table ();
1996 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1997 optimize_stmt (bb, gsi);
1999 /* Now prepare to process dominated blocks. */
2000 record_edge_info (bb);
2001 cprop_into_successor_phis (bb);
2004 /* We have finished processing the dominator children of BB, perform
2005 any finalization actions in preparation for leaving this node in
2006 the dominator tree. */
2008 void
2009 dom_opt_dom_walker::after_dom_children (basic_block bb)
2011 gimple last;
2013 /* If we have an outgoing edge to a block with multiple incoming and
2014 outgoing edges, then we may be able to thread the edge, i.e., we
2015 may be able to statically determine which of the outgoing edges
2016 will be traversed when the incoming edge from BB is traversed. */
2017 if (single_succ_p (bb)
2018 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
2019 && potentially_threadable_block (single_succ (bb)))
2021 thread_across_edge (single_succ_edge (bb));
2023 else if ((last = last_stmt (bb))
2024 && gimple_code (last) == GIMPLE_COND
2025 && EDGE_COUNT (bb->succs) == 2
2026 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
2027 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
2029 edge true_edge, false_edge;
2031 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2033 /* Only try to thread the edge if it reaches a target block with
2034 more than one predecessor and more than one successor. */
2035 if (potentially_threadable_block (true_edge->dest))
2036 thread_across_edge (true_edge);
2038 /* Similarly for the ELSE arm. */
2039 if (potentially_threadable_block (false_edge->dest))
2040 thread_across_edge (false_edge);
2044 /* These remove expressions local to BB from the tables. */
2045 remove_local_expressions_from_table ();
2046 restore_vars_to_original_value ();
2049 /* Search for redundant computations in STMT. If any are found, then
2050 replace them with the variable holding the result of the computation.
2052 If safe, record this expression into the available expression hash
2053 table. */
2055 static void
2056 eliminate_redundant_computations (gimple_stmt_iterator* gsi)
2058 tree expr_type;
2059 tree cached_lhs;
2060 tree def;
2061 bool insert = true;
2062 bool assigns_var_p = false;
2064 gimple stmt = gsi_stmt (*gsi);
2066 if (gimple_code (stmt) == GIMPLE_PHI)
2067 def = gimple_phi_result (stmt);
2068 else
2069 def = gimple_get_lhs (stmt);
2071 /* Certain expressions on the RHS can be optimized away, but can not
2072 themselves be entered into the hash tables. */
2073 if (! def
2074 || TREE_CODE (def) != SSA_NAME
2075 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
2076 || gimple_vdef (stmt)
2077 /* Do not record equivalences for increments of ivs. This would create
2078 overlapping live ranges for a very questionable gain. */
2079 || simple_iv_increment_p (stmt))
2080 insert = false;
2082 /* Check if the expression has been computed before. */
2083 cached_lhs = lookup_avail_expr (stmt, insert);
2085 opt_stats.num_exprs_considered++;
2087 /* Get the type of the expression we are trying to optimize. */
2088 if (is_gimple_assign (stmt))
2090 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
2091 assigns_var_p = true;
2093 else if (gimple_code (stmt) == GIMPLE_COND)
2094 expr_type = boolean_type_node;
2095 else if (is_gimple_call (stmt))
2097 gcc_assert (gimple_call_lhs (stmt));
2098 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
2099 assigns_var_p = true;
2101 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2102 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
2103 else if (gimple_code (stmt) == GIMPLE_PHI)
2104 /* We can't propagate into a phi, so the logic below doesn't apply.
2105 Instead record an equivalence between the cached LHS and the
2106 PHI result of this statement, provided they are in the same block.
2107 This should be sufficient to kill the redundant phi. */
2109 if (def && cached_lhs)
2110 record_const_or_copy (def, cached_lhs);
2111 return;
2113 else
2114 gcc_unreachable ();
2116 if (!cached_lhs)
2117 return;
2119 /* It is safe to ignore types here since we have already done
2120 type checking in the hashing and equality routines. In fact
2121 type checking here merely gets in the way of constant
2122 propagation. Also, make sure that it is safe to propagate
2123 CACHED_LHS into the expression in STMT. */
2124 if ((TREE_CODE (cached_lhs) != SSA_NAME
2125 && (assigns_var_p
2126 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
2127 || may_propagate_copy_into_stmt (stmt, cached_lhs))
2129 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
2130 || is_gimple_min_invariant (cached_lhs));
2132 if (dump_file && (dump_flags & TDF_DETAILS))
2134 fprintf (dump_file, " Replaced redundant expr '");
2135 print_gimple_expr (dump_file, stmt, 0, dump_flags);
2136 fprintf (dump_file, "' with '");
2137 print_generic_expr (dump_file, cached_lhs, dump_flags);
2138 fprintf (dump_file, "'\n");
2141 opt_stats.num_re++;
2143 if (assigns_var_p
2144 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
2145 cached_lhs = fold_convert (expr_type, cached_lhs);
2147 propagate_tree_value_into_stmt (gsi, cached_lhs);
2149 /* Since it is always necessary to mark the result as modified,
2150 perhaps we should move this into propagate_tree_value_into_stmt
2151 itself. */
2152 gimple_set_modified (gsi_stmt (*gsi), true);
2156 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
2157 the available expressions table or the const_and_copies table.
2158 Detect and record those equivalences. */
2159 /* We handle only very simple copy equivalences here. The heavy
2160 lifing is done by eliminate_redundant_computations. */
2162 static void
2163 record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
2165 tree lhs;
2166 enum tree_code lhs_code;
2168 gcc_assert (is_gimple_assign (stmt));
2170 lhs = gimple_assign_lhs (stmt);
2171 lhs_code = TREE_CODE (lhs);
2173 if (lhs_code == SSA_NAME
2174 && gimple_assign_single_p (stmt))
2176 tree rhs = gimple_assign_rhs1 (stmt);
2178 /* If the RHS of the assignment is a constant or another variable that
2179 may be propagated, register it in the CONST_AND_COPIES table. We
2180 do not need to record unwind data for this, since this is a true
2181 assignment and not an equivalence inferred from a comparison. All
2182 uses of this ssa name are dominated by this assignment, so unwinding
2183 just costs time and space. */
2184 if (may_optimize_p
2185 && (TREE_CODE (rhs) == SSA_NAME
2186 || is_gimple_min_invariant (rhs)))
2188 if (dump_file && (dump_flags & TDF_DETAILS))
2190 fprintf (dump_file, "==== ASGN ");
2191 print_generic_expr (dump_file, lhs, 0);
2192 fprintf (dump_file, " = ");
2193 print_generic_expr (dump_file, rhs, 0);
2194 fprintf (dump_file, "\n");
2197 set_ssa_name_value (lhs, rhs);
2201 /* Make sure we can propagate &x + CST. */
2202 if (lhs_code == SSA_NAME
2203 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
2204 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
2205 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
2207 tree op0 = gimple_assign_rhs1 (stmt);
2208 tree op1 = gimple_assign_rhs2 (stmt);
2209 tree new_rhs
2210 = build_fold_addr_expr (fold_build2 (MEM_REF,
2211 TREE_TYPE (TREE_TYPE (op0)),
2212 unshare_expr (op0),
2213 fold_convert (ptr_type_node,
2214 op1)));
2215 if (dump_file && (dump_flags & TDF_DETAILS))
2217 fprintf (dump_file, "==== ASGN ");
2218 print_generic_expr (dump_file, lhs, 0);
2219 fprintf (dump_file, " = ");
2220 print_generic_expr (dump_file, new_rhs, 0);
2221 fprintf (dump_file, "\n");
2224 set_ssa_name_value (lhs, new_rhs);
2227 /* A memory store, even an aliased store, creates a useful
2228 equivalence. By exchanging the LHS and RHS, creating suitable
2229 vops and recording the result in the available expression table,
2230 we may be able to expose more redundant loads. */
2231 if (!gimple_has_volatile_ops (stmt)
2232 && gimple_references_memory_p (stmt)
2233 && gimple_assign_single_p (stmt)
2234 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
2235 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
2236 && !is_gimple_reg (lhs))
2238 tree rhs = gimple_assign_rhs1 (stmt);
2239 gassign *new_stmt;
2241 /* Build a new statement with the RHS and LHS exchanged. */
2242 if (TREE_CODE (rhs) == SSA_NAME)
2244 /* NOTE tuples. The call to gimple_build_assign below replaced
2245 a call to build_gimple_modify_stmt, which did not set the
2246 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
2247 may cause an SSA validation failure, as the LHS may be a
2248 default-initialized name and should have no definition. I'm
2249 a bit dubious of this, as the artificial statement that we
2250 generate here may in fact be ill-formed, but it is simply
2251 used as an internal device in this pass, and never becomes
2252 part of the CFG. */
2253 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
2254 new_stmt = gimple_build_assign (rhs, lhs);
2255 SSA_NAME_DEF_STMT (rhs) = defstmt;
2257 else
2258 new_stmt = gimple_build_assign (rhs, lhs);
2260 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
2262 /* Finally enter the statement into the available expression
2263 table. */
2264 lookup_avail_expr (new_stmt, true);
2268 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2269 CONST_AND_COPIES. */
2271 static void
2272 cprop_operand (gimple stmt, use_operand_p op_p)
2274 tree val;
2275 tree op = USE_FROM_PTR (op_p);
2277 /* If the operand has a known constant value or it is known to be a
2278 copy of some other variable, use the value or copy stored in
2279 CONST_AND_COPIES. */
2280 val = SSA_NAME_VALUE (op);
2281 if (val && val != op)
2283 /* Do not replace hard register operands in asm statements. */
2284 if (gimple_code (stmt) == GIMPLE_ASM
2285 && !may_propagate_copy_into_asm (op))
2286 return;
2288 /* Certain operands are not allowed to be copy propagated due
2289 to their interaction with exception handling and some GCC
2290 extensions. */
2291 if (!may_propagate_copy (op, val))
2292 return;
2294 /* Do not propagate copies into BIVs.
2295 See PR23821 and PR62217 for how this can disturb IV and
2296 number of iteration analysis. */
2297 if (TREE_CODE (val) != INTEGER_CST)
2299 gimple def = SSA_NAME_DEF_STMT (op);
2300 if (gimple_code (def) == GIMPLE_PHI
2301 && gimple_bb (def)->loop_father->header == gimple_bb (def))
2302 return;
2305 /* Dump details. */
2306 if (dump_file && (dump_flags & TDF_DETAILS))
2308 fprintf (dump_file, " Replaced '");
2309 print_generic_expr (dump_file, op, dump_flags);
2310 fprintf (dump_file, "' with %s '",
2311 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2312 print_generic_expr (dump_file, val, dump_flags);
2313 fprintf (dump_file, "'\n");
2316 if (TREE_CODE (val) != SSA_NAME)
2317 opt_stats.num_const_prop++;
2318 else
2319 opt_stats.num_copy_prop++;
2321 propagate_value (op_p, val);
2323 /* And note that we modified this statement. This is now
2324 safe, even if we changed virtual operands since we will
2325 rescan the statement and rewrite its operands again. */
2326 gimple_set_modified (stmt, true);
2330 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2331 known value for that SSA_NAME (or NULL if no value is known).
2333 Propagate values from CONST_AND_COPIES into the uses, vuses and
2334 vdef_ops of STMT. */
2336 static void
2337 cprop_into_stmt (gimple stmt)
2339 use_operand_p op_p;
2340 ssa_op_iter iter;
2342 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
2343 cprop_operand (stmt, op_p);
2346 /* Optimize the statement pointed to by iterator SI.
2348 We try to perform some simplistic global redundancy elimination and
2349 constant propagation:
2351 1- To detect global redundancy, we keep track of expressions that have
2352 been computed in this block and its dominators. If we find that the
2353 same expression is computed more than once, we eliminate repeated
2354 computations by using the target of the first one.
2356 2- Constant values and copy assignments. This is used to do very
2357 simplistic constant and copy propagation. When a constant or copy
2358 assignment is found, we map the value on the RHS of the assignment to
2359 the variable in the LHS in the CONST_AND_COPIES table. */
2361 static void
2362 optimize_stmt (basic_block bb, gimple_stmt_iterator si)
2364 gimple stmt, old_stmt;
2365 bool may_optimize_p;
2366 bool modified_p = false;
2368 old_stmt = stmt = gsi_stmt (si);
2370 if (dump_file && (dump_flags & TDF_DETAILS))
2372 fprintf (dump_file, "Optimizing statement ");
2373 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2376 if (gimple_code (stmt) == GIMPLE_COND)
2377 canonicalize_comparison (as_a <gcond *> (stmt));
2379 update_stmt_if_modified (stmt);
2380 opt_stats.num_stmts++;
2382 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2383 cprop_into_stmt (stmt);
2385 /* If the statement has been modified with constant replacements,
2386 fold its RHS before checking for redundant computations. */
2387 if (gimple_modified_p (stmt))
2389 tree rhs = NULL;
2391 /* Try to fold the statement making sure that STMT is kept
2392 up to date. */
2393 if (fold_stmt (&si))
2395 stmt = gsi_stmt (si);
2396 gimple_set_modified (stmt, true);
2398 if (dump_file && (dump_flags & TDF_DETAILS))
2400 fprintf (dump_file, " Folded to: ");
2401 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2405 /* We only need to consider cases that can yield a gimple operand. */
2406 if (gimple_assign_single_p (stmt))
2407 rhs = gimple_assign_rhs1 (stmt);
2408 else if (gimple_code (stmt) == GIMPLE_GOTO)
2409 rhs = gimple_goto_dest (stmt);
2410 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2411 /* This should never be an ADDR_EXPR. */
2412 rhs = gimple_switch_index (swtch_stmt);
2414 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2415 recompute_tree_invariant_for_addr_expr (rhs);
2417 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2418 even if fold_stmt updated the stmt already and thus cleared
2419 gimple_modified_p flag on it. */
2420 modified_p = true;
2423 /* Check for redundant computations. Do this optimization only
2424 for assignments that have no volatile ops and conditionals. */
2425 may_optimize_p = (!gimple_has_side_effects (stmt)
2426 && (is_gimple_assign (stmt)
2427 || (is_gimple_call (stmt)
2428 && gimple_call_lhs (stmt) != NULL_TREE)
2429 || gimple_code (stmt) == GIMPLE_COND
2430 || gimple_code (stmt) == GIMPLE_SWITCH));
2432 if (may_optimize_p)
2434 if (gimple_code (stmt) == GIMPLE_CALL)
2436 /* Resolve __builtin_constant_p. If it hasn't been
2437 folded to integer_one_node by now, it's fairly
2438 certain that the value simply isn't constant. */
2439 tree callee = gimple_call_fndecl (stmt);
2440 if (callee
2441 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2442 && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
2444 propagate_tree_value_into_stmt (&si, integer_zero_node);
2445 stmt = gsi_stmt (si);
2449 update_stmt_if_modified (stmt);
2450 eliminate_redundant_computations (&si);
2451 stmt = gsi_stmt (si);
2453 /* Perform simple redundant store elimination. */
2454 if (gimple_assign_single_p (stmt)
2455 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2457 tree lhs = gimple_assign_lhs (stmt);
2458 tree rhs = gimple_assign_rhs1 (stmt);
2459 tree cached_lhs;
2460 gassign *new_stmt;
2461 if (TREE_CODE (rhs) == SSA_NAME)
2463 tree tem = SSA_NAME_VALUE (rhs);
2464 if (tem)
2465 rhs = tem;
2467 /* Build a new statement with the RHS and LHS exchanged. */
2468 if (TREE_CODE (rhs) == SSA_NAME)
2470 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
2471 new_stmt = gimple_build_assign (rhs, lhs);
2472 SSA_NAME_DEF_STMT (rhs) = defstmt;
2474 else
2475 new_stmt = gimple_build_assign (rhs, lhs);
2476 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2477 cached_lhs = lookup_avail_expr (new_stmt, false);
2478 if (cached_lhs
2479 && rhs == cached_lhs)
2481 basic_block bb = gimple_bb (stmt);
2482 unlink_stmt_vdef (stmt);
2483 if (gsi_remove (&si, true))
2485 bitmap_set_bit (need_eh_cleanup, bb->index);
2486 if (dump_file && (dump_flags & TDF_DETAILS))
2487 fprintf (dump_file, " Flagged to clear EH edges.\n");
2489 release_defs (stmt);
2490 return;
2495 /* Record any additional equivalences created by this statement. */
2496 if (is_gimple_assign (stmt))
2497 record_equivalences_from_stmt (stmt, may_optimize_p);
2499 /* If STMT is a COND_EXPR and it was modified, then we may know
2500 where it goes. If that is the case, then mark the CFG as altered.
2502 This will cause us to later call remove_unreachable_blocks and
2503 cleanup_tree_cfg when it is safe to do so. It is not safe to
2504 clean things up here since removal of edges and such can trigger
2505 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2506 the manager.
2508 That's all fine and good, except that once SSA_NAMEs are released
2509 to the manager, we must not call create_ssa_name until all references
2510 to released SSA_NAMEs have been eliminated.
2512 All references to the deleted SSA_NAMEs can not be eliminated until
2513 we remove unreachable blocks.
2515 We can not remove unreachable blocks until after we have completed
2516 any queued jump threading.
2518 We can not complete any queued jump threads until we have taken
2519 appropriate variables out of SSA form. Taking variables out of
2520 SSA form can call create_ssa_name and thus we lose.
2522 Ultimately I suspect we're going to need to change the interface
2523 into the SSA_NAME manager. */
2524 if (gimple_modified_p (stmt) || modified_p)
2526 tree val = NULL;
2528 update_stmt_if_modified (stmt);
2530 if (gimple_code (stmt) == GIMPLE_COND)
2531 val = fold_binary_loc (gimple_location (stmt),
2532 gimple_cond_code (stmt), boolean_type_node,
2533 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
2534 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2535 val = gimple_switch_index (swtch_stmt);
2537 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
2538 cfg_altered = true;
2540 /* If we simplified a statement in such a way as to be shown that it
2541 cannot trap, update the eh information and the cfg to match. */
2542 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2544 bitmap_set_bit (need_eh_cleanup, bb->index);
2545 if (dump_file && (dump_flags & TDF_DETAILS))
2546 fprintf (dump_file, " Flagged to clear EH edges.\n");
2551 /* Helper for walk_non_aliased_vuses. Determine if we arrived at
2552 the desired memory state. */
2554 static void *
2555 vuse_eq (ao_ref *, tree vuse1, unsigned int cnt, void *data)
2557 tree vuse2 = (tree) data;
2558 if (vuse1 == vuse2)
2559 return data;
2561 /* This bounds the stmt walks we perform on reference lookups
2562 to O(1) instead of O(N) where N is the number of dominating
2563 stores leading to a candidate. We re-use the SCCVN param
2564 for this as it is basically the same complexity. */
2565 if (cnt > (unsigned) PARAM_VALUE (PARAM_SCCVN_MAX_ALIAS_QUERIES_PER_ACCESS))
2566 return (void *)-1;
2568 return NULL;
2571 /* Search for an existing instance of STMT in the AVAIL_EXPRS table.
2572 If found, return its LHS. Otherwise insert STMT in the table and
2573 return NULL_TREE.
2575 Also, when an expression is first inserted in the table, it is also
2576 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
2577 we finish processing this block and its children. */
2579 static tree
2580 lookup_avail_expr (gimple stmt, bool insert)
2582 expr_hash_elt **slot;
2583 tree lhs;
2584 tree temp;
2585 struct expr_hash_elt element;
2587 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
2588 if (gimple_code (stmt) == GIMPLE_PHI)
2589 lhs = gimple_phi_result (stmt);
2590 else
2591 lhs = gimple_get_lhs (stmt);
2593 initialize_hash_element (stmt, lhs, &element);
2595 if (dump_file && (dump_flags & TDF_DETAILS))
2597 fprintf (dump_file, "LKUP ");
2598 print_expr_hash_elt (dump_file, &element);
2601 /* Don't bother remembering constant assignments and copy operations.
2602 Constants and copy operations are handled by the constant/copy propagator
2603 in optimize_stmt. */
2604 if (element.expr.kind == EXPR_SINGLE
2605 && (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
2606 || is_gimple_min_invariant (element.expr.ops.single.rhs)))
2607 return NULL_TREE;
2609 /* Finally try to find the expression in the main expression hash table. */
2610 slot = avail_exprs->find_slot (&element, (insert ? INSERT : NO_INSERT));
2611 if (slot == NULL)
2613 free_expr_hash_elt_contents (&element);
2614 return NULL_TREE;
2616 else if (*slot == NULL)
2618 struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
2619 *element2 = element;
2620 element2->stamp = element2;
2621 *slot = element2;
2623 if (dump_file && (dump_flags & TDF_DETAILS))
2625 fprintf (dump_file, "2>>> ");
2626 print_expr_hash_elt (dump_file, element2);
2629 avail_exprs_stack.safe_push
2630 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (element2, NULL));
2631 return NULL_TREE;
2634 /* If we found a redundant memory operation do an alias walk to
2635 check if we can re-use it. */
2636 if (gimple_vuse (stmt) != (*slot)->vop)
2638 tree vuse1 = (*slot)->vop;
2639 tree vuse2 = gimple_vuse (stmt);
2640 /* If we have a load of a register and a candidate in the
2641 hash with vuse1 then try to reach its stmt by walking
2642 up the virtual use-def chain using walk_non_aliased_vuses.
2643 But don't do this when removing expressions from the hash. */
2644 ao_ref ref;
2645 if (!(vuse1 && vuse2
2646 && gimple_assign_single_p (stmt)
2647 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
2648 && (ao_ref_init (&ref, gimple_assign_rhs1 (stmt)), true)
2649 && walk_non_aliased_vuses (&ref, vuse2,
2650 vuse_eq, NULL, NULL, vuse1) != NULL))
2652 if (insert)
2654 struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
2655 *element2 = element;
2656 element2->stamp = element2;
2658 /* Insert the expr into the hash by replacing the current
2659 entry and recording the value to restore in the
2660 avail_exprs_stack. */
2661 avail_exprs_stack.safe_push (std::make_pair (element2, *slot));
2662 *slot = element2;
2663 if (dump_file && (dump_flags & TDF_DETAILS))
2665 fprintf (dump_file, "2>>> ");
2666 print_expr_hash_elt (dump_file, *slot);
2669 return NULL_TREE;
2673 free_expr_hash_elt_contents (&element);
2675 /* Extract the LHS of the assignment so that it can be used as the current
2676 definition of another variable. */
2677 lhs = (*slot)->lhs;
2679 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
2680 use the value from the const_and_copies table. */
2681 if (TREE_CODE (lhs) == SSA_NAME)
2683 temp = SSA_NAME_VALUE (lhs);
2684 if (temp)
2685 lhs = temp;
2688 if (dump_file && (dump_flags & TDF_DETAILS))
2690 fprintf (dump_file, "FIND: ");
2691 print_generic_expr (dump_file, lhs, 0);
2692 fprintf (dump_file, "\n");
2695 return lhs;
2698 /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
2699 for expressions using the code of the expression and the SSA numbers of
2700 its operands. */
2702 static hashval_t
2703 avail_expr_hash (const void *p)
2705 const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
2706 inchash::hash hstate;
2708 inchash::add_hashable_expr (expr, hstate);
2710 return hstate.end ();
2713 /* PHI-ONLY copy and constant propagation. This pass is meant to clean
2714 up degenerate PHIs created by or exposed by jump threading. */
2716 /* Given a statement STMT, which is either a PHI node or an assignment,
2717 remove it from the IL. */
2719 static void
2720 remove_stmt_or_phi (gimple stmt)
2722 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2724 if (gimple_code (stmt) == GIMPLE_PHI)
2725 remove_phi_node (&gsi, true);
2726 else
2728 gsi_remove (&gsi, true);
2729 release_defs (stmt);
2733 /* Given a statement STMT, which is either a PHI node or an assignment,
2734 return the "rhs" of the node, in the case of a non-degenerate
2735 phi, NULL is returned. */
2737 static tree
2738 get_rhs_or_phi_arg (gimple stmt)
2740 if (gimple_code (stmt) == GIMPLE_PHI)
2741 return degenerate_phi_result (as_a <gphi *> (stmt));
2742 else if (gimple_assign_single_p (stmt))
2743 return gimple_assign_rhs1 (stmt);
2744 else
2745 gcc_unreachable ();
2749 /* Given a statement STMT, which is either a PHI node or an assignment,
2750 return the "lhs" of the node. */
2752 static tree
2753 get_lhs_or_phi_result (gimple stmt)
2755 if (gimple_code (stmt) == GIMPLE_PHI)
2756 return gimple_phi_result (stmt);
2757 else if (is_gimple_assign (stmt))
2758 return gimple_assign_lhs (stmt);
2759 else
2760 gcc_unreachable ();
2763 /* Propagate RHS into all uses of LHS (when possible).
2765 RHS and LHS are derived from STMT, which is passed in solely so
2766 that we can remove it if propagation is successful.
2768 When propagating into a PHI node or into a statement which turns
2769 into a trivial copy or constant initialization, set the
2770 appropriate bit in INTERESTING_NAMEs so that we will visit those
2771 nodes as well in an effort to pick up secondary optimization
2772 opportunities. */
2774 static void
2775 propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
2777 /* First verify that propagation is valid. */
2778 if (may_propagate_copy (lhs, rhs))
2780 use_operand_p use_p;
2781 imm_use_iterator iter;
2782 gimple use_stmt;
2783 bool all = true;
2785 /* Dump details. */
2786 if (dump_file && (dump_flags & TDF_DETAILS))
2788 fprintf (dump_file, " Replacing '");
2789 print_generic_expr (dump_file, lhs, dump_flags);
2790 fprintf (dump_file, "' with %s '",
2791 (TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
2792 print_generic_expr (dump_file, rhs, dump_flags);
2793 fprintf (dump_file, "'\n");
2796 /* Walk over every use of LHS and try to replace the use with RHS.
2797 At this point the only reason why such a propagation would not
2798 be successful would be if the use occurs in an ASM_EXPR. */
2799 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2801 /* Leave debug stmts alone. If we succeed in propagating
2802 all non-debug uses, we'll drop the DEF, and propagation
2803 into debug stmts will occur then. */
2804 if (gimple_debug_bind_p (use_stmt))
2805 continue;
2807 /* It's not always safe to propagate into an ASM_EXPR. */
2808 if (gimple_code (use_stmt) == GIMPLE_ASM
2809 && ! may_propagate_copy_into_asm (lhs))
2811 all = false;
2812 continue;
2815 /* It's not ok to propagate into the definition stmt of RHS.
2816 <bb 9>:
2817 # prephitmp.12_36 = PHI <g_67.1_6(9)>
2818 g_67.1_6 = prephitmp.12_36;
2819 goto <bb 9>;
2820 While this is strictly all dead code we do not want to
2821 deal with this here. */
2822 if (TREE_CODE (rhs) == SSA_NAME
2823 && SSA_NAME_DEF_STMT (rhs) == use_stmt)
2825 all = false;
2826 continue;
2829 /* Dump details. */
2830 if (dump_file && (dump_flags & TDF_DETAILS))
2832 fprintf (dump_file, " Original statement:");
2833 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2836 /* Propagate the RHS into this use of the LHS. */
2837 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2838 propagate_value (use_p, rhs);
2840 /* Special cases to avoid useless calls into the folding
2841 routines, operand scanning, etc.
2843 Propagation into a PHI may cause the PHI to become
2844 a degenerate, so mark the PHI as interesting. No other
2845 actions are necessary. */
2846 if (gimple_code (use_stmt) == GIMPLE_PHI)
2848 tree result;
2850 /* Dump details. */
2851 if (dump_file && (dump_flags & TDF_DETAILS))
2853 fprintf (dump_file, " Updated statement:");
2854 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2857 result = get_lhs_or_phi_result (use_stmt);
2858 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2859 continue;
2862 /* From this point onward we are propagating into a
2863 real statement. Folding may (or may not) be possible,
2864 we may expose new operands, expose dead EH edges,
2865 etc. */
2866 /* NOTE tuples. In the tuples world, fold_stmt_inplace
2867 cannot fold a call that simplifies to a constant,
2868 because the GIMPLE_CALL must be replaced by a
2869 GIMPLE_ASSIGN, and there is no way to effect such a
2870 transformation in-place. We might want to consider
2871 using the more general fold_stmt here. */
2873 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2874 fold_stmt_inplace (&gsi);
2877 /* Sometimes propagation can expose new operands to the
2878 renamer. */
2879 update_stmt (use_stmt);
2881 /* Dump details. */
2882 if (dump_file && (dump_flags & TDF_DETAILS))
2884 fprintf (dump_file, " Updated statement:");
2885 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2888 /* If we replaced a variable index with a constant, then
2889 we would need to update the invariant flag for ADDR_EXPRs. */
2890 if (gimple_assign_single_p (use_stmt)
2891 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
2892 recompute_tree_invariant_for_addr_expr
2893 (gimple_assign_rhs1 (use_stmt));
2895 /* If we cleaned up EH information from the statement,
2896 mark its containing block as needing EH cleanups. */
2897 if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
2899 bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
2900 if (dump_file && (dump_flags & TDF_DETAILS))
2901 fprintf (dump_file, " Flagged to clear EH edges.\n");
2904 /* Propagation may expose new trivial copy/constant propagation
2905 opportunities. */
2906 if (gimple_assign_single_p (use_stmt)
2907 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
2908 && (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
2909 || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
2911 tree result = get_lhs_or_phi_result (use_stmt);
2912 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2915 /* Propagation into these nodes may make certain edges in
2916 the CFG unexecutable. We want to identify them as PHI nodes
2917 at the destination of those unexecutable edges may become
2918 degenerates. */
2919 else if (gimple_code (use_stmt) == GIMPLE_COND
2920 || gimple_code (use_stmt) == GIMPLE_SWITCH
2921 || gimple_code (use_stmt) == GIMPLE_GOTO)
2923 tree val;
2925 if (gimple_code (use_stmt) == GIMPLE_COND)
2926 val = fold_binary_loc (gimple_location (use_stmt),
2927 gimple_cond_code (use_stmt),
2928 boolean_type_node,
2929 gimple_cond_lhs (use_stmt),
2930 gimple_cond_rhs (use_stmt));
2931 else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
2932 val = gimple_switch_index (as_a <gswitch *> (use_stmt));
2933 else
2934 val = gimple_goto_dest (use_stmt);
2936 if (val && is_gimple_min_invariant (val))
2938 basic_block bb = gimple_bb (use_stmt);
2939 edge te = find_taken_edge (bb, val);
2940 edge_iterator ei;
2941 edge e;
2942 gimple_stmt_iterator gsi;
2943 gphi_iterator psi;
2945 /* Remove all outgoing edges except TE. */
2946 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
2948 if (e != te)
2950 /* Mark all the PHI nodes at the destination of
2951 the unexecutable edge as interesting. */
2952 for (psi = gsi_start_phis (e->dest);
2953 !gsi_end_p (psi);
2954 gsi_next (&psi))
2956 gphi *phi = psi.phi ();
2958 tree result = gimple_phi_result (phi);
2959 int version = SSA_NAME_VERSION (result);
2961 bitmap_set_bit (interesting_names, version);
2964 te->probability += e->probability;
2966 te->count += e->count;
2967 remove_edge (e);
2968 cfg_altered = true;
2970 else
2971 ei_next (&ei);
2974 gsi = gsi_last_bb (gimple_bb (use_stmt));
2975 gsi_remove (&gsi, true);
2977 /* And fixup the flags on the single remaining edge. */
2978 te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
2979 te->flags &= ~EDGE_ABNORMAL;
2980 te->flags |= EDGE_FALLTHRU;
2981 if (te->probability > REG_BR_PROB_BASE)
2982 te->probability = REG_BR_PROB_BASE;
2987 /* Ensure there is nothing else to do. */
2988 gcc_assert (!all || has_zero_uses (lhs));
2990 /* If we were able to propagate away all uses of LHS, then
2991 we can remove STMT. */
2992 if (all)
2993 remove_stmt_or_phi (stmt);
2997 /* STMT is either a PHI node (potentially a degenerate PHI node) or
2998 a statement that is a trivial copy or constant initialization.
3000 Attempt to eliminate T by propagating its RHS into all uses of
3001 its LHS. This may in turn set new bits in INTERESTING_NAMES
3002 for nodes we want to revisit later.
3004 All exit paths should clear INTERESTING_NAMES for the result
3005 of STMT. */
3007 static void
3008 eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
3010 tree lhs = get_lhs_or_phi_result (stmt);
3011 tree rhs;
3012 int version = SSA_NAME_VERSION (lhs);
3014 /* If the LHS of this statement or PHI has no uses, then we can
3015 just eliminate it. This can occur if, for example, the PHI
3016 was created by block duplication due to threading and its only
3017 use was in the conditional at the end of the block which was
3018 deleted. */
3019 if (has_zero_uses (lhs))
3021 bitmap_clear_bit (interesting_names, version);
3022 remove_stmt_or_phi (stmt);
3023 return;
3026 /* Get the RHS of the assignment or PHI node if the PHI is a
3027 degenerate. */
3028 rhs = get_rhs_or_phi_arg (stmt);
3029 if (!rhs)
3031 bitmap_clear_bit (interesting_names, version);
3032 return;
3035 if (!virtual_operand_p (lhs))
3036 propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);
3037 else
3039 gimple use_stmt;
3040 imm_use_iterator iter;
3041 use_operand_p use_p;
3042 /* For virtual operands we have to propagate into all uses as
3043 otherwise we will create overlapping life-ranges. */
3044 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3045 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3046 SET_USE (use_p, rhs);
3047 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3048 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3049 remove_stmt_or_phi (stmt);
3052 /* Note that STMT may well have been deleted by now, so do
3053 not access it, instead use the saved version # to clear
3054 T's entry in the worklist. */
3055 bitmap_clear_bit (interesting_names, version);
3058 /* The first phase in degenerate PHI elimination.
3060 Eliminate the degenerate PHIs in BB, then recurse on the
3061 dominator children of BB. */
3063 static void
3064 eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
3066 gphi_iterator gsi;
3067 basic_block son;
3069 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3071 gphi *phi = gsi.phi ();
3073 eliminate_const_or_copy (phi, interesting_names);
3076 /* Recurse into the dominator children of BB. */
3077 for (son = first_dom_son (CDI_DOMINATORS, bb);
3078 son;
3079 son = next_dom_son (CDI_DOMINATORS, son))
3080 eliminate_degenerate_phis_1 (son, interesting_names);
3084 /* A very simple pass to eliminate degenerate PHI nodes from the
3085 IL. This is meant to be fast enough to be able to be run several
3086 times in the optimization pipeline.
3088 Certain optimizations, particularly those which duplicate blocks
3089 or remove edges from the CFG can create or expose PHIs which are
3090 trivial copies or constant initializations.
3092 While we could pick up these optimizations in DOM or with the
3093 combination of copy-prop and CCP, those solutions are far too
3094 heavy-weight for our needs.
3096 This implementation has two phases so that we can efficiently
3097 eliminate the first order degenerate PHIs and second order
3098 degenerate PHIs.
3100 The first phase performs a dominator walk to identify and eliminate
3101 the vast majority of the degenerate PHIs. When a degenerate PHI
3102 is identified and eliminated any affected statements or PHIs
3103 are put on a worklist.
3105 The second phase eliminates degenerate PHIs and trivial copies
3106 or constant initializations using the worklist. This is how we
3107 pick up the secondary optimization opportunities with minimal
3108 cost. */
3110 namespace {
3112 const pass_data pass_data_phi_only_cprop =
3114 GIMPLE_PASS, /* type */
3115 "phicprop", /* name */
3116 OPTGROUP_NONE, /* optinfo_flags */
3117 TV_TREE_PHI_CPROP, /* tv_id */
3118 ( PROP_cfg | PROP_ssa ), /* properties_required */
3119 0, /* properties_provided */
3120 0, /* properties_destroyed */
3121 0, /* todo_flags_start */
3122 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
3125 class pass_phi_only_cprop : public gimple_opt_pass
3127 public:
3128 pass_phi_only_cprop (gcc::context *ctxt)
3129 : gimple_opt_pass (pass_data_phi_only_cprop, ctxt)
3132 /* opt_pass methods: */
3133 opt_pass * clone () { return new pass_phi_only_cprop (m_ctxt); }
3134 virtual bool gate (function *) { return flag_tree_dom != 0; }
3135 virtual unsigned int execute (function *);
3137 }; // class pass_phi_only_cprop
3139 unsigned int
3140 pass_phi_only_cprop::execute (function *fun)
3142 bitmap interesting_names;
3143 bitmap interesting_names1;
3145 /* Bitmap of blocks which need EH information updated. We can not
3146 update it on-the-fly as doing so invalidates the dominator tree. */
3147 need_eh_cleanup = BITMAP_ALLOC (NULL);
3149 /* INTERESTING_NAMES is effectively our worklist, indexed by
3150 SSA_NAME_VERSION.
3152 A set bit indicates that the statement or PHI node which
3153 defines the SSA_NAME should be (re)examined to determine if
3154 it has become a degenerate PHI or trivial const/copy propagation
3155 opportunity.
3157 Experiments have show we generally get better compilation
3158 time behavior with bitmaps rather than sbitmaps. */
3159 interesting_names = BITMAP_ALLOC (NULL);
3160 interesting_names1 = BITMAP_ALLOC (NULL);
3162 calculate_dominance_info (CDI_DOMINATORS);
3163 cfg_altered = false;
3165 /* First phase. Eliminate degenerate PHIs via a dominator
3166 walk of the CFG.
3168 Experiments have indicated that we generally get better
3169 compile-time behavior by visiting blocks in the first
3170 phase in dominator order. Presumably this is because walking
3171 in dominator order leaves fewer PHIs for later examination
3172 by the worklist phase. */
3173 eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR_FOR_FN (fun),
3174 interesting_names);
3176 /* Second phase. Eliminate second order degenerate PHIs as well
3177 as trivial copies or constant initializations identified by
3178 the first phase or this phase. Basically we keep iterating
3179 until our set of INTERESTING_NAMEs is empty. */
3180 while (!bitmap_empty_p (interesting_names))
3182 unsigned int i;
3183 bitmap_iterator bi;
3185 /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
3186 changed during the loop. Copy it to another bitmap and
3187 use that. */
3188 bitmap_copy (interesting_names1, interesting_names);
3190 EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
3192 tree name = ssa_name (i);
3194 /* Ignore SSA_NAMEs that have been released because
3195 their defining statement was deleted (unreachable). */
3196 if (name)
3197 eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
3198 interesting_names);
3202 if (cfg_altered)
3204 free_dominance_info (CDI_DOMINATORS);
3205 /* If we changed the CFG schedule loops for fixup by cfgcleanup. */
3206 loops_state_set (LOOPS_NEED_FIXUP);
3209 /* Propagation of const and copies may make some EH edges dead. Purge
3210 such edges from the CFG as needed. */
3211 if (!bitmap_empty_p (need_eh_cleanup))
3213 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
3214 BITMAP_FREE (need_eh_cleanup);
3217 BITMAP_FREE (interesting_names);
3218 BITMAP_FREE (interesting_names1);
3219 return 0;
3222 } // anon namespace
3224 gimple_opt_pass *
3225 make_pass_phi_only_cprop (gcc::context *ctxt)
3227 return new pass_phi_only_cprop (ctxt);