* gcc.c-torture/execute/20041113-1.c: New test.
[official-gcc.git] / gcc / tree-ssa-dce.c
blob54733541a0e9f34e51f898481cc2390b9c31b6d5
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Dead code elimination.
26 References:
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "errors.h"
51 #include "ggc.h"
53 /* These RTL headers are needed for basic-block.h. */
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "hard-reg-set.h"
57 #include "basic-block.h"
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
68 static struct stmt_stats
70 int total;
71 int total_phis;
72 int removed;
73 int removed_phis;
74 } stats;
76 static varray_type worklist;
78 /* Vector indicating an SSA name has already been processed and marked
79 as necessary. */
80 static sbitmap processed;
82 /* Vector indicating that last_stmt if a basic block has already been
83 marked as necessary. */
84 static sbitmap last_stmt_necessary;
86 /* Before we can determine whether a control branch is dead, we need to
87 compute which blocks are control dependent on which edges.
89 We expect each block to be control dependent on very few edges so we
90 use a bitmap for each block recording its edges. An array holds the
91 bitmap. The Ith bit in the bitmap is set if that block is dependent
92 on the Ith edge. */
93 bitmap *control_dependence_map;
95 /* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
96 for which the block with index N is control dependent. */
97 #define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
98 { \
99 bitmap_iterator bi; \
101 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, bi) \
103 CODE; \
107 /* Local function prototypes. */
108 static inline void set_control_dependence_map_bit (basic_block, int);
109 static inline void clear_control_dependence_bitmap (basic_block);
110 static void find_all_control_dependences (struct edge_list *);
111 static void find_control_dependence (struct edge_list *, int);
112 static inline basic_block find_pdom (basic_block);
114 static inline void mark_stmt_necessary (tree, bool);
115 static inline void mark_operand_necessary (tree, bool);
117 static void mark_stmt_if_obviously_necessary (tree, bool);
118 static void find_obviously_necessary_stmts (struct edge_list *);
120 static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
121 static void propagate_necessity (struct edge_list *);
123 static void eliminate_unnecessary_stmts (void);
124 static void remove_dead_phis (basic_block);
125 static void remove_dead_stmt (block_stmt_iterator *, basic_block);
127 static void print_stats (void);
128 static void tree_dce_init (bool);
129 static void tree_dce_done (bool);
131 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
132 static inline void
133 set_control_dependence_map_bit (basic_block bb, int edge_index)
135 if (bb == ENTRY_BLOCK_PTR)
136 return;
137 gcc_assert (bb != EXIT_BLOCK_PTR);
138 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
141 /* Clear all control dependences for block BB. */
142 static inline
143 void clear_control_dependence_bitmap (basic_block bb)
145 bitmap_clear (control_dependence_map[bb->index]);
148 /* Record all blocks' control dependences on all edges in the edge
149 list EL, ala Morgan, Section 3.6. */
151 static void
152 find_all_control_dependences (struct edge_list *el)
154 int i;
156 for (i = 0; i < NUM_EDGES (el); ++i)
157 find_control_dependence (el, i);
160 /* Determine all blocks' control dependences on the given edge with edge_list
161 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
163 static void
164 find_control_dependence (struct edge_list *el, int edge_index)
166 basic_block current_block;
167 basic_block ending_block;
169 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
171 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
172 ending_block = ENTRY_BLOCK_PTR->next_bb;
173 else
174 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
176 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
177 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
178 current_block = find_pdom (current_block))
180 edge e = INDEX_EDGE (el, edge_index);
182 /* For abnormal edges, we don't make current_block control
183 dependent because instructions that throw are always necessary
184 anyway. */
185 if (e->flags & EDGE_ABNORMAL)
186 continue;
188 set_control_dependence_map_bit (current_block, edge_index);
192 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
193 This function is necessary because some blocks have negative numbers. */
195 static inline basic_block
196 find_pdom (basic_block block)
198 gcc_assert (block != ENTRY_BLOCK_PTR);
200 if (block == EXIT_BLOCK_PTR)
201 return EXIT_BLOCK_PTR;
202 else
204 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
205 if (! bb)
206 return EXIT_BLOCK_PTR;
207 return bb;
211 #define NECESSARY(stmt) stmt->common.asm_written_flag
213 /* If STMT is not already marked necessary, mark it, and add it to the
214 worklist if ADD_TO_WORKLIST is true. */
215 static inline void
216 mark_stmt_necessary (tree stmt, bool add_to_worklist)
218 gcc_assert (stmt);
219 gcc_assert (stmt != error_mark_node);
220 gcc_assert (!DECL_P (stmt));
222 if (NECESSARY (stmt))
223 return;
225 if (dump_file && (dump_flags & TDF_DETAILS))
227 fprintf (dump_file, "Marking useful stmt: ");
228 print_generic_stmt (dump_file, stmt, TDF_SLIM);
229 fprintf (dump_file, "\n");
232 NECESSARY (stmt) = 1;
233 if (add_to_worklist)
234 VARRAY_PUSH_TREE (worklist, stmt);
237 /* Mark the statement defining operand OP as necessary. PHIONLY is true
238 if we should only mark it necessary if it is a phi node. */
240 static inline void
241 mark_operand_necessary (tree op, bool phionly)
243 tree stmt;
244 int ver;
246 gcc_assert (op);
248 ver = SSA_NAME_VERSION (op);
249 if (TEST_BIT (processed, ver))
250 return;
251 SET_BIT (processed, ver);
253 stmt = SSA_NAME_DEF_STMT (op);
254 gcc_assert (stmt);
256 if (NECESSARY (stmt)
257 || IS_EMPTY_STMT (stmt)
258 || (phionly && TREE_CODE (stmt) != PHI_NODE))
259 return;
261 NECESSARY (stmt) = 1;
262 VARRAY_PUSH_TREE (worklist, stmt);
266 /* Mark STMT as necessary if it is obviously is. Add it to the worklist if
267 it can make other statements necessary.
269 If AGGRESSIVE is false, control statements are conservatively marked as
270 necessary. */
272 static void
273 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
275 v_may_def_optype v_may_defs;
276 v_must_def_optype v_must_defs;
277 stmt_ann_t ann;
278 tree op, def;
279 ssa_op_iter iter;
281 /* Statements that are implicitly live. Most function calls, asm and return
282 statements are required. Labels and BIND_EXPR nodes are kept because
283 they are control flow, and we have no way of knowing whether they can be
284 removed. DCE can eliminate all the other statements in a block, and CFG
285 can then remove the block and labels. */
286 switch (TREE_CODE (stmt))
288 case BIND_EXPR:
289 case LABEL_EXPR:
290 case CASE_LABEL_EXPR:
291 mark_stmt_necessary (stmt, false);
292 return;
294 case ASM_EXPR:
295 case RESX_EXPR:
296 case RETURN_EXPR:
297 mark_stmt_necessary (stmt, true);
298 return;
300 case CALL_EXPR:
301 /* Most, but not all function calls are required. Function calls that
302 produce no result and have no side effects (i.e. const pure
303 functions) are unnecessary. */
304 if (TREE_SIDE_EFFECTS (stmt))
305 mark_stmt_necessary (stmt, true);
306 return;
308 case MODIFY_EXPR:
309 op = get_call_expr_in (stmt);
310 if (op && TREE_SIDE_EFFECTS (op))
312 mark_stmt_necessary (stmt, true);
313 return;
316 /* These values are mildly magic bits of the EH runtime. We can't
317 see the entire lifetime of these values until landing pads are
318 generated. */
319 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
320 || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
322 mark_stmt_necessary (stmt, true);
323 return;
325 break;
327 case GOTO_EXPR:
328 gcc_assert (!simple_goto_p (stmt));
329 mark_stmt_necessary (stmt, true);
330 return;
332 case COND_EXPR:
333 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
334 /* Fall through. */
336 case SWITCH_EXPR:
337 if (! aggressive)
338 mark_stmt_necessary (stmt, true);
339 break;
341 default:
342 break;
345 ann = stmt_ann (stmt);
347 /* If the statement has volatile operands, it needs to be preserved.
348 Same for statements that can alter control flow in unpredictable
349 ways. */
350 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
352 mark_stmt_necessary (stmt, true);
353 return;
356 get_stmt_operands (stmt);
358 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
360 if (is_global_var (SSA_NAME_VAR (def)))
362 mark_stmt_necessary (stmt, true);
363 return;
367 /* Check virtual definitions. If we get here, the only virtual
368 definitions we should see are those generated by assignment
369 statements. */
370 v_may_defs = V_MAY_DEF_OPS (ann);
371 v_must_defs = V_MUST_DEF_OPS (ann);
372 if (NUM_V_MAY_DEFS (v_may_defs) > 0 || NUM_V_MUST_DEFS (v_must_defs) > 0)
374 tree lhs;
376 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
378 /* Note that we must not check the individual virtual operands
379 here. In particular, if this is an aliased store, we could
380 end up with something like the following (SSA notation
381 redacted for brevity):
383 foo (int *p, int i)
385 int x;
386 p_1 = (i_2 > 3) ? &x : p_1;
388 # x_4 = V_MAY_DEF <x_3>
389 *p_1 = 5;
391 return 2;
394 Notice that the store to '*p_1' should be preserved, if we
395 were to check the virtual definitions in that store, we would
396 not mark it needed. This is because 'x' is not a global
397 variable.
399 Therefore, we check the base address of the LHS. If the
400 address is a pointer, we check if its name tag or type tag is
401 a global variable. Otherwise, we check if the base variable
402 is a global. */
403 lhs = TREE_OPERAND (stmt, 0);
404 if (REFERENCE_CLASS_P (lhs))
405 lhs = get_base_address (lhs);
407 if (lhs == NULL_TREE)
409 /* If LHS is NULL, it means that we couldn't get the base
410 address of the reference. In which case, we should not
411 remove this store. */
412 mark_stmt_necessary (stmt, true);
414 else if (DECL_P (lhs))
416 /* If the store is to a global symbol, we need to keep it. */
417 if (is_global_var (lhs))
418 mark_stmt_necessary (stmt, true);
420 else if (INDIRECT_REF_P (lhs))
422 tree ptr = TREE_OPERAND (lhs, 0);
423 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
424 tree nmt = (pi) ? pi->name_mem_tag : NULL_TREE;
425 tree tmt = var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
427 /* If either the name tag or the type tag for PTR is a
428 global variable, then the store is necessary. */
429 if ((nmt && is_global_var (nmt))
430 || (tmt && is_global_var (tmt)))
432 mark_stmt_necessary (stmt, true);
433 return;
436 else
437 gcc_unreachable ();
440 return;
443 /* Find obviously necessary statements. These are things like most function
444 calls, and stores to file level variables.
446 If EL is NULL, control statements are conservatively marked as
447 necessary. Otherwise it contains the list of edges used by control
448 dependence analysis. */
450 static void
451 find_obviously_necessary_stmts (struct edge_list *el)
453 basic_block bb;
454 block_stmt_iterator i;
455 edge e;
457 FOR_EACH_BB (bb)
459 tree phi;
461 /* Check any PHI nodes in the block. */
462 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
464 NECESSARY (phi) = 0;
466 /* PHIs for virtual variables do not directly affect code
467 generation and need not be considered inherently necessary
468 regardless of the bits set in their decl.
470 Thus, we only need to mark PHIs for real variables which
471 need their result preserved as being inherently necessary. */
472 if (is_gimple_reg (PHI_RESULT (phi))
473 && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
474 mark_stmt_necessary (phi, true);
477 /* Check all statements in the block. */
478 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
480 tree stmt = bsi_stmt (i);
481 NECESSARY (stmt) = 0;
482 mark_stmt_if_obviously_necessary (stmt, el != NULL);
485 /* Mark this basic block as `not visited'. A block will be marked
486 visited when the edges that it is control dependent on have been
487 marked. */
488 bb->flags &= ~BB_VISITED;
491 if (el)
493 /* Prevent the loops from being removed. We must keep the infinite loops,
494 and we currently do not have a means to recognize the finite ones. */
495 FOR_EACH_BB (bb)
497 edge_iterator ei;
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 if (e->flags & EDGE_DFS_BACK)
500 mark_control_dependent_edges_necessary (e->dest, el);
505 /* Make corresponding control dependent edges necessary. We only
506 have to do this once for each basic block, so we clear the bitmap
507 after we're done. */
508 static void
509 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
511 unsigned edge_number;
513 gcc_assert (bb != EXIT_BLOCK_PTR);
515 if (bb == ENTRY_BLOCK_PTR)
516 return;
518 EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
520 tree t;
521 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
523 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
524 continue;
525 SET_BIT (last_stmt_necessary, cd_bb->index);
527 t = last_stmt (cd_bb);
528 if (t && is_ctrl_stmt (t))
529 mark_stmt_necessary (t, true);
533 /* Propagate necessity using the operands of necessary statements. Process
534 the uses on each statement in the worklist, and add all feeding statements
535 which contribute to the calculation of this value to the worklist.
537 In conservative mode, EL is NULL. */
539 static void
540 propagate_necessity (struct edge_list *el)
542 tree i;
543 bool aggressive = (el ? true : false);
545 if (dump_file && (dump_flags & TDF_DETAILS))
546 fprintf (dump_file, "\nProcessing worklist:\n");
548 while (VARRAY_ACTIVE_SIZE (worklist) > 0)
550 /* Take `i' from worklist. */
551 i = VARRAY_TOP_TREE (worklist);
552 VARRAY_POP (worklist);
554 if (dump_file && (dump_flags & TDF_DETAILS))
556 fprintf (dump_file, "processing: ");
557 print_generic_stmt (dump_file, i, TDF_SLIM);
558 fprintf (dump_file, "\n");
561 if (aggressive)
563 /* Mark the last statements of the basic blocks that the block
564 containing `i' is control dependent on, but only if we haven't
565 already done so. */
566 basic_block bb = bb_for_stmt (i);
567 if (! (bb->flags & BB_VISITED))
569 bb->flags |= BB_VISITED;
570 mark_control_dependent_edges_necessary (bb, el);
574 if (TREE_CODE (i) == PHI_NODE)
576 /* PHI nodes are somewhat special in that each PHI alternative has
577 data and control dependencies. All the statements feeding the
578 PHI node's arguments are always necessary. In aggressive mode,
579 we also consider the control dependent edges leading to the
580 predecessor block associated with each PHI alternative as
581 necessary. */
582 int k;
583 for (k = 0; k < PHI_NUM_ARGS (i); k++)
585 tree arg = PHI_ARG_DEF (i, k);
586 if (TREE_CODE (arg) == SSA_NAME)
587 mark_operand_necessary (arg, false);
590 if (aggressive)
592 for (k = 0; k < PHI_NUM_ARGS (i); k++)
594 basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
595 if (! (arg_bb->flags & BB_VISITED))
597 arg_bb->flags |= BB_VISITED;
598 mark_control_dependent_edges_necessary (arg_bb, el);
603 else
605 /* Propagate through the operands. Examine all the USE, VUSE and
606 V_MAY_DEF operands in this statement. Mark all the statements
607 which feed this statement's uses as necessary. */
608 ssa_op_iter iter;
609 tree use;
611 get_stmt_operands (i);
613 /* The operands of V_MAY_DEF expressions are also needed as they
614 represent potential definitions that may reach this
615 statement (V_MAY_DEF operands allow us to follow def-def
616 links). */
618 FOR_EACH_SSA_TREE_OPERAND (use, i, iter, SSA_OP_ALL_USES)
619 mark_operand_necessary (use, false);
625 /* Propagate necessity around virtual phi nodes used in kill operands.
626 The reason this isn't done during propagate_necessity is because we don't
627 want to keep phis around that are just there for must-defs, unless we
628 absolutely have to. After we've rewritten the reaching definitions to be
629 correct in the previous part of the fixup routine, we can simply propagate
630 around the information about which of these virtual phi nodes are really
631 used, and set the NECESSARY flag accordingly.
632 Note that we do the minimum here to ensure that we keep alive the phis that
633 are actually used in the corrected SSA form. In particular, some of these
634 phis may now have all of the same operand, and will be deleted by some
635 other pass. */
637 static void
638 mark_really_necessary_kill_operand_phis (void)
640 basic_block bb;
641 int i;
643 /* Seed the worklist with the new virtual phi arguments and virtual
644 uses */
645 FOR_EACH_BB (bb)
647 block_stmt_iterator bsi;
648 tree phi;
650 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
652 if (!is_gimple_reg (PHI_RESULT (phi)) && NECESSARY (phi))
654 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
655 mark_operand_necessary (PHI_ARG_DEF (phi, i), true);
659 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
661 tree stmt = bsi_stmt (bsi);
663 if (NECESSARY (stmt))
665 use_operand_p use_p;
666 ssa_op_iter iter;
667 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
668 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
670 tree use = USE_FROM_PTR (use_p);
671 mark_operand_necessary (use, true);
677 /* Mark all virtual phis still in use as necessary, and all of their
678 arguments that are phis as necessary. */
679 while (VARRAY_ACTIVE_SIZE (worklist) > 0)
681 tree use = VARRAY_TOP_TREE (worklist);
682 VARRAY_POP (worklist);
684 for (i = 0; i < PHI_NUM_ARGS (use); i++)
685 mark_operand_necessary (PHI_ARG_DEF (use, i), true);
692 /* Eliminate unnecessary statements. Any instruction not marked as necessary
693 contributes nothing to the program, and can be deleted. */
695 static void
696 eliminate_unnecessary_stmts (void)
698 basic_block bb;
699 block_stmt_iterator i;
701 if (dump_file && (dump_flags & TDF_DETAILS))
702 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
704 clear_special_calls ();
705 FOR_EACH_BB (bb)
707 /* Remove dead PHI nodes. */
708 remove_dead_phis (bb);
710 /* Remove dead statements. */
711 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
713 tree t = bsi_stmt (i);
715 stats.total++;
717 /* If `i' is not necessary then remove it. */
718 if (! NECESSARY (t))
719 remove_dead_stmt (&i, bb);
720 else
722 tree call = get_call_expr_in (t);
723 if (call)
724 notice_special_calls (call);
725 bsi_next (&i);
731 /* Remove dead PHI nodes from block BB. */
733 static void
734 remove_dead_phis (basic_block bb)
736 tree prev, phi;
738 prev = NULL_TREE;
739 phi = phi_nodes (bb);
740 while (phi)
742 stats.total_phis++;
744 if (! NECESSARY (phi))
746 tree next = PHI_CHAIN (phi);
748 if (dump_file && (dump_flags & TDF_DETAILS))
750 fprintf (dump_file, "Deleting : ");
751 print_generic_stmt (dump_file, phi, TDF_SLIM);
752 fprintf (dump_file, "\n");
755 remove_phi_node (phi, prev, bb);
756 stats.removed_phis++;
757 phi = next;
759 else
761 prev = phi;
762 phi = PHI_CHAIN (phi);
767 /* Remove dead statement pointed by iterator I. Receives the basic block BB
768 containing I so that we don't have to look it up. */
770 static void
771 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
773 tree t = bsi_stmt (*i);
774 def_operand_p def_p;
776 ssa_op_iter iter;
778 if (dump_file && (dump_flags & TDF_DETAILS))
780 fprintf (dump_file, "Deleting : ");
781 print_generic_stmt (dump_file, t, TDF_SLIM);
782 fprintf (dump_file, "\n");
785 stats.removed++;
787 /* If we have determined that a conditional branch statement contributes
788 nothing to the program, then we not only remove it, but we also change
789 the flow graph so that the current block will simply fall-thru to its
790 immediate post-dominator. The blocks we are circumventing will be
791 removed by cleaup_cfg if this change in the flow graph makes them
792 unreachable. */
793 if (is_ctrl_stmt (t))
795 basic_block post_dom_bb;
796 /* The post dominance info has to be up-to-date. */
797 gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
798 /* Get the immediate post dominator of bb. */
799 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
800 /* Some blocks don't have an immediate post dominator. This can happen
801 for example with infinite loops. Removing an infinite loop is an
802 inappropriate transformation anyway... */
803 if (! post_dom_bb)
805 bsi_next (i);
806 return;
809 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
810 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
811 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
812 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
813 EDGE_SUCC (bb, 0)->count = bb->count;
815 /* The edge is no longer associated with a conditional, so it does
816 not have TRUE/FALSE flags. */
817 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
819 /* If the edge reaches any block other than the exit, then it is a
820 fallthru edge; if it reaches the exit, then it is not a fallthru
821 edge. */
822 if (post_dom_bb != EXIT_BLOCK_PTR)
823 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
824 else
825 EDGE_SUCC (bb, 0)->flags &= ~EDGE_FALLTHRU;
827 /* Remove the remaining the outgoing edges. */
828 while (EDGE_COUNT (bb->succs) != 1)
829 remove_edge (EDGE_SUCC (bb, 1));
832 FOR_EACH_SSA_DEF_OPERAND (def_p, t, iter,
833 SSA_OP_VIRTUAL_DEFS | SSA_OP_VIRTUAL_KILLS)
835 tree def = DEF_FROM_PTR (def_p);
836 bitmap_set_bit (vars_to_rename,
837 var_ann (SSA_NAME_VAR (def))->uid);
839 bsi_remove (i);
840 release_defs (t);
843 /* Print out removed statement statistics. */
845 static void
846 print_stats (void)
848 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
850 float percg;
852 percg = ((float) stats.removed / (float) stats.total) * 100;
853 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
854 stats.removed, stats.total, (int) percg);
856 if (stats.total_phis == 0)
857 percg = 0;
858 else
859 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
861 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
862 stats.removed_phis, stats.total_phis, (int) percg);
866 /* Initialization for this pass. Set up the used data structures. */
868 static void
869 tree_dce_init (bool aggressive)
871 memset ((void *) &stats, 0, sizeof (stats));
873 if (aggressive)
875 int i;
877 control_dependence_map
878 = xmalloc (last_basic_block * sizeof (bitmap));
879 for (i = 0; i < last_basic_block; ++i)
880 control_dependence_map[i] = BITMAP_XMALLOC ();
882 last_stmt_necessary = sbitmap_alloc (last_basic_block);
883 sbitmap_zero (last_stmt_necessary);
886 processed = sbitmap_alloc (num_ssa_names + 1);
887 sbitmap_zero (processed);
889 VARRAY_TREE_INIT (worklist, 64, "work list");
892 /* Cleanup after this pass. */
894 static void
895 tree_dce_done (bool aggressive)
897 if (aggressive)
899 int i;
901 for (i = 0; i < last_basic_block; ++i)
902 BITMAP_XFREE (control_dependence_map[i]);
903 free (control_dependence_map);
905 sbitmap_free (last_stmt_necessary);
908 sbitmap_free (processed);
911 /* Main routine to eliminate dead code.
913 AGGRESSIVE controls the aggressiveness of the algorithm.
914 In conservative mode, we ignore control dependence and simply declare
915 all but the most trivially dead branches necessary. This mode is fast.
916 In aggressive mode, control dependences are taken into account, which
917 results in more dead code elimination, but at the cost of some time.
919 FIXME: Aggressive mode before PRE doesn't work currently because
920 the dominance info is not invalidated after DCE1. This is
921 not an issue right now because we only run aggressive DCE
922 as the last tree SSA pass, but keep this in mind when you
923 start experimenting with pass ordering. */
925 static void
926 perform_tree_ssa_dce (bool aggressive)
928 struct edge_list *el = NULL;
930 tree_dce_init (aggressive);
932 if (aggressive)
934 /* Compute control dependence. */
935 timevar_push (TV_CONTROL_DEPENDENCES);
936 calculate_dominance_info (CDI_POST_DOMINATORS);
937 el = create_edge_list ();
938 find_all_control_dependences (el);
939 timevar_pop (TV_CONTROL_DEPENDENCES);
941 mark_dfs_back_edges ();
944 find_obviously_necessary_stmts (el);
946 propagate_necessity (el);
948 mark_really_necessary_kill_operand_phis ();
949 eliminate_unnecessary_stmts ();
951 if (aggressive)
952 free_dominance_info (CDI_POST_DOMINATORS);
954 cleanup_tree_cfg ();
956 /* Debugging dumps. */
957 if (dump_file)
959 dump_function_to_file (current_function_decl, dump_file, dump_flags);
960 print_stats ();
963 tree_dce_done (aggressive);
965 free_edge_list (el);
968 /* Pass entry points. */
969 static void
970 tree_ssa_dce (void)
972 perform_tree_ssa_dce (/*aggressive=*/false);
975 static void
976 tree_ssa_cd_dce (void)
978 perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
981 static bool
982 gate_dce (void)
984 return flag_tree_dce != 0;
987 struct tree_opt_pass pass_dce =
989 "dce", /* name */
990 gate_dce, /* gate */
991 tree_ssa_dce, /* execute */
992 NULL, /* sub */
993 NULL, /* next */
994 0, /* static_pass_number */
995 TV_TREE_DCE, /* tv_id */
996 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
997 0, /* properties_provided */
998 0, /* properties_destroyed */
999 0, /* todo_flags_start */
1000 TODO_fix_def_def_chains |TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1001 0 /* letter */
1004 struct tree_opt_pass pass_cd_dce =
1006 "cddce", /* name */
1007 gate_dce, /* gate */
1008 tree_ssa_cd_dce, /* execute */
1009 NULL, /* sub */
1010 NULL, /* next */
1011 0, /* static_pass_number */
1012 TV_TREE_CD_DCE, /* tv_id */
1013 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
1014 0, /* properties_provided */
1015 0, /* properties_destroyed */
1016 0, /* todo_flags_start */
1017 TODO_fix_def_def_chains | TODO_ggc_collect | TODO_verify_ssa | TODO_verify_flow,
1018 /* todo_flags_finish */
1019 0 /* letter */