* gcc.c-torture/execute/20041113-1.c: New test.
[official-gcc.git] / gcc / ifcvt.c
blob554131126472f5747908c0b477ba8173609d675e
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
45 #ifndef HAVE_conditional_execution
46 #define HAVE_conditional_execution 0
47 #endif
48 #ifndef HAVE_conditional_move
49 #define HAVE_conditional_move 0
50 #endif
51 #ifndef HAVE_incscc
52 #define HAVE_incscc 0
53 #endif
54 #ifndef HAVE_decscc
55 #define HAVE_decscc 0
56 #endif
57 #ifndef HAVE_trap
58 #define HAVE_trap 0
59 #endif
60 #ifndef HAVE_conditional_trap
61 #define HAVE_conditional_trap 0
62 #endif
64 #ifndef MAX_CONDITIONAL_EXECUTE
65 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
66 #endif
68 #define NULL_EDGE ((edge) NULL)
69 #define NULL_BLOCK ((basic_block) NULL)
71 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
72 static int num_possible_if_blocks;
74 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
75 execution. */
76 static int num_updated_if_blocks;
78 /* # of changes made which require life information to be updated. */
79 static int num_true_changes;
81 /* Whether conditional execution changes were made. */
82 static int cond_exec_changed_p;
84 /* True if life data ok at present. */
85 static bool life_data_ok;
87 /* Forward references. */
88 static int count_bb_insns (basic_block);
89 static int total_bb_rtx_cost (basic_block);
90 static rtx first_active_insn (basic_block);
91 static rtx last_active_insn (basic_block, int);
92 static basic_block block_fallthru (basic_block);
93 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
94 static rtx cond_exec_get_condition (rtx);
95 static int cond_exec_process_if_block (ce_if_block_t *, int);
96 static rtx noce_get_condition (rtx, rtx *);
97 static int noce_operand_ok (rtx);
98 static int noce_process_if_block (ce_if_block_t *);
99 static int process_if_block (ce_if_block_t *);
100 static void merge_if_block (ce_if_block_t *);
101 static int find_cond_trap (basic_block, edge, edge);
102 static basic_block find_if_header (basic_block, int);
103 static int block_jumps_and_fallthru_p (basic_block, basic_block);
104 static int find_if_block (ce_if_block_t *);
105 static int find_if_case_1 (basic_block, edge, edge);
106 static int find_if_case_2 (basic_block, edge, edge);
107 static int find_memory (rtx *, void *);
108 static int dead_or_predicable (basic_block, basic_block, basic_block,
109 basic_block, int);
110 static void noce_emit_move_insn (rtx, rtx);
111 static rtx block_has_only_trap (basic_block);
112 static void mark_loop_exit_edges (void);
114 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
115 static void
116 mark_loop_exit_edges (void)
118 struct loops loops;
119 basic_block bb;
120 edge e;
122 flow_loops_find (&loops, LOOP_TREE);
123 free_dominance_info (CDI_DOMINATORS);
125 if (loops.num > 1)
127 FOR_EACH_BB (bb)
129 edge_iterator ei;
130 FOR_EACH_EDGE (e, ei, bb->succs)
132 if (find_common_loop (bb->loop_father, e->dest->loop_father)
133 != bb->loop_father)
134 e->flags |= EDGE_LOOP_EXIT;
135 else
136 e->flags &= ~EDGE_LOOP_EXIT;
141 flow_loops_free (&loops);
144 /* Count the number of non-jump active insns in BB. */
146 static int
147 count_bb_insns (basic_block bb)
149 int count = 0;
150 rtx insn = BB_HEAD (bb);
152 while (1)
154 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
155 count++;
157 if (insn == BB_END (bb))
158 break;
159 insn = NEXT_INSN (insn);
162 return count;
165 /* Count the total insn_rtx_cost of non-jump active insns in BB.
166 This function returns -1, if the cost of any instruction could
167 not be estimated. */
169 static int
170 total_bb_rtx_cost (basic_block bb)
172 int count = 0;
173 rtx insn = BB_HEAD (bb);
175 while (1)
177 if (NONJUMP_INSN_P (insn))
179 int cost = insn_rtx_cost (PATTERN (insn));
180 if (cost == 0)
181 return -1;
182 count += cost;
184 else if (CALL_P (insn))
185 return -1;
187 if (insn == BB_END (bb))
188 break;
189 insn = NEXT_INSN (insn);
192 return count;
195 /* Return the first non-jump active insn in the basic block. */
197 static rtx
198 first_active_insn (basic_block bb)
200 rtx insn = BB_HEAD (bb);
202 if (LABEL_P (insn))
204 if (insn == BB_END (bb))
205 return NULL_RTX;
206 insn = NEXT_INSN (insn);
209 while (NOTE_P (insn))
211 if (insn == BB_END (bb))
212 return NULL_RTX;
213 insn = NEXT_INSN (insn);
216 if (JUMP_P (insn))
217 return NULL_RTX;
219 return insn;
222 /* Return the last non-jump active (non-jump) insn in the basic block. */
224 static rtx
225 last_active_insn (basic_block bb, int skip_use_p)
227 rtx insn = BB_END (bb);
228 rtx head = BB_HEAD (bb);
230 while (NOTE_P (insn)
231 || JUMP_P (insn)
232 || (skip_use_p
233 && NONJUMP_INSN_P (insn)
234 && GET_CODE (PATTERN (insn)) == USE))
236 if (insn == head)
237 return NULL_RTX;
238 insn = PREV_INSN (insn);
241 if (LABEL_P (insn))
242 return NULL_RTX;
244 return insn;
247 /* Return the basic block reached by falling though the basic block BB. */
249 static basic_block
250 block_fallthru (basic_block bb)
252 edge e;
253 edge_iterator ei;
255 FOR_EACH_EDGE (e, ei, bb->succs)
256 if (e->flags & EDGE_FALLTHRU)
257 break;
259 return (e) ? e->dest : NULL_BLOCK;
262 /* Go through a bunch of insns, converting them to conditional
263 execution format if possible. Return TRUE if all of the non-note
264 insns were processed. */
266 static int
267 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
268 /* if block information */rtx start,
269 /* first insn to look at */rtx end,
270 /* last insn to look at */rtx test,
271 /* conditional execution test */rtx prob_val,
272 /* probability of branch taken. */int mod_ok)
274 int must_be_last = FALSE;
275 rtx insn;
276 rtx xtest;
277 rtx pattern;
279 if (!start || !end)
280 return FALSE;
282 for (insn = start; ; insn = NEXT_INSN (insn))
284 if (NOTE_P (insn))
285 goto insn_done;
287 if (!NONJUMP_INSN_P (insn) && !CALL_P (insn))
288 abort ();
290 /* Remove USE insns that get in the way. */
291 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
293 /* ??? Ug. Actually unlinking the thing is problematic,
294 given what we'd have to coordinate with our callers. */
295 SET_INSN_DELETED (insn);
296 goto insn_done;
299 /* Last insn wasn't last? */
300 if (must_be_last)
301 return FALSE;
303 if (modified_in_p (test, insn))
305 if (!mod_ok)
306 return FALSE;
307 must_be_last = TRUE;
310 /* Now build the conditional form of the instruction. */
311 pattern = PATTERN (insn);
312 xtest = copy_rtx (test);
314 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
315 two conditions. */
316 if (GET_CODE (pattern) == COND_EXEC)
318 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
319 return FALSE;
321 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
322 COND_EXEC_TEST (pattern));
323 pattern = COND_EXEC_CODE (pattern);
326 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
328 /* If the machine needs to modify the insn being conditionally executed,
329 say for example to force a constant integer operand into a temp
330 register, do so here. */
331 #ifdef IFCVT_MODIFY_INSN
332 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
333 if (! pattern)
334 return FALSE;
335 #endif
337 validate_change (insn, &PATTERN (insn), pattern, 1);
339 if (CALL_P (insn) && prob_val)
340 validate_change (insn, &REG_NOTES (insn),
341 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
342 REG_NOTES (insn)), 1);
344 insn_done:
345 if (insn == end)
346 break;
349 return TRUE;
352 /* Return the condition for a jump. Do not do any special processing. */
354 static rtx
355 cond_exec_get_condition (rtx jump)
357 rtx test_if, cond;
359 if (any_condjump_p (jump))
360 test_if = SET_SRC (pc_set (jump));
361 else
362 return NULL_RTX;
363 cond = XEXP (test_if, 0);
365 /* If this branches to JUMP_LABEL when the condition is false,
366 reverse the condition. */
367 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
368 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
370 enum rtx_code rev = reversed_comparison_code (cond, jump);
371 if (rev == UNKNOWN)
372 return NULL_RTX;
374 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
375 XEXP (cond, 1));
378 return cond;
381 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
382 to conditional execution. Return TRUE if we were successful at
383 converting the block. */
385 static int
386 cond_exec_process_if_block (ce_if_block_t * ce_info,
387 /* if block information */int do_multiple_p)
389 basic_block test_bb = ce_info->test_bb; /* last test block */
390 basic_block then_bb = ce_info->then_bb; /* THEN */
391 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
392 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
393 rtx then_start; /* first insn in THEN block */
394 rtx then_end; /* last insn + 1 in THEN block */
395 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
396 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
397 int max; /* max # of insns to convert. */
398 int then_mod_ok; /* whether conditional mods are ok in THEN */
399 rtx true_expr; /* test for else block insns */
400 rtx false_expr; /* test for then block insns */
401 rtx true_prob_val; /* probability of else block */
402 rtx false_prob_val; /* probability of then block */
403 int n_insns;
404 enum rtx_code false_code;
406 /* If test is comprised of && or || elements, and we've failed at handling
407 all of them together, just use the last test if it is the special case of
408 && elements without an ELSE block. */
409 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
411 if (else_bb || ! ce_info->and_and_p)
412 return FALSE;
414 ce_info->test_bb = test_bb = ce_info->last_test_bb;
415 ce_info->num_multiple_test_blocks = 0;
416 ce_info->num_and_and_blocks = 0;
417 ce_info->num_or_or_blocks = 0;
420 /* Find the conditional jump to the ELSE or JOIN part, and isolate
421 the test. */
422 test_expr = cond_exec_get_condition (BB_END (test_bb));
423 if (! test_expr)
424 return FALSE;
426 /* If the conditional jump is more than just a conditional jump,
427 then we can not do conditional execution conversion on this block. */
428 if (! onlyjump_p (BB_END (test_bb)))
429 return FALSE;
431 /* Collect the bounds of where we're to search, skipping any labels, jumps
432 and notes at the beginning and end of the block. Then count the total
433 number of insns and see if it is small enough to convert. */
434 then_start = first_active_insn (then_bb);
435 then_end = last_active_insn (then_bb, TRUE);
436 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
437 max = MAX_CONDITIONAL_EXECUTE;
439 if (else_bb)
441 max *= 2;
442 else_start = first_active_insn (else_bb);
443 else_end = last_active_insn (else_bb, TRUE);
444 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
447 if (n_insns > max)
448 return FALSE;
450 /* Map test_expr/test_jump into the appropriate MD tests to use on
451 the conditionally executed code. */
453 true_expr = test_expr;
455 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
456 if (false_code != UNKNOWN)
457 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
458 XEXP (true_expr, 0), XEXP (true_expr, 1));
459 else
460 false_expr = NULL_RTX;
462 #ifdef IFCVT_MODIFY_TESTS
463 /* If the machine description needs to modify the tests, such as setting a
464 conditional execution register from a comparison, it can do so here. */
465 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
467 /* See if the conversion failed. */
468 if (!true_expr || !false_expr)
469 goto fail;
470 #endif
472 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
473 if (true_prob_val)
475 true_prob_val = XEXP (true_prob_val, 0);
476 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
478 else
479 false_prob_val = NULL_RTX;
481 /* If we have && or || tests, do them here. These tests are in the adjacent
482 blocks after the first block containing the test. */
483 if (ce_info->num_multiple_test_blocks > 0)
485 basic_block bb = test_bb;
486 basic_block last_test_bb = ce_info->last_test_bb;
488 if (! false_expr)
489 goto fail;
493 rtx start, end;
494 rtx t, f;
495 enum rtx_code f_code;
497 bb = block_fallthru (bb);
498 start = first_active_insn (bb);
499 end = last_active_insn (bb, TRUE);
500 if (start
501 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
502 false_prob_val, FALSE))
503 goto fail;
505 /* If the conditional jump is more than just a conditional jump, then
506 we can not do conditional execution conversion on this block. */
507 if (! onlyjump_p (BB_END (bb)))
508 goto fail;
510 /* Find the conditional jump and isolate the test. */
511 t = cond_exec_get_condition (BB_END (bb));
512 if (! t)
513 goto fail;
515 f_code = reversed_comparison_code (t, BB_END (bb));
516 if (f_code == UNKNOWN)
517 goto fail;
519 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
520 if (ce_info->and_and_p)
522 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
523 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
525 else
527 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
528 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
531 /* If the machine description needs to modify the tests, such as
532 setting a conditional execution register from a comparison, it can
533 do so here. */
534 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
535 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
537 /* See if the conversion failed. */
538 if (!t || !f)
539 goto fail;
540 #endif
542 true_expr = t;
543 false_expr = f;
545 while (bb != last_test_bb);
548 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
549 on then THEN block. */
550 then_mod_ok = (else_bb == NULL_BLOCK);
552 /* Go through the THEN and ELSE blocks converting the insns if possible
553 to conditional execution. */
555 if (then_end
556 && (! false_expr
557 || ! cond_exec_process_insns (ce_info, then_start, then_end,
558 false_expr, false_prob_val,
559 then_mod_ok)))
560 goto fail;
562 if (else_bb && else_end
563 && ! cond_exec_process_insns (ce_info, else_start, else_end,
564 true_expr, true_prob_val, TRUE))
565 goto fail;
567 /* If we cannot apply the changes, fail. Do not go through the normal fail
568 processing, since apply_change_group will call cancel_changes. */
569 if (! apply_change_group ())
571 #ifdef IFCVT_MODIFY_CANCEL
572 /* Cancel any machine dependent changes. */
573 IFCVT_MODIFY_CANCEL (ce_info);
574 #endif
575 return FALSE;
578 #ifdef IFCVT_MODIFY_FINAL
579 /* Do any machine dependent final modifications. */
580 IFCVT_MODIFY_FINAL (ce_info);
581 #endif
583 /* Conversion succeeded. */
584 if (dump_file)
585 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
586 n_insns, (n_insns == 1) ? " was" : "s were");
588 /* Merge the blocks! */
589 merge_if_block (ce_info);
590 cond_exec_changed_p = TRUE;
591 return TRUE;
593 fail:
594 #ifdef IFCVT_MODIFY_CANCEL
595 /* Cancel any machine dependent changes. */
596 IFCVT_MODIFY_CANCEL (ce_info);
597 #endif
599 cancel_changes (0);
600 return FALSE;
603 /* Used by noce_process_if_block to communicate with its subroutines.
605 The subroutines know that A and B may be evaluated freely. They
606 know that X is a register. They should insert new instructions
607 before cond_earliest. */
609 struct noce_if_info
611 basic_block test_bb;
612 rtx insn_a, insn_b;
613 rtx x, a, b;
614 rtx jump, cond, cond_earliest;
615 /* True if "b" was originally evaluated unconditionally. */
616 bool b_unconditional;
619 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
620 static int noce_try_move (struct noce_if_info *);
621 static int noce_try_store_flag (struct noce_if_info *);
622 static int noce_try_addcc (struct noce_if_info *);
623 static int noce_try_store_flag_constants (struct noce_if_info *);
624 static int noce_try_store_flag_mask (struct noce_if_info *);
625 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
626 rtx, rtx, rtx);
627 static int noce_try_cmove (struct noce_if_info *);
628 static int noce_try_cmove_arith (struct noce_if_info *);
629 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
630 static int noce_try_minmax (struct noce_if_info *);
631 static int noce_try_abs (struct noce_if_info *);
632 static int noce_try_sign_mask (struct noce_if_info *);
634 /* Helper function for noce_try_store_flag*. */
636 static rtx
637 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
638 int normalize)
640 rtx cond = if_info->cond;
641 int cond_complex;
642 enum rtx_code code;
644 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
645 || ! general_operand (XEXP (cond, 1), VOIDmode));
647 /* If earliest == jump, or when the condition is complex, try to
648 build the store_flag insn directly. */
650 if (cond_complex)
651 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
653 if (reversep)
654 code = reversed_comparison_code (cond, if_info->jump);
655 else
656 code = GET_CODE (cond);
658 if ((if_info->cond_earliest == if_info->jump || cond_complex)
659 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
661 rtx tmp;
663 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
664 XEXP (cond, 1));
665 tmp = gen_rtx_SET (VOIDmode, x, tmp);
667 start_sequence ();
668 tmp = emit_insn (tmp);
670 if (recog_memoized (tmp) >= 0)
672 tmp = get_insns ();
673 end_sequence ();
674 emit_insn (tmp);
676 if_info->cond_earliest = if_info->jump;
678 return x;
681 end_sequence ();
684 /* Don't even try if the comparison operands or the mode of X are weird. */
685 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
686 return NULL_RTX;
688 return emit_store_flag (x, code, XEXP (cond, 0),
689 XEXP (cond, 1), VOIDmode,
690 (code == LTU || code == LEU
691 || code == GEU || code == GTU), normalize);
694 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
695 X is the destination/target and Y is the value to copy. */
697 static void
698 noce_emit_move_insn (rtx x, rtx y)
700 enum machine_mode outmode, inmode;
701 rtx outer, inner;
702 int bitpos;
704 if (GET_CODE (x) != STRICT_LOW_PART)
706 emit_move_insn (x, y);
707 return;
710 outer = XEXP (x, 0);
711 inner = XEXP (outer, 0);
712 outmode = GET_MODE (outer);
713 inmode = GET_MODE (inner);
714 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
715 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
718 /* Return sequence of instructions generated by if conversion. This
719 function calls end_sequence() to end the current stream, ensures
720 that are instructions are unshared, recognizable non-jump insns.
721 On failure, this function returns a NULL_RTX. */
723 static rtx
724 end_ifcvt_sequence (struct noce_if_info *if_info)
726 rtx insn;
727 rtx seq = get_insns ();
729 set_used_flags (if_info->x);
730 set_used_flags (if_info->cond);
731 unshare_all_rtl_in_chain (seq);
732 end_sequence ();
734 /* Make sure that all of the instructions emitted are recognizable,
735 and that we haven't introduced a new jump instruction.
736 As an exercise for the reader, build a general mechanism that
737 allows proper placement of required clobbers. */
738 for (insn = seq; insn; insn = NEXT_INSN (insn))
739 if (JUMP_P (insn)
740 || recog_memoized (insn) == -1)
741 return NULL_RTX;
743 return seq;
746 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
747 "if (a == b) x = a; else x = b" into "x = b". */
749 static int
750 noce_try_move (struct noce_if_info *if_info)
752 rtx cond = if_info->cond;
753 enum rtx_code code = GET_CODE (cond);
754 rtx y, seq;
756 if (code != NE && code != EQ)
757 return FALSE;
759 /* This optimization isn't valid if either A or B could be a NaN
760 or a signed zero. */
761 if (HONOR_NANS (GET_MODE (if_info->x))
762 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
763 return FALSE;
765 /* Check whether the operands of the comparison are A and in
766 either order. */
767 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
768 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
769 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
770 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
772 y = (code == EQ) ? if_info->a : if_info->b;
774 /* Avoid generating the move if the source is the destination. */
775 if (! rtx_equal_p (if_info->x, y))
777 start_sequence ();
778 noce_emit_move_insn (if_info->x, y);
779 seq = end_ifcvt_sequence (if_info);
780 if (!seq)
781 return FALSE;
783 emit_insn_before_setloc (seq, if_info->jump,
784 INSN_LOCATOR (if_info->insn_a));
786 return TRUE;
788 return FALSE;
791 /* Convert "if (test) x = 1; else x = 0".
793 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
794 tried in noce_try_store_flag_constants after noce_try_cmove has had
795 a go at the conversion. */
797 static int
798 noce_try_store_flag (struct noce_if_info *if_info)
800 int reversep;
801 rtx target, seq;
803 if (GET_CODE (if_info->b) == CONST_INT
804 && INTVAL (if_info->b) == STORE_FLAG_VALUE
805 && if_info->a == const0_rtx)
806 reversep = 0;
807 else if (if_info->b == const0_rtx
808 && GET_CODE (if_info->a) == CONST_INT
809 && INTVAL (if_info->a) == STORE_FLAG_VALUE
810 && (reversed_comparison_code (if_info->cond, if_info->jump)
811 != UNKNOWN))
812 reversep = 1;
813 else
814 return FALSE;
816 start_sequence ();
818 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
819 if (target)
821 if (target != if_info->x)
822 noce_emit_move_insn (if_info->x, target);
824 seq = end_ifcvt_sequence (if_info);
825 if (! seq)
826 return FALSE;
828 emit_insn_before_setloc (seq, if_info->jump,
829 INSN_LOCATOR (if_info->insn_a));
830 return TRUE;
832 else
834 end_sequence ();
835 return FALSE;
839 /* Convert "if (test) x = a; else x = b", for A and B constant. */
841 static int
842 noce_try_store_flag_constants (struct noce_if_info *if_info)
844 rtx target, seq;
845 int reversep;
846 HOST_WIDE_INT itrue, ifalse, diff, tmp;
847 int normalize, can_reverse;
848 enum machine_mode mode;
850 if (! no_new_pseudos
851 && GET_CODE (if_info->a) == CONST_INT
852 && GET_CODE (if_info->b) == CONST_INT)
854 mode = GET_MODE (if_info->x);
855 ifalse = INTVAL (if_info->a);
856 itrue = INTVAL (if_info->b);
858 /* Make sure we can represent the difference between the two values. */
859 if ((itrue - ifalse > 0)
860 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
861 return FALSE;
863 diff = trunc_int_for_mode (itrue - ifalse, mode);
865 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
866 != UNKNOWN);
868 reversep = 0;
869 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
870 normalize = 0;
871 else if (ifalse == 0 && exact_log2 (itrue) >= 0
872 && (STORE_FLAG_VALUE == 1
873 || BRANCH_COST >= 2))
874 normalize = 1;
875 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
876 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
877 normalize = 1, reversep = 1;
878 else if (itrue == -1
879 && (STORE_FLAG_VALUE == -1
880 || BRANCH_COST >= 2))
881 normalize = -1;
882 else if (ifalse == -1 && can_reverse
883 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
884 normalize = -1, reversep = 1;
885 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
886 || BRANCH_COST >= 3)
887 normalize = -1;
888 else
889 return FALSE;
891 if (reversep)
893 tmp = itrue; itrue = ifalse; ifalse = tmp;
894 diff = trunc_int_for_mode (-diff, mode);
897 start_sequence ();
898 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
899 if (! target)
901 end_sequence ();
902 return FALSE;
905 /* if (test) x = 3; else x = 4;
906 => x = 3 + (test == 0); */
907 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
909 target = expand_simple_binop (mode,
910 (diff == STORE_FLAG_VALUE
911 ? PLUS : MINUS),
912 GEN_INT (ifalse), target, if_info->x, 0,
913 OPTAB_WIDEN);
916 /* if (test) x = 8; else x = 0;
917 => x = (test != 0) << 3; */
918 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
920 target = expand_simple_binop (mode, ASHIFT,
921 target, GEN_INT (tmp), if_info->x, 0,
922 OPTAB_WIDEN);
925 /* if (test) x = -1; else x = b;
926 => x = -(test != 0) | b; */
927 else if (itrue == -1)
929 target = expand_simple_binop (mode, IOR,
930 target, GEN_INT (ifalse), if_info->x, 0,
931 OPTAB_WIDEN);
934 /* if (test) x = a; else x = b;
935 => x = (-(test != 0) & (b - a)) + a; */
936 else
938 target = expand_simple_binop (mode, AND,
939 target, GEN_INT (diff), if_info->x, 0,
940 OPTAB_WIDEN);
941 if (target)
942 target = expand_simple_binop (mode, PLUS,
943 target, GEN_INT (ifalse),
944 if_info->x, 0, OPTAB_WIDEN);
947 if (! target)
949 end_sequence ();
950 return FALSE;
953 if (target != if_info->x)
954 noce_emit_move_insn (if_info->x, target);
956 seq = end_ifcvt_sequence (if_info);
957 if (!seq)
958 return FALSE;
960 emit_insn_before_setloc (seq, if_info->jump,
961 INSN_LOCATOR (if_info->insn_a));
962 return TRUE;
965 return FALSE;
968 /* Convert "if (test) foo++" into "foo += (test != 0)", and
969 similarly for "foo--". */
971 static int
972 noce_try_addcc (struct noce_if_info *if_info)
974 rtx target, seq;
975 int subtract, normalize;
977 if (! no_new_pseudos
978 && GET_CODE (if_info->a) == PLUS
979 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
980 && (reversed_comparison_code (if_info->cond, if_info->jump)
981 != UNKNOWN))
983 rtx cond = if_info->cond;
984 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
986 /* First try to use addcc pattern. */
987 if (general_operand (XEXP (cond, 0), VOIDmode)
988 && general_operand (XEXP (cond, 1), VOIDmode))
990 start_sequence ();
991 target = emit_conditional_add (if_info->x, code,
992 XEXP (cond, 0),
993 XEXP (cond, 1),
994 VOIDmode,
995 if_info->b,
996 XEXP (if_info->a, 1),
997 GET_MODE (if_info->x),
998 (code == LTU || code == GEU
999 || code == LEU || code == GTU));
1000 if (target)
1002 if (target != if_info->x)
1003 noce_emit_move_insn (if_info->x, target);
1005 seq = end_ifcvt_sequence (if_info);
1006 if (!seq)
1007 return FALSE;
1009 emit_insn_before_setloc (seq, if_info->jump,
1010 INSN_LOCATOR (if_info->insn_a));
1011 return TRUE;
1013 end_sequence ();
1016 /* If that fails, construct conditional increment or decrement using
1017 setcc. */
1018 if (BRANCH_COST >= 2
1019 && (XEXP (if_info->a, 1) == const1_rtx
1020 || XEXP (if_info->a, 1) == constm1_rtx))
1022 start_sequence ();
1023 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1024 subtract = 0, normalize = 0;
1025 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1026 subtract = 1, normalize = 0;
1027 else
1028 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1031 target = noce_emit_store_flag (if_info,
1032 gen_reg_rtx (GET_MODE (if_info->x)),
1033 1, normalize);
1035 if (target)
1036 target = expand_simple_binop (GET_MODE (if_info->x),
1037 subtract ? MINUS : PLUS,
1038 if_info->b, target, if_info->x,
1039 0, OPTAB_WIDEN);
1040 if (target)
1042 if (target != if_info->x)
1043 noce_emit_move_insn (if_info->x, target);
1045 seq = end_ifcvt_sequence (if_info);
1046 if (!seq)
1047 return FALSE;
1049 emit_insn_before_setloc (seq, if_info->jump,
1050 INSN_LOCATOR (if_info->insn_a));
1051 return TRUE;
1053 end_sequence ();
1057 return FALSE;
1060 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1062 static int
1063 noce_try_store_flag_mask (struct noce_if_info *if_info)
1065 rtx target, seq;
1066 int reversep;
1068 reversep = 0;
1069 if (! no_new_pseudos
1070 && (BRANCH_COST >= 2
1071 || STORE_FLAG_VALUE == -1)
1072 && ((if_info->a == const0_rtx
1073 && rtx_equal_p (if_info->b, if_info->x))
1074 || ((reversep = (reversed_comparison_code (if_info->cond,
1075 if_info->jump)
1076 != UNKNOWN))
1077 && if_info->b == const0_rtx
1078 && rtx_equal_p (if_info->a, if_info->x))))
1080 start_sequence ();
1081 target = noce_emit_store_flag (if_info,
1082 gen_reg_rtx (GET_MODE (if_info->x)),
1083 reversep, -1);
1084 if (target)
1085 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1086 if_info->x,
1087 target, if_info->x, 0,
1088 OPTAB_WIDEN);
1090 if (target)
1092 if (target != if_info->x)
1093 noce_emit_move_insn (if_info->x, target);
1095 seq = end_ifcvt_sequence (if_info);
1096 if (!seq)
1097 return FALSE;
1099 emit_insn_before_setloc (seq, if_info->jump,
1100 INSN_LOCATOR (if_info->insn_a));
1101 return TRUE;
1104 end_sequence ();
1107 return FALSE;
1110 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1112 static rtx
1113 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1114 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1116 /* If earliest == jump, try to build the cmove insn directly.
1117 This is helpful when combine has created some complex condition
1118 (like for alpha's cmovlbs) that we can't hope to regenerate
1119 through the normal interface. */
1121 if (if_info->cond_earliest == if_info->jump)
1123 rtx tmp;
1125 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1126 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1127 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1129 start_sequence ();
1130 tmp = emit_insn (tmp);
1132 if (recog_memoized (tmp) >= 0)
1134 tmp = get_insns ();
1135 end_sequence ();
1136 emit_insn (tmp);
1138 return x;
1141 end_sequence ();
1144 /* Don't even try if the comparison operands are weird. */
1145 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1146 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1147 return NULL_RTX;
1149 #if HAVE_conditional_move
1150 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1151 vtrue, vfalse, GET_MODE (x),
1152 (code == LTU || code == GEU
1153 || code == LEU || code == GTU));
1154 #else
1155 /* We'll never get here, as noce_process_if_block doesn't call the
1156 functions involved. Ifdef code, however, should be discouraged
1157 because it leads to typos in the code not selected. However,
1158 emit_conditional_move won't exist either. */
1159 return NULL_RTX;
1160 #endif
1163 /* Try only simple constants and registers here. More complex cases
1164 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1165 has had a go at it. */
1167 static int
1168 noce_try_cmove (struct noce_if_info *if_info)
1170 enum rtx_code code;
1171 rtx target, seq;
1173 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1174 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1176 start_sequence ();
1178 code = GET_CODE (if_info->cond);
1179 target = noce_emit_cmove (if_info, if_info->x, code,
1180 XEXP (if_info->cond, 0),
1181 XEXP (if_info->cond, 1),
1182 if_info->a, if_info->b);
1184 if (target)
1186 if (target != if_info->x)
1187 noce_emit_move_insn (if_info->x, target);
1189 seq = end_ifcvt_sequence (if_info);
1190 if (!seq)
1191 return FALSE;
1193 emit_insn_before_setloc (seq, if_info->jump,
1194 INSN_LOCATOR (if_info->insn_a));
1195 return TRUE;
1197 else
1199 end_sequence ();
1200 return FALSE;
1204 return FALSE;
1207 /* Try more complex cases involving conditional_move. */
1209 static int
1210 noce_try_cmove_arith (struct noce_if_info *if_info)
1212 rtx a = if_info->a;
1213 rtx b = if_info->b;
1214 rtx x = if_info->x;
1215 rtx insn_a, insn_b;
1216 rtx tmp, target;
1217 int is_mem = 0;
1218 int insn_cost;
1219 enum rtx_code code;
1221 /* A conditional move from two memory sources is equivalent to a
1222 conditional on their addresses followed by a load. Don't do this
1223 early because it'll screw alias analysis. Note that we've
1224 already checked for no side effects. */
1225 if (! no_new_pseudos && cse_not_expected
1226 && MEM_P (a) && MEM_P (b)
1227 && BRANCH_COST >= 5)
1229 a = XEXP (a, 0);
1230 b = XEXP (b, 0);
1231 x = gen_reg_rtx (Pmode);
1232 is_mem = 1;
1235 /* ??? We could handle this if we knew that a load from A or B could
1236 not fault. This is also true if we've already loaded
1237 from the address along the path from ENTRY. */
1238 else if (may_trap_p (a) || may_trap_p (b))
1239 return FALSE;
1241 /* if (test) x = a + b; else x = c - d;
1242 => y = a + b;
1243 x = c - d;
1244 if (test)
1245 x = y;
1248 code = GET_CODE (if_info->cond);
1249 insn_a = if_info->insn_a;
1250 insn_b = if_info->insn_b;
1252 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1253 if insn_rtx_cost can't be estimated. */
1254 if (insn_a)
1256 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1257 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1258 return FALSE;
1260 else
1262 insn_cost = 0;
1265 if (insn_b) {
1266 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1267 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1268 return FALSE;
1271 /* Possibly rearrange operands to make things come out more natural. */
1272 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1274 int reversep = 0;
1275 if (rtx_equal_p (b, x))
1276 reversep = 1;
1277 else if (general_operand (b, GET_MODE (b)))
1278 reversep = 1;
1280 if (reversep)
1282 code = reversed_comparison_code (if_info->cond, if_info->jump);
1283 tmp = a, a = b, b = tmp;
1284 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1288 start_sequence ();
1290 /* If either operand is complex, load it into a register first.
1291 The best way to do this is to copy the original insn. In this
1292 way we preserve any clobbers etc that the insn may have had.
1293 This is of course not possible in the IS_MEM case. */
1294 if (! general_operand (a, GET_MODE (a)))
1296 rtx set;
1298 if (no_new_pseudos)
1299 goto end_seq_and_fail;
1301 if (is_mem)
1303 tmp = gen_reg_rtx (GET_MODE (a));
1304 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1306 else if (! insn_a)
1307 goto end_seq_and_fail;
1308 else
1310 a = gen_reg_rtx (GET_MODE (a));
1311 tmp = copy_rtx (insn_a);
1312 set = single_set (tmp);
1313 SET_DEST (set) = a;
1314 tmp = emit_insn (PATTERN (tmp));
1316 if (recog_memoized (tmp) < 0)
1317 goto end_seq_and_fail;
1319 if (! general_operand (b, GET_MODE (b)))
1321 rtx set;
1323 if (no_new_pseudos)
1324 goto end_seq_and_fail;
1326 if (is_mem)
1328 tmp = gen_reg_rtx (GET_MODE (b));
1329 tmp = emit_insn (gen_rtx_SET (VOIDmode,
1330 tmp,
1331 b));
1333 else if (! insn_b)
1334 goto end_seq_and_fail;
1335 else
1337 b = gen_reg_rtx (GET_MODE (b));
1338 tmp = copy_rtx (insn_b);
1339 set = single_set (tmp);
1340 SET_DEST (set) = b;
1341 tmp = emit_insn (PATTERN (tmp));
1343 if (recog_memoized (tmp) < 0)
1344 goto end_seq_and_fail;
1347 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1348 XEXP (if_info->cond, 1), a, b);
1350 if (! target)
1351 goto end_seq_and_fail;
1353 /* If we're handling a memory for above, emit the load now. */
1354 if (is_mem)
1356 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1358 /* Copy over flags as appropriate. */
1359 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1360 MEM_VOLATILE_P (tmp) = 1;
1361 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1362 MEM_IN_STRUCT_P (tmp) = 1;
1363 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1364 MEM_SCALAR_P (tmp) = 1;
1365 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1366 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1367 set_mem_align (tmp,
1368 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1370 noce_emit_move_insn (if_info->x, tmp);
1372 else if (target != x)
1373 noce_emit_move_insn (x, target);
1375 tmp = end_ifcvt_sequence (if_info);
1376 if (!tmp)
1377 return FALSE;
1379 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1380 return TRUE;
1382 end_seq_and_fail:
1383 end_sequence ();
1384 return FALSE;
1387 /* For most cases, the simplified condition we found is the best
1388 choice, but this is not the case for the min/max/abs transforms.
1389 For these we wish to know that it is A or B in the condition. */
1391 static rtx
1392 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1393 rtx *earliest)
1395 rtx cond, set, insn;
1396 int reverse;
1398 /* If target is already mentioned in the known condition, return it. */
1399 if (reg_mentioned_p (target, if_info->cond))
1401 *earliest = if_info->cond_earliest;
1402 return if_info->cond;
1405 set = pc_set (if_info->jump);
1406 cond = XEXP (SET_SRC (set), 0);
1407 reverse
1408 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1409 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1411 /* If we're looking for a constant, try to make the conditional
1412 have that constant in it. There are two reasons why it may
1413 not have the constant we want:
1415 1. GCC may have needed to put the constant in a register, because
1416 the target can't compare directly against that constant. For
1417 this case, we look for a SET immediately before the comparison
1418 that puts a constant in that register.
1420 2. GCC may have canonicalized the conditional, for example
1421 replacing "if x < 4" with "if x <= 3". We can undo that (or
1422 make equivalent types of changes) to get the constants we need
1423 if they're off by one in the right direction. */
1425 if (GET_CODE (target) == CONST_INT)
1427 enum rtx_code code = GET_CODE (if_info->cond);
1428 rtx op_a = XEXP (if_info->cond, 0);
1429 rtx op_b = XEXP (if_info->cond, 1);
1430 rtx prev_insn;
1432 /* First, look to see if we put a constant in a register. */
1433 prev_insn = PREV_INSN (if_info->cond_earliest);
1434 if (prev_insn
1435 && INSN_P (prev_insn)
1436 && GET_CODE (PATTERN (prev_insn)) == SET)
1438 rtx src = find_reg_equal_equiv_note (prev_insn);
1439 if (!src)
1440 src = SET_SRC (PATTERN (prev_insn));
1441 if (GET_CODE (src) == CONST_INT)
1443 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1444 op_a = src;
1445 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1446 op_b = src;
1448 if (GET_CODE (op_a) == CONST_INT)
1450 rtx tmp = op_a;
1451 op_a = op_b;
1452 op_b = tmp;
1453 code = swap_condition (code);
1458 /* Now, look to see if we can get the right constant by
1459 adjusting the conditional. */
1460 if (GET_CODE (op_b) == CONST_INT)
1462 HOST_WIDE_INT desired_val = INTVAL (target);
1463 HOST_WIDE_INT actual_val = INTVAL (op_b);
1465 switch (code)
1467 case LT:
1468 if (actual_val == desired_val + 1)
1470 code = LE;
1471 op_b = GEN_INT (desired_val);
1473 break;
1474 case LE:
1475 if (actual_val == desired_val - 1)
1477 code = LT;
1478 op_b = GEN_INT (desired_val);
1480 break;
1481 case GT:
1482 if (actual_val == desired_val - 1)
1484 code = GE;
1485 op_b = GEN_INT (desired_val);
1487 break;
1488 case GE:
1489 if (actual_val == desired_val + 1)
1491 code = GT;
1492 op_b = GEN_INT (desired_val);
1494 break;
1495 default:
1496 break;
1500 /* If we made any changes, generate a new conditional that is
1501 equivalent to what we started with, but has the right
1502 constants in it. */
1503 if (code != GET_CODE (if_info->cond)
1504 || op_a != XEXP (if_info->cond, 0)
1505 || op_b != XEXP (if_info->cond, 1))
1507 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1508 *earliest = if_info->cond_earliest;
1509 return cond;
1513 cond = canonicalize_condition (if_info->jump, cond, reverse,
1514 earliest, target, false, true);
1515 if (! cond || ! reg_mentioned_p (target, cond))
1516 return NULL;
1518 /* We almost certainly searched back to a different place.
1519 Need to re-verify correct lifetimes. */
1521 /* X may not be mentioned in the range (cond_earliest, jump]. */
1522 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1523 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1524 return NULL;
1526 /* A and B may not be modified in the range [cond_earliest, jump). */
1527 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1528 if (INSN_P (insn)
1529 && (modified_in_p (if_info->a, insn)
1530 || modified_in_p (if_info->b, insn)))
1531 return NULL;
1533 return cond;
1536 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1538 static int
1539 noce_try_minmax (struct noce_if_info *if_info)
1541 rtx cond, earliest, target, seq;
1542 enum rtx_code code, op;
1543 int unsignedp;
1545 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1546 if (no_new_pseudos)
1547 return FALSE;
1549 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1550 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1551 to get the target to tell us... */
1552 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1553 || HONOR_NANS (GET_MODE (if_info->x)))
1554 return FALSE;
1556 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1557 if (!cond)
1558 return FALSE;
1560 /* Verify the condition is of the form we expect, and canonicalize
1561 the comparison code. */
1562 code = GET_CODE (cond);
1563 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1565 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1566 return FALSE;
1568 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1570 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1571 return FALSE;
1572 code = swap_condition (code);
1574 else
1575 return FALSE;
1577 /* Determine what sort of operation this is. Note that the code is for
1578 a taken branch, so the code->operation mapping appears backwards. */
1579 switch (code)
1581 case LT:
1582 case LE:
1583 case UNLT:
1584 case UNLE:
1585 op = SMAX;
1586 unsignedp = 0;
1587 break;
1588 case GT:
1589 case GE:
1590 case UNGT:
1591 case UNGE:
1592 op = SMIN;
1593 unsignedp = 0;
1594 break;
1595 case LTU:
1596 case LEU:
1597 op = UMAX;
1598 unsignedp = 1;
1599 break;
1600 case GTU:
1601 case GEU:
1602 op = UMIN;
1603 unsignedp = 1;
1604 break;
1605 default:
1606 return FALSE;
1609 start_sequence ();
1611 target = expand_simple_binop (GET_MODE (if_info->x), op,
1612 if_info->a, if_info->b,
1613 if_info->x, unsignedp, OPTAB_WIDEN);
1614 if (! target)
1616 end_sequence ();
1617 return FALSE;
1619 if (target != if_info->x)
1620 noce_emit_move_insn (if_info->x, target);
1622 seq = end_ifcvt_sequence (if_info);
1623 if (!seq)
1624 return FALSE;
1626 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1627 if_info->cond = cond;
1628 if_info->cond_earliest = earliest;
1630 return TRUE;
1633 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1635 static int
1636 noce_try_abs (struct noce_if_info *if_info)
1638 rtx cond, earliest, target, seq, a, b, c;
1639 int negate;
1641 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1642 if (no_new_pseudos)
1643 return FALSE;
1645 /* Recognize A and B as constituting an ABS or NABS. */
1646 a = if_info->a;
1647 b = if_info->b;
1648 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1649 negate = 0;
1650 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1652 c = a; a = b; b = c;
1653 negate = 1;
1655 else
1656 return FALSE;
1658 cond = noce_get_alt_condition (if_info, b, &earliest);
1659 if (!cond)
1660 return FALSE;
1662 /* Verify the condition is of the form we expect. */
1663 if (rtx_equal_p (XEXP (cond, 0), b))
1664 c = XEXP (cond, 1);
1665 else if (rtx_equal_p (XEXP (cond, 1), b))
1666 c = XEXP (cond, 0);
1667 else
1668 return FALSE;
1670 /* Verify that C is zero. Search backward through the block for
1671 a REG_EQUAL note if necessary. */
1672 if (REG_P (c))
1674 rtx insn, note = NULL;
1675 for (insn = earliest;
1676 insn != BB_HEAD (if_info->test_bb);
1677 insn = PREV_INSN (insn))
1678 if (INSN_P (insn)
1679 && ((note = find_reg_note (insn, REG_EQUAL, c))
1680 || (note = find_reg_note (insn, REG_EQUIV, c))))
1681 break;
1682 if (! note)
1683 return FALSE;
1684 c = XEXP (note, 0);
1686 if (MEM_P (c)
1687 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1688 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1689 c = get_pool_constant (XEXP (c, 0));
1691 /* Work around funny ideas get_condition has wrt canonicalization.
1692 Note that these rtx constants are known to be CONST_INT, and
1693 therefore imply integer comparisons. */
1694 if (c == constm1_rtx && GET_CODE (cond) == GT)
1696 else if (c == const1_rtx && GET_CODE (cond) == LT)
1698 else if (c != CONST0_RTX (GET_MODE (b)))
1699 return FALSE;
1701 /* Determine what sort of operation this is. */
1702 switch (GET_CODE (cond))
1704 case LT:
1705 case LE:
1706 case UNLT:
1707 case UNLE:
1708 negate = !negate;
1709 break;
1710 case GT:
1711 case GE:
1712 case UNGT:
1713 case UNGE:
1714 break;
1715 default:
1716 return FALSE;
1719 start_sequence ();
1721 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1723 /* ??? It's a quandary whether cmove would be better here, especially
1724 for integers. Perhaps combine will clean things up. */
1725 if (target && negate)
1726 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1728 if (! target)
1730 end_sequence ();
1731 return FALSE;
1734 if (target != if_info->x)
1735 noce_emit_move_insn (if_info->x, target);
1737 seq = end_ifcvt_sequence (if_info);
1738 if (!seq)
1739 return FALSE;
1741 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1742 if_info->cond = cond;
1743 if_info->cond_earliest = earliest;
1745 return TRUE;
1748 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1750 static int
1751 noce_try_sign_mask (struct noce_if_info *if_info)
1753 rtx cond, t, m, c, seq;
1754 enum machine_mode mode;
1755 enum rtx_code code;
1757 if (no_new_pseudos)
1758 return FALSE;
1760 cond = if_info->cond;
1761 code = GET_CODE (cond);
1762 m = XEXP (cond, 0);
1763 c = XEXP (cond, 1);
1765 t = NULL_RTX;
1766 if (if_info->a == const0_rtx)
1768 if ((code == LT && c == const0_rtx)
1769 || (code == LE && c == constm1_rtx))
1770 t = if_info->b;
1772 else if (if_info->b == const0_rtx)
1774 if ((code == GE && c == const0_rtx)
1775 || (code == GT && c == constm1_rtx))
1776 t = if_info->a;
1779 if (! t || side_effects_p (t))
1780 return FALSE;
1782 /* We currently don't handle different modes. */
1783 mode = GET_MODE (t);
1784 if (GET_MODE (m) != mode)
1785 return FALSE;
1787 /* This is only profitable if T is cheap, or T is unconditionally
1788 executed/evaluated in the original insn sequence. */
1789 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1790 && (!if_info->b_unconditional
1791 || t != if_info->b))
1792 return FALSE;
1794 start_sequence ();
1795 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1796 "(signed) m >> 31" directly. This benefits targets with specialized
1797 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1798 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1799 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1800 : NULL_RTX;
1802 if (!t)
1804 end_sequence ();
1805 return FALSE;
1808 noce_emit_move_insn (if_info->x, t);
1810 seq = end_ifcvt_sequence (if_info);
1811 if (!seq)
1812 return FALSE;
1814 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1815 return TRUE;
1819 /* Similar to get_condition, only the resulting condition must be
1820 valid at JUMP, instead of at EARLIEST. */
1822 static rtx
1823 noce_get_condition (rtx jump, rtx *earliest)
1825 rtx cond, set, tmp;
1826 bool reverse;
1828 if (! any_condjump_p (jump))
1829 return NULL_RTX;
1831 set = pc_set (jump);
1833 /* If this branches to JUMP_LABEL when the condition is false,
1834 reverse the condition. */
1835 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1836 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
1838 /* If the condition variable is a register and is MODE_INT, accept it. */
1840 cond = XEXP (SET_SRC (set), 0);
1841 tmp = XEXP (cond, 0);
1842 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
1844 *earliest = jump;
1846 if (reverse)
1847 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1848 GET_MODE (cond), tmp, XEXP (cond, 1));
1849 return cond;
1852 /* Otherwise, fall back on canonicalize_condition to do the dirty
1853 work of manipulating MODE_CC values and COMPARE rtx codes. */
1854 return canonicalize_condition (jump, cond, reverse, earliest,
1855 NULL_RTX, false, true);
1858 /* Return true if OP is ok for if-then-else processing. */
1860 static int
1861 noce_operand_ok (rtx op)
1863 /* We special-case memories, so handle any of them with
1864 no address side effects. */
1865 if (MEM_P (op))
1866 return ! side_effects_p (XEXP (op, 0));
1868 if (side_effects_p (op))
1869 return FALSE;
1871 return ! may_trap_p (op);
1874 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
1875 without using conditional execution. Return TRUE if we were
1876 successful at converting the block. */
1878 static int
1879 noce_process_if_block (struct ce_if_block * ce_info)
1881 basic_block test_bb = ce_info->test_bb; /* test block */
1882 basic_block then_bb = ce_info->then_bb; /* THEN */
1883 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
1884 struct noce_if_info if_info;
1885 rtx insn_a, insn_b;
1886 rtx set_a, set_b;
1887 rtx orig_x, x, a, b;
1888 rtx jump, cond;
1890 /* We're looking for patterns of the form
1892 (1) if (...) x = a; else x = b;
1893 (2) x = b; if (...) x = a;
1894 (3) if (...) x = a; // as if with an initial x = x.
1896 The later patterns require jumps to be more expensive.
1898 ??? For future expansion, look for multiple X in such patterns. */
1900 /* If test is comprised of && or || elements, don't handle it unless it is
1901 the special case of && elements without an ELSE block. */
1902 if (ce_info->num_multiple_test_blocks)
1904 if (else_bb || ! ce_info->and_and_p)
1905 return FALSE;
1907 ce_info->test_bb = test_bb = ce_info->last_test_bb;
1908 ce_info->num_multiple_test_blocks = 0;
1909 ce_info->num_and_and_blocks = 0;
1910 ce_info->num_or_or_blocks = 0;
1913 /* If this is not a standard conditional jump, we can't parse it. */
1914 jump = BB_END (test_bb);
1915 cond = noce_get_condition (jump, &if_info.cond_earliest);
1916 if (! cond)
1917 return FALSE;
1919 /* If the conditional jump is more than just a conditional
1920 jump, then we can not do if-conversion on this block. */
1921 if (! onlyjump_p (jump))
1922 return FALSE;
1924 /* We must be comparing objects whose modes imply the size. */
1925 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
1926 return FALSE;
1928 /* Look for one of the potential sets. */
1929 insn_a = first_active_insn (then_bb);
1930 if (! insn_a
1931 || insn_a != last_active_insn (then_bb, FALSE)
1932 || (set_a = single_set (insn_a)) == NULL_RTX)
1933 return FALSE;
1935 x = SET_DEST (set_a);
1936 a = SET_SRC (set_a);
1938 /* Look for the other potential set. Make sure we've got equivalent
1939 destinations. */
1940 /* ??? This is overconservative. Storing to two different mems is
1941 as easy as conditionally computing the address. Storing to a
1942 single mem merely requires a scratch memory to use as one of the
1943 destination addresses; often the memory immediately below the
1944 stack pointer is available for this. */
1945 set_b = NULL_RTX;
1946 if (else_bb)
1948 insn_b = first_active_insn (else_bb);
1949 if (! insn_b
1950 || insn_b != last_active_insn (else_bb, FALSE)
1951 || (set_b = single_set (insn_b)) == NULL_RTX
1952 || ! rtx_equal_p (x, SET_DEST (set_b)))
1953 return FALSE;
1955 else
1957 insn_b = prev_nonnote_insn (if_info.cond_earliest);
1958 /* We're going to be moving the evaluation of B down from above
1959 COND_EARLIEST to JUMP. Make sure the relevant data is still
1960 intact. */
1961 if (! insn_b
1962 || !NONJUMP_INSN_P (insn_b)
1963 || (set_b = single_set (insn_b)) == NULL_RTX
1964 || ! rtx_equal_p (x, SET_DEST (set_b))
1965 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
1966 || modified_between_p (SET_SRC (set_b),
1967 PREV_INSN (if_info.cond_earliest), jump)
1968 /* Likewise with X. In particular this can happen when
1969 noce_get_condition looks farther back in the instruction
1970 stream than one might expect. */
1971 || reg_overlap_mentioned_p (x, cond)
1972 || reg_overlap_mentioned_p (x, a)
1973 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
1974 insn_b = set_b = NULL_RTX;
1977 /* If x has side effects then only the if-then-else form is safe to
1978 convert. But even in that case we would need to restore any notes
1979 (such as REG_INC) at then end. That can be tricky if
1980 noce_emit_move_insn expands to more than one insn, so disable the
1981 optimization entirely for now if there are side effects. */
1982 if (side_effects_p (x))
1983 return FALSE;
1985 b = (set_b ? SET_SRC (set_b) : x);
1987 /* Only operate on register destinations, and even then avoid extending
1988 the lifetime of hard registers on small register class machines. */
1989 orig_x = x;
1990 if (!REG_P (x)
1991 || (SMALL_REGISTER_CLASSES
1992 && REGNO (x) < FIRST_PSEUDO_REGISTER))
1994 if (no_new_pseudos || GET_MODE (x) == BLKmode)
1995 return FALSE;
1996 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
1997 ? XEXP (x, 0) : x));
2000 /* Don't operate on sources that may trap or are volatile. */
2001 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2002 return FALSE;
2004 /* Set up the info block for our subroutines. */
2005 if_info.test_bb = test_bb;
2006 if_info.cond = cond;
2007 if_info.jump = jump;
2008 if_info.insn_a = insn_a;
2009 if_info.insn_b = insn_b;
2010 if_info.x = x;
2011 if_info.a = a;
2012 if_info.b = b;
2013 if_info.b_unconditional = else_bb == 0;
2015 /* Try optimizations in some approximation of a useful order. */
2016 /* ??? Should first look to see if X is live incoming at all. If it
2017 isn't, we don't need anything but an unconditional set. */
2019 /* Look and see if A and B are really the same. Avoid creating silly
2020 cmove constructs that no one will fix up later. */
2021 if (rtx_equal_p (a, b))
2023 /* If we have an INSN_B, we don't have to create any new rtl. Just
2024 move the instruction that we already have. If we don't have an
2025 INSN_B, that means that A == X, and we've got a noop move. In
2026 that case don't do anything and let the code below delete INSN_A. */
2027 if (insn_b && else_bb)
2029 rtx note;
2031 if (else_bb && insn_b == BB_END (else_bb))
2032 BB_END (else_bb) = PREV_INSN (insn_b);
2033 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2035 /* If there was a REG_EQUAL note, delete it since it may have been
2036 true due to this insn being after a jump. */
2037 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2038 remove_note (insn_b, note);
2040 insn_b = NULL_RTX;
2042 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2043 x must be executed twice. */
2044 else if (insn_b && side_effects_p (orig_x))
2045 return FALSE;
2047 x = orig_x;
2048 goto success;
2051 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2052 for most optimizations if writing to x may trap, i.e. it's a memory
2053 other than a static var or a stack slot. */
2054 if (! set_b
2055 && MEM_P (orig_x)
2056 && ! MEM_NOTRAP_P (orig_x)
2057 && rtx_addr_can_trap_p (XEXP (orig_x, 0)))
2059 if (HAVE_conditional_move)
2061 if (noce_try_cmove (&if_info))
2062 goto success;
2063 if (! HAVE_conditional_execution
2064 && noce_try_cmove_arith (&if_info))
2065 goto success;
2067 return FALSE;
2070 if (noce_try_move (&if_info))
2071 goto success;
2072 if (noce_try_store_flag (&if_info))
2073 goto success;
2074 if (noce_try_minmax (&if_info))
2075 goto success;
2076 if (noce_try_abs (&if_info))
2077 goto success;
2078 if (HAVE_conditional_move
2079 && noce_try_cmove (&if_info))
2080 goto success;
2081 if (! HAVE_conditional_execution)
2083 if (noce_try_store_flag_constants (&if_info))
2084 goto success;
2085 if (noce_try_addcc (&if_info))
2086 goto success;
2087 if (noce_try_store_flag_mask (&if_info))
2088 goto success;
2089 if (HAVE_conditional_move
2090 && noce_try_cmove_arith (&if_info))
2091 goto success;
2092 if (noce_try_sign_mask (&if_info))
2093 goto success;
2096 return FALSE;
2098 success:
2099 /* The original sets may now be killed. */
2100 delete_insn (insn_a);
2102 /* Several special cases here: First, we may have reused insn_b above,
2103 in which case insn_b is now NULL. Second, we want to delete insn_b
2104 if it came from the ELSE block, because follows the now correct
2105 write that appears in the TEST block. However, if we got insn_b from
2106 the TEST block, it may in fact be loading data needed for the comparison.
2107 We'll let life_analysis remove the insn if it's really dead. */
2108 if (insn_b && else_bb)
2109 delete_insn (insn_b);
2111 /* The new insns will have been inserted immediately before the jump. We
2112 should be able to remove the jump with impunity, but the condition itself
2113 may have been modified by gcse to be shared across basic blocks. */
2114 delete_insn (jump);
2116 /* If we used a temporary, fix it up now. */
2117 if (orig_x != x)
2119 start_sequence ();
2120 noce_emit_move_insn (orig_x, x);
2121 insn_b = get_insns ();
2122 set_used_flags (orig_x);
2123 unshare_all_rtl_in_chain (insn_b);
2124 end_sequence ();
2126 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2129 /* Merge the blocks! */
2130 merge_if_block (ce_info);
2132 return TRUE;
2135 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2136 straight line code. Return true if successful. */
2138 static int
2139 process_if_block (struct ce_if_block * ce_info)
2141 if (! reload_completed
2142 && noce_process_if_block (ce_info))
2143 return TRUE;
2145 if (HAVE_conditional_execution && reload_completed)
2147 /* If we have && and || tests, try to first handle combining the && and
2148 || tests into the conditional code, and if that fails, go back and
2149 handle it without the && and ||, which at present handles the && case
2150 if there was no ELSE block. */
2151 if (cond_exec_process_if_block (ce_info, TRUE))
2152 return TRUE;
2154 if (ce_info->num_multiple_test_blocks)
2156 cancel_changes (0);
2158 if (cond_exec_process_if_block (ce_info, FALSE))
2159 return TRUE;
2163 return FALSE;
2166 /* Merge the blocks and mark for local life update. */
2168 static void
2169 merge_if_block (struct ce_if_block * ce_info)
2171 basic_block test_bb = ce_info->test_bb; /* last test block */
2172 basic_block then_bb = ce_info->then_bb; /* THEN */
2173 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2174 basic_block join_bb = ce_info->join_bb; /* join block */
2175 basic_block combo_bb;
2177 /* All block merging is done into the lower block numbers. */
2179 combo_bb = test_bb;
2181 /* Merge any basic blocks to handle && and || subtests. Each of
2182 the blocks are on the fallthru path from the predecessor block. */
2183 if (ce_info->num_multiple_test_blocks > 0)
2185 basic_block bb = test_bb;
2186 basic_block last_test_bb = ce_info->last_test_bb;
2187 basic_block fallthru = block_fallthru (bb);
2191 bb = fallthru;
2192 fallthru = block_fallthru (bb);
2193 merge_blocks (combo_bb, bb);
2194 num_true_changes++;
2196 while (bb != last_test_bb);
2199 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2200 label, but it might if there were || tests. That label's count should be
2201 zero, and it normally should be removed. */
2203 if (then_bb)
2205 if (combo_bb->global_live_at_end)
2206 COPY_REG_SET (combo_bb->global_live_at_end,
2207 then_bb->global_live_at_end);
2208 merge_blocks (combo_bb, then_bb);
2209 num_true_changes++;
2212 /* The ELSE block, if it existed, had a label. That label count
2213 will almost always be zero, but odd things can happen when labels
2214 get their addresses taken. */
2215 if (else_bb)
2217 merge_blocks (combo_bb, else_bb);
2218 num_true_changes++;
2221 /* If there was no join block reported, that means it was not adjacent
2222 to the others, and so we cannot merge them. */
2224 if (! join_bb)
2226 rtx last = BB_END (combo_bb);
2228 /* The outgoing edge for the current COMBO block should already
2229 be correct. Verify this. */
2230 if (EDGE_COUNT (combo_bb->succs) == 0)
2232 if (find_reg_note (last, REG_NORETURN, NULL))
2234 else if (NONJUMP_INSN_P (last)
2235 && GET_CODE (PATTERN (last)) == TRAP_IF
2236 && TRAP_CONDITION (PATTERN (last)) == const_true_rtx)
2238 else
2239 abort ();
2242 /* There should still be something at the end of the THEN or ELSE
2243 blocks taking us to our final destination. */
2244 else if (JUMP_P (last))
2246 else if (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2247 && CALL_P (last)
2248 && SIBLING_CALL_P (last))
2250 else if ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2251 && can_throw_internal (last))
2253 else
2254 abort ();
2257 /* The JOIN block may have had quite a number of other predecessors too.
2258 Since we've already merged the TEST, THEN and ELSE blocks, we should
2259 have only one remaining edge from our if-then-else diamond. If there
2260 is more than one remaining edge, it must come from elsewhere. There
2261 may be zero incoming edges if the THEN block didn't actually join
2262 back up (as with a call to abort). */
2263 else if (EDGE_COUNT (join_bb->preds) < 2
2264 && join_bb != EXIT_BLOCK_PTR)
2266 /* We can merge the JOIN. */
2267 if (combo_bb->global_live_at_end)
2268 COPY_REG_SET (combo_bb->global_live_at_end,
2269 join_bb->global_live_at_end);
2271 merge_blocks (combo_bb, join_bb);
2272 num_true_changes++;
2274 else
2276 /* We cannot merge the JOIN. */
2278 /* The outgoing edge for the current COMBO block should already
2279 be correct. Verify this. */
2280 if (EDGE_COUNT (combo_bb->succs) > 1
2281 || EDGE_SUCC (combo_bb, 0)->dest != join_bb)
2282 abort ();
2284 /* Remove the jump and cruft from the end of the COMBO block. */
2285 if (join_bb != EXIT_BLOCK_PTR)
2286 tidy_fallthru_edge (EDGE_SUCC (combo_bb, 0));
2289 num_updated_if_blocks++;
2292 /* Find a block ending in a simple IF condition and try to transform it
2293 in some way. When converting a multi-block condition, put the new code
2294 in the first such block and delete the rest. Return a pointer to this
2295 first block if some transformation was done. Return NULL otherwise. */
2297 static basic_block
2298 find_if_header (basic_block test_bb, int pass)
2300 ce_if_block_t ce_info;
2301 edge then_edge;
2302 edge else_edge;
2304 /* The kind of block we're looking for has exactly two successors. */
2305 if (EDGE_COUNT (test_bb->succs) != 2)
2306 return NULL;
2308 then_edge = EDGE_SUCC (test_bb, 0);
2309 else_edge = EDGE_SUCC (test_bb, 1);
2311 /* Neither edge should be abnormal. */
2312 if ((then_edge->flags & EDGE_COMPLEX)
2313 || (else_edge->flags & EDGE_COMPLEX))
2314 return NULL;
2316 /* Nor exit the loop. */
2317 if ((then_edge->flags & EDGE_LOOP_EXIT)
2318 || (else_edge->flags & EDGE_LOOP_EXIT))
2319 return NULL;
2321 /* The THEN edge is canonically the one that falls through. */
2322 if (then_edge->flags & EDGE_FALLTHRU)
2324 else if (else_edge->flags & EDGE_FALLTHRU)
2326 edge e = else_edge;
2327 else_edge = then_edge;
2328 then_edge = e;
2330 else
2331 /* Otherwise this must be a multiway branch of some sort. */
2332 return NULL;
2334 memset (&ce_info, '\0', sizeof (ce_info));
2335 ce_info.test_bb = test_bb;
2336 ce_info.then_bb = then_edge->dest;
2337 ce_info.else_bb = else_edge->dest;
2338 ce_info.pass = pass;
2340 #ifdef IFCVT_INIT_EXTRA_FIELDS
2341 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2342 #endif
2344 if (find_if_block (&ce_info))
2345 goto success;
2347 if (HAVE_trap && HAVE_conditional_trap
2348 && find_cond_trap (test_bb, then_edge, else_edge))
2349 goto success;
2351 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2352 && (! HAVE_conditional_execution || reload_completed))
2354 if (find_if_case_1 (test_bb, then_edge, else_edge))
2355 goto success;
2356 if (find_if_case_2 (test_bb, then_edge, else_edge))
2357 goto success;
2360 return NULL;
2362 success:
2363 if (dump_file)
2364 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2365 return ce_info.test_bb;
2368 /* Return true if a block has two edges, one of which falls through to the next
2369 block, and the other jumps to a specific block, so that we can tell if the
2370 block is part of an && test or an || test. Returns either -1 or the number
2371 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2373 static int
2374 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2376 edge cur_edge;
2377 int fallthru_p = FALSE;
2378 int jump_p = FALSE;
2379 rtx insn;
2380 rtx end;
2381 int n_insns = 0;
2382 edge_iterator ei;
2384 if (!cur_bb || !target_bb)
2385 return -1;
2387 /* If no edges, obviously it doesn't jump or fallthru. */
2388 if (EDGE_COUNT (cur_bb->succs) == 0)
2389 return FALSE;
2391 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2393 if (cur_edge->flags & EDGE_COMPLEX)
2394 /* Anything complex isn't what we want. */
2395 return -1;
2397 else if (cur_edge->flags & EDGE_FALLTHRU)
2398 fallthru_p = TRUE;
2400 else if (cur_edge->dest == target_bb)
2401 jump_p = TRUE;
2403 else
2404 return -1;
2407 if ((jump_p & fallthru_p) == 0)
2408 return -1;
2410 /* Don't allow calls in the block, since this is used to group && and ||
2411 together for conditional execution support. ??? we should support
2412 conditional execution support across calls for IA-64 some day, but
2413 for now it makes the code simpler. */
2414 end = BB_END (cur_bb);
2415 insn = BB_HEAD (cur_bb);
2417 while (insn != NULL_RTX)
2419 if (CALL_P (insn))
2420 return -1;
2422 if (INSN_P (insn)
2423 && !JUMP_P (insn)
2424 && GET_CODE (PATTERN (insn)) != USE
2425 && GET_CODE (PATTERN (insn)) != CLOBBER)
2426 n_insns++;
2428 if (insn == end)
2429 break;
2431 insn = NEXT_INSN (insn);
2434 return n_insns;
2437 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2438 block. If so, we'll try to convert the insns to not require the branch.
2439 Return TRUE if we were successful at converting the block. */
2441 static int
2442 find_if_block (struct ce_if_block * ce_info)
2444 basic_block test_bb = ce_info->test_bb;
2445 basic_block then_bb = ce_info->then_bb;
2446 basic_block else_bb = ce_info->else_bb;
2447 basic_block join_bb = NULL_BLOCK;
2448 int then_predecessors;
2449 int else_predecessors;
2450 edge cur_edge;
2451 basic_block next;
2452 edge_iterator ei;
2454 ce_info->last_test_bb = test_bb;
2456 /* Discover if any fall through predecessors of the current test basic block
2457 were && tests (which jump to the else block) or || tests (which jump to
2458 the then block). */
2459 if (HAVE_conditional_execution && reload_completed
2460 && EDGE_COUNT (test_bb->preds) == 1
2461 && EDGE_PRED (test_bb, 0)->flags == EDGE_FALLTHRU)
2463 basic_block bb = EDGE_PRED (test_bb, 0)->src;
2464 basic_block target_bb;
2465 int max_insns = MAX_CONDITIONAL_EXECUTE;
2466 int n_insns;
2468 /* Determine if the preceding block is an && or || block. */
2469 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2471 ce_info->and_and_p = TRUE;
2472 target_bb = else_bb;
2474 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2476 ce_info->and_and_p = FALSE;
2477 target_bb = then_bb;
2479 else
2480 target_bb = NULL_BLOCK;
2482 if (target_bb && n_insns <= max_insns)
2484 int total_insns = 0;
2485 int blocks = 0;
2487 ce_info->last_test_bb = test_bb;
2489 /* Found at least one && or || block, look for more. */
2492 ce_info->test_bb = test_bb = bb;
2493 total_insns += n_insns;
2494 blocks++;
2496 if (EDGE_COUNT (bb->preds) != 1)
2497 break;
2499 bb = EDGE_PRED (bb, 0)->src;
2500 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2502 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2504 ce_info->num_multiple_test_blocks = blocks;
2505 ce_info->num_multiple_test_insns = total_insns;
2507 if (ce_info->and_and_p)
2508 ce_info->num_and_and_blocks = blocks;
2509 else
2510 ce_info->num_or_or_blocks = blocks;
2514 /* Count the number of edges the THEN and ELSE blocks have. */
2515 then_predecessors = 0;
2516 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
2518 then_predecessors++;
2519 if (cur_edge->flags & EDGE_COMPLEX)
2520 return FALSE;
2523 else_predecessors = 0;
2524 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
2526 else_predecessors++;
2527 if (cur_edge->flags & EDGE_COMPLEX)
2528 return FALSE;
2531 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
2532 other than any || blocks which jump to the THEN block. */
2533 if ((then_predecessors - ce_info->num_or_or_blocks) != 1)
2534 return FALSE;
2536 /* The THEN block of an IF-THEN combo must have zero or one successors. */
2537 if (EDGE_COUNT (then_bb->succs) > 0
2538 && (EDGE_COUNT (then_bb->succs) > 1
2539 || (EDGE_SUCC (then_bb, 0)->flags & EDGE_COMPLEX)
2540 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
2541 return FALSE;
2543 /* If the THEN block has no successors, conditional execution can still
2544 make a conditional call. Don't do this unless the ELSE block has
2545 only one incoming edge -- the CFG manipulation is too ugly otherwise.
2546 Check for the last insn of the THEN block being an indirect jump, which
2547 is listed as not having any successors, but confuses the rest of the CE
2548 code processing. ??? we should fix this in the future. */
2549 if (EDGE_COUNT (then_bb->succs) == 0)
2551 if (EDGE_COUNT (else_bb->preds) == 1)
2553 rtx last_insn = BB_END (then_bb);
2555 while (last_insn
2556 && NOTE_P (last_insn)
2557 && last_insn != BB_HEAD (then_bb))
2558 last_insn = PREV_INSN (last_insn);
2560 if (last_insn
2561 && JUMP_P (last_insn)
2562 && ! simplejump_p (last_insn))
2563 return FALSE;
2565 join_bb = else_bb;
2566 else_bb = NULL_BLOCK;
2568 else
2569 return FALSE;
2572 /* If the THEN block's successor is the other edge out of the TEST block,
2573 then we have an IF-THEN combo without an ELSE. */
2574 else if (EDGE_SUCC (then_bb, 0)->dest == else_bb)
2576 join_bb = else_bb;
2577 else_bb = NULL_BLOCK;
2580 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2581 has exactly one predecessor and one successor, and the outgoing edge
2582 is not complex, then we have an IF-THEN-ELSE combo. */
2583 else if (EDGE_COUNT (else_bb->succs) == 1
2584 && EDGE_SUCC (then_bb, 0)->dest == EDGE_SUCC (else_bb, 0)->dest
2585 && EDGE_COUNT (else_bb->preds) == 1
2586 && ! (EDGE_SUCC (else_bb, 0)->flags & EDGE_COMPLEX)
2587 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
2588 join_bb = EDGE_SUCC (else_bb, 0)->dest;
2590 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
2591 else
2592 return FALSE;
2594 num_possible_if_blocks++;
2596 if (dump_file)
2598 fprintf (dump_file,
2599 "\nIF-THEN%s block found, pass %d, start block %d "
2600 "[insn %d], then %d [%d]",
2601 (else_bb) ? "-ELSE" : "",
2602 ce_info->pass,
2603 test_bb->index,
2604 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
2605 then_bb->index,
2606 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
2608 if (else_bb)
2609 fprintf (dump_file, ", else %d [%d]",
2610 else_bb->index,
2611 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
2613 fprintf (dump_file, ", join %d [%d]",
2614 join_bb->index,
2615 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
2617 if (ce_info->num_multiple_test_blocks > 0)
2618 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
2619 ce_info->num_multiple_test_blocks,
2620 (ce_info->and_and_p) ? "&&" : "||",
2621 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
2622 ce_info->last_test_bb->index,
2623 ((BB_HEAD (ce_info->last_test_bb))
2624 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
2625 : -1));
2627 fputc ('\n', dump_file);
2630 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
2631 first condition for free, since we've already asserted that there's a
2632 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
2633 we checked the FALLTHRU flag, those are already adjacent to the last IF
2634 block. */
2635 /* ??? As an enhancement, move the ELSE block. Have to deal with
2636 BLOCK notes, if by no other means than aborting the merge if they
2637 exist. Sticky enough I don't want to think about it now. */
2638 next = then_bb;
2639 if (else_bb && (next = next->next_bb) != else_bb)
2640 return FALSE;
2641 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
2643 if (else_bb)
2644 join_bb = NULL;
2645 else
2646 return FALSE;
2649 /* Do the real work. */
2650 ce_info->else_bb = else_bb;
2651 ce_info->join_bb = join_bb;
2653 return process_if_block (ce_info);
2656 /* Convert a branch over a trap, or a branch
2657 to a trap, into a conditional trap. */
2659 static int
2660 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
2662 basic_block then_bb = then_edge->dest;
2663 basic_block else_bb = else_edge->dest;
2664 basic_block other_bb, trap_bb;
2665 rtx trap, jump, cond, cond_earliest, seq;
2666 enum rtx_code code;
2668 /* Locate the block with the trap instruction. */
2669 /* ??? While we look for no successors, we really ought to allow
2670 EH successors. Need to fix merge_if_block for that to work. */
2671 if ((trap = block_has_only_trap (then_bb)) != NULL)
2672 trap_bb = then_bb, other_bb = else_bb;
2673 else if ((trap = block_has_only_trap (else_bb)) != NULL)
2674 trap_bb = else_bb, other_bb = then_bb;
2675 else
2676 return FALSE;
2678 if (dump_file)
2680 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
2681 test_bb->index, trap_bb->index);
2684 /* If this is not a standard conditional jump, we can't parse it. */
2685 jump = BB_END (test_bb);
2686 cond = noce_get_condition (jump, &cond_earliest);
2687 if (! cond)
2688 return FALSE;
2690 /* If the conditional jump is more than just a conditional jump, then
2691 we can not do if-conversion on this block. */
2692 if (! onlyjump_p (jump))
2693 return FALSE;
2695 /* We must be comparing objects whose modes imply the size. */
2696 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2697 return FALSE;
2699 /* Reverse the comparison code, if necessary. */
2700 code = GET_CODE (cond);
2701 if (then_bb == trap_bb)
2703 code = reversed_comparison_code (cond, jump);
2704 if (code == UNKNOWN)
2705 return FALSE;
2708 /* Attempt to generate the conditional trap. */
2709 seq = gen_cond_trap (code, XEXP (cond, 0),
2710 XEXP (cond, 1),
2711 TRAP_CODE (PATTERN (trap)));
2712 if (seq == NULL)
2713 return FALSE;
2715 num_true_changes++;
2717 /* Emit the new insns before cond_earliest. */
2718 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
2720 /* Delete the trap block if possible. */
2721 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
2722 if (EDGE_COUNT (trap_bb->preds) == 0)
2723 delete_basic_block (trap_bb);
2725 /* If the non-trap block and the test are now adjacent, merge them.
2726 Otherwise we must insert a direct branch. */
2727 if (test_bb->next_bb == other_bb)
2729 struct ce_if_block new_ce_info;
2730 delete_insn (jump);
2731 memset (&new_ce_info, '\0', sizeof (new_ce_info));
2732 new_ce_info.test_bb = test_bb;
2733 new_ce_info.then_bb = NULL;
2734 new_ce_info.else_bb = NULL;
2735 new_ce_info.join_bb = other_bb;
2736 merge_if_block (&new_ce_info);
2738 else
2740 rtx lab, newjump;
2742 lab = JUMP_LABEL (jump);
2743 newjump = emit_jump_insn_after (gen_jump (lab), jump);
2744 LABEL_NUSES (lab) += 1;
2745 JUMP_LABEL (newjump) = lab;
2746 emit_barrier_after (newjump);
2748 delete_insn (jump);
2751 return TRUE;
2754 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
2755 return it. */
2757 static rtx
2758 block_has_only_trap (basic_block bb)
2760 rtx trap;
2762 /* We're not the exit block. */
2763 if (bb == EXIT_BLOCK_PTR)
2764 return NULL_RTX;
2766 /* The block must have no successors. */
2767 if (EDGE_COUNT (bb->succs) > 0)
2768 return NULL_RTX;
2770 /* The only instruction in the THEN block must be the trap. */
2771 trap = first_active_insn (bb);
2772 if (! (trap == BB_END (bb)
2773 && GET_CODE (PATTERN (trap)) == TRAP_IF
2774 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
2775 return NULL_RTX;
2777 return trap;
2780 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
2781 transformable, but not necessarily the other. There need be no
2782 JOIN block.
2784 Return TRUE if we were successful at converting the block.
2786 Cases we'd like to look at:
2789 if (test) goto over; // x not live
2790 x = a;
2791 goto label;
2792 over:
2794 becomes
2796 x = a;
2797 if (! test) goto label;
2800 if (test) goto E; // x not live
2801 x = big();
2802 goto L;
2804 x = b;
2805 goto M;
2807 becomes
2809 x = b;
2810 if (test) goto M;
2811 x = big();
2812 goto L;
2814 (3) // This one's really only interesting for targets that can do
2815 // multiway branching, e.g. IA-64 BBB bundles. For other targets
2816 // it results in multiple branches on a cache line, which often
2817 // does not sit well with predictors.
2819 if (test1) goto E; // predicted not taken
2820 x = a;
2821 if (test2) goto F;
2824 x = b;
2827 becomes
2829 x = a;
2830 if (test1) goto E;
2831 if (test2) goto F;
2833 Notes:
2835 (A) Don't do (2) if the branch is predicted against the block we're
2836 eliminating. Do it anyway if we can eliminate a branch; this requires
2837 that the sole successor of the eliminated block postdominate the other
2838 side of the if.
2840 (B) With CE, on (3) we can steal from both sides of the if, creating
2842 if (test1) x = a;
2843 if (!test1) x = b;
2844 if (test1) goto J;
2845 if (test2) goto F;
2849 Again, this is most useful if J postdominates.
2851 (C) CE substitutes for helpful life information.
2853 (D) These heuristics need a lot of work. */
2855 /* Tests for case 1 above. */
2857 static int
2858 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
2860 basic_block then_bb = then_edge->dest;
2861 basic_block else_bb = else_edge->dest, new_bb;
2862 int then_bb_index, bb_cost;
2864 /* If we are partitioning hot/cold basic blocks, we don't want to
2865 mess up unconditional or indirect jumps that cross between hot
2866 and cold sections.
2868 Basic block partitioning may result in some jumps that appear to
2869 be optimizable (or blocks that appear to be mergeable), but which really
2870 must be left untouched (they are required to make it safely across
2871 partition boundaries). See the comments at the top of
2872 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2874 if (flag_reorder_blocks_and_partition
2875 && ((BB_END (then_bb)
2876 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2877 || (BB_END (else_bb)
2878 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2879 NULL_RTX))))
2880 return FALSE;
2882 /* THEN has one successor. */
2883 if (EDGE_COUNT (then_bb->succs) != 1)
2884 return FALSE;
2886 /* THEN does not fall through, but is not strange either. */
2887 if (EDGE_SUCC (then_bb, 0)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
2888 return FALSE;
2890 /* THEN has one predecessor. */
2891 if (EDGE_COUNT (then_bb->preds) != 1)
2892 return FALSE;
2894 /* THEN must do something. */
2895 if (forwarder_block_p (then_bb))
2896 return FALSE;
2898 num_possible_if_blocks++;
2899 if (dump_file)
2900 fprintf (dump_file,
2901 "\nIF-CASE-1 found, start %d, then %d\n",
2902 test_bb->index, then_bb->index);
2904 /* THEN is small. */
2905 bb_cost = total_bb_rtx_cost (then_bb);
2906 if (bb_cost < 0 || bb_cost >= COSTS_N_INSNS (BRANCH_COST))
2907 return FALSE;
2909 /* Registers set are dead, or are predicable. */
2910 if (! dead_or_predicable (test_bb, then_bb, else_bb,
2911 EDGE_SUCC (then_bb, 0)->dest, 1))
2912 return FALSE;
2914 /* Conversion went ok, including moving the insns and fixing up the
2915 jump. Adjust the CFG to match. */
2917 bitmap_ior (test_bb->global_live_at_end,
2918 else_bb->global_live_at_start,
2919 then_bb->global_live_at_end);
2921 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb), else_bb);
2922 then_bb_index = then_bb->index;
2923 delete_basic_block (then_bb);
2925 /* Make rest of code believe that the newly created block is the THEN_BB
2926 block we removed. */
2927 if (new_bb)
2929 new_bb->index = then_bb_index;
2930 BASIC_BLOCK (then_bb_index) = new_bb;
2931 /* Since the fallthru edge was redirected from test_bb to new_bb,
2932 we need to ensure that new_bb is in the same partition as
2933 test bb (you can not fall through across section boundaries). */
2934 BB_COPY_PARTITION (new_bb, test_bb);
2936 /* We've possibly created jump to next insn, cleanup_cfg will solve that
2937 later. */
2939 num_true_changes++;
2940 num_updated_if_blocks++;
2942 return TRUE;
2945 /* Test for case 2 above. */
2947 static int
2948 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
2950 basic_block then_bb = then_edge->dest;
2951 basic_block else_bb = else_edge->dest;
2952 edge else_succ;
2953 int bb_cost;
2954 rtx note;
2956 /* If we are partitioning hot/cold basic blocks, we don't want to
2957 mess up unconditional or indirect jumps that cross between hot
2958 and cold sections.
2960 Basic block partitioning may result in some jumps that appear to
2961 be optimizable (or blocks that appear to be mergeable), but which really
2962 must be left untouched (they are required to make it safely across
2963 partition boundaries). See the comments at the top of
2964 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2966 if (flag_reorder_blocks_and_partition
2967 && ((BB_END (then_bb)
2968 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2969 || (BB_END (else_bb)
2970 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2971 NULL_RTX))))
2972 return FALSE;
2974 /* ELSE has one successor. */
2975 if (EDGE_COUNT (else_bb->succs) != 1)
2976 return FALSE;
2977 else
2978 else_succ = EDGE_SUCC (else_bb, 0);
2980 /* ELSE outgoing edge is not complex. */
2981 if (else_succ->flags & EDGE_COMPLEX)
2982 return FALSE;
2984 /* ELSE has one predecessor. */
2985 if (EDGE_COUNT (else_bb->preds) != 1)
2986 return FALSE;
2988 /* THEN is not EXIT. */
2989 if (then_bb->index < 0)
2990 return FALSE;
2992 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
2993 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
2994 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
2996 else if (else_succ->dest->index < 0
2997 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
2998 else_succ->dest))
3000 else
3001 return FALSE;
3003 num_possible_if_blocks++;
3004 if (dump_file)
3005 fprintf (dump_file,
3006 "\nIF-CASE-2 found, start %d, else %d\n",
3007 test_bb->index, else_bb->index);
3009 /* ELSE is small. */
3010 bb_cost = total_bb_rtx_cost (else_bb);
3011 if (bb_cost < 0 || bb_cost >= COSTS_N_INSNS (BRANCH_COST))
3012 return FALSE;
3014 /* Registers set are dead, or are predicable. */
3015 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3016 return FALSE;
3018 /* Conversion went ok, including moving the insns and fixing up the
3019 jump. Adjust the CFG to match. */
3021 bitmap_ior (test_bb->global_live_at_end,
3022 then_bb->global_live_at_start,
3023 else_bb->global_live_at_end);
3025 delete_basic_block (else_bb);
3027 num_true_changes++;
3028 num_updated_if_blocks++;
3030 /* ??? We may now fallthru from one of THEN's successors into a join
3031 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3033 return TRUE;
3036 /* A subroutine of dead_or_predicable called through for_each_rtx.
3037 Return 1 if a memory is found. */
3039 static int
3040 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3042 return MEM_P (*px);
3045 /* Used by the code above to perform the actual rtl transformations.
3046 Return TRUE if successful.
3048 TEST_BB is the block containing the conditional branch. MERGE_BB
3049 is the block containing the code to manipulate. NEW_DEST is the
3050 label TEST_BB should be branching to after the conversion.
3051 REVERSEP is true if the sense of the branch should be reversed. */
3053 static int
3054 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3055 basic_block other_bb, basic_block new_dest, int reversep)
3057 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3059 jump = BB_END (test_bb);
3061 /* Find the extent of the real code in the merge block. */
3062 head = BB_HEAD (merge_bb);
3063 end = BB_END (merge_bb);
3065 if (LABEL_P (head))
3066 head = NEXT_INSN (head);
3067 if (NOTE_P (head))
3069 if (head == end)
3071 head = end = NULL_RTX;
3072 goto no_body;
3074 head = NEXT_INSN (head);
3077 if (JUMP_P (end))
3079 if (head == end)
3081 head = end = NULL_RTX;
3082 goto no_body;
3084 end = PREV_INSN (end);
3087 /* Disable handling dead code by conditional execution if the machine needs
3088 to do anything funny with the tests, etc. */
3089 #ifndef IFCVT_MODIFY_TESTS
3090 if (HAVE_conditional_execution)
3092 /* In the conditional execution case, we have things easy. We know
3093 the condition is reversible. We don't have to check life info
3094 because we're going to conditionally execute the code anyway.
3095 All that's left is making sure the insns involved can actually
3096 be predicated. */
3098 rtx cond, prob_val;
3100 cond = cond_exec_get_condition (jump);
3101 if (! cond)
3102 return FALSE;
3104 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3105 if (prob_val)
3106 prob_val = XEXP (prob_val, 0);
3108 if (reversep)
3110 enum rtx_code rev = reversed_comparison_code (cond, jump);
3111 if (rev == UNKNOWN)
3112 return FALSE;
3113 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3114 XEXP (cond, 1));
3115 if (prob_val)
3116 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3119 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3120 prob_val, 0))
3121 goto cancel;
3123 earliest = jump;
3125 else
3126 #endif
3128 /* In the non-conditional execution case, we have to verify that there
3129 are no trapping operations, no calls, no references to memory, and
3130 that any registers modified are dead at the branch site. */
3132 rtx insn, cond, prev;
3133 regset_head merge_set_head, tmp_head, test_live_head, test_set_head;
3134 regset merge_set, tmp, test_live, test_set;
3135 struct propagate_block_info *pbi;
3136 unsigned i, fail = 0;
3137 bitmap_iterator bi;
3139 /* Check for no calls or trapping operations. */
3140 for (insn = head; ; insn = NEXT_INSN (insn))
3142 if (CALL_P (insn))
3143 return FALSE;
3144 if (INSN_P (insn))
3146 if (may_trap_p (PATTERN (insn)))
3147 return FALSE;
3149 /* ??? Even non-trapping memories such as stack frame
3150 references must be avoided. For stores, we collect
3151 no lifetime info; for reads, we'd have to assert
3152 true_dependence false against every store in the
3153 TEST range. */
3154 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3155 return FALSE;
3157 if (insn == end)
3158 break;
3161 if (! any_condjump_p (jump))
3162 return FALSE;
3164 /* Find the extent of the conditional. */
3165 cond = noce_get_condition (jump, &earliest);
3166 if (! cond)
3167 return FALSE;
3169 /* Collect:
3170 MERGE_SET = set of registers set in MERGE_BB
3171 TEST_LIVE = set of registers live at EARLIEST
3172 TEST_SET = set of registers set between EARLIEST and the
3173 end of the block. */
3175 tmp = INITIALIZE_REG_SET (tmp_head);
3176 merge_set = INITIALIZE_REG_SET (merge_set_head);
3177 test_live = INITIALIZE_REG_SET (test_live_head);
3178 test_set = INITIALIZE_REG_SET (test_set_head);
3180 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3181 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3182 since we've already asserted that MERGE_BB is small. */
3183 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3185 /* For small register class machines, don't lengthen lifetimes of
3186 hard registers before reload. */
3187 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3189 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3191 if (i < FIRST_PSEUDO_REGISTER
3192 && ! fixed_regs[i]
3193 && ! global_regs[i])
3194 fail = 1;
3198 /* For TEST, we're interested in a range of insns, not a whole block.
3199 Moreover, we're interested in the insns live from OTHER_BB. */
3201 COPY_REG_SET (test_live, other_bb->global_live_at_start);
3202 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3205 for (insn = jump; ; insn = prev)
3207 prev = propagate_one_insn (pbi, insn);
3208 if (insn == earliest)
3209 break;
3212 free_propagate_block_info (pbi);
3214 /* We can perform the transformation if
3215 MERGE_SET & (TEST_SET | TEST_LIVE)
3217 TEST_SET & merge_bb->global_live_at_start
3218 are empty. */
3220 if (bitmap_intersect_p (test_set, merge_set)
3221 || bitmap_intersect_p (test_live, merge_set)
3222 || bitmap_intersect_p (test_set, merge_bb->global_live_at_start))
3223 fail = 1;
3225 FREE_REG_SET (tmp);
3226 FREE_REG_SET (merge_set);
3227 FREE_REG_SET (test_live);
3228 FREE_REG_SET (test_set);
3230 if (fail)
3231 return FALSE;
3234 no_body:
3235 /* We don't want to use normal invert_jump or redirect_jump because
3236 we don't want to delete_insn called. Also, we want to do our own
3237 change group management. */
3239 old_dest = JUMP_LABEL (jump);
3240 if (other_bb != new_dest)
3242 new_label = block_label (new_dest);
3243 if (reversep
3244 ? ! invert_jump_1 (jump, new_label)
3245 : ! redirect_jump_1 (jump, new_label))
3246 goto cancel;
3249 if (! apply_change_group ())
3250 return FALSE;
3252 if (other_bb != new_dest)
3254 if (old_dest)
3255 LABEL_NUSES (old_dest) -= 1;
3256 if (new_label)
3257 LABEL_NUSES (new_label) += 1;
3258 JUMP_LABEL (jump) = new_label;
3259 if (reversep)
3260 invert_br_probabilities (jump);
3262 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3263 if (reversep)
3265 gcov_type count, probability;
3266 count = BRANCH_EDGE (test_bb)->count;
3267 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3268 FALLTHRU_EDGE (test_bb)->count = count;
3269 probability = BRANCH_EDGE (test_bb)->probability;
3270 BRANCH_EDGE (test_bb)->probability
3271 = FALLTHRU_EDGE (test_bb)->probability;
3272 FALLTHRU_EDGE (test_bb)->probability = probability;
3273 update_br_prob_note (test_bb);
3277 /* Move the insns out of MERGE_BB to before the branch. */
3278 if (head != NULL)
3280 if (end == BB_END (merge_bb))
3281 BB_END (merge_bb) = PREV_INSN (head);
3283 if (squeeze_notes (&head, &end))
3284 return TRUE;
3286 reorder_insns (head, end, PREV_INSN (earliest));
3289 /* Remove the jump and edge if we can. */
3290 if (other_bb == new_dest)
3292 delete_insn (jump);
3293 remove_edge (BRANCH_EDGE (test_bb));
3294 /* ??? Can't merge blocks here, as then_bb is still in use.
3295 At minimum, the merge will get done just before bb-reorder. */
3298 return TRUE;
3300 cancel:
3301 cancel_changes (0);
3302 return FALSE;
3305 /* Main entry point for all if-conversion. */
3307 void
3308 if_convert (int x_life_data_ok)
3310 basic_block bb;
3311 int pass;
3313 num_possible_if_blocks = 0;
3314 num_updated_if_blocks = 0;
3315 num_true_changes = 0;
3316 life_data_ok = (x_life_data_ok != 0);
3318 if ((! targetm.cannot_modify_jumps_p ())
3319 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3320 || !targetm.have_named_sections))
3321 mark_loop_exit_edges ();
3323 /* Compute postdominators if we think we'll use them. */
3324 if (HAVE_conditional_execution || life_data_ok)
3325 calculate_dominance_info (CDI_POST_DOMINATORS);
3327 if (life_data_ok)
3328 clear_bb_flags ();
3330 /* Go through each of the basic blocks looking for things to convert. If we
3331 have conditional execution, we make multiple passes to allow us to handle
3332 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3333 pass = 0;
3336 cond_exec_changed_p = FALSE;
3337 pass++;
3339 #ifdef IFCVT_MULTIPLE_DUMPS
3340 if (dump_file && pass > 1)
3341 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3342 #endif
3344 FOR_EACH_BB (bb)
3346 basic_block new_bb;
3347 while ((new_bb = find_if_header (bb, pass)))
3348 bb = new_bb;
3351 #ifdef IFCVT_MULTIPLE_DUMPS
3352 if (dump_file && cond_exec_changed_p)
3353 print_rtl_with_bb (dump_file, get_insns ());
3354 #endif
3356 while (cond_exec_changed_p);
3358 #ifdef IFCVT_MULTIPLE_DUMPS
3359 if (dump_file)
3360 fprintf (dump_file, "\n\n========== no more changes\n");
3361 #endif
3363 free_dominance_info (CDI_POST_DOMINATORS);
3365 if (dump_file)
3366 fflush (dump_file);
3368 clear_aux_for_blocks ();
3370 /* Rebuild life info for basic blocks that require it. */
3371 if (num_true_changes && life_data_ok)
3373 /* If we allocated new pseudos, we must resize the array for sched1. */
3374 if (max_regno < max_reg_num ())
3376 max_regno = max_reg_num ();
3377 allocate_reg_info (max_regno, FALSE, FALSE);
3379 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3380 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3381 | PROP_KILL_DEAD_CODE);
3384 /* Write the final stats. */
3385 if (dump_file && num_possible_if_blocks > 0)
3387 fprintf (dump_file,
3388 "\n%d possible IF blocks searched.\n",
3389 num_possible_if_blocks);
3390 fprintf (dump_file,
3391 "%d IF blocks converted.\n",
3392 num_updated_if_blocks);
3393 fprintf (dump_file,
3394 "%d true changes made.\n\n\n",
3395 num_true_changes);
3398 #ifdef ENABLE_CHECKING
3399 verify_flow_info ();
3400 #endif