Make build_check_stmt accept an SSA_NAME for its base
[official-gcc.git] / gcc / tree-cfg.c
blob5f74646ea875c96f8ab24ff80855b13cd8f1bfff
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "except.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
43 #include "target.h"
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
48 /* Local declarations. */
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity = 20;
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
66 static struct pointer_map_t *edge_to_cases;
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
72 static bitmap touched_switch_bbs;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
88 location_t locus;
89 int discriminator;
91 static htab_t discriminator_per_locus;
93 /* Basic blocks and flowgraphs. */
94 static void make_blocks (gimple_seq);
95 static void factor_computed_gotos (void);
97 /* Edges. */
98 static void make_edges (void);
99 static void make_cond_expr_edges (basic_block);
100 static void make_gimple_switch_edges (basic_block);
101 static void make_goto_expr_edges (basic_block);
102 static void make_gimple_asm_edges (basic_block);
103 static unsigned int locus_map_hash (const void *);
104 static int locus_map_eq (const void *, const void *);
105 static void assign_discriminator (location_t, basic_block);
106 static edge gimple_redirect_edge_and_branch (edge, basic_block);
107 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
108 static unsigned int split_critical_edges (void);
110 /* Various helpers. */
111 static inline bool stmt_starts_bb_p (gimple, gimple);
112 static int gimple_verify_flow_info (void);
113 static void gimple_make_forwarder_block (edge);
114 static void gimple_cfg2vcg (FILE *);
115 static gimple first_non_label_stmt (basic_block);
116 static bool verify_gimple_transaction (gimple);
118 /* Flowgraph optimization and cleanup. */
119 static void gimple_merge_blocks (basic_block, basic_block);
120 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
121 static void remove_bb (basic_block);
122 static edge find_taken_edge_computed_goto (basic_block, tree);
123 static edge find_taken_edge_cond_expr (basic_block, tree);
124 static edge find_taken_edge_switch_expr (basic_block, tree);
125 static tree find_case_label_for_value (gimple, tree);
127 void
128 init_empty_tree_cfg_for_function (struct function *fn)
130 /* Initialize the basic block array. */
131 init_flow (fn);
132 profile_status_for_function (fn) = PROFILE_ABSENT;
133 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
134 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
135 basic_block_info_for_function (fn)
136 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
137 VEC_safe_grow_cleared (basic_block, gc,
138 basic_block_info_for_function (fn),
139 initial_cfg_capacity);
141 /* Build a mapping of labels to their associated blocks. */
142 label_to_block_map_for_function (fn)
143 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
144 VEC_safe_grow_cleared (basic_block, gc,
145 label_to_block_map_for_function (fn),
146 initial_cfg_capacity);
148 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
149 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
150 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
151 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
154 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
156 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
159 void
160 init_empty_tree_cfg (void)
162 init_empty_tree_cfg_for_function (cfun);
165 /*---------------------------------------------------------------------------
166 Create basic blocks
167 ---------------------------------------------------------------------------*/
169 /* Entry point to the CFG builder for trees. SEQ is the sequence of
170 statements to be added to the flowgraph. */
172 static void
173 build_gimple_cfg (gimple_seq seq)
175 /* Register specific gimple functions. */
176 gimple_register_cfg_hooks ();
178 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
180 init_empty_tree_cfg ();
182 found_computed_goto = 0;
183 make_blocks (seq);
185 /* Computed gotos are hell to deal with, especially if there are
186 lots of them with a large number of destinations. So we factor
187 them to a common computed goto location before we build the
188 edge list. After we convert back to normal form, we will un-factor
189 the computed gotos since factoring introduces an unwanted jump. */
190 if (found_computed_goto)
191 factor_computed_gotos ();
193 /* Make sure there is always at least one block, even if it's empty. */
194 if (n_basic_blocks == NUM_FIXED_BLOCKS)
195 create_empty_bb (ENTRY_BLOCK_PTR);
197 /* Adjust the size of the array. */
198 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
199 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
201 /* To speed up statement iterator walks, we first purge dead labels. */
202 cleanup_dead_labels ();
204 /* Group case nodes to reduce the number of edges.
205 We do this after cleaning up dead labels because otherwise we miss
206 a lot of obvious case merging opportunities. */
207 group_case_labels ();
209 /* Create the edges of the flowgraph. */
210 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
211 free);
212 make_edges ();
213 cleanup_dead_labels ();
214 htab_delete (discriminator_per_locus);
216 /* Debugging dumps. */
218 /* Write the flowgraph to a VCG file. */
220 int local_dump_flags;
221 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
222 if (vcg_file)
224 gimple_cfg2vcg (vcg_file);
225 dump_end (TDI_vcg, vcg_file);
230 static unsigned int
231 execute_build_cfg (void)
233 gimple_seq body = gimple_body (current_function_decl);
235 build_gimple_cfg (body);
236 gimple_set_body (current_function_decl, NULL);
237 if (dump_file && (dump_flags & TDF_DETAILS))
239 fprintf (dump_file, "Scope blocks:\n");
240 dump_scope_blocks (dump_file, dump_flags);
242 return 0;
245 struct gimple_opt_pass pass_build_cfg =
248 GIMPLE_PASS,
249 "cfg", /* name */
250 OPTGROUP_NONE, /* optinfo_flags */
251 NULL, /* gate */
252 execute_build_cfg, /* execute */
253 NULL, /* sub */
254 NULL, /* next */
255 0, /* static_pass_number */
256 TV_TREE_CFG, /* tv_id */
257 PROP_gimple_leh, /* properties_required */
258 PROP_cfg, /* properties_provided */
259 0, /* properties_destroyed */
260 0, /* todo_flags_start */
261 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
266 /* Return true if T is a computed goto. */
268 static bool
269 computed_goto_p (gimple t)
271 return (gimple_code (t) == GIMPLE_GOTO
272 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
276 /* Search the CFG for any computed gotos. If found, factor them to a
277 common computed goto site. Also record the location of that site so
278 that we can un-factor the gotos after we have converted back to
279 normal form. */
281 static void
282 factor_computed_gotos (void)
284 basic_block bb;
285 tree factored_label_decl = NULL;
286 tree var = NULL;
287 gimple factored_computed_goto_label = NULL;
288 gimple factored_computed_goto = NULL;
290 /* We know there are one or more computed gotos in this function.
291 Examine the last statement in each basic block to see if the block
292 ends with a computed goto. */
294 FOR_EACH_BB (bb)
296 gimple_stmt_iterator gsi = gsi_last_bb (bb);
297 gimple last;
299 if (gsi_end_p (gsi))
300 continue;
302 last = gsi_stmt (gsi);
304 /* Ignore the computed goto we create when we factor the original
305 computed gotos. */
306 if (last == factored_computed_goto)
307 continue;
309 /* If the last statement is a computed goto, factor it. */
310 if (computed_goto_p (last))
312 gimple assignment;
314 /* The first time we find a computed goto we need to create
315 the factored goto block and the variable each original
316 computed goto will use for their goto destination. */
317 if (!factored_computed_goto)
319 basic_block new_bb = create_empty_bb (bb);
320 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
322 /* Create the destination of the factored goto. Each original
323 computed goto will put its desired destination into this
324 variable and jump to the label we create immediately
325 below. */
326 var = create_tmp_var (ptr_type_node, "gotovar");
328 /* Build a label for the new block which will contain the
329 factored computed goto. */
330 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
331 factored_computed_goto_label
332 = gimple_build_label (factored_label_decl);
333 gsi_insert_after (&new_gsi, factored_computed_goto_label,
334 GSI_NEW_STMT);
336 /* Build our new computed goto. */
337 factored_computed_goto = gimple_build_goto (var);
338 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
341 /* Copy the original computed goto's destination into VAR. */
342 assignment = gimple_build_assign (var, gimple_goto_dest (last));
343 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
345 /* And re-vector the computed goto to the new destination. */
346 gimple_goto_set_dest (last, factored_label_decl);
352 /* Build a flowgraph for the sequence of stmts SEQ. */
354 static void
355 make_blocks (gimple_seq seq)
357 gimple_stmt_iterator i = gsi_start (seq);
358 gimple stmt = NULL;
359 bool start_new_block = true;
360 bool first_stmt_of_seq = true;
361 basic_block bb = ENTRY_BLOCK_PTR;
363 while (!gsi_end_p (i))
365 gimple prev_stmt;
367 prev_stmt = stmt;
368 stmt = gsi_stmt (i);
370 /* If the statement starts a new basic block or if we have determined
371 in a previous pass that we need to create a new block for STMT, do
372 so now. */
373 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
375 if (!first_stmt_of_seq)
376 gsi_split_seq_before (&i, &seq);
377 bb = create_basic_block (seq, NULL, bb);
378 start_new_block = false;
381 /* Now add STMT to BB and create the subgraphs for special statement
382 codes. */
383 gimple_set_bb (stmt, bb);
385 if (computed_goto_p (stmt))
386 found_computed_goto = true;
388 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
389 next iteration. */
390 if (stmt_ends_bb_p (stmt))
392 /* If the stmt can make abnormal goto use a new temporary
393 for the assignment to the LHS. This makes sure the old value
394 of the LHS is available on the abnormal edge. Otherwise
395 we will end up with overlapping life-ranges for abnormal
396 SSA names. */
397 if (gimple_has_lhs (stmt)
398 && stmt_can_make_abnormal_goto (stmt)
399 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
401 tree lhs = gimple_get_lhs (stmt);
402 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
403 gimple s = gimple_build_assign (lhs, tmp);
404 gimple_set_location (s, gimple_location (stmt));
405 gimple_set_block (s, gimple_block (stmt));
406 gimple_set_lhs (stmt, tmp);
407 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
408 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
409 DECL_GIMPLE_REG_P (tmp) = 1;
410 gsi_insert_after (&i, s, GSI_SAME_STMT);
412 start_new_block = true;
415 gsi_next (&i);
416 first_stmt_of_seq = false;
421 /* Create and return a new empty basic block after bb AFTER. */
423 static basic_block
424 create_bb (void *h, void *e, basic_block after)
426 basic_block bb;
428 gcc_assert (!e);
430 /* Create and initialize a new basic block. Since alloc_block uses
431 GC allocation that clears memory to allocate a basic block, we do
432 not have to clear the newly allocated basic block here. */
433 bb = alloc_block ();
435 bb->index = last_basic_block;
436 bb->flags = BB_NEW;
437 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
439 /* Add the new block to the linked list of blocks. */
440 link_block (bb, after);
442 /* Grow the basic block array if needed. */
443 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
445 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
446 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
449 /* Add the newly created block to the array. */
450 SET_BASIC_BLOCK (last_basic_block, bb);
452 n_basic_blocks++;
453 last_basic_block++;
455 return bb;
459 /*---------------------------------------------------------------------------
460 Edge creation
461 ---------------------------------------------------------------------------*/
463 /* Fold COND_EXPR_COND of each COND_EXPR. */
465 void
466 fold_cond_expr_cond (void)
468 basic_block bb;
470 FOR_EACH_BB (bb)
472 gimple stmt = last_stmt (bb);
474 if (stmt && gimple_code (stmt) == GIMPLE_COND)
476 location_t loc = gimple_location (stmt);
477 tree cond;
478 bool zerop, onep;
480 fold_defer_overflow_warnings ();
481 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
482 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
483 if (cond)
485 zerop = integer_zerop (cond);
486 onep = integer_onep (cond);
488 else
489 zerop = onep = false;
491 fold_undefer_overflow_warnings (zerop || onep,
492 stmt,
493 WARN_STRICT_OVERFLOW_CONDITIONAL);
494 if (zerop)
495 gimple_cond_make_false (stmt);
496 else if (onep)
497 gimple_cond_make_true (stmt);
502 /* Join all the blocks in the flowgraph. */
504 static void
505 make_edges (void)
507 basic_block bb;
508 struct omp_region *cur_region = NULL;
510 /* Create an edge from entry to the first block with executable
511 statements in it. */
512 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
514 /* Traverse the basic block array placing edges. */
515 FOR_EACH_BB (bb)
517 gimple last = last_stmt (bb);
518 bool fallthru;
520 if (last)
522 enum gimple_code code = gimple_code (last);
523 switch (code)
525 case GIMPLE_GOTO:
526 make_goto_expr_edges (bb);
527 fallthru = false;
528 break;
529 case GIMPLE_RETURN:
530 make_edge (bb, EXIT_BLOCK_PTR, 0);
531 fallthru = false;
532 break;
533 case GIMPLE_COND:
534 make_cond_expr_edges (bb);
535 fallthru = false;
536 break;
537 case GIMPLE_SWITCH:
538 make_gimple_switch_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_RESX:
542 make_eh_edges (last);
543 fallthru = false;
544 break;
545 case GIMPLE_EH_DISPATCH:
546 fallthru = make_eh_dispatch_edges (last);
547 break;
549 case GIMPLE_CALL:
550 /* If this function receives a nonlocal goto, then we need to
551 make edges from this call site to all the nonlocal goto
552 handlers. */
553 if (stmt_can_make_abnormal_goto (last))
554 make_abnormal_goto_edges (bb, true);
556 /* If this statement has reachable exception handlers, then
557 create abnormal edges to them. */
558 make_eh_edges (last);
560 /* BUILTIN_RETURN is really a return statement. */
561 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
562 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
563 /* Some calls are known not to return. */
564 else
565 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
566 break;
568 case GIMPLE_ASSIGN:
569 /* A GIMPLE_ASSIGN may throw internally and thus be considered
570 control-altering. */
571 if (is_ctrl_altering_stmt (last))
572 make_eh_edges (last);
573 fallthru = true;
574 break;
576 case GIMPLE_ASM:
577 make_gimple_asm_edges (bb);
578 fallthru = true;
579 break;
581 case GIMPLE_OMP_PARALLEL:
582 case GIMPLE_OMP_TASK:
583 case GIMPLE_OMP_FOR:
584 case GIMPLE_OMP_SINGLE:
585 case GIMPLE_OMP_MASTER:
586 case GIMPLE_OMP_ORDERED:
587 case GIMPLE_OMP_CRITICAL:
588 case GIMPLE_OMP_SECTION:
589 cur_region = new_omp_region (bb, code, cur_region);
590 fallthru = true;
591 break;
593 case GIMPLE_OMP_SECTIONS:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
598 case GIMPLE_OMP_SECTIONS_SWITCH:
599 fallthru = false;
600 break;
602 case GIMPLE_OMP_ATOMIC_LOAD:
603 case GIMPLE_OMP_ATOMIC_STORE:
604 fallthru = true;
605 break;
607 case GIMPLE_OMP_RETURN:
608 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
609 somewhere other than the next block. This will be
610 created later. */
611 cur_region->exit = bb;
612 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
613 cur_region = cur_region->outer;
614 break;
616 case GIMPLE_OMP_CONTINUE:
617 cur_region->cont = bb;
618 switch (cur_region->type)
620 case GIMPLE_OMP_FOR:
621 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
622 succs edges as abnormal to prevent splitting
623 them. */
624 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
625 /* Make the loopback edge. */
626 make_edge (bb, single_succ (cur_region->entry),
627 EDGE_ABNORMAL);
629 /* Create an edge from GIMPLE_OMP_FOR to exit, which
630 corresponds to the case that the body of the loop
631 is not executed at all. */
632 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
633 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
634 fallthru = false;
635 break;
637 case GIMPLE_OMP_SECTIONS:
638 /* Wire up the edges into and out of the nested sections. */
640 basic_block switch_bb = single_succ (cur_region->entry);
642 struct omp_region *i;
643 for (i = cur_region->inner; i ; i = i->next)
645 gcc_assert (i->type == GIMPLE_OMP_SECTION);
646 make_edge (switch_bb, i->entry, 0);
647 make_edge (i->exit, bb, EDGE_FALLTHRU);
650 /* Make the loopback edge to the block with
651 GIMPLE_OMP_SECTIONS_SWITCH. */
652 make_edge (bb, switch_bb, 0);
654 /* Make the edge from the switch to exit. */
655 make_edge (switch_bb, bb->next_bb, 0);
656 fallthru = false;
658 break;
660 default:
661 gcc_unreachable ();
663 break;
665 case GIMPLE_TRANSACTION:
667 tree abort_label = gimple_transaction_label (last);
668 if (abort_label)
669 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
670 fallthru = true;
672 break;
674 default:
675 gcc_assert (!stmt_ends_bb_p (last));
676 fallthru = true;
679 else
680 fallthru = true;
682 if (fallthru)
684 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
685 if (last)
686 assign_discriminator (gimple_location (last), bb->next_bb);
690 if (root_omp_region)
691 free_omp_regions ();
693 /* Fold COND_EXPR_COND of each COND_EXPR. */
694 fold_cond_expr_cond ();
697 /* Trivial hash function for a location_t. ITEM is a pointer to
698 a hash table entry that maps a location_t to a discriminator. */
700 static unsigned int
701 locus_map_hash (const void *item)
703 return ((const struct locus_discrim_map *) item)->locus;
706 /* Equality function for the locus-to-discriminator map. VA and VB
707 point to the two hash table entries to compare. */
709 static int
710 locus_map_eq (const void *va, const void *vb)
712 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
713 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
714 return a->locus == b->locus;
717 /* Find the next available discriminator value for LOCUS. The
718 discriminator distinguishes among several basic blocks that
719 share a common locus, allowing for more accurate sample-based
720 profiling. */
722 static int
723 next_discriminator_for_locus (location_t locus)
725 struct locus_discrim_map item;
726 struct locus_discrim_map **slot;
728 item.locus = locus;
729 item.discriminator = 0;
730 slot = (struct locus_discrim_map **)
731 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
732 (hashval_t) locus, INSERT);
733 gcc_assert (slot);
734 if (*slot == HTAB_EMPTY_ENTRY)
736 *slot = XNEW (struct locus_discrim_map);
737 gcc_assert (*slot);
738 (*slot)->locus = locus;
739 (*slot)->discriminator = 0;
741 (*slot)->discriminator++;
742 return (*slot)->discriminator;
745 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
747 static bool
748 same_line_p (location_t locus1, location_t locus2)
750 expanded_location from, to;
752 if (locus1 == locus2)
753 return true;
755 from = expand_location (locus1);
756 to = expand_location (locus2);
758 if (from.line != to.line)
759 return false;
760 if (from.file == to.file)
761 return true;
762 return (from.file != NULL
763 && to.file != NULL
764 && filename_cmp (from.file, to.file) == 0);
767 /* Assign a unique discriminator value to block BB if it begins at the same
768 LOCUS as its predecessor block. */
770 static void
771 assign_discriminator (location_t locus, basic_block bb)
773 gimple first_in_to_bb, last_in_to_bb;
775 if (locus == 0 || bb->discriminator != 0)
776 return;
778 first_in_to_bb = first_non_label_stmt (bb);
779 last_in_to_bb = last_stmt (bb);
780 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
781 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
782 bb->discriminator = next_discriminator_for_locus (locus);
785 /* Create the edges for a GIMPLE_COND starting at block BB. */
787 static void
788 make_cond_expr_edges (basic_block bb)
790 gimple entry = last_stmt (bb);
791 gimple then_stmt, else_stmt;
792 basic_block then_bb, else_bb;
793 tree then_label, else_label;
794 edge e;
795 location_t entry_locus;
797 gcc_assert (entry);
798 gcc_assert (gimple_code (entry) == GIMPLE_COND);
800 entry_locus = gimple_location (entry);
802 /* Entry basic blocks for each component. */
803 then_label = gimple_cond_true_label (entry);
804 else_label = gimple_cond_false_label (entry);
805 then_bb = label_to_block (then_label);
806 else_bb = label_to_block (else_label);
807 then_stmt = first_stmt (then_bb);
808 else_stmt = first_stmt (else_bb);
810 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
811 assign_discriminator (entry_locus, then_bb);
812 e->goto_locus = gimple_location (then_stmt);
813 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
814 if (e)
816 assign_discriminator (entry_locus, else_bb);
817 e->goto_locus = gimple_location (else_stmt);
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
837 tree t, next;
839 for (t = (tree) *value; t; t = next)
841 next = CASE_CHAIN (t);
842 CASE_CHAIN (t) = NULL;
845 *value = NULL;
846 return true;
849 /* Start recording information mapping edges to case labels. */
851 void
852 start_recording_case_labels (void)
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
859 /* Return nonzero if we are recording information for case labels. */
861 static bool
862 recording_case_labels_p (void)
864 return (edge_to_cases != NULL);
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
887 BITMAP_FREE (touched_switch_bbs);
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
893 Otherwise return NULL. */
895 static tree
896 get_cases_for_edge (edge e, gimple t)
898 void **slot;
899 size_t i, n;
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 CASE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
929 return (tree) *pointer_map_contains (edge_to_cases, e);
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
934 static void
935 make_gimple_switch_edges (basic_block bb)
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
941 entry_locus = gimple_location (entry);
943 n = gimple_switch_num_labels (entry);
945 for (i = 0; i < n; ++i)
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
955 /* Return the basic block holding label DEST. */
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
960 int uid = LABEL_DECL_UID (dest);
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
998 target = gimple_label_label (label_stmt);
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1011 /* Create edges for a goto statement at block BB. */
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 gsi_remove (&last, true);
1028 return;
1031 /* A computed GOTO creates abnormal edges. */
1032 make_abnormal_goto_edges (bb, false);
1035 /* Create edges for an asm statement with labels at block BB. */
1037 static void
1038 make_gimple_asm_edges (basic_block bb)
1040 gimple stmt = last_stmt (bb);
1041 location_t stmt_loc = gimple_location (stmt);
1042 int i, n = gimple_asm_nlabels (stmt);
1044 for (i = 0; i < n; ++i)
1046 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1047 basic_block label_bb = label_to_block (label);
1048 make_edge (bb, label_bb, 0);
1049 assign_discriminator (stmt_loc, label_bb);
1053 /*---------------------------------------------------------------------------
1054 Flowgraph analysis
1055 ---------------------------------------------------------------------------*/
1057 /* Cleanup useless labels in basic blocks. This is something we wish
1058 to do early because it allows us to group case labels before creating
1059 the edges for the CFG, and it speeds up block statement iterators in
1060 all passes later on.
1061 We rerun this pass after CFG is created, to get rid of the labels that
1062 are no longer referenced. After then we do not run it any more, since
1063 (almost) no new labels should be created. */
1065 /* A map from basic block index to the leading label of that block. */
1066 static struct label_record
1068 /* The label. */
1069 tree label;
1071 /* True if the label is referenced from somewhere. */
1072 bool used;
1073 } *label_for_bb;
1075 /* Given LABEL return the first label in the same basic block. */
1077 static tree
1078 main_block_label (tree label)
1080 basic_block bb = label_to_block (label);
1081 tree main_label = label_for_bb[bb->index].label;
1083 /* label_to_block possibly inserted undefined label into the chain. */
1084 if (!main_label)
1086 label_for_bb[bb->index].label = label;
1087 main_label = label;
1090 label_for_bb[bb->index].used = true;
1091 return main_label;
1094 /* Clean up redundant labels within the exception tree. */
1096 static void
1097 cleanup_dead_labels_eh (void)
1099 eh_landing_pad lp;
1100 eh_region r;
1101 tree lab;
1102 int i;
1104 if (cfun->eh == NULL)
1105 return;
1107 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1108 if (lp && lp->post_landing_pad)
1110 lab = main_block_label (lp->post_landing_pad);
1111 if (lab != lp->post_landing_pad)
1113 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1114 EH_LANDING_PAD_NR (lab) = lp->index;
1118 FOR_ALL_EH_REGION (r)
1119 switch (r->type)
1121 case ERT_CLEANUP:
1122 case ERT_MUST_NOT_THROW:
1123 break;
1125 case ERT_TRY:
1127 eh_catch c;
1128 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1130 lab = c->label;
1131 if (lab)
1132 c->label = main_block_label (lab);
1135 break;
1137 case ERT_ALLOWED_EXCEPTIONS:
1138 lab = r->u.allowed.label;
1139 if (lab)
1140 r->u.allowed.label = main_block_label (lab);
1141 break;
1146 /* Cleanup redundant labels. This is a three-step process:
1147 1) Find the leading label for each block.
1148 2) Redirect all references to labels to the leading labels.
1149 3) Cleanup all useless labels. */
1151 void
1152 cleanup_dead_labels (void)
1154 basic_block bb;
1155 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1157 /* Find a suitable label for each block. We use the first user-defined
1158 label if there is one, or otherwise just the first label we see. */
1159 FOR_EACH_BB (bb)
1161 gimple_stmt_iterator i;
1163 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1165 tree label;
1166 gimple stmt = gsi_stmt (i);
1168 if (gimple_code (stmt) != GIMPLE_LABEL)
1169 break;
1171 label = gimple_label_label (stmt);
1173 /* If we have not yet seen a label for the current block,
1174 remember this one and see if there are more labels. */
1175 if (!label_for_bb[bb->index].label)
1177 label_for_bb[bb->index].label = label;
1178 continue;
1181 /* If we did see a label for the current block already, but it
1182 is an artificially created label, replace it if the current
1183 label is a user defined label. */
1184 if (!DECL_ARTIFICIAL (label)
1185 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1187 label_for_bb[bb->index].label = label;
1188 break;
1193 /* Now redirect all jumps/branches to the selected label.
1194 First do so for each block ending in a control statement. */
1195 FOR_EACH_BB (bb)
1197 gimple stmt = last_stmt (bb);
1198 tree label, new_label;
1200 if (!stmt)
1201 continue;
1203 switch (gimple_code (stmt))
1205 case GIMPLE_COND:
1206 label = gimple_cond_true_label (stmt);
1207 if (label)
1209 new_label = main_block_label (label);
1210 if (new_label != label)
1211 gimple_cond_set_true_label (stmt, new_label);
1214 label = gimple_cond_false_label (stmt);
1215 if (label)
1217 new_label = main_block_label (label);
1218 if (new_label != label)
1219 gimple_cond_set_false_label (stmt, new_label);
1221 break;
1223 case GIMPLE_SWITCH:
1225 size_t i, n = gimple_switch_num_labels (stmt);
1227 /* Replace all destination labels. */
1228 for (i = 0; i < n; ++i)
1230 tree case_label = gimple_switch_label (stmt, i);
1231 label = CASE_LABEL (case_label);
1232 new_label = main_block_label (label);
1233 if (new_label != label)
1234 CASE_LABEL (case_label) = new_label;
1236 break;
1239 case GIMPLE_ASM:
1241 int i, n = gimple_asm_nlabels (stmt);
1243 for (i = 0; i < n; ++i)
1245 tree cons = gimple_asm_label_op (stmt, i);
1246 tree label = main_block_label (TREE_VALUE (cons));
1247 TREE_VALUE (cons) = label;
1249 break;
1252 /* We have to handle gotos until they're removed, and we don't
1253 remove them until after we've created the CFG edges. */
1254 case GIMPLE_GOTO:
1255 if (!computed_goto_p (stmt))
1257 label = gimple_goto_dest (stmt);
1258 new_label = main_block_label (label);
1259 if (new_label != label)
1260 gimple_goto_set_dest (stmt, new_label);
1262 break;
1264 case GIMPLE_TRANSACTION:
1266 tree label = gimple_transaction_label (stmt);
1267 if (label)
1269 tree new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_transaction_set_label (stmt, new_label);
1274 break;
1276 default:
1277 break;
1281 /* Do the same for the exception region tree labels. */
1282 cleanup_dead_labels_eh ();
1284 /* Finally, purge dead labels. All user-defined labels and labels that
1285 can be the target of non-local gotos and labels which have their
1286 address taken are preserved. */
1287 FOR_EACH_BB (bb)
1289 gimple_stmt_iterator i;
1290 tree label_for_this_bb = label_for_bb[bb->index].label;
1292 if (!label_for_this_bb)
1293 continue;
1295 /* If the main label of the block is unused, we may still remove it. */
1296 if (!label_for_bb[bb->index].used)
1297 label_for_this_bb = NULL;
1299 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1301 tree label;
1302 gimple stmt = gsi_stmt (i);
1304 if (gimple_code (stmt) != GIMPLE_LABEL)
1305 break;
1307 label = gimple_label_label (stmt);
1309 if (label == label_for_this_bb
1310 || !DECL_ARTIFICIAL (label)
1311 || DECL_NONLOCAL (label)
1312 || FORCED_LABEL (label))
1313 gsi_next (&i);
1314 else
1315 gsi_remove (&i, true);
1319 free (label_for_bb);
1322 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1323 the ones jumping to the same label.
1324 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1326 void
1327 group_case_labels_stmt (gimple stmt)
1329 int old_size = gimple_switch_num_labels (stmt);
1330 int i, j, new_size = old_size;
1331 basic_block default_bb = NULL;
1333 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1335 /* Look for possible opportunities to merge cases. */
1336 i = 1;
1337 while (i < old_size)
1339 tree base_case, base_high;
1340 basic_block base_bb;
1342 base_case = gimple_switch_label (stmt, i);
1344 gcc_assert (base_case);
1345 base_bb = label_to_block (CASE_LABEL (base_case));
1347 /* Discard cases that have the same destination as the
1348 default case. */
1349 if (base_bb == default_bb)
1351 gimple_switch_set_label (stmt, i, NULL_TREE);
1352 i++;
1353 new_size--;
1354 continue;
1357 base_high = CASE_HIGH (base_case)
1358 ? CASE_HIGH (base_case)
1359 : CASE_LOW (base_case);
1360 i++;
1362 /* Try to merge case labels. Break out when we reach the end
1363 of the label vector or when we cannot merge the next case
1364 label with the current one. */
1365 while (i < old_size)
1367 tree merge_case = gimple_switch_label (stmt, i);
1368 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1369 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1371 /* Merge the cases if they jump to the same place,
1372 and their ranges are consecutive. */
1373 if (merge_bb == base_bb
1374 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1376 base_high = CASE_HIGH (merge_case) ?
1377 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1378 CASE_HIGH (base_case) = base_high;
1379 gimple_switch_set_label (stmt, i, NULL_TREE);
1380 new_size--;
1381 i++;
1383 else
1384 break;
1388 /* Compress the case labels in the label vector, and adjust the
1389 length of the vector. */
1390 for (i = 0, j = 0; i < new_size; i++)
1392 while (! gimple_switch_label (stmt, j))
1393 j++;
1394 gimple_switch_set_label (stmt, i,
1395 gimple_switch_label (stmt, j++));
1398 gcc_assert (new_size <= old_size);
1399 gimple_switch_set_num_labels (stmt, new_size);
1402 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1403 and scan the sorted vector of cases. Combine the ones jumping to the
1404 same label. */
1406 void
1407 group_case_labels (void)
1409 basic_block bb;
1411 FOR_EACH_BB (bb)
1413 gimple stmt = last_stmt (bb);
1414 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1415 group_case_labels_stmt (stmt);
1419 /* Checks whether we can merge block B into block A. */
1421 static bool
1422 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1424 gimple stmt;
1425 gimple_stmt_iterator gsi;
1427 if (!single_succ_p (a))
1428 return false;
1430 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1431 return false;
1433 if (single_succ (a) != b)
1434 return false;
1436 if (!single_pred_p (b))
1437 return false;
1439 if (b == EXIT_BLOCK_PTR)
1440 return false;
1442 /* If A ends by a statement causing exceptions or something similar, we
1443 cannot merge the blocks. */
1444 stmt = last_stmt (a);
1445 if (stmt && stmt_ends_bb_p (stmt))
1446 return false;
1448 /* Do not allow a block with only a non-local label to be merged. */
1449 if (stmt
1450 && gimple_code (stmt) == GIMPLE_LABEL
1451 && DECL_NONLOCAL (gimple_label_label (stmt)))
1452 return false;
1454 /* Examine the labels at the beginning of B. */
1455 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1457 tree lab;
1458 stmt = gsi_stmt (gsi);
1459 if (gimple_code (stmt) != GIMPLE_LABEL)
1460 break;
1461 lab = gimple_label_label (stmt);
1463 /* Do not remove user forced labels or for -O0 any user labels. */
1464 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1465 return false;
1468 /* Protect the loop latches. */
1469 if (current_loops && b->loop_father->latch == b)
1470 return false;
1472 /* It must be possible to eliminate all phi nodes in B. If ssa form
1473 is not up-to-date and a name-mapping is registered, we cannot eliminate
1474 any phis. Symbols marked for renaming are never a problem though. */
1475 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1477 gimple phi = gsi_stmt (gsi);
1478 /* Technically only new names matter. */
1479 if (name_registered_for_update_p (PHI_RESULT (phi)))
1480 return false;
1483 /* When not optimizing, don't merge if we'd lose goto_locus. */
1484 if (!optimize
1485 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1487 location_t goto_locus = single_succ_edge (a)->goto_locus;
1488 gimple_stmt_iterator prev, next;
1489 prev = gsi_last_nondebug_bb (a);
1490 next = gsi_after_labels (b);
1491 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1492 gsi_next_nondebug (&next);
1493 if ((gsi_end_p (prev)
1494 || gimple_location (gsi_stmt (prev)) != goto_locus)
1495 && (gsi_end_p (next)
1496 || gimple_location (gsi_stmt (next)) != goto_locus))
1497 return false;
1500 return true;
1503 /* Return true if the var whose chain of uses starts at PTR has no
1504 nondebug uses. */
1505 bool
1506 has_zero_uses_1 (const ssa_use_operand_t *head)
1508 const ssa_use_operand_t *ptr;
1510 for (ptr = head->next; ptr != head; ptr = ptr->next)
1511 if (!is_gimple_debug (USE_STMT (ptr)))
1512 return false;
1514 return true;
1517 /* Return true if the var whose chain of uses starts at PTR has a
1518 single nondebug use. Set USE_P and STMT to that single nondebug
1519 use, if so, or to NULL otherwise. */
1520 bool
1521 single_imm_use_1 (const ssa_use_operand_t *head,
1522 use_operand_p *use_p, gimple *stmt)
1524 ssa_use_operand_t *ptr, *single_use = 0;
1526 for (ptr = head->next; ptr != head; ptr = ptr->next)
1527 if (!is_gimple_debug (USE_STMT (ptr)))
1529 if (single_use)
1531 single_use = NULL;
1532 break;
1534 single_use = ptr;
1537 if (use_p)
1538 *use_p = single_use;
1540 if (stmt)
1541 *stmt = single_use ? single_use->loc.stmt : NULL;
1543 return !!single_use;
1546 /* Replaces all uses of NAME by VAL. */
1548 void
1549 replace_uses_by (tree name, tree val)
1551 imm_use_iterator imm_iter;
1552 use_operand_p use;
1553 gimple stmt;
1554 edge e;
1556 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1558 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1560 replace_exp (use, val);
1562 if (gimple_code (stmt) == GIMPLE_PHI)
1564 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1565 if (e->flags & EDGE_ABNORMAL)
1567 /* This can only occur for virtual operands, since
1568 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1569 would prevent replacement. */
1570 gcc_checking_assert (virtual_operand_p (name));
1571 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1576 if (gimple_code (stmt) != GIMPLE_PHI)
1578 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1579 gimple orig_stmt = stmt;
1580 size_t i;
1582 /* Mark the block if we changed the last stmt in it. */
1583 if (cfgcleanup_altered_bbs
1584 && stmt_ends_bb_p (stmt))
1585 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1587 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1588 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1589 only change sth from non-invariant to invariant, and only
1590 when propagating constants. */
1591 if (is_gimple_min_invariant (val))
1592 for (i = 0; i < gimple_num_ops (stmt); i++)
1594 tree op = gimple_op (stmt, i);
1595 /* Operands may be empty here. For example, the labels
1596 of a GIMPLE_COND are nulled out following the creation
1597 of the corresponding CFG edges. */
1598 if (op && TREE_CODE (op) == ADDR_EXPR)
1599 recompute_tree_invariant_for_addr_expr (op);
1602 if (fold_stmt (&gsi))
1603 stmt = gsi_stmt (gsi);
1605 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1606 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1608 update_stmt (stmt);
1612 gcc_checking_assert (has_zero_uses (name));
1614 /* Also update the trees stored in loop structures. */
1615 if (current_loops)
1617 struct loop *loop;
1618 loop_iterator li;
1620 FOR_EACH_LOOP (li, loop, 0)
1622 substitute_in_loop_info (loop, name, val);
1627 /* Merge block B into block A. */
1629 static void
1630 gimple_merge_blocks (basic_block a, basic_block b)
1632 gimple_stmt_iterator last, gsi, psi;
1634 if (dump_file)
1635 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1637 /* Remove all single-valued PHI nodes from block B of the form
1638 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1639 gsi = gsi_last_bb (a);
1640 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1642 gimple phi = gsi_stmt (psi);
1643 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1644 gimple copy;
1645 bool may_replace_uses = (virtual_operand_p (def)
1646 || may_propagate_copy (def, use));
1648 /* In case we maintain loop closed ssa form, do not propagate arguments
1649 of loop exit phi nodes. */
1650 if (current_loops
1651 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1652 && !virtual_operand_p (def)
1653 && TREE_CODE (use) == SSA_NAME
1654 && a->loop_father != b->loop_father)
1655 may_replace_uses = false;
1657 if (!may_replace_uses)
1659 gcc_assert (!virtual_operand_p (def));
1661 /* Note that just emitting the copies is fine -- there is no problem
1662 with ordering of phi nodes. This is because A is the single
1663 predecessor of B, therefore results of the phi nodes cannot
1664 appear as arguments of the phi nodes. */
1665 copy = gimple_build_assign (def, use);
1666 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1667 remove_phi_node (&psi, false);
1669 else
1671 /* If we deal with a PHI for virtual operands, we can simply
1672 propagate these without fussing with folding or updating
1673 the stmt. */
1674 if (virtual_operand_p (def))
1676 imm_use_iterator iter;
1677 use_operand_p use_p;
1678 gimple stmt;
1680 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1681 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1682 SET_USE (use_p, use);
1684 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1685 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1687 else
1688 replace_uses_by (def, use);
1690 remove_phi_node (&psi, true);
1694 /* Ensure that B follows A. */
1695 move_block_after (b, a);
1697 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1698 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1700 /* Remove labels from B and set gimple_bb to A for other statements. */
1701 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1703 gimple stmt = gsi_stmt (gsi);
1704 if (gimple_code (stmt) == GIMPLE_LABEL)
1706 tree label = gimple_label_label (stmt);
1707 int lp_nr;
1709 gsi_remove (&gsi, false);
1711 /* Now that we can thread computed gotos, we might have
1712 a situation where we have a forced label in block B
1713 However, the label at the start of block B might still be
1714 used in other ways (think about the runtime checking for
1715 Fortran assigned gotos). So we can not just delete the
1716 label. Instead we move the label to the start of block A. */
1717 if (FORCED_LABEL (label))
1719 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1720 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1722 /* Other user labels keep around in a form of a debug stmt. */
1723 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1725 gimple dbg = gimple_build_debug_bind (label,
1726 integer_zero_node,
1727 stmt);
1728 gimple_debug_bind_reset_value (dbg);
1729 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1732 lp_nr = EH_LANDING_PAD_NR (label);
1733 if (lp_nr)
1735 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1736 lp->post_landing_pad = NULL;
1739 else
1741 gimple_set_bb (stmt, a);
1742 gsi_next (&gsi);
1746 /* Merge the sequences. */
1747 last = gsi_last_bb (a);
1748 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1749 set_bb_seq (b, NULL);
1751 if (cfgcleanup_altered_bbs)
1752 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1756 /* Return the one of two successors of BB that is not reachable by a
1757 complex edge, if there is one. Else, return BB. We use
1758 this in optimizations that use post-dominators for their heuristics,
1759 to catch the cases in C++ where function calls are involved. */
1761 basic_block
1762 single_noncomplex_succ (basic_block bb)
1764 edge e0, e1;
1765 if (EDGE_COUNT (bb->succs) != 2)
1766 return bb;
1768 e0 = EDGE_SUCC (bb, 0);
1769 e1 = EDGE_SUCC (bb, 1);
1770 if (e0->flags & EDGE_COMPLEX)
1771 return e1->dest;
1772 if (e1->flags & EDGE_COMPLEX)
1773 return e0->dest;
1775 return bb;
1778 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1780 void
1781 notice_special_calls (gimple call)
1783 int flags = gimple_call_flags (call);
1785 if (flags & ECF_MAY_BE_ALLOCA)
1786 cfun->calls_alloca = true;
1787 if (flags & ECF_RETURNS_TWICE)
1788 cfun->calls_setjmp = true;
1792 /* Clear flags set by notice_special_calls. Used by dead code removal
1793 to update the flags. */
1795 void
1796 clear_special_calls (void)
1798 cfun->calls_alloca = false;
1799 cfun->calls_setjmp = false;
1802 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1804 static void
1805 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1807 /* Since this block is no longer reachable, we can just delete all
1808 of its PHI nodes. */
1809 remove_phi_nodes (bb);
1811 /* Remove edges to BB's successors. */
1812 while (EDGE_COUNT (bb->succs) > 0)
1813 remove_edge (EDGE_SUCC (bb, 0));
1817 /* Remove statements of basic block BB. */
1819 static void
1820 remove_bb (basic_block bb)
1822 gimple_stmt_iterator i;
1824 if (dump_file)
1826 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1827 if (dump_flags & TDF_DETAILS)
1829 dump_bb (dump_file, bb, 0, dump_flags);
1830 fprintf (dump_file, "\n");
1834 if (current_loops)
1836 struct loop *loop = bb->loop_father;
1838 /* If a loop gets removed, clean up the information associated
1839 with it. */
1840 if (loop->latch == bb
1841 || loop->header == bb)
1842 free_numbers_of_iterations_estimates_loop (loop);
1845 /* Remove all the instructions in the block. */
1846 if (bb_seq (bb) != NULL)
1848 /* Walk backwards so as to get a chance to substitute all
1849 released DEFs into debug stmts. See
1850 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1851 details. */
1852 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1854 gimple stmt = gsi_stmt (i);
1855 if (gimple_code (stmt) == GIMPLE_LABEL
1856 && (FORCED_LABEL (gimple_label_label (stmt))
1857 || DECL_NONLOCAL (gimple_label_label (stmt))))
1859 basic_block new_bb;
1860 gimple_stmt_iterator new_gsi;
1862 /* A non-reachable non-local label may still be referenced.
1863 But it no longer needs to carry the extra semantics of
1864 non-locality. */
1865 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1867 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1868 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1871 new_bb = bb->prev_bb;
1872 new_gsi = gsi_start_bb (new_bb);
1873 gsi_remove (&i, false);
1874 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1876 else
1878 /* Release SSA definitions if we are in SSA. Note that we
1879 may be called when not in SSA. For example,
1880 final_cleanup calls this function via
1881 cleanup_tree_cfg. */
1882 if (gimple_in_ssa_p (cfun))
1883 release_defs (stmt);
1885 gsi_remove (&i, true);
1888 if (gsi_end_p (i))
1889 i = gsi_last_bb (bb);
1890 else
1891 gsi_prev (&i);
1895 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1896 bb->il.gimple.seq = NULL;
1897 bb->il.gimple.phi_nodes = NULL;
1901 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1902 predicate VAL, return the edge that will be taken out of the block.
1903 If VAL does not match a unique edge, NULL is returned. */
1905 edge
1906 find_taken_edge (basic_block bb, tree val)
1908 gimple stmt;
1910 stmt = last_stmt (bb);
1912 gcc_assert (stmt);
1913 gcc_assert (is_ctrl_stmt (stmt));
1915 if (val == NULL)
1916 return NULL;
1918 if (!is_gimple_min_invariant (val))
1919 return NULL;
1921 if (gimple_code (stmt) == GIMPLE_COND)
1922 return find_taken_edge_cond_expr (bb, val);
1924 if (gimple_code (stmt) == GIMPLE_SWITCH)
1925 return find_taken_edge_switch_expr (bb, val);
1927 if (computed_goto_p (stmt))
1929 /* Only optimize if the argument is a label, if the argument is
1930 not a label then we can not construct a proper CFG.
1932 It may be the case that we only need to allow the LABEL_REF to
1933 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1934 appear inside a LABEL_EXPR just to be safe. */
1935 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1936 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1937 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1938 return NULL;
1941 gcc_unreachable ();
1944 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1945 statement, determine which of the outgoing edges will be taken out of the
1946 block. Return NULL if either edge may be taken. */
1948 static edge
1949 find_taken_edge_computed_goto (basic_block bb, tree val)
1951 basic_block dest;
1952 edge e = NULL;
1954 dest = label_to_block (val);
1955 if (dest)
1957 e = find_edge (bb, dest);
1958 gcc_assert (e != NULL);
1961 return e;
1964 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1965 statement, determine which of the two edges will be taken out of the
1966 block. Return NULL if either edge may be taken. */
1968 static edge
1969 find_taken_edge_cond_expr (basic_block bb, tree val)
1971 edge true_edge, false_edge;
1973 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1975 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1976 return (integer_zerop (val) ? false_edge : true_edge);
1979 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1980 statement, determine which edge will be taken out of the block. Return
1981 NULL if any edge may be taken. */
1983 static edge
1984 find_taken_edge_switch_expr (basic_block bb, tree val)
1986 basic_block dest_bb;
1987 edge e;
1988 gimple switch_stmt;
1989 tree taken_case;
1991 switch_stmt = last_stmt (bb);
1992 taken_case = find_case_label_for_value (switch_stmt, val);
1993 dest_bb = label_to_block (CASE_LABEL (taken_case));
1995 e = find_edge (bb, dest_bb);
1996 gcc_assert (e);
1997 return e;
2001 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2002 We can make optimal use here of the fact that the case labels are
2003 sorted: We can do a binary search for a case matching VAL. */
2005 static tree
2006 find_case_label_for_value (gimple switch_stmt, tree val)
2008 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2009 tree default_case = gimple_switch_default_label (switch_stmt);
2011 for (low = 0, high = n; high - low > 1; )
2013 size_t i = (high + low) / 2;
2014 tree t = gimple_switch_label (switch_stmt, i);
2015 int cmp;
2017 /* Cache the result of comparing CASE_LOW and val. */
2018 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2020 if (cmp > 0)
2021 high = i;
2022 else
2023 low = i;
2025 if (CASE_HIGH (t) == NULL)
2027 /* A singe-valued case label. */
2028 if (cmp == 0)
2029 return t;
2031 else
2033 /* A case range. We can only handle integer ranges. */
2034 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2035 return t;
2039 return default_case;
2043 /* Dump a basic block on stderr. */
2045 void
2046 gimple_debug_bb (basic_block bb)
2048 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2052 /* Dump basic block with index N on stderr. */
2054 basic_block
2055 gimple_debug_bb_n (int n)
2057 gimple_debug_bb (BASIC_BLOCK (n));
2058 return BASIC_BLOCK (n);
2062 /* Dump the CFG on stderr.
2064 FLAGS are the same used by the tree dumping functions
2065 (see TDF_* in dumpfile.h). */
2067 void
2068 gimple_debug_cfg (int flags)
2070 gimple_dump_cfg (stderr, flags);
2074 /* Dump the program showing basic block boundaries on the given FILE.
2076 FLAGS are the same used by the tree dumping functions (see TDF_* in
2077 tree.h). */
2079 void
2080 gimple_dump_cfg (FILE *file, int flags)
2082 if (flags & TDF_DETAILS)
2084 dump_function_header (file, current_function_decl, flags);
2085 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2086 n_basic_blocks, n_edges, last_basic_block);
2088 brief_dump_cfg (file, flags | TDF_COMMENT);
2089 fprintf (file, "\n");
2092 if (flags & TDF_STATS)
2093 dump_cfg_stats (file);
2095 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2099 /* Dump CFG statistics on FILE. */
2101 void
2102 dump_cfg_stats (FILE *file)
2104 static long max_num_merged_labels = 0;
2105 unsigned long size, total = 0;
2106 long num_edges;
2107 basic_block bb;
2108 const char * const fmt_str = "%-30s%-13s%12s\n";
2109 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2110 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2111 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2112 const char *funcname = current_function_name ();
2114 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2116 fprintf (file, "---------------------------------------------------------\n");
2117 fprintf (file, fmt_str, "", " Number of ", "Memory");
2118 fprintf (file, fmt_str, "", " instances ", "used ");
2119 fprintf (file, "---------------------------------------------------------\n");
2121 size = n_basic_blocks * sizeof (struct basic_block_def);
2122 total += size;
2123 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2124 SCALE (size), LABEL (size));
2126 num_edges = 0;
2127 FOR_EACH_BB (bb)
2128 num_edges += EDGE_COUNT (bb->succs);
2129 size = num_edges * sizeof (struct edge_def);
2130 total += size;
2131 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2133 fprintf (file, "---------------------------------------------------------\n");
2134 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2135 LABEL (total));
2136 fprintf (file, "---------------------------------------------------------\n");
2137 fprintf (file, "\n");
2139 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2140 max_num_merged_labels = cfg_stats.num_merged_labels;
2142 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2143 cfg_stats.num_merged_labels, max_num_merged_labels);
2145 fprintf (file, "\n");
2149 /* Dump CFG statistics on stderr. Keep extern so that it's always
2150 linked in the final executable. */
2152 DEBUG_FUNCTION void
2153 debug_cfg_stats (void)
2155 dump_cfg_stats (stderr);
2159 /* Dump the flowgraph to a .vcg FILE. */
2161 static void
2162 gimple_cfg2vcg (FILE *file)
2164 edge e;
2165 edge_iterator ei;
2166 basic_block bb;
2167 const char *funcname = current_function_name ();
2169 /* Write the file header. */
2170 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2171 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2172 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2174 /* Write blocks and edges. */
2175 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2177 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2178 e->dest->index);
2180 if (e->flags & EDGE_FAKE)
2181 fprintf (file, " linestyle: dotted priority: 10");
2182 else
2183 fprintf (file, " linestyle: solid priority: 100");
2185 fprintf (file, " }\n");
2187 fputc ('\n', file);
2189 FOR_EACH_BB (bb)
2191 enum gimple_code head_code, end_code;
2192 const char *head_name, *end_name;
2193 int head_line = 0;
2194 int end_line = 0;
2195 gimple first = first_stmt (bb);
2196 gimple last = last_stmt (bb);
2198 if (first)
2200 head_code = gimple_code (first);
2201 head_name = gimple_code_name[head_code];
2202 head_line = get_lineno (first);
2204 else
2205 head_name = "no-statement";
2207 if (last)
2209 end_code = gimple_code (last);
2210 end_name = gimple_code_name[end_code];
2211 end_line = get_lineno (last);
2213 else
2214 end_name = "no-statement";
2216 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2217 bb->index, bb->index, head_name, head_line, end_name,
2218 end_line);
2220 FOR_EACH_EDGE (e, ei, bb->succs)
2222 if (e->dest == EXIT_BLOCK_PTR)
2223 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2224 else
2225 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2227 if (e->flags & EDGE_FAKE)
2228 fprintf (file, " priority: 10 linestyle: dotted");
2229 else
2230 fprintf (file, " priority: 100 linestyle: solid");
2232 fprintf (file, " }\n");
2235 if (bb->next_bb != EXIT_BLOCK_PTR)
2236 fputc ('\n', file);
2239 fputs ("}\n\n", file);
2244 /*---------------------------------------------------------------------------
2245 Miscellaneous helpers
2246 ---------------------------------------------------------------------------*/
2248 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2249 flow. Transfers of control flow associated with EH are excluded. */
2251 static bool
2252 call_can_make_abnormal_goto (gimple t)
2254 /* If the function has no non-local labels, then a call cannot make an
2255 abnormal transfer of control. */
2256 if (!cfun->has_nonlocal_label)
2257 return false;
2259 /* Likewise if the call has no side effects. */
2260 if (!gimple_has_side_effects (t))
2261 return false;
2263 /* Likewise if the called function is leaf. */
2264 if (gimple_call_flags (t) & ECF_LEAF)
2265 return false;
2267 return true;
2271 /* Return true if T can make an abnormal transfer of control flow.
2272 Transfers of control flow associated with EH are excluded. */
2274 bool
2275 stmt_can_make_abnormal_goto (gimple t)
2277 if (computed_goto_p (t))
2278 return true;
2279 if (is_gimple_call (t))
2280 return call_can_make_abnormal_goto (t);
2281 return false;
2285 /* Return true if T represents a stmt that always transfers control. */
2287 bool
2288 is_ctrl_stmt (gimple t)
2290 switch (gimple_code (t))
2292 case GIMPLE_COND:
2293 case GIMPLE_SWITCH:
2294 case GIMPLE_GOTO:
2295 case GIMPLE_RETURN:
2296 case GIMPLE_RESX:
2297 return true;
2298 default:
2299 return false;
2304 /* Return true if T is a statement that may alter the flow of control
2305 (e.g., a call to a non-returning function). */
2307 bool
2308 is_ctrl_altering_stmt (gimple t)
2310 gcc_assert (t);
2312 switch (gimple_code (t))
2314 case GIMPLE_CALL:
2316 int flags = gimple_call_flags (t);
2318 /* A call alters control flow if it can make an abnormal goto. */
2319 if (call_can_make_abnormal_goto (t))
2320 return true;
2322 /* A call also alters control flow if it does not return. */
2323 if (flags & ECF_NORETURN)
2324 return true;
2326 /* TM ending statements have backedges out of the transaction.
2327 Return true so we split the basic block containing them.
2328 Note that the TM_BUILTIN test is merely an optimization. */
2329 if ((flags & ECF_TM_BUILTIN)
2330 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2331 return true;
2333 /* BUILT_IN_RETURN call is same as return statement. */
2334 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2335 return true;
2337 break;
2339 case GIMPLE_EH_DISPATCH:
2340 /* EH_DISPATCH branches to the individual catch handlers at
2341 this level of a try or allowed-exceptions region. It can
2342 fallthru to the next statement as well. */
2343 return true;
2345 case GIMPLE_ASM:
2346 if (gimple_asm_nlabels (t) > 0)
2347 return true;
2348 break;
2350 CASE_GIMPLE_OMP:
2351 /* OpenMP directives alter control flow. */
2352 return true;
2354 case GIMPLE_TRANSACTION:
2355 /* A transaction start alters control flow. */
2356 return true;
2358 default:
2359 break;
2362 /* If a statement can throw, it alters control flow. */
2363 return stmt_can_throw_internal (t);
2367 /* Return true if T is a simple local goto. */
2369 bool
2370 simple_goto_p (gimple t)
2372 return (gimple_code (t) == GIMPLE_GOTO
2373 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2377 /* Return true if STMT should start a new basic block. PREV_STMT is
2378 the statement preceding STMT. It is used when STMT is a label or a
2379 case label. Labels should only start a new basic block if their
2380 previous statement wasn't a label. Otherwise, sequence of labels
2381 would generate unnecessary basic blocks that only contain a single
2382 label. */
2384 static inline bool
2385 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2387 if (stmt == NULL)
2388 return false;
2390 /* Labels start a new basic block only if the preceding statement
2391 wasn't a label of the same type. This prevents the creation of
2392 consecutive blocks that have nothing but a single label. */
2393 if (gimple_code (stmt) == GIMPLE_LABEL)
2395 /* Nonlocal and computed GOTO targets always start a new block. */
2396 if (DECL_NONLOCAL (gimple_label_label (stmt))
2397 || FORCED_LABEL (gimple_label_label (stmt)))
2398 return true;
2400 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2402 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2403 return true;
2405 cfg_stats.num_merged_labels++;
2406 return false;
2408 else
2409 return true;
2412 return false;
2416 /* Return true if T should end a basic block. */
2418 bool
2419 stmt_ends_bb_p (gimple t)
2421 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2424 /* Remove block annotations and other data structures. */
2426 void
2427 delete_tree_cfg_annotations (void)
2429 label_to_block_map = NULL;
2433 /* Return the first statement in basic block BB. */
2435 gimple
2436 first_stmt (basic_block bb)
2438 gimple_stmt_iterator i = gsi_start_bb (bb);
2439 gimple stmt = NULL;
2441 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2443 gsi_next (&i);
2444 stmt = NULL;
2446 return stmt;
2449 /* Return the first non-label statement in basic block BB. */
2451 static gimple
2452 first_non_label_stmt (basic_block bb)
2454 gimple_stmt_iterator i = gsi_start_bb (bb);
2455 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2456 gsi_next (&i);
2457 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2460 /* Return the last statement in basic block BB. */
2462 gimple
2463 last_stmt (basic_block bb)
2465 gimple_stmt_iterator i = gsi_last_bb (bb);
2466 gimple stmt = NULL;
2468 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2470 gsi_prev (&i);
2471 stmt = NULL;
2473 return stmt;
2476 /* Return the last statement of an otherwise empty block. Return NULL
2477 if the block is totally empty, or if it contains more than one
2478 statement. */
2480 gimple
2481 last_and_only_stmt (basic_block bb)
2483 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2484 gimple last, prev;
2486 if (gsi_end_p (i))
2487 return NULL;
2489 last = gsi_stmt (i);
2490 gsi_prev_nondebug (&i);
2491 if (gsi_end_p (i))
2492 return last;
2494 /* Empty statements should no longer appear in the instruction stream.
2495 Everything that might have appeared before should be deleted by
2496 remove_useless_stmts, and the optimizers should just gsi_remove
2497 instead of smashing with build_empty_stmt.
2499 Thus the only thing that should appear here in a block containing
2500 one executable statement is a label. */
2501 prev = gsi_stmt (i);
2502 if (gimple_code (prev) == GIMPLE_LABEL)
2503 return last;
2504 else
2505 return NULL;
2508 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2510 static void
2511 reinstall_phi_args (edge new_edge, edge old_edge)
2513 edge_var_map_vector v;
2514 edge_var_map *vm;
2515 int i;
2516 gimple_stmt_iterator phis;
2518 v = redirect_edge_var_map_vector (old_edge);
2519 if (!v)
2520 return;
2522 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2523 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2524 i++, gsi_next (&phis))
2526 gimple phi = gsi_stmt (phis);
2527 tree result = redirect_edge_var_map_result (vm);
2528 tree arg = redirect_edge_var_map_def (vm);
2530 gcc_assert (result == gimple_phi_result (phi));
2532 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2535 redirect_edge_var_map_clear (old_edge);
2538 /* Returns the basic block after which the new basic block created
2539 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2540 near its "logical" location. This is of most help to humans looking
2541 at debugging dumps. */
2543 static basic_block
2544 split_edge_bb_loc (edge edge_in)
2546 basic_block dest = edge_in->dest;
2547 basic_block dest_prev = dest->prev_bb;
2549 if (dest_prev)
2551 edge e = find_edge (dest_prev, dest);
2552 if (e && !(e->flags & EDGE_COMPLEX))
2553 return edge_in->src;
2555 return dest_prev;
2558 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2559 Abort on abnormal edges. */
2561 static basic_block
2562 gimple_split_edge (edge edge_in)
2564 basic_block new_bb, after_bb, dest;
2565 edge new_edge, e;
2567 /* Abnormal edges cannot be split. */
2568 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2570 dest = edge_in->dest;
2572 after_bb = split_edge_bb_loc (edge_in);
2574 new_bb = create_empty_bb (after_bb);
2575 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2576 new_bb->count = edge_in->count;
2577 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2578 new_edge->probability = REG_BR_PROB_BASE;
2579 new_edge->count = edge_in->count;
2581 e = redirect_edge_and_branch (edge_in, new_bb);
2582 gcc_assert (e == edge_in);
2583 reinstall_phi_args (new_edge, e);
2585 return new_bb;
2589 /* Verify properties of the address expression T with base object BASE. */
2591 static tree
2592 verify_address (tree t, tree base)
2594 bool old_constant;
2595 bool old_side_effects;
2596 bool new_constant;
2597 bool new_side_effects;
2599 old_constant = TREE_CONSTANT (t);
2600 old_side_effects = TREE_SIDE_EFFECTS (t);
2602 recompute_tree_invariant_for_addr_expr (t);
2603 new_side_effects = TREE_SIDE_EFFECTS (t);
2604 new_constant = TREE_CONSTANT (t);
2606 if (old_constant != new_constant)
2608 error ("constant not recomputed when ADDR_EXPR changed");
2609 return t;
2611 if (old_side_effects != new_side_effects)
2613 error ("side effects not recomputed when ADDR_EXPR changed");
2614 return t;
2617 if (!(TREE_CODE (base) == VAR_DECL
2618 || TREE_CODE (base) == PARM_DECL
2619 || TREE_CODE (base) == RESULT_DECL))
2620 return NULL_TREE;
2622 if (DECL_GIMPLE_REG_P (base))
2624 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2625 return base;
2628 return NULL_TREE;
2631 /* Callback for walk_tree, check that all elements with address taken are
2632 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2633 inside a PHI node. */
2635 static tree
2636 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2638 tree t = *tp, x;
2640 if (TYPE_P (t))
2641 *walk_subtrees = 0;
2643 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2644 #define CHECK_OP(N, MSG) \
2645 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2646 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2648 switch (TREE_CODE (t))
2650 case SSA_NAME:
2651 if (SSA_NAME_IN_FREE_LIST (t))
2653 error ("SSA name in freelist but still referenced");
2654 return *tp;
2656 break;
2658 case INDIRECT_REF:
2659 error ("INDIRECT_REF in gimple IL");
2660 return t;
2662 case MEM_REF:
2663 x = TREE_OPERAND (t, 0);
2664 if (!POINTER_TYPE_P (TREE_TYPE (x))
2665 || !is_gimple_mem_ref_addr (x))
2667 error ("invalid first operand of MEM_REF");
2668 return x;
2670 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2671 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2673 error ("invalid offset operand of MEM_REF");
2674 return TREE_OPERAND (t, 1);
2676 if (TREE_CODE (x) == ADDR_EXPR
2677 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2678 return x;
2679 *walk_subtrees = 0;
2680 break;
2682 case ASSERT_EXPR:
2683 x = fold (ASSERT_EXPR_COND (t));
2684 if (x == boolean_false_node)
2686 error ("ASSERT_EXPR with an always-false condition");
2687 return *tp;
2689 break;
2691 case MODIFY_EXPR:
2692 error ("MODIFY_EXPR not expected while having tuples");
2693 return *tp;
2695 case ADDR_EXPR:
2697 tree tem;
2699 gcc_assert (is_gimple_address (t));
2701 /* Skip any references (they will be checked when we recurse down the
2702 tree) and ensure that any variable used as a prefix is marked
2703 addressable. */
2704 for (x = TREE_OPERAND (t, 0);
2705 handled_component_p (x);
2706 x = TREE_OPERAND (x, 0))
2709 if ((tem = verify_address (t, x)))
2710 return tem;
2712 if (!(TREE_CODE (x) == VAR_DECL
2713 || TREE_CODE (x) == PARM_DECL
2714 || TREE_CODE (x) == RESULT_DECL))
2715 return NULL;
2717 if (!TREE_ADDRESSABLE (x))
2719 error ("address taken, but ADDRESSABLE bit not set");
2720 return x;
2723 break;
2726 case COND_EXPR:
2727 x = COND_EXPR_COND (t);
2728 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2730 error ("non-integral used in condition");
2731 return x;
2733 if (!is_gimple_condexpr (x))
2735 error ("invalid conditional operand");
2736 return x;
2738 break;
2740 case NON_LVALUE_EXPR:
2741 case TRUTH_NOT_EXPR:
2742 gcc_unreachable ();
2744 CASE_CONVERT:
2745 case FIX_TRUNC_EXPR:
2746 case FLOAT_EXPR:
2747 case NEGATE_EXPR:
2748 case ABS_EXPR:
2749 case BIT_NOT_EXPR:
2750 CHECK_OP (0, "invalid operand to unary operator");
2751 break;
2753 case REALPART_EXPR:
2754 case IMAGPART_EXPR:
2755 case COMPONENT_REF:
2756 case ARRAY_REF:
2757 case ARRAY_RANGE_REF:
2758 case BIT_FIELD_REF:
2759 case VIEW_CONVERT_EXPR:
2760 /* We have a nest of references. Verify that each of the operands
2761 that determine where to reference is either a constant or a variable,
2762 verify that the base is valid, and then show we've already checked
2763 the subtrees. */
2764 while (handled_component_p (t))
2766 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2767 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2768 else if (TREE_CODE (t) == ARRAY_REF
2769 || TREE_CODE (t) == ARRAY_RANGE_REF)
2771 CHECK_OP (1, "invalid array index");
2772 if (TREE_OPERAND (t, 2))
2773 CHECK_OP (2, "invalid array lower bound");
2774 if (TREE_OPERAND (t, 3))
2775 CHECK_OP (3, "invalid array stride");
2777 else if (TREE_CODE (t) == BIT_FIELD_REF)
2779 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2780 || !host_integerp (TREE_OPERAND (t, 2), 1))
2782 error ("invalid position or size operand to BIT_FIELD_REF");
2783 return t;
2785 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2786 && (TYPE_PRECISION (TREE_TYPE (t))
2787 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2789 error ("integral result type precision does not match "
2790 "field size of BIT_FIELD_REF");
2791 return t;
2793 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2794 && !AGGREGATE_TYPE_P (TREE_TYPE (t))
2795 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2796 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2797 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2799 error ("mode precision of non-integral result does not "
2800 "match field size of BIT_FIELD_REF");
2801 return t;
2805 t = TREE_OPERAND (t, 0);
2808 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2810 error ("invalid reference prefix");
2811 return t;
2813 *walk_subtrees = 0;
2814 break;
2815 case PLUS_EXPR:
2816 case MINUS_EXPR:
2817 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2818 POINTER_PLUS_EXPR. */
2819 if (POINTER_TYPE_P (TREE_TYPE (t)))
2821 error ("invalid operand to plus/minus, type is a pointer");
2822 return t;
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2828 case POINTER_PLUS_EXPR:
2829 /* Check to make sure the first operand is a pointer or reference type. */
2830 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2832 error ("invalid operand to pointer plus, first operand is not a pointer");
2833 return t;
2835 /* Check to make sure the second operand is a ptrofftype. */
2836 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2838 error ("invalid operand to pointer plus, second operand is not an "
2839 "integer type of appropriate width");
2840 return t;
2842 /* FALLTHROUGH */
2843 case LT_EXPR:
2844 case LE_EXPR:
2845 case GT_EXPR:
2846 case GE_EXPR:
2847 case EQ_EXPR:
2848 case NE_EXPR:
2849 case UNORDERED_EXPR:
2850 case ORDERED_EXPR:
2851 case UNLT_EXPR:
2852 case UNLE_EXPR:
2853 case UNGT_EXPR:
2854 case UNGE_EXPR:
2855 case UNEQ_EXPR:
2856 case LTGT_EXPR:
2857 case MULT_EXPR:
2858 case TRUNC_DIV_EXPR:
2859 case CEIL_DIV_EXPR:
2860 case FLOOR_DIV_EXPR:
2861 case ROUND_DIV_EXPR:
2862 case TRUNC_MOD_EXPR:
2863 case CEIL_MOD_EXPR:
2864 case FLOOR_MOD_EXPR:
2865 case ROUND_MOD_EXPR:
2866 case RDIV_EXPR:
2867 case EXACT_DIV_EXPR:
2868 case MIN_EXPR:
2869 case MAX_EXPR:
2870 case LSHIFT_EXPR:
2871 case RSHIFT_EXPR:
2872 case LROTATE_EXPR:
2873 case RROTATE_EXPR:
2874 case BIT_IOR_EXPR:
2875 case BIT_XOR_EXPR:
2876 case BIT_AND_EXPR:
2877 CHECK_OP (0, "invalid operand to binary operator");
2878 CHECK_OP (1, "invalid operand to binary operator");
2879 break;
2881 case CONSTRUCTOR:
2882 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2883 *walk_subtrees = 0;
2884 break;
2886 case CASE_LABEL_EXPR:
2887 if (CASE_CHAIN (t))
2889 error ("invalid CASE_CHAIN");
2890 return t;
2892 break;
2894 default:
2895 break;
2897 return NULL;
2899 #undef CHECK_OP
2903 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2904 Returns true if there is an error, otherwise false. */
2906 static bool
2907 verify_types_in_gimple_min_lval (tree expr)
2909 tree op;
2911 if (is_gimple_id (expr))
2912 return false;
2914 if (TREE_CODE (expr) != TARGET_MEM_REF
2915 && TREE_CODE (expr) != MEM_REF)
2917 error ("invalid expression for min lvalue");
2918 return true;
2921 /* TARGET_MEM_REFs are strange beasts. */
2922 if (TREE_CODE (expr) == TARGET_MEM_REF)
2923 return false;
2925 op = TREE_OPERAND (expr, 0);
2926 if (!is_gimple_val (op))
2928 error ("invalid operand in indirect reference");
2929 debug_generic_stmt (op);
2930 return true;
2932 /* Memory references now generally can involve a value conversion. */
2934 return false;
2937 /* Verify if EXPR is a valid GIMPLE reference expression. If
2938 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2939 if there is an error, otherwise false. */
2941 static bool
2942 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2944 while (handled_component_p (expr))
2946 tree op = TREE_OPERAND (expr, 0);
2948 if (TREE_CODE (expr) == ARRAY_REF
2949 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2951 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2952 || (TREE_OPERAND (expr, 2)
2953 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2954 || (TREE_OPERAND (expr, 3)
2955 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2957 error ("invalid operands to array reference");
2958 debug_generic_stmt (expr);
2959 return true;
2963 /* Verify if the reference array element types are compatible. */
2964 if (TREE_CODE (expr) == ARRAY_REF
2965 && !useless_type_conversion_p (TREE_TYPE (expr),
2966 TREE_TYPE (TREE_TYPE (op))))
2968 error ("type mismatch in array reference");
2969 debug_generic_stmt (TREE_TYPE (expr));
2970 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2971 return true;
2973 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2974 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2975 TREE_TYPE (TREE_TYPE (op))))
2977 error ("type mismatch in array range reference");
2978 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2979 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2980 return true;
2983 if ((TREE_CODE (expr) == REALPART_EXPR
2984 || TREE_CODE (expr) == IMAGPART_EXPR)
2985 && !useless_type_conversion_p (TREE_TYPE (expr),
2986 TREE_TYPE (TREE_TYPE (op))))
2988 error ("type mismatch in real/imagpart reference");
2989 debug_generic_stmt (TREE_TYPE (expr));
2990 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2991 return true;
2994 if (TREE_CODE (expr) == COMPONENT_REF
2995 && !useless_type_conversion_p (TREE_TYPE (expr),
2996 TREE_TYPE (TREE_OPERAND (expr, 1))))
2998 error ("type mismatch in component reference");
2999 debug_generic_stmt (TREE_TYPE (expr));
3000 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3001 return true;
3004 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3006 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3007 that their operand is not an SSA name or an invariant when
3008 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3009 bug). Otherwise there is nothing to verify, gross mismatches at
3010 most invoke undefined behavior. */
3011 if (require_lvalue
3012 && (TREE_CODE (op) == SSA_NAME
3013 || is_gimple_min_invariant (op)))
3015 error ("conversion of an SSA_NAME on the left hand side");
3016 debug_generic_stmt (expr);
3017 return true;
3019 else if (TREE_CODE (op) == SSA_NAME
3020 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3022 error ("conversion of register to a different size");
3023 debug_generic_stmt (expr);
3024 return true;
3026 else if (!handled_component_p (op))
3027 return false;
3030 expr = op;
3033 if (TREE_CODE (expr) == MEM_REF)
3035 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3037 error ("invalid address operand in MEM_REF");
3038 debug_generic_stmt (expr);
3039 return true;
3041 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3042 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3044 error ("invalid offset operand in MEM_REF");
3045 debug_generic_stmt (expr);
3046 return true;
3049 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3051 if (!TMR_BASE (expr)
3052 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3054 error ("invalid address operand in TARGET_MEM_REF");
3055 return true;
3057 if (!TMR_OFFSET (expr)
3058 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3059 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3061 error ("invalid offset operand in TARGET_MEM_REF");
3062 debug_generic_stmt (expr);
3063 return true;
3067 return ((require_lvalue || !is_gimple_min_invariant (expr))
3068 && verify_types_in_gimple_min_lval (expr));
3071 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3072 list of pointer-to types that is trivially convertible to DEST. */
3074 static bool
3075 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3077 tree src;
3079 if (!TYPE_POINTER_TO (src_obj))
3080 return true;
3082 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3083 if (useless_type_conversion_p (dest, src))
3084 return true;
3086 return false;
3089 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3090 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3092 static bool
3093 valid_fixed_convert_types_p (tree type1, tree type2)
3095 return (FIXED_POINT_TYPE_P (type1)
3096 && (INTEGRAL_TYPE_P (type2)
3097 || SCALAR_FLOAT_TYPE_P (type2)
3098 || FIXED_POINT_TYPE_P (type2)));
3101 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3102 is a problem, otherwise false. */
3104 static bool
3105 verify_gimple_call (gimple stmt)
3107 tree fn = gimple_call_fn (stmt);
3108 tree fntype, fndecl;
3109 unsigned i;
3111 if (gimple_call_internal_p (stmt))
3113 if (fn)
3115 error ("gimple call has two targets");
3116 debug_generic_stmt (fn);
3117 return true;
3120 else
3122 if (!fn)
3124 error ("gimple call has no target");
3125 return true;
3129 if (fn && !is_gimple_call_addr (fn))
3131 error ("invalid function in gimple call");
3132 debug_generic_stmt (fn);
3133 return true;
3136 if (fn
3137 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3138 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3139 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3141 error ("non-function in gimple call");
3142 return true;
3145 fndecl = gimple_call_fndecl (stmt);
3146 if (fndecl
3147 && TREE_CODE (fndecl) == FUNCTION_DECL
3148 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3149 && !DECL_PURE_P (fndecl)
3150 && !TREE_READONLY (fndecl))
3152 error ("invalid pure const state for function");
3153 return true;
3156 if (gimple_call_lhs (stmt)
3157 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3158 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3160 error ("invalid LHS in gimple call");
3161 return true;
3164 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3166 error ("LHS in noreturn call");
3167 return true;
3170 fntype = gimple_call_fntype (stmt);
3171 if (fntype
3172 && gimple_call_lhs (stmt)
3173 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3174 TREE_TYPE (fntype))
3175 /* ??? At least C++ misses conversions at assignments from
3176 void * call results.
3177 ??? Java is completely off. Especially with functions
3178 returning java.lang.Object.
3179 For now simply allow arbitrary pointer type conversions. */
3180 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3181 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3183 error ("invalid conversion in gimple call");
3184 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3185 debug_generic_stmt (TREE_TYPE (fntype));
3186 return true;
3189 if (gimple_call_chain (stmt)
3190 && !is_gimple_val (gimple_call_chain (stmt)))
3192 error ("invalid static chain in gimple call");
3193 debug_generic_stmt (gimple_call_chain (stmt));
3194 return true;
3197 /* If there is a static chain argument, this should not be an indirect
3198 call, and the decl should have DECL_STATIC_CHAIN set. */
3199 if (gimple_call_chain (stmt))
3201 if (!gimple_call_fndecl (stmt))
3203 error ("static chain in indirect gimple call");
3204 return true;
3206 fn = TREE_OPERAND (fn, 0);
3208 if (!DECL_STATIC_CHAIN (fn))
3210 error ("static chain with function that doesn%'t use one");
3211 return true;
3215 /* ??? The C frontend passes unpromoted arguments in case it
3216 didn't see a function declaration before the call. So for now
3217 leave the call arguments mostly unverified. Once we gimplify
3218 unit-at-a-time we have a chance to fix this. */
3220 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3222 tree arg = gimple_call_arg (stmt, i);
3223 if ((is_gimple_reg_type (TREE_TYPE (arg))
3224 && !is_gimple_val (arg))
3225 || (!is_gimple_reg_type (TREE_TYPE (arg))
3226 && !is_gimple_lvalue (arg)))
3228 error ("invalid argument to gimple call");
3229 debug_generic_expr (arg);
3230 return true;
3234 return false;
3237 /* Verifies the gimple comparison with the result type TYPE and
3238 the operands OP0 and OP1. */
3240 static bool
3241 verify_gimple_comparison (tree type, tree op0, tree op1)
3243 tree op0_type = TREE_TYPE (op0);
3244 tree op1_type = TREE_TYPE (op1);
3246 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3248 error ("invalid operands in gimple comparison");
3249 return true;
3252 /* For comparisons we do not have the operations type as the
3253 effective type the comparison is carried out in. Instead
3254 we require that either the first operand is trivially
3255 convertible into the second, or the other way around.
3256 Because we special-case pointers to void we allow
3257 comparisons of pointers with the same mode as well. */
3258 if (!useless_type_conversion_p (op0_type, op1_type)
3259 && !useless_type_conversion_p (op1_type, op0_type)
3260 && (!POINTER_TYPE_P (op0_type)
3261 || !POINTER_TYPE_P (op1_type)
3262 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3264 error ("mismatching comparison operand types");
3265 debug_generic_expr (op0_type);
3266 debug_generic_expr (op1_type);
3267 return true;
3270 /* The resulting type of a comparison may be an effective boolean type. */
3271 if (INTEGRAL_TYPE_P (type)
3272 && (TREE_CODE (type) == BOOLEAN_TYPE
3273 || TYPE_PRECISION (type) == 1))
3275 /* Or an integer vector type with the same size and element count
3276 as the comparison operand types. */
3277 else if (TREE_CODE (type) == VECTOR_TYPE
3278 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3280 if (TREE_CODE (op0_type) != VECTOR_TYPE
3281 || TREE_CODE (op1_type) != VECTOR_TYPE)
3283 error ("non-vector operands in vector comparison");
3284 debug_generic_expr (op0_type);
3285 debug_generic_expr (op1_type);
3286 return true;
3289 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3290 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3291 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3293 error ("invalid vector comparison resulting type");
3294 debug_generic_expr (type);
3295 return true;
3298 else
3300 error ("bogus comparison result type");
3301 debug_generic_expr (type);
3302 return true;
3305 return false;
3308 /* Verify a gimple assignment statement STMT with an unary rhs.
3309 Returns true if anything is wrong. */
3311 static bool
3312 verify_gimple_assign_unary (gimple stmt)
3314 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3315 tree lhs = gimple_assign_lhs (stmt);
3316 tree lhs_type = TREE_TYPE (lhs);
3317 tree rhs1 = gimple_assign_rhs1 (stmt);
3318 tree rhs1_type = TREE_TYPE (rhs1);
3320 if (!is_gimple_reg (lhs))
3322 error ("non-register as LHS of unary operation");
3323 return true;
3326 if (!is_gimple_val (rhs1))
3328 error ("invalid operand in unary operation");
3329 return true;
3332 /* First handle conversions. */
3333 switch (rhs_code)
3335 CASE_CONVERT:
3337 /* Allow conversions from pointer type to integral type only if
3338 there is no sign or zero extension involved.
3339 For targets were the precision of ptrofftype doesn't match that
3340 of pointers we need to allow arbitrary conversions to ptrofftype. */
3341 if ((POINTER_TYPE_P (lhs_type)
3342 && INTEGRAL_TYPE_P (rhs1_type))
3343 || (POINTER_TYPE_P (rhs1_type)
3344 && INTEGRAL_TYPE_P (lhs_type)
3345 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3346 || ptrofftype_p (sizetype))))
3347 return false;
3349 /* Allow conversion from integral to offset type and vice versa. */
3350 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3351 && INTEGRAL_TYPE_P (rhs1_type))
3352 || (INTEGRAL_TYPE_P (lhs_type)
3353 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3354 return false;
3356 /* Otherwise assert we are converting between types of the
3357 same kind. */
3358 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3360 error ("invalid types in nop conversion");
3361 debug_generic_expr (lhs_type);
3362 debug_generic_expr (rhs1_type);
3363 return true;
3366 return false;
3369 case ADDR_SPACE_CONVERT_EXPR:
3371 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3372 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3373 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3375 error ("invalid types in address space conversion");
3376 debug_generic_expr (lhs_type);
3377 debug_generic_expr (rhs1_type);
3378 return true;
3381 return false;
3384 case FIXED_CONVERT_EXPR:
3386 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3387 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3389 error ("invalid types in fixed-point conversion");
3390 debug_generic_expr (lhs_type);
3391 debug_generic_expr (rhs1_type);
3392 return true;
3395 return false;
3398 case FLOAT_EXPR:
3400 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3401 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3402 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3404 error ("invalid types in conversion to floating point");
3405 debug_generic_expr (lhs_type);
3406 debug_generic_expr (rhs1_type);
3407 return true;
3410 return false;
3413 case FIX_TRUNC_EXPR:
3415 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3416 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3417 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3419 error ("invalid types in conversion to integer");
3420 debug_generic_expr (lhs_type);
3421 debug_generic_expr (rhs1_type);
3422 return true;
3425 return false;
3428 case VEC_UNPACK_HI_EXPR:
3429 case VEC_UNPACK_LO_EXPR:
3430 case REDUC_MAX_EXPR:
3431 case REDUC_MIN_EXPR:
3432 case REDUC_PLUS_EXPR:
3433 case VEC_UNPACK_FLOAT_HI_EXPR:
3434 case VEC_UNPACK_FLOAT_LO_EXPR:
3435 /* FIXME. */
3436 return false;
3438 case NEGATE_EXPR:
3439 case ABS_EXPR:
3440 case BIT_NOT_EXPR:
3441 case PAREN_EXPR:
3442 case NON_LVALUE_EXPR:
3443 case CONJ_EXPR:
3444 break;
3446 default:
3447 gcc_unreachable ();
3450 /* For the remaining codes assert there is no conversion involved. */
3451 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3453 error ("non-trivial conversion in unary operation");
3454 debug_generic_expr (lhs_type);
3455 debug_generic_expr (rhs1_type);
3456 return true;
3459 return false;
3462 /* Verify a gimple assignment statement STMT with a binary rhs.
3463 Returns true if anything is wrong. */
3465 static bool
3466 verify_gimple_assign_binary (gimple stmt)
3468 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3469 tree lhs = gimple_assign_lhs (stmt);
3470 tree lhs_type = TREE_TYPE (lhs);
3471 tree rhs1 = gimple_assign_rhs1 (stmt);
3472 tree rhs1_type = TREE_TYPE (rhs1);
3473 tree rhs2 = gimple_assign_rhs2 (stmt);
3474 tree rhs2_type = TREE_TYPE (rhs2);
3476 if (!is_gimple_reg (lhs))
3478 error ("non-register as LHS of binary operation");
3479 return true;
3482 if (!is_gimple_val (rhs1)
3483 || !is_gimple_val (rhs2))
3485 error ("invalid operands in binary operation");
3486 return true;
3489 /* First handle operations that involve different types. */
3490 switch (rhs_code)
3492 case COMPLEX_EXPR:
3494 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3495 || !(INTEGRAL_TYPE_P (rhs1_type)
3496 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3497 || !(INTEGRAL_TYPE_P (rhs2_type)
3498 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3500 error ("type mismatch in complex expression");
3501 debug_generic_expr (lhs_type);
3502 debug_generic_expr (rhs1_type);
3503 debug_generic_expr (rhs2_type);
3504 return true;
3507 return false;
3510 case LSHIFT_EXPR:
3511 case RSHIFT_EXPR:
3512 case LROTATE_EXPR:
3513 case RROTATE_EXPR:
3515 /* Shifts and rotates are ok on integral types, fixed point
3516 types and integer vector types. */
3517 if ((!INTEGRAL_TYPE_P (rhs1_type)
3518 && !FIXED_POINT_TYPE_P (rhs1_type)
3519 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3520 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3521 || (!INTEGRAL_TYPE_P (rhs2_type)
3522 /* Vector shifts of vectors are also ok. */
3523 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3524 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3525 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3526 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3527 || !useless_type_conversion_p (lhs_type, rhs1_type))
3529 error ("type mismatch in shift expression");
3530 debug_generic_expr (lhs_type);
3531 debug_generic_expr (rhs1_type);
3532 debug_generic_expr (rhs2_type);
3533 return true;
3536 return false;
3539 case VEC_LSHIFT_EXPR:
3540 case VEC_RSHIFT_EXPR:
3542 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3543 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3544 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3545 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3546 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3547 || (!INTEGRAL_TYPE_P (rhs2_type)
3548 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3549 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3550 || !useless_type_conversion_p (lhs_type, rhs1_type))
3552 error ("type mismatch in vector shift expression");
3553 debug_generic_expr (lhs_type);
3554 debug_generic_expr (rhs1_type);
3555 debug_generic_expr (rhs2_type);
3556 return true;
3558 /* For shifting a vector of non-integral components we
3559 only allow shifting by a constant multiple of the element size. */
3560 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3561 && (TREE_CODE (rhs2) != INTEGER_CST
3562 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3563 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3565 error ("non-element sized vector shift of floating point vector");
3566 return true;
3569 return false;
3572 case WIDEN_LSHIFT_EXPR:
3574 if (!INTEGRAL_TYPE_P (lhs_type)
3575 || !INTEGRAL_TYPE_P (rhs1_type)
3576 || TREE_CODE (rhs2) != INTEGER_CST
3577 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3579 error ("type mismatch in widening vector shift expression");
3580 debug_generic_expr (lhs_type);
3581 debug_generic_expr (rhs1_type);
3582 debug_generic_expr (rhs2_type);
3583 return true;
3586 return false;
3589 case VEC_WIDEN_LSHIFT_HI_EXPR:
3590 case VEC_WIDEN_LSHIFT_LO_EXPR:
3592 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3593 || TREE_CODE (lhs_type) != VECTOR_TYPE
3594 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3595 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3596 || TREE_CODE (rhs2) != INTEGER_CST
3597 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3598 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3600 error ("type mismatch in widening vector shift expression");
3601 debug_generic_expr (lhs_type);
3602 debug_generic_expr (rhs1_type);
3603 debug_generic_expr (rhs2_type);
3604 return true;
3607 return false;
3610 case PLUS_EXPR:
3611 case MINUS_EXPR:
3613 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3614 ??? This just makes the checker happy and may not be what is
3615 intended. */
3616 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3617 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3619 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3620 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3622 error ("invalid non-vector operands to vector valued plus");
3623 return true;
3625 lhs_type = TREE_TYPE (lhs_type);
3626 rhs1_type = TREE_TYPE (rhs1_type);
3627 rhs2_type = TREE_TYPE (rhs2_type);
3628 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3629 the pointer to 2nd place. */
3630 if (POINTER_TYPE_P (rhs2_type))
3632 tree tem = rhs1_type;
3633 rhs1_type = rhs2_type;
3634 rhs2_type = tem;
3636 goto do_pointer_plus_expr_check;
3638 if (POINTER_TYPE_P (lhs_type)
3639 || POINTER_TYPE_P (rhs1_type)
3640 || POINTER_TYPE_P (rhs2_type))
3642 error ("invalid (pointer) operands to plus/minus");
3643 return true;
3646 /* Continue with generic binary expression handling. */
3647 break;
3650 case POINTER_PLUS_EXPR:
3652 do_pointer_plus_expr_check:
3653 if (!POINTER_TYPE_P (rhs1_type)
3654 || !useless_type_conversion_p (lhs_type, rhs1_type)
3655 || !ptrofftype_p (rhs2_type))
3657 error ("type mismatch in pointer plus expression");
3658 debug_generic_stmt (lhs_type);
3659 debug_generic_stmt (rhs1_type);
3660 debug_generic_stmt (rhs2_type);
3661 return true;
3664 return false;
3667 case TRUTH_ANDIF_EXPR:
3668 case TRUTH_ORIF_EXPR:
3669 case TRUTH_AND_EXPR:
3670 case TRUTH_OR_EXPR:
3671 case TRUTH_XOR_EXPR:
3673 gcc_unreachable ();
3675 case LT_EXPR:
3676 case LE_EXPR:
3677 case GT_EXPR:
3678 case GE_EXPR:
3679 case EQ_EXPR:
3680 case NE_EXPR:
3681 case UNORDERED_EXPR:
3682 case ORDERED_EXPR:
3683 case UNLT_EXPR:
3684 case UNLE_EXPR:
3685 case UNGT_EXPR:
3686 case UNGE_EXPR:
3687 case UNEQ_EXPR:
3688 case LTGT_EXPR:
3689 /* Comparisons are also binary, but the result type is not
3690 connected to the operand types. */
3691 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3693 case WIDEN_MULT_EXPR:
3694 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3695 return true;
3696 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3697 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3699 case WIDEN_SUM_EXPR:
3700 case VEC_WIDEN_MULT_HI_EXPR:
3701 case VEC_WIDEN_MULT_LO_EXPR:
3702 case VEC_WIDEN_MULT_EVEN_EXPR:
3703 case VEC_WIDEN_MULT_ODD_EXPR:
3704 case VEC_PACK_TRUNC_EXPR:
3705 case VEC_PACK_SAT_EXPR:
3706 case VEC_PACK_FIX_TRUNC_EXPR:
3707 /* FIXME. */
3708 return false;
3710 case MULT_EXPR:
3711 case MULT_HIGHPART_EXPR:
3712 case TRUNC_DIV_EXPR:
3713 case CEIL_DIV_EXPR:
3714 case FLOOR_DIV_EXPR:
3715 case ROUND_DIV_EXPR:
3716 case TRUNC_MOD_EXPR:
3717 case CEIL_MOD_EXPR:
3718 case FLOOR_MOD_EXPR:
3719 case ROUND_MOD_EXPR:
3720 case RDIV_EXPR:
3721 case EXACT_DIV_EXPR:
3722 case MIN_EXPR:
3723 case MAX_EXPR:
3724 case BIT_IOR_EXPR:
3725 case BIT_XOR_EXPR:
3726 case BIT_AND_EXPR:
3727 /* Continue with generic binary expression handling. */
3728 break;
3730 default:
3731 gcc_unreachable ();
3734 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3735 || !useless_type_conversion_p (lhs_type, rhs2_type))
3737 error ("type mismatch in binary expression");
3738 debug_generic_stmt (lhs_type);
3739 debug_generic_stmt (rhs1_type);
3740 debug_generic_stmt (rhs2_type);
3741 return true;
3744 return false;
3747 /* Verify a gimple assignment statement STMT with a ternary rhs.
3748 Returns true if anything is wrong. */
3750 static bool
3751 verify_gimple_assign_ternary (gimple stmt)
3753 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3754 tree lhs = gimple_assign_lhs (stmt);
3755 tree lhs_type = TREE_TYPE (lhs);
3756 tree rhs1 = gimple_assign_rhs1 (stmt);
3757 tree rhs1_type = TREE_TYPE (rhs1);
3758 tree rhs2 = gimple_assign_rhs2 (stmt);
3759 tree rhs2_type = TREE_TYPE (rhs2);
3760 tree rhs3 = gimple_assign_rhs3 (stmt);
3761 tree rhs3_type = TREE_TYPE (rhs3);
3763 if (!is_gimple_reg (lhs))
3765 error ("non-register as LHS of ternary operation");
3766 return true;
3769 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3770 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3771 || !is_gimple_val (rhs2)
3772 || !is_gimple_val (rhs3))
3774 error ("invalid operands in ternary operation");
3775 return true;
3778 /* First handle operations that involve different types. */
3779 switch (rhs_code)
3781 case WIDEN_MULT_PLUS_EXPR:
3782 case WIDEN_MULT_MINUS_EXPR:
3783 if ((!INTEGRAL_TYPE_P (rhs1_type)
3784 && !FIXED_POINT_TYPE_P (rhs1_type))
3785 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3786 || !useless_type_conversion_p (lhs_type, rhs3_type)
3787 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3788 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3790 error ("type mismatch in widening multiply-accumulate expression");
3791 debug_generic_expr (lhs_type);
3792 debug_generic_expr (rhs1_type);
3793 debug_generic_expr (rhs2_type);
3794 debug_generic_expr (rhs3_type);
3795 return true;
3797 break;
3799 case FMA_EXPR:
3800 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3801 || !useless_type_conversion_p (lhs_type, rhs2_type)
3802 || !useless_type_conversion_p (lhs_type, rhs3_type))
3804 error ("type mismatch in fused multiply-add expression");
3805 debug_generic_expr (lhs_type);
3806 debug_generic_expr (rhs1_type);
3807 debug_generic_expr (rhs2_type);
3808 debug_generic_expr (rhs3_type);
3809 return true;
3811 break;
3813 case COND_EXPR:
3814 case VEC_COND_EXPR:
3815 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3816 || !useless_type_conversion_p (lhs_type, rhs3_type))
3818 error ("type mismatch in conditional expression");
3819 debug_generic_expr (lhs_type);
3820 debug_generic_expr (rhs2_type);
3821 debug_generic_expr (rhs3_type);
3822 return true;
3824 break;
3826 case VEC_PERM_EXPR:
3827 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3828 || !useless_type_conversion_p (lhs_type, rhs2_type))
3830 error ("type mismatch in vector permute expression");
3831 debug_generic_expr (lhs_type);
3832 debug_generic_expr (rhs1_type);
3833 debug_generic_expr (rhs2_type);
3834 debug_generic_expr (rhs3_type);
3835 return true;
3838 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3839 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3840 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3842 error ("vector types expected in vector permute expression");
3843 debug_generic_expr (lhs_type);
3844 debug_generic_expr (rhs1_type);
3845 debug_generic_expr (rhs2_type);
3846 debug_generic_expr (rhs3_type);
3847 return true;
3850 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3851 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3852 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3853 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3854 != TYPE_VECTOR_SUBPARTS (lhs_type))
3856 error ("vectors with different element number found "
3857 "in vector permute expression");
3858 debug_generic_expr (lhs_type);
3859 debug_generic_expr (rhs1_type);
3860 debug_generic_expr (rhs2_type);
3861 debug_generic_expr (rhs3_type);
3862 return true;
3865 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3866 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3867 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3869 error ("invalid mask type in vector permute expression");
3870 debug_generic_expr (lhs_type);
3871 debug_generic_expr (rhs1_type);
3872 debug_generic_expr (rhs2_type);
3873 debug_generic_expr (rhs3_type);
3874 return true;
3877 return false;
3879 case DOT_PROD_EXPR:
3880 case REALIGN_LOAD_EXPR:
3881 /* FIXME. */
3882 return false;
3884 default:
3885 gcc_unreachable ();
3887 return false;
3890 /* Verify a gimple assignment statement STMT with a single rhs.
3891 Returns true if anything is wrong. */
3893 static bool
3894 verify_gimple_assign_single (gimple stmt)
3896 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3897 tree lhs = gimple_assign_lhs (stmt);
3898 tree lhs_type = TREE_TYPE (lhs);
3899 tree rhs1 = gimple_assign_rhs1 (stmt);
3900 tree rhs1_type = TREE_TYPE (rhs1);
3901 bool res = false;
3903 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3905 error ("non-trivial conversion at assignment");
3906 debug_generic_expr (lhs_type);
3907 debug_generic_expr (rhs1_type);
3908 return true;
3911 if (gimple_clobber_p (stmt)
3912 && !DECL_P (lhs))
3914 error ("non-decl LHS in clobber statement");
3915 debug_generic_expr (lhs);
3916 return true;
3919 if (handled_component_p (lhs))
3920 res |= verify_types_in_gimple_reference (lhs, true);
3922 /* Special codes we cannot handle via their class. */
3923 switch (rhs_code)
3925 case ADDR_EXPR:
3927 tree op = TREE_OPERAND (rhs1, 0);
3928 if (!is_gimple_addressable (op))
3930 error ("invalid operand in unary expression");
3931 return true;
3934 /* Technically there is no longer a need for matching types, but
3935 gimple hygiene asks for this check. In LTO we can end up
3936 combining incompatible units and thus end up with addresses
3937 of globals that change their type to a common one. */
3938 if (!in_lto_p
3939 && !types_compatible_p (TREE_TYPE (op),
3940 TREE_TYPE (TREE_TYPE (rhs1)))
3941 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3942 TREE_TYPE (op)))
3944 error ("type mismatch in address expression");
3945 debug_generic_stmt (TREE_TYPE (rhs1));
3946 debug_generic_stmt (TREE_TYPE (op));
3947 return true;
3950 return verify_types_in_gimple_reference (op, true);
3953 /* tcc_reference */
3954 case INDIRECT_REF:
3955 error ("INDIRECT_REF in gimple IL");
3956 return true;
3958 case COMPONENT_REF:
3959 case BIT_FIELD_REF:
3960 case ARRAY_REF:
3961 case ARRAY_RANGE_REF:
3962 case VIEW_CONVERT_EXPR:
3963 case REALPART_EXPR:
3964 case IMAGPART_EXPR:
3965 case TARGET_MEM_REF:
3966 case MEM_REF:
3967 if (!is_gimple_reg (lhs)
3968 && is_gimple_reg_type (TREE_TYPE (lhs)))
3970 error ("invalid rhs for gimple memory store");
3971 debug_generic_stmt (lhs);
3972 debug_generic_stmt (rhs1);
3973 return true;
3975 return res || verify_types_in_gimple_reference (rhs1, false);
3977 /* tcc_constant */
3978 case SSA_NAME:
3979 case INTEGER_CST:
3980 case REAL_CST:
3981 case FIXED_CST:
3982 case COMPLEX_CST:
3983 case VECTOR_CST:
3984 case STRING_CST:
3985 return res;
3987 /* tcc_declaration */
3988 case CONST_DECL:
3989 return res;
3990 case VAR_DECL:
3991 case PARM_DECL:
3992 if (!is_gimple_reg (lhs)
3993 && !is_gimple_reg (rhs1)
3994 && is_gimple_reg_type (TREE_TYPE (lhs)))
3996 error ("invalid rhs for gimple memory store");
3997 debug_generic_stmt (lhs);
3998 debug_generic_stmt (rhs1);
3999 return true;
4001 return res;
4003 case CONSTRUCTOR:
4004 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4006 unsigned int i;
4007 tree elt_i, elt_v, elt_t = NULL_TREE;
4009 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4010 return res;
4011 /* For vector CONSTRUCTORs we require that either it is empty
4012 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4013 (then the element count must be correct to cover the whole
4014 outer vector and index must be NULL on all elements, or it is
4015 a CONSTRUCTOR of scalar elements, where we as an exception allow
4016 smaller number of elements (assuming zero filling) and
4017 consecutive indexes as compared to NULL indexes (such
4018 CONSTRUCTORs can appear in the IL from FEs). */
4019 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4021 if (elt_t == NULL_TREE)
4023 elt_t = TREE_TYPE (elt_v);
4024 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4026 tree elt_t = TREE_TYPE (elt_v);
4027 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4028 TREE_TYPE (elt_t)))
4030 error ("incorrect type of vector CONSTRUCTOR"
4031 " elements");
4032 debug_generic_stmt (rhs1);
4033 return true;
4035 else if (CONSTRUCTOR_NELTS (rhs1)
4036 * TYPE_VECTOR_SUBPARTS (elt_t)
4037 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4039 error ("incorrect number of vector CONSTRUCTOR"
4040 " elements");
4041 debug_generic_stmt (rhs1);
4042 return true;
4045 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4046 elt_t))
4048 error ("incorrect type of vector CONSTRUCTOR elements");
4049 debug_generic_stmt (rhs1);
4050 return true;
4052 else if (CONSTRUCTOR_NELTS (rhs1)
4053 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4055 error ("incorrect number of vector CONSTRUCTOR elements");
4056 debug_generic_stmt (rhs1);
4057 return true;
4060 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4062 error ("incorrect type of vector CONSTRUCTOR elements");
4063 debug_generic_stmt (rhs1);
4064 return true;
4066 if (elt_i != NULL_TREE
4067 && (TREE_CODE (elt_t) == VECTOR_TYPE
4068 || TREE_CODE (elt_i) != INTEGER_CST
4069 || compare_tree_int (elt_i, i) != 0))
4071 error ("vector CONSTRUCTOR with non-NULL element index");
4072 debug_generic_stmt (rhs1);
4073 return true;
4077 return res;
4078 case OBJ_TYPE_REF:
4079 case ASSERT_EXPR:
4080 case WITH_SIZE_EXPR:
4081 /* FIXME. */
4082 return res;
4084 default:;
4087 return res;
4090 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4091 is a problem, otherwise false. */
4093 static bool
4094 verify_gimple_assign (gimple stmt)
4096 switch (gimple_assign_rhs_class (stmt))
4098 case GIMPLE_SINGLE_RHS:
4099 return verify_gimple_assign_single (stmt);
4101 case GIMPLE_UNARY_RHS:
4102 return verify_gimple_assign_unary (stmt);
4104 case GIMPLE_BINARY_RHS:
4105 return verify_gimple_assign_binary (stmt);
4107 case GIMPLE_TERNARY_RHS:
4108 return verify_gimple_assign_ternary (stmt);
4110 default:
4111 gcc_unreachable ();
4115 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4116 is a problem, otherwise false. */
4118 static bool
4119 verify_gimple_return (gimple stmt)
4121 tree op = gimple_return_retval (stmt);
4122 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4124 /* We cannot test for present return values as we do not fix up missing
4125 return values from the original source. */
4126 if (op == NULL)
4127 return false;
4129 if (!is_gimple_val (op)
4130 && TREE_CODE (op) != RESULT_DECL)
4132 error ("invalid operand in return statement");
4133 debug_generic_stmt (op);
4134 return true;
4137 if ((TREE_CODE (op) == RESULT_DECL
4138 && DECL_BY_REFERENCE (op))
4139 || (TREE_CODE (op) == SSA_NAME
4140 && SSA_NAME_VAR (op)
4141 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4142 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4143 op = TREE_TYPE (op);
4145 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4147 error ("invalid conversion in return statement");
4148 debug_generic_stmt (restype);
4149 debug_generic_stmt (TREE_TYPE (op));
4150 return true;
4153 return false;
4157 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4158 is a problem, otherwise false. */
4160 static bool
4161 verify_gimple_goto (gimple stmt)
4163 tree dest = gimple_goto_dest (stmt);
4165 /* ??? We have two canonical forms of direct goto destinations, a
4166 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4167 if (TREE_CODE (dest) != LABEL_DECL
4168 && (!is_gimple_val (dest)
4169 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4171 error ("goto destination is neither a label nor a pointer");
4172 return true;
4175 return false;
4178 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4179 is a problem, otherwise false. */
4181 static bool
4182 verify_gimple_switch (gimple stmt)
4184 unsigned int i, n;
4185 tree elt, prev_upper_bound = NULL_TREE;
4186 tree index_type, elt_type = NULL_TREE;
4188 if (!is_gimple_val (gimple_switch_index (stmt)))
4190 error ("invalid operand to switch statement");
4191 debug_generic_stmt (gimple_switch_index (stmt));
4192 return true;
4195 index_type = TREE_TYPE (gimple_switch_index (stmt));
4196 if (! INTEGRAL_TYPE_P (index_type))
4198 error ("non-integral type switch statement");
4199 debug_generic_expr (index_type);
4200 return true;
4203 elt = gimple_switch_label (stmt, 0);
4204 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4206 error ("invalid default case label in switch statement");
4207 debug_generic_expr (elt);
4208 return true;
4211 n = gimple_switch_num_labels (stmt);
4212 for (i = 1; i < n; i++)
4214 elt = gimple_switch_label (stmt, i);
4216 if (! CASE_LOW (elt))
4218 error ("invalid case label in switch statement");
4219 debug_generic_expr (elt);
4220 return true;
4222 if (CASE_HIGH (elt)
4223 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4225 error ("invalid case range in switch statement");
4226 debug_generic_expr (elt);
4227 return true;
4230 if (elt_type)
4232 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4233 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4235 error ("type mismatch for case label in switch statement");
4236 debug_generic_expr (elt);
4237 return true;
4240 else
4242 elt_type = TREE_TYPE (CASE_LOW (elt));
4243 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4245 error ("type precision mismatch in switch statement");
4246 return true;
4250 if (prev_upper_bound)
4252 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4254 error ("case labels not sorted in switch statement");
4255 return true;
4259 prev_upper_bound = CASE_HIGH (elt);
4260 if (! prev_upper_bound)
4261 prev_upper_bound = CASE_LOW (elt);
4264 return false;
4267 /* Verify a gimple debug statement STMT.
4268 Returns true if anything is wrong. */
4270 static bool
4271 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4273 /* There isn't much that could be wrong in a gimple debug stmt. A
4274 gimple debug bind stmt, for example, maps a tree, that's usually
4275 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4276 component or member of an aggregate type, to another tree, that
4277 can be an arbitrary expression. These stmts expand into debug
4278 insns, and are converted to debug notes by var-tracking.c. */
4279 return false;
4282 /* Verify a gimple label statement STMT.
4283 Returns true if anything is wrong. */
4285 static bool
4286 verify_gimple_label (gimple stmt)
4288 tree decl = gimple_label_label (stmt);
4289 int uid;
4290 bool err = false;
4292 if (TREE_CODE (decl) != LABEL_DECL)
4293 return true;
4295 uid = LABEL_DECL_UID (decl);
4296 if (cfun->cfg
4297 && (uid == -1
4298 || VEC_index (basic_block,
4299 label_to_block_map, uid) != gimple_bb (stmt)))
4301 error ("incorrect entry in label_to_block_map");
4302 err |= true;
4305 uid = EH_LANDING_PAD_NR (decl);
4306 if (uid)
4308 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4309 if (decl != lp->post_landing_pad)
4311 error ("incorrect setting of landing pad number");
4312 err |= true;
4316 return err;
4319 /* Verify the GIMPLE statement STMT. Returns true if there is an
4320 error, otherwise false. */
4322 static bool
4323 verify_gimple_stmt (gimple stmt)
4325 switch (gimple_code (stmt))
4327 case GIMPLE_ASSIGN:
4328 return verify_gimple_assign (stmt);
4330 case GIMPLE_LABEL:
4331 return verify_gimple_label (stmt);
4333 case GIMPLE_CALL:
4334 return verify_gimple_call (stmt);
4336 case GIMPLE_COND:
4337 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4339 error ("invalid comparison code in gimple cond");
4340 return true;
4342 if (!(!gimple_cond_true_label (stmt)
4343 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4344 || !(!gimple_cond_false_label (stmt)
4345 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4347 error ("invalid labels in gimple cond");
4348 return true;
4351 return verify_gimple_comparison (boolean_type_node,
4352 gimple_cond_lhs (stmt),
4353 gimple_cond_rhs (stmt));
4355 case GIMPLE_GOTO:
4356 return verify_gimple_goto (stmt);
4358 case GIMPLE_SWITCH:
4359 return verify_gimple_switch (stmt);
4361 case GIMPLE_RETURN:
4362 return verify_gimple_return (stmt);
4364 case GIMPLE_ASM:
4365 return false;
4367 case GIMPLE_TRANSACTION:
4368 return verify_gimple_transaction (stmt);
4370 /* Tuples that do not have tree operands. */
4371 case GIMPLE_NOP:
4372 case GIMPLE_PREDICT:
4373 case GIMPLE_RESX:
4374 case GIMPLE_EH_DISPATCH:
4375 case GIMPLE_EH_MUST_NOT_THROW:
4376 return false;
4378 CASE_GIMPLE_OMP:
4379 /* OpenMP directives are validated by the FE and never operated
4380 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4381 non-gimple expressions when the main index variable has had
4382 its address taken. This does not affect the loop itself
4383 because the header of an GIMPLE_OMP_FOR is merely used to determine
4384 how to setup the parallel iteration. */
4385 return false;
4387 case GIMPLE_DEBUG:
4388 return verify_gimple_debug (stmt);
4390 default:
4391 gcc_unreachable ();
4395 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4396 and false otherwise. */
4398 static bool
4399 verify_gimple_phi (gimple phi)
4401 bool err = false;
4402 unsigned i;
4403 tree phi_result = gimple_phi_result (phi);
4404 bool virtual_p;
4406 if (!phi_result)
4408 error ("invalid PHI result");
4409 return true;
4412 virtual_p = virtual_operand_p (phi_result);
4413 if (TREE_CODE (phi_result) != SSA_NAME
4414 || (virtual_p
4415 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4417 error ("invalid PHI result");
4418 err = true;
4421 for (i = 0; i < gimple_phi_num_args (phi); i++)
4423 tree t = gimple_phi_arg_def (phi, i);
4425 if (!t)
4427 error ("missing PHI def");
4428 err |= true;
4429 continue;
4431 /* Addressable variables do have SSA_NAMEs but they
4432 are not considered gimple values. */
4433 else if ((TREE_CODE (t) == SSA_NAME
4434 && virtual_p != virtual_operand_p (t))
4435 || (virtual_p
4436 && (TREE_CODE (t) != SSA_NAME
4437 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4438 || (!virtual_p
4439 && !is_gimple_val (t)))
4441 error ("invalid PHI argument");
4442 debug_generic_expr (t);
4443 err |= true;
4445 #ifdef ENABLE_TYPES_CHECKING
4446 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4448 error ("incompatible types in PHI argument %u", i);
4449 debug_generic_stmt (TREE_TYPE (phi_result));
4450 debug_generic_stmt (TREE_TYPE (t));
4451 err |= true;
4453 #endif
4456 return err;
4459 /* Verify the GIMPLE statements inside the sequence STMTS. */
4461 static bool
4462 verify_gimple_in_seq_2 (gimple_seq stmts)
4464 gimple_stmt_iterator ittr;
4465 bool err = false;
4467 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4469 gimple stmt = gsi_stmt (ittr);
4471 switch (gimple_code (stmt))
4473 case GIMPLE_BIND:
4474 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4475 break;
4477 case GIMPLE_TRY:
4478 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4479 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4480 break;
4482 case GIMPLE_EH_FILTER:
4483 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4484 break;
4486 case GIMPLE_EH_ELSE:
4487 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4488 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4489 break;
4491 case GIMPLE_CATCH:
4492 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4493 break;
4495 case GIMPLE_TRANSACTION:
4496 err |= verify_gimple_transaction (stmt);
4497 break;
4499 default:
4501 bool err2 = verify_gimple_stmt (stmt);
4502 if (err2)
4503 debug_gimple_stmt (stmt);
4504 err |= err2;
4509 return err;
4512 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4513 is a problem, otherwise false. */
4515 static bool
4516 verify_gimple_transaction (gimple stmt)
4518 tree lab = gimple_transaction_label (stmt);
4519 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4520 return true;
4521 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4525 /* Verify the GIMPLE statements inside the statement list STMTS. */
4527 DEBUG_FUNCTION void
4528 verify_gimple_in_seq (gimple_seq stmts)
4530 timevar_push (TV_TREE_STMT_VERIFY);
4531 if (verify_gimple_in_seq_2 (stmts))
4532 internal_error ("verify_gimple failed");
4533 timevar_pop (TV_TREE_STMT_VERIFY);
4536 /* Return true when the T can be shared. */
4538 bool
4539 tree_node_can_be_shared (tree t)
4541 if (IS_TYPE_OR_DECL_P (t)
4542 || is_gimple_min_invariant (t)
4543 || TREE_CODE (t) == SSA_NAME
4544 || t == error_mark_node
4545 || TREE_CODE (t) == IDENTIFIER_NODE)
4546 return true;
4548 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4549 return true;
4551 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4552 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4553 || TREE_CODE (t) == COMPONENT_REF
4554 || TREE_CODE (t) == REALPART_EXPR
4555 || TREE_CODE (t) == IMAGPART_EXPR)
4556 t = TREE_OPERAND (t, 0);
4558 if (DECL_P (t))
4559 return true;
4561 return false;
4564 /* Called via walk_gimple_stmt. Verify tree sharing. */
4566 static tree
4567 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4569 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4570 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4572 if (tree_node_can_be_shared (*tp))
4574 *walk_subtrees = false;
4575 return NULL;
4578 if (pointer_set_insert (visited, *tp))
4579 return *tp;
4581 return NULL;
4584 static bool eh_error_found;
4585 static int
4586 verify_eh_throw_stmt_node (void **slot, void *data)
4588 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4589 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4591 if (!pointer_set_contains (visited, node->stmt))
4593 error ("dead STMT in EH table");
4594 debug_gimple_stmt (node->stmt);
4595 eh_error_found = true;
4597 return 1;
4600 /* Verify the GIMPLE statements in the CFG of FN. */
4602 DEBUG_FUNCTION void
4603 verify_gimple_in_cfg (struct function *fn)
4605 basic_block bb;
4606 bool err = false;
4607 struct pointer_set_t *visited, *visited_stmts;
4609 timevar_push (TV_TREE_STMT_VERIFY);
4610 visited = pointer_set_create ();
4611 visited_stmts = pointer_set_create ();
4613 FOR_EACH_BB_FN (bb, fn)
4615 gimple_stmt_iterator gsi;
4617 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4619 gimple phi = gsi_stmt (gsi);
4620 bool err2 = false;
4621 unsigned i;
4623 pointer_set_insert (visited_stmts, phi);
4625 if (gimple_bb (phi) != bb)
4627 error ("gimple_bb (phi) is set to a wrong basic block");
4628 err2 = true;
4631 err2 |= verify_gimple_phi (phi);
4633 for (i = 0; i < gimple_phi_num_args (phi); i++)
4635 tree arg = gimple_phi_arg_def (phi, i);
4636 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4637 if (addr)
4639 error ("incorrect sharing of tree nodes");
4640 debug_generic_expr (addr);
4641 err2 |= true;
4645 if (err2)
4646 debug_gimple_stmt (phi);
4647 err |= err2;
4650 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4652 gimple stmt = gsi_stmt (gsi);
4653 bool err2 = false;
4654 struct walk_stmt_info wi;
4655 tree addr;
4656 int lp_nr;
4658 pointer_set_insert (visited_stmts, stmt);
4660 if (gimple_bb (stmt) != bb)
4662 error ("gimple_bb (stmt) is set to a wrong basic block");
4663 err2 = true;
4666 err2 |= verify_gimple_stmt (stmt);
4668 memset (&wi, 0, sizeof (wi));
4669 wi.info = (void *) visited;
4670 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4671 if (addr)
4673 error ("incorrect sharing of tree nodes");
4674 debug_generic_expr (addr);
4675 err2 |= true;
4678 /* ??? Instead of not checking these stmts at all the walker
4679 should know its context via wi. */
4680 if (!is_gimple_debug (stmt)
4681 && !is_gimple_omp (stmt))
4683 memset (&wi, 0, sizeof (wi));
4684 addr = walk_gimple_op (stmt, verify_expr, &wi);
4685 if (addr)
4687 debug_generic_expr (addr);
4688 inform (gimple_location (stmt), "in statement");
4689 err2 |= true;
4693 /* If the statement is marked as part of an EH region, then it is
4694 expected that the statement could throw. Verify that when we
4695 have optimizations that simplify statements such that we prove
4696 that they cannot throw, that we update other data structures
4697 to match. */
4698 lp_nr = lookup_stmt_eh_lp (stmt);
4699 if (lp_nr != 0)
4701 if (!stmt_could_throw_p (stmt))
4703 error ("statement marked for throw, but doesn%'t");
4704 err2 |= true;
4706 else if (lp_nr > 0
4707 && !gsi_one_before_end_p (gsi)
4708 && stmt_can_throw_internal (stmt))
4710 error ("statement marked for throw in middle of block");
4711 err2 |= true;
4715 if (err2)
4716 debug_gimple_stmt (stmt);
4717 err |= err2;
4721 eh_error_found = false;
4722 if (get_eh_throw_stmt_table (cfun))
4723 htab_traverse (get_eh_throw_stmt_table (cfun),
4724 verify_eh_throw_stmt_node,
4725 visited_stmts);
4727 if (err || eh_error_found)
4728 internal_error ("verify_gimple failed");
4730 pointer_set_destroy (visited);
4731 pointer_set_destroy (visited_stmts);
4732 verify_histograms ();
4733 timevar_pop (TV_TREE_STMT_VERIFY);
4737 /* Verifies that the flow information is OK. */
4739 static int
4740 gimple_verify_flow_info (void)
4742 int err = 0;
4743 basic_block bb;
4744 gimple_stmt_iterator gsi;
4745 gimple stmt;
4746 edge e;
4747 edge_iterator ei;
4749 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4751 error ("ENTRY_BLOCK has IL associated with it");
4752 err = 1;
4755 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4757 error ("EXIT_BLOCK has IL associated with it");
4758 err = 1;
4761 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4762 if (e->flags & EDGE_FALLTHRU)
4764 error ("fallthru to exit from bb %d", e->src->index);
4765 err = 1;
4768 FOR_EACH_BB (bb)
4770 bool found_ctrl_stmt = false;
4772 stmt = NULL;
4774 /* Skip labels on the start of basic block. */
4775 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4777 tree label;
4778 gimple prev_stmt = stmt;
4780 stmt = gsi_stmt (gsi);
4782 if (gimple_code (stmt) != GIMPLE_LABEL)
4783 break;
4785 label = gimple_label_label (stmt);
4786 if (prev_stmt && DECL_NONLOCAL (label))
4788 error ("nonlocal label ");
4789 print_generic_expr (stderr, label, 0);
4790 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4791 bb->index);
4792 err = 1;
4795 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4797 error ("EH landing pad label ");
4798 print_generic_expr (stderr, label, 0);
4799 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4800 bb->index);
4801 err = 1;
4804 if (label_to_block (label) != bb)
4806 error ("label ");
4807 print_generic_expr (stderr, label, 0);
4808 fprintf (stderr, " to block does not match in bb %d",
4809 bb->index);
4810 err = 1;
4813 if (decl_function_context (label) != current_function_decl)
4815 error ("label ");
4816 print_generic_expr (stderr, label, 0);
4817 fprintf (stderr, " has incorrect context in bb %d",
4818 bb->index);
4819 err = 1;
4823 /* Verify that body of basic block BB is free of control flow. */
4824 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4826 gimple stmt = gsi_stmt (gsi);
4828 if (found_ctrl_stmt)
4830 error ("control flow in the middle of basic block %d",
4831 bb->index);
4832 err = 1;
4835 if (stmt_ends_bb_p (stmt))
4836 found_ctrl_stmt = true;
4838 if (gimple_code (stmt) == GIMPLE_LABEL)
4840 error ("label ");
4841 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4842 fprintf (stderr, " in the middle of basic block %d", bb->index);
4843 err = 1;
4847 gsi = gsi_last_bb (bb);
4848 if (gsi_end_p (gsi))
4849 continue;
4851 stmt = gsi_stmt (gsi);
4853 if (gimple_code (stmt) == GIMPLE_LABEL)
4854 continue;
4856 err |= verify_eh_edges (stmt);
4858 if (is_ctrl_stmt (stmt))
4860 FOR_EACH_EDGE (e, ei, bb->succs)
4861 if (e->flags & EDGE_FALLTHRU)
4863 error ("fallthru edge after a control statement in bb %d",
4864 bb->index);
4865 err = 1;
4869 if (gimple_code (stmt) != GIMPLE_COND)
4871 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4872 after anything else but if statement. */
4873 FOR_EACH_EDGE (e, ei, bb->succs)
4874 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4876 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4877 bb->index);
4878 err = 1;
4882 switch (gimple_code (stmt))
4884 case GIMPLE_COND:
4886 edge true_edge;
4887 edge false_edge;
4889 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4891 if (!true_edge
4892 || !false_edge
4893 || !(true_edge->flags & EDGE_TRUE_VALUE)
4894 || !(false_edge->flags & EDGE_FALSE_VALUE)
4895 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4896 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4897 || EDGE_COUNT (bb->succs) >= 3)
4899 error ("wrong outgoing edge flags at end of bb %d",
4900 bb->index);
4901 err = 1;
4904 break;
4906 case GIMPLE_GOTO:
4907 if (simple_goto_p (stmt))
4909 error ("explicit goto at end of bb %d", bb->index);
4910 err = 1;
4912 else
4914 /* FIXME. We should double check that the labels in the
4915 destination blocks have their address taken. */
4916 FOR_EACH_EDGE (e, ei, bb->succs)
4917 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4918 | EDGE_FALSE_VALUE))
4919 || !(e->flags & EDGE_ABNORMAL))
4921 error ("wrong outgoing edge flags at end of bb %d",
4922 bb->index);
4923 err = 1;
4926 break;
4928 case GIMPLE_CALL:
4929 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4930 break;
4931 /* ... fallthru ... */
4932 case GIMPLE_RETURN:
4933 if (!single_succ_p (bb)
4934 || (single_succ_edge (bb)->flags
4935 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4936 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4938 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4939 err = 1;
4941 if (single_succ (bb) != EXIT_BLOCK_PTR)
4943 error ("return edge does not point to exit in bb %d",
4944 bb->index);
4945 err = 1;
4947 break;
4949 case GIMPLE_SWITCH:
4951 tree prev;
4952 edge e;
4953 size_t i, n;
4955 n = gimple_switch_num_labels (stmt);
4957 /* Mark all the destination basic blocks. */
4958 for (i = 0; i < n; ++i)
4960 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4961 basic_block label_bb = label_to_block (lab);
4962 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4963 label_bb->aux = (void *)1;
4966 /* Verify that the case labels are sorted. */
4967 prev = gimple_switch_label (stmt, 0);
4968 for (i = 1; i < n; ++i)
4970 tree c = gimple_switch_label (stmt, i);
4971 if (!CASE_LOW (c))
4973 error ("found default case not at the start of "
4974 "case vector");
4975 err = 1;
4976 continue;
4978 if (CASE_LOW (prev)
4979 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4981 error ("case labels not sorted: ");
4982 print_generic_expr (stderr, prev, 0);
4983 fprintf (stderr," is greater than ");
4984 print_generic_expr (stderr, c, 0);
4985 fprintf (stderr," but comes before it.\n");
4986 err = 1;
4988 prev = c;
4990 /* VRP will remove the default case if it can prove it will
4991 never be executed. So do not verify there always exists
4992 a default case here. */
4994 FOR_EACH_EDGE (e, ei, bb->succs)
4996 if (!e->dest->aux)
4998 error ("extra outgoing edge %d->%d",
4999 bb->index, e->dest->index);
5000 err = 1;
5003 e->dest->aux = (void *)2;
5004 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5005 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5007 error ("wrong outgoing edge flags at end of bb %d",
5008 bb->index);
5009 err = 1;
5013 /* Check that we have all of them. */
5014 for (i = 0; i < n; ++i)
5016 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5017 basic_block label_bb = label_to_block (lab);
5019 if (label_bb->aux != (void *)2)
5021 error ("missing edge %i->%i", bb->index, label_bb->index);
5022 err = 1;
5026 FOR_EACH_EDGE (e, ei, bb->succs)
5027 e->dest->aux = (void *)0;
5029 break;
5031 case GIMPLE_EH_DISPATCH:
5032 err |= verify_eh_dispatch_edge (stmt);
5033 break;
5035 default:
5036 break;
5040 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5041 verify_dominators (CDI_DOMINATORS);
5043 return err;
5047 /* Updates phi nodes after creating a forwarder block joined
5048 by edge FALLTHRU. */
5050 static void
5051 gimple_make_forwarder_block (edge fallthru)
5053 edge e;
5054 edge_iterator ei;
5055 basic_block dummy, bb;
5056 tree var;
5057 gimple_stmt_iterator gsi;
5059 dummy = fallthru->src;
5060 bb = fallthru->dest;
5062 if (single_pred_p (bb))
5063 return;
5065 /* If we redirected a branch we must create new PHI nodes at the
5066 start of BB. */
5067 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5069 gimple phi, new_phi;
5071 phi = gsi_stmt (gsi);
5072 var = gimple_phi_result (phi);
5073 new_phi = create_phi_node (var, bb);
5074 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5075 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5076 UNKNOWN_LOCATION);
5079 /* Add the arguments we have stored on edges. */
5080 FOR_EACH_EDGE (e, ei, bb->preds)
5082 if (e == fallthru)
5083 continue;
5085 flush_pending_stmts (e);
5090 /* Return a non-special label in the head of basic block BLOCK.
5091 Create one if it doesn't exist. */
5093 tree
5094 gimple_block_label (basic_block bb)
5096 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5097 bool first = true;
5098 tree label;
5099 gimple stmt;
5101 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5103 stmt = gsi_stmt (i);
5104 if (gimple_code (stmt) != GIMPLE_LABEL)
5105 break;
5106 label = gimple_label_label (stmt);
5107 if (!DECL_NONLOCAL (label))
5109 if (!first)
5110 gsi_move_before (&i, &s);
5111 return label;
5115 label = create_artificial_label (UNKNOWN_LOCATION);
5116 stmt = gimple_build_label (label);
5117 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5118 return label;
5122 /* Attempt to perform edge redirection by replacing a possibly complex
5123 jump instruction by a goto or by removing the jump completely.
5124 This can apply only if all edges now point to the same block. The
5125 parameters and return values are equivalent to
5126 redirect_edge_and_branch. */
5128 static edge
5129 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5131 basic_block src = e->src;
5132 gimple_stmt_iterator i;
5133 gimple stmt;
5135 /* We can replace or remove a complex jump only when we have exactly
5136 two edges. */
5137 if (EDGE_COUNT (src->succs) != 2
5138 /* Verify that all targets will be TARGET. Specifically, the
5139 edge that is not E must also go to TARGET. */
5140 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5141 return NULL;
5143 i = gsi_last_bb (src);
5144 if (gsi_end_p (i))
5145 return NULL;
5147 stmt = gsi_stmt (i);
5149 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5151 gsi_remove (&i, true);
5152 e = ssa_redirect_edge (e, target);
5153 e->flags = EDGE_FALLTHRU;
5154 return e;
5157 return NULL;
5161 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5162 edge representing the redirected branch. */
5164 static edge
5165 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5167 basic_block bb = e->src;
5168 gimple_stmt_iterator gsi;
5169 edge ret;
5170 gimple stmt;
5172 if (e->flags & EDGE_ABNORMAL)
5173 return NULL;
5175 if (e->dest == dest)
5176 return NULL;
5178 if (e->flags & EDGE_EH)
5179 return redirect_eh_edge (e, dest);
5181 if (e->src != ENTRY_BLOCK_PTR)
5183 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5184 if (ret)
5185 return ret;
5188 gsi = gsi_last_bb (bb);
5189 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5191 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5193 case GIMPLE_COND:
5194 /* For COND_EXPR, we only need to redirect the edge. */
5195 break;
5197 case GIMPLE_GOTO:
5198 /* No non-abnormal edges should lead from a non-simple goto, and
5199 simple ones should be represented implicitly. */
5200 gcc_unreachable ();
5202 case GIMPLE_SWITCH:
5204 tree label = gimple_block_label (dest);
5205 tree cases = get_cases_for_edge (e, stmt);
5207 /* If we have a list of cases associated with E, then use it
5208 as it's a lot faster than walking the entire case vector. */
5209 if (cases)
5211 edge e2 = find_edge (e->src, dest);
5212 tree last, first;
5214 first = cases;
5215 while (cases)
5217 last = cases;
5218 CASE_LABEL (cases) = label;
5219 cases = CASE_CHAIN (cases);
5222 /* If there was already an edge in the CFG, then we need
5223 to move all the cases associated with E to E2. */
5224 if (e2)
5226 tree cases2 = get_cases_for_edge (e2, stmt);
5228 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5229 CASE_CHAIN (cases2) = first;
5231 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5233 else
5235 size_t i, n = gimple_switch_num_labels (stmt);
5237 for (i = 0; i < n; i++)
5239 tree elt = gimple_switch_label (stmt, i);
5240 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5241 CASE_LABEL (elt) = label;
5245 break;
5247 case GIMPLE_ASM:
5249 int i, n = gimple_asm_nlabels (stmt);
5250 tree label = NULL;
5252 for (i = 0; i < n; ++i)
5254 tree cons = gimple_asm_label_op (stmt, i);
5255 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5257 if (!label)
5258 label = gimple_block_label (dest);
5259 TREE_VALUE (cons) = label;
5263 /* If we didn't find any label matching the former edge in the
5264 asm labels, we must be redirecting the fallthrough
5265 edge. */
5266 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5268 break;
5270 case GIMPLE_RETURN:
5271 gsi_remove (&gsi, true);
5272 e->flags |= EDGE_FALLTHRU;
5273 break;
5275 case GIMPLE_OMP_RETURN:
5276 case GIMPLE_OMP_CONTINUE:
5277 case GIMPLE_OMP_SECTIONS_SWITCH:
5278 case GIMPLE_OMP_FOR:
5279 /* The edges from OMP constructs can be simply redirected. */
5280 break;
5282 case GIMPLE_EH_DISPATCH:
5283 if (!(e->flags & EDGE_FALLTHRU))
5284 redirect_eh_dispatch_edge (stmt, e, dest);
5285 break;
5287 case GIMPLE_TRANSACTION:
5288 /* The ABORT edge has a stored label associated with it, otherwise
5289 the edges are simply redirectable. */
5290 if (e->flags == 0)
5291 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5292 break;
5294 default:
5295 /* Otherwise it must be a fallthru edge, and we don't need to
5296 do anything besides redirecting it. */
5297 gcc_assert (e->flags & EDGE_FALLTHRU);
5298 break;
5301 /* Update/insert PHI nodes as necessary. */
5303 /* Now update the edges in the CFG. */
5304 e = ssa_redirect_edge (e, dest);
5306 return e;
5309 /* Returns true if it is possible to remove edge E by redirecting
5310 it to the destination of the other edge from E->src. */
5312 static bool
5313 gimple_can_remove_branch_p (const_edge e)
5315 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5316 return false;
5318 return true;
5321 /* Simple wrapper, as we can always redirect fallthru edges. */
5323 static basic_block
5324 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5326 e = gimple_redirect_edge_and_branch (e, dest);
5327 gcc_assert (e);
5329 return NULL;
5333 /* Splits basic block BB after statement STMT (but at least after the
5334 labels). If STMT is NULL, BB is split just after the labels. */
5336 static basic_block
5337 gimple_split_block (basic_block bb, void *stmt)
5339 gimple_stmt_iterator gsi;
5340 gimple_stmt_iterator gsi_tgt;
5341 gimple act;
5342 gimple_seq list;
5343 basic_block new_bb;
5344 edge e;
5345 edge_iterator ei;
5347 new_bb = create_empty_bb (bb);
5349 /* Redirect the outgoing edges. */
5350 new_bb->succs = bb->succs;
5351 bb->succs = NULL;
5352 FOR_EACH_EDGE (e, ei, new_bb->succs)
5353 e->src = new_bb;
5355 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5356 stmt = NULL;
5358 /* Move everything from GSI to the new basic block. */
5359 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5361 act = gsi_stmt (gsi);
5362 if (gimple_code (act) == GIMPLE_LABEL)
5363 continue;
5365 if (!stmt)
5366 break;
5368 if (stmt == act)
5370 gsi_next (&gsi);
5371 break;
5375 if (gsi_end_p (gsi))
5376 return new_bb;
5378 /* Split the statement list - avoid re-creating new containers as this
5379 brings ugly quadratic memory consumption in the inliner.
5380 (We are still quadratic since we need to update stmt BB pointers,
5381 sadly.) */
5382 gsi_split_seq_before (&gsi, &list);
5383 set_bb_seq (new_bb, list);
5384 for (gsi_tgt = gsi_start (list);
5385 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5386 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5388 return new_bb;
5392 /* Moves basic block BB after block AFTER. */
5394 static bool
5395 gimple_move_block_after (basic_block bb, basic_block after)
5397 if (bb->prev_bb == after)
5398 return true;
5400 unlink_block (bb);
5401 link_block (bb, after);
5403 return true;
5407 /* Return TRUE if block BB has no executable statements, otherwise return
5408 FALSE. */
5410 bool
5411 gimple_empty_block_p (basic_block bb)
5413 /* BB must have no executable statements. */
5414 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5415 if (phi_nodes (bb))
5416 return false;
5417 if (gsi_end_p (gsi))
5418 return true;
5419 if (is_gimple_debug (gsi_stmt (gsi)))
5420 gsi_next_nondebug (&gsi);
5421 return gsi_end_p (gsi);
5425 /* Split a basic block if it ends with a conditional branch and if the
5426 other part of the block is not empty. */
5428 static basic_block
5429 gimple_split_block_before_cond_jump (basic_block bb)
5431 gimple last, split_point;
5432 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5433 if (gsi_end_p (gsi))
5434 return NULL;
5435 last = gsi_stmt (gsi);
5436 if (gimple_code (last) != GIMPLE_COND
5437 && gimple_code (last) != GIMPLE_SWITCH)
5438 return NULL;
5439 gsi_prev_nondebug (&gsi);
5440 split_point = gsi_stmt (gsi);
5441 return split_block (bb, split_point)->dest;
5445 /* Return true if basic_block can be duplicated. */
5447 static bool
5448 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5450 return true;
5453 /* Create a duplicate of the basic block BB. NOTE: This does not
5454 preserve SSA form. */
5456 static basic_block
5457 gimple_duplicate_bb (basic_block bb)
5459 basic_block new_bb;
5460 gimple_stmt_iterator gsi, gsi_tgt;
5461 gimple_seq phis = phi_nodes (bb);
5462 gimple phi, stmt, copy;
5464 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5466 /* Copy the PHI nodes. We ignore PHI node arguments here because
5467 the incoming edges have not been setup yet. */
5468 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5470 phi = gsi_stmt (gsi);
5471 copy = create_phi_node (NULL_TREE, new_bb);
5472 create_new_def_for (gimple_phi_result (phi), copy,
5473 gimple_phi_result_ptr (copy));
5476 gsi_tgt = gsi_start_bb (new_bb);
5477 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5479 def_operand_p def_p;
5480 ssa_op_iter op_iter;
5481 tree lhs;
5483 stmt = gsi_stmt (gsi);
5484 if (gimple_code (stmt) == GIMPLE_LABEL)
5485 continue;
5487 /* Don't duplicate label debug stmts. */
5488 if (gimple_debug_bind_p (stmt)
5489 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5490 == LABEL_DECL)
5491 continue;
5493 /* Create a new copy of STMT and duplicate STMT's virtual
5494 operands. */
5495 copy = gimple_copy (stmt);
5496 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5498 maybe_duplicate_eh_stmt (copy, stmt);
5499 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5501 /* When copying around a stmt writing into a local non-user
5502 aggregate, make sure it won't share stack slot with other
5503 vars. */
5504 lhs = gimple_get_lhs (stmt);
5505 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5507 tree base = get_base_address (lhs);
5508 if (base
5509 && (TREE_CODE (base) == VAR_DECL
5510 || TREE_CODE (base) == RESULT_DECL)
5511 && DECL_IGNORED_P (base)
5512 && !TREE_STATIC (base)
5513 && !DECL_EXTERNAL (base)
5514 && (TREE_CODE (base) != VAR_DECL
5515 || !DECL_HAS_VALUE_EXPR_P (base)))
5516 DECL_NONSHAREABLE (base) = 1;
5519 /* Create new names for all the definitions created by COPY and
5520 add replacement mappings for each new name. */
5521 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5522 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5525 return new_bb;
5528 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5530 static void
5531 add_phi_args_after_copy_edge (edge e_copy)
5533 basic_block bb, bb_copy = e_copy->src, dest;
5534 edge e;
5535 edge_iterator ei;
5536 gimple phi, phi_copy;
5537 tree def;
5538 gimple_stmt_iterator psi, psi_copy;
5540 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5541 return;
5543 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5545 if (e_copy->dest->flags & BB_DUPLICATED)
5546 dest = get_bb_original (e_copy->dest);
5547 else
5548 dest = e_copy->dest;
5550 e = find_edge (bb, dest);
5551 if (!e)
5553 /* During loop unrolling the target of the latch edge is copied.
5554 In this case we are not looking for edge to dest, but to
5555 duplicated block whose original was dest. */
5556 FOR_EACH_EDGE (e, ei, bb->succs)
5558 if ((e->dest->flags & BB_DUPLICATED)
5559 && get_bb_original (e->dest) == dest)
5560 break;
5563 gcc_assert (e != NULL);
5566 for (psi = gsi_start_phis (e->dest),
5567 psi_copy = gsi_start_phis (e_copy->dest);
5568 !gsi_end_p (psi);
5569 gsi_next (&psi), gsi_next (&psi_copy))
5571 phi = gsi_stmt (psi);
5572 phi_copy = gsi_stmt (psi_copy);
5573 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5574 add_phi_arg (phi_copy, def, e_copy,
5575 gimple_phi_arg_location_from_edge (phi, e));
5580 /* Basic block BB_COPY was created by code duplication. Add phi node
5581 arguments for edges going out of BB_COPY. The blocks that were
5582 duplicated have BB_DUPLICATED set. */
5584 void
5585 add_phi_args_after_copy_bb (basic_block bb_copy)
5587 edge e_copy;
5588 edge_iterator ei;
5590 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5592 add_phi_args_after_copy_edge (e_copy);
5596 /* Blocks in REGION_COPY array of length N_REGION were created by
5597 duplication of basic blocks. Add phi node arguments for edges
5598 going from these blocks. If E_COPY is not NULL, also add
5599 phi node arguments for its destination.*/
5601 void
5602 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5603 edge e_copy)
5605 unsigned i;
5607 for (i = 0; i < n_region; i++)
5608 region_copy[i]->flags |= BB_DUPLICATED;
5610 for (i = 0; i < n_region; i++)
5611 add_phi_args_after_copy_bb (region_copy[i]);
5612 if (e_copy)
5613 add_phi_args_after_copy_edge (e_copy);
5615 for (i = 0; i < n_region; i++)
5616 region_copy[i]->flags &= ~BB_DUPLICATED;
5619 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5620 important exit edge EXIT. By important we mean that no SSA name defined
5621 inside region is live over the other exit edges of the region. All entry
5622 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5623 to the duplicate of the region. Dominance and loop information is
5624 updated, but not the SSA web. The new basic blocks are stored to
5625 REGION_COPY in the same order as they had in REGION, provided that
5626 REGION_COPY is not NULL.
5627 The function returns false if it is unable to copy the region,
5628 true otherwise. */
5630 bool
5631 gimple_duplicate_sese_region (edge entry, edge exit,
5632 basic_block *region, unsigned n_region,
5633 basic_block *region_copy)
5635 unsigned i;
5636 bool free_region_copy = false, copying_header = false;
5637 struct loop *loop = entry->dest->loop_father;
5638 edge exit_copy;
5639 VEC (basic_block, heap) *doms;
5640 edge redirected;
5641 int total_freq = 0, entry_freq = 0;
5642 gcov_type total_count = 0, entry_count = 0;
5644 if (!can_copy_bbs_p (region, n_region))
5645 return false;
5647 /* Some sanity checking. Note that we do not check for all possible
5648 missuses of the functions. I.e. if you ask to copy something weird,
5649 it will work, but the state of structures probably will not be
5650 correct. */
5651 for (i = 0; i < n_region; i++)
5653 /* We do not handle subloops, i.e. all the blocks must belong to the
5654 same loop. */
5655 if (region[i]->loop_father != loop)
5656 return false;
5658 if (region[i] != entry->dest
5659 && region[i] == loop->header)
5660 return false;
5663 set_loop_copy (loop, loop);
5665 /* In case the function is used for loop header copying (which is the primary
5666 use), ensure that EXIT and its copy will be new latch and entry edges. */
5667 if (loop->header == entry->dest)
5669 copying_header = true;
5670 set_loop_copy (loop, loop_outer (loop));
5672 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5673 return false;
5675 for (i = 0; i < n_region; i++)
5676 if (region[i] != exit->src
5677 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5678 return false;
5681 if (!region_copy)
5683 region_copy = XNEWVEC (basic_block, n_region);
5684 free_region_copy = true;
5687 /* Record blocks outside the region that are dominated by something
5688 inside. */
5689 doms = NULL;
5690 initialize_original_copy_tables ();
5692 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5694 if (entry->dest->count)
5696 total_count = entry->dest->count;
5697 entry_count = entry->count;
5698 /* Fix up corner cases, to avoid division by zero or creation of negative
5699 frequencies. */
5700 if (entry_count > total_count)
5701 entry_count = total_count;
5703 else
5705 total_freq = entry->dest->frequency;
5706 entry_freq = EDGE_FREQUENCY (entry);
5707 /* Fix up corner cases, to avoid division by zero or creation of negative
5708 frequencies. */
5709 if (total_freq == 0)
5710 total_freq = 1;
5711 else if (entry_freq > total_freq)
5712 entry_freq = total_freq;
5715 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5716 split_edge_bb_loc (entry));
5717 if (total_count)
5719 scale_bbs_frequencies_gcov_type (region, n_region,
5720 total_count - entry_count,
5721 total_count);
5722 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5723 total_count);
5725 else
5727 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5728 total_freq);
5729 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5732 if (copying_header)
5734 loop->header = exit->dest;
5735 loop->latch = exit->src;
5738 /* Redirect the entry and add the phi node arguments. */
5739 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5740 gcc_assert (redirected != NULL);
5741 flush_pending_stmts (entry);
5743 /* Concerning updating of dominators: We must recount dominators
5744 for entry block and its copy. Anything that is outside of the
5745 region, but was dominated by something inside needs recounting as
5746 well. */
5747 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5748 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5749 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5750 VEC_free (basic_block, heap, doms);
5752 /* Add the other PHI node arguments. */
5753 add_phi_args_after_copy (region_copy, n_region, NULL);
5755 if (free_region_copy)
5756 free (region_copy);
5758 free_original_copy_tables ();
5759 return true;
5762 /* Checks if BB is part of the region defined by N_REGION BBS. */
5763 static bool
5764 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5766 unsigned int n;
5768 for (n = 0; n < n_region; n++)
5770 if (bb == bbs[n])
5771 return true;
5773 return false;
5776 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5777 are stored to REGION_COPY in the same order in that they appear
5778 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5779 the region, EXIT an exit from it. The condition guarding EXIT
5780 is moved to ENTRY. Returns true if duplication succeeds, false
5781 otherwise.
5783 For example,
5785 some_code;
5786 if (cond)
5788 else
5791 is transformed to
5793 if (cond)
5795 some_code;
5798 else
5800 some_code;
5805 bool
5806 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5807 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5808 basic_block *region_copy ATTRIBUTE_UNUSED)
5810 unsigned i;
5811 bool free_region_copy = false;
5812 struct loop *loop = exit->dest->loop_father;
5813 struct loop *orig_loop = entry->dest->loop_father;
5814 basic_block switch_bb, entry_bb, nentry_bb;
5815 VEC (basic_block, heap) *doms;
5816 int total_freq = 0, exit_freq = 0;
5817 gcov_type total_count = 0, exit_count = 0;
5818 edge exits[2], nexits[2], e;
5819 gimple_stmt_iterator gsi;
5820 gimple cond_stmt;
5821 edge sorig, snew;
5822 basic_block exit_bb;
5823 gimple_stmt_iterator psi;
5824 gimple phi;
5825 tree def;
5826 struct loop *target, *aloop, *cloop;
5828 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5829 exits[0] = exit;
5830 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5832 if (!can_copy_bbs_p (region, n_region))
5833 return false;
5835 initialize_original_copy_tables ();
5836 set_loop_copy (orig_loop, loop);
5838 target= loop;
5839 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5841 if (bb_part_of_region_p (aloop->header, region, n_region))
5843 cloop = duplicate_loop (aloop, target);
5844 duplicate_subloops (aloop, cloop);
5848 if (!region_copy)
5850 region_copy = XNEWVEC (basic_block, n_region);
5851 free_region_copy = true;
5854 gcc_assert (!need_ssa_update_p (cfun));
5856 /* Record blocks outside the region that are dominated by something
5857 inside. */
5858 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5860 if (exit->src->count)
5862 total_count = exit->src->count;
5863 exit_count = exit->count;
5864 /* Fix up corner cases, to avoid division by zero or creation of negative
5865 frequencies. */
5866 if (exit_count > total_count)
5867 exit_count = total_count;
5869 else
5871 total_freq = exit->src->frequency;
5872 exit_freq = EDGE_FREQUENCY (exit);
5873 /* Fix up corner cases, to avoid division by zero or creation of negative
5874 frequencies. */
5875 if (total_freq == 0)
5876 total_freq = 1;
5877 if (exit_freq > total_freq)
5878 exit_freq = total_freq;
5881 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5882 split_edge_bb_loc (exit));
5883 if (total_count)
5885 scale_bbs_frequencies_gcov_type (region, n_region,
5886 total_count - exit_count,
5887 total_count);
5888 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5889 total_count);
5891 else
5893 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5894 total_freq);
5895 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5898 /* Create the switch block, and put the exit condition to it. */
5899 entry_bb = entry->dest;
5900 nentry_bb = get_bb_copy (entry_bb);
5901 if (!last_stmt (entry->src)
5902 || !stmt_ends_bb_p (last_stmt (entry->src)))
5903 switch_bb = entry->src;
5904 else
5905 switch_bb = split_edge (entry);
5906 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5908 gsi = gsi_last_bb (switch_bb);
5909 cond_stmt = last_stmt (exit->src);
5910 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5911 cond_stmt = gimple_copy (cond_stmt);
5913 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5915 sorig = single_succ_edge (switch_bb);
5916 sorig->flags = exits[1]->flags;
5917 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5919 /* Register the new edge from SWITCH_BB in loop exit lists. */
5920 rescan_loop_exit (snew, true, false);
5922 /* Add the PHI node arguments. */
5923 add_phi_args_after_copy (region_copy, n_region, snew);
5925 /* Get rid of now superfluous conditions and associated edges (and phi node
5926 arguments). */
5927 exit_bb = exit->dest;
5929 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5930 PENDING_STMT (e) = NULL;
5932 /* The latch of ORIG_LOOP was copied, and so was the backedge
5933 to the original header. We redirect this backedge to EXIT_BB. */
5934 for (i = 0; i < n_region; i++)
5935 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5937 gcc_assert (single_succ_edge (region_copy[i]));
5938 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5939 PENDING_STMT (e) = NULL;
5940 for (psi = gsi_start_phis (exit_bb);
5941 !gsi_end_p (psi);
5942 gsi_next (&psi))
5944 phi = gsi_stmt (psi);
5945 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5946 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5949 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5950 PENDING_STMT (e) = NULL;
5952 /* Anything that is outside of the region, but was dominated by something
5953 inside needs to update dominance info. */
5954 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5955 VEC_free (basic_block, heap, doms);
5956 /* Update the SSA web. */
5957 update_ssa (TODO_update_ssa);
5959 if (free_region_copy)
5960 free (region_copy);
5962 free_original_copy_tables ();
5963 return true;
5966 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5967 adding blocks when the dominator traversal reaches EXIT. This
5968 function silently assumes that ENTRY strictly dominates EXIT. */
5970 void
5971 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5972 VEC(basic_block,heap) **bbs_p)
5974 basic_block son;
5976 for (son = first_dom_son (CDI_DOMINATORS, entry);
5977 son;
5978 son = next_dom_son (CDI_DOMINATORS, son))
5980 VEC_safe_push (basic_block, heap, *bbs_p, son);
5981 if (son != exit)
5982 gather_blocks_in_sese_region (son, exit, bbs_p);
5986 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5987 The duplicates are recorded in VARS_MAP. */
5989 static void
5990 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5991 tree to_context)
5993 tree t = *tp, new_t;
5994 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5995 void **loc;
5997 if (DECL_CONTEXT (t) == to_context)
5998 return;
6000 loc = pointer_map_contains (vars_map, t);
6002 if (!loc)
6004 loc = pointer_map_insert (vars_map, t);
6006 if (SSA_VAR_P (t))
6008 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6009 add_local_decl (f, new_t);
6011 else
6013 gcc_assert (TREE_CODE (t) == CONST_DECL);
6014 new_t = copy_node (t);
6016 DECL_CONTEXT (new_t) = to_context;
6018 *loc = new_t;
6020 else
6021 new_t = (tree) *loc;
6023 *tp = new_t;
6027 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6028 VARS_MAP maps old ssa names and var_decls to the new ones. */
6030 static tree
6031 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6032 tree to_context)
6034 void **loc;
6035 tree new_name;
6037 gcc_assert (!virtual_operand_p (name));
6039 loc = pointer_map_contains (vars_map, name);
6041 if (!loc)
6043 tree decl = SSA_NAME_VAR (name);
6044 if (decl)
6046 replace_by_duplicate_decl (&decl, vars_map, to_context);
6047 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6048 decl, SSA_NAME_DEF_STMT (name));
6049 if (SSA_NAME_IS_DEFAULT_DEF (name))
6050 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6051 decl, new_name);
6053 else
6054 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6055 name, SSA_NAME_DEF_STMT (name));
6057 loc = pointer_map_insert (vars_map, name);
6058 *loc = new_name;
6060 else
6061 new_name = (tree) *loc;
6063 return new_name;
6066 struct move_stmt_d
6068 tree orig_block;
6069 tree new_block;
6070 tree from_context;
6071 tree to_context;
6072 struct pointer_map_t *vars_map;
6073 htab_t new_label_map;
6074 struct pointer_map_t *eh_map;
6075 bool remap_decls_p;
6078 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6079 contained in *TP if it has been ORIG_BLOCK previously and change the
6080 DECL_CONTEXT of every local variable referenced in *TP. */
6082 static tree
6083 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6085 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6086 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6087 tree t = *tp;
6089 if (EXPR_P (t))
6091 if (TREE_BLOCK (t) == p->orig_block
6092 || (p->orig_block == NULL_TREE
6093 && TREE_BLOCK (t) == NULL_TREE))
6094 TREE_SET_BLOCK (t, p->new_block);
6096 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6098 if (TREE_CODE (t) == SSA_NAME)
6099 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6100 else if (TREE_CODE (t) == LABEL_DECL)
6102 if (p->new_label_map)
6104 struct tree_map in, *out;
6105 in.base.from = t;
6106 out = (struct tree_map *)
6107 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6108 if (out)
6109 *tp = t = out->to;
6112 DECL_CONTEXT (t) = p->to_context;
6114 else if (p->remap_decls_p)
6116 /* Replace T with its duplicate. T should no longer appear in the
6117 parent function, so this looks wasteful; however, it may appear
6118 in referenced_vars, and more importantly, as virtual operands of
6119 statements, and in alias lists of other variables. It would be
6120 quite difficult to expunge it from all those places. ??? It might
6121 suffice to do this for addressable variables. */
6122 if ((TREE_CODE (t) == VAR_DECL
6123 && !is_global_var (t))
6124 || TREE_CODE (t) == CONST_DECL)
6125 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6127 *walk_subtrees = 0;
6129 else if (TYPE_P (t))
6130 *walk_subtrees = 0;
6132 return NULL_TREE;
6135 /* Helper for move_stmt_r. Given an EH region number for the source
6136 function, map that to the duplicate EH regio number in the dest. */
6138 static int
6139 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6141 eh_region old_r, new_r;
6142 void **slot;
6144 old_r = get_eh_region_from_number (old_nr);
6145 slot = pointer_map_contains (p->eh_map, old_r);
6146 new_r = (eh_region) *slot;
6148 return new_r->index;
6151 /* Similar, but operate on INTEGER_CSTs. */
6153 static tree
6154 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6156 int old_nr, new_nr;
6158 old_nr = tree_low_cst (old_t_nr, 0);
6159 new_nr = move_stmt_eh_region_nr (old_nr, p);
6161 return build_int_cst (integer_type_node, new_nr);
6164 /* Like move_stmt_op, but for gimple statements.
6166 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6167 contained in the current statement in *GSI_P and change the
6168 DECL_CONTEXT of every local variable referenced in the current
6169 statement. */
6171 static tree
6172 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6173 struct walk_stmt_info *wi)
6175 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6176 gimple stmt = gsi_stmt (*gsi_p);
6177 tree block = gimple_block (stmt);
6179 if (p->orig_block == NULL_TREE
6180 || block == p->orig_block
6181 || block == NULL_TREE)
6182 gimple_set_block (stmt, p->new_block);
6183 #ifdef ENABLE_CHECKING
6184 else if (block != p->new_block)
6186 while (block && block != p->orig_block)
6187 block = BLOCK_SUPERCONTEXT (block);
6188 gcc_assert (block);
6190 #endif
6192 switch (gimple_code (stmt))
6194 case GIMPLE_CALL:
6195 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6197 tree r, fndecl = gimple_call_fndecl (stmt);
6198 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6199 switch (DECL_FUNCTION_CODE (fndecl))
6201 case BUILT_IN_EH_COPY_VALUES:
6202 r = gimple_call_arg (stmt, 1);
6203 r = move_stmt_eh_region_tree_nr (r, p);
6204 gimple_call_set_arg (stmt, 1, r);
6205 /* FALLTHRU */
6207 case BUILT_IN_EH_POINTER:
6208 case BUILT_IN_EH_FILTER:
6209 r = gimple_call_arg (stmt, 0);
6210 r = move_stmt_eh_region_tree_nr (r, p);
6211 gimple_call_set_arg (stmt, 0, r);
6212 break;
6214 default:
6215 break;
6218 break;
6220 case GIMPLE_RESX:
6222 int r = gimple_resx_region (stmt);
6223 r = move_stmt_eh_region_nr (r, p);
6224 gimple_resx_set_region (stmt, r);
6226 break;
6228 case GIMPLE_EH_DISPATCH:
6230 int r = gimple_eh_dispatch_region (stmt);
6231 r = move_stmt_eh_region_nr (r, p);
6232 gimple_eh_dispatch_set_region (stmt, r);
6234 break;
6236 case GIMPLE_OMP_RETURN:
6237 case GIMPLE_OMP_CONTINUE:
6238 break;
6239 default:
6240 if (is_gimple_omp (stmt))
6242 /* Do not remap variables inside OMP directives. Variables
6243 referenced in clauses and directive header belong to the
6244 parent function and should not be moved into the child
6245 function. */
6246 bool save_remap_decls_p = p->remap_decls_p;
6247 p->remap_decls_p = false;
6248 *handled_ops_p = true;
6250 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6251 move_stmt_op, wi);
6253 p->remap_decls_p = save_remap_decls_p;
6255 break;
6258 return NULL_TREE;
6261 /* Move basic block BB from function CFUN to function DEST_FN. The
6262 block is moved out of the original linked list and placed after
6263 block AFTER in the new list. Also, the block is removed from the
6264 original array of blocks and placed in DEST_FN's array of blocks.
6265 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6266 updated to reflect the moved edges.
6268 The local variables are remapped to new instances, VARS_MAP is used
6269 to record the mapping. */
6271 static void
6272 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6273 basic_block after, bool update_edge_count_p,
6274 struct move_stmt_d *d)
6276 struct control_flow_graph *cfg;
6277 edge_iterator ei;
6278 edge e;
6279 gimple_stmt_iterator si;
6280 unsigned old_len, new_len;
6282 /* Remove BB from dominance structures. */
6283 delete_from_dominance_info (CDI_DOMINATORS, bb);
6284 if (current_loops)
6285 remove_bb_from_loops (bb);
6287 /* Link BB to the new linked list. */
6288 move_block_after (bb, after);
6290 /* Update the edge count in the corresponding flowgraphs. */
6291 if (update_edge_count_p)
6292 FOR_EACH_EDGE (e, ei, bb->succs)
6294 cfun->cfg->x_n_edges--;
6295 dest_cfun->cfg->x_n_edges++;
6298 /* Remove BB from the original basic block array. */
6299 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6300 cfun->cfg->x_n_basic_blocks--;
6302 /* Grow DEST_CFUN's basic block array if needed. */
6303 cfg = dest_cfun->cfg;
6304 cfg->x_n_basic_blocks++;
6305 if (bb->index >= cfg->x_last_basic_block)
6306 cfg->x_last_basic_block = bb->index + 1;
6308 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6309 if ((unsigned) cfg->x_last_basic_block >= old_len)
6311 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6312 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6313 new_len);
6316 VEC_replace (basic_block, cfg->x_basic_block_info,
6317 bb->index, bb);
6319 /* Remap the variables in phi nodes. */
6320 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6322 gimple phi = gsi_stmt (si);
6323 use_operand_p use;
6324 tree op = PHI_RESULT (phi);
6325 ssa_op_iter oi;
6326 unsigned i;
6328 if (virtual_operand_p (op))
6330 /* Remove the phi nodes for virtual operands (alias analysis will be
6331 run for the new function, anyway). */
6332 remove_phi_node (&si, true);
6333 continue;
6336 SET_PHI_RESULT (phi,
6337 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6338 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6340 op = USE_FROM_PTR (use);
6341 if (TREE_CODE (op) == SSA_NAME)
6342 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6345 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6347 location_t locus = gimple_phi_arg_location (phi, i);
6348 tree block = LOCATION_BLOCK (locus);
6350 if (locus == UNKNOWN_LOCATION)
6351 continue;
6352 if (d->orig_block == NULL_TREE || block == d->orig_block)
6354 if (d->new_block == NULL_TREE)
6355 locus = LOCATION_LOCUS (locus);
6356 else
6357 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6358 gimple_phi_arg_set_location (phi, i, locus);
6362 gsi_next (&si);
6365 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6367 gimple stmt = gsi_stmt (si);
6368 struct walk_stmt_info wi;
6370 memset (&wi, 0, sizeof (wi));
6371 wi.info = d;
6372 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6374 if (gimple_code (stmt) == GIMPLE_LABEL)
6376 tree label = gimple_label_label (stmt);
6377 int uid = LABEL_DECL_UID (label);
6379 gcc_assert (uid > -1);
6381 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6382 if (old_len <= (unsigned) uid)
6384 new_len = 3 * uid / 2 + 1;
6385 VEC_safe_grow_cleared (basic_block, gc,
6386 cfg->x_label_to_block_map, new_len);
6389 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6390 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6392 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6394 if (uid >= dest_cfun->cfg->last_label_uid)
6395 dest_cfun->cfg->last_label_uid = uid + 1;
6398 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6399 remove_stmt_from_eh_lp_fn (cfun, stmt);
6401 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6402 gimple_remove_stmt_histograms (cfun, stmt);
6404 /* We cannot leave any operands allocated from the operand caches of
6405 the current function. */
6406 free_stmt_operands (stmt);
6407 push_cfun (dest_cfun);
6408 update_stmt (stmt);
6409 pop_cfun ();
6412 FOR_EACH_EDGE (e, ei, bb->succs)
6413 if (e->goto_locus != UNKNOWN_LOCATION)
6415 tree block = LOCATION_BLOCK (e->goto_locus);
6416 if (d->orig_block == NULL_TREE
6417 || block == d->orig_block)
6418 e->goto_locus = d->new_block ?
6419 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6420 LOCATION_LOCUS (e->goto_locus);
6421 #ifdef ENABLE_CHECKING
6422 else if (block != d->new_block)
6424 while (block && block != d->orig_block)
6425 block = BLOCK_SUPERCONTEXT (block);
6426 gcc_assert (block);
6428 #endif
6432 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6433 the outermost EH region. Use REGION as the incoming base EH region. */
6435 static eh_region
6436 find_outermost_region_in_block (struct function *src_cfun,
6437 basic_block bb, eh_region region)
6439 gimple_stmt_iterator si;
6441 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6443 gimple stmt = gsi_stmt (si);
6444 eh_region stmt_region;
6445 int lp_nr;
6447 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6448 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6449 if (stmt_region)
6451 if (region == NULL)
6452 region = stmt_region;
6453 else if (stmt_region != region)
6455 region = eh_region_outermost (src_cfun, stmt_region, region);
6456 gcc_assert (region != NULL);
6461 return region;
6464 static tree
6465 new_label_mapper (tree decl, void *data)
6467 htab_t hash = (htab_t) data;
6468 struct tree_map *m;
6469 void **slot;
6471 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6473 m = XNEW (struct tree_map);
6474 m->hash = DECL_UID (decl);
6475 m->base.from = decl;
6476 m->to = create_artificial_label (UNKNOWN_LOCATION);
6477 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6478 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6479 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6481 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6482 gcc_assert (*slot == NULL);
6484 *slot = m;
6486 return m->to;
6489 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6490 subblocks. */
6492 static void
6493 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6494 tree to_context)
6496 tree *tp, t;
6498 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6500 t = *tp;
6501 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6502 continue;
6503 replace_by_duplicate_decl (&t, vars_map, to_context);
6504 if (t != *tp)
6506 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6508 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6509 DECL_HAS_VALUE_EXPR_P (t) = 1;
6511 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6512 *tp = t;
6516 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6517 replace_block_vars_by_duplicates (block, vars_map, to_context);
6520 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6521 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6522 single basic block in the original CFG and the new basic block is
6523 returned. DEST_CFUN must not have a CFG yet.
6525 Note that the region need not be a pure SESE region. Blocks inside
6526 the region may contain calls to abort/exit. The only restriction
6527 is that ENTRY_BB should be the only entry point and it must
6528 dominate EXIT_BB.
6530 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6531 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6532 to the new function.
6534 All local variables referenced in the region are assumed to be in
6535 the corresponding BLOCK_VARS and unexpanded variable lists
6536 associated with DEST_CFUN. */
6538 basic_block
6539 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6540 basic_block exit_bb, tree orig_block)
6542 VEC(basic_block,heap) *bbs, *dom_bbs;
6543 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6544 basic_block after, bb, *entry_pred, *exit_succ, abb;
6545 struct function *saved_cfun = cfun;
6546 int *entry_flag, *exit_flag;
6547 unsigned *entry_prob, *exit_prob;
6548 unsigned i, num_entry_edges, num_exit_edges;
6549 edge e;
6550 edge_iterator ei;
6551 htab_t new_label_map;
6552 struct pointer_map_t *vars_map, *eh_map;
6553 struct loop *loop = entry_bb->loop_father;
6554 struct move_stmt_d d;
6556 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6557 region. */
6558 gcc_assert (entry_bb != exit_bb
6559 && (!exit_bb
6560 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6562 /* Collect all the blocks in the region. Manually add ENTRY_BB
6563 because it won't be added by dfs_enumerate_from. */
6564 bbs = NULL;
6565 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6566 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6568 /* The blocks that used to be dominated by something in BBS will now be
6569 dominated by the new block. */
6570 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6571 VEC_address (basic_block, bbs),
6572 VEC_length (basic_block, bbs));
6574 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6575 the predecessor edges to ENTRY_BB and the successor edges to
6576 EXIT_BB so that we can re-attach them to the new basic block that
6577 will replace the region. */
6578 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6579 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6580 entry_flag = XNEWVEC (int, num_entry_edges);
6581 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6582 i = 0;
6583 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6585 entry_prob[i] = e->probability;
6586 entry_flag[i] = e->flags;
6587 entry_pred[i++] = e->src;
6588 remove_edge (e);
6591 if (exit_bb)
6593 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6594 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6595 exit_flag = XNEWVEC (int, num_exit_edges);
6596 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6597 i = 0;
6598 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6600 exit_prob[i] = e->probability;
6601 exit_flag[i] = e->flags;
6602 exit_succ[i++] = e->dest;
6603 remove_edge (e);
6606 else
6608 num_exit_edges = 0;
6609 exit_succ = NULL;
6610 exit_flag = NULL;
6611 exit_prob = NULL;
6614 /* Switch context to the child function to initialize DEST_FN's CFG. */
6615 gcc_assert (dest_cfun->cfg == NULL);
6616 push_cfun (dest_cfun);
6618 init_empty_tree_cfg ();
6620 /* Initialize EH information for the new function. */
6621 eh_map = NULL;
6622 new_label_map = NULL;
6623 if (saved_cfun->eh)
6625 eh_region region = NULL;
6627 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6628 region = find_outermost_region_in_block (saved_cfun, bb, region);
6630 init_eh_for_function ();
6631 if (region != NULL)
6633 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6634 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6635 new_label_mapper, new_label_map);
6639 pop_cfun ();
6641 /* Move blocks from BBS into DEST_CFUN. */
6642 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6643 after = dest_cfun->cfg->x_entry_block_ptr;
6644 vars_map = pointer_map_create ();
6646 memset (&d, 0, sizeof (d));
6647 d.orig_block = orig_block;
6648 d.new_block = DECL_INITIAL (dest_cfun->decl);
6649 d.from_context = cfun->decl;
6650 d.to_context = dest_cfun->decl;
6651 d.vars_map = vars_map;
6652 d.new_label_map = new_label_map;
6653 d.eh_map = eh_map;
6654 d.remap_decls_p = true;
6656 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6658 /* No need to update edge counts on the last block. It has
6659 already been updated earlier when we detached the region from
6660 the original CFG. */
6661 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6662 after = bb;
6665 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6666 if (orig_block)
6668 tree block;
6669 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6670 == NULL_TREE);
6671 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6672 = BLOCK_SUBBLOCKS (orig_block);
6673 for (block = BLOCK_SUBBLOCKS (orig_block);
6674 block; block = BLOCK_CHAIN (block))
6675 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6676 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6679 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6680 vars_map, dest_cfun->decl);
6682 if (new_label_map)
6683 htab_delete (new_label_map);
6684 if (eh_map)
6685 pointer_map_destroy (eh_map);
6686 pointer_map_destroy (vars_map);
6688 /* Rewire the entry and exit blocks. The successor to the entry
6689 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6690 the child function. Similarly, the predecessor of DEST_FN's
6691 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6692 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6693 various CFG manipulation function get to the right CFG.
6695 FIXME, this is silly. The CFG ought to become a parameter to
6696 these helpers. */
6697 push_cfun (dest_cfun);
6698 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6699 if (exit_bb)
6700 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6701 pop_cfun ();
6703 /* Back in the original function, the SESE region has disappeared,
6704 create a new basic block in its place. */
6705 bb = create_empty_bb (entry_pred[0]);
6706 if (current_loops)
6707 add_bb_to_loop (bb, loop);
6708 for (i = 0; i < num_entry_edges; i++)
6710 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6711 e->probability = entry_prob[i];
6714 for (i = 0; i < num_exit_edges; i++)
6716 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6717 e->probability = exit_prob[i];
6720 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6721 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6722 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6723 VEC_free (basic_block, heap, dom_bbs);
6725 if (exit_bb)
6727 free (exit_prob);
6728 free (exit_flag);
6729 free (exit_succ);
6731 free (entry_prob);
6732 free (entry_flag);
6733 free (entry_pred);
6734 VEC_free (basic_block, heap, bbs);
6736 return bb;
6740 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6743 void
6744 dump_function_to_file (tree fndecl, FILE *file, int flags)
6746 tree arg, var, old_current_fndecl = current_function_decl;
6747 struct function *dsf;
6748 bool ignore_topmost_bind = false, any_var = false;
6749 basic_block bb;
6750 tree chain;
6751 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6752 && decl_is_tm_clone (fndecl));
6753 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6755 current_function_decl = fndecl;
6756 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6758 arg = DECL_ARGUMENTS (fndecl);
6759 while (arg)
6761 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6762 fprintf (file, " ");
6763 print_generic_expr (file, arg, dump_flags);
6764 if (flags & TDF_VERBOSE)
6765 print_node (file, "", arg, 4);
6766 if (DECL_CHAIN (arg))
6767 fprintf (file, ", ");
6768 arg = DECL_CHAIN (arg);
6770 fprintf (file, ")\n");
6772 if (flags & TDF_VERBOSE)
6773 print_node (file, "", fndecl, 2);
6775 dsf = DECL_STRUCT_FUNCTION (fndecl);
6776 if (dsf && (flags & TDF_EH))
6777 dump_eh_tree (file, dsf);
6779 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6781 dump_node (fndecl, TDF_SLIM | flags, file);
6782 current_function_decl = old_current_fndecl;
6783 return;
6786 /* When GIMPLE is lowered, the variables are no longer available in
6787 BIND_EXPRs, so display them separately. */
6788 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6790 unsigned ix;
6791 ignore_topmost_bind = true;
6793 fprintf (file, "{\n");
6794 if (!VEC_empty (tree, fun->local_decls))
6795 FOR_EACH_LOCAL_DECL (fun, ix, var)
6797 print_generic_decl (file, var, flags);
6798 if (flags & TDF_VERBOSE)
6799 print_node (file, "", var, 4);
6800 fprintf (file, "\n");
6802 any_var = true;
6804 if (gimple_in_ssa_p (cfun))
6805 for (ix = 1; ix < num_ssa_names; ++ix)
6807 tree name = ssa_name (ix);
6808 if (name && !SSA_NAME_VAR (name))
6810 fprintf (file, " ");
6811 print_generic_expr (file, TREE_TYPE (name), flags);
6812 fprintf (file, " ");
6813 print_generic_expr (file, name, flags);
6814 fprintf (file, ";\n");
6816 any_var = true;
6821 if (fun && fun->decl == fndecl && fun->cfg
6822 && basic_block_info_for_function (fun))
6824 /* If the CFG has been built, emit a CFG-based dump. */
6825 if (!ignore_topmost_bind)
6826 fprintf (file, "{\n");
6828 if (any_var && n_basic_blocks_for_function (fun))
6829 fprintf (file, "\n");
6831 FOR_EACH_BB_FN (bb, fun)
6832 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6834 fprintf (file, "}\n");
6836 else if (DECL_SAVED_TREE (fndecl) == NULL)
6838 /* The function is now in GIMPLE form but the CFG has not been
6839 built yet. Emit the single sequence of GIMPLE statements
6840 that make up its body. */
6841 gimple_seq body = gimple_body (fndecl);
6843 if (gimple_seq_first_stmt (body)
6844 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6845 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6846 print_gimple_seq (file, body, 0, flags);
6847 else
6849 if (!ignore_topmost_bind)
6850 fprintf (file, "{\n");
6852 if (any_var)
6853 fprintf (file, "\n");
6855 print_gimple_seq (file, body, 2, flags);
6856 fprintf (file, "}\n");
6859 else
6861 int indent;
6863 /* Make a tree based dump. */
6864 chain = DECL_SAVED_TREE (fndecl);
6865 if (chain && TREE_CODE (chain) == BIND_EXPR)
6867 if (ignore_topmost_bind)
6869 chain = BIND_EXPR_BODY (chain);
6870 indent = 2;
6872 else
6873 indent = 0;
6875 else
6877 if (!ignore_topmost_bind)
6878 fprintf (file, "{\n");
6879 indent = 2;
6882 if (any_var)
6883 fprintf (file, "\n");
6885 print_generic_stmt_indented (file, chain, flags, indent);
6886 if (ignore_topmost_bind)
6887 fprintf (file, "}\n");
6890 if (flags & TDF_ENUMERATE_LOCALS)
6891 dump_enumerated_decls (file, flags);
6892 fprintf (file, "\n\n");
6894 current_function_decl = old_current_fndecl;
6897 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6899 DEBUG_FUNCTION void
6900 debug_function (tree fn, int flags)
6902 dump_function_to_file (fn, stderr, flags);
6906 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6908 static void
6909 print_pred_bbs (FILE *file, basic_block bb)
6911 edge e;
6912 edge_iterator ei;
6914 FOR_EACH_EDGE (e, ei, bb->preds)
6915 fprintf (file, "bb_%d ", e->src->index);
6919 /* Print on FILE the indexes for the successors of basic_block BB. */
6921 static void
6922 print_succ_bbs (FILE *file, basic_block bb)
6924 edge e;
6925 edge_iterator ei;
6927 FOR_EACH_EDGE (e, ei, bb->succs)
6928 fprintf (file, "bb_%d ", e->dest->index);
6931 /* Print to FILE the basic block BB following the VERBOSITY level. */
6933 void
6934 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6936 char *s_indent = (char *) alloca ((size_t) indent + 1);
6937 memset ((void *) s_indent, ' ', (size_t) indent);
6938 s_indent[indent] = '\0';
6940 /* Print basic_block's header. */
6941 if (verbosity >= 2)
6943 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6944 print_pred_bbs (file, bb);
6945 fprintf (file, "}, succs = {");
6946 print_succ_bbs (file, bb);
6947 fprintf (file, "})\n");
6950 /* Print basic_block's body. */
6951 if (verbosity >= 3)
6953 fprintf (file, "%s {\n", s_indent);
6954 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6955 fprintf (file, "%s }\n", s_indent);
6959 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6961 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6962 VERBOSITY level this outputs the contents of the loop, or just its
6963 structure. */
6965 static void
6966 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6968 char *s_indent;
6969 basic_block bb;
6971 if (loop == NULL)
6972 return;
6974 s_indent = (char *) alloca ((size_t) indent + 1);
6975 memset ((void *) s_indent, ' ', (size_t) indent);
6976 s_indent[indent] = '\0';
6978 /* Print loop's header. */
6979 fprintf (file, "%sloop_%d (", s_indent, loop->num);
6980 if (loop->header)
6981 fprintf (file, "header = %d", loop->header->index);
6982 else
6984 fprintf (file, "deleted)\n");
6985 return;
6987 if (loop->latch)
6988 fprintf (file, ", latch = %d", loop->latch->index);
6989 else
6990 fprintf (file, ", multiple latches");
6991 fprintf (file, ", niter = ");
6992 print_generic_expr (file, loop->nb_iterations, 0);
6994 if (loop->any_upper_bound)
6996 fprintf (file, ", upper_bound = ");
6997 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7000 if (loop->any_estimate)
7002 fprintf (file, ", estimate = ");
7003 dump_double_int (file, loop->nb_iterations_estimate, true);
7005 fprintf (file, ")\n");
7007 /* Print loop's body. */
7008 if (verbosity >= 1)
7010 fprintf (file, "%s{\n", s_indent);
7011 FOR_EACH_BB (bb)
7012 if (bb->loop_father == loop)
7013 print_loops_bb (file, bb, indent, verbosity);
7015 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7016 fprintf (file, "%s}\n", s_indent);
7020 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7021 spaces. Following VERBOSITY level this outputs the contents of the
7022 loop, or just its structure. */
7024 static void
7025 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
7027 if (loop == NULL)
7028 return;
7030 print_loop (file, loop, indent, verbosity);
7031 print_loop_and_siblings (file, loop->next, indent, verbosity);
7034 /* Follow a CFG edge from the entry point of the program, and on entry
7035 of a loop, pretty print the loop structure on FILE. */
7037 void
7038 print_loops (FILE *file, int verbosity)
7040 basic_block bb;
7042 bb = ENTRY_BLOCK_PTR;
7043 if (bb && bb->loop_father)
7044 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7048 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7050 DEBUG_FUNCTION void
7051 debug_loops (int verbosity)
7053 print_loops (stderr, verbosity);
7056 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7058 DEBUG_FUNCTION void
7059 debug_loop (struct loop *loop, int verbosity)
7061 print_loop (stderr, loop, 0, verbosity);
7064 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7065 level. */
7067 DEBUG_FUNCTION void
7068 debug_loop_num (unsigned num, int verbosity)
7070 debug_loop (get_loop (num), verbosity);
7073 /* Return true if BB ends with a call, possibly followed by some
7074 instructions that must stay with the call. Return false,
7075 otherwise. */
7077 static bool
7078 gimple_block_ends_with_call_p (basic_block bb)
7080 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7081 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7085 /* Return true if BB ends with a conditional branch. Return false,
7086 otherwise. */
7088 static bool
7089 gimple_block_ends_with_condjump_p (const_basic_block bb)
7091 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7092 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7096 /* Return true if we need to add fake edge to exit at statement T.
7097 Helper function for gimple_flow_call_edges_add. */
7099 static bool
7100 need_fake_edge_p (gimple t)
7102 tree fndecl = NULL_TREE;
7103 int call_flags = 0;
7105 /* NORETURN and LONGJMP calls already have an edge to exit.
7106 CONST and PURE calls do not need one.
7107 We don't currently check for CONST and PURE here, although
7108 it would be a good idea, because those attributes are
7109 figured out from the RTL in mark_constant_function, and
7110 the counter incrementation code from -fprofile-arcs
7111 leads to different results from -fbranch-probabilities. */
7112 if (is_gimple_call (t))
7114 fndecl = gimple_call_fndecl (t);
7115 call_flags = gimple_call_flags (t);
7118 if (is_gimple_call (t)
7119 && fndecl
7120 && DECL_BUILT_IN (fndecl)
7121 && (call_flags & ECF_NOTHROW)
7122 && !(call_flags & ECF_RETURNS_TWICE)
7123 /* fork() doesn't really return twice, but the effect of
7124 wrapping it in __gcov_fork() which calls __gcov_flush()
7125 and clears the counters before forking has the same
7126 effect as returning twice. Force a fake edge. */
7127 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7128 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7129 return false;
7131 if (is_gimple_call (t))
7133 edge_iterator ei;
7134 edge e;
7135 basic_block bb;
7137 if (!(call_flags & ECF_NORETURN))
7138 return true;
7140 bb = gimple_bb (t);
7141 FOR_EACH_EDGE (e, ei, bb->succs)
7142 if ((e->flags & EDGE_FAKE) == 0)
7143 return true;
7146 if (gimple_code (t) == GIMPLE_ASM
7147 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7148 return true;
7150 return false;
7154 /* Add fake edges to the function exit for any non constant and non
7155 noreturn calls (or noreturn calls with EH/abnormal edges),
7156 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7157 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7158 that were split.
7160 The goal is to expose cases in which entering a basic block does
7161 not imply that all subsequent instructions must be executed. */
7163 static int
7164 gimple_flow_call_edges_add (sbitmap blocks)
7166 int i;
7167 int blocks_split = 0;
7168 int last_bb = last_basic_block;
7169 bool check_last_block = false;
7171 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7172 return 0;
7174 if (! blocks)
7175 check_last_block = true;
7176 else
7177 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7179 /* In the last basic block, before epilogue generation, there will be
7180 a fallthru edge to EXIT. Special care is required if the last insn
7181 of the last basic block is a call because make_edge folds duplicate
7182 edges, which would result in the fallthru edge also being marked
7183 fake, which would result in the fallthru edge being removed by
7184 remove_fake_edges, which would result in an invalid CFG.
7186 Moreover, we can't elide the outgoing fake edge, since the block
7187 profiler needs to take this into account in order to solve the minimal
7188 spanning tree in the case that the call doesn't return.
7190 Handle this by adding a dummy instruction in a new last basic block. */
7191 if (check_last_block)
7193 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7194 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7195 gimple t = NULL;
7197 if (!gsi_end_p (gsi))
7198 t = gsi_stmt (gsi);
7200 if (t && need_fake_edge_p (t))
7202 edge e;
7204 e = find_edge (bb, EXIT_BLOCK_PTR);
7205 if (e)
7207 gsi_insert_on_edge (e, gimple_build_nop ());
7208 gsi_commit_edge_inserts ();
7213 /* Now add fake edges to the function exit for any non constant
7214 calls since there is no way that we can determine if they will
7215 return or not... */
7216 for (i = 0; i < last_bb; i++)
7218 basic_block bb = BASIC_BLOCK (i);
7219 gimple_stmt_iterator gsi;
7220 gimple stmt, last_stmt;
7222 if (!bb)
7223 continue;
7225 if (blocks && !bitmap_bit_p (blocks, i))
7226 continue;
7228 gsi = gsi_last_nondebug_bb (bb);
7229 if (!gsi_end_p (gsi))
7231 last_stmt = gsi_stmt (gsi);
7234 stmt = gsi_stmt (gsi);
7235 if (need_fake_edge_p (stmt))
7237 edge e;
7239 /* The handling above of the final block before the
7240 epilogue should be enough to verify that there is
7241 no edge to the exit block in CFG already.
7242 Calling make_edge in such case would cause us to
7243 mark that edge as fake and remove it later. */
7244 #ifdef ENABLE_CHECKING
7245 if (stmt == last_stmt)
7247 e = find_edge (bb, EXIT_BLOCK_PTR);
7248 gcc_assert (e == NULL);
7250 #endif
7252 /* Note that the following may create a new basic block
7253 and renumber the existing basic blocks. */
7254 if (stmt != last_stmt)
7256 e = split_block (bb, stmt);
7257 if (e)
7258 blocks_split++;
7260 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7262 gsi_prev (&gsi);
7264 while (!gsi_end_p (gsi));
7268 if (blocks_split)
7269 verify_flow_info ();
7271 return blocks_split;
7274 /* Removes edge E and all the blocks dominated by it, and updates dominance
7275 information. The IL in E->src needs to be updated separately.
7276 If dominance info is not available, only the edge E is removed.*/
7278 void
7279 remove_edge_and_dominated_blocks (edge e)
7281 VEC (basic_block, heap) *bbs_to_remove = NULL;
7282 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7283 bitmap df, df_idom;
7284 edge f;
7285 edge_iterator ei;
7286 bool none_removed = false;
7287 unsigned i;
7288 basic_block bb, dbb;
7289 bitmap_iterator bi;
7291 if (!dom_info_available_p (CDI_DOMINATORS))
7293 remove_edge (e);
7294 return;
7297 /* No updating is needed for edges to exit. */
7298 if (e->dest == EXIT_BLOCK_PTR)
7300 if (cfgcleanup_altered_bbs)
7301 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7302 remove_edge (e);
7303 return;
7306 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7307 that is not dominated by E->dest, then this set is empty. Otherwise,
7308 all the basic blocks dominated by E->dest are removed.
7310 Also, to DF_IDOM we store the immediate dominators of the blocks in
7311 the dominance frontier of E (i.e., of the successors of the
7312 removed blocks, if there are any, and of E->dest otherwise). */
7313 FOR_EACH_EDGE (f, ei, e->dest->preds)
7315 if (f == e)
7316 continue;
7318 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7320 none_removed = true;
7321 break;
7325 df = BITMAP_ALLOC (NULL);
7326 df_idom = BITMAP_ALLOC (NULL);
7328 if (none_removed)
7329 bitmap_set_bit (df_idom,
7330 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7331 else
7333 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7334 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7336 FOR_EACH_EDGE (f, ei, bb->succs)
7338 if (f->dest != EXIT_BLOCK_PTR)
7339 bitmap_set_bit (df, f->dest->index);
7342 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7343 bitmap_clear_bit (df, bb->index);
7345 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7347 bb = BASIC_BLOCK (i);
7348 bitmap_set_bit (df_idom,
7349 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7353 if (cfgcleanup_altered_bbs)
7355 /* Record the set of the altered basic blocks. */
7356 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7357 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7360 /* Remove E and the cancelled blocks. */
7361 if (none_removed)
7362 remove_edge (e);
7363 else
7365 /* Walk backwards so as to get a chance to substitute all
7366 released DEFs into debug stmts. See
7367 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7368 details. */
7369 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7370 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7373 /* Update the dominance information. The immediate dominator may change only
7374 for blocks whose immediate dominator belongs to DF_IDOM:
7376 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7377 removal. Let Z the arbitrary block such that idom(Z) = Y and
7378 Z dominates X after the removal. Before removal, there exists a path P
7379 from Y to X that avoids Z. Let F be the last edge on P that is
7380 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7381 dominates W, and because of P, Z does not dominate W), and W belongs to
7382 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7383 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7385 bb = BASIC_BLOCK (i);
7386 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7387 dbb;
7388 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7389 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7392 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7394 BITMAP_FREE (df);
7395 BITMAP_FREE (df_idom);
7396 VEC_free (basic_block, heap, bbs_to_remove);
7397 VEC_free (basic_block, heap, bbs_to_fix_dom);
7400 /* Purge dead EH edges from basic block BB. */
7402 bool
7403 gimple_purge_dead_eh_edges (basic_block bb)
7405 bool changed = false;
7406 edge e;
7407 edge_iterator ei;
7408 gimple stmt = last_stmt (bb);
7410 if (stmt && stmt_can_throw_internal (stmt))
7411 return false;
7413 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7415 if (e->flags & EDGE_EH)
7417 remove_edge_and_dominated_blocks (e);
7418 changed = true;
7420 else
7421 ei_next (&ei);
7424 return changed;
7427 /* Purge dead EH edges from basic block listed in BLOCKS. */
7429 bool
7430 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7432 bool changed = false;
7433 unsigned i;
7434 bitmap_iterator bi;
7436 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7438 basic_block bb = BASIC_BLOCK (i);
7440 /* Earlier gimple_purge_dead_eh_edges could have removed
7441 this basic block already. */
7442 gcc_assert (bb || changed);
7443 if (bb != NULL)
7444 changed |= gimple_purge_dead_eh_edges (bb);
7447 return changed;
7450 /* Purge dead abnormal call edges from basic block BB. */
7452 bool
7453 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7455 bool changed = false;
7456 edge e;
7457 edge_iterator ei;
7458 gimple stmt = last_stmt (bb);
7460 if (!cfun->has_nonlocal_label)
7461 return false;
7463 if (stmt && stmt_can_make_abnormal_goto (stmt))
7464 return false;
7466 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7468 if (e->flags & EDGE_ABNORMAL)
7470 remove_edge_and_dominated_blocks (e);
7471 changed = true;
7473 else
7474 ei_next (&ei);
7477 return changed;
7480 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7482 bool
7483 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7485 bool changed = false;
7486 unsigned i;
7487 bitmap_iterator bi;
7489 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7491 basic_block bb = BASIC_BLOCK (i);
7493 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7494 this basic block already. */
7495 gcc_assert (bb || changed);
7496 if (bb != NULL)
7497 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7500 return changed;
7503 /* This function is called whenever a new edge is created or
7504 redirected. */
7506 static void
7507 gimple_execute_on_growing_pred (edge e)
7509 basic_block bb = e->dest;
7511 if (!gimple_seq_empty_p (phi_nodes (bb)))
7512 reserve_phi_args_for_new_edge (bb);
7515 /* This function is called immediately before edge E is removed from
7516 the edge vector E->dest->preds. */
7518 static void
7519 gimple_execute_on_shrinking_pred (edge e)
7521 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7522 remove_phi_args (e);
7525 /*---------------------------------------------------------------------------
7526 Helper functions for Loop versioning
7527 ---------------------------------------------------------------------------*/
7529 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7530 of 'first'. Both of them are dominated by 'new_head' basic block. When
7531 'new_head' was created by 'second's incoming edge it received phi arguments
7532 on the edge by split_edge(). Later, additional edge 'e' was created to
7533 connect 'new_head' and 'first'. Now this routine adds phi args on this
7534 additional edge 'e' that new_head to second edge received as part of edge
7535 splitting. */
7537 static void
7538 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7539 basic_block new_head, edge e)
7541 gimple phi1, phi2;
7542 gimple_stmt_iterator psi1, psi2;
7543 tree def;
7544 edge e2 = find_edge (new_head, second);
7546 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7547 edge, we should always have an edge from NEW_HEAD to SECOND. */
7548 gcc_assert (e2 != NULL);
7550 /* Browse all 'second' basic block phi nodes and add phi args to
7551 edge 'e' for 'first' head. PHI args are always in correct order. */
7553 for (psi2 = gsi_start_phis (second),
7554 psi1 = gsi_start_phis (first);
7555 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7556 gsi_next (&psi2), gsi_next (&psi1))
7558 phi1 = gsi_stmt (psi1);
7559 phi2 = gsi_stmt (psi2);
7560 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7561 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7566 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7567 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7568 the destination of the ELSE part. */
7570 static void
7571 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7572 basic_block second_head ATTRIBUTE_UNUSED,
7573 basic_block cond_bb, void *cond_e)
7575 gimple_stmt_iterator gsi;
7576 gimple new_cond_expr;
7577 tree cond_expr = (tree) cond_e;
7578 edge e0;
7580 /* Build new conditional expr */
7581 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7582 NULL_TREE, NULL_TREE);
7584 /* Add new cond in cond_bb. */
7585 gsi = gsi_last_bb (cond_bb);
7586 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7588 /* Adjust edges appropriately to connect new head with first head
7589 as well as second head. */
7590 e0 = single_succ_edge (cond_bb);
7591 e0->flags &= ~EDGE_FALLTHRU;
7592 e0->flags |= EDGE_FALSE_VALUE;
7596 /* Do book-keeping of basic block BB for the profile consistency checker.
7597 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7598 then do post-pass accounting. Store the counting in RECORD. */
7599 static void
7600 gimple_account_profile_record (basic_block bb, int after_pass,
7601 struct profile_record *record)
7603 gimple_stmt_iterator i;
7604 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7606 record->size[after_pass]
7607 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7608 if (profile_status == PROFILE_READ)
7609 record->time[after_pass]
7610 += estimate_num_insns (gsi_stmt (i),
7611 &eni_time_weights) * bb->count;
7612 else if (profile_status == PROFILE_GUESSED)
7613 record->time[after_pass]
7614 += estimate_num_insns (gsi_stmt (i),
7615 &eni_time_weights) * bb->frequency;
7619 struct cfg_hooks gimple_cfg_hooks = {
7620 "gimple",
7621 gimple_verify_flow_info,
7622 gimple_dump_bb, /* dump_bb */
7623 create_bb, /* create_basic_block */
7624 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7625 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7626 gimple_can_remove_branch_p, /* can_remove_branch_p */
7627 remove_bb, /* delete_basic_block */
7628 gimple_split_block, /* split_block */
7629 gimple_move_block_after, /* move_block_after */
7630 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7631 gimple_merge_blocks, /* merge_blocks */
7632 gimple_predict_edge, /* predict_edge */
7633 gimple_predicted_by_p, /* predicted_by_p */
7634 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7635 gimple_duplicate_bb, /* duplicate_block */
7636 gimple_split_edge, /* split_edge */
7637 gimple_make_forwarder_block, /* make_forward_block */
7638 NULL, /* tidy_fallthru_edge */
7639 NULL, /* force_nonfallthru */
7640 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7641 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7642 gimple_flow_call_edges_add, /* flow_call_edges_add */
7643 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7644 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7645 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7646 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7647 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7648 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7649 flush_pending_stmts, /* flush_pending_stmts */
7650 gimple_empty_block_p, /* block_empty_p */
7651 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7652 gimple_account_profile_record,
7656 /* Split all critical edges. */
7658 static unsigned int
7659 split_critical_edges (void)
7661 basic_block bb;
7662 edge e;
7663 edge_iterator ei;
7665 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7666 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7667 mappings around the calls to split_edge. */
7668 start_recording_case_labels ();
7669 FOR_ALL_BB (bb)
7671 FOR_EACH_EDGE (e, ei, bb->succs)
7673 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7674 split_edge (e);
7675 /* PRE inserts statements to edges and expects that
7676 since split_critical_edges was done beforehand, committing edge
7677 insertions will not split more edges. In addition to critical
7678 edges we must split edges that have multiple successors and
7679 end by control flow statements, such as RESX.
7680 Go ahead and split them too. This matches the logic in
7681 gimple_find_edge_insert_loc. */
7682 else if ((!single_pred_p (e->dest)
7683 || !gimple_seq_empty_p (phi_nodes (e->dest))
7684 || e->dest == EXIT_BLOCK_PTR)
7685 && e->src != ENTRY_BLOCK_PTR
7686 && !(e->flags & EDGE_ABNORMAL))
7688 gimple_stmt_iterator gsi;
7690 gsi = gsi_last_bb (e->src);
7691 if (!gsi_end_p (gsi)
7692 && stmt_ends_bb_p (gsi_stmt (gsi))
7693 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7694 && !gimple_call_builtin_p (gsi_stmt (gsi),
7695 BUILT_IN_RETURN)))
7696 split_edge (e);
7700 end_recording_case_labels ();
7701 return 0;
7704 struct gimple_opt_pass pass_split_crit_edges =
7707 GIMPLE_PASS,
7708 "crited", /* name */
7709 OPTGROUP_NONE, /* optinfo_flags */
7710 NULL, /* gate */
7711 split_critical_edges, /* execute */
7712 NULL, /* sub */
7713 NULL, /* next */
7714 0, /* static_pass_number */
7715 TV_TREE_SPLIT_EDGES, /* tv_id */
7716 PROP_cfg, /* properties required */
7717 PROP_no_crit_edges, /* properties_provided */
7718 0, /* properties_destroyed */
7719 0, /* todo_flags_start */
7720 TODO_verify_flow /* todo_flags_finish */
7725 /* Build a ternary operation and gimplify it. Emit code before GSI.
7726 Return the gimple_val holding the result. */
7728 tree
7729 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7730 tree type, tree a, tree b, tree c)
7732 tree ret;
7733 location_t loc = gimple_location (gsi_stmt (*gsi));
7735 ret = fold_build3_loc (loc, code, type, a, b, c);
7736 STRIP_NOPS (ret);
7738 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7739 GSI_SAME_STMT);
7742 /* Build a binary operation and gimplify it. Emit code before GSI.
7743 Return the gimple_val holding the result. */
7745 tree
7746 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7747 tree type, tree a, tree b)
7749 tree ret;
7751 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7752 STRIP_NOPS (ret);
7754 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7755 GSI_SAME_STMT);
7758 /* Build a unary operation and gimplify it. Emit code before GSI.
7759 Return the gimple_val holding the result. */
7761 tree
7762 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7763 tree a)
7765 tree ret;
7767 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7768 STRIP_NOPS (ret);
7770 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7771 GSI_SAME_STMT);
7776 /* Emit return warnings. */
7778 static unsigned int
7779 execute_warn_function_return (void)
7781 source_location location;
7782 gimple last;
7783 edge e;
7784 edge_iterator ei;
7786 if (!targetm.warn_func_return (cfun->decl))
7787 return 0;
7789 /* If we have a path to EXIT, then we do return. */
7790 if (TREE_THIS_VOLATILE (cfun->decl)
7791 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7793 location = UNKNOWN_LOCATION;
7794 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7796 last = last_stmt (e->src);
7797 if ((gimple_code (last) == GIMPLE_RETURN
7798 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7799 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7800 break;
7802 if (location == UNKNOWN_LOCATION)
7803 location = cfun->function_end_locus;
7804 warning_at (location, 0, "%<noreturn%> function does return");
7807 /* If we see "return;" in some basic block, then we do reach the end
7808 without returning a value. */
7809 else if (warn_return_type
7810 && !TREE_NO_WARNING (cfun->decl)
7811 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7812 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7814 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7816 gimple last = last_stmt (e->src);
7817 if (gimple_code (last) == GIMPLE_RETURN
7818 && gimple_return_retval (last) == NULL
7819 && !gimple_no_warning_p (last))
7821 location = gimple_location (last);
7822 if (location == UNKNOWN_LOCATION)
7823 location = cfun->function_end_locus;
7824 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7825 TREE_NO_WARNING (cfun->decl) = 1;
7826 break;
7830 return 0;
7834 /* Given a basic block B which ends with a conditional and has
7835 precisely two successors, determine which of the edges is taken if
7836 the conditional is true and which is taken if the conditional is
7837 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7839 void
7840 extract_true_false_edges_from_block (basic_block b,
7841 edge *true_edge,
7842 edge *false_edge)
7844 edge e = EDGE_SUCC (b, 0);
7846 if (e->flags & EDGE_TRUE_VALUE)
7848 *true_edge = e;
7849 *false_edge = EDGE_SUCC (b, 1);
7851 else
7853 *false_edge = e;
7854 *true_edge = EDGE_SUCC (b, 1);
7858 struct gimple_opt_pass pass_warn_function_return =
7861 GIMPLE_PASS,
7862 "*warn_function_return", /* name */
7863 OPTGROUP_NONE, /* optinfo_flags */
7864 NULL, /* gate */
7865 execute_warn_function_return, /* execute */
7866 NULL, /* sub */
7867 NULL, /* next */
7868 0, /* static_pass_number */
7869 TV_NONE, /* tv_id */
7870 PROP_cfg, /* properties_required */
7871 0, /* properties_provided */
7872 0, /* properties_destroyed */
7873 0, /* todo_flags_start */
7874 0 /* todo_flags_finish */
7878 /* Emit noreturn warnings. */
7880 static unsigned int
7881 execute_warn_function_noreturn (void)
7883 if (!TREE_THIS_VOLATILE (current_function_decl)
7884 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7885 warn_function_noreturn (current_function_decl);
7886 return 0;
7889 static bool
7890 gate_warn_function_noreturn (void)
7892 return warn_suggest_attribute_noreturn;
7895 struct gimple_opt_pass pass_warn_function_noreturn =
7898 GIMPLE_PASS,
7899 "*warn_function_noreturn", /* name */
7900 OPTGROUP_NONE, /* optinfo_flags */
7901 gate_warn_function_noreturn, /* gate */
7902 execute_warn_function_noreturn, /* execute */
7903 NULL, /* sub */
7904 NULL, /* next */
7905 0, /* static_pass_number */
7906 TV_NONE, /* tv_id */
7907 PROP_cfg, /* properties_required */
7908 0, /* properties_provided */
7909 0, /* properties_destroyed */
7910 0, /* todo_flags_start */
7911 0 /* todo_flags_finish */
7916 /* Walk a gimplified function and warn for functions whose return value is
7917 ignored and attribute((warn_unused_result)) is set. This is done before
7918 inlining, so we don't have to worry about that. */
7920 static void
7921 do_warn_unused_result (gimple_seq seq)
7923 tree fdecl, ftype;
7924 gimple_stmt_iterator i;
7926 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7928 gimple g = gsi_stmt (i);
7930 switch (gimple_code (g))
7932 case GIMPLE_BIND:
7933 do_warn_unused_result (gimple_bind_body (g));
7934 break;
7935 case GIMPLE_TRY:
7936 do_warn_unused_result (gimple_try_eval (g));
7937 do_warn_unused_result (gimple_try_cleanup (g));
7938 break;
7939 case GIMPLE_CATCH:
7940 do_warn_unused_result (gimple_catch_handler (g));
7941 break;
7942 case GIMPLE_EH_FILTER:
7943 do_warn_unused_result (gimple_eh_filter_failure (g));
7944 break;
7946 case GIMPLE_CALL:
7947 if (gimple_call_lhs (g))
7948 break;
7949 if (gimple_call_internal_p (g))
7950 break;
7952 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7953 LHS. All calls whose value is ignored should be
7954 represented like this. Look for the attribute. */
7955 fdecl = gimple_call_fndecl (g);
7956 ftype = gimple_call_fntype (g);
7958 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7960 location_t loc = gimple_location (g);
7962 if (fdecl)
7963 warning_at (loc, OPT_Wunused_result,
7964 "ignoring return value of %qD, "
7965 "declared with attribute warn_unused_result",
7966 fdecl);
7967 else
7968 warning_at (loc, OPT_Wunused_result,
7969 "ignoring return value of function "
7970 "declared with attribute warn_unused_result");
7972 break;
7974 default:
7975 /* Not a container, not a call, or a call whose value is used. */
7976 break;
7981 static unsigned int
7982 run_warn_unused_result (void)
7984 do_warn_unused_result (gimple_body (current_function_decl));
7985 return 0;
7988 static bool
7989 gate_warn_unused_result (void)
7991 return flag_warn_unused_result;
7994 struct gimple_opt_pass pass_warn_unused_result =
7997 GIMPLE_PASS,
7998 "*warn_unused_result", /* name */
7999 OPTGROUP_NONE, /* optinfo_flags */
8000 gate_warn_unused_result, /* gate */
8001 run_warn_unused_result, /* execute */
8002 NULL, /* sub */
8003 NULL, /* next */
8004 0, /* static_pass_number */
8005 TV_NONE, /* tv_id */
8006 PROP_gimple_any, /* properties_required */
8007 0, /* properties_provided */
8008 0, /* properties_destroyed */
8009 0, /* todo_flags_start */
8010 0, /* todo_flags_finish */
8015 /* Garbage collection support for edge_def. */
8017 extern void gt_ggc_mx (tree&);
8018 extern void gt_ggc_mx (gimple&);
8019 extern void gt_ggc_mx (rtx&);
8020 extern void gt_ggc_mx (basic_block&);
8022 void
8023 gt_ggc_mx (edge_def *e)
8025 tree block = LOCATION_BLOCK (e->goto_locus);
8026 gt_ggc_mx (e->src);
8027 gt_ggc_mx (e->dest);
8028 if (current_ir_type () == IR_GIMPLE)
8029 gt_ggc_mx (e->insns.g);
8030 else
8031 gt_ggc_mx (e->insns.r);
8032 gt_ggc_mx (block);
8035 /* PCH support for edge_def. */
8037 extern void gt_pch_nx (tree&);
8038 extern void gt_pch_nx (gimple&);
8039 extern void gt_pch_nx (rtx&);
8040 extern void gt_pch_nx (basic_block&);
8042 void
8043 gt_pch_nx (edge_def *e)
8045 tree block = LOCATION_BLOCK (e->goto_locus);
8046 gt_pch_nx (e->src);
8047 gt_pch_nx (e->dest);
8048 if (current_ir_type () == IR_GIMPLE)
8049 gt_pch_nx (e->insns.g);
8050 else
8051 gt_pch_nx (e->insns.r);
8052 gt_pch_nx (block);
8055 void
8056 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8058 tree block = LOCATION_BLOCK (e->goto_locus);
8059 op (&(e->src), cookie);
8060 op (&(e->dest), cookie);
8061 if (current_ir_type () == IR_GIMPLE)
8062 op (&(e->insns.g), cookie);
8063 else
8064 op (&(e->insns.r), cookie);
8065 op (&(block), cookie);