Make build_check_stmt accept an SSA_NAME for its base
[official-gcc.git] / gcc / ada / sem_res.adb
blob64199fa2cf611a6d6a829a41bf3d375ddccebf44
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Itypes; use Itypes;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Nlists; use Nlists;
46 with Opt; use Opt;
47 with Output; use Output;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Aggr; use Sem_Aggr;
54 with Sem_Attr; use Sem_Attr;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch4; use Sem_Ch4;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Dim; use Sem_Dim;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Elim; use Sem_Elim;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Intr; use Sem_Intr;
67 with Sem_Util; use Sem_Util;
68 with Targparm; use Targparm;
69 with Sem_Type; use Sem_Type;
70 with Sem_Warn; use Sem_Warn;
71 with Sinfo; use Sinfo;
72 with Sinfo.CN; use Sinfo.CN;
73 with Snames; use Snames;
74 with Stand; use Stand;
75 with Stringt; use Stringt;
76 with Style; use Style;
77 with Tbuild; use Tbuild;
78 with Uintp; use Uintp;
79 with Urealp; use Urealp;
81 package body Sem_Res is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 -- Second pass (top-down) type checking and overload resolution procedures
88 -- Typ is the type required by context. These procedures propagate the type
89 -- information recursively to the descendants of N. If the node is not
90 -- overloaded, its Etype is established in the first pass. If overloaded,
91 -- the Resolve routines set the correct type. For arith. operators, the
92 -- Etype is the base type of the context.
94 -- Note that Resolve_Attribute is separated off in Sem_Attr
96 function Bad_Unordered_Enumeration_Reference
97 (N : Node_Id;
98 T : Entity_Id) return Boolean;
99 -- Node N contains a potentially dubious reference to type T, either an
100 -- explicit comparison, or an explicit range. This function returns True
101 -- if the type T is an enumeration type for which No pragma Order has been
102 -- given, and the reference N is not in the same extended source unit as
103 -- the declaration of T.
105 procedure Check_Discriminant_Use (N : Node_Id);
106 -- Enforce the restrictions on the use of discriminants when constraining
107 -- a component of a discriminated type (record or concurrent type).
109 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
110 -- Given a node for an operator associated with type T, check that
111 -- the operator is visible. Operators all of whose operands are
112 -- universal must be checked for visibility during resolution
113 -- because their type is not determinable based on their operands.
115 procedure Check_Fully_Declared_Prefix
116 (Typ : Entity_Id;
117 Pref : Node_Id);
118 -- Check that the type of the prefix of a dereference is not incomplete
120 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
121 -- Given a call node, N, which is known to occur immediately within the
122 -- subprogram being called, determines whether it is a detectable case of
123 -- an infinite recursion, and if so, outputs appropriate messages. Returns
124 -- True if an infinite recursion is detected, and False otherwise.
126 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
127 -- If the type of the object being initialized uses the secondary stack
128 -- directly or indirectly, create a transient scope for the call to the
129 -- init proc. This is because we do not create transient scopes for the
130 -- initialization of individual components within the init proc itself.
131 -- Could be optimized away perhaps?
133 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
134 -- N is the node for a logical operator. If the operator is predefined, and
135 -- the root type of the operands is Standard.Boolean, then a check is made
136 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
137 -- the style check for Style_Check_Boolean_And_Or.
139 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
151 -- predicate.
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for unary operators (arithmetic ones and "not" on signed
236 -- integer types for VMS).
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so
248 -- that operands are resolved properly. Recall that predefined operators
249 -- do not have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is
261 -- not a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------------------
401 -- Bad_Unordered_Enumeration_Reference --
402 ----------------------------------------
404 function Bad_Unordered_Enumeration_Reference
405 (N : Node_Id;
406 T : Entity_Id) return Boolean
408 begin
409 return Is_Enumeration_Type (T)
410 and then Comes_From_Source (N)
411 and then Warn_On_Unordered_Enumeration_Type
412 and then not Has_Pragma_Ordered (T)
413 and then not In_Same_Extended_Unit (N, T);
414 end Bad_Unordered_Enumeration_Reference;
416 ----------------------------
417 -- Check_Discriminant_Use --
418 ----------------------------
420 procedure Check_Discriminant_Use (N : Node_Id) is
421 PN : constant Node_Id := Parent (N);
422 Disc : constant Entity_Id := Entity (N);
423 P : Node_Id;
424 D : Node_Id;
426 begin
427 -- Any use in a spec-expression is legal
429 if In_Spec_Expression then
430 null;
432 elsif Nkind (PN) = N_Range then
434 -- Discriminant cannot be used to constrain a scalar type
436 P := Parent (PN);
438 if Nkind (P) = N_Range_Constraint
439 and then Nkind (Parent (P)) = N_Subtype_Indication
440 and then Nkind (Parent (Parent (P))) = N_Component_Definition
441 then
442 Error_Msg_N ("discriminant cannot constrain scalar type", N);
444 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
446 -- The following check catches the unusual case where a
447 -- discriminant appears within an index constraint that is part of
448 -- a larger expression within a constraint on a component, e.g. "C
449 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
450 -- of record components, and note that a similar check should also
451 -- apply in the case of discriminant constraints below. ???
453 -- Note that the check for N_Subtype_Declaration below is to
454 -- detect the valid use of discriminants in the constraints of a
455 -- subtype declaration when this subtype declaration appears
456 -- inside the scope of a record type (which is syntactically
457 -- illegal, but which may be created as part of derived type
458 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
459 -- for more info.
461 if Ekind (Current_Scope) = E_Record_Type
462 and then Scope (Disc) = Current_Scope
463 and then not
464 (Nkind (Parent (P)) = N_Subtype_Indication
465 and then
466 Nkind_In (Parent (Parent (P)), N_Component_Definition,
467 N_Subtype_Declaration)
468 and then Paren_Count (N) = 0)
469 then
470 Error_Msg_N
471 ("discriminant must appear alone in component constraint", N);
472 return;
473 end if;
475 -- Detect a common error:
477 -- type R (D : Positive := 100) is record
478 -- Name : String (1 .. D);
479 -- end record;
481 -- The default value causes an object of type R to be allocated
482 -- with room for Positive'Last characters. The RM does not mandate
483 -- the allocation of the maximum size, but that is what GNAT does
484 -- so we should warn the programmer that there is a problem.
486 Check_Large : declare
487 SI : Node_Id;
488 T : Entity_Id;
489 TB : Node_Id;
490 CB : Entity_Id;
492 function Large_Storage_Type (T : Entity_Id) return Boolean;
493 -- Return True if type T has a large enough range that any
494 -- array whose index type covered the whole range of the type
495 -- would likely raise Storage_Error.
497 ------------------------
498 -- Large_Storage_Type --
499 ------------------------
501 function Large_Storage_Type (T : Entity_Id) return Boolean is
502 begin
503 -- The type is considered large if its bounds are known at
504 -- compile time and if it requires at least as many bits as
505 -- a Positive to store the possible values.
507 return Compile_Time_Known_Value (Type_Low_Bound (T))
508 and then Compile_Time_Known_Value (Type_High_Bound (T))
509 and then
510 Minimum_Size (T, Biased => True) >=
511 RM_Size (Standard_Positive);
512 end Large_Storage_Type;
514 -- Start of processing for Check_Large
516 begin
517 -- Check that the Disc has a large range
519 if not Large_Storage_Type (Etype (Disc)) then
520 goto No_Danger;
521 end if;
523 -- If the enclosing type is limited, we allocate only the
524 -- default value, not the maximum, and there is no need for
525 -- a warning.
527 if Is_Limited_Type (Scope (Disc)) then
528 goto No_Danger;
529 end if;
531 -- Check that it is the high bound
533 if N /= High_Bound (PN)
534 or else No (Discriminant_Default_Value (Disc))
535 then
536 goto No_Danger;
537 end if;
539 -- Check the array allows a large range at this bound. First
540 -- find the array
542 SI := Parent (P);
544 if Nkind (SI) /= N_Subtype_Indication then
545 goto No_Danger;
546 end if;
548 T := Entity (Subtype_Mark (SI));
550 if not Is_Array_Type (T) then
551 goto No_Danger;
552 end if;
554 -- Next, find the dimension
556 TB := First_Index (T);
557 CB := First (Constraints (P));
558 while True
559 and then Present (TB)
560 and then Present (CB)
561 and then CB /= PN
562 loop
563 Next_Index (TB);
564 Next (CB);
565 end loop;
567 if CB /= PN then
568 goto No_Danger;
569 end if;
571 -- Now, check the dimension has a large range
573 if not Large_Storage_Type (Etype (TB)) then
574 goto No_Danger;
575 end if;
577 -- Warn about the danger
579 Error_Msg_N
580 ("?creation of & object may raise Storage_Error!",
581 Scope (Disc));
583 <<No_Danger>>
584 null;
586 end Check_Large;
587 end if;
589 -- Legal case is in index or discriminant constraint
591 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
592 N_Discriminant_Association)
593 then
594 if Paren_Count (N) > 0 then
595 Error_Msg_N
596 ("discriminant in constraint must appear alone", N);
598 elsif Nkind (N) = N_Expanded_Name
599 and then Comes_From_Source (N)
600 then
601 Error_Msg_N
602 ("discriminant must appear alone as a direct name", N);
603 end if;
605 return;
607 -- Otherwise, context is an expression. It should not be within (i.e. a
608 -- subexpression of) a constraint for a component.
610 else
611 D := PN;
612 P := Parent (PN);
613 while not Nkind_In (P, N_Component_Declaration,
614 N_Subtype_Indication,
615 N_Entry_Declaration)
616 loop
617 D := P;
618 P := Parent (P);
619 exit when No (P);
620 end loop;
622 -- If the discriminant is used in an expression that is a bound of a
623 -- scalar type, an Itype is created and the bounds are attached to
624 -- its range, not to the original subtype indication. Such use is of
625 -- course a double fault.
627 if (Nkind (P) = N_Subtype_Indication
628 and then Nkind_In (Parent (P), N_Component_Definition,
629 N_Derived_Type_Definition)
630 and then D = Constraint (P))
632 -- The constraint itself may be given by a subtype indication,
633 -- rather than by a more common discrete range.
635 or else (Nkind (P) = N_Subtype_Indication
636 and then
637 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
638 or else Nkind (P) = N_Entry_Declaration
639 or else Nkind (D) = N_Defining_Identifier
640 then
641 Error_Msg_N
642 ("discriminant in constraint must appear alone", N);
643 end if;
644 end if;
645 end Check_Discriminant_Use;
647 --------------------------------
648 -- Check_For_Visible_Operator --
649 --------------------------------
651 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
652 begin
653 if Is_Invisible_Operator (N, T) then
654 Error_Msg_NE -- CODEFIX
655 ("operator for} is not directly visible!", N, First_Subtype (T));
656 Error_Msg_N -- CODEFIX
657 ("use clause would make operation legal!", N);
658 end if;
659 end Check_For_Visible_Operator;
661 ----------------------------------
662 -- Check_Fully_Declared_Prefix --
663 ----------------------------------
665 procedure Check_Fully_Declared_Prefix
666 (Typ : Entity_Id;
667 Pref : Node_Id)
669 begin
670 -- Check that the designated type of the prefix of a dereference is
671 -- not an incomplete type. This cannot be done unconditionally, because
672 -- dereferences of private types are legal in default expressions. This
673 -- case is taken care of in Check_Fully_Declared, called below. There
674 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
676 -- This consideration also applies to similar checks for allocators,
677 -- qualified expressions, and type conversions.
679 -- An additional exception concerns other per-object expressions that
680 -- are not directly related to component declarations, in particular
681 -- representation pragmas for tasks. These will be per-object
682 -- expressions if they depend on discriminants or some global entity.
683 -- If the task has access discriminants, the designated type may be
684 -- incomplete at the point the expression is resolved. This resolution
685 -- takes place within the body of the initialization procedure, where
686 -- the discriminant is replaced by its discriminal.
688 if Is_Entity_Name (Pref)
689 and then Ekind (Entity (Pref)) = E_In_Parameter
690 then
691 null;
693 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
694 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
695 -- Analyze_Object_Renaming, and Freeze_Entity.
697 elsif Ada_Version >= Ada_2005
698 and then Is_Entity_Name (Pref)
699 and then Is_Access_Type (Etype (Pref))
700 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
701 E_Incomplete_Type
702 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
703 then
704 null;
705 else
706 Check_Fully_Declared (Typ, Parent (Pref));
707 end if;
708 end Check_Fully_Declared_Prefix;
710 ------------------------------
711 -- Check_Infinite_Recursion --
712 ------------------------------
714 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
715 P : Node_Id;
716 C : Node_Id;
718 function Same_Argument_List return Boolean;
719 -- Check whether list of actuals is identical to list of formals of
720 -- called function (which is also the enclosing scope).
722 ------------------------
723 -- Same_Argument_List --
724 ------------------------
726 function Same_Argument_List return Boolean is
727 A : Node_Id;
728 F : Entity_Id;
729 Subp : Entity_Id;
731 begin
732 if not Is_Entity_Name (Name (N)) then
733 return False;
734 else
735 Subp := Entity (Name (N));
736 end if;
738 F := First_Formal (Subp);
739 A := First_Actual (N);
740 while Present (F) and then Present (A) loop
741 if not Is_Entity_Name (A)
742 or else Entity (A) /= F
743 then
744 return False;
745 end if;
747 Next_Actual (A);
748 Next_Formal (F);
749 end loop;
751 return True;
752 end Same_Argument_List;
754 -- Start of processing for Check_Infinite_Recursion
756 begin
757 -- Special case, if this is a procedure call and is a call to the
758 -- current procedure with the same argument list, then this is for
759 -- sure an infinite recursion and we insert a call to raise SE.
761 if Is_List_Member (N)
762 and then List_Length (List_Containing (N)) = 1
763 and then Same_Argument_List
764 then
765 declare
766 P : constant Node_Id := Parent (N);
767 begin
768 if Nkind (P) = N_Handled_Sequence_Of_Statements
769 and then Nkind (Parent (P)) = N_Subprogram_Body
770 and then Is_Empty_List (Declarations (Parent (P)))
771 then
772 Error_Msg_N ("!?infinite recursion", N);
773 Error_Msg_N ("\!?Storage_Error will be raised at run time", N);
774 Insert_Action (N,
775 Make_Raise_Storage_Error (Sloc (N),
776 Reason => SE_Infinite_Recursion));
777 return True;
778 end if;
779 end;
780 end if;
782 -- If not that special case, search up tree, quitting if we reach a
783 -- construct (e.g. a conditional) that tells us that this is not a
784 -- case for an infinite recursion warning.
786 C := N;
787 loop
788 P := Parent (C);
790 -- If no parent, then we were not inside a subprogram, this can for
791 -- example happen when processing certain pragmas in a spec. Just
792 -- return False in this case.
794 if No (P) then
795 return False;
796 end if;
798 -- Done if we get to subprogram body, this is definitely an infinite
799 -- recursion case if we did not find anything to stop us.
801 exit when Nkind (P) = N_Subprogram_Body;
803 -- If appearing in conditional, result is false
805 if Nkind_In (P, N_Or_Else,
806 N_And_Then,
807 N_Case_Expression,
808 N_Case_Statement,
809 N_If_Expression,
810 N_If_Statement)
811 then
812 return False;
814 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
815 and then C /= First (Statements (P))
816 then
817 -- If the call is the expression of a return statement and the
818 -- actuals are identical to the formals, it's worth a warning.
819 -- However, we skip this if there is an immediately preceding
820 -- raise statement, since the call is never executed.
822 -- Furthermore, this corresponds to a common idiom:
824 -- function F (L : Thing) return Boolean is
825 -- begin
826 -- raise Program_Error;
827 -- return F (L);
828 -- end F;
830 -- for generating a stub function
832 if Nkind (Parent (N)) = N_Simple_Return_Statement
833 and then Same_Argument_List
834 then
835 exit when not Is_List_Member (Parent (N));
837 -- OK, return statement is in a statement list, look for raise
839 declare
840 Nod : Node_Id;
842 begin
843 -- Skip past N_Freeze_Entity nodes generated by expansion
845 Nod := Prev (Parent (N));
846 while Present (Nod)
847 and then Nkind (Nod) = N_Freeze_Entity
848 loop
849 Prev (Nod);
850 end loop;
852 -- If no raise statement, give warning. We look at the
853 -- original node, because in the case of "raise ... with
854 -- ...", the node has been transformed into a call.
856 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
857 and then
858 (Nkind (Nod) not in N_Raise_xxx_Error
859 or else Present (Condition (Nod)));
860 end;
861 end if;
863 return False;
865 else
866 C := P;
867 end if;
868 end loop;
870 Error_Msg_N ("!?possible infinite recursion", N);
871 Error_Msg_N ("\!?Storage_Error may be raised at run time", N);
873 return True;
874 end Check_Infinite_Recursion;
876 -------------------------------
877 -- Check_Initialization_Call --
878 -------------------------------
880 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
881 Typ : constant Entity_Id := Etype (First_Formal (Nam));
883 function Uses_SS (T : Entity_Id) return Boolean;
884 -- Check whether the creation of an object of the type will involve
885 -- use of the secondary stack. If T is a record type, this is true
886 -- if the expression for some component uses the secondary stack, e.g.
887 -- through a call to a function that returns an unconstrained value.
888 -- False if T is controlled, because cleanups occur elsewhere.
890 -------------
891 -- Uses_SS --
892 -------------
894 function Uses_SS (T : Entity_Id) return Boolean is
895 Comp : Entity_Id;
896 Expr : Node_Id;
897 Full_Type : Entity_Id := Underlying_Type (T);
899 begin
900 -- Normally we want to use the underlying type, but if it's not set
901 -- then continue with T.
903 if not Present (Full_Type) then
904 Full_Type := T;
905 end if;
907 if Is_Controlled (Full_Type) then
908 return False;
910 elsif Is_Array_Type (Full_Type) then
911 return Uses_SS (Component_Type (Full_Type));
913 elsif Is_Record_Type (Full_Type) then
914 Comp := First_Component (Full_Type);
915 while Present (Comp) loop
916 if Ekind (Comp) = E_Component
917 and then Nkind (Parent (Comp)) = N_Component_Declaration
918 then
919 -- The expression for a dynamic component may be rewritten
920 -- as a dereference, so retrieve original node.
922 Expr := Original_Node (Expression (Parent (Comp)));
924 -- Return True if the expression is a call to a function
925 -- (including an attribute function such as Image, or a
926 -- user-defined operator) with a result that requires a
927 -- transient scope.
929 if (Nkind (Expr) = N_Function_Call
930 or else Nkind (Expr) in N_Op
931 or else (Nkind (Expr) = N_Attribute_Reference
932 and then Present (Expressions (Expr))))
933 and then Requires_Transient_Scope (Etype (Expr))
934 then
935 return True;
937 elsif Uses_SS (Etype (Comp)) then
938 return True;
939 end if;
940 end if;
942 Next_Component (Comp);
943 end loop;
945 return False;
947 else
948 return False;
949 end if;
950 end Uses_SS;
952 -- Start of processing for Check_Initialization_Call
954 begin
955 -- Establish a transient scope if the type needs it
957 if Uses_SS (Typ) then
958 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
959 end if;
960 end Check_Initialization_Call;
962 ---------------------------------------
963 -- Check_No_Direct_Boolean_Operators --
964 ---------------------------------------
966 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
967 begin
968 if Scope (Entity (N)) = Standard_Standard
969 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
970 then
971 -- Restriction only applies to original source code
973 if Comes_From_Source (N) then
974 Check_Restriction (No_Direct_Boolean_Operators, N);
975 end if;
976 end if;
978 if Style_Check then
979 Check_Boolean_Operator (N);
980 end if;
981 end Check_No_Direct_Boolean_Operators;
983 ------------------------------
984 -- Check_Parameterless_Call --
985 ------------------------------
987 procedure Check_Parameterless_Call (N : Node_Id) is
988 Nam : Node_Id;
990 function Prefix_Is_Access_Subp return Boolean;
991 -- If the prefix is of an access_to_subprogram type, the node must be
992 -- rewritten as a call. Ditto if the prefix is overloaded and all its
993 -- interpretations are access to subprograms.
995 ---------------------------
996 -- Prefix_Is_Access_Subp --
997 ---------------------------
999 function Prefix_Is_Access_Subp return Boolean is
1000 I : Interp_Index;
1001 It : Interp;
1003 begin
1004 -- If the context is an attribute reference that can apply to
1005 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1007 if Nkind (Parent (N)) = N_Attribute_Reference
1008 and then (Attribute_Name (Parent (N)) = Name_Address or else
1009 Attribute_Name (Parent (N)) = Name_Code_Address or else
1010 Attribute_Name (Parent (N)) = Name_Access)
1011 then
1012 return False;
1013 end if;
1015 if not Is_Overloaded (N) then
1016 return
1017 Ekind (Etype (N)) = E_Subprogram_Type
1018 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1019 else
1020 Get_First_Interp (N, I, It);
1021 while Present (It.Typ) loop
1022 if Ekind (It.Typ) /= E_Subprogram_Type
1023 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1024 then
1025 return False;
1026 end if;
1028 Get_Next_Interp (I, It);
1029 end loop;
1031 return True;
1032 end if;
1033 end Prefix_Is_Access_Subp;
1035 -- Start of processing for Check_Parameterless_Call
1037 begin
1038 -- Defend against junk stuff if errors already detected
1040 if Total_Errors_Detected /= 0 then
1041 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1042 return;
1043 elsif Nkind (N) in N_Has_Chars
1044 and then Chars (N) in Error_Name_Or_No_Name
1045 then
1046 return;
1047 end if;
1049 Require_Entity (N);
1050 end if;
1052 -- If the context expects a value, and the name is a procedure, this is
1053 -- most likely a missing 'Access. Don't try to resolve the parameterless
1054 -- call, error will be caught when the outer call is analyzed.
1056 if Is_Entity_Name (N)
1057 and then Ekind (Entity (N)) = E_Procedure
1058 and then not Is_Overloaded (N)
1059 and then
1060 Nkind_In (Parent (N), N_Parameter_Association,
1061 N_Function_Call,
1062 N_Procedure_Call_Statement)
1063 then
1064 return;
1065 end if;
1067 -- Rewrite as call if overloadable entity that is (or could be, in the
1068 -- overloaded case) a function call. If we know for sure that the entity
1069 -- is an enumeration literal, we do not rewrite it.
1071 -- If the entity is the name of an operator, it cannot be a call because
1072 -- operators cannot have default parameters. In this case, this must be
1073 -- a string whose contents coincide with an operator name. Set the kind
1074 -- of the node appropriately.
1076 if (Is_Entity_Name (N)
1077 and then Nkind (N) /= N_Operator_Symbol
1078 and then Is_Overloadable (Entity (N))
1079 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1080 or else Is_Overloaded (N)))
1082 -- Rewrite as call if it is an explicit dereference of an expression of
1083 -- a subprogram access type, and the subprogram type is not that of a
1084 -- procedure or entry.
1086 or else
1087 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1089 -- Rewrite as call if it is a selected component which is a function,
1090 -- this is the case of a call to a protected function (which may be
1091 -- overloaded with other protected operations).
1093 or else
1094 (Nkind (N) = N_Selected_Component
1095 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1096 or else
1097 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1098 E_Procedure)
1099 and then Is_Overloaded (Selector_Name (N)))))
1101 -- If one of the above three conditions is met, rewrite as call. Apply
1102 -- the rewriting only once.
1104 then
1105 if Nkind (Parent (N)) /= N_Function_Call
1106 or else N /= Name (Parent (N))
1107 then
1109 -- This may be a prefixed call that was not fully analyzed, e.g.
1110 -- an actual in an instance.
1112 if Ada_Version >= Ada_2005
1113 and then Nkind (N) = N_Selected_Component
1114 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1115 then
1116 Analyze_Selected_Component (N);
1118 if Nkind (N) /= N_Selected_Component then
1119 return;
1120 end if;
1121 end if;
1123 Nam := New_Copy (N);
1125 -- If overloaded, overload set belongs to new copy
1127 Save_Interps (N, Nam);
1129 -- Change node to parameterless function call (note that the
1130 -- Parameter_Associations associations field is left set to Empty,
1131 -- its normal default value since there are no parameters)
1133 Change_Node (N, N_Function_Call);
1134 Set_Name (N, Nam);
1135 Set_Sloc (N, Sloc (Nam));
1136 Analyze_Call (N);
1137 end if;
1139 elsif Nkind (N) = N_Parameter_Association then
1140 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1142 elsif Nkind (N) = N_Operator_Symbol then
1143 Change_Operator_Symbol_To_String_Literal (N);
1144 Set_Is_Overloaded (N, False);
1145 Set_Etype (N, Any_String);
1146 end if;
1147 end Check_Parameterless_Call;
1149 -----------------------------
1150 -- Is_Definite_Access_Type --
1151 -----------------------------
1153 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1154 Btyp : constant Entity_Id := Base_Type (E);
1155 begin
1156 return Ekind (Btyp) = E_Access_Type
1157 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1158 and then Comes_From_Source (Btyp));
1159 end Is_Definite_Access_Type;
1161 ----------------------
1162 -- Is_Predefined_Op --
1163 ----------------------
1165 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1166 begin
1167 -- Predefined operators are intrinsic subprograms
1169 if not Is_Intrinsic_Subprogram (Nam) then
1170 return False;
1171 end if;
1173 -- A call to a back-end builtin is never a predefined operator
1175 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1176 return False;
1177 end if;
1179 return not Is_Generic_Instance (Nam)
1180 and then Chars (Nam) in Any_Operator_Name
1181 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1182 end Is_Predefined_Op;
1184 -----------------------------
1185 -- Make_Call_Into_Operator --
1186 -----------------------------
1188 procedure Make_Call_Into_Operator
1189 (N : Node_Id;
1190 Typ : Entity_Id;
1191 Op_Id : Entity_Id)
1193 Op_Name : constant Name_Id := Chars (Op_Id);
1194 Act1 : Node_Id := First_Actual (N);
1195 Act2 : Node_Id := Next_Actual (Act1);
1196 Error : Boolean := False;
1197 Func : constant Entity_Id := Entity (Name (N));
1198 Is_Binary : constant Boolean := Present (Act2);
1199 Op_Node : Node_Id;
1200 Opnd_Type : Entity_Id;
1201 Orig_Type : Entity_Id := Empty;
1202 Pack : Entity_Id;
1204 type Kind_Test is access function (E : Entity_Id) return Boolean;
1206 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1207 -- If the operand is not universal, and the operator is given by an
1208 -- expanded name, verify that the operand has an interpretation with a
1209 -- type defined in the given scope of the operator.
1211 function Type_In_P (Test : Kind_Test) return Entity_Id;
1212 -- Find a type of the given class in package Pack that contains the
1213 -- operator.
1215 ---------------------------
1216 -- Operand_Type_In_Scope --
1217 ---------------------------
1219 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1220 Nod : constant Node_Id := Right_Opnd (Op_Node);
1221 I : Interp_Index;
1222 It : Interp;
1224 begin
1225 if not Is_Overloaded (Nod) then
1226 return Scope (Base_Type (Etype (Nod))) = S;
1228 else
1229 Get_First_Interp (Nod, I, It);
1230 while Present (It.Typ) loop
1231 if Scope (Base_Type (It.Typ)) = S then
1232 return True;
1233 end if;
1235 Get_Next_Interp (I, It);
1236 end loop;
1238 return False;
1239 end if;
1240 end Operand_Type_In_Scope;
1242 ---------------
1243 -- Type_In_P --
1244 ---------------
1246 function Type_In_P (Test : Kind_Test) return Entity_Id is
1247 E : Entity_Id;
1249 function In_Decl return Boolean;
1250 -- Verify that node is not part of the type declaration for the
1251 -- candidate type, which would otherwise be invisible.
1253 -------------
1254 -- In_Decl --
1255 -------------
1257 function In_Decl return Boolean is
1258 Decl_Node : constant Node_Id := Parent (E);
1259 N2 : Node_Id;
1261 begin
1262 N2 := N;
1264 if Etype (E) = Any_Type then
1265 return True;
1267 elsif No (Decl_Node) then
1268 return False;
1270 else
1271 while Present (N2)
1272 and then Nkind (N2) /= N_Compilation_Unit
1273 loop
1274 if N2 = Decl_Node then
1275 return True;
1276 else
1277 N2 := Parent (N2);
1278 end if;
1279 end loop;
1281 return False;
1282 end if;
1283 end In_Decl;
1285 -- Start of processing for Type_In_P
1287 begin
1288 -- If the context type is declared in the prefix package, this is the
1289 -- desired base type.
1291 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1292 return Base_Type (Typ);
1294 else
1295 E := First_Entity (Pack);
1296 while Present (E) loop
1297 if Test (E)
1298 and then not In_Decl
1299 then
1300 return E;
1301 end if;
1303 Next_Entity (E);
1304 end loop;
1306 return Empty;
1307 end if;
1308 end Type_In_P;
1310 -- Start of processing for Make_Call_Into_Operator
1312 begin
1313 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1315 -- Binary operator
1317 if Is_Binary then
1318 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1319 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1320 Save_Interps (Act1, Left_Opnd (Op_Node));
1321 Save_Interps (Act2, Right_Opnd (Op_Node));
1322 Act1 := Left_Opnd (Op_Node);
1323 Act2 := Right_Opnd (Op_Node);
1325 -- Unary operator
1327 else
1328 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1329 Save_Interps (Act1, Right_Opnd (Op_Node));
1330 Act1 := Right_Opnd (Op_Node);
1331 end if;
1333 -- If the operator is denoted by an expanded name, and the prefix is
1334 -- not Standard, but the operator is a predefined one whose scope is
1335 -- Standard, then this is an implicit_operator, inserted as an
1336 -- interpretation by the procedure of the same name. This procedure
1337 -- overestimates the presence of implicit operators, because it does
1338 -- not examine the type of the operands. Verify now that the operand
1339 -- type appears in the given scope. If right operand is universal,
1340 -- check the other operand. In the case of concatenation, either
1341 -- argument can be the component type, so check the type of the result.
1342 -- If both arguments are literals, look for a type of the right kind
1343 -- defined in the given scope. This elaborate nonsense is brought to
1344 -- you courtesy of b33302a. The type itself must be frozen, so we must
1345 -- find the type of the proper class in the given scope.
1347 -- A final wrinkle is the multiplication operator for fixed point types,
1348 -- which is defined in Standard only, and not in the scope of the
1349 -- fixed point type itself.
1351 if Nkind (Name (N)) = N_Expanded_Name then
1352 Pack := Entity (Prefix (Name (N)));
1354 -- If this is a package renaming, get renamed entity, which will be
1355 -- the scope of the operands if operaton is type-correct.
1357 if Present (Renamed_Entity (Pack)) then
1358 Pack := Renamed_Entity (Pack);
1359 end if;
1361 -- If the entity being called is defined in the given package, it is
1362 -- a renaming of a predefined operator, and known to be legal.
1364 if Scope (Entity (Name (N))) = Pack
1365 and then Pack /= Standard_Standard
1366 then
1367 null;
1369 -- Visibility does not need to be checked in an instance: if the
1370 -- operator was not visible in the generic it has been diagnosed
1371 -- already, else there is an implicit copy of it in the instance.
1373 elsif In_Instance then
1374 null;
1376 elsif (Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide)
1377 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1378 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1379 then
1380 if Pack /= Standard_Standard then
1381 Error := True;
1382 end if;
1384 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1385 -- available.
1387 elsif Ada_Version >= Ada_2005
1388 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1389 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1390 then
1391 null;
1393 else
1394 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1396 if Op_Name = Name_Op_Concat then
1397 Opnd_Type := Base_Type (Typ);
1399 elsif (Scope (Opnd_Type) = Standard_Standard
1400 and then Is_Binary)
1401 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1402 and then Is_Binary
1403 and then not Comes_From_Source (Opnd_Type))
1404 then
1405 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1406 end if;
1408 if Scope (Opnd_Type) = Standard_Standard then
1410 -- Verify that the scope contains a type that corresponds to
1411 -- the given literal. Optimize the case where Pack is Standard.
1413 if Pack /= Standard_Standard then
1415 if Opnd_Type = Universal_Integer then
1416 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1418 elsif Opnd_Type = Universal_Real then
1419 Orig_Type := Type_In_P (Is_Real_Type'Access);
1421 elsif Opnd_Type = Any_String then
1422 Orig_Type := Type_In_P (Is_String_Type'Access);
1424 elsif Opnd_Type = Any_Access then
1425 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1427 elsif Opnd_Type = Any_Composite then
1428 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1430 if Present (Orig_Type) then
1431 if Has_Private_Component (Orig_Type) then
1432 Orig_Type := Empty;
1433 else
1434 Set_Etype (Act1, Orig_Type);
1436 if Is_Binary then
1437 Set_Etype (Act2, Orig_Type);
1438 end if;
1439 end if;
1440 end if;
1442 else
1443 Orig_Type := Empty;
1444 end if;
1446 Error := No (Orig_Type);
1447 end if;
1449 elsif Ekind (Opnd_Type) = E_Allocator_Type
1450 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1451 then
1452 Error := True;
1454 -- If the type is defined elsewhere, and the operator is not
1455 -- defined in the given scope (by a renaming declaration, e.g.)
1456 -- then this is an error as well. If an extension of System is
1457 -- present, and the type may be defined there, Pack must be
1458 -- System itself.
1460 elsif Scope (Opnd_Type) /= Pack
1461 and then Scope (Op_Id) /= Pack
1462 and then (No (System_Aux_Id)
1463 or else Scope (Opnd_Type) /= System_Aux_Id
1464 or else Pack /= Scope (System_Aux_Id))
1465 then
1466 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1467 Error := True;
1468 else
1469 Error := not Operand_Type_In_Scope (Pack);
1470 end if;
1472 elsif Pack = Standard_Standard
1473 and then not Operand_Type_In_Scope (Standard_Standard)
1474 then
1475 Error := True;
1476 end if;
1477 end if;
1479 if Error then
1480 Error_Msg_Node_2 := Pack;
1481 Error_Msg_NE
1482 ("& not declared in&", N, Selector_Name (Name (N)));
1483 Set_Etype (N, Any_Type);
1484 return;
1486 -- Detect a mismatch between the context type and the result type
1487 -- in the named package, which is otherwise not detected if the
1488 -- operands are universal. Check is only needed if source entity is
1489 -- an operator, not a function that renames an operator.
1491 elsif Nkind (Parent (N)) /= N_Type_Conversion
1492 and then Ekind (Entity (Name (N))) = E_Operator
1493 and then Is_Numeric_Type (Typ)
1494 and then not Is_Universal_Numeric_Type (Typ)
1495 and then Scope (Base_Type (Typ)) /= Pack
1496 and then not In_Instance
1497 then
1498 if Is_Fixed_Point_Type (Typ)
1499 and then (Op_Name = Name_Op_Multiply
1500 or else
1501 Op_Name = Name_Op_Divide)
1502 then
1503 -- Already checked above
1505 null;
1507 -- Operator may be defined in an extension of System
1509 elsif Present (System_Aux_Id)
1510 and then Scope (Opnd_Type) = System_Aux_Id
1511 then
1512 null;
1514 else
1515 -- Could we use Wrong_Type here??? (this would require setting
1516 -- Etype (N) to the actual type found where Typ was expected).
1518 Error_Msg_NE ("expect }", N, Typ);
1519 end if;
1520 end if;
1521 end if;
1523 Set_Chars (Op_Node, Op_Name);
1525 if not Is_Private_Type (Etype (N)) then
1526 Set_Etype (Op_Node, Base_Type (Etype (N)));
1527 else
1528 Set_Etype (Op_Node, Etype (N));
1529 end if;
1531 -- If this is a call to a function that renames a predefined equality,
1532 -- the renaming declaration provides a type that must be used to
1533 -- resolve the operands. This must be done now because resolution of
1534 -- the equality node will not resolve any remaining ambiguity, and it
1535 -- assumes that the first operand is not overloaded.
1537 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1538 and then Ekind (Func) = E_Function
1539 and then Is_Overloaded (Act1)
1540 then
1541 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1542 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1543 end if;
1545 Set_Entity (Op_Node, Op_Id);
1546 Generate_Reference (Op_Id, N, ' ');
1548 -- Do rewrite setting Comes_From_Source on the result if the original
1549 -- call came from source. Although it is not strictly the case that the
1550 -- operator as such comes from the source, logically it corresponds
1551 -- exactly to the function call in the source, so it should be marked
1552 -- this way (e.g. to make sure that validity checks work fine).
1554 declare
1555 CS : constant Boolean := Comes_From_Source (N);
1556 begin
1557 Rewrite (N, Op_Node);
1558 Set_Comes_From_Source (N, CS);
1559 end;
1561 -- If this is an arithmetic operator and the result type is private,
1562 -- the operands and the result must be wrapped in conversion to
1563 -- expose the underlying numeric type and expand the proper checks,
1564 -- e.g. on division.
1566 if Is_Private_Type (Typ) then
1567 case Nkind (N) is
1568 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1569 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1570 Resolve_Intrinsic_Operator (N, Typ);
1572 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1573 Resolve_Intrinsic_Unary_Operator (N, Typ);
1575 when others =>
1576 Resolve (N, Typ);
1577 end case;
1578 else
1579 Resolve (N, Typ);
1580 end if;
1581 end Make_Call_Into_Operator;
1583 -------------------
1584 -- Operator_Kind --
1585 -------------------
1587 function Operator_Kind
1588 (Op_Name : Name_Id;
1589 Is_Binary : Boolean) return Node_Kind
1591 Kind : Node_Kind;
1593 begin
1594 -- Use CASE statement or array???
1596 if Is_Binary then
1597 if Op_Name = Name_Op_And then
1598 Kind := N_Op_And;
1599 elsif Op_Name = Name_Op_Or then
1600 Kind := N_Op_Or;
1601 elsif Op_Name = Name_Op_Xor then
1602 Kind := N_Op_Xor;
1603 elsif Op_Name = Name_Op_Eq then
1604 Kind := N_Op_Eq;
1605 elsif Op_Name = Name_Op_Ne then
1606 Kind := N_Op_Ne;
1607 elsif Op_Name = Name_Op_Lt then
1608 Kind := N_Op_Lt;
1609 elsif Op_Name = Name_Op_Le then
1610 Kind := N_Op_Le;
1611 elsif Op_Name = Name_Op_Gt then
1612 Kind := N_Op_Gt;
1613 elsif Op_Name = Name_Op_Ge then
1614 Kind := N_Op_Ge;
1615 elsif Op_Name = Name_Op_Add then
1616 Kind := N_Op_Add;
1617 elsif Op_Name = Name_Op_Subtract then
1618 Kind := N_Op_Subtract;
1619 elsif Op_Name = Name_Op_Concat then
1620 Kind := N_Op_Concat;
1621 elsif Op_Name = Name_Op_Multiply then
1622 Kind := N_Op_Multiply;
1623 elsif Op_Name = Name_Op_Divide then
1624 Kind := N_Op_Divide;
1625 elsif Op_Name = Name_Op_Mod then
1626 Kind := N_Op_Mod;
1627 elsif Op_Name = Name_Op_Rem then
1628 Kind := N_Op_Rem;
1629 elsif Op_Name = Name_Op_Expon then
1630 Kind := N_Op_Expon;
1631 else
1632 raise Program_Error;
1633 end if;
1635 -- Unary operators
1637 else
1638 if Op_Name = Name_Op_Add then
1639 Kind := N_Op_Plus;
1640 elsif Op_Name = Name_Op_Subtract then
1641 Kind := N_Op_Minus;
1642 elsif Op_Name = Name_Op_Abs then
1643 Kind := N_Op_Abs;
1644 elsif Op_Name = Name_Op_Not then
1645 Kind := N_Op_Not;
1646 else
1647 raise Program_Error;
1648 end if;
1649 end if;
1651 return Kind;
1652 end Operator_Kind;
1654 ----------------------------
1655 -- Preanalyze_And_Resolve --
1656 ----------------------------
1658 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1659 Save_Full_Analysis : constant Boolean := Full_Analysis;
1661 begin
1662 Full_Analysis := False;
1663 Expander_Mode_Save_And_Set (False);
1665 -- Normally, we suppress all checks for this preanalysis. There is no
1666 -- point in processing them now, since they will be applied properly
1667 -- and in the proper location when the default expressions reanalyzed
1668 -- and reexpanded later on. We will also have more information at that
1669 -- point for possible suppression of individual checks.
1671 -- However, in Alfa mode, most expansion is suppressed, and this
1672 -- later reanalysis and reexpansion may not occur. Alfa mode does
1673 -- require the setting of checking flags for proof purposes, so we
1674 -- do the Alfa preanalysis without suppressing checks.
1676 -- This special handling for Alfa mode is required for example in the
1677 -- case of Ada 2012 constructs such as quantified expressions, which are
1678 -- expanded in two separate steps.
1680 if Alfa_Mode then
1681 Analyze_And_Resolve (N, T);
1682 else
1683 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1684 end if;
1686 Expander_Mode_Restore;
1687 Full_Analysis := Save_Full_Analysis;
1688 end Preanalyze_And_Resolve;
1690 -- Version without context type
1692 procedure Preanalyze_And_Resolve (N : Node_Id) is
1693 Save_Full_Analysis : constant Boolean := Full_Analysis;
1695 begin
1696 Full_Analysis := False;
1697 Expander_Mode_Save_And_Set (False);
1699 Analyze (N);
1700 Resolve (N, Etype (N), Suppress => All_Checks);
1702 Expander_Mode_Restore;
1703 Full_Analysis := Save_Full_Analysis;
1704 end Preanalyze_And_Resolve;
1706 ----------------------------------
1707 -- Replace_Actual_Discriminants --
1708 ----------------------------------
1710 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1711 Loc : constant Source_Ptr := Sloc (N);
1712 Tsk : Node_Id := Empty;
1714 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1715 -- Comment needed???
1717 -------------------
1718 -- Process_Discr --
1719 -------------------
1721 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1722 Ent : Entity_Id;
1724 begin
1725 if Nkind (Nod) = N_Identifier then
1726 Ent := Entity (Nod);
1728 if Present (Ent)
1729 and then Ekind (Ent) = E_Discriminant
1730 then
1731 Rewrite (Nod,
1732 Make_Selected_Component (Loc,
1733 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1734 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1736 Set_Etype (Nod, Etype (Ent));
1737 end if;
1739 end if;
1741 return OK;
1742 end Process_Discr;
1744 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1746 -- Start of processing for Replace_Actual_Discriminants
1748 begin
1749 if not Full_Expander_Active then
1750 return;
1751 end if;
1753 if Nkind (Name (N)) = N_Selected_Component then
1754 Tsk := Prefix (Name (N));
1756 elsif Nkind (Name (N)) = N_Indexed_Component then
1757 Tsk := Prefix (Prefix (Name (N)));
1758 end if;
1760 if No (Tsk) then
1761 return;
1762 else
1763 Replace_Discrs (Default);
1764 end if;
1765 end Replace_Actual_Discriminants;
1767 -------------
1768 -- Resolve --
1769 -------------
1771 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1772 Ambiguous : Boolean := False;
1773 Ctx_Type : Entity_Id := Typ;
1774 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1775 Err_Type : Entity_Id := Empty;
1776 Found : Boolean := False;
1777 From_Lib : Boolean;
1778 I : Interp_Index;
1779 I1 : Interp_Index := 0; -- prevent junk warning
1780 It : Interp;
1781 It1 : Interp;
1782 Seen : Entity_Id := Empty; -- prevent junk warning
1784 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1785 -- Determine whether a node comes from a predefined library unit or
1786 -- Standard.
1788 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1789 -- Try and fix up a literal so that it matches its expected type. New
1790 -- literals are manufactured if necessary to avoid cascaded errors.
1792 function Proper_Current_Scope return Entity_Id;
1793 -- Return the current scope. Skip loop scopes created for the purpose of
1794 -- quantified expression analysis since those do not appear in the tree.
1796 procedure Report_Ambiguous_Argument;
1797 -- Additional diagnostics when an ambiguous call has an ambiguous
1798 -- argument (typically a controlling actual).
1800 procedure Resolution_Failed;
1801 -- Called when attempt at resolving current expression fails
1803 ------------------------------------
1804 -- Comes_From_Predefined_Lib_Unit --
1805 -------------------------------------
1807 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1808 begin
1809 return
1810 Sloc (Nod) = Standard_Location
1811 or else Is_Predefined_File_Name
1812 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1813 end Comes_From_Predefined_Lib_Unit;
1815 --------------------
1816 -- Patch_Up_Value --
1817 --------------------
1819 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1820 begin
1821 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1822 Rewrite (N,
1823 Make_Real_Literal (Sloc (N),
1824 Realval => UR_From_Uint (Intval (N))));
1825 Set_Etype (N, Universal_Real);
1826 Set_Is_Static_Expression (N);
1828 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1829 Rewrite (N,
1830 Make_Integer_Literal (Sloc (N),
1831 Intval => UR_To_Uint (Realval (N))));
1832 Set_Etype (N, Universal_Integer);
1833 Set_Is_Static_Expression (N);
1835 elsif Nkind (N) = N_String_Literal
1836 and then Is_Character_Type (Typ)
1837 then
1838 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1839 Rewrite (N,
1840 Make_Character_Literal (Sloc (N),
1841 Chars => Name_Find,
1842 Char_Literal_Value =>
1843 UI_From_Int (Character'Pos ('A'))));
1844 Set_Etype (N, Any_Character);
1845 Set_Is_Static_Expression (N);
1847 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1848 Rewrite (N,
1849 Make_String_Literal (Sloc (N),
1850 Strval => End_String));
1852 elsif Nkind (N) = N_Range then
1853 Patch_Up_Value (Low_Bound (N), Typ);
1854 Patch_Up_Value (High_Bound (N), Typ);
1855 end if;
1856 end Patch_Up_Value;
1858 --------------------------
1859 -- Proper_Current_Scope --
1860 --------------------------
1862 function Proper_Current_Scope return Entity_Id is
1863 S : Entity_Id := Current_Scope;
1865 begin
1866 while Present (S) loop
1868 -- Skip a loop scope created for quantified expression analysis
1870 if Ekind (S) = E_Loop
1871 and then Nkind (Parent (S)) = N_Quantified_Expression
1872 then
1873 S := Scope (S);
1874 else
1875 exit;
1876 end if;
1877 end loop;
1879 return S;
1880 end Proper_Current_Scope;
1882 -------------------------------
1883 -- Report_Ambiguous_Argument --
1884 -------------------------------
1886 procedure Report_Ambiguous_Argument is
1887 Arg : constant Node_Id := First (Parameter_Associations (N));
1888 I : Interp_Index;
1889 It : Interp;
1891 begin
1892 if Nkind (Arg) = N_Function_Call
1893 and then Is_Entity_Name (Name (Arg))
1894 and then Is_Overloaded (Name (Arg))
1895 then
1896 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1898 -- Could use comments on what is going on here???
1900 Get_First_Interp (Name (Arg), I, It);
1901 while Present (It.Nam) loop
1902 Error_Msg_Sloc := Sloc (It.Nam);
1904 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1905 Error_Msg_N ("interpretation (inherited) #!", Arg);
1906 else
1907 Error_Msg_N ("interpretation #!", Arg);
1908 end if;
1910 Get_Next_Interp (I, It);
1911 end loop;
1912 end if;
1913 end Report_Ambiguous_Argument;
1915 -----------------------
1916 -- Resolution_Failed --
1917 -----------------------
1919 procedure Resolution_Failed is
1920 begin
1921 Patch_Up_Value (N, Typ);
1922 Set_Etype (N, Typ);
1923 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1924 Set_Is_Overloaded (N, False);
1926 -- The caller will return without calling the expander, so we need
1927 -- to set the analyzed flag. Note that it is fine to set Analyzed
1928 -- to True even if we are in the middle of a shallow analysis,
1929 -- (see the spec of sem for more details) since this is an error
1930 -- situation anyway, and there is no point in repeating the
1931 -- analysis later (indeed it won't work to repeat it later, since
1932 -- we haven't got a clear resolution of which entity is being
1933 -- referenced.)
1935 Set_Analyzed (N, True);
1936 return;
1937 end Resolution_Failed;
1939 -- Start of processing for Resolve
1941 begin
1942 if N = Error then
1943 return;
1944 end if;
1946 -- Access attribute on remote subprogram cannot be used for a non-remote
1947 -- access-to-subprogram type.
1949 if Nkind (N) = N_Attribute_Reference
1950 and then (Attribute_Name (N) = Name_Access or else
1951 Attribute_Name (N) = Name_Unrestricted_Access or else
1952 Attribute_Name (N) = Name_Unchecked_Access)
1953 and then Comes_From_Source (N)
1954 and then Is_Entity_Name (Prefix (N))
1955 and then Is_Subprogram (Entity (Prefix (N)))
1956 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1957 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1958 then
1959 Error_Msg_N
1960 ("prefix must statically denote a non-remote subprogram", N);
1961 end if;
1963 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1965 -- If the context is a Remote_Access_To_Subprogram, access attributes
1966 -- must be resolved with the corresponding fat pointer. There is no need
1967 -- to check for the attribute name since the return type of an
1968 -- attribute is never a remote type.
1970 if Nkind (N) = N_Attribute_Reference
1971 and then Comes_From_Source (N)
1972 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1973 then
1974 declare
1975 Attr : constant Attribute_Id :=
1976 Get_Attribute_Id (Attribute_Name (N));
1977 Pref : constant Node_Id := Prefix (N);
1978 Decl : Node_Id;
1979 Spec : Node_Id;
1980 Is_Remote : Boolean := True;
1982 begin
1983 -- Check that Typ is a remote access-to-subprogram type
1985 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1987 -- Prefix (N) must statically denote a remote subprogram
1988 -- declared in a package specification.
1990 if Attr = Attribute_Access or else
1991 Attr = Attribute_Unchecked_Access or else
1992 Attr = Attribute_Unrestricted_Access
1993 then
1994 Decl := Unit_Declaration_Node (Entity (Pref));
1996 if Nkind (Decl) = N_Subprogram_Body then
1997 Spec := Corresponding_Spec (Decl);
1999 if not No (Spec) then
2000 Decl := Unit_Declaration_Node (Spec);
2001 end if;
2002 end if;
2004 Spec := Parent (Decl);
2006 if not Is_Entity_Name (Prefix (N))
2007 or else Nkind (Spec) /= N_Package_Specification
2008 or else
2009 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2010 then
2011 Is_Remote := False;
2012 Error_Msg_N
2013 ("prefix must statically denote a remote subprogram ",
2015 end if;
2017 -- If we are generating code in distributed mode, perform
2018 -- semantic checks against corresponding remote entities.
2020 if Full_Expander_Active
2021 and then Get_PCS_Name /= Name_No_DSA
2022 then
2023 Check_Subtype_Conformant
2024 (New_Id => Entity (Prefix (N)),
2025 Old_Id => Designated_Type
2026 (Corresponding_Remote_Type (Typ)),
2027 Err_Loc => N);
2029 if Is_Remote then
2030 Process_Remote_AST_Attribute (N, Typ);
2031 end if;
2032 end if;
2033 end if;
2034 end if;
2035 end;
2036 end if;
2038 Debug_A_Entry ("resolving ", N);
2040 if Debug_Flag_V then
2041 Write_Overloads (N);
2042 end if;
2044 if Comes_From_Source (N) then
2045 if Is_Fixed_Point_Type (Typ) then
2046 Check_Restriction (No_Fixed_Point, N);
2048 elsif Is_Floating_Point_Type (Typ)
2049 and then Typ /= Universal_Real
2050 and then Typ /= Any_Real
2051 then
2052 Check_Restriction (No_Floating_Point, N);
2053 end if;
2054 end if;
2056 -- Return if already analyzed
2058 if Analyzed (N) then
2059 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2060 Analyze_Dimension (N);
2061 return;
2063 -- Return if type = Any_Type (previous error encountered)
2065 elsif Etype (N) = Any_Type then
2066 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2067 return;
2068 end if;
2070 Check_Parameterless_Call (N);
2072 -- If not overloaded, then we know the type, and all that needs doing
2073 -- is to check that this type is compatible with the context.
2075 if not Is_Overloaded (N) then
2076 Found := Covers (Typ, Etype (N));
2077 Expr_Type := Etype (N);
2079 -- In the overloaded case, we must select the interpretation that
2080 -- is compatible with the context (i.e. the type passed to Resolve)
2082 else
2083 -- Loop through possible interpretations
2085 Get_First_Interp (N, I, It);
2086 Interp_Loop : while Present (It.Typ) loop
2088 if Debug_Flag_V then
2089 Write_Str ("Interp: ");
2090 Write_Interp (It);
2091 end if;
2093 -- We are only interested in interpretations that are compatible
2094 -- with the expected type, any other interpretations are ignored.
2096 if not Covers (Typ, It.Typ) then
2097 if Debug_Flag_V then
2098 Write_Str (" interpretation incompatible with context");
2099 Write_Eol;
2100 end if;
2102 else
2103 -- Skip the current interpretation if it is disabled by an
2104 -- abstract operator. This action is performed only when the
2105 -- type against which we are resolving is the same as the
2106 -- type of the interpretation.
2108 if Ada_Version >= Ada_2005
2109 and then It.Typ = Typ
2110 and then Typ /= Universal_Integer
2111 and then Typ /= Universal_Real
2112 and then Present (It.Abstract_Op)
2113 then
2114 if Debug_Flag_V then
2115 Write_Line ("Skip.");
2116 end if;
2118 goto Continue;
2119 end if;
2121 -- First matching interpretation
2123 if not Found then
2124 Found := True;
2125 I1 := I;
2126 Seen := It.Nam;
2127 Expr_Type := It.Typ;
2129 -- Matching interpretation that is not the first, maybe an
2130 -- error, but there are some cases where preference rules are
2131 -- used to choose between the two possibilities. These and
2132 -- some more obscure cases are handled in Disambiguate.
2134 else
2135 -- If the current statement is part of a predefined library
2136 -- unit, then all interpretations which come from user level
2137 -- packages should not be considered.
2139 if From_Lib
2140 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
2141 then
2142 goto Continue;
2143 end if;
2145 Error_Msg_Sloc := Sloc (Seen);
2146 It1 := Disambiguate (N, I1, I, Typ);
2148 -- Disambiguation has succeeded. Skip the remaining
2149 -- interpretations.
2151 if It1 /= No_Interp then
2152 Seen := It1.Nam;
2153 Expr_Type := It1.Typ;
2155 while Present (It.Typ) loop
2156 Get_Next_Interp (I, It);
2157 end loop;
2159 else
2160 -- Before we issue an ambiguity complaint, check for
2161 -- the case of a subprogram call where at least one
2162 -- of the arguments is Any_Type, and if so, suppress
2163 -- the message, since it is a cascaded error.
2165 if Nkind (N) in N_Subprogram_Call then
2166 declare
2167 A : Node_Id;
2168 E : Node_Id;
2170 begin
2171 A := First_Actual (N);
2172 while Present (A) loop
2173 E := A;
2175 if Nkind (E) = N_Parameter_Association then
2176 E := Explicit_Actual_Parameter (E);
2177 end if;
2179 if Etype (E) = Any_Type then
2180 if Debug_Flag_V then
2181 Write_Str ("Any_Type in call");
2182 Write_Eol;
2183 end if;
2185 exit Interp_Loop;
2186 end if;
2188 Next_Actual (A);
2189 end loop;
2190 end;
2192 elsif Nkind (N) in N_Binary_Op
2193 and then (Etype (Left_Opnd (N)) = Any_Type
2194 or else Etype (Right_Opnd (N)) = Any_Type)
2195 then
2196 exit Interp_Loop;
2198 elsif Nkind (N) in N_Unary_Op
2199 and then Etype (Right_Opnd (N)) = Any_Type
2200 then
2201 exit Interp_Loop;
2202 end if;
2204 -- Not that special case, so issue message using the
2205 -- flag Ambiguous to control printing of the header
2206 -- message only at the start of an ambiguous set.
2208 if not Ambiguous then
2209 if Nkind (N) = N_Function_Call
2210 and then Nkind (Name (N)) = N_Explicit_Dereference
2211 then
2212 Error_Msg_N
2213 ("ambiguous expression "
2214 & "(cannot resolve indirect call)!", N);
2215 else
2216 Error_Msg_NE -- CODEFIX
2217 ("ambiguous expression (cannot resolve&)!",
2218 N, It.Nam);
2219 end if;
2221 Ambiguous := True;
2223 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2224 Error_Msg_N
2225 ("\\possible interpretation (inherited)#!", N);
2226 else
2227 Error_Msg_N -- CODEFIX
2228 ("\\possible interpretation#!", N);
2229 end if;
2231 if Nkind (N) in N_Subprogram_Call
2232 and then Present (Parameter_Associations (N))
2233 then
2234 Report_Ambiguous_Argument;
2235 end if;
2236 end if;
2238 Error_Msg_Sloc := Sloc (It.Nam);
2240 -- By default, the error message refers to the candidate
2241 -- interpretation. But if it is a predefined operator, it
2242 -- is implicitly declared at the declaration of the type
2243 -- of the operand. Recover the sloc of that declaration
2244 -- for the error message.
2246 if Nkind (N) in N_Op
2247 and then Scope (It.Nam) = Standard_Standard
2248 and then not Is_Overloaded (Right_Opnd (N))
2249 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2250 Standard_Standard
2251 then
2252 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2254 if Comes_From_Source (Err_Type)
2255 and then Present (Parent (Err_Type))
2256 then
2257 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2258 end if;
2260 elsif Nkind (N) in N_Binary_Op
2261 and then Scope (It.Nam) = Standard_Standard
2262 and then not Is_Overloaded (Left_Opnd (N))
2263 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2264 Standard_Standard
2265 then
2266 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2268 if Comes_From_Source (Err_Type)
2269 and then Present (Parent (Err_Type))
2270 then
2271 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2272 end if;
2274 -- If this is an indirect call, use the subprogram_type
2275 -- in the message, to have a meaningful location. Also
2276 -- indicate if this is an inherited operation, created
2277 -- by a type declaration.
2279 elsif Nkind (N) = N_Function_Call
2280 and then Nkind (Name (N)) = N_Explicit_Dereference
2281 and then Is_Type (It.Nam)
2282 then
2283 Err_Type := It.Nam;
2284 Error_Msg_Sloc :=
2285 Sloc (Associated_Node_For_Itype (Err_Type));
2286 else
2287 Err_Type := Empty;
2288 end if;
2290 if Nkind (N) in N_Op
2291 and then Scope (It.Nam) = Standard_Standard
2292 and then Present (Err_Type)
2293 then
2294 -- Special-case the message for universal_fixed
2295 -- operators, which are not declared with the type
2296 -- of the operand, but appear forever in Standard.
2298 if It.Typ = Universal_Fixed
2299 and then Scope (It.Nam) = Standard_Standard
2300 then
2301 Error_Msg_N
2302 ("\\possible interpretation as " &
2303 "universal_fixed operation " &
2304 "(RM 4.5.5 (19))", N);
2305 else
2306 Error_Msg_N
2307 ("\\possible interpretation (predefined)#!", N);
2308 end if;
2310 elsif
2311 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2312 then
2313 Error_Msg_N
2314 ("\\possible interpretation (inherited)#!", N);
2315 else
2316 Error_Msg_N -- CODEFIX
2317 ("\\possible interpretation#!", N);
2318 end if;
2320 end if;
2321 end if;
2323 -- We have a matching interpretation, Expr_Type is the type
2324 -- from this interpretation, and Seen is the entity.
2326 -- For an operator, just set the entity name. The type will be
2327 -- set by the specific operator resolution routine.
2329 if Nkind (N) in N_Op then
2330 Set_Entity (N, Seen);
2331 Generate_Reference (Seen, N);
2333 elsif Nkind (N) = N_Case_Expression then
2334 Set_Etype (N, Expr_Type);
2336 elsif Nkind (N) = N_Character_Literal then
2337 Set_Etype (N, Expr_Type);
2339 elsif Nkind (N) = N_If_Expression then
2340 Set_Etype (N, Expr_Type);
2342 -- AI05-0139-2: Expression is overloaded because type has
2343 -- implicit dereference. If type matches context, no implicit
2344 -- dereference is involved.
2346 elsif Has_Implicit_Dereference (Expr_Type) then
2347 Set_Etype (N, Expr_Type);
2348 Set_Is_Overloaded (N, False);
2349 exit Interp_Loop;
2351 elsif Is_Overloaded (N)
2352 and then Present (It.Nam)
2353 and then Ekind (It.Nam) = E_Discriminant
2354 and then Has_Implicit_Dereference (It.Nam)
2355 then
2356 Build_Explicit_Dereference (N, It.Nam);
2358 -- For an explicit dereference, attribute reference, range,
2359 -- short-circuit form (which is not an operator node), or call
2360 -- with a name that is an explicit dereference, there is
2361 -- nothing to be done at this point.
2363 elsif Nkind_In (N, N_Explicit_Dereference,
2364 N_Attribute_Reference,
2365 N_And_Then,
2366 N_Indexed_Component,
2367 N_Or_Else,
2368 N_Range,
2369 N_Selected_Component,
2370 N_Slice)
2371 or else Nkind (Name (N)) = N_Explicit_Dereference
2372 then
2373 null;
2375 -- For procedure or function calls, set the type of the name,
2376 -- and also the entity pointer for the prefix.
2378 elsif Nkind (N) in N_Subprogram_Call
2379 and then Is_Entity_Name (Name (N))
2380 then
2381 Set_Etype (Name (N), Expr_Type);
2382 Set_Entity (Name (N), Seen);
2383 Generate_Reference (Seen, Name (N));
2385 elsif Nkind (N) = N_Function_Call
2386 and then Nkind (Name (N)) = N_Selected_Component
2387 then
2388 Set_Etype (Name (N), Expr_Type);
2389 Set_Entity (Selector_Name (Name (N)), Seen);
2390 Generate_Reference (Seen, Selector_Name (Name (N)));
2392 -- For all other cases, just set the type of the Name
2394 else
2395 Set_Etype (Name (N), Expr_Type);
2396 end if;
2398 end if;
2400 <<Continue>>
2402 -- Move to next interpretation
2404 exit Interp_Loop when No (It.Typ);
2406 Get_Next_Interp (I, It);
2407 end loop Interp_Loop;
2408 end if;
2410 -- At this stage Found indicates whether or not an acceptable
2411 -- interpretation exists. If not, then we have an error, except that if
2412 -- the context is Any_Type as a result of some other error, then we
2413 -- suppress the error report.
2415 if not Found then
2416 if Typ /= Any_Type then
2418 -- If type we are looking for is Void, then this is the procedure
2419 -- call case, and the error is simply that what we gave is not a
2420 -- procedure name (we think of procedure calls as expressions with
2421 -- types internally, but the user doesn't think of them this way!)
2423 if Typ = Standard_Void_Type then
2425 -- Special case message if function used as a procedure
2427 if Nkind (N) = N_Procedure_Call_Statement
2428 and then Is_Entity_Name (Name (N))
2429 and then Ekind (Entity (Name (N))) = E_Function
2430 then
2431 Error_Msg_NE
2432 ("cannot use function & in a procedure call",
2433 Name (N), Entity (Name (N)));
2435 -- Otherwise give general message (not clear what cases this
2436 -- covers, but no harm in providing for them!)
2438 else
2439 Error_Msg_N ("expect procedure name in procedure call", N);
2440 end if;
2442 Found := True;
2444 -- Otherwise we do have a subexpression with the wrong type
2446 -- Check for the case of an allocator which uses an access type
2447 -- instead of the designated type. This is a common error and we
2448 -- specialize the message, posting an error on the operand of the
2449 -- allocator, complaining that we expected the designated type of
2450 -- the allocator.
2452 elsif Nkind (N) = N_Allocator
2453 and then Ekind (Typ) in Access_Kind
2454 and then Ekind (Etype (N)) in Access_Kind
2455 and then Designated_Type (Etype (N)) = Typ
2456 then
2457 Wrong_Type (Expression (N), Designated_Type (Typ));
2458 Found := True;
2460 -- Check for view mismatch on Null in instances, for which the
2461 -- view-swapping mechanism has no identifier.
2463 elsif (In_Instance or else In_Inlined_Body)
2464 and then (Nkind (N) = N_Null)
2465 and then Is_Private_Type (Typ)
2466 and then Is_Access_Type (Full_View (Typ))
2467 then
2468 Resolve (N, Full_View (Typ));
2469 Set_Etype (N, Typ);
2470 return;
2472 -- Check for an aggregate. Sometimes we can get bogus aggregates
2473 -- from misuse of parentheses, and we are about to complain about
2474 -- the aggregate without even looking inside it.
2476 -- Instead, if we have an aggregate of type Any_Composite, then
2477 -- analyze and resolve the component fields, and then only issue
2478 -- another message if we get no errors doing this (otherwise
2479 -- assume that the errors in the aggregate caused the problem).
2481 elsif Nkind (N) = N_Aggregate
2482 and then Etype (N) = Any_Composite
2483 then
2484 -- Disable expansion in any case. If there is a type mismatch
2485 -- it may be fatal to try to expand the aggregate. The flag
2486 -- would otherwise be set to false when the error is posted.
2488 Expander_Active := False;
2490 declare
2491 procedure Check_Aggr (Aggr : Node_Id);
2492 -- Check one aggregate, and set Found to True if we have a
2493 -- definite error in any of its elements
2495 procedure Check_Elmt (Aelmt : Node_Id);
2496 -- Check one element of aggregate and set Found to True if
2497 -- we definitely have an error in the element.
2499 ----------------
2500 -- Check_Aggr --
2501 ----------------
2503 procedure Check_Aggr (Aggr : Node_Id) is
2504 Elmt : Node_Id;
2506 begin
2507 if Present (Expressions (Aggr)) then
2508 Elmt := First (Expressions (Aggr));
2509 while Present (Elmt) loop
2510 Check_Elmt (Elmt);
2511 Next (Elmt);
2512 end loop;
2513 end if;
2515 if Present (Component_Associations (Aggr)) then
2516 Elmt := First (Component_Associations (Aggr));
2517 while Present (Elmt) loop
2519 -- If this is a default-initialized component, then
2520 -- there is nothing to check. The box will be
2521 -- replaced by the appropriate call during late
2522 -- expansion.
2524 if not Box_Present (Elmt) then
2525 Check_Elmt (Expression (Elmt));
2526 end if;
2528 Next (Elmt);
2529 end loop;
2530 end if;
2531 end Check_Aggr;
2533 ----------------
2534 -- Check_Elmt --
2535 ----------------
2537 procedure Check_Elmt (Aelmt : Node_Id) is
2538 begin
2539 -- If we have a nested aggregate, go inside it (to
2540 -- attempt a naked analyze-resolve of the aggregate can
2541 -- cause undesirable cascaded errors). Do not resolve
2542 -- expression if it needs a type from context, as for
2543 -- integer * fixed expression.
2545 if Nkind (Aelmt) = N_Aggregate then
2546 Check_Aggr (Aelmt);
2548 else
2549 Analyze (Aelmt);
2551 if not Is_Overloaded (Aelmt)
2552 and then Etype (Aelmt) /= Any_Fixed
2553 then
2554 Resolve (Aelmt);
2555 end if;
2557 if Etype (Aelmt) = Any_Type then
2558 Found := True;
2559 end if;
2560 end if;
2561 end Check_Elmt;
2563 begin
2564 Check_Aggr (N);
2565 end;
2566 end if;
2568 -- If an error message was issued already, Found got reset to
2569 -- True, so if it is still False, issue standard Wrong_Type msg.
2571 if not Found then
2572 if Is_Overloaded (N)
2573 and then Nkind (N) = N_Function_Call
2574 then
2575 declare
2576 Subp_Name : Node_Id;
2577 begin
2578 if Is_Entity_Name (Name (N)) then
2579 Subp_Name := Name (N);
2581 elsif Nkind (Name (N)) = N_Selected_Component then
2583 -- Protected operation: retrieve operation name
2585 Subp_Name := Selector_Name (Name (N));
2587 else
2588 raise Program_Error;
2589 end if;
2591 Error_Msg_Node_2 := Typ;
2592 Error_Msg_NE ("no visible interpretation of&" &
2593 " matches expected type&", N, Subp_Name);
2594 end;
2596 if All_Errors_Mode then
2597 declare
2598 Index : Interp_Index;
2599 It : Interp;
2601 begin
2602 Error_Msg_N ("\\possible interpretations:", N);
2604 Get_First_Interp (Name (N), Index, It);
2605 while Present (It.Nam) loop
2606 Error_Msg_Sloc := Sloc (It.Nam);
2607 Error_Msg_Node_2 := It.Nam;
2608 Error_Msg_NE
2609 ("\\ type& for & declared#", N, It.Typ);
2610 Get_Next_Interp (Index, It);
2611 end loop;
2612 end;
2614 else
2615 Error_Msg_N ("\use -gnatf for details", N);
2616 end if;
2618 else
2619 Wrong_Type (N, Typ);
2620 end if;
2621 end if;
2622 end if;
2624 Resolution_Failed;
2625 return;
2627 -- Test if we have more than one interpretation for the context
2629 elsif Ambiguous then
2630 Resolution_Failed;
2631 return;
2633 -- Only one intepretation
2635 else
2636 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2637 -- the "+" on T is abstract, and the operands are of universal type,
2638 -- the above code will have (incorrectly) resolved the "+" to the
2639 -- universal one in Standard. Therefore check for this case and give
2640 -- an error. We can't do this earlier, because it would cause legal
2641 -- cases to get errors (when some other type has an abstract "+").
2643 if Ada_Version >= Ada_2005
2644 and then Nkind (N) in N_Op
2645 and then Is_Overloaded (N)
2646 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2647 then
2648 Get_First_Interp (N, I, It);
2649 while Present (It.Typ) loop
2650 if Present (It.Abstract_Op) and then
2651 Etype (It.Abstract_Op) = Typ
2652 then
2653 Error_Msg_NE
2654 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2655 return;
2656 end if;
2658 Get_Next_Interp (I, It);
2659 end loop;
2660 end if;
2662 -- Here we have an acceptable interpretation for the context
2664 -- Propagate type information and normalize tree for various
2665 -- predefined operations. If the context only imposes a class of
2666 -- types, rather than a specific type, propagate the actual type
2667 -- downward.
2669 if Typ = Any_Integer or else
2670 Typ = Any_Boolean or else
2671 Typ = Any_Modular or else
2672 Typ = Any_Real or else
2673 Typ = Any_Discrete
2674 then
2675 Ctx_Type := Expr_Type;
2677 -- Any_Fixed is legal in a real context only if a specific fixed-
2678 -- point type is imposed. If Norman Cohen can be confused by this,
2679 -- it deserves a separate message.
2681 if Typ = Any_Real
2682 and then Expr_Type = Any_Fixed
2683 then
2684 Error_Msg_N ("illegal context for mixed mode operation", N);
2685 Set_Etype (N, Universal_Real);
2686 Ctx_Type := Universal_Real;
2687 end if;
2688 end if;
2690 -- A user-defined operator is transformed into a function call at
2691 -- this point, so that further processing knows that operators are
2692 -- really operators (i.e. are predefined operators). User-defined
2693 -- operators that are intrinsic are just renamings of the predefined
2694 -- ones, and need not be turned into calls either, but if they rename
2695 -- a different operator, we must transform the node accordingly.
2696 -- Instantiations of Unchecked_Conversion are intrinsic but are
2697 -- treated as functions, even if given an operator designator.
2699 if Nkind (N) in N_Op
2700 and then Present (Entity (N))
2701 and then Ekind (Entity (N)) /= E_Operator
2702 then
2704 if not Is_Predefined_Op (Entity (N)) then
2705 Rewrite_Operator_As_Call (N, Entity (N));
2707 elsif Present (Alias (Entity (N)))
2708 and then
2709 Nkind (Parent (Parent (Entity (N)))) =
2710 N_Subprogram_Renaming_Declaration
2711 then
2712 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2714 -- If the node is rewritten, it will be fully resolved in
2715 -- Rewrite_Renamed_Operator.
2717 if Analyzed (N) then
2718 return;
2719 end if;
2720 end if;
2721 end if;
2723 case N_Subexpr'(Nkind (N)) is
2725 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2727 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2729 when N_Short_Circuit
2730 => Resolve_Short_Circuit (N, Ctx_Type);
2732 when N_Attribute_Reference
2733 => Resolve_Attribute (N, Ctx_Type);
2735 when N_Case_Expression
2736 => Resolve_Case_Expression (N, Ctx_Type);
2738 when N_Character_Literal
2739 => Resolve_Character_Literal (N, Ctx_Type);
2741 when N_Expanded_Name
2742 => Resolve_Entity_Name (N, Ctx_Type);
2744 when N_Explicit_Dereference
2745 => Resolve_Explicit_Dereference (N, Ctx_Type);
2747 when N_Expression_With_Actions
2748 => Resolve_Expression_With_Actions (N, Ctx_Type);
2750 when N_Extension_Aggregate
2751 => Resolve_Extension_Aggregate (N, Ctx_Type);
2753 when N_Function_Call
2754 => Resolve_Call (N, Ctx_Type);
2756 when N_Identifier
2757 => Resolve_Entity_Name (N, Ctx_Type);
2759 when N_If_Expression
2760 => Resolve_If_Expression (N, Ctx_Type);
2762 when N_Indexed_Component
2763 => Resolve_Indexed_Component (N, Ctx_Type);
2765 when N_Integer_Literal
2766 => Resolve_Integer_Literal (N, Ctx_Type);
2768 when N_Membership_Test
2769 => Resolve_Membership_Op (N, Ctx_Type);
2771 when N_Null => Resolve_Null (N, Ctx_Type);
2773 when N_Op_And | N_Op_Or | N_Op_Xor
2774 => Resolve_Logical_Op (N, Ctx_Type);
2776 when N_Op_Eq | N_Op_Ne
2777 => Resolve_Equality_Op (N, Ctx_Type);
2779 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2780 => Resolve_Comparison_Op (N, Ctx_Type);
2782 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2784 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2785 N_Op_Divide | N_Op_Mod | N_Op_Rem
2787 => Resolve_Arithmetic_Op (N, Ctx_Type);
2789 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2791 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2793 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2794 => Resolve_Unary_Op (N, Ctx_Type);
2796 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2798 when N_Procedure_Call_Statement
2799 => Resolve_Call (N, Ctx_Type);
2801 when N_Operator_Symbol
2802 => Resolve_Operator_Symbol (N, Ctx_Type);
2804 when N_Qualified_Expression
2805 => Resolve_Qualified_Expression (N, Ctx_Type);
2807 when N_Quantified_Expression => null;
2809 when N_Raise_xxx_Error
2810 => Set_Etype (N, Ctx_Type);
2812 when N_Range => Resolve_Range (N, Ctx_Type);
2814 when N_Real_Literal
2815 => Resolve_Real_Literal (N, Ctx_Type);
2817 when N_Reference => Resolve_Reference (N, Ctx_Type);
2819 when N_Selected_Component
2820 => Resolve_Selected_Component (N, Ctx_Type);
2822 when N_Slice => Resolve_Slice (N, Ctx_Type);
2824 when N_String_Literal
2825 => Resolve_String_Literal (N, Ctx_Type);
2827 when N_Subprogram_Info
2828 => Resolve_Subprogram_Info (N, Ctx_Type);
2830 when N_Type_Conversion
2831 => Resolve_Type_Conversion (N, Ctx_Type);
2833 when N_Unchecked_Expression =>
2834 Resolve_Unchecked_Expression (N, Ctx_Type);
2836 when N_Unchecked_Type_Conversion =>
2837 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2838 end case;
2840 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2841 -- expression of an anonymous access type that occurs in the context
2842 -- of a named general access type, except when the expression is that
2843 -- of a membership test. This ensures proper legality checking in
2844 -- terms of allowed conversions (expressions that would be illegal to
2845 -- convert implicitly are allowed in membership tests).
2847 if Ada_Version >= Ada_2012
2848 and then Ekind (Ctx_Type) = E_General_Access_Type
2849 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2850 and then Nkind (Parent (N)) not in N_Membership_Test
2851 then
2852 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2853 Analyze_And_Resolve (N, Ctx_Type);
2854 end if;
2856 -- If the subexpression was replaced by a non-subexpression, then
2857 -- all we do is to expand it. The only legitimate case we know of
2858 -- is converting procedure call statement to entry call statements,
2859 -- but there may be others, so we are making this test general.
2861 if Nkind (N) not in N_Subexpr then
2862 Debug_A_Exit ("resolving ", N, " (done)");
2863 Expand (N);
2864 return;
2865 end if;
2867 -- AI05-144-2: Check dangerous order dependence within an expression
2868 -- that is not a subexpression. Exclude RHS of an assignment, because
2869 -- both sides may have side-effects and the check must be performed
2870 -- over the statement.
2872 if Nkind (Parent (N)) not in N_Subexpr
2873 and then Nkind (Parent (N)) /= N_Assignment_Statement
2874 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2875 then
2876 Check_Order_Dependence;
2877 end if;
2879 -- The expression is definitely NOT overloaded at this point, so
2880 -- we reset the Is_Overloaded flag to avoid any confusion when
2881 -- reanalyzing the node.
2883 Set_Is_Overloaded (N, False);
2885 -- Freeze expression type, entity if it is a name, and designated
2886 -- type if it is an allocator (RM 13.14(10,11,13)).
2888 -- Now that the resolution of the type of the node is complete, and
2889 -- we did not detect an error, we can expand this node. We skip the
2890 -- expand call if we are in a default expression, see section
2891 -- "Handling of Default Expressions" in Sem spec.
2893 Debug_A_Exit ("resolving ", N, " (done)");
2895 -- We unconditionally freeze the expression, even if we are in
2896 -- default expression mode (the Freeze_Expression routine tests this
2897 -- flag and only freezes static types if it is set).
2899 -- Ada 2012 (AI05-177): Expression functions do not freeze. Only
2900 -- their use (in an expanded call) freezes.
2902 if Ekind (Proper_Current_Scope) /= E_Function
2903 or else Nkind (Original_Node (Unit_Declaration_Node
2904 (Proper_Current_Scope))) /= N_Expression_Function
2905 then
2906 Freeze_Expression (N);
2907 end if;
2909 -- Now we can do the expansion
2911 Expand (N);
2912 end if;
2913 end Resolve;
2915 -------------
2916 -- Resolve --
2917 -------------
2919 -- Version with check(s) suppressed
2921 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2922 begin
2923 if Suppress = All_Checks then
2924 declare
2925 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
2926 begin
2927 Scope_Suppress.Suppress := (others => True);
2928 Resolve (N, Typ);
2929 Scope_Suppress.Suppress := Sva;
2930 end;
2932 else
2933 declare
2934 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
2935 begin
2936 Scope_Suppress.Suppress (Suppress) := True;
2937 Resolve (N, Typ);
2938 Scope_Suppress.Suppress (Suppress) := Svg;
2939 end;
2940 end if;
2941 end Resolve;
2943 -------------
2944 -- Resolve --
2945 -------------
2947 -- Version with implicit type
2949 procedure Resolve (N : Node_Id) is
2950 begin
2951 Resolve (N, Etype (N));
2952 end Resolve;
2954 ---------------------
2955 -- Resolve_Actuals --
2956 ---------------------
2958 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2959 Loc : constant Source_Ptr := Sloc (N);
2960 A : Node_Id;
2961 F : Entity_Id;
2962 A_Typ : Entity_Id;
2963 F_Typ : Entity_Id;
2964 Prev : Node_Id := Empty;
2965 Orig_A : Node_Id;
2967 procedure Check_Argument_Order;
2968 -- Performs a check for the case where the actuals are all simple
2969 -- identifiers that correspond to the formal names, but in the wrong
2970 -- order, which is considered suspicious and cause for a warning.
2972 procedure Check_Prefixed_Call;
2973 -- If the original node is an overloaded call in prefix notation,
2974 -- insert an 'Access or a dereference as needed over the first actual.
2975 -- Try_Object_Operation has already verified that there is a valid
2976 -- interpretation, but the form of the actual can only be determined
2977 -- once the primitive operation is identified.
2979 procedure Insert_Default;
2980 -- If the actual is missing in a call, insert in the actuals list
2981 -- an instance of the default expression. The insertion is always
2982 -- a named association.
2984 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2985 -- Check whether T1 and T2, or their full views, are derived from a
2986 -- common type. Used to enforce the restrictions on array conversions
2987 -- of AI95-00246.
2989 function Static_Concatenation (N : Node_Id) return Boolean;
2990 -- Predicate to determine whether an actual that is a concatenation
2991 -- will be evaluated statically and does not need a transient scope.
2992 -- This must be determined before the actual is resolved and expanded
2993 -- because if needed the transient scope must be introduced earlier.
2995 --------------------------
2996 -- Check_Argument_Order --
2997 --------------------------
2999 procedure Check_Argument_Order is
3000 begin
3001 -- Nothing to do if no parameters, or original node is neither a
3002 -- function call nor a procedure call statement (happens in the
3003 -- operator-transformed-to-function call case), or the call does
3004 -- not come from source, or this warning is off.
3006 if not Warn_On_Parameter_Order
3007 or else No (Parameter_Associations (N))
3008 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3009 or else not Comes_From_Source (N)
3010 then
3011 return;
3012 end if;
3014 declare
3015 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3017 begin
3018 -- Nothing to do if only one parameter
3020 if Nargs < 2 then
3021 return;
3022 end if;
3024 -- Here if at least two arguments
3026 declare
3027 Actuals : array (1 .. Nargs) of Node_Id;
3028 Actual : Node_Id;
3029 Formal : Node_Id;
3031 Wrong_Order : Boolean := False;
3032 -- Set True if an out of order case is found
3034 begin
3035 -- Collect identifier names of actuals, fail if any actual is
3036 -- not a simple identifier, and record max length of name.
3038 Actual := First (Parameter_Associations (N));
3039 for J in Actuals'Range loop
3040 if Nkind (Actual) /= N_Identifier then
3041 return;
3042 else
3043 Actuals (J) := Actual;
3044 Next (Actual);
3045 end if;
3046 end loop;
3048 -- If we got this far, all actuals are identifiers and the list
3049 -- of their names is stored in the Actuals array.
3051 Formal := First_Formal (Nam);
3052 for J in Actuals'Range loop
3054 -- If we ran out of formals, that's odd, probably an error
3055 -- which will be detected elsewhere, but abandon the search.
3057 if No (Formal) then
3058 return;
3059 end if;
3061 -- If name matches and is in order OK
3063 if Chars (Formal) = Chars (Actuals (J)) then
3064 null;
3066 else
3067 -- If no match, see if it is elsewhere in list and if so
3068 -- flag potential wrong order if type is compatible.
3070 for K in Actuals'Range loop
3071 if Chars (Formal) = Chars (Actuals (K))
3072 and then
3073 Has_Compatible_Type (Actuals (K), Etype (Formal))
3074 then
3075 Wrong_Order := True;
3076 goto Continue;
3077 end if;
3078 end loop;
3080 -- No match
3082 return;
3083 end if;
3085 <<Continue>> Next_Formal (Formal);
3086 end loop;
3088 -- If Formals left over, also probably an error, skip warning
3090 if Present (Formal) then
3091 return;
3092 end if;
3094 -- Here we give the warning if something was out of order
3096 if Wrong_Order then
3097 Error_Msg_N
3098 ("actuals for this call may be in wrong order?", N);
3099 end if;
3100 end;
3101 end;
3102 end Check_Argument_Order;
3104 -------------------------
3105 -- Check_Prefixed_Call --
3106 -------------------------
3108 procedure Check_Prefixed_Call is
3109 Act : constant Node_Id := First_Actual (N);
3110 A_Type : constant Entity_Id := Etype (Act);
3111 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3112 Orig : constant Node_Id := Original_Node (N);
3113 New_A : Node_Id;
3115 begin
3116 -- Check whether the call is a prefixed call, with or without
3117 -- additional actuals.
3119 if Nkind (Orig) = N_Selected_Component
3120 or else
3121 (Nkind (Orig) = N_Indexed_Component
3122 and then Nkind (Prefix (Orig)) = N_Selected_Component
3123 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3124 and then Is_Entity_Name (Act)
3125 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3126 then
3127 if Is_Access_Type (A_Type)
3128 and then not Is_Access_Type (F_Type)
3129 then
3130 -- Introduce dereference on object in prefix
3132 New_A :=
3133 Make_Explicit_Dereference (Sloc (Act),
3134 Prefix => Relocate_Node (Act));
3135 Rewrite (Act, New_A);
3136 Analyze (Act);
3138 elsif Is_Access_Type (F_Type)
3139 and then not Is_Access_Type (A_Type)
3140 then
3141 -- Introduce an implicit 'Access in prefix
3143 if not Is_Aliased_View (Act) then
3144 Error_Msg_NE
3145 ("object in prefixed call to& must be aliased"
3146 & " (RM-2005 4.3.1 (13))",
3147 Prefix (Act), Nam);
3148 end if;
3150 Rewrite (Act,
3151 Make_Attribute_Reference (Loc,
3152 Attribute_Name => Name_Access,
3153 Prefix => Relocate_Node (Act)));
3154 end if;
3156 Analyze (Act);
3157 end if;
3158 end Check_Prefixed_Call;
3160 --------------------
3161 -- Insert_Default --
3162 --------------------
3164 procedure Insert_Default is
3165 Actval : Node_Id;
3166 Assoc : Node_Id;
3168 begin
3169 -- Missing argument in call, nothing to insert
3171 if No (Default_Value (F)) then
3172 return;
3174 else
3175 -- Note that we do a full New_Copy_Tree, so that any associated
3176 -- Itypes are properly copied. This may not be needed any more,
3177 -- but it does no harm as a safety measure! Defaults of a generic
3178 -- formal may be out of bounds of the corresponding actual (see
3179 -- cc1311b) and an additional check may be required.
3181 Actval :=
3182 New_Copy_Tree
3183 (Default_Value (F),
3184 New_Scope => Current_Scope,
3185 New_Sloc => Loc);
3187 if Is_Concurrent_Type (Scope (Nam))
3188 and then Has_Discriminants (Scope (Nam))
3189 then
3190 Replace_Actual_Discriminants (N, Actval);
3191 end if;
3193 if Is_Overloadable (Nam)
3194 and then Present (Alias (Nam))
3195 then
3196 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3197 and then not Is_Tagged_Type (Etype (F))
3198 then
3199 -- If default is a real literal, do not introduce a
3200 -- conversion whose effect may depend on the run-time
3201 -- size of universal real.
3203 if Nkind (Actval) = N_Real_Literal then
3204 Set_Etype (Actval, Base_Type (Etype (F)));
3205 else
3206 Actval := Unchecked_Convert_To (Etype (F), Actval);
3207 end if;
3208 end if;
3210 if Is_Scalar_Type (Etype (F)) then
3211 Enable_Range_Check (Actval);
3212 end if;
3214 Set_Parent (Actval, N);
3216 -- Resolve aggregates with their base type, to avoid scope
3217 -- anomalies: the subtype was first built in the subprogram
3218 -- declaration, and the current call may be nested.
3220 if Nkind (Actval) = N_Aggregate then
3221 Analyze_And_Resolve (Actval, Etype (F));
3222 else
3223 Analyze_And_Resolve (Actval, Etype (Actval));
3224 end if;
3226 else
3227 Set_Parent (Actval, N);
3229 -- See note above concerning aggregates
3231 if Nkind (Actval) = N_Aggregate
3232 and then Has_Discriminants (Etype (Actval))
3233 then
3234 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3236 -- Resolve entities with their own type, which may differ from
3237 -- the type of a reference in a generic context (the view
3238 -- swapping mechanism did not anticipate the re-analysis of
3239 -- default values in calls).
3241 elsif Is_Entity_Name (Actval) then
3242 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3244 else
3245 Analyze_And_Resolve (Actval, Etype (Actval));
3246 end if;
3247 end if;
3249 -- If default is a tag indeterminate function call, propagate tag
3250 -- to obtain proper dispatching.
3252 if Is_Controlling_Formal (F)
3253 and then Nkind (Default_Value (F)) = N_Function_Call
3254 then
3255 Set_Is_Controlling_Actual (Actval);
3256 end if;
3258 end if;
3260 -- If the default expression raises constraint error, then just
3261 -- silently replace it with an N_Raise_Constraint_Error node, since
3262 -- we already gave the warning on the subprogram spec. If node is
3263 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3264 -- the warnings removal machinery.
3266 if Raises_Constraint_Error (Actval)
3267 and then Nkind (Actval) /= N_Raise_Constraint_Error
3268 then
3269 Rewrite (Actval,
3270 Make_Raise_Constraint_Error (Loc,
3271 Reason => CE_Range_Check_Failed));
3272 Set_Raises_Constraint_Error (Actval);
3273 Set_Etype (Actval, Etype (F));
3274 end if;
3276 Assoc :=
3277 Make_Parameter_Association (Loc,
3278 Explicit_Actual_Parameter => Actval,
3279 Selector_Name => Make_Identifier (Loc, Chars (F)));
3281 -- Case of insertion is first named actual
3283 if No (Prev) or else
3284 Nkind (Parent (Prev)) /= N_Parameter_Association
3285 then
3286 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3287 Set_First_Named_Actual (N, Actval);
3289 if No (Prev) then
3290 if No (Parameter_Associations (N)) then
3291 Set_Parameter_Associations (N, New_List (Assoc));
3292 else
3293 Append (Assoc, Parameter_Associations (N));
3294 end if;
3296 else
3297 Insert_After (Prev, Assoc);
3298 end if;
3300 -- Case of insertion is not first named actual
3302 else
3303 Set_Next_Named_Actual
3304 (Assoc, Next_Named_Actual (Parent (Prev)));
3305 Set_Next_Named_Actual (Parent (Prev), Actval);
3306 Append (Assoc, Parameter_Associations (N));
3307 end if;
3309 Mark_Rewrite_Insertion (Assoc);
3310 Mark_Rewrite_Insertion (Actval);
3312 Prev := Actval;
3313 end Insert_Default;
3315 -------------------
3316 -- Same_Ancestor --
3317 -------------------
3319 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3320 FT1 : Entity_Id := T1;
3321 FT2 : Entity_Id := T2;
3323 begin
3324 if Is_Private_Type (T1)
3325 and then Present (Full_View (T1))
3326 then
3327 FT1 := Full_View (T1);
3328 end if;
3330 if Is_Private_Type (T2)
3331 and then Present (Full_View (T2))
3332 then
3333 FT2 := Full_View (T2);
3334 end if;
3336 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3337 end Same_Ancestor;
3339 --------------------------
3340 -- Static_Concatenation --
3341 --------------------------
3343 function Static_Concatenation (N : Node_Id) return Boolean is
3344 begin
3345 case Nkind (N) is
3346 when N_String_Literal =>
3347 return True;
3349 when N_Op_Concat =>
3351 -- Concatenation is static when both operands are static and
3352 -- the concatenation operator is a predefined one.
3354 return Scope (Entity (N)) = Standard_Standard
3355 and then
3356 Static_Concatenation (Left_Opnd (N))
3357 and then
3358 Static_Concatenation (Right_Opnd (N));
3360 when others =>
3361 if Is_Entity_Name (N) then
3362 declare
3363 Ent : constant Entity_Id := Entity (N);
3364 begin
3365 return Ekind (Ent) = E_Constant
3366 and then Present (Constant_Value (Ent))
3367 and then
3368 Is_Static_Expression (Constant_Value (Ent));
3369 end;
3371 else
3372 return False;
3373 end if;
3374 end case;
3375 end Static_Concatenation;
3377 -- Start of processing for Resolve_Actuals
3379 begin
3380 Check_Argument_Order;
3382 if Present (First_Actual (N)) then
3383 Check_Prefixed_Call;
3384 end if;
3386 A := First_Actual (N);
3387 F := First_Formal (Nam);
3388 while Present (F) loop
3389 if No (A) and then Needs_No_Actuals (Nam) then
3390 null;
3392 -- If we have an error in any actual or formal, indicated by a type
3393 -- of Any_Type, then abandon resolution attempt, and set result type
3394 -- to Any_Type.
3396 elsif (Present (A) and then Etype (A) = Any_Type)
3397 or else Etype (F) = Any_Type
3398 then
3399 Set_Etype (N, Any_Type);
3400 return;
3401 end if;
3403 -- Case where actual is present
3405 -- If the actual is an entity, generate a reference to it now. We
3406 -- do this before the actual is resolved, because a formal of some
3407 -- protected subprogram, or a task discriminant, will be rewritten
3408 -- during expansion, and the source entity reference may be lost.
3410 if Present (A)
3411 and then Is_Entity_Name (A)
3412 and then Comes_From_Source (N)
3413 then
3414 Orig_A := Entity (A);
3416 if Present (Orig_A) then
3417 if Is_Formal (Orig_A)
3418 and then Ekind (F) /= E_In_Parameter
3419 then
3420 Generate_Reference (Orig_A, A, 'm');
3422 elsif not Is_Overloaded (A) then
3423 Generate_Reference (Orig_A, A);
3424 end if;
3425 end if;
3426 end if;
3428 if Present (A)
3429 and then (Nkind (Parent (A)) /= N_Parameter_Association
3430 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3431 then
3432 -- If style checking mode on, check match of formal name
3434 if Style_Check then
3435 if Nkind (Parent (A)) = N_Parameter_Association then
3436 Check_Identifier (Selector_Name (Parent (A)), F);
3437 end if;
3438 end if;
3440 -- If the formal is Out or In_Out, do not resolve and expand the
3441 -- conversion, because it is subsequently expanded into explicit
3442 -- temporaries and assignments. However, the object of the
3443 -- conversion can be resolved. An exception is the case of tagged
3444 -- type conversion with a class-wide actual. In that case we want
3445 -- the tag check to occur and no temporary will be needed (no
3446 -- representation change can occur) and the parameter is passed by
3447 -- reference, so we go ahead and resolve the type conversion.
3448 -- Another exception is the case of reference to component or
3449 -- subcomponent of a bit-packed array, in which case we want to
3450 -- defer expansion to the point the in and out assignments are
3451 -- performed.
3453 if Ekind (F) /= E_In_Parameter
3454 and then Nkind (A) = N_Type_Conversion
3455 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3456 then
3457 if Ekind (F) = E_In_Out_Parameter
3458 and then Is_Array_Type (Etype (F))
3459 then
3460 -- In a view conversion, the conversion must be legal in
3461 -- both directions, and thus both component types must be
3462 -- aliased, or neither (4.6 (8)).
3464 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3465 -- the privacy requirement should not apply to generic
3466 -- types, and should be checked in an instance. ARG query
3467 -- is in order ???
3469 if Has_Aliased_Components (Etype (Expression (A))) /=
3470 Has_Aliased_Components (Etype (F))
3471 then
3472 Error_Msg_N
3473 ("both component types in a view conversion must be"
3474 & " aliased, or neither", A);
3476 -- Comment here??? what set of cases???
3478 elsif
3479 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3480 then
3481 -- Check view conv between unrelated by ref array types
3483 if Is_By_Reference_Type (Etype (F))
3484 or else Is_By_Reference_Type (Etype (Expression (A)))
3485 then
3486 Error_Msg_N
3487 ("view conversion between unrelated by reference " &
3488 "array types not allowed (\'A'I-00246)", A);
3490 -- In Ada 2005 mode, check view conversion component
3491 -- type cannot be private, tagged, or volatile. Note
3492 -- that we only apply this to source conversions. The
3493 -- generated code can contain conversions which are
3494 -- not subject to this test, and we cannot extract the
3495 -- component type in such cases since it is not present.
3497 elsif Comes_From_Source (A)
3498 and then Ada_Version >= Ada_2005
3499 then
3500 declare
3501 Comp_Type : constant Entity_Id :=
3502 Component_Type
3503 (Etype (Expression (A)));
3504 begin
3505 if (Is_Private_Type (Comp_Type)
3506 and then not Is_Generic_Type (Comp_Type))
3507 or else Is_Tagged_Type (Comp_Type)
3508 or else Is_Volatile (Comp_Type)
3509 then
3510 Error_Msg_N
3511 ("component type of a view conversion cannot"
3512 & " be private, tagged, or volatile"
3513 & " (RM 4.6 (24))",
3514 Expression (A));
3515 end if;
3516 end;
3517 end if;
3518 end if;
3519 end if;
3521 -- Resolve expression if conversion is all OK
3523 if (Conversion_OK (A)
3524 or else Valid_Conversion (A, Etype (A), Expression (A)))
3525 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3526 then
3527 Resolve (Expression (A));
3528 end if;
3530 -- If the actual is a function call that returns a limited
3531 -- unconstrained object that needs finalization, create a
3532 -- transient scope for it, so that it can receive the proper
3533 -- finalization list.
3535 elsif Nkind (A) = N_Function_Call
3536 and then Is_Limited_Record (Etype (F))
3537 and then not Is_Constrained (Etype (F))
3538 and then Full_Expander_Active
3539 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3540 then
3541 Establish_Transient_Scope (A, False);
3542 Resolve (A, Etype (F));
3544 -- A small optimization: if one of the actuals is a concatenation
3545 -- create a block around a procedure call to recover stack space.
3546 -- This alleviates stack usage when several procedure calls in
3547 -- the same statement list use concatenation. We do not perform
3548 -- this wrapping for code statements, where the argument is a
3549 -- static string, and we want to preserve warnings involving
3550 -- sequences of such statements.
3552 elsif Nkind (A) = N_Op_Concat
3553 and then Nkind (N) = N_Procedure_Call_Statement
3554 and then Full_Expander_Active
3555 and then
3556 not (Is_Intrinsic_Subprogram (Nam)
3557 and then Chars (Nam) = Name_Asm)
3558 and then not Static_Concatenation (A)
3559 then
3560 Establish_Transient_Scope (A, False);
3561 Resolve (A, Etype (F));
3563 else
3564 if Nkind (A) = N_Type_Conversion
3565 and then Is_Array_Type (Etype (F))
3566 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3567 and then
3568 (Is_Limited_Type (Etype (F))
3569 or else Is_Limited_Type (Etype (Expression (A))))
3570 then
3571 Error_Msg_N
3572 ("conversion between unrelated limited array types " &
3573 "not allowed (\A\I-00246)", A);
3575 if Is_Limited_Type (Etype (F)) then
3576 Explain_Limited_Type (Etype (F), A);
3577 end if;
3579 if Is_Limited_Type (Etype (Expression (A))) then
3580 Explain_Limited_Type (Etype (Expression (A)), A);
3581 end if;
3582 end if;
3584 -- (Ada 2005: AI-251): If the actual is an allocator whose
3585 -- directly designated type is a class-wide interface, we build
3586 -- an anonymous access type to use it as the type of the
3587 -- allocator. Later, when the subprogram call is expanded, if
3588 -- the interface has a secondary dispatch table the expander
3589 -- will add a type conversion to force the correct displacement
3590 -- of the pointer.
3592 if Nkind (A) = N_Allocator then
3593 declare
3594 DDT : constant Entity_Id :=
3595 Directly_Designated_Type (Base_Type (Etype (F)));
3597 New_Itype : Entity_Id;
3599 begin
3600 if Is_Class_Wide_Type (DDT)
3601 and then Is_Interface (DDT)
3602 then
3603 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3604 Set_Etype (New_Itype, Etype (A));
3605 Set_Directly_Designated_Type (New_Itype,
3606 Directly_Designated_Type (Etype (A)));
3607 Set_Etype (A, New_Itype);
3608 end if;
3610 -- Ada 2005, AI-162:If the actual is an allocator, the
3611 -- innermost enclosing statement is the master of the
3612 -- created object. This needs to be done with expansion
3613 -- enabled only, otherwise the transient scope will not
3614 -- be removed in the expansion of the wrapped construct.
3616 if (Is_Controlled (DDT) or else Has_Task (DDT))
3617 and then Full_Expander_Active
3618 then
3619 Establish_Transient_Scope (A, False);
3620 end if;
3621 end;
3622 end if;
3624 -- (Ada 2005): The call may be to a primitive operation of
3625 -- a tagged synchronized type, declared outside of the type.
3626 -- In this case the controlling actual must be converted to
3627 -- its corresponding record type, which is the formal type.
3628 -- The actual may be a subtype, either because of a constraint
3629 -- or because it is a generic actual, so use base type to
3630 -- locate concurrent type.
3632 F_Typ := Base_Type (Etype (F));
3634 if Is_Tagged_Type (F_Typ)
3635 and then (Is_Concurrent_Type (F_Typ)
3636 or else Is_Concurrent_Record_Type (F_Typ))
3637 then
3638 -- If the actual is overloaded, look for an interpretation
3639 -- that has a synchronized type.
3641 if not Is_Overloaded (A) then
3642 A_Typ := Base_Type (Etype (A));
3644 else
3645 declare
3646 Index : Interp_Index;
3647 It : Interp;
3649 begin
3650 Get_First_Interp (A, Index, It);
3651 while Present (It.Typ) loop
3652 if Is_Concurrent_Type (It.Typ)
3653 or else Is_Concurrent_Record_Type (It.Typ)
3654 then
3655 A_Typ := Base_Type (It.Typ);
3656 exit;
3657 end if;
3659 Get_Next_Interp (Index, It);
3660 end loop;
3661 end;
3662 end if;
3664 declare
3665 Full_A_Typ : Entity_Id;
3667 begin
3668 if Present (Full_View (A_Typ)) then
3669 Full_A_Typ := Base_Type (Full_View (A_Typ));
3670 else
3671 Full_A_Typ := A_Typ;
3672 end if;
3674 -- Tagged synchronized type (case 1): the actual is a
3675 -- concurrent type.
3677 if Is_Concurrent_Type (A_Typ)
3678 and then Corresponding_Record_Type (A_Typ) = F_Typ
3679 then
3680 Rewrite (A,
3681 Unchecked_Convert_To
3682 (Corresponding_Record_Type (A_Typ), A));
3683 Resolve (A, Etype (F));
3685 -- Tagged synchronized type (case 2): the formal is a
3686 -- concurrent type.
3688 elsif Ekind (Full_A_Typ) = E_Record_Type
3689 and then Present
3690 (Corresponding_Concurrent_Type (Full_A_Typ))
3691 and then Is_Concurrent_Type (F_Typ)
3692 and then Present (Corresponding_Record_Type (F_Typ))
3693 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3694 then
3695 Resolve (A, Corresponding_Record_Type (F_Typ));
3697 -- Common case
3699 else
3700 Resolve (A, Etype (F));
3701 end if;
3702 end;
3703 else
3705 -- not a synchronized operation.
3707 Resolve (A, Etype (F));
3708 end if;
3709 end if;
3711 A_Typ := Etype (A);
3712 F_Typ := Etype (F);
3714 if Comes_From_Source (Original_Node (N))
3715 and then Nkind_In (Original_Node (N), N_Function_Call,
3716 N_Procedure_Call_Statement)
3717 then
3718 -- In formal mode, check that actual parameters matching
3719 -- formals of tagged types are objects (or ancestor type
3720 -- conversions of objects), not general expressions.
3722 if Is_Actual_Tagged_Parameter (A) then
3723 if Is_SPARK_Object_Reference (A) then
3724 null;
3726 elsif Nkind (A) = N_Type_Conversion then
3727 declare
3728 Operand : constant Node_Id := Expression (A);
3729 Operand_Typ : constant Entity_Id := Etype (Operand);
3730 Target_Typ : constant Entity_Id := A_Typ;
3732 begin
3733 if not Is_SPARK_Object_Reference (Operand) then
3734 Check_SPARK_Restriction
3735 ("object required", Operand);
3737 -- In formal mode, the only view conversions are those
3738 -- involving ancestor conversion of an extended type.
3740 elsif not
3741 (Is_Tagged_Type (Target_Typ)
3742 and then not Is_Class_Wide_Type (Target_Typ)
3743 and then Is_Tagged_Type (Operand_Typ)
3744 and then not Is_Class_Wide_Type (Operand_Typ)
3745 and then Is_Ancestor (Target_Typ, Operand_Typ))
3746 then
3747 if Ekind_In
3748 (F, E_Out_Parameter, E_In_Out_Parameter)
3749 then
3750 Check_SPARK_Restriction
3751 ("ancestor conversion is the only permitted "
3752 & "view conversion", A);
3753 else
3754 Check_SPARK_Restriction
3755 ("ancestor conversion required", A);
3756 end if;
3758 else
3759 null;
3760 end if;
3761 end;
3763 else
3764 Check_SPARK_Restriction ("object required", A);
3765 end if;
3767 -- In formal mode, the only view conversions are those
3768 -- involving ancestor conversion of an extended type.
3770 elsif Nkind (A) = N_Type_Conversion
3771 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
3772 then
3773 Check_SPARK_Restriction
3774 ("ancestor conversion is the only permitted view "
3775 & "conversion", A);
3776 end if;
3777 end if;
3779 -- Save actual for subsequent check on order dependence, and
3780 -- indicate whether actual is modifiable. For AI05-0144-2.
3782 -- If this is a call to a reference function that is the result
3783 -- of expansion, as in element iterator loops, this does not lead
3784 -- to a dangerous order dependence: only subsequent use of the
3785 -- denoted element might, in some enclosing call.
3787 if not Has_Implicit_Dereference (Etype (Nam))
3788 or else Comes_From_Source (N)
3789 then
3790 Save_Actual (A, Ekind (F) /= E_In_Parameter);
3791 end if;
3793 -- For mode IN, if actual is an entity, and the type of the formal
3794 -- has warnings suppressed, then we reset Never_Set_In_Source for
3795 -- the calling entity. The reason for this is to catch cases like
3796 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3797 -- uses trickery to modify an IN parameter.
3799 if Ekind (F) = E_In_Parameter
3800 and then Is_Entity_Name (A)
3801 and then Present (Entity (A))
3802 and then Ekind (Entity (A)) = E_Variable
3803 and then Has_Warnings_Off (F_Typ)
3804 then
3805 Set_Never_Set_In_Source (Entity (A), False);
3806 end if;
3808 -- Perform error checks for IN and IN OUT parameters
3810 if Ekind (F) /= E_Out_Parameter then
3812 -- Check unset reference. For scalar parameters, it is clearly
3813 -- wrong to pass an uninitialized value as either an IN or
3814 -- IN-OUT parameter. For composites, it is also clearly an
3815 -- error to pass a completely uninitialized value as an IN
3816 -- parameter, but the case of IN OUT is trickier. We prefer
3817 -- not to give a warning here. For example, suppose there is
3818 -- a routine that sets some component of a record to False.
3819 -- It is perfectly reasonable to make this IN-OUT and allow
3820 -- either initialized or uninitialized records to be passed
3821 -- in this case.
3823 -- For partially initialized composite values, we also avoid
3824 -- warnings, since it is quite likely that we are passing a
3825 -- partially initialized value and only the initialized fields
3826 -- will in fact be read in the subprogram.
3828 if Is_Scalar_Type (A_Typ)
3829 or else (Ekind (F) = E_In_Parameter
3830 and then not Is_Partially_Initialized_Type (A_Typ))
3831 then
3832 Check_Unset_Reference (A);
3833 end if;
3835 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3836 -- actual to a nested call, since this is case of reading an
3837 -- out parameter, which is not allowed.
3839 if Ada_Version = Ada_83
3840 and then Is_Entity_Name (A)
3841 and then Ekind (Entity (A)) = E_Out_Parameter
3842 then
3843 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3844 end if;
3845 end if;
3847 -- Case of OUT or IN OUT parameter
3849 if Ekind (F) /= E_In_Parameter then
3851 -- For an Out parameter, check for useless assignment. Note
3852 -- that we can't set Last_Assignment this early, because we may
3853 -- kill current values in Resolve_Call, and that call would
3854 -- clobber the Last_Assignment field.
3856 -- Note: call Warn_On_Useless_Assignment before doing the check
3857 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3858 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3859 -- reflects the last assignment, not this one!
3861 if Ekind (F) = E_Out_Parameter then
3862 if Warn_On_Modified_As_Out_Parameter (F)
3863 and then Is_Entity_Name (A)
3864 and then Present (Entity (A))
3865 and then Comes_From_Source (N)
3866 then
3867 Warn_On_Useless_Assignment (Entity (A), A);
3868 end if;
3869 end if;
3871 -- Validate the form of the actual. Note that the call to
3872 -- Is_OK_Variable_For_Out_Formal generates the required
3873 -- reference in this case.
3875 -- A call to an initialization procedure for an aggregate
3876 -- component may initialize a nested component of a constant
3877 -- designated object. In this context the object is variable.
3879 if not Is_OK_Variable_For_Out_Formal (A)
3880 and then not Is_Init_Proc (Nam)
3881 then
3882 Error_Msg_NE ("actual for& must be a variable", A, F);
3883 end if;
3885 -- What's the following about???
3887 if Is_Entity_Name (A) then
3888 Kill_Checks (Entity (A));
3889 else
3890 Kill_All_Checks;
3891 end if;
3892 end if;
3894 if Etype (A) = Any_Type then
3895 Set_Etype (N, Any_Type);
3896 return;
3897 end if;
3899 -- Apply appropriate range checks for in, out, and in-out
3900 -- parameters. Out and in-out parameters also need a separate
3901 -- check, if there is a type conversion, to make sure the return
3902 -- value meets the constraints of the variable before the
3903 -- conversion.
3905 -- Gigi looks at the check flag and uses the appropriate types.
3906 -- For now since one flag is used there is an optimization which
3907 -- might not be done in the In Out case since Gigi does not do
3908 -- any analysis. More thought required about this ???
3910 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
3912 -- Apply predicate checks, unless this is a call to the
3913 -- predicate check function itself, which would cause an
3914 -- infinite recursion.
3916 if not (Ekind (Nam) = E_Function
3917 and then Has_Predicates (Nam))
3918 then
3919 Apply_Predicate_Check (A, F_Typ);
3920 end if;
3922 -- Apply required constraint checks
3924 if Is_Scalar_Type (Etype (A)) then
3925 Apply_Scalar_Range_Check (A, F_Typ);
3927 elsif Is_Array_Type (Etype (A)) then
3928 Apply_Length_Check (A, F_Typ);
3930 elsif Is_Record_Type (F_Typ)
3931 and then Has_Discriminants (F_Typ)
3932 and then Is_Constrained (F_Typ)
3933 and then (not Is_Derived_Type (F_Typ)
3934 or else Comes_From_Source (Nam))
3935 then
3936 Apply_Discriminant_Check (A, F_Typ);
3938 elsif Is_Access_Type (F_Typ)
3939 and then Is_Array_Type (Designated_Type (F_Typ))
3940 and then Is_Constrained (Designated_Type (F_Typ))
3941 then
3942 Apply_Length_Check (A, F_Typ);
3944 elsif Is_Access_Type (F_Typ)
3945 and then Has_Discriminants (Designated_Type (F_Typ))
3946 and then Is_Constrained (Designated_Type (F_Typ))
3947 then
3948 Apply_Discriminant_Check (A, F_Typ);
3950 else
3951 Apply_Range_Check (A, F_Typ);
3952 end if;
3954 -- Ada 2005 (AI-231): Note that the controlling parameter case
3955 -- already existed in Ada 95, which is partially checked
3956 -- elsewhere (see Checks), and we don't want the warning
3957 -- message to differ.
3959 if Is_Access_Type (F_Typ)
3960 and then Can_Never_Be_Null (F_Typ)
3961 and then Known_Null (A)
3962 then
3963 if Is_Controlling_Formal (F) then
3964 Apply_Compile_Time_Constraint_Error
3965 (N => A,
3966 Msg => "null value not allowed here?",
3967 Reason => CE_Access_Check_Failed);
3969 elsif Ada_Version >= Ada_2005 then
3970 Apply_Compile_Time_Constraint_Error
3971 (N => A,
3972 Msg => "(Ada 2005) null not allowed in "
3973 & "null-excluding formal?",
3974 Reason => CE_Null_Not_Allowed);
3975 end if;
3976 end if;
3977 end if;
3979 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
3980 if Nkind (A) = N_Type_Conversion then
3981 if Is_Scalar_Type (A_Typ) then
3982 Apply_Scalar_Range_Check
3983 (Expression (A), Etype (Expression (A)), A_Typ);
3984 else
3985 Apply_Range_Check
3986 (Expression (A), Etype (Expression (A)), A_Typ);
3987 end if;
3989 else
3990 if Is_Scalar_Type (F_Typ) then
3991 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
3992 elsif Is_Array_Type (F_Typ)
3993 and then Ekind (F) = E_Out_Parameter
3994 then
3995 Apply_Length_Check (A, F_Typ);
3996 else
3997 Apply_Range_Check (A, A_Typ, F_Typ);
3998 end if;
3999 end if;
4000 end if;
4002 -- An actual associated with an access parameter is implicitly
4003 -- converted to the anonymous access type of the formal and must
4004 -- satisfy the legality checks for access conversions.
4006 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4007 if not Valid_Conversion (A, F_Typ, A) then
4008 Error_Msg_N
4009 ("invalid implicit conversion for access parameter", A);
4010 end if;
4012 -- If the actual is an access selected component of a variable,
4013 -- the call may modify its designated object. It is reasonable
4014 -- to treat this as a potential modification of the enclosing
4015 -- record, to prevent spurious warnings that it should be
4016 -- declared as a constant, because intuitively programmers
4017 -- regard the designated subcomponent as part of the record.
4019 if Nkind (A) = N_Selected_Component
4020 and then Is_Entity_Name (Prefix (A))
4021 and then not Is_Constant_Object (Entity (Prefix (A)))
4022 then
4023 Note_Possible_Modification (A, Sure => False);
4024 end if;
4025 end if;
4027 -- Check bad case of atomic/volatile argument (RM C.6(12))
4029 if Is_By_Reference_Type (Etype (F))
4030 and then Comes_From_Source (N)
4031 then
4032 if Is_Atomic_Object (A)
4033 and then not Is_Atomic (Etype (F))
4034 then
4035 Error_Msg_NE
4036 ("cannot pass atomic argument to non-atomic formal&",
4037 A, F);
4039 elsif Is_Volatile_Object (A)
4040 and then not Is_Volatile (Etype (F))
4041 then
4042 Error_Msg_NE
4043 ("cannot pass volatile argument to non-volatile formal&",
4044 A, F);
4045 end if;
4046 end if;
4048 -- Check that subprograms don't have improper controlling
4049 -- arguments (RM 3.9.2 (9)).
4051 -- A primitive operation may have an access parameter of an
4052 -- incomplete tagged type, but a dispatching call is illegal
4053 -- if the type is still incomplete.
4055 if Is_Controlling_Formal (F) then
4056 Set_Is_Controlling_Actual (A);
4058 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4059 declare
4060 Desig : constant Entity_Id := Designated_Type (Etype (F));
4061 begin
4062 if Ekind (Desig) = E_Incomplete_Type
4063 and then No (Full_View (Desig))
4064 and then No (Non_Limited_View (Desig))
4065 then
4066 Error_Msg_NE
4067 ("premature use of incomplete type& " &
4068 "in dispatching call", A, Desig);
4069 end if;
4070 end;
4071 end if;
4073 elsif Nkind (A) = N_Explicit_Dereference then
4074 Validate_Remote_Access_To_Class_Wide_Type (A);
4075 end if;
4077 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4078 and then not Is_Class_Wide_Type (F_Typ)
4079 and then not Is_Controlling_Formal (F)
4080 then
4081 Error_Msg_N ("class-wide argument not allowed here!", A);
4083 if Is_Subprogram (Nam)
4084 and then Comes_From_Source (Nam)
4085 then
4086 Error_Msg_Node_2 := F_Typ;
4087 Error_Msg_NE
4088 ("& is not a dispatching operation of &!", A, Nam);
4089 end if;
4091 -- Apply the checks described in 3.10.2(27): if the context is a
4092 -- specific access-to-object, the actual cannot be class-wide.
4093 -- Use base type to exclude access_to_subprogram cases.
4095 elsif Is_Access_Type (A_Typ)
4096 and then Is_Access_Type (F_Typ)
4097 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4098 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4099 or else (Nkind (A) = N_Attribute_Reference
4100 and then
4101 Is_Class_Wide_Type (Etype (Prefix (A)))))
4102 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4103 and then not Is_Controlling_Formal (F)
4105 -- Disable these checks for call to imported C++ subprograms
4107 and then not
4108 (Is_Entity_Name (Name (N))
4109 and then Is_Imported (Entity (Name (N)))
4110 and then Convention (Entity (Name (N))) = Convention_CPP)
4111 then
4112 Error_Msg_N
4113 ("access to class-wide argument not allowed here!", A);
4115 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4116 Error_Msg_Node_2 := Designated_Type (F_Typ);
4117 Error_Msg_NE
4118 ("& is not a dispatching operation of &!", A, Nam);
4119 end if;
4120 end if;
4122 Eval_Actual (A);
4124 -- If it is a named association, treat the selector_name as a
4125 -- proper identifier, and mark the corresponding entity. Ignore
4126 -- this reference in Alfa mode, as it refers to an entity not in
4127 -- scope at the point of reference, so the reference should be
4128 -- ignored for computing effects of subprograms.
4130 if Nkind (Parent (A)) = N_Parameter_Association
4131 and then not Alfa_Mode
4132 then
4133 Set_Entity (Selector_Name (Parent (A)), F);
4134 Generate_Reference (F, Selector_Name (Parent (A)));
4135 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4136 Generate_Reference (F_Typ, N, ' ');
4137 end if;
4139 Prev := A;
4141 if Ekind (F) /= E_Out_Parameter then
4142 Check_Unset_Reference (A);
4143 end if;
4145 Next_Actual (A);
4147 -- Case where actual is not present
4149 else
4150 Insert_Default;
4151 end if;
4153 Next_Formal (F);
4154 end loop;
4155 end Resolve_Actuals;
4157 -----------------------
4158 -- Resolve_Allocator --
4159 -----------------------
4161 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4162 Desig_T : constant Entity_Id := Designated_Type (Typ);
4163 E : constant Node_Id := Expression (N);
4164 Subtyp : Entity_Id;
4165 Discrim : Entity_Id;
4166 Constr : Node_Id;
4167 Aggr : Node_Id;
4168 Assoc : Node_Id := Empty;
4169 Disc_Exp : Node_Id;
4171 procedure Check_Allocator_Discrim_Accessibility
4172 (Disc_Exp : Node_Id;
4173 Alloc_Typ : Entity_Id);
4174 -- Check that accessibility level associated with an access discriminant
4175 -- initialized in an allocator by the expression Disc_Exp is not deeper
4176 -- than the level of the allocator type Alloc_Typ. An error message is
4177 -- issued if this condition is violated. Specialized checks are done for
4178 -- the cases of a constraint expression which is an access attribute or
4179 -- an access discriminant.
4181 function In_Dispatching_Context return Boolean;
4182 -- If the allocator is an actual in a call, it is allowed to be class-
4183 -- wide when the context is not because it is a controlling actual.
4185 -------------------------------------------
4186 -- Check_Allocator_Discrim_Accessibility --
4187 -------------------------------------------
4189 procedure Check_Allocator_Discrim_Accessibility
4190 (Disc_Exp : Node_Id;
4191 Alloc_Typ : Entity_Id)
4193 begin
4194 if Type_Access_Level (Etype (Disc_Exp)) >
4195 Deepest_Type_Access_Level (Alloc_Typ)
4196 then
4197 Error_Msg_N
4198 ("operand type has deeper level than allocator type", Disc_Exp);
4200 -- When the expression is an Access attribute the level of the prefix
4201 -- object must not be deeper than that of the allocator's type.
4203 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4204 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4205 Attribute_Access
4206 and then Object_Access_Level (Prefix (Disc_Exp)) >
4207 Deepest_Type_Access_Level (Alloc_Typ)
4208 then
4209 Error_Msg_N
4210 ("prefix of attribute has deeper level than allocator type",
4211 Disc_Exp);
4213 -- When the expression is an access discriminant the check is against
4214 -- the level of the prefix object.
4216 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4217 and then Nkind (Disc_Exp) = N_Selected_Component
4218 and then Object_Access_Level (Prefix (Disc_Exp)) >
4219 Deepest_Type_Access_Level (Alloc_Typ)
4220 then
4221 Error_Msg_N
4222 ("access discriminant has deeper level than allocator type",
4223 Disc_Exp);
4225 -- All other cases are legal
4227 else
4228 null;
4229 end if;
4230 end Check_Allocator_Discrim_Accessibility;
4232 ----------------------------
4233 -- In_Dispatching_Context --
4234 ----------------------------
4236 function In_Dispatching_Context return Boolean is
4237 Par : constant Node_Id := Parent (N);
4239 begin
4240 return Nkind (Par) in N_Subprogram_Call
4241 and then Is_Entity_Name (Name (Par))
4242 and then Is_Dispatching_Operation (Entity (Name (Par)));
4243 end In_Dispatching_Context;
4245 -- Start of processing for Resolve_Allocator
4247 begin
4248 -- Replace general access with specific type
4250 if Ekind (Etype (N)) = E_Allocator_Type then
4251 Set_Etype (N, Base_Type (Typ));
4252 end if;
4254 if Is_Abstract_Type (Typ) then
4255 Error_Msg_N ("type of allocator cannot be abstract", N);
4256 end if;
4258 -- For qualified expression, resolve the expression using the
4259 -- given subtype (nothing to do for type mark, subtype indication)
4261 if Nkind (E) = N_Qualified_Expression then
4262 if Is_Class_Wide_Type (Etype (E))
4263 and then not Is_Class_Wide_Type (Desig_T)
4264 and then not In_Dispatching_Context
4265 then
4266 Error_Msg_N
4267 ("class-wide allocator not allowed for this access type", N);
4268 end if;
4270 Resolve (Expression (E), Etype (E));
4271 Check_Unset_Reference (Expression (E));
4273 -- A qualified expression requires an exact match of the type,
4274 -- class-wide matching is not allowed.
4276 if (Is_Class_Wide_Type (Etype (Expression (E)))
4277 or else Is_Class_Wide_Type (Etype (E)))
4278 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4279 then
4280 Wrong_Type (Expression (E), Etype (E));
4281 end if;
4283 -- Calls to build-in-place functions are not currently supported in
4284 -- allocators for access types associated with a simple storage pool.
4285 -- Supporting such allocators may require passing additional implicit
4286 -- parameters to build-in-place functions (or a significant revision
4287 -- of the current b-i-p implementation to unify the handling for
4288 -- multiple kinds of storage pools). ???
4290 if Is_Immutably_Limited_Type (Desig_T)
4291 and then Nkind (Expression (E)) = N_Function_Call
4292 then
4293 declare
4294 Pool : constant Entity_Id :=
4295 Associated_Storage_Pool (Root_Type (Typ));
4296 begin
4297 if Present (Pool)
4298 and then
4299 Present (Get_Rep_Pragma
4300 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4301 then
4302 Error_Msg_N
4303 ("limited function calls not yet supported in simple " &
4304 "storage pool allocators", Expression (E));
4305 end if;
4306 end;
4307 end if;
4309 -- A special accessibility check is needed for allocators that
4310 -- constrain access discriminants. The level of the type of the
4311 -- expression used to constrain an access discriminant cannot be
4312 -- deeper than the type of the allocator (in contrast to access
4313 -- parameters, where the level of the actual can be arbitrary).
4315 -- We can't use Valid_Conversion to perform this check because
4316 -- in general the type of the allocator is unrelated to the type
4317 -- of the access discriminant.
4319 if Ekind (Typ) /= E_Anonymous_Access_Type
4320 or else Is_Local_Anonymous_Access (Typ)
4321 then
4322 Subtyp := Entity (Subtype_Mark (E));
4324 Aggr := Original_Node (Expression (E));
4326 if Has_Discriminants (Subtyp)
4327 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4328 then
4329 Discrim := First_Discriminant (Base_Type (Subtyp));
4331 -- Get the first component expression of the aggregate
4333 if Present (Expressions (Aggr)) then
4334 Disc_Exp := First (Expressions (Aggr));
4336 elsif Present (Component_Associations (Aggr)) then
4337 Assoc := First (Component_Associations (Aggr));
4339 if Present (Assoc) then
4340 Disc_Exp := Expression (Assoc);
4341 else
4342 Disc_Exp := Empty;
4343 end if;
4345 else
4346 Disc_Exp := Empty;
4347 end if;
4349 while Present (Discrim) and then Present (Disc_Exp) loop
4350 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4351 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4352 end if;
4354 Next_Discriminant (Discrim);
4356 if Present (Discrim) then
4357 if Present (Assoc) then
4358 Next (Assoc);
4359 Disc_Exp := Expression (Assoc);
4361 elsif Present (Next (Disc_Exp)) then
4362 Next (Disc_Exp);
4364 else
4365 Assoc := First (Component_Associations (Aggr));
4367 if Present (Assoc) then
4368 Disc_Exp := Expression (Assoc);
4369 else
4370 Disc_Exp := Empty;
4371 end if;
4372 end if;
4373 end if;
4374 end loop;
4375 end if;
4376 end if;
4378 -- For a subtype mark or subtype indication, freeze the subtype
4380 else
4381 Freeze_Expression (E);
4383 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4384 Error_Msg_N
4385 ("initialization required for access-to-constant allocator", N);
4386 end if;
4388 -- A special accessibility check is needed for allocators that
4389 -- constrain access discriminants. The level of the type of the
4390 -- expression used to constrain an access discriminant cannot be
4391 -- deeper than the type of the allocator (in contrast to access
4392 -- parameters, where the level of the actual can be arbitrary).
4393 -- We can't use Valid_Conversion to perform this check because
4394 -- in general the type of the allocator is unrelated to the type
4395 -- of the access discriminant.
4397 if Nkind (Original_Node (E)) = N_Subtype_Indication
4398 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4399 or else Is_Local_Anonymous_Access (Typ))
4400 then
4401 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4403 if Has_Discriminants (Subtyp) then
4404 Discrim := First_Discriminant (Base_Type (Subtyp));
4405 Constr := First (Constraints (Constraint (Original_Node (E))));
4406 while Present (Discrim) and then Present (Constr) loop
4407 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4408 if Nkind (Constr) = N_Discriminant_Association then
4409 Disc_Exp := Original_Node (Expression (Constr));
4410 else
4411 Disc_Exp := Original_Node (Constr);
4412 end if;
4414 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4415 end if;
4417 Next_Discriminant (Discrim);
4418 Next (Constr);
4419 end loop;
4420 end if;
4421 end if;
4422 end if;
4424 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4425 -- check that the level of the type of the created object is not deeper
4426 -- than the level of the allocator's access type, since extensions can
4427 -- now occur at deeper levels than their ancestor types. This is a
4428 -- static accessibility level check; a run-time check is also needed in
4429 -- the case of an initialized allocator with a class-wide argument (see
4430 -- Expand_Allocator_Expression).
4432 if Ada_Version >= Ada_2005
4433 and then Is_Class_Wide_Type (Desig_T)
4434 then
4435 declare
4436 Exp_Typ : Entity_Id;
4438 begin
4439 if Nkind (E) = N_Qualified_Expression then
4440 Exp_Typ := Etype (E);
4441 elsif Nkind (E) = N_Subtype_Indication then
4442 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4443 else
4444 Exp_Typ := Entity (E);
4445 end if;
4447 if Type_Access_Level (Exp_Typ) >
4448 Deepest_Type_Access_Level (Typ)
4449 then
4450 if In_Instance_Body then
4451 Error_Msg_N ("?type in allocator has deeper level than" &
4452 " designated class-wide type", E);
4453 Error_Msg_N ("\?Program_Error will be raised at run time",
4455 Rewrite (N,
4456 Make_Raise_Program_Error (Sloc (N),
4457 Reason => PE_Accessibility_Check_Failed));
4458 Set_Etype (N, Typ);
4460 -- Do not apply Ada 2005 accessibility checks on a class-wide
4461 -- allocator if the type given in the allocator is a formal
4462 -- type. A run-time check will be performed in the instance.
4464 elsif not Is_Generic_Type (Exp_Typ) then
4465 Error_Msg_N ("type in allocator has deeper level than" &
4466 " designated class-wide type", E);
4467 end if;
4468 end if;
4469 end;
4470 end if;
4472 -- Check for allocation from an empty storage pool
4474 if No_Pool_Assigned (Typ) then
4475 Error_Msg_N ("allocation from empty storage pool!", N);
4477 -- If the context is an unchecked conversion, as may happen within an
4478 -- inlined subprogram, the allocator is being resolved with its own
4479 -- anonymous type. In that case, if the target type has a specific
4480 -- storage pool, it must be inherited explicitly by the allocator type.
4482 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4483 and then No (Associated_Storage_Pool (Typ))
4484 then
4485 Set_Associated_Storage_Pool
4486 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4487 end if;
4489 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4490 Check_Restriction (No_Anonymous_Allocators, N);
4491 end if;
4493 -- Check that an allocator with task parts isn't for a nested access
4494 -- type when restriction No_Task_Hierarchy applies.
4496 if not Is_Library_Level_Entity (Base_Type (Typ))
4497 and then Has_Task (Base_Type (Desig_T))
4498 then
4499 Check_Restriction (No_Task_Hierarchy, N);
4500 end if;
4502 -- An erroneous allocator may be rewritten as a raise Program_Error
4503 -- statement.
4505 if Nkind (N) = N_Allocator then
4507 -- An anonymous access discriminant is the definition of a
4508 -- coextension.
4510 if Ekind (Typ) = E_Anonymous_Access_Type
4511 and then Nkind (Associated_Node_For_Itype (Typ)) =
4512 N_Discriminant_Specification
4513 then
4514 declare
4515 Discr : constant Entity_Id :=
4516 Defining_Identifier (Associated_Node_For_Itype (Typ));
4518 begin
4519 -- Ada 2012 AI05-0052: If the designated type of the allocator
4520 -- is limited, then the allocator shall not be used to define
4521 -- the value of an access discriminant unless the discriminated
4522 -- type is immutably limited.
4524 if Ada_Version >= Ada_2012
4525 and then Is_Limited_Type (Desig_T)
4526 and then not Is_Immutably_Limited_Type (Scope (Discr))
4527 then
4528 Error_Msg_N
4529 ("only immutably limited types can have anonymous "
4530 & "access discriminants designating a limited type", N);
4531 end if;
4532 end;
4534 -- Avoid marking an allocator as a dynamic coextension if it is
4535 -- within a static construct.
4537 if not Is_Static_Coextension (N) then
4538 Set_Is_Dynamic_Coextension (N);
4539 end if;
4541 -- Cleanup for potential static coextensions
4543 else
4544 Set_Is_Dynamic_Coextension (N, False);
4545 Set_Is_Static_Coextension (N, False);
4546 end if;
4547 end if;
4549 -- Report a simple error: if the designated object is a local task,
4550 -- its body has not been seen yet, and its activation will fail an
4551 -- elaboration check.
4553 if Is_Task_Type (Desig_T)
4554 and then Scope (Base_Type (Desig_T)) = Current_Scope
4555 and then Is_Compilation_Unit (Current_Scope)
4556 and then Ekind (Current_Scope) = E_Package
4557 and then not In_Package_Body (Current_Scope)
4558 then
4559 Error_Msg_N ("?cannot activate task before body seen", N);
4560 Error_Msg_N ("\?Program_Error will be raised at run time", N);
4561 end if;
4563 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4564 -- type with a task component on a subpool. This action must raise
4565 -- Program_Error at runtime.
4567 if Ada_Version >= Ada_2012
4568 and then Nkind (N) = N_Allocator
4569 and then Present (Subpool_Handle_Name (N))
4570 and then Has_Task (Desig_T)
4571 then
4572 Error_Msg_N ("?cannot allocate task on subpool", N);
4573 Error_Msg_N ("\?Program_Error will be raised at run time", N);
4575 Rewrite (N,
4576 Make_Raise_Program_Error (Sloc (N),
4577 Reason => PE_Explicit_Raise));
4578 Set_Etype (N, Typ);
4579 end if;
4580 end Resolve_Allocator;
4582 ---------------------------
4583 -- Resolve_Arithmetic_Op --
4584 ---------------------------
4586 -- Used for resolving all arithmetic operators except exponentiation
4588 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4589 L : constant Node_Id := Left_Opnd (N);
4590 R : constant Node_Id := Right_Opnd (N);
4591 TL : constant Entity_Id := Base_Type (Etype (L));
4592 TR : constant Entity_Id := Base_Type (Etype (R));
4593 T : Entity_Id;
4594 Rop : Node_Id;
4596 B_Typ : constant Entity_Id := Base_Type (Typ);
4597 -- We do the resolution using the base type, because intermediate values
4598 -- in expressions always are of the base type, not a subtype of it.
4600 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4601 -- Returns True if N is in a context that expects "any real type"
4603 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4604 -- Return True iff given type is Integer or universal real/integer
4606 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4607 -- Choose type of integer literal in fixed-point operation to conform
4608 -- to available fixed-point type. T is the type of the other operand,
4609 -- which is needed to determine the expected type of N.
4611 procedure Set_Operand_Type (N : Node_Id);
4612 -- Set operand type to T if universal
4614 -------------------------------
4615 -- Expected_Type_Is_Any_Real --
4616 -------------------------------
4618 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4619 begin
4620 -- N is the expression after "delta" in a fixed_point_definition;
4621 -- see RM-3.5.9(6):
4623 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4624 N_Decimal_Fixed_Point_Definition,
4626 -- N is one of the bounds in a real_range_specification;
4627 -- see RM-3.5.7(5):
4629 N_Real_Range_Specification,
4631 -- N is the expression of a delta_constraint;
4632 -- see RM-J.3(3):
4634 N_Delta_Constraint);
4635 end Expected_Type_Is_Any_Real;
4637 -----------------------------
4638 -- Is_Integer_Or_Universal --
4639 -----------------------------
4641 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
4642 T : Entity_Id;
4643 Index : Interp_Index;
4644 It : Interp;
4646 begin
4647 if not Is_Overloaded (N) then
4648 T := Etype (N);
4649 return Base_Type (T) = Base_Type (Standard_Integer)
4650 or else T = Universal_Integer
4651 or else T = Universal_Real;
4652 else
4653 Get_First_Interp (N, Index, It);
4654 while Present (It.Typ) loop
4655 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
4656 or else It.Typ = Universal_Integer
4657 or else It.Typ = Universal_Real
4658 then
4659 return True;
4660 end if;
4662 Get_Next_Interp (Index, It);
4663 end loop;
4664 end if;
4666 return False;
4667 end Is_Integer_Or_Universal;
4669 ----------------------------
4670 -- Set_Mixed_Mode_Operand --
4671 ----------------------------
4673 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
4674 Index : Interp_Index;
4675 It : Interp;
4677 begin
4678 if Universal_Interpretation (N) = Universal_Integer then
4680 -- A universal integer literal is resolved as standard integer
4681 -- except in the case of a fixed-point result, where we leave it
4682 -- as universal (to be handled by Exp_Fixd later on)
4684 if Is_Fixed_Point_Type (T) then
4685 Resolve (N, Universal_Integer);
4686 else
4687 Resolve (N, Standard_Integer);
4688 end if;
4690 elsif Universal_Interpretation (N) = Universal_Real
4691 and then (T = Base_Type (Standard_Integer)
4692 or else T = Universal_Integer
4693 or else T = Universal_Real)
4694 then
4695 -- A universal real can appear in a fixed-type context. We resolve
4696 -- the literal with that context, even though this might raise an
4697 -- exception prematurely (the other operand may be zero).
4699 Resolve (N, B_Typ);
4701 elsif Etype (N) = Base_Type (Standard_Integer)
4702 and then T = Universal_Real
4703 and then Is_Overloaded (N)
4704 then
4705 -- Integer arg in mixed-mode operation. Resolve with universal
4706 -- type, in case preference rule must be applied.
4708 Resolve (N, Universal_Integer);
4710 elsif Etype (N) = T
4711 and then B_Typ /= Universal_Fixed
4712 then
4713 -- Not a mixed-mode operation, resolve with context
4715 Resolve (N, B_Typ);
4717 elsif Etype (N) = Any_Fixed then
4719 -- N may itself be a mixed-mode operation, so use context type
4721 Resolve (N, B_Typ);
4723 elsif Is_Fixed_Point_Type (T)
4724 and then B_Typ = Universal_Fixed
4725 and then Is_Overloaded (N)
4726 then
4727 -- Must be (fixed * fixed) operation, operand must have one
4728 -- compatible interpretation.
4730 Resolve (N, Any_Fixed);
4732 elsif Is_Fixed_Point_Type (B_Typ)
4733 and then (T = Universal_Real
4734 or else Is_Fixed_Point_Type (T))
4735 and then Is_Overloaded (N)
4736 then
4737 -- C * F(X) in a fixed context, where C is a real literal or a
4738 -- fixed-point expression. F must have either a fixed type
4739 -- interpretation or an integer interpretation, but not both.
4741 Get_First_Interp (N, Index, It);
4742 while Present (It.Typ) loop
4743 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
4744 if Analyzed (N) then
4745 Error_Msg_N ("ambiguous operand in fixed operation", N);
4746 else
4747 Resolve (N, Standard_Integer);
4748 end if;
4750 elsif Is_Fixed_Point_Type (It.Typ) then
4751 if Analyzed (N) then
4752 Error_Msg_N ("ambiguous operand in fixed operation", N);
4753 else
4754 Resolve (N, It.Typ);
4755 end if;
4756 end if;
4758 Get_Next_Interp (Index, It);
4759 end loop;
4761 -- Reanalyze the literal with the fixed type of the context. If
4762 -- context is Universal_Fixed, we are within a conversion, leave
4763 -- the literal as a universal real because there is no usable
4764 -- fixed type, and the target of the conversion plays no role in
4765 -- the resolution.
4767 declare
4768 Op2 : Node_Id;
4769 T2 : Entity_Id;
4771 begin
4772 if N = L then
4773 Op2 := R;
4774 else
4775 Op2 := L;
4776 end if;
4778 if B_Typ = Universal_Fixed
4779 and then Nkind (Op2) = N_Real_Literal
4780 then
4781 T2 := Universal_Real;
4782 else
4783 T2 := B_Typ;
4784 end if;
4786 Set_Analyzed (Op2, False);
4787 Resolve (Op2, T2);
4788 end;
4790 else
4791 Resolve (N);
4792 end if;
4793 end Set_Mixed_Mode_Operand;
4795 ----------------------
4796 -- Set_Operand_Type --
4797 ----------------------
4799 procedure Set_Operand_Type (N : Node_Id) is
4800 begin
4801 if Etype (N) = Universal_Integer
4802 or else Etype (N) = Universal_Real
4803 then
4804 Set_Etype (N, T);
4805 end if;
4806 end Set_Operand_Type;
4808 -- Start of processing for Resolve_Arithmetic_Op
4810 begin
4811 if Comes_From_Source (N)
4812 and then Ekind (Entity (N)) = E_Function
4813 and then Is_Imported (Entity (N))
4814 and then Is_Intrinsic_Subprogram (Entity (N))
4815 then
4816 Resolve_Intrinsic_Operator (N, Typ);
4817 return;
4819 -- Special-case for mixed-mode universal expressions or fixed point type
4820 -- operation: each argument is resolved separately. The same treatment
4821 -- is required if one of the operands of a fixed point operation is
4822 -- universal real, since in this case we don't do a conversion to a
4823 -- specific fixed-point type (instead the expander handles the case).
4825 -- Set the type of the node to its universal interpretation because
4826 -- legality checks on an exponentiation operand need the context.
4828 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
4829 and then Present (Universal_Interpretation (L))
4830 and then Present (Universal_Interpretation (R))
4831 then
4832 Set_Etype (N, B_Typ);
4833 Resolve (L, Universal_Interpretation (L));
4834 Resolve (R, Universal_Interpretation (R));
4836 elsif (B_Typ = Universal_Real
4837 or else Etype (N) = Universal_Fixed
4838 or else (Etype (N) = Any_Fixed
4839 and then Is_Fixed_Point_Type (B_Typ))
4840 or else (Is_Fixed_Point_Type (B_Typ)
4841 and then (Is_Integer_Or_Universal (L)
4842 or else
4843 Is_Integer_Or_Universal (R))))
4844 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4845 then
4846 if TL = Universal_Integer or else TR = Universal_Integer then
4847 Check_For_Visible_Operator (N, B_Typ);
4848 end if;
4850 -- If context is a fixed type and one operand is integer, the other
4851 -- is resolved with the type of the context.
4853 if Is_Fixed_Point_Type (B_Typ)
4854 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4855 or else TL = Universal_Integer)
4856 then
4857 Resolve (R, B_Typ);
4858 Resolve (L, TL);
4860 elsif Is_Fixed_Point_Type (B_Typ)
4861 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4862 or else TR = Universal_Integer)
4863 then
4864 Resolve (L, B_Typ);
4865 Resolve (R, TR);
4867 else
4868 Set_Mixed_Mode_Operand (L, TR);
4869 Set_Mixed_Mode_Operand (R, TL);
4870 end if;
4872 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4873 -- multiplying operators from being used when the expected type is
4874 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4875 -- some cases where the expected type is actually Any_Real;
4876 -- Expected_Type_Is_Any_Real takes care of that case.
4878 if Etype (N) = Universal_Fixed
4879 or else Etype (N) = Any_Fixed
4880 then
4881 if B_Typ = Universal_Fixed
4882 and then not Expected_Type_Is_Any_Real (N)
4883 and then not Nkind_In (Parent (N), N_Type_Conversion,
4884 N_Unchecked_Type_Conversion)
4885 then
4886 Error_Msg_N ("type cannot be determined from context!", N);
4887 Error_Msg_N ("\explicit conversion to result type required", N);
4889 Set_Etype (L, Any_Type);
4890 Set_Etype (R, Any_Type);
4892 else
4893 if Ada_Version = Ada_83
4894 and then Etype (N) = Universal_Fixed
4895 and then not
4896 Nkind_In (Parent (N), N_Type_Conversion,
4897 N_Unchecked_Type_Conversion)
4898 then
4899 Error_Msg_N
4900 ("(Ada 83) fixed-point operation "
4901 & "needs explicit conversion", N);
4902 end if;
4904 -- The expected type is "any real type" in contexts like
4906 -- type T is delta <universal_fixed-expression> ...
4908 -- in which case we need to set the type to Universal_Real
4909 -- so that static expression evaluation will work properly.
4911 if Expected_Type_Is_Any_Real (N) then
4912 Set_Etype (N, Universal_Real);
4913 else
4914 Set_Etype (N, B_Typ);
4915 end if;
4916 end if;
4918 elsif Is_Fixed_Point_Type (B_Typ)
4919 and then (Is_Integer_Or_Universal (L)
4920 or else Nkind (L) = N_Real_Literal
4921 or else Nkind (R) = N_Real_Literal
4922 or else Is_Integer_Or_Universal (R))
4923 then
4924 Set_Etype (N, B_Typ);
4926 elsif Etype (N) = Any_Fixed then
4928 -- If no previous errors, this is only possible if one operand is
4929 -- overloaded and the context is universal. Resolve as such.
4931 Set_Etype (N, B_Typ);
4932 end if;
4934 else
4935 if (TL = Universal_Integer or else TL = Universal_Real)
4936 and then
4937 (TR = Universal_Integer or else TR = Universal_Real)
4938 then
4939 Check_For_Visible_Operator (N, B_Typ);
4940 end if;
4942 -- If the context is Universal_Fixed and the operands are also
4943 -- universal fixed, this is an error, unless there is only one
4944 -- applicable fixed_point type (usually Duration).
4946 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
4947 T := Unique_Fixed_Point_Type (N);
4949 if T = Any_Type then
4950 Set_Etype (N, T);
4951 return;
4952 else
4953 Resolve (L, T);
4954 Resolve (R, T);
4955 end if;
4957 else
4958 Resolve (L, B_Typ);
4959 Resolve (R, B_Typ);
4960 end if;
4962 -- If one of the arguments was resolved to a non-universal type.
4963 -- label the result of the operation itself with the same type.
4964 -- Do the same for the universal argument, if any.
4966 T := Intersect_Types (L, R);
4967 Set_Etype (N, Base_Type (T));
4968 Set_Operand_Type (L);
4969 Set_Operand_Type (R);
4970 end if;
4972 Generate_Operator_Reference (N, Typ);
4973 Analyze_Dimension (N);
4974 Eval_Arithmetic_Op (N);
4976 -- In SPARK, a multiplication or division with operands of fixed point
4977 -- types shall be qualified or explicitly converted to identify the
4978 -- result type.
4980 if (Is_Fixed_Point_Type (Etype (L))
4981 or else Is_Fixed_Point_Type (Etype (R)))
4982 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4983 and then
4984 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
4985 then
4986 Check_SPARK_Restriction
4987 ("operation should be qualified or explicitly converted", N);
4988 end if;
4990 -- Set overflow and division checking bit
4992 if Nkind (N) in N_Op then
4993 if not Overflow_Checks_Suppressed (Etype (N)) then
4994 Enable_Overflow_Check (N);
4995 end if;
4997 -- Give warning if explicit division by zero
4999 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5000 and then not Division_Checks_Suppressed (Etype (N))
5001 then
5002 Rop := Right_Opnd (N);
5004 if Compile_Time_Known_Value (Rop)
5005 and then ((Is_Integer_Type (Etype (Rop))
5006 and then Expr_Value (Rop) = Uint_0)
5007 or else
5008 (Is_Real_Type (Etype (Rop))
5009 and then Expr_Value_R (Rop) = Ureal_0))
5010 then
5011 -- Specialize the warning message according to the operation.
5012 -- The following warnings are for the case
5014 case Nkind (N) is
5015 when N_Op_Divide =>
5017 -- For division, we have two cases, for float division
5018 -- of an unconstrained float type, on a machine where
5019 -- Machine_Overflows is false, we don't get an exception
5020 -- at run-time, but rather an infinity or Nan. The Nan
5021 -- case is pretty obscure, so just warn about infinities.
5023 if Is_Floating_Point_Type (Typ)
5024 and then not Is_Constrained (Typ)
5025 and then not Machine_Overflows_On_Target
5026 then
5027 Error_Msg_N
5028 ("float division by zero, " &
5029 "may generate '+'/'- infinity?", Right_Opnd (N));
5031 -- For all other cases, we get a Constraint_Error
5033 else
5034 Apply_Compile_Time_Constraint_Error
5035 (N, "division by zero?", CE_Divide_By_Zero,
5036 Loc => Sloc (Right_Opnd (N)));
5037 end if;
5039 when N_Op_Rem =>
5040 Apply_Compile_Time_Constraint_Error
5041 (N, "rem with zero divisor?", CE_Divide_By_Zero,
5042 Loc => Sloc (Right_Opnd (N)));
5044 when N_Op_Mod =>
5045 Apply_Compile_Time_Constraint_Error
5046 (N, "mod with zero divisor?", CE_Divide_By_Zero,
5047 Loc => Sloc (Right_Opnd (N)));
5049 -- Division by zero can only happen with division, rem,
5050 -- and mod operations.
5052 when others =>
5053 raise Program_Error;
5054 end case;
5056 -- Otherwise just set the flag to check at run time
5058 else
5059 Activate_Division_Check (N);
5060 end if;
5061 end if;
5063 -- If Restriction No_Implicit_Conditionals is active, then it is
5064 -- violated if either operand can be negative for mod, or for rem
5065 -- if both operands can be negative.
5067 if Restriction_Check_Required (No_Implicit_Conditionals)
5068 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5069 then
5070 declare
5071 Lo : Uint;
5072 Hi : Uint;
5073 OK : Boolean;
5075 LNeg : Boolean;
5076 RNeg : Boolean;
5077 -- Set if corresponding operand might be negative
5079 begin
5080 Determine_Range
5081 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5082 LNeg := (not OK) or else Lo < 0;
5084 Determine_Range
5085 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5086 RNeg := (not OK) or else Lo < 0;
5088 -- Check if we will be generating conditionals. There are two
5089 -- cases where that can happen, first for REM, the only case
5090 -- is largest negative integer mod -1, where the division can
5091 -- overflow, but we still have to give the right result. The
5092 -- front end generates a test for this annoying case. Here we
5093 -- just test if both operands can be negative (that's what the
5094 -- expander does, so we match its logic here).
5096 -- The second case is mod where either operand can be negative.
5097 -- In this case, the back end has to generate additional tests.
5099 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5100 or else
5101 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5102 then
5103 Check_Restriction (No_Implicit_Conditionals, N);
5104 end if;
5105 end;
5106 end if;
5107 end if;
5109 Check_Unset_Reference (L);
5110 Check_Unset_Reference (R);
5111 end Resolve_Arithmetic_Op;
5113 ------------------
5114 -- Resolve_Call --
5115 ------------------
5117 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5118 Loc : constant Source_Ptr := Sloc (N);
5119 Subp : constant Node_Id := Name (N);
5120 Nam : Entity_Id;
5121 I : Interp_Index;
5122 It : Interp;
5123 Norm_OK : Boolean;
5124 Scop : Entity_Id;
5125 Rtype : Entity_Id;
5127 function Same_Or_Aliased_Subprograms
5128 (S : Entity_Id;
5129 E : Entity_Id) return Boolean;
5130 -- Returns True if the subprogram entity S is the same as E or else
5131 -- S is an alias of E.
5133 ---------------------------------
5134 -- Same_Or_Aliased_Subprograms --
5135 ---------------------------------
5137 function Same_Or_Aliased_Subprograms
5138 (S : Entity_Id;
5139 E : Entity_Id) return Boolean
5141 Subp_Alias : constant Entity_Id := Alias (S);
5142 begin
5143 return S = E
5144 or else (Present (Subp_Alias) and then Subp_Alias = E);
5145 end Same_Or_Aliased_Subprograms;
5147 -- Start of processing for Resolve_Call
5149 begin
5150 -- The context imposes a unique interpretation with type Typ on a
5151 -- procedure or function call. Find the entity of the subprogram that
5152 -- yields the expected type, and propagate the corresponding formal
5153 -- constraints on the actuals. The caller has established that an
5154 -- interpretation exists, and emitted an error if not unique.
5156 -- First deal with the case of a call to an access-to-subprogram,
5157 -- dereference made explicit in Analyze_Call.
5159 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5160 if not Is_Overloaded (Subp) then
5161 Nam := Etype (Subp);
5163 else
5164 -- Find the interpretation whose type (a subprogram type) has a
5165 -- return type that is compatible with the context. Analysis of
5166 -- the node has established that one exists.
5168 Nam := Empty;
5170 Get_First_Interp (Subp, I, It);
5171 while Present (It.Typ) loop
5172 if Covers (Typ, Etype (It.Typ)) then
5173 Nam := It.Typ;
5174 exit;
5175 end if;
5177 Get_Next_Interp (I, It);
5178 end loop;
5180 if No (Nam) then
5181 raise Program_Error;
5182 end if;
5183 end if;
5185 -- If the prefix is not an entity, then resolve it
5187 if not Is_Entity_Name (Subp) then
5188 Resolve (Subp, Nam);
5189 end if;
5191 -- For an indirect call, we always invalidate checks, since we do not
5192 -- know whether the subprogram is local or global. Yes we could do
5193 -- better here, e.g. by knowing that there are no local subprograms,
5194 -- but it does not seem worth the effort. Similarly, we kill all
5195 -- knowledge of current constant values.
5197 Kill_Current_Values;
5199 -- If this is a procedure call which is really an entry call, do
5200 -- the conversion of the procedure call to an entry call. Protected
5201 -- operations use the same circuitry because the name in the call
5202 -- can be an arbitrary expression with special resolution rules.
5204 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5205 or else (Is_Entity_Name (Subp)
5206 and then Ekind (Entity (Subp)) = E_Entry)
5207 then
5208 Resolve_Entry_Call (N, Typ);
5209 Check_Elab_Call (N);
5211 -- Kill checks and constant values, as above for indirect case
5212 -- Who knows what happens when another task is activated?
5214 Kill_Current_Values;
5215 return;
5217 -- Normal subprogram call with name established in Resolve
5219 elsif not (Is_Type (Entity (Subp))) then
5220 Nam := Entity (Subp);
5221 Set_Entity_With_Style_Check (Subp, Nam);
5223 -- Otherwise we must have the case of an overloaded call
5225 else
5226 pragma Assert (Is_Overloaded (Subp));
5228 -- Initialize Nam to prevent warning (we know it will be assigned
5229 -- in the loop below, but the compiler does not know that).
5231 Nam := Empty;
5233 Get_First_Interp (Subp, I, It);
5234 while Present (It.Typ) loop
5235 if Covers (Typ, It.Typ) then
5236 Nam := It.Nam;
5237 Set_Entity_With_Style_Check (Subp, Nam);
5238 exit;
5239 end if;
5241 Get_Next_Interp (I, It);
5242 end loop;
5243 end if;
5245 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5246 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5247 and then Nkind (Subp) /= N_Explicit_Dereference
5248 and then Present (Parameter_Associations (N))
5249 then
5250 -- The prefix is a parameterless function call that returns an access
5251 -- to subprogram. If parameters are present in the current call, add
5252 -- add an explicit dereference. We use the base type here because
5253 -- within an instance these may be subtypes.
5255 -- The dereference is added either in Analyze_Call or here. Should
5256 -- be consolidated ???
5258 Set_Is_Overloaded (Subp, False);
5259 Set_Etype (Subp, Etype (Nam));
5260 Insert_Explicit_Dereference (Subp);
5261 Nam := Designated_Type (Etype (Nam));
5262 Resolve (Subp, Nam);
5263 end if;
5265 -- Check that a call to Current_Task does not occur in an entry body
5267 if Is_RTE (Nam, RE_Current_Task) then
5268 declare
5269 P : Node_Id;
5271 begin
5272 P := N;
5273 loop
5274 P := Parent (P);
5276 -- Exclude calls that occur within the default of a formal
5277 -- parameter of the entry, since those are evaluated outside
5278 -- of the body.
5280 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5282 if Nkind (P) = N_Entry_Body
5283 or else (Nkind (P) = N_Subprogram_Body
5284 and then Is_Entry_Barrier_Function (P))
5285 then
5286 Rtype := Etype (N);
5287 Error_Msg_NE
5288 ("?& should not be used in entry body (RM C.7(17))",
5289 N, Nam);
5290 Error_Msg_NE
5291 ("\Program_Error will be raised at run time?", N, Nam);
5292 Rewrite (N,
5293 Make_Raise_Program_Error (Loc,
5294 Reason => PE_Current_Task_In_Entry_Body));
5295 Set_Etype (N, Rtype);
5296 return;
5297 end if;
5298 end loop;
5299 end;
5300 end if;
5302 -- Check that a procedure call does not occur in the context of the
5303 -- entry call statement of a conditional or timed entry call. Note that
5304 -- the case of a call to a subprogram renaming of an entry will also be
5305 -- rejected. The test for N not being an N_Entry_Call_Statement is
5306 -- defensive, covering the possibility that the processing of entry
5307 -- calls might reach this point due to later modifications of the code
5308 -- above.
5310 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5311 and then Nkind (N) /= N_Entry_Call_Statement
5312 and then Entry_Call_Statement (Parent (N)) = N
5313 then
5314 if Ada_Version < Ada_2005 then
5315 Error_Msg_N ("entry call required in select statement", N);
5317 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5318 -- for a procedure_or_entry_call, the procedure_name or
5319 -- procedure_prefix of the procedure_call_statement shall denote
5320 -- an entry renamed by a procedure, or (a view of) a primitive
5321 -- subprogram of a limited interface whose first parameter is
5322 -- a controlling parameter.
5324 elsif Nkind (N) = N_Procedure_Call_Statement
5325 and then not Is_Renamed_Entry (Nam)
5326 and then not Is_Controlling_Limited_Procedure (Nam)
5327 then
5328 Error_Msg_N
5329 ("entry call or dispatching primitive of interface required", N);
5330 end if;
5331 end if;
5333 -- Check that this is not a call to a protected procedure or entry from
5334 -- within a protected function.
5336 Check_Internal_Protected_Use (N, Nam);
5338 -- Freeze the subprogram name if not in a spec-expression. Note that we
5339 -- freeze procedure calls as well as function calls. Procedure calls are
5340 -- not frozen according to the rules (RM 13.14(14)) because it is
5341 -- impossible to have a procedure call to a non-frozen procedure in pure
5342 -- Ada, but in the code that we generate in the expander, this rule
5343 -- needs extending because we can generate procedure calls that need
5344 -- freezing.
5346 -- In Ada 2012, expression functions may be called within pre/post
5347 -- conditions of subsequent functions or expression functions. Such
5348 -- calls do not freeze when they appear within generated bodies, which
5349 -- would place the freeze node in the wrong scope. An expression
5350 -- function is frozen in the usual fashion, by the appearance of a real
5351 -- body, or at the end of a declarative part.
5353 if Is_Entity_Name (Subp) and then not In_Spec_Expression
5354 and then
5355 (not Is_Expression_Function (Entity (Subp))
5356 or else Scope (Entity (Subp)) = Current_Scope)
5357 then
5358 Freeze_Expression (Subp);
5359 end if;
5361 -- For a predefined operator, the type of the result is the type imposed
5362 -- by context, except for a predefined operation on universal fixed.
5363 -- Otherwise The type of the call is the type returned by the subprogram
5364 -- being called.
5366 if Is_Predefined_Op (Nam) then
5367 if Etype (N) /= Universal_Fixed then
5368 Set_Etype (N, Typ);
5369 end if;
5371 -- If the subprogram returns an array type, and the context requires the
5372 -- component type of that array type, the node is really an indexing of
5373 -- the parameterless call. Resolve as such. A pathological case occurs
5374 -- when the type of the component is an access to the array type. In
5375 -- this case the call is truly ambiguous.
5377 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5378 and then
5379 ((Is_Array_Type (Etype (Nam))
5380 and then Covers (Typ, Component_Type (Etype (Nam))))
5381 or else (Is_Access_Type (Etype (Nam))
5382 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5383 and then
5384 Covers
5385 (Typ,
5386 Component_Type (Designated_Type (Etype (Nam))))))
5387 then
5388 declare
5389 Index_Node : Node_Id;
5390 New_Subp : Node_Id;
5391 Ret_Type : constant Entity_Id := Etype (Nam);
5393 begin
5394 if Is_Access_Type (Ret_Type)
5395 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5396 then
5397 Error_Msg_N
5398 ("cannot disambiguate function call and indexing", N);
5399 else
5400 New_Subp := Relocate_Node (Subp);
5401 Set_Entity (Subp, Nam);
5403 if (Is_Array_Type (Ret_Type)
5404 and then Component_Type (Ret_Type) /= Any_Type)
5405 or else
5406 (Is_Access_Type (Ret_Type)
5407 and then
5408 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5409 then
5410 if Needs_No_Actuals (Nam) then
5412 -- Indexed call to a parameterless function
5414 Index_Node :=
5415 Make_Indexed_Component (Loc,
5416 Prefix =>
5417 Make_Function_Call (Loc,
5418 Name => New_Subp),
5419 Expressions => Parameter_Associations (N));
5420 else
5421 -- An Ada 2005 prefixed call to a primitive operation
5422 -- whose first parameter is the prefix. This prefix was
5423 -- prepended to the parameter list, which is actually a
5424 -- list of indexes. Remove the prefix in order to build
5425 -- the proper indexed component.
5427 Index_Node :=
5428 Make_Indexed_Component (Loc,
5429 Prefix =>
5430 Make_Function_Call (Loc,
5431 Name => New_Subp,
5432 Parameter_Associations =>
5433 New_List
5434 (Remove_Head (Parameter_Associations (N)))),
5435 Expressions => Parameter_Associations (N));
5436 end if;
5438 -- Preserve the parenthesis count of the node
5440 Set_Paren_Count (Index_Node, Paren_Count (N));
5442 -- Since we are correcting a node classification error made
5443 -- by the parser, we call Replace rather than Rewrite.
5445 Replace (N, Index_Node);
5447 Set_Etype (Prefix (N), Ret_Type);
5448 Set_Etype (N, Typ);
5449 Resolve_Indexed_Component (N, Typ);
5450 Check_Elab_Call (Prefix (N));
5451 end if;
5452 end if;
5454 return;
5455 end;
5457 else
5458 Set_Etype (N, Etype (Nam));
5459 end if;
5461 -- In the case where the call is to an overloaded subprogram, Analyze
5462 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5463 -- such a case Normalize_Actuals needs to be called once more to order
5464 -- the actuals correctly. Otherwise the call will have the ordering
5465 -- given by the last overloaded subprogram whether this is the correct
5466 -- one being called or not.
5468 if Is_Overloaded (Subp) then
5469 Normalize_Actuals (N, Nam, False, Norm_OK);
5470 pragma Assert (Norm_OK);
5471 end if;
5473 -- In any case, call is fully resolved now. Reset Overload flag, to
5474 -- prevent subsequent overload resolution if node is analyzed again
5476 Set_Is_Overloaded (Subp, False);
5477 Set_Is_Overloaded (N, False);
5479 -- If we are calling the current subprogram from immediately within its
5480 -- body, then that is the case where we can sometimes detect cases of
5481 -- infinite recursion statically. Do not try this in case restriction
5482 -- No_Recursion is in effect anyway, and do it only for source calls.
5484 if Comes_From_Source (N) then
5485 Scop := Current_Scope;
5487 -- Issue warning for possible infinite recursion in the absence
5488 -- of the No_Recursion restriction.
5490 if Same_Or_Aliased_Subprograms (Nam, Scop)
5491 and then not Restriction_Active (No_Recursion)
5492 and then Check_Infinite_Recursion (N)
5493 then
5494 -- Here we detected and flagged an infinite recursion, so we do
5495 -- not need to test the case below for further warnings. Also we
5496 -- are all done if we now have a raise SE node.
5498 if Nkind (N) = N_Raise_Storage_Error then
5499 return;
5500 end if;
5502 -- If call is to immediately containing subprogram, then check for
5503 -- the case of a possible run-time detectable infinite recursion.
5505 else
5506 Scope_Loop : while Scop /= Standard_Standard loop
5507 if Same_Or_Aliased_Subprograms (Nam, Scop) then
5509 -- Although in general case, recursion is not statically
5510 -- checkable, the case of calling an immediately containing
5511 -- subprogram is easy to catch.
5513 Check_Restriction (No_Recursion, N);
5515 -- If the recursive call is to a parameterless subprogram,
5516 -- then even if we can't statically detect infinite
5517 -- recursion, this is pretty suspicious, and we output a
5518 -- warning. Furthermore, we will try later to detect some
5519 -- cases here at run time by expanding checking code (see
5520 -- Detect_Infinite_Recursion in package Exp_Ch6).
5522 -- If the recursive call is within a handler, do not emit a
5523 -- warning, because this is a common idiom: loop until input
5524 -- is correct, catch illegal input in handler and restart.
5526 if No (First_Formal (Nam))
5527 and then Etype (Nam) = Standard_Void_Type
5528 and then not Error_Posted (N)
5529 and then Nkind (Parent (N)) /= N_Exception_Handler
5530 then
5531 -- For the case of a procedure call. We give the message
5532 -- only if the call is the first statement in a sequence
5533 -- of statements, or if all previous statements are
5534 -- simple assignments. This is simply a heuristic to
5535 -- decrease false positives, without losing too many good
5536 -- warnings. The idea is that these previous statements
5537 -- may affect global variables the procedure depends on.
5538 -- We also exclude raise statements, that may arise from
5539 -- constraint checks and are probably unrelated to the
5540 -- intended control flow.
5542 if Nkind (N) = N_Procedure_Call_Statement
5543 and then Is_List_Member (N)
5544 then
5545 declare
5546 P : Node_Id;
5547 begin
5548 P := Prev (N);
5549 while Present (P) loop
5550 if not Nkind_In (P,
5551 N_Assignment_Statement,
5552 N_Raise_Constraint_Error)
5553 then
5554 exit Scope_Loop;
5555 end if;
5557 Prev (P);
5558 end loop;
5559 end;
5560 end if;
5562 -- Do not give warning if we are in a conditional context
5564 declare
5565 K : constant Node_Kind := Nkind (Parent (N));
5566 begin
5567 if (K = N_Loop_Statement
5568 and then Present (Iteration_Scheme (Parent (N))))
5569 or else K = N_If_Statement
5570 or else K = N_Elsif_Part
5571 or else K = N_Case_Statement_Alternative
5572 then
5573 exit Scope_Loop;
5574 end if;
5575 end;
5577 -- Here warning is to be issued
5579 Set_Has_Recursive_Call (Nam);
5580 Error_Msg_N
5581 ("?possible infinite recursion!", N);
5582 Error_Msg_N
5583 ("\?Storage_Error may be raised at run time!", N);
5584 end if;
5586 exit Scope_Loop;
5587 end if;
5589 Scop := Scope (Scop);
5590 end loop Scope_Loop;
5591 end if;
5592 end if;
5594 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5596 Check_Obsolescent_2005_Entity (Nam, Subp);
5598 -- If subprogram name is a predefined operator, it was given in
5599 -- functional notation. Replace call node with operator node, so
5600 -- that actuals can be resolved appropriately.
5602 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
5603 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
5604 return;
5606 elsif Present (Alias (Nam))
5607 and then Is_Predefined_Op (Alias (Nam))
5608 then
5609 Resolve_Actuals (N, Nam);
5610 Make_Call_Into_Operator (N, Typ, Alias (Nam));
5611 return;
5612 end if;
5614 -- Create a transient scope if the resulting type requires it
5616 -- There are several notable exceptions:
5618 -- a) In init procs, the transient scope overhead is not needed, and is
5619 -- even incorrect when the call is a nested initialization call for a
5620 -- component whose expansion may generate adjust calls. However, if the
5621 -- call is some other procedure call within an initialization procedure
5622 -- (for example a call to Create_Task in the init_proc of the task
5623 -- run-time record) a transient scope must be created around this call.
5625 -- b) Enumeration literal pseudo-calls need no transient scope
5627 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5628 -- functions) do not use the secondary stack even though the return
5629 -- type may be unconstrained.
5631 -- d) Calls to a build-in-place function, since such functions may
5632 -- allocate their result directly in a target object, and cases where
5633 -- the result does get allocated in the secondary stack are checked for
5634 -- within the specialized Exp_Ch6 procedures for expanding those
5635 -- build-in-place calls.
5637 -- e) If the subprogram is marked Inline_Always, then even if it returns
5638 -- an unconstrained type the call does not require use of the secondary
5639 -- stack. However, inlining will only take place if the body to inline
5640 -- is already present. It may not be available if e.g. the subprogram is
5641 -- declared in a child instance.
5643 -- If this is an initialization call for a type whose construction
5644 -- uses the secondary stack, and it is not a nested call to initialize
5645 -- a component, we do need to create a transient scope for it. We
5646 -- check for this by traversing the type in Check_Initialization_Call.
5648 if Is_Inlined (Nam)
5649 and then Has_Pragma_Inline_Always (Nam)
5650 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5651 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5652 and then not Debug_Flag_Dot_K
5653 then
5654 null;
5656 elsif Is_Inlined (Nam)
5657 and then Has_Pragma_Inline (Nam)
5658 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5659 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5660 and then Debug_Flag_Dot_K
5661 then
5662 null;
5664 elsif Ekind (Nam) = E_Enumeration_Literal
5665 or else Is_Build_In_Place_Function (Nam)
5666 or else Is_Intrinsic_Subprogram (Nam)
5667 then
5668 null;
5670 elsif Full_Expander_Active
5671 and then Is_Type (Etype (Nam))
5672 and then Requires_Transient_Scope (Etype (Nam))
5673 and then
5674 (not Within_Init_Proc
5675 or else
5676 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
5677 then
5678 Establish_Transient_Scope (N, Sec_Stack => True);
5680 -- If the call appears within the bounds of a loop, it will
5681 -- be rewritten and reanalyzed, nothing left to do here.
5683 if Nkind (N) /= N_Function_Call then
5684 return;
5685 end if;
5687 elsif Is_Init_Proc (Nam)
5688 and then not Within_Init_Proc
5689 then
5690 Check_Initialization_Call (N, Nam);
5691 end if;
5693 -- A protected function cannot be called within the definition of the
5694 -- enclosing protected type.
5696 if Is_Protected_Type (Scope (Nam))
5697 and then In_Open_Scopes (Scope (Nam))
5698 and then not Has_Completion (Scope (Nam))
5699 then
5700 Error_Msg_NE
5701 ("& cannot be called before end of protected definition", N, Nam);
5702 end if;
5704 -- Propagate interpretation to actuals, and add default expressions
5705 -- where needed.
5707 if Present (First_Formal (Nam)) then
5708 Resolve_Actuals (N, Nam);
5710 -- Overloaded literals are rewritten as function calls, for purpose of
5711 -- resolution. After resolution, we can replace the call with the
5712 -- literal itself.
5714 elsif Ekind (Nam) = E_Enumeration_Literal then
5715 Copy_Node (Subp, N);
5716 Resolve_Entity_Name (N, Typ);
5718 -- Avoid validation, since it is a static function call
5720 Generate_Reference (Nam, Subp);
5721 return;
5722 end if;
5724 -- If the subprogram is not global, then kill all saved values and
5725 -- checks. This is a bit conservative, since in many cases we could do
5726 -- better, but it is not worth the effort. Similarly, we kill constant
5727 -- values. However we do not need to do this for internal entities
5728 -- (unless they are inherited user-defined subprograms), since they
5729 -- are not in the business of molesting local values.
5731 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5732 -- kill all checks and values for calls to global subprograms. This
5733 -- takes care of the case where an access to a local subprogram is
5734 -- taken, and could be passed directly or indirectly and then called
5735 -- from almost any context.
5737 -- Note: we do not do this step till after resolving the actuals. That
5738 -- way we still take advantage of the current value information while
5739 -- scanning the actuals.
5741 -- We suppress killing values if we are processing the nodes associated
5742 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5743 -- type kills all the values as part of analyzing the code that
5744 -- initializes the dispatch tables.
5746 if Inside_Freezing_Actions = 0
5747 and then (not Is_Library_Level_Entity (Nam)
5748 or else Suppress_Value_Tracking_On_Call
5749 (Nearest_Dynamic_Scope (Current_Scope)))
5750 and then (Comes_From_Source (Nam)
5751 or else (Present (Alias (Nam))
5752 and then Comes_From_Source (Alias (Nam))))
5753 then
5754 Kill_Current_Values;
5755 end if;
5757 -- If we are warning about unread OUT parameters, this is the place to
5758 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5759 -- after the above call to Kill_Current_Values (since that call clears
5760 -- the Last_Assignment field of all local variables).
5762 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
5763 and then Comes_From_Source (N)
5764 and then In_Extended_Main_Source_Unit (N)
5765 then
5766 declare
5767 F : Entity_Id;
5768 A : Node_Id;
5770 begin
5771 F := First_Formal (Nam);
5772 A := First_Actual (N);
5773 while Present (F) and then Present (A) loop
5774 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
5775 and then Warn_On_Modified_As_Out_Parameter (F)
5776 and then Is_Entity_Name (A)
5777 and then Present (Entity (A))
5778 and then Comes_From_Source (N)
5779 and then Safe_To_Capture_Value (N, Entity (A))
5780 then
5781 Set_Last_Assignment (Entity (A), A);
5782 end if;
5784 Next_Formal (F);
5785 Next_Actual (A);
5786 end loop;
5787 end;
5788 end if;
5790 -- If the subprogram is a primitive operation, check whether or not
5791 -- it is a correct dispatching call.
5793 if Is_Overloadable (Nam)
5794 and then Is_Dispatching_Operation (Nam)
5795 then
5796 Check_Dispatching_Call (N);
5798 elsif Ekind (Nam) /= E_Subprogram_Type
5799 and then Is_Abstract_Subprogram (Nam)
5800 and then not In_Instance
5801 then
5802 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
5803 end if;
5805 -- If this is a dispatching call, generate the appropriate reference,
5806 -- for better source navigation in GPS.
5808 if Is_Overloadable (Nam)
5809 and then Present (Controlling_Argument (N))
5810 then
5811 Generate_Reference (Nam, Subp, 'R');
5813 -- Normal case, not a dispatching call: generate a call reference
5815 else
5816 Generate_Reference (Nam, Subp, 's');
5817 end if;
5819 if Is_Intrinsic_Subprogram (Nam) then
5820 Check_Intrinsic_Call (N);
5821 end if;
5823 -- Check for violation of restriction No_Specific_Termination_Handlers
5824 -- and warn on a potentially blocking call to Abort_Task.
5826 if Restriction_Check_Required (No_Specific_Termination_Handlers)
5827 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
5828 or else
5829 Is_RTE (Nam, RE_Specific_Handler))
5830 then
5831 Check_Restriction (No_Specific_Termination_Handlers, N);
5833 elsif Is_RTE (Nam, RE_Abort_Task) then
5834 Check_Potentially_Blocking_Operation (N);
5835 end if;
5837 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
5838 -- timing event violates restriction No_Relative_Delay (AI-0211). We
5839 -- need to check the second argument to determine whether it is an
5840 -- absolute or relative timing event.
5842 if Restriction_Check_Required (No_Relative_Delay)
5843 and then Is_RTE (Nam, RE_Set_Handler)
5844 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
5845 then
5846 Check_Restriction (No_Relative_Delay, N);
5847 end if;
5849 -- Issue an error for a call to an eliminated subprogram. This routine
5850 -- will not perform the check if the call appears within a default
5851 -- expression.
5853 Check_For_Eliminated_Subprogram (Subp, Nam);
5855 -- In formal mode, the primitive operations of a tagged type or type
5856 -- extension do not include functions that return the tagged type.
5858 -- Commented out as the call to Is_Inherited_Operation_For_Type may
5859 -- cause an error because the type entity of the parent node of
5860 -- Entity (Name (N) may not be set. ???
5861 -- So why not just add a guard ???
5863 -- if Nkind (N) = N_Function_Call
5864 -- and then Is_Tagged_Type (Etype (N))
5865 -- and then Is_Entity_Name (Name (N))
5866 -- and then Is_Inherited_Operation_For_Type
5867 -- (Entity (Name (N)), Etype (N))
5868 -- then
5869 -- Check_SPARK_Restriction ("function not inherited", N);
5870 -- end if;
5872 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
5873 -- class-wide and the call dispatches on result in a context that does
5874 -- not provide a tag, the call raises Program_Error.
5876 if Nkind (N) = N_Function_Call
5877 and then In_Instance
5878 and then Is_Generic_Actual_Type (Typ)
5879 and then Is_Class_Wide_Type (Typ)
5880 and then Has_Controlling_Result (Nam)
5881 and then Nkind (Parent (N)) = N_Object_Declaration
5882 then
5883 -- Verify that none of the formals are controlling
5885 declare
5886 Call_OK : Boolean := False;
5887 F : Entity_Id;
5889 begin
5890 F := First_Formal (Nam);
5891 while Present (F) loop
5892 if Is_Controlling_Formal (F) then
5893 Call_OK := True;
5894 exit;
5895 end if;
5897 Next_Formal (F);
5898 end loop;
5900 if not Call_OK then
5901 Error_Msg_N ("!? cannot determine tag of result", N);
5902 Error_Msg_N ("!? Program_Error will be raised", N);
5903 Insert_Action (N,
5904 Make_Raise_Program_Error (Sloc (N),
5905 Reason => PE_Explicit_Raise));
5906 end if;
5907 end;
5908 end if;
5910 -- Check the dimensions of the actuals in the call. For function calls,
5911 -- propagate the dimensions from the returned type to N.
5913 Analyze_Dimension_Call (N, Nam);
5915 -- All done, evaluate call and deal with elaboration issues
5917 Eval_Call (N);
5918 Check_Elab_Call (N);
5919 Warn_On_Overlapping_Actuals (Nam, N);
5920 end Resolve_Call;
5922 -----------------------------
5923 -- Resolve_Case_Expression --
5924 -----------------------------
5926 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
5927 Alt : Node_Id;
5929 begin
5930 Alt := First (Alternatives (N));
5931 while Present (Alt) loop
5932 Resolve (Expression (Alt), Typ);
5933 Next (Alt);
5934 end loop;
5936 Set_Etype (N, Typ);
5937 Eval_Case_Expression (N);
5938 end Resolve_Case_Expression;
5940 -------------------------------
5941 -- Resolve_Character_Literal --
5942 -------------------------------
5944 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
5945 B_Typ : constant Entity_Id := Base_Type (Typ);
5946 C : Entity_Id;
5948 begin
5949 -- Verify that the character does belong to the type of the context
5951 Set_Etype (N, B_Typ);
5952 Eval_Character_Literal (N);
5954 -- Wide_Wide_Character literals must always be defined, since the set
5955 -- of wide wide character literals is complete, i.e. if a character
5956 -- literal is accepted by the parser, then it is OK for wide wide
5957 -- character (out of range character literals are rejected).
5959 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5960 return;
5962 -- Always accept character literal for type Any_Character, which
5963 -- occurs in error situations and in comparisons of literals, both
5964 -- of which should accept all literals.
5966 elsif B_Typ = Any_Character then
5967 return;
5969 -- For Standard.Character or a type derived from it, check that the
5970 -- literal is in range.
5972 elsif Root_Type (B_Typ) = Standard_Character then
5973 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5974 return;
5975 end if;
5977 -- For Standard.Wide_Character or a type derived from it, check that the
5978 -- literal is in range.
5980 elsif Root_Type (B_Typ) = Standard_Wide_Character then
5981 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5982 return;
5983 end if;
5985 -- For Standard.Wide_Wide_Character or a type derived from it, we
5986 -- know the literal is in range, since the parser checked!
5988 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5989 return;
5991 -- If the entity is already set, this has already been resolved in a
5992 -- generic context, or comes from expansion. Nothing else to do.
5994 elsif Present (Entity (N)) then
5995 return;
5997 -- Otherwise we have a user defined character type, and we can use the
5998 -- standard visibility mechanisms to locate the referenced entity.
6000 else
6001 C := Current_Entity (N);
6002 while Present (C) loop
6003 if Etype (C) = B_Typ then
6004 Set_Entity_With_Style_Check (N, C);
6005 Generate_Reference (C, N);
6006 return;
6007 end if;
6009 C := Homonym (C);
6010 end loop;
6011 end if;
6013 -- If we fall through, then the literal does not match any of the
6014 -- entries of the enumeration type. This isn't just a constraint error
6015 -- situation, it is an illegality (see RM 4.2).
6017 Error_Msg_NE
6018 ("character not defined for }", N, First_Subtype (B_Typ));
6019 end Resolve_Character_Literal;
6021 ---------------------------
6022 -- Resolve_Comparison_Op --
6023 ---------------------------
6025 -- Context requires a boolean type, and plays no role in resolution.
6026 -- Processing identical to that for equality operators. The result type is
6027 -- the base type, which matters when pathological subtypes of booleans with
6028 -- limited ranges are used.
6030 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6031 L : constant Node_Id := Left_Opnd (N);
6032 R : constant Node_Id := Right_Opnd (N);
6033 T : Entity_Id;
6035 begin
6036 -- If this is an intrinsic operation which is not predefined, use the
6037 -- types of its declared arguments to resolve the possibly overloaded
6038 -- operands. Otherwise the operands are unambiguous and specify the
6039 -- expected type.
6041 if Scope (Entity (N)) /= Standard_Standard then
6042 T := Etype (First_Entity (Entity (N)));
6044 else
6045 T := Find_Unique_Type (L, R);
6047 if T = Any_Fixed then
6048 T := Unique_Fixed_Point_Type (L);
6049 end if;
6050 end if;
6052 Set_Etype (N, Base_Type (Typ));
6053 Generate_Reference (T, N, ' ');
6055 -- Skip remaining processing if already set to Any_Type
6057 if T = Any_Type then
6058 return;
6059 end if;
6061 -- Deal with other error cases
6063 if T = Any_String or else
6064 T = Any_Composite or else
6065 T = Any_Character
6066 then
6067 if T = Any_Character then
6068 Ambiguous_Character (L);
6069 else
6070 Error_Msg_N ("ambiguous operands for comparison", N);
6071 end if;
6073 Set_Etype (N, Any_Type);
6074 return;
6075 end if;
6077 -- Resolve the operands if types OK
6079 Resolve (L, T);
6080 Resolve (R, T);
6081 Check_Unset_Reference (L);
6082 Check_Unset_Reference (R);
6083 Generate_Operator_Reference (N, T);
6084 Check_Low_Bound_Tested (N);
6086 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6087 -- types or array types except String.
6089 if Is_Boolean_Type (T) then
6090 Check_SPARK_Restriction
6091 ("comparison is not defined on Boolean type", N);
6093 elsif Is_Array_Type (T)
6094 and then Base_Type (T) /= Standard_String
6095 then
6096 Check_SPARK_Restriction
6097 ("comparison is not defined on array types other than String", N);
6098 end if;
6100 -- Check comparison on unordered enumeration
6102 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6103 Error_Msg_N ("comparison on unordered enumeration type?", N);
6104 end if;
6106 -- Evaluate the relation (note we do this after the above check since
6107 -- this Eval call may change N to True/False.
6109 Analyze_Dimension (N);
6110 Eval_Relational_Op (N);
6111 end Resolve_Comparison_Op;
6113 -----------------------------------------
6114 -- Resolve_Discrete_Subtype_Indication --
6115 -----------------------------------------
6117 procedure Resolve_Discrete_Subtype_Indication
6118 (N : Node_Id;
6119 Typ : Entity_Id)
6121 R : Node_Id;
6122 S : Entity_Id;
6124 begin
6125 Analyze (Subtype_Mark (N));
6126 S := Entity (Subtype_Mark (N));
6128 if Nkind (Constraint (N)) /= N_Range_Constraint then
6129 Error_Msg_N ("expect range constraint for discrete type", N);
6130 Set_Etype (N, Any_Type);
6132 else
6133 R := Range_Expression (Constraint (N));
6135 if R = Error then
6136 return;
6137 end if;
6139 Analyze (R);
6141 if Base_Type (S) /= Base_Type (Typ) then
6142 Error_Msg_NE
6143 ("expect subtype of }", N, First_Subtype (Typ));
6145 -- Rewrite the constraint as a range of Typ
6146 -- to allow compilation to proceed further.
6148 Set_Etype (N, Typ);
6149 Rewrite (Low_Bound (R),
6150 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6151 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6152 Attribute_Name => Name_First));
6153 Rewrite (High_Bound (R),
6154 Make_Attribute_Reference (Sloc (High_Bound (R)),
6155 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6156 Attribute_Name => Name_First));
6158 else
6159 Resolve (R, Typ);
6160 Set_Etype (N, Etype (R));
6162 -- Additionally, we must check that the bounds are compatible
6163 -- with the given subtype, which might be different from the
6164 -- type of the context.
6166 Apply_Range_Check (R, S);
6168 -- ??? If the above check statically detects a Constraint_Error
6169 -- it replaces the offending bound(s) of the range R with a
6170 -- Constraint_Error node. When the itype which uses these bounds
6171 -- is frozen the resulting call to Duplicate_Subexpr generates
6172 -- a new temporary for the bounds.
6174 -- Unfortunately there are other itypes that are also made depend
6175 -- on these bounds, so when Duplicate_Subexpr is called they get
6176 -- a forward reference to the newly created temporaries and Gigi
6177 -- aborts on such forward references. This is probably sign of a
6178 -- more fundamental problem somewhere else in either the order of
6179 -- itype freezing or the way certain itypes are constructed.
6181 -- To get around this problem we call Remove_Side_Effects right
6182 -- away if either bounds of R are a Constraint_Error.
6184 declare
6185 L : constant Node_Id := Low_Bound (R);
6186 H : constant Node_Id := High_Bound (R);
6188 begin
6189 if Nkind (L) = N_Raise_Constraint_Error then
6190 Remove_Side_Effects (L);
6191 end if;
6193 if Nkind (H) = N_Raise_Constraint_Error then
6194 Remove_Side_Effects (H);
6195 end if;
6196 end;
6198 Check_Unset_Reference (Low_Bound (R));
6199 Check_Unset_Reference (High_Bound (R));
6200 end if;
6201 end if;
6202 end Resolve_Discrete_Subtype_Indication;
6204 -------------------------
6205 -- Resolve_Entity_Name --
6206 -------------------------
6208 -- Used to resolve identifiers and expanded names
6210 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6211 E : constant Entity_Id := Entity (N);
6213 begin
6214 -- If garbage from errors, set to Any_Type and return
6216 if No (E) and then Total_Errors_Detected /= 0 then
6217 Set_Etype (N, Any_Type);
6218 return;
6219 end if;
6221 -- Replace named numbers by corresponding literals. Note that this is
6222 -- the one case where Resolve_Entity_Name must reset the Etype, since
6223 -- it is currently marked as universal.
6225 if Ekind (E) = E_Named_Integer then
6226 Set_Etype (N, Typ);
6227 Eval_Named_Integer (N);
6229 elsif Ekind (E) = E_Named_Real then
6230 Set_Etype (N, Typ);
6231 Eval_Named_Real (N);
6233 -- For enumeration literals, we need to make sure that a proper style
6234 -- check is done, since such literals are overloaded, and thus we did
6235 -- not do a style check during the first phase of analysis.
6237 elsif Ekind (E) = E_Enumeration_Literal then
6238 Set_Entity_With_Style_Check (N, E);
6239 Eval_Entity_Name (N);
6241 -- Case of subtype name appearing as an operand in expression
6243 elsif Is_Type (E) then
6245 -- Allow use of subtype if it is a concurrent type where we are
6246 -- currently inside the body. This will eventually be expanded into a
6247 -- call to Self (for tasks) or _object (for protected objects). Any
6248 -- other use of a subtype is invalid.
6250 if Is_Concurrent_Type (E)
6251 and then In_Open_Scopes (E)
6252 then
6253 null;
6255 -- Any other use is an error
6257 else
6258 Error_Msg_N
6259 ("invalid use of subtype mark in expression or call", N);
6260 end if;
6262 -- Check discriminant use if entity is discriminant in current scope,
6263 -- i.e. discriminant of record or concurrent type currently being
6264 -- analyzed. Uses in corresponding body are unrestricted.
6266 elsif Ekind (E) = E_Discriminant
6267 and then Scope (E) = Current_Scope
6268 and then not Has_Completion (Current_Scope)
6269 then
6270 Check_Discriminant_Use (N);
6272 -- A parameterless generic function cannot appear in a context that
6273 -- requires resolution.
6275 elsif Ekind (E) = E_Generic_Function then
6276 Error_Msg_N ("illegal use of generic function", N);
6278 elsif Ekind (E) = E_Out_Parameter
6279 and then Ada_Version = Ada_83
6280 and then (Nkind (Parent (N)) in N_Op
6281 or else (Nkind (Parent (N)) = N_Assignment_Statement
6282 and then N = Expression (Parent (N)))
6283 or else Nkind (Parent (N)) = N_Explicit_Dereference)
6284 then
6285 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
6287 -- In all other cases, just do the possible static evaluation
6289 else
6290 -- A deferred constant that appears in an expression must have a
6291 -- completion, unless it has been removed by in-place expansion of
6292 -- an aggregate.
6294 if Ekind (E) = E_Constant
6295 and then Comes_From_Source (E)
6296 and then No (Constant_Value (E))
6297 and then Is_Frozen (Etype (E))
6298 and then not In_Spec_Expression
6299 and then not Is_Imported (E)
6300 then
6301 if No_Initialization (Parent (E))
6302 or else (Present (Full_View (E))
6303 and then No_Initialization (Parent (Full_View (E))))
6304 then
6305 null;
6306 else
6307 Error_Msg_N (
6308 "deferred constant is frozen before completion", N);
6309 end if;
6310 end if;
6312 Eval_Entity_Name (N);
6313 end if;
6314 end Resolve_Entity_Name;
6316 -------------------
6317 -- Resolve_Entry --
6318 -------------------
6320 procedure Resolve_Entry (Entry_Name : Node_Id) is
6321 Loc : constant Source_Ptr := Sloc (Entry_Name);
6322 Nam : Entity_Id;
6323 New_N : Node_Id;
6324 S : Entity_Id;
6325 Tsk : Entity_Id;
6326 E_Name : Node_Id;
6327 Index : Node_Id;
6329 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
6330 -- If the bounds of the entry family being called depend on task
6331 -- discriminants, build a new index subtype where a discriminant is
6332 -- replaced with the value of the discriminant of the target task.
6333 -- The target task is the prefix of the entry name in the call.
6335 -----------------------
6336 -- Actual_Index_Type --
6337 -----------------------
6339 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
6340 Typ : constant Entity_Id := Entry_Index_Type (E);
6341 Tsk : constant Entity_Id := Scope (E);
6342 Lo : constant Node_Id := Type_Low_Bound (Typ);
6343 Hi : constant Node_Id := Type_High_Bound (Typ);
6344 New_T : Entity_Id;
6346 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
6347 -- If the bound is given by a discriminant, replace with a reference
6348 -- to the discriminant of the same name in the target task. If the
6349 -- entry name is the target of a requeue statement and the entry is
6350 -- in the current protected object, the bound to be used is the
6351 -- discriminal of the object (see Apply_Range_Checks for details of
6352 -- the transformation).
6354 -----------------------------
6355 -- Actual_Discriminant_Ref --
6356 -----------------------------
6358 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
6359 Typ : constant Entity_Id := Etype (Bound);
6360 Ref : Node_Id;
6362 begin
6363 Remove_Side_Effects (Bound);
6365 if not Is_Entity_Name (Bound)
6366 or else Ekind (Entity (Bound)) /= E_Discriminant
6367 then
6368 return Bound;
6370 elsif Is_Protected_Type (Tsk)
6371 and then In_Open_Scopes (Tsk)
6372 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
6373 then
6374 -- Note: here Bound denotes a discriminant of the corresponding
6375 -- record type tskV, whose discriminal is a formal of the
6376 -- init-proc tskVIP. What we want is the body discriminal,
6377 -- which is associated to the discriminant of the original
6378 -- concurrent type tsk.
6380 return New_Occurrence_Of
6381 (Find_Body_Discriminal (Entity (Bound)), Loc);
6383 else
6384 Ref :=
6385 Make_Selected_Component (Loc,
6386 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
6387 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
6388 Analyze (Ref);
6389 Resolve (Ref, Typ);
6390 return Ref;
6391 end if;
6392 end Actual_Discriminant_Ref;
6394 -- Start of processing for Actual_Index_Type
6396 begin
6397 if not Has_Discriminants (Tsk)
6398 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
6399 then
6400 return Entry_Index_Type (E);
6402 else
6403 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
6404 Set_Etype (New_T, Base_Type (Typ));
6405 Set_Size_Info (New_T, Typ);
6406 Set_RM_Size (New_T, RM_Size (Typ));
6407 Set_Scalar_Range (New_T,
6408 Make_Range (Sloc (Entry_Name),
6409 Low_Bound => Actual_Discriminant_Ref (Lo),
6410 High_Bound => Actual_Discriminant_Ref (Hi)));
6412 return New_T;
6413 end if;
6414 end Actual_Index_Type;
6416 -- Start of processing of Resolve_Entry
6418 begin
6419 -- Find name of entry being called, and resolve prefix of name with its
6420 -- own type. The prefix can be overloaded, and the name and signature of
6421 -- the entry must be taken into account.
6423 if Nkind (Entry_Name) = N_Indexed_Component then
6425 -- Case of dealing with entry family within the current tasks
6427 E_Name := Prefix (Entry_Name);
6429 else
6430 E_Name := Entry_Name;
6431 end if;
6433 if Is_Entity_Name (E_Name) then
6435 -- Entry call to an entry (or entry family) in the current task. This
6436 -- is legal even though the task will deadlock. Rewrite as call to
6437 -- current task.
6439 -- This can also be a call to an entry in an enclosing task. If this
6440 -- is a single task, we have to retrieve its name, because the scope
6441 -- of the entry is the task type, not the object. If the enclosing
6442 -- task is a task type, the identity of the task is given by its own
6443 -- self variable.
6445 -- Finally this can be a requeue on an entry of the same task or
6446 -- protected object.
6448 S := Scope (Entity (E_Name));
6450 for J in reverse 0 .. Scope_Stack.Last loop
6451 if Is_Task_Type (Scope_Stack.Table (J).Entity)
6452 and then not Comes_From_Source (S)
6453 then
6454 -- S is an enclosing task or protected object. The concurrent
6455 -- declaration has been converted into a type declaration, and
6456 -- the object itself has an object declaration that follows
6457 -- the type in the same declarative part.
6459 Tsk := Next_Entity (S);
6460 while Etype (Tsk) /= S loop
6461 Next_Entity (Tsk);
6462 end loop;
6464 S := Tsk;
6465 exit;
6467 elsif S = Scope_Stack.Table (J).Entity then
6469 -- Call to current task. Will be transformed into call to Self
6471 exit;
6473 end if;
6474 end loop;
6476 New_N :=
6477 Make_Selected_Component (Loc,
6478 Prefix => New_Occurrence_Of (S, Loc),
6479 Selector_Name =>
6480 New_Occurrence_Of (Entity (E_Name), Loc));
6481 Rewrite (E_Name, New_N);
6482 Analyze (E_Name);
6484 elsif Nkind (Entry_Name) = N_Selected_Component
6485 and then Is_Overloaded (Prefix (Entry_Name))
6486 then
6487 -- Use the entry name (which must be unique at this point) to find
6488 -- the prefix that returns the corresponding task/protected type.
6490 declare
6491 Pref : constant Node_Id := Prefix (Entry_Name);
6492 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
6493 I : Interp_Index;
6494 It : Interp;
6496 begin
6497 Get_First_Interp (Pref, I, It);
6498 while Present (It.Typ) loop
6499 if Scope (Ent) = It.Typ then
6500 Set_Etype (Pref, It.Typ);
6501 exit;
6502 end if;
6504 Get_Next_Interp (I, It);
6505 end loop;
6506 end;
6507 end if;
6509 if Nkind (Entry_Name) = N_Selected_Component then
6510 Resolve (Prefix (Entry_Name));
6512 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6513 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6514 Resolve (Prefix (Prefix (Entry_Name)));
6515 Index := First (Expressions (Entry_Name));
6516 Resolve (Index, Entry_Index_Type (Nam));
6518 -- Up to this point the expression could have been the actual in a
6519 -- simple entry call, and be given by a named association.
6521 if Nkind (Index) = N_Parameter_Association then
6522 Error_Msg_N ("expect expression for entry index", Index);
6523 else
6524 Apply_Range_Check (Index, Actual_Index_Type (Nam));
6525 end if;
6526 end if;
6527 end Resolve_Entry;
6529 ------------------------
6530 -- Resolve_Entry_Call --
6531 ------------------------
6533 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
6534 Entry_Name : constant Node_Id := Name (N);
6535 Loc : constant Source_Ptr := Sloc (Entry_Name);
6536 Actuals : List_Id;
6537 First_Named : Node_Id;
6538 Nam : Entity_Id;
6539 Norm_OK : Boolean;
6540 Obj : Node_Id;
6541 Was_Over : Boolean;
6543 begin
6544 -- We kill all checks here, because it does not seem worth the effort to
6545 -- do anything better, an entry call is a big operation.
6547 Kill_All_Checks;
6549 -- Processing of the name is similar for entry calls and protected
6550 -- operation calls. Once the entity is determined, we can complete
6551 -- the resolution of the actuals.
6553 -- The selector may be overloaded, in the case of a protected object
6554 -- with overloaded functions. The type of the context is used for
6555 -- resolution.
6557 if Nkind (Entry_Name) = N_Selected_Component
6558 and then Is_Overloaded (Selector_Name (Entry_Name))
6559 and then Typ /= Standard_Void_Type
6560 then
6561 declare
6562 I : Interp_Index;
6563 It : Interp;
6565 begin
6566 Get_First_Interp (Selector_Name (Entry_Name), I, It);
6567 while Present (It.Typ) loop
6568 if Covers (Typ, It.Typ) then
6569 Set_Entity (Selector_Name (Entry_Name), It.Nam);
6570 Set_Etype (Entry_Name, It.Typ);
6572 Generate_Reference (It.Typ, N, ' ');
6573 end if;
6575 Get_Next_Interp (I, It);
6576 end loop;
6577 end;
6578 end if;
6580 Resolve_Entry (Entry_Name);
6582 if Nkind (Entry_Name) = N_Selected_Component then
6584 -- Simple entry call
6586 Nam := Entity (Selector_Name (Entry_Name));
6587 Obj := Prefix (Entry_Name);
6588 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
6590 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6592 -- Call to member of entry family
6594 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6595 Obj := Prefix (Prefix (Entry_Name));
6596 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
6597 end if;
6599 -- We cannot in general check the maximum depth of protected entry calls
6600 -- at compile time. But we can tell that any protected entry call at all
6601 -- violates a specified nesting depth of zero.
6603 if Is_Protected_Type (Scope (Nam)) then
6604 Check_Restriction (Max_Entry_Queue_Length, N);
6605 end if;
6607 -- Use context type to disambiguate a protected function that can be
6608 -- called without actuals and that returns an array type, and where the
6609 -- argument list may be an indexing of the returned value.
6611 if Ekind (Nam) = E_Function
6612 and then Needs_No_Actuals (Nam)
6613 and then Present (Parameter_Associations (N))
6614 and then
6615 ((Is_Array_Type (Etype (Nam))
6616 and then Covers (Typ, Component_Type (Etype (Nam))))
6618 or else (Is_Access_Type (Etype (Nam))
6619 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6620 and then
6621 Covers
6622 (Typ,
6623 Component_Type (Designated_Type (Etype (Nam))))))
6624 then
6625 declare
6626 Index_Node : Node_Id;
6628 begin
6629 Index_Node :=
6630 Make_Indexed_Component (Loc,
6631 Prefix =>
6632 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
6633 Expressions => Parameter_Associations (N));
6635 -- Since we are correcting a node classification error made by the
6636 -- parser, we call Replace rather than Rewrite.
6638 Replace (N, Index_Node);
6639 Set_Etype (Prefix (N), Etype (Nam));
6640 Set_Etype (N, Typ);
6641 Resolve_Indexed_Component (N, Typ);
6642 return;
6643 end;
6644 end if;
6646 if Ekind_In (Nam, E_Entry, E_Entry_Family)
6647 and then Present (PPC_Wrapper (Nam))
6648 and then Current_Scope /= PPC_Wrapper (Nam)
6649 then
6650 -- Rewrite as call to the precondition wrapper, adding the task
6651 -- object to the list of actuals. If the call is to a member of an
6652 -- entry family, include the index as well.
6654 declare
6655 New_Call : Node_Id;
6656 New_Actuals : List_Id;
6658 begin
6659 New_Actuals := New_List (Obj);
6661 if Nkind (Entry_Name) = N_Indexed_Component then
6662 Append_To (New_Actuals,
6663 New_Copy_Tree (First (Expressions (Entry_Name))));
6664 end if;
6666 Append_List (Parameter_Associations (N), New_Actuals);
6667 New_Call :=
6668 Make_Procedure_Call_Statement (Loc,
6669 Name =>
6670 New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
6671 Parameter_Associations => New_Actuals);
6672 Rewrite (N, New_Call);
6673 Analyze_And_Resolve (N);
6674 return;
6675 end;
6676 end if;
6678 -- The operation name may have been overloaded. Order the actuals
6679 -- according to the formals of the resolved entity, and set the return
6680 -- type to that of the operation.
6682 if Was_Over then
6683 Normalize_Actuals (N, Nam, False, Norm_OK);
6684 pragma Assert (Norm_OK);
6685 Set_Etype (N, Etype (Nam));
6686 end if;
6688 Resolve_Actuals (N, Nam);
6689 Check_Internal_Protected_Use (N, Nam);
6691 -- Create a call reference to the entry
6693 Generate_Reference (Nam, Entry_Name, 's');
6695 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
6696 Check_Potentially_Blocking_Operation (N);
6697 end if;
6699 -- Verify that a procedure call cannot masquerade as an entry
6700 -- call where an entry call is expected.
6702 if Ekind (Nam) = E_Procedure then
6703 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6704 and then N = Entry_Call_Statement (Parent (N))
6705 then
6706 Error_Msg_N ("entry call required in select statement", N);
6708 elsif Nkind (Parent (N)) = N_Triggering_Alternative
6709 and then N = Triggering_Statement (Parent (N))
6710 then
6711 Error_Msg_N ("triggering statement cannot be procedure call", N);
6713 elsif Ekind (Scope (Nam)) = E_Task_Type
6714 and then not In_Open_Scopes (Scope (Nam))
6715 then
6716 Error_Msg_N ("task has no entry with this name", Entry_Name);
6717 end if;
6718 end if;
6720 -- After resolution, entry calls and protected procedure calls are
6721 -- changed into entry calls, for expansion. The structure of the node
6722 -- does not change, so it can safely be done in place. Protected
6723 -- function calls must keep their structure because they are
6724 -- subexpressions.
6726 if Ekind (Nam) /= E_Function then
6728 -- A protected operation that is not a function may modify the
6729 -- corresponding object, and cannot apply to a constant. If this
6730 -- is an internal call, the prefix is the type itself.
6732 if Is_Protected_Type (Scope (Nam))
6733 and then not Is_Variable (Obj)
6734 and then (not Is_Entity_Name (Obj)
6735 or else not Is_Type (Entity (Obj)))
6736 then
6737 Error_Msg_N
6738 ("prefix of protected procedure or entry call must be variable",
6739 Entry_Name);
6740 end if;
6742 Actuals := Parameter_Associations (N);
6743 First_Named := First_Named_Actual (N);
6745 Rewrite (N,
6746 Make_Entry_Call_Statement (Loc,
6747 Name => Entry_Name,
6748 Parameter_Associations => Actuals));
6750 Set_First_Named_Actual (N, First_Named);
6751 Set_Analyzed (N, True);
6753 -- Protected functions can return on the secondary stack, in which
6754 -- case we must trigger the transient scope mechanism.
6756 elsif Full_Expander_Active
6757 and then Requires_Transient_Scope (Etype (Nam))
6758 then
6759 Establish_Transient_Scope (N, Sec_Stack => True);
6760 end if;
6761 end Resolve_Entry_Call;
6763 -------------------------
6764 -- Resolve_Equality_Op --
6765 -------------------------
6767 -- Both arguments must have the same type, and the boolean context does
6768 -- not participate in the resolution. The first pass verifies that the
6769 -- interpretation is not ambiguous, and the type of the left argument is
6770 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6771 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6772 -- though they carry a single (universal) type. Diagnose this case here.
6774 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
6775 L : constant Node_Id := Left_Opnd (N);
6776 R : constant Node_Id := Right_Opnd (N);
6777 T : Entity_Id := Find_Unique_Type (L, R);
6779 procedure Check_If_Expression (Cond : Node_Id);
6780 -- The resolution rule for if expressions requires that each such must
6781 -- have a unique type. This means that if several dependent expressions
6782 -- are of a non-null anonymous access type, and the context does not
6783 -- impose an expected type (as can be the case in an equality operation)
6784 -- the expression must be rejected.
6786 function Find_Unique_Access_Type return Entity_Id;
6787 -- In the case of allocators, make a last-ditch attempt to find a single
6788 -- access type with the right designated type. This is semantically
6789 -- dubious, and of no interest to any real code, but c48008a makes it
6790 -- all worthwhile.
6792 -------------------------
6793 -- Check_If_Expression --
6794 -------------------------
6796 procedure Check_If_Expression (Cond : Node_Id) is
6797 Then_Expr : Node_Id;
6798 Else_Expr : Node_Id;
6800 begin
6801 if Nkind (Cond) = N_If_Expression then
6802 Then_Expr := Next (First (Expressions (Cond)));
6803 Else_Expr := Next (Then_Expr);
6805 if Nkind (Then_Expr) /= N_Null
6806 and then Nkind (Else_Expr) /= N_Null
6807 then
6808 Error_Msg_N ("cannot determine type of if expression", Cond);
6809 end if;
6810 end if;
6811 end Check_If_Expression;
6813 -----------------------------
6814 -- Find_Unique_Access_Type --
6815 -----------------------------
6817 function Find_Unique_Access_Type return Entity_Id is
6818 Acc : Entity_Id;
6819 E : Entity_Id;
6820 S : Entity_Id;
6822 begin
6823 if Ekind (Etype (R)) = E_Allocator_Type then
6824 Acc := Designated_Type (Etype (R));
6825 elsif Ekind (Etype (L)) = E_Allocator_Type then
6826 Acc := Designated_Type (Etype (L));
6827 else
6828 return Empty;
6829 end if;
6831 S := Current_Scope;
6832 while S /= Standard_Standard loop
6833 E := First_Entity (S);
6834 while Present (E) loop
6835 if Is_Type (E)
6836 and then Is_Access_Type (E)
6837 and then Ekind (E) /= E_Allocator_Type
6838 and then Designated_Type (E) = Base_Type (Acc)
6839 then
6840 return E;
6841 end if;
6843 Next_Entity (E);
6844 end loop;
6846 S := Scope (S);
6847 end loop;
6849 return Empty;
6850 end Find_Unique_Access_Type;
6852 -- Start of processing for Resolve_Equality_Op
6854 begin
6855 Set_Etype (N, Base_Type (Typ));
6856 Generate_Reference (T, N, ' ');
6858 if T = Any_Fixed then
6859 T := Unique_Fixed_Point_Type (L);
6860 end if;
6862 if T /= Any_Type then
6863 if T = Any_String or else
6864 T = Any_Composite or else
6865 T = Any_Character
6866 then
6867 if T = Any_Character then
6868 Ambiguous_Character (L);
6869 else
6870 Error_Msg_N ("ambiguous operands for equality", N);
6871 end if;
6873 Set_Etype (N, Any_Type);
6874 return;
6876 elsif T = Any_Access
6877 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
6878 then
6879 T := Find_Unique_Access_Type;
6881 if No (T) then
6882 Error_Msg_N ("ambiguous operands for equality", N);
6883 Set_Etype (N, Any_Type);
6884 return;
6885 end if;
6887 -- If expressions must have a single type, and if the context does
6888 -- not impose one the dependent expressions cannot be anonymous
6889 -- access types.
6891 -- Why no similar processing for case expressions???
6893 elsif Ada_Version >= Ada_2012
6894 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
6895 E_Anonymous_Access_Subprogram_Type)
6896 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
6897 E_Anonymous_Access_Subprogram_Type)
6898 then
6899 Check_If_Expression (L);
6900 Check_If_Expression (R);
6901 end if;
6903 Resolve (L, T);
6904 Resolve (R, T);
6906 -- In SPARK, equality operators = and /= for array types other than
6907 -- String are only defined when, for each index position, the
6908 -- operands have equal static bounds.
6910 if Is_Array_Type (T) then
6912 -- Protect call to Matching_Static_Array_Bounds to avoid costly
6913 -- operation if not needed.
6915 if Restriction_Check_Required (SPARK)
6916 and then Base_Type (T) /= Standard_String
6917 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6918 and then Etype (L) /= Any_Composite -- or else L in error
6919 and then Etype (R) /= Any_Composite -- or else R in error
6920 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
6921 then
6922 Check_SPARK_Restriction
6923 ("array types should have matching static bounds", N);
6924 end if;
6925 end if;
6927 -- If the unique type is a class-wide type then it will be expanded
6928 -- into a dispatching call to the predefined primitive. Therefore we
6929 -- check here for potential violation of such restriction.
6931 if Is_Class_Wide_Type (T) then
6932 Check_Restriction (No_Dispatching_Calls, N);
6933 end if;
6935 if Warn_On_Redundant_Constructs
6936 and then Comes_From_Source (N)
6937 and then Is_Entity_Name (R)
6938 and then Entity (R) = Standard_True
6939 and then Comes_From_Source (R)
6940 then
6941 Error_Msg_N -- CODEFIX
6942 ("?comparison with True is redundant!", R);
6943 end if;
6945 Check_Unset_Reference (L);
6946 Check_Unset_Reference (R);
6947 Generate_Operator_Reference (N, T);
6948 Check_Low_Bound_Tested (N);
6950 -- If this is an inequality, it may be the implicit inequality
6951 -- created for a user-defined operation, in which case the corres-
6952 -- ponding equality operation is not intrinsic, and the operation
6953 -- cannot be constant-folded. Else fold.
6955 if Nkind (N) = N_Op_Eq
6956 or else Comes_From_Source (Entity (N))
6957 or else Ekind (Entity (N)) = E_Operator
6958 or else Is_Intrinsic_Subprogram
6959 (Corresponding_Equality (Entity (N)))
6960 then
6961 Analyze_Dimension (N);
6962 Eval_Relational_Op (N);
6964 elsif Nkind (N) = N_Op_Ne
6965 and then Is_Abstract_Subprogram (Entity (N))
6966 then
6967 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
6968 end if;
6970 -- Ada 2005: If one operand is an anonymous access type, convert the
6971 -- other operand to it, to ensure that the underlying types match in
6972 -- the back-end. Same for access_to_subprogram, and the conversion
6973 -- verifies that the types are subtype conformant.
6975 -- We apply the same conversion in the case one of the operands is a
6976 -- private subtype of the type of the other.
6978 -- Why the Expander_Active test here ???
6980 if Full_Expander_Active
6981 and then
6982 (Ekind_In (T, E_Anonymous_Access_Type,
6983 E_Anonymous_Access_Subprogram_Type)
6984 or else Is_Private_Type (T))
6985 then
6986 if Etype (L) /= T then
6987 Rewrite (L,
6988 Make_Unchecked_Type_Conversion (Sloc (L),
6989 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
6990 Expression => Relocate_Node (L)));
6991 Analyze_And_Resolve (L, T);
6992 end if;
6994 if (Etype (R)) /= T then
6995 Rewrite (R,
6996 Make_Unchecked_Type_Conversion (Sloc (R),
6997 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
6998 Expression => Relocate_Node (R)));
6999 Analyze_And_Resolve (R, T);
7000 end if;
7001 end if;
7002 end if;
7003 end Resolve_Equality_Op;
7005 ----------------------------------
7006 -- Resolve_Explicit_Dereference --
7007 ----------------------------------
7009 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7010 Loc : constant Source_Ptr := Sloc (N);
7011 New_N : Node_Id;
7012 P : constant Node_Id := Prefix (N);
7014 P_Typ : Entity_Id;
7015 -- The candidate prefix type, if overloaded
7017 I : Interp_Index;
7018 It : Interp;
7020 begin
7021 Check_Fully_Declared_Prefix (Typ, P);
7022 P_Typ := Empty;
7024 if Is_Overloaded (P) then
7026 -- Use the context type to select the prefix that has the correct
7027 -- designated type. Keep the first match, which will be the inner-
7028 -- most.
7030 Get_First_Interp (P, I, It);
7032 while Present (It.Typ) loop
7033 if Is_Access_Type (It.Typ)
7034 and then Covers (Typ, Designated_Type (It.Typ))
7035 then
7036 if No (P_Typ) then
7037 P_Typ := It.Typ;
7038 end if;
7040 -- Remove access types that do not match, but preserve access
7041 -- to subprogram interpretations, in case a further dereference
7042 -- is needed (see below).
7044 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7045 Remove_Interp (I);
7046 end if;
7048 Get_Next_Interp (I, It);
7049 end loop;
7051 if Present (P_Typ) then
7052 Resolve (P, P_Typ);
7053 Set_Etype (N, Designated_Type (P_Typ));
7055 else
7056 -- If no interpretation covers the designated type of the prefix,
7057 -- this is the pathological case where not all implementations of
7058 -- the prefix allow the interpretation of the node as a call. Now
7059 -- that the expected type is known, Remove other interpretations
7060 -- from prefix, rewrite it as a call, and resolve again, so that
7061 -- the proper call node is generated.
7063 Get_First_Interp (P, I, It);
7064 while Present (It.Typ) loop
7065 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7066 Remove_Interp (I);
7067 end if;
7069 Get_Next_Interp (I, It);
7070 end loop;
7072 New_N :=
7073 Make_Function_Call (Loc,
7074 Name =>
7075 Make_Explicit_Dereference (Loc,
7076 Prefix => P),
7077 Parameter_Associations => New_List);
7079 Save_Interps (N, New_N);
7080 Rewrite (N, New_N);
7081 Analyze_And_Resolve (N, Typ);
7082 return;
7083 end if;
7085 -- If not overloaded, resolve P with its own type
7087 else
7088 Resolve (P);
7089 end if;
7091 if Is_Access_Type (Etype (P)) then
7092 Apply_Access_Check (N);
7093 end if;
7095 -- If the designated type is a packed unconstrained array type, and the
7096 -- explicit dereference is not in the context of an attribute reference,
7097 -- then we must compute and set the actual subtype, since it is needed
7098 -- by Gigi. The reason we exclude the attribute case is that this is
7099 -- handled fine by Gigi, and in fact we use such attributes to build the
7100 -- actual subtype. We also exclude generated code (which builds actual
7101 -- subtypes directly if they are needed).
7103 if Is_Array_Type (Etype (N))
7104 and then Is_Packed (Etype (N))
7105 and then not Is_Constrained (Etype (N))
7106 and then Nkind (Parent (N)) /= N_Attribute_Reference
7107 and then Comes_From_Source (N)
7108 then
7109 Set_Etype (N, Get_Actual_Subtype (N));
7110 end if;
7112 -- Note: No Eval processing is required for an explicit dereference,
7113 -- because such a name can never be static.
7115 end Resolve_Explicit_Dereference;
7117 -------------------------------------
7118 -- Resolve_Expression_With_Actions --
7119 -------------------------------------
7121 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
7122 begin
7123 Set_Etype (N, Typ);
7124 end Resolve_Expression_With_Actions;
7126 ---------------------------
7127 -- Resolve_If_Expression --
7128 ---------------------------
7130 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
7131 Condition : constant Node_Id := First (Expressions (N));
7132 Then_Expr : constant Node_Id := Next (Condition);
7133 Else_Expr : Node_Id := Next (Then_Expr);
7134 Else_Typ : Entity_Id;
7135 Then_Typ : Entity_Id;
7137 begin
7138 Resolve (Condition, Any_Boolean);
7139 Resolve (Then_Expr, Typ);
7140 Then_Typ := Etype (Then_Expr);
7142 -- When the "then" expression is of a scalar subtype different from the
7143 -- result subtype, then insert a conversion to ensure the generation of
7144 -- a constraint check. The same is done for the else part below, again
7145 -- comparing subtypes rather than base types.
7147 if Is_Scalar_Type (Then_Typ)
7148 and then Then_Typ /= Typ
7149 then
7150 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
7151 Analyze_And_Resolve (Then_Expr, Typ);
7152 end if;
7154 -- If ELSE expression present, just resolve using the determined type
7156 if Present (Else_Expr) then
7157 Resolve (Else_Expr, Typ);
7158 Else_Typ := Etype (Else_Expr);
7160 if Is_Scalar_Type (Else_Typ)
7161 and then Else_Typ /= Typ
7162 then
7163 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
7164 Analyze_And_Resolve (Else_Expr, Typ);
7165 end if;
7167 -- If no ELSE expression is present, root type must be Standard.Boolean
7168 -- and we provide a Standard.True result converted to the appropriate
7169 -- Boolean type (in case it is a derived boolean type).
7171 elsif Root_Type (Typ) = Standard_Boolean then
7172 Else_Expr :=
7173 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
7174 Analyze_And_Resolve (Else_Expr, Typ);
7175 Append_To (Expressions (N), Else_Expr);
7177 else
7178 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
7179 Append_To (Expressions (N), Error);
7180 end if;
7182 Set_Etype (N, Typ);
7183 Eval_If_Expression (N);
7184 end Resolve_If_Expression;
7186 -------------------------------
7187 -- Resolve_Indexed_Component --
7188 -------------------------------
7190 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
7191 Name : constant Node_Id := Prefix (N);
7192 Expr : Node_Id;
7193 Array_Type : Entity_Id := Empty; -- to prevent junk warning
7194 Index : Node_Id;
7196 begin
7197 if Is_Overloaded (Name) then
7199 -- Use the context type to select the prefix that yields the correct
7200 -- component type.
7202 declare
7203 I : Interp_Index;
7204 It : Interp;
7205 I1 : Interp_Index := 0;
7206 P : constant Node_Id := Prefix (N);
7207 Found : Boolean := False;
7209 begin
7210 Get_First_Interp (P, I, It);
7211 while Present (It.Typ) loop
7212 if (Is_Array_Type (It.Typ)
7213 and then Covers (Typ, Component_Type (It.Typ)))
7214 or else (Is_Access_Type (It.Typ)
7215 and then Is_Array_Type (Designated_Type (It.Typ))
7216 and then
7217 Covers
7218 (Typ,
7219 Component_Type (Designated_Type (It.Typ))))
7220 then
7221 if Found then
7222 It := Disambiguate (P, I1, I, Any_Type);
7224 if It = No_Interp then
7225 Error_Msg_N ("ambiguous prefix for indexing", N);
7226 Set_Etype (N, Typ);
7227 return;
7229 else
7230 Found := True;
7231 Array_Type := It.Typ;
7232 I1 := I;
7233 end if;
7235 else
7236 Found := True;
7237 Array_Type := It.Typ;
7238 I1 := I;
7239 end if;
7240 end if;
7242 Get_Next_Interp (I, It);
7243 end loop;
7244 end;
7246 else
7247 Array_Type := Etype (Name);
7248 end if;
7250 Resolve (Name, Array_Type);
7251 Array_Type := Get_Actual_Subtype_If_Available (Name);
7253 -- If prefix is access type, dereference to get real array type.
7254 -- Note: we do not apply an access check because the expander always
7255 -- introduces an explicit dereference, and the check will happen there.
7257 if Is_Access_Type (Array_Type) then
7258 Array_Type := Designated_Type (Array_Type);
7259 end if;
7261 -- If name was overloaded, set component type correctly now
7262 -- If a misplaced call to an entry family (which has no index types)
7263 -- return. Error will be diagnosed from calling context.
7265 if Is_Array_Type (Array_Type) then
7266 Set_Etype (N, Component_Type (Array_Type));
7267 else
7268 return;
7269 end if;
7271 Index := First_Index (Array_Type);
7272 Expr := First (Expressions (N));
7274 -- The prefix may have resolved to a string literal, in which case its
7275 -- etype has a special representation. This is only possible currently
7276 -- if the prefix is a static concatenation, written in functional
7277 -- notation.
7279 if Ekind (Array_Type) = E_String_Literal_Subtype then
7280 Resolve (Expr, Standard_Positive);
7282 else
7283 while Present (Index) and Present (Expr) loop
7284 Resolve (Expr, Etype (Index));
7285 Check_Unset_Reference (Expr);
7287 if Is_Scalar_Type (Etype (Expr)) then
7288 Apply_Scalar_Range_Check (Expr, Etype (Index));
7289 else
7290 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
7291 end if;
7293 Next_Index (Index);
7294 Next (Expr);
7295 end loop;
7296 end if;
7298 Analyze_Dimension (N);
7300 -- Do not generate the warning on suspicious index if we are analyzing
7301 -- package Ada.Tags; otherwise we will report the warning with the
7302 -- Prims_Ptr field of the dispatch table.
7304 if Scope (Etype (Prefix (N))) = Standard_Standard
7305 or else not
7306 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
7307 Ada_Tags)
7308 then
7309 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
7310 Eval_Indexed_Component (N);
7311 end if;
7313 -- If the array type is atomic, and is packed, and we are in a left side
7314 -- context, then this is worth a warning, since we have a situation
7315 -- where the access to the component may cause extra read/writes of
7316 -- the atomic array object, which could be considered unexpected.
7318 if Nkind (N) = N_Indexed_Component
7319 and then (Is_Atomic (Array_Type)
7320 or else (Is_Entity_Name (Prefix (N))
7321 and then Is_Atomic (Entity (Prefix (N)))))
7322 and then Is_Bit_Packed_Array (Array_Type)
7323 and then Is_LHS (N)
7324 then
7325 Error_Msg_N ("?assignment to component of packed atomic array",
7326 Prefix (N));
7327 Error_Msg_N ("?\may cause unexpected accesses to atomic object",
7328 Prefix (N));
7329 end if;
7330 end Resolve_Indexed_Component;
7332 -----------------------------
7333 -- Resolve_Integer_Literal --
7334 -----------------------------
7336 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
7337 begin
7338 Set_Etype (N, Typ);
7339 Eval_Integer_Literal (N);
7340 end Resolve_Integer_Literal;
7342 --------------------------------
7343 -- Resolve_Intrinsic_Operator --
7344 --------------------------------
7346 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
7347 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7348 Op : Entity_Id;
7349 Orig_Op : constant Entity_Id := Entity (N);
7350 Arg1 : Node_Id;
7351 Arg2 : Node_Id;
7353 function Convert_Operand (Opnd : Node_Id) return Node_Id;
7354 -- If the operand is a literal, it cannot be the expression in a
7355 -- conversion. Use a qualified expression instead.
7357 function Convert_Operand (Opnd : Node_Id) return Node_Id is
7358 Loc : constant Source_Ptr := Sloc (Opnd);
7359 Res : Node_Id;
7360 begin
7361 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
7362 Res :=
7363 Make_Qualified_Expression (Loc,
7364 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
7365 Expression => Relocate_Node (Opnd));
7366 Analyze (Res);
7368 else
7369 Res := Unchecked_Convert_To (Btyp, Opnd);
7370 end if;
7372 return Res;
7373 end Convert_Operand;
7375 -- Start of processing for Resolve_Intrinsic_Operator
7377 begin
7378 -- We must preserve the original entity in a generic setting, so that
7379 -- the legality of the operation can be verified in an instance.
7381 if not Full_Expander_Active then
7382 return;
7383 end if;
7385 Op := Entity (N);
7386 while Scope (Op) /= Standard_Standard loop
7387 Op := Homonym (Op);
7388 pragma Assert (Present (Op));
7389 end loop;
7391 Set_Entity (N, Op);
7392 Set_Is_Overloaded (N, False);
7394 -- If the result or operand types are private, rewrite with unchecked
7395 -- conversions on the operands and the result, to expose the proper
7396 -- underlying numeric type.
7398 if Is_Private_Type (Typ)
7399 or else Is_Private_Type (Etype (Left_Opnd (N)))
7400 or else Is_Private_Type (Etype (Right_Opnd (N)))
7401 then
7402 Arg1 := Convert_Operand (Left_Opnd (N));
7403 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
7404 -- What on earth is this commented out fragment of code???
7406 if Nkind (N) = N_Op_Expon then
7407 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
7408 else
7409 Arg2 := Convert_Operand (Right_Opnd (N));
7410 end if;
7412 if Nkind (Arg1) = N_Type_Conversion then
7413 Save_Interps (Left_Opnd (N), Expression (Arg1));
7414 end if;
7416 if Nkind (Arg2) = N_Type_Conversion then
7417 Save_Interps (Right_Opnd (N), Expression (Arg2));
7418 end if;
7420 Set_Left_Opnd (N, Arg1);
7421 Set_Right_Opnd (N, Arg2);
7423 Set_Etype (N, Btyp);
7424 Rewrite (N, Unchecked_Convert_To (Typ, N));
7425 Resolve (N, Typ);
7427 elsif Typ /= Etype (Left_Opnd (N))
7428 or else Typ /= Etype (Right_Opnd (N))
7429 then
7430 -- Add explicit conversion where needed, and save interpretations in
7431 -- case operands are overloaded. If the context is a VMS operation,
7432 -- assert that the conversion is legal (the operands have the proper
7433 -- types to select the VMS intrinsic). Note that in rare cases the
7434 -- VMS operators may be visible, but the default System is being used
7435 -- and Address is a private type.
7437 Arg1 := Convert_To (Typ, Left_Opnd (N));
7438 Arg2 := Convert_To (Typ, Right_Opnd (N));
7440 if Nkind (Arg1) = N_Type_Conversion then
7441 Save_Interps (Left_Opnd (N), Expression (Arg1));
7443 if Is_VMS_Operator (Orig_Op) then
7444 Set_Conversion_OK (Arg1);
7445 end if;
7446 else
7447 Save_Interps (Left_Opnd (N), Arg1);
7448 end if;
7450 if Nkind (Arg2) = N_Type_Conversion then
7451 Save_Interps (Right_Opnd (N), Expression (Arg2));
7453 if Is_VMS_Operator (Orig_Op) then
7454 Set_Conversion_OK (Arg2);
7455 end if;
7456 else
7457 Save_Interps (Right_Opnd (N), Arg2);
7458 end if;
7460 Rewrite (Left_Opnd (N), Arg1);
7461 Rewrite (Right_Opnd (N), Arg2);
7462 Analyze (Arg1);
7463 Analyze (Arg2);
7464 Resolve_Arithmetic_Op (N, Typ);
7466 else
7467 Resolve_Arithmetic_Op (N, Typ);
7468 end if;
7469 end Resolve_Intrinsic_Operator;
7471 --------------------------------------
7472 -- Resolve_Intrinsic_Unary_Operator --
7473 --------------------------------------
7475 procedure Resolve_Intrinsic_Unary_Operator
7476 (N : Node_Id;
7477 Typ : Entity_Id)
7479 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7480 Op : Entity_Id;
7481 Arg2 : Node_Id;
7483 begin
7484 Op := Entity (N);
7485 while Scope (Op) /= Standard_Standard loop
7486 Op := Homonym (Op);
7487 pragma Assert (Present (Op));
7488 end loop;
7490 Set_Entity (N, Op);
7492 if Is_Private_Type (Typ) then
7493 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
7494 Save_Interps (Right_Opnd (N), Expression (Arg2));
7496 Set_Right_Opnd (N, Arg2);
7498 Set_Etype (N, Btyp);
7499 Rewrite (N, Unchecked_Convert_To (Typ, N));
7500 Resolve (N, Typ);
7502 else
7503 Resolve_Unary_Op (N, Typ);
7504 end if;
7505 end Resolve_Intrinsic_Unary_Operator;
7507 ------------------------
7508 -- Resolve_Logical_Op --
7509 ------------------------
7511 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
7512 B_Typ : Entity_Id;
7514 begin
7515 Check_No_Direct_Boolean_Operators (N);
7517 -- Predefined operations on scalar types yield the base type. On the
7518 -- other hand, logical operations on arrays yield the type of the
7519 -- arguments (and the context).
7521 if Is_Array_Type (Typ) then
7522 B_Typ := Typ;
7523 else
7524 B_Typ := Base_Type (Typ);
7525 end if;
7527 -- OK if this is a VMS-specific intrinsic operation
7529 if Is_VMS_Operator (Entity (N)) then
7530 null;
7532 -- The following test is required because the operands of the operation
7533 -- may be literals, in which case the resulting type appears to be
7534 -- compatible with a signed integer type, when in fact it is compatible
7535 -- only with modular types. If the context itself is universal, the
7536 -- operation is illegal.
7538 elsif not Valid_Boolean_Arg (Typ) then
7539 Error_Msg_N ("invalid context for logical operation", N);
7540 Set_Etype (N, Any_Type);
7541 return;
7543 elsif Typ = Any_Modular then
7544 Error_Msg_N
7545 ("no modular type available in this context", N);
7546 Set_Etype (N, Any_Type);
7547 return;
7549 elsif Is_Modular_Integer_Type (Typ)
7550 and then Etype (Left_Opnd (N)) = Universal_Integer
7551 and then Etype (Right_Opnd (N)) = Universal_Integer
7552 then
7553 Check_For_Visible_Operator (N, B_Typ);
7554 end if;
7556 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
7557 -- is active and the result type is standard Boolean (do not mess with
7558 -- ops that return a nonstandard Boolean type, because something strange
7559 -- is going on).
7561 -- Note: you might expect this replacement to be done during expansion,
7562 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
7563 -- is used, no part of the right operand of an "and" or "or" operator
7564 -- should be executed if the left operand would short-circuit the
7565 -- evaluation of the corresponding "and then" or "or else". If we left
7566 -- the replacement to expansion time, then run-time checks associated
7567 -- with such operands would be evaluated unconditionally, due to being
7568 -- before the condition prior to the rewriting as short-circuit forms
7569 -- during expansion.
7571 if Short_Circuit_And_Or
7572 and then B_Typ = Standard_Boolean
7573 and then Nkind_In (N, N_Op_And, N_Op_Or)
7574 then
7575 if Nkind (N) = N_Op_And then
7576 Rewrite (N,
7577 Make_And_Then (Sloc (N),
7578 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7579 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7580 Analyze_And_Resolve (N, B_Typ);
7582 -- Case of OR changed to OR ELSE
7584 else
7585 Rewrite (N,
7586 Make_Or_Else (Sloc (N),
7587 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7588 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7589 Analyze_And_Resolve (N, B_Typ);
7590 end if;
7592 -- Return now, since analysis of the rewritten ops will take care of
7593 -- other reference bookkeeping and expression folding.
7595 return;
7596 end if;
7598 Resolve (Left_Opnd (N), B_Typ);
7599 Resolve (Right_Opnd (N), B_Typ);
7601 Check_Unset_Reference (Left_Opnd (N));
7602 Check_Unset_Reference (Right_Opnd (N));
7604 Set_Etype (N, B_Typ);
7605 Generate_Operator_Reference (N, B_Typ);
7606 Eval_Logical_Op (N);
7608 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
7609 -- only when both operands have same static lower and higher bounds. Of
7610 -- course the types have to match, so only check if operands are
7611 -- compatible and the node itself has no errors.
7613 if Is_Array_Type (B_Typ)
7614 and then Nkind (N) in N_Binary_Op
7615 then
7616 declare
7617 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
7618 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
7620 begin
7621 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7622 -- operation if not needed.
7624 if Restriction_Check_Required (SPARK)
7625 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
7626 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
7627 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
7628 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
7629 then
7630 Check_SPARK_Restriction
7631 ("array types should have matching static bounds", N);
7632 end if;
7633 end;
7634 end if;
7635 end Resolve_Logical_Op;
7637 ---------------------------
7638 -- Resolve_Membership_Op --
7639 ---------------------------
7641 -- The context can only be a boolean type, and does not determine the
7642 -- arguments. Arguments should be unambiguous, but the preference rule for
7643 -- universal types applies.
7645 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
7646 pragma Warnings (Off, Typ);
7648 L : constant Node_Id := Left_Opnd (N);
7649 R : constant Node_Id := Right_Opnd (N);
7650 T : Entity_Id;
7652 procedure Resolve_Set_Membership;
7653 -- Analysis has determined a unique type for the left operand. Use it to
7654 -- resolve the disjuncts.
7656 ----------------------------
7657 -- Resolve_Set_Membership --
7658 ----------------------------
7660 procedure Resolve_Set_Membership is
7661 Alt : Node_Id;
7662 Ltyp : constant Entity_Id := Etype (L);
7664 begin
7665 Resolve (L, Ltyp);
7667 Alt := First (Alternatives (N));
7668 while Present (Alt) loop
7670 -- Alternative is an expression, a range
7671 -- or a subtype mark.
7673 if not Is_Entity_Name (Alt)
7674 or else not Is_Type (Entity (Alt))
7675 then
7676 Resolve (Alt, Ltyp);
7677 end if;
7679 Next (Alt);
7680 end loop;
7682 -- Check for duplicates for discrete case
7684 if Is_Discrete_Type (Ltyp) then
7685 declare
7686 type Ent is record
7687 Alt : Node_Id;
7688 Val : Uint;
7689 end record;
7691 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
7692 Nalts : Nat;
7694 begin
7695 -- Loop checking duplicates. This is quadratic, but giant sets
7696 -- are unlikely in this context so it's a reasonable choice.
7698 Nalts := 0;
7699 Alt := First (Alternatives (N));
7700 while Present (Alt) loop
7701 if Is_Static_Expression (Alt)
7702 and then (Nkind_In (Alt, N_Integer_Literal,
7703 N_Character_Literal)
7704 or else Nkind (Alt) in N_Has_Entity)
7705 then
7706 Nalts := Nalts + 1;
7707 Alts (Nalts) := (Alt, Expr_Value (Alt));
7709 for J in 1 .. Nalts - 1 loop
7710 if Alts (J).Val = Alts (Nalts).Val then
7711 Error_Msg_Sloc := Sloc (Alts (J).Alt);
7712 Error_Msg_N ("duplicate of value given#?", Alt);
7713 end if;
7714 end loop;
7715 end if;
7717 Alt := Next (Alt);
7718 end loop;
7719 end;
7720 end if;
7721 end Resolve_Set_Membership;
7723 -- Start of processing for Resolve_Membership_Op
7725 begin
7726 if L = Error or else R = Error then
7727 return;
7728 end if;
7730 if Present (Alternatives (N)) then
7731 Resolve_Set_Membership;
7732 return;
7734 elsif not Is_Overloaded (R)
7735 and then
7736 (Etype (R) = Universal_Integer
7737 or else
7738 Etype (R) = Universal_Real)
7739 and then Is_Overloaded (L)
7740 then
7741 T := Etype (R);
7743 -- Ada 2005 (AI-251): Support the following case:
7745 -- type I is interface;
7746 -- type T is tagged ...
7748 -- function Test (O : I'Class) is
7749 -- begin
7750 -- return O in T'Class.
7751 -- end Test;
7753 -- In this case we have nothing else to do. The membership test will be
7754 -- done at run time.
7756 elsif Ada_Version >= Ada_2005
7757 and then Is_Class_Wide_Type (Etype (L))
7758 and then Is_Interface (Etype (L))
7759 and then Is_Class_Wide_Type (Etype (R))
7760 and then not Is_Interface (Etype (R))
7761 then
7762 return;
7763 else
7764 T := Intersect_Types (L, R);
7765 end if;
7767 -- If mixed-mode operations are present and operands are all literal,
7768 -- the only interpretation involves Duration, which is probably not
7769 -- the intention of the programmer.
7771 if T = Any_Fixed then
7772 T := Unique_Fixed_Point_Type (N);
7774 if T = Any_Type then
7775 return;
7776 end if;
7777 end if;
7779 Resolve (L, T);
7780 Check_Unset_Reference (L);
7782 if Nkind (R) = N_Range
7783 and then not Is_Scalar_Type (T)
7784 then
7785 Error_Msg_N ("scalar type required for range", R);
7786 end if;
7788 if Is_Entity_Name (R) then
7789 Freeze_Expression (R);
7790 else
7791 Resolve (R, T);
7792 Check_Unset_Reference (R);
7793 end if;
7795 Eval_Membership_Op (N);
7796 end Resolve_Membership_Op;
7798 ------------------
7799 -- Resolve_Null --
7800 ------------------
7802 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
7803 Loc : constant Source_Ptr := Sloc (N);
7805 begin
7806 -- Handle restriction against anonymous null access values This
7807 -- restriction can be turned off using -gnatdj.
7809 -- Ada 2005 (AI-231): Remove restriction
7811 if Ada_Version < Ada_2005
7812 and then not Debug_Flag_J
7813 and then Ekind (Typ) = E_Anonymous_Access_Type
7814 and then Comes_From_Source (N)
7815 then
7816 -- In the common case of a call which uses an explicitly null value
7817 -- for an access parameter, give specialized error message.
7819 if Nkind (Parent (N)) in N_Subprogram_Call then
7820 Error_Msg_N
7821 ("null is not allowed as argument for an access parameter", N);
7823 -- Standard message for all other cases (are there any?)
7825 else
7826 Error_Msg_N
7827 ("null cannot be of an anonymous access type", N);
7828 end if;
7829 end if;
7831 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
7832 -- assignment to a null-excluding object
7834 if Ada_Version >= Ada_2005
7835 and then Can_Never_Be_Null (Typ)
7836 and then Nkind (Parent (N)) = N_Assignment_Statement
7837 then
7838 if not Inside_Init_Proc then
7839 Insert_Action
7840 (Compile_Time_Constraint_Error (N,
7841 "(Ada 2005) null not allowed in null-excluding objects?"),
7842 Make_Raise_Constraint_Error (Loc,
7843 Reason => CE_Access_Check_Failed));
7844 else
7845 Insert_Action (N,
7846 Make_Raise_Constraint_Error (Loc,
7847 Reason => CE_Access_Check_Failed));
7848 end if;
7849 end if;
7851 -- In a distributed context, null for a remote access to subprogram may
7852 -- need to be replaced with a special record aggregate. In this case,
7853 -- return after having done the transformation.
7855 if (Ekind (Typ) = E_Record_Type
7856 or else Is_Remote_Access_To_Subprogram_Type (Typ))
7857 and then Remote_AST_Null_Value (N, Typ)
7858 then
7859 return;
7860 end if;
7862 -- The null literal takes its type from the context
7864 Set_Etype (N, Typ);
7865 end Resolve_Null;
7867 -----------------------
7868 -- Resolve_Op_Concat --
7869 -----------------------
7871 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
7873 -- We wish to avoid deep recursion, because concatenations are often
7874 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
7875 -- operands nonrecursively until we find something that is not a simple
7876 -- concatenation (A in this case). We resolve that, and then walk back
7877 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
7878 -- to do the rest of the work at each level. The Parent pointers allow
7879 -- us to avoid recursion, and thus avoid running out of memory. See also
7880 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
7882 NN : Node_Id := N;
7883 Op1 : Node_Id;
7885 begin
7886 -- The following code is equivalent to:
7888 -- Resolve_Op_Concat_First (NN, Typ);
7889 -- Resolve_Op_Concat_Arg (N, ...);
7890 -- Resolve_Op_Concat_Rest (N, Typ);
7892 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
7893 -- operand is a concatenation.
7895 -- Walk down left operands
7897 loop
7898 Resolve_Op_Concat_First (NN, Typ);
7899 Op1 := Left_Opnd (NN);
7900 exit when not (Nkind (Op1) = N_Op_Concat
7901 and then not Is_Array_Type (Component_Type (Typ))
7902 and then Entity (Op1) = Entity (NN));
7903 NN := Op1;
7904 end loop;
7906 -- Now (given the above example) NN is A&B and Op1 is A
7908 -- First resolve Op1 ...
7910 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
7912 -- ... then walk NN back up until we reach N (where we started), calling
7913 -- Resolve_Op_Concat_Rest along the way.
7915 loop
7916 Resolve_Op_Concat_Rest (NN, Typ);
7917 exit when NN = N;
7918 NN := Parent (NN);
7919 end loop;
7921 if Base_Type (Etype (N)) /= Standard_String then
7922 Check_SPARK_Restriction
7923 ("result of concatenation should have type String", N);
7924 end if;
7925 end Resolve_Op_Concat;
7927 ---------------------------
7928 -- Resolve_Op_Concat_Arg --
7929 ---------------------------
7931 procedure Resolve_Op_Concat_Arg
7932 (N : Node_Id;
7933 Arg : Node_Id;
7934 Typ : Entity_Id;
7935 Is_Comp : Boolean)
7937 Btyp : constant Entity_Id := Base_Type (Typ);
7938 Ctyp : constant Entity_Id := Component_Type (Typ);
7940 begin
7941 if In_Instance then
7942 if Is_Comp
7943 or else (not Is_Overloaded (Arg)
7944 and then Etype (Arg) /= Any_Composite
7945 and then Covers (Ctyp, Etype (Arg)))
7946 then
7947 Resolve (Arg, Ctyp);
7948 else
7949 Resolve (Arg, Btyp);
7950 end if;
7952 -- If both Array & Array and Array & Component are visible, there is a
7953 -- potential ambiguity that must be reported.
7955 elsif Has_Compatible_Type (Arg, Ctyp) then
7956 if Nkind (Arg) = N_Aggregate
7957 and then Is_Composite_Type (Ctyp)
7958 then
7959 if Is_Private_Type (Ctyp) then
7960 Resolve (Arg, Btyp);
7962 -- If the operation is user-defined and not overloaded use its
7963 -- profile. The operation may be a renaming, in which case it has
7964 -- been rewritten, and we want the original profile.
7966 elsif not Is_Overloaded (N)
7967 and then Comes_From_Source (Entity (Original_Node (N)))
7968 and then Ekind (Entity (Original_Node (N))) = E_Function
7969 then
7970 Resolve (Arg,
7971 Etype
7972 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
7973 return;
7975 -- Otherwise an aggregate may match both the array type and the
7976 -- component type.
7978 else
7979 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
7980 Set_Etype (Arg, Any_Type);
7981 end if;
7983 else
7984 if Is_Overloaded (Arg)
7985 and then Has_Compatible_Type (Arg, Typ)
7986 and then Etype (Arg) /= Any_Type
7987 then
7988 declare
7989 I : Interp_Index;
7990 It : Interp;
7991 Func : Entity_Id;
7993 begin
7994 Get_First_Interp (Arg, I, It);
7995 Func := It.Nam;
7996 Get_Next_Interp (I, It);
7998 -- Special-case the error message when the overloading is
7999 -- caused by a function that yields an array and can be
8000 -- called without parameters.
8002 if It.Nam = Func then
8003 Error_Msg_Sloc := Sloc (Func);
8004 Error_Msg_N ("ambiguous call to function#", Arg);
8005 Error_Msg_NE
8006 ("\\interpretation as call yields&", Arg, Typ);
8007 Error_Msg_NE
8008 ("\\interpretation as indexing of call yields&",
8009 Arg, Component_Type (Typ));
8011 else
8012 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
8014 Get_First_Interp (Arg, I, It);
8015 while Present (It.Nam) loop
8016 Error_Msg_Sloc := Sloc (It.Nam);
8018 if Base_Type (It.Typ) = Btyp
8019 or else
8020 Base_Type (It.Typ) = Base_Type (Ctyp)
8021 then
8022 Error_Msg_N -- CODEFIX
8023 ("\\possible interpretation#", Arg);
8024 end if;
8026 Get_Next_Interp (I, It);
8027 end loop;
8028 end if;
8029 end;
8030 end if;
8032 Resolve (Arg, Component_Type (Typ));
8034 if Nkind (Arg) = N_String_Literal then
8035 Set_Etype (Arg, Component_Type (Typ));
8036 end if;
8038 if Arg = Left_Opnd (N) then
8039 Set_Is_Component_Left_Opnd (N);
8040 else
8041 Set_Is_Component_Right_Opnd (N);
8042 end if;
8043 end if;
8045 else
8046 Resolve (Arg, Btyp);
8047 end if;
8049 -- Concatenation is restricted in SPARK: each operand must be either a
8050 -- string literal, the name of a string constant, a static character or
8051 -- string expression, or another concatenation. Arg cannot be a
8052 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
8053 -- separately on each final operand, past concatenation operations.
8055 if Is_Character_Type (Etype (Arg)) then
8056 if not Is_Static_Expression (Arg) then
8057 Check_SPARK_Restriction
8058 ("character operand for concatenation should be static", Arg);
8059 end if;
8061 elsif Is_String_Type (Etype (Arg)) then
8062 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
8063 and then Is_Constant_Object (Entity (Arg)))
8064 and then not Is_Static_Expression (Arg)
8065 then
8066 Check_SPARK_Restriction
8067 ("string operand for concatenation should be static", Arg);
8068 end if;
8070 -- Do not issue error on an operand that is neither a character nor a
8071 -- string, as the error is issued in Resolve_Op_Concat.
8073 else
8074 null;
8075 end if;
8077 Check_Unset_Reference (Arg);
8078 end Resolve_Op_Concat_Arg;
8080 -----------------------------
8081 -- Resolve_Op_Concat_First --
8082 -----------------------------
8084 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
8085 Btyp : constant Entity_Id := Base_Type (Typ);
8086 Op1 : constant Node_Id := Left_Opnd (N);
8087 Op2 : constant Node_Id := Right_Opnd (N);
8089 begin
8090 -- The parser folds an enormous sequence of concatenations of string
8091 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
8092 -- in the right operand. If the expression resolves to a predefined "&"
8093 -- operator, all is well. Otherwise, the parser's folding is wrong, so
8094 -- we give an error. See P_Simple_Expression in Par.Ch4.
8096 if Nkind (Op2) = N_String_Literal
8097 and then Is_Folded_In_Parser (Op2)
8098 and then Ekind (Entity (N)) = E_Function
8099 then
8100 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
8101 and then String_Length (Strval (Op1)) = 0);
8102 Error_Msg_N ("too many user-defined concatenations", N);
8103 return;
8104 end if;
8106 Set_Etype (N, Btyp);
8108 if Is_Limited_Composite (Btyp) then
8109 Error_Msg_N ("concatenation not available for limited array", N);
8110 Explain_Limited_Type (Btyp, N);
8111 end if;
8112 end Resolve_Op_Concat_First;
8114 ----------------------------
8115 -- Resolve_Op_Concat_Rest --
8116 ----------------------------
8118 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
8119 Op1 : constant Node_Id := Left_Opnd (N);
8120 Op2 : constant Node_Id := Right_Opnd (N);
8122 begin
8123 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
8125 Generate_Operator_Reference (N, Typ);
8127 if Is_String_Type (Typ) then
8128 Eval_Concatenation (N);
8129 end if;
8131 -- If this is not a static concatenation, but the result is a string
8132 -- type (and not an array of strings) ensure that static string operands
8133 -- have their subtypes properly constructed.
8135 if Nkind (N) /= N_String_Literal
8136 and then Is_Character_Type (Component_Type (Typ))
8137 then
8138 Set_String_Literal_Subtype (Op1, Typ);
8139 Set_String_Literal_Subtype (Op2, Typ);
8140 end if;
8141 end Resolve_Op_Concat_Rest;
8143 ----------------------
8144 -- Resolve_Op_Expon --
8145 ----------------------
8147 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
8148 B_Typ : constant Entity_Id := Base_Type (Typ);
8150 begin
8151 -- Catch attempts to do fixed-point exponentiation with universal
8152 -- operands, which is a case where the illegality is not caught during
8153 -- normal operator analysis.
8155 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
8156 Error_Msg_N ("exponentiation not available for fixed point", N);
8157 return;
8159 elsif Nkind (Parent (N)) in N_Op
8160 and then Is_Fixed_Point_Type (Etype (Parent (N)))
8161 and then Etype (N) = Universal_Real
8162 and then Comes_From_Source (N)
8163 then
8164 Error_Msg_N ("exponentiation not available for fixed point", N);
8165 return;
8166 end if;
8168 if Comes_From_Source (N)
8169 and then Ekind (Entity (N)) = E_Function
8170 and then Is_Imported (Entity (N))
8171 and then Is_Intrinsic_Subprogram (Entity (N))
8172 then
8173 Resolve_Intrinsic_Operator (N, Typ);
8174 return;
8175 end if;
8177 if Etype (Left_Opnd (N)) = Universal_Integer
8178 or else Etype (Left_Opnd (N)) = Universal_Real
8179 then
8180 Check_For_Visible_Operator (N, B_Typ);
8181 end if;
8183 -- We do the resolution using the base type, because intermediate values
8184 -- in expressions always are of the base type, not a subtype of it.
8186 Resolve (Left_Opnd (N), B_Typ);
8187 Resolve (Right_Opnd (N), Standard_Integer);
8189 Check_Unset_Reference (Left_Opnd (N));
8190 Check_Unset_Reference (Right_Opnd (N));
8192 Set_Etype (N, B_Typ);
8193 Generate_Operator_Reference (N, B_Typ);
8195 Analyze_Dimension (N);
8197 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
8198 -- Evaluate the exponentiation operator for dimensioned type
8200 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
8201 else
8202 Eval_Op_Expon (N);
8203 end if;
8205 -- Set overflow checking bit. Much cleverer code needed here eventually
8206 -- and perhaps the Resolve routines should be separated for the various
8207 -- arithmetic operations, since they will need different processing. ???
8209 if Nkind (N) in N_Op then
8210 if not Overflow_Checks_Suppressed (Etype (N)) then
8211 Enable_Overflow_Check (N);
8212 end if;
8213 end if;
8214 end Resolve_Op_Expon;
8216 --------------------
8217 -- Resolve_Op_Not --
8218 --------------------
8220 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
8221 B_Typ : Entity_Id;
8223 function Parent_Is_Boolean return Boolean;
8224 -- This function determines if the parent node is a boolean operator or
8225 -- operation (comparison op, membership test, or short circuit form) and
8226 -- the not in question is the left operand of this operation. Note that
8227 -- if the not is in parens, then false is returned.
8229 -----------------------
8230 -- Parent_Is_Boolean --
8231 -----------------------
8233 function Parent_Is_Boolean return Boolean is
8234 begin
8235 if Paren_Count (N) /= 0 then
8236 return False;
8238 else
8239 case Nkind (Parent (N)) is
8240 when N_Op_And |
8241 N_Op_Eq |
8242 N_Op_Ge |
8243 N_Op_Gt |
8244 N_Op_Le |
8245 N_Op_Lt |
8246 N_Op_Ne |
8247 N_Op_Or |
8248 N_Op_Xor |
8249 N_In |
8250 N_Not_In |
8251 N_And_Then |
8252 N_Or_Else =>
8254 return Left_Opnd (Parent (N)) = N;
8256 when others =>
8257 return False;
8258 end case;
8259 end if;
8260 end Parent_Is_Boolean;
8262 -- Start of processing for Resolve_Op_Not
8264 begin
8265 -- Predefined operations on scalar types yield the base type. On the
8266 -- other hand, logical operations on arrays yield the type of the
8267 -- arguments (and the context).
8269 if Is_Array_Type (Typ) then
8270 B_Typ := Typ;
8271 else
8272 B_Typ := Base_Type (Typ);
8273 end if;
8275 if Is_VMS_Operator (Entity (N)) then
8276 null;
8278 -- Straightforward case of incorrect arguments
8280 elsif not Valid_Boolean_Arg (Typ) then
8281 Error_Msg_N ("invalid operand type for operator&", N);
8282 Set_Etype (N, Any_Type);
8283 return;
8285 -- Special case of probable missing parens
8287 elsif Typ = Universal_Integer or else Typ = Any_Modular then
8288 if Parent_Is_Boolean then
8289 Error_Msg_N
8290 ("operand of not must be enclosed in parentheses",
8291 Right_Opnd (N));
8292 else
8293 Error_Msg_N
8294 ("no modular type available in this context", N);
8295 end if;
8297 Set_Etype (N, Any_Type);
8298 return;
8300 -- OK resolution of NOT
8302 else
8303 -- Warn if non-boolean types involved. This is a case like not a < b
8304 -- where a and b are modular, where we will get (not a) < b and most
8305 -- likely not (a < b) was intended.
8307 if Warn_On_Questionable_Missing_Parens
8308 and then not Is_Boolean_Type (Typ)
8309 and then Parent_Is_Boolean
8310 then
8311 Error_Msg_N ("?not expression should be parenthesized here!", N);
8312 end if;
8314 -- Warn on double negation if checking redundant constructs
8316 if Warn_On_Redundant_Constructs
8317 and then Comes_From_Source (N)
8318 and then Comes_From_Source (Right_Opnd (N))
8319 and then Root_Type (Typ) = Standard_Boolean
8320 and then Nkind (Right_Opnd (N)) = N_Op_Not
8321 then
8322 Error_Msg_N ("redundant double negation?", N);
8323 end if;
8325 -- Complete resolution and evaluation of NOT
8327 Resolve (Right_Opnd (N), B_Typ);
8328 Check_Unset_Reference (Right_Opnd (N));
8329 Set_Etype (N, B_Typ);
8330 Generate_Operator_Reference (N, B_Typ);
8331 Eval_Op_Not (N);
8332 end if;
8333 end Resolve_Op_Not;
8335 -----------------------------
8336 -- Resolve_Operator_Symbol --
8337 -----------------------------
8339 -- Nothing to be done, all resolved already
8341 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
8342 pragma Warnings (Off, N);
8343 pragma Warnings (Off, Typ);
8345 begin
8346 null;
8347 end Resolve_Operator_Symbol;
8349 ----------------------------------
8350 -- Resolve_Qualified_Expression --
8351 ----------------------------------
8353 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
8354 pragma Warnings (Off, Typ);
8356 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
8357 Expr : constant Node_Id := Expression (N);
8359 begin
8360 Resolve (Expr, Target_Typ);
8362 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8363 -- operation if not needed.
8365 if Restriction_Check_Required (SPARK)
8366 and then Is_Array_Type (Target_Typ)
8367 and then Is_Array_Type (Etype (Expr))
8368 and then Etype (Expr) /= Any_Composite -- or else Expr in error
8369 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
8370 then
8371 Check_SPARK_Restriction
8372 ("array types should have matching static bounds", N);
8373 end if;
8375 -- A qualified expression requires an exact match of the type, class-
8376 -- wide matching is not allowed. However, if the qualifying type is
8377 -- specific and the expression has a class-wide type, it may still be
8378 -- okay, since it can be the result of the expansion of a call to a
8379 -- dispatching function, so we also have to check class-wideness of the
8380 -- type of the expression's original node.
8382 if (Is_Class_Wide_Type (Target_Typ)
8383 or else
8384 (Is_Class_Wide_Type (Etype (Expr))
8385 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
8386 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
8387 then
8388 Wrong_Type (Expr, Target_Typ);
8389 end if;
8391 -- If the target type is unconstrained, then we reset the type of the
8392 -- result from the type of the expression. For other cases, the actual
8393 -- subtype of the expression is the target type.
8395 if Is_Composite_Type (Target_Typ)
8396 and then not Is_Constrained (Target_Typ)
8397 then
8398 Set_Etype (N, Etype (Expr));
8399 end if;
8401 Analyze_Dimension (N);
8402 Eval_Qualified_Expression (N);
8403 end Resolve_Qualified_Expression;
8405 -------------------
8406 -- Resolve_Range --
8407 -------------------
8409 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
8410 L : constant Node_Id := Low_Bound (N);
8411 H : constant Node_Id := High_Bound (N);
8413 function First_Last_Ref return Boolean;
8414 -- Returns True if N is of the form X'First .. X'Last where X is the
8415 -- same entity for both attributes.
8417 --------------------
8418 -- First_Last_Ref --
8419 --------------------
8421 function First_Last_Ref return Boolean is
8422 Lorig : constant Node_Id := Original_Node (L);
8423 Horig : constant Node_Id := Original_Node (H);
8425 begin
8426 if Nkind (Lorig) = N_Attribute_Reference
8427 and then Nkind (Horig) = N_Attribute_Reference
8428 and then Attribute_Name (Lorig) = Name_First
8429 and then Attribute_Name (Horig) = Name_Last
8430 then
8431 declare
8432 PL : constant Node_Id := Prefix (Lorig);
8433 PH : constant Node_Id := Prefix (Horig);
8434 begin
8435 if Is_Entity_Name (PL)
8436 and then Is_Entity_Name (PH)
8437 and then Entity (PL) = Entity (PH)
8438 then
8439 return True;
8440 end if;
8441 end;
8442 end if;
8444 return False;
8445 end First_Last_Ref;
8447 -- Start of processing for Resolve_Range
8449 begin
8450 Set_Etype (N, Typ);
8451 Resolve (L, Typ);
8452 Resolve (H, Typ);
8454 -- Check for inappropriate range on unordered enumeration type
8456 if Bad_Unordered_Enumeration_Reference (N, Typ)
8458 -- Exclude X'First .. X'Last if X is the same entity for both
8460 and then not First_Last_Ref
8461 then
8462 Error_Msg ("subrange of unordered enumeration type?", Sloc (N));
8463 end if;
8465 Check_Unset_Reference (L);
8466 Check_Unset_Reference (H);
8468 -- We have to check the bounds for being within the base range as
8469 -- required for a non-static context. Normally this is automatic and
8470 -- done as part of evaluating expressions, but the N_Range node is an
8471 -- exception, since in GNAT we consider this node to be a subexpression,
8472 -- even though in Ada it is not. The circuit in Sem_Eval could check for
8473 -- this, but that would put the test on the main evaluation path for
8474 -- expressions.
8476 Check_Non_Static_Context (L);
8477 Check_Non_Static_Context (H);
8479 -- Check for an ambiguous range over character literals. This will
8480 -- happen with a membership test involving only literals.
8482 if Typ = Any_Character then
8483 Ambiguous_Character (L);
8484 Set_Etype (N, Any_Type);
8485 return;
8486 end if;
8488 -- If bounds are static, constant-fold them, so size computations are
8489 -- identical between front-end and back-end. Do not perform this
8490 -- transformation while analyzing generic units, as type information
8491 -- would be lost when reanalyzing the constant node in the instance.
8493 if Is_Discrete_Type (Typ) and then Full_Expander_Active then
8494 if Is_OK_Static_Expression (L) then
8495 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
8496 end if;
8498 if Is_OK_Static_Expression (H) then
8499 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
8500 end if;
8501 end if;
8502 end Resolve_Range;
8504 --------------------------
8505 -- Resolve_Real_Literal --
8506 --------------------------
8508 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
8509 Actual_Typ : constant Entity_Id := Etype (N);
8511 begin
8512 -- Special processing for fixed-point literals to make sure that the
8513 -- value is an exact multiple of small where this is required. We skip
8514 -- this for the universal real case, and also for generic types.
8516 if Is_Fixed_Point_Type (Typ)
8517 and then Typ /= Universal_Fixed
8518 and then Typ /= Any_Fixed
8519 and then not Is_Generic_Type (Typ)
8520 then
8521 declare
8522 Val : constant Ureal := Realval (N);
8523 Cintr : constant Ureal := Val / Small_Value (Typ);
8524 Cint : constant Uint := UR_Trunc (Cintr);
8525 Den : constant Uint := Norm_Den (Cintr);
8526 Stat : Boolean;
8528 begin
8529 -- Case of literal is not an exact multiple of the Small
8531 if Den /= 1 then
8533 -- For a source program literal for a decimal fixed-point type,
8534 -- this is statically illegal (RM 4.9(36)).
8536 if Is_Decimal_Fixed_Point_Type (Typ)
8537 and then Actual_Typ = Universal_Real
8538 and then Comes_From_Source (N)
8539 then
8540 Error_Msg_N ("value has extraneous low order digits", N);
8541 end if;
8543 -- Generate a warning if literal from source
8545 if Is_Static_Expression (N)
8546 and then Warn_On_Bad_Fixed_Value
8547 then
8548 Error_Msg_N
8549 ("?static fixed-point value is not a multiple of Small!",
8551 end if;
8553 -- Replace literal by a value that is the exact representation
8554 -- of a value of the type, i.e. a multiple of the small value,
8555 -- by truncation, since Machine_Rounds is false for all GNAT
8556 -- fixed-point types (RM 4.9(38)).
8558 Stat := Is_Static_Expression (N);
8559 Rewrite (N,
8560 Make_Real_Literal (Sloc (N),
8561 Realval => Small_Value (Typ) * Cint));
8563 Set_Is_Static_Expression (N, Stat);
8564 end if;
8566 -- In all cases, set the corresponding integer field
8568 Set_Corresponding_Integer_Value (N, Cint);
8569 end;
8570 end if;
8572 -- Now replace the actual type by the expected type as usual
8574 Set_Etype (N, Typ);
8575 Eval_Real_Literal (N);
8576 end Resolve_Real_Literal;
8578 -----------------------
8579 -- Resolve_Reference --
8580 -----------------------
8582 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
8583 P : constant Node_Id := Prefix (N);
8585 begin
8586 -- Replace general access with specific type
8588 if Ekind (Etype (N)) = E_Allocator_Type then
8589 Set_Etype (N, Base_Type (Typ));
8590 end if;
8592 Resolve (P, Designated_Type (Etype (N)));
8594 -- If we are taking the reference of a volatile entity, then treat it as
8595 -- a potential modification of this entity. This is too conservative,
8596 -- but necessary because remove side effects can cause transformations
8597 -- of normal assignments into reference sequences that otherwise fail to
8598 -- notice the modification.
8600 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
8601 Note_Possible_Modification (P, Sure => False);
8602 end if;
8603 end Resolve_Reference;
8605 --------------------------------
8606 -- Resolve_Selected_Component --
8607 --------------------------------
8609 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
8610 Comp : Entity_Id;
8611 Comp1 : Entity_Id := Empty; -- prevent junk warning
8612 P : constant Node_Id := Prefix (N);
8613 S : constant Node_Id := Selector_Name (N);
8614 T : Entity_Id := Etype (P);
8615 I : Interp_Index;
8616 I1 : Interp_Index := 0; -- prevent junk warning
8617 It : Interp;
8618 It1 : Interp;
8619 Found : Boolean;
8621 function Init_Component return Boolean;
8622 -- Check whether this is the initialization of a component within an
8623 -- init proc (by assignment or call to another init proc). If true,
8624 -- there is no need for a discriminant check.
8626 --------------------
8627 -- Init_Component --
8628 --------------------
8630 function Init_Component return Boolean is
8631 begin
8632 return Inside_Init_Proc
8633 and then Nkind (Prefix (N)) = N_Identifier
8634 and then Chars (Prefix (N)) = Name_uInit
8635 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
8636 end Init_Component;
8638 -- Start of processing for Resolve_Selected_Component
8640 begin
8641 if Is_Overloaded (P) then
8643 -- Use the context type to select the prefix that has a selector
8644 -- of the correct name and type.
8646 Found := False;
8647 Get_First_Interp (P, I, It);
8649 Search : while Present (It.Typ) loop
8650 if Is_Access_Type (It.Typ) then
8651 T := Designated_Type (It.Typ);
8652 else
8653 T := It.Typ;
8654 end if;
8656 -- Locate selected component. For a private prefix the selector
8657 -- can denote a discriminant.
8659 if Is_Record_Type (T) or else Is_Private_Type (T) then
8661 -- The visible components of a class-wide type are those of
8662 -- the root type.
8664 if Is_Class_Wide_Type (T) then
8665 T := Etype (T);
8666 end if;
8668 Comp := First_Entity (T);
8669 while Present (Comp) loop
8670 if Chars (Comp) = Chars (S)
8671 and then Covers (Etype (Comp), Typ)
8672 then
8673 if not Found then
8674 Found := True;
8675 I1 := I;
8676 It1 := It;
8677 Comp1 := Comp;
8679 else
8680 It := Disambiguate (P, I1, I, Any_Type);
8682 if It = No_Interp then
8683 Error_Msg_N
8684 ("ambiguous prefix for selected component", N);
8685 Set_Etype (N, Typ);
8686 return;
8688 else
8689 It1 := It;
8691 -- There may be an implicit dereference. Retrieve
8692 -- designated record type.
8694 if Is_Access_Type (It1.Typ) then
8695 T := Designated_Type (It1.Typ);
8696 else
8697 T := It1.Typ;
8698 end if;
8700 if Scope (Comp1) /= T then
8702 -- Resolution chooses the new interpretation.
8703 -- Find the component with the right name.
8705 Comp1 := First_Entity (T);
8706 while Present (Comp1)
8707 and then Chars (Comp1) /= Chars (S)
8708 loop
8709 Comp1 := Next_Entity (Comp1);
8710 end loop;
8711 end if;
8713 exit Search;
8714 end if;
8715 end if;
8716 end if;
8718 Comp := Next_Entity (Comp);
8719 end loop;
8720 end if;
8722 Get_Next_Interp (I, It);
8723 end loop Search;
8725 Resolve (P, It1.Typ);
8726 Set_Etype (N, Typ);
8727 Set_Entity_With_Style_Check (S, Comp1);
8729 else
8730 -- Resolve prefix with its type
8732 Resolve (P, T);
8733 end if;
8735 -- Generate cross-reference. We needed to wait until full overloading
8736 -- resolution was complete to do this, since otherwise we can't tell if
8737 -- we are an lvalue or not.
8739 if May_Be_Lvalue (N) then
8740 Generate_Reference (Entity (S), S, 'm');
8741 else
8742 Generate_Reference (Entity (S), S, 'r');
8743 end if;
8745 -- If prefix is an access type, the node will be transformed into an
8746 -- explicit dereference during expansion. The type of the node is the
8747 -- designated type of that of the prefix.
8749 if Is_Access_Type (Etype (P)) then
8750 T := Designated_Type (Etype (P));
8751 Check_Fully_Declared_Prefix (T, P);
8752 else
8753 T := Etype (P);
8754 end if;
8756 if Has_Discriminants (T)
8757 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
8758 and then Present (Original_Record_Component (Entity (S)))
8759 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
8760 and then Present (Discriminant_Checking_Func
8761 (Original_Record_Component (Entity (S))))
8762 and then not Discriminant_Checks_Suppressed (T)
8763 and then not Init_Component
8764 then
8765 Set_Do_Discriminant_Check (N);
8766 end if;
8768 if Ekind (Entity (S)) = E_Void then
8769 Error_Msg_N ("premature use of component", S);
8770 end if;
8772 -- If the prefix is a record conversion, this may be a renamed
8773 -- discriminant whose bounds differ from those of the original
8774 -- one, so we must ensure that a range check is performed.
8776 if Nkind (P) = N_Type_Conversion
8777 and then Ekind (Entity (S)) = E_Discriminant
8778 and then Is_Discrete_Type (Typ)
8779 then
8780 Set_Etype (N, Base_Type (Typ));
8781 end if;
8783 -- Note: No Eval processing is required, because the prefix is of a
8784 -- record type, or protected type, and neither can possibly be static.
8786 -- If the array type is atomic, and is packed, and we are in a left side
8787 -- context, then this is worth a warning, since we have a situation
8788 -- where the access to the component may cause extra read/writes of the
8789 -- atomic array object, which could be considered unexpected.
8791 if Nkind (N) = N_Selected_Component
8792 and then (Is_Atomic (T)
8793 or else (Is_Entity_Name (Prefix (N))
8794 and then Is_Atomic (Entity (Prefix (N)))))
8795 and then Is_Packed (T)
8796 and then Is_LHS (N)
8797 then
8798 Error_Msg_N
8799 ("?assignment to component of packed atomic record", Prefix (N));
8800 Error_Msg_N
8801 ("?\may cause unexpected accesses to atomic object", Prefix (N));
8802 end if;
8804 Analyze_Dimension (N);
8805 end Resolve_Selected_Component;
8807 -------------------
8808 -- Resolve_Shift --
8809 -------------------
8811 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
8812 B_Typ : constant Entity_Id := Base_Type (Typ);
8813 L : constant Node_Id := Left_Opnd (N);
8814 R : constant Node_Id := Right_Opnd (N);
8816 begin
8817 -- We do the resolution using the base type, because intermediate values
8818 -- in expressions always are of the base type, not a subtype of it.
8820 Resolve (L, B_Typ);
8821 Resolve (R, Standard_Natural);
8823 Check_Unset_Reference (L);
8824 Check_Unset_Reference (R);
8826 Set_Etype (N, B_Typ);
8827 Generate_Operator_Reference (N, B_Typ);
8828 Eval_Shift (N);
8829 end Resolve_Shift;
8831 ---------------------------
8832 -- Resolve_Short_Circuit --
8833 ---------------------------
8835 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
8836 B_Typ : constant Entity_Id := Base_Type (Typ);
8837 L : constant Node_Id := Left_Opnd (N);
8838 R : constant Node_Id := Right_Opnd (N);
8840 begin
8841 Resolve (L, B_Typ);
8842 Resolve (R, B_Typ);
8844 -- Check for issuing warning for always False assert/check, this happens
8845 -- when assertions are turned off, in which case the pragma Assert/Check
8846 -- was transformed into:
8848 -- if False and then <condition> then ...
8850 -- and we detect this pattern
8852 if Warn_On_Assertion_Failure
8853 and then Is_Entity_Name (R)
8854 and then Entity (R) = Standard_False
8855 and then Nkind (Parent (N)) = N_If_Statement
8856 and then Nkind (N) = N_And_Then
8857 and then Is_Entity_Name (L)
8858 and then Entity (L) = Standard_False
8859 then
8860 declare
8861 Orig : constant Node_Id := Original_Node (Parent (N));
8863 begin
8864 if Nkind (Orig) = N_Pragma
8865 and then Pragma_Name (Orig) = Name_Assert
8866 then
8867 -- Don't want to warn if original condition is explicit False
8869 declare
8870 Expr : constant Node_Id :=
8871 Original_Node
8872 (Expression
8873 (First (Pragma_Argument_Associations (Orig))));
8874 begin
8875 if Is_Entity_Name (Expr)
8876 and then Entity (Expr) = Standard_False
8877 then
8878 null;
8879 else
8880 -- Issue warning. We do not want the deletion of the
8881 -- IF/AND-THEN to take this message with it. We achieve
8882 -- this by making sure that the expanded code points to
8883 -- the Sloc of the expression, not the original pragma.
8885 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
8886 -- The source location of the expression is not usually
8887 -- the best choice here. For example, it gets located on
8888 -- the last AND keyword in a chain of boolean expressiond
8889 -- AND'ed together. It is best to put the message on the
8890 -- first character of the assertion, which is the effect
8891 -- of the First_Node call here.
8893 Error_Msg_F
8894 ("?assertion would fail at run time!",
8895 Expression
8896 (First (Pragma_Argument_Associations (Orig))));
8897 end if;
8898 end;
8900 -- Similar processing for Check pragma
8902 elsif Nkind (Orig) = N_Pragma
8903 and then Pragma_Name (Orig) = Name_Check
8904 then
8905 -- Don't want to warn if original condition is explicit False
8907 declare
8908 Expr : constant Node_Id :=
8909 Original_Node
8910 (Expression
8911 (Next (First
8912 (Pragma_Argument_Associations (Orig)))));
8913 begin
8914 if Is_Entity_Name (Expr)
8915 and then Entity (Expr) = Standard_False
8916 then
8917 null;
8919 -- Post warning
8921 else
8922 -- Again use Error_Msg_F rather than Error_Msg_N, see
8923 -- comment above for an explanation of why we do this.
8925 Error_Msg_F
8926 ("?check would fail at run time!",
8927 Expression
8928 (Last (Pragma_Argument_Associations (Orig))));
8929 end if;
8930 end;
8931 end if;
8932 end;
8933 end if;
8935 -- Continue with processing of short circuit
8937 Check_Unset_Reference (L);
8938 Check_Unset_Reference (R);
8940 Set_Etype (N, B_Typ);
8941 Eval_Short_Circuit (N);
8942 end Resolve_Short_Circuit;
8944 -------------------
8945 -- Resolve_Slice --
8946 -------------------
8948 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
8949 Drange : constant Node_Id := Discrete_Range (N);
8950 Name : constant Node_Id := Prefix (N);
8951 Array_Type : Entity_Id := Empty;
8952 Index_Type : Entity_Id;
8954 begin
8955 if Is_Overloaded (Name) then
8957 -- Use the context type to select the prefix that yields the correct
8958 -- array type.
8960 declare
8961 I : Interp_Index;
8962 I1 : Interp_Index := 0;
8963 It : Interp;
8964 P : constant Node_Id := Prefix (N);
8965 Found : Boolean := False;
8967 begin
8968 Get_First_Interp (P, I, It);
8969 while Present (It.Typ) loop
8970 if (Is_Array_Type (It.Typ)
8971 and then Covers (Typ, It.Typ))
8972 or else (Is_Access_Type (It.Typ)
8973 and then Is_Array_Type (Designated_Type (It.Typ))
8974 and then Covers (Typ, Designated_Type (It.Typ)))
8975 then
8976 if Found then
8977 It := Disambiguate (P, I1, I, Any_Type);
8979 if It = No_Interp then
8980 Error_Msg_N ("ambiguous prefix for slicing", N);
8981 Set_Etype (N, Typ);
8982 return;
8983 else
8984 Found := True;
8985 Array_Type := It.Typ;
8986 I1 := I;
8987 end if;
8988 else
8989 Found := True;
8990 Array_Type := It.Typ;
8991 I1 := I;
8992 end if;
8993 end if;
8995 Get_Next_Interp (I, It);
8996 end loop;
8997 end;
8999 else
9000 Array_Type := Etype (Name);
9001 end if;
9003 Resolve (Name, Array_Type);
9005 if Is_Access_Type (Array_Type) then
9006 Apply_Access_Check (N);
9007 Array_Type := Designated_Type (Array_Type);
9009 -- If the prefix is an access to an unconstrained array, we must use
9010 -- the actual subtype of the object to perform the index checks. The
9011 -- object denoted by the prefix is implicit in the node, so we build
9012 -- an explicit representation for it in order to compute the actual
9013 -- subtype.
9015 if not Is_Constrained (Array_Type) then
9016 Remove_Side_Effects (Prefix (N));
9018 declare
9019 Obj : constant Node_Id :=
9020 Make_Explicit_Dereference (Sloc (N),
9021 Prefix => New_Copy_Tree (Prefix (N)));
9022 begin
9023 Set_Etype (Obj, Array_Type);
9024 Set_Parent (Obj, Parent (N));
9025 Array_Type := Get_Actual_Subtype (Obj);
9026 end;
9027 end if;
9029 elsif Is_Entity_Name (Name)
9030 or else Nkind (Name) = N_Explicit_Dereference
9031 or else (Nkind (Name) = N_Function_Call
9032 and then not Is_Constrained (Etype (Name)))
9033 then
9034 Array_Type := Get_Actual_Subtype (Name);
9036 -- If the name is a selected component that depends on discriminants,
9037 -- build an actual subtype for it. This can happen only when the name
9038 -- itself is overloaded; otherwise the actual subtype is created when
9039 -- the selected component is analyzed.
9041 elsif Nkind (Name) = N_Selected_Component
9042 and then Full_Analysis
9043 and then Depends_On_Discriminant (First_Index (Array_Type))
9044 then
9045 declare
9046 Act_Decl : constant Node_Id :=
9047 Build_Actual_Subtype_Of_Component (Array_Type, Name);
9048 begin
9049 Insert_Action (N, Act_Decl);
9050 Array_Type := Defining_Identifier (Act_Decl);
9051 end;
9053 -- Maybe this should just be "else", instead of checking for the
9054 -- specific case of slice??? This is needed for the case where the
9055 -- prefix is an Image attribute, which gets expanded to a slice, and so
9056 -- has a constrained subtype which we want to use for the slice range
9057 -- check applied below (the range check won't get done if the
9058 -- unconstrained subtype of the 'Image is used).
9060 elsif Nkind (Name) = N_Slice then
9061 Array_Type := Etype (Name);
9062 end if;
9064 -- If name was overloaded, set slice type correctly now
9066 Set_Etype (N, Array_Type);
9068 -- If the range is specified by a subtype mark, no resolution is
9069 -- necessary. Else resolve the bounds, and apply needed checks.
9071 if not Is_Entity_Name (Drange) then
9072 if Ekind (Array_Type) = E_String_Literal_Subtype then
9073 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
9074 else
9075 Index_Type := Etype (First_Index (Array_Type));
9076 end if;
9078 Resolve (Drange, Base_Type (Index_Type));
9080 if Nkind (Drange) = N_Range then
9082 -- Ensure that side effects in the bounds are properly handled
9084 Force_Evaluation (Low_Bound (Drange));
9085 Force_Evaluation (High_Bound (Drange));
9087 -- Do not apply the range check to nodes associated with the
9088 -- frontend expansion of the dispatch table. We first check
9089 -- if Ada.Tags is already loaded to avoid the addition of an
9090 -- undesired dependence on such run-time unit.
9092 if not Tagged_Type_Expansion
9093 or else not
9094 (RTU_Loaded (Ada_Tags)
9095 and then Nkind (Prefix (N)) = N_Selected_Component
9096 and then Present (Entity (Selector_Name (Prefix (N))))
9097 and then Entity (Selector_Name (Prefix (N))) =
9098 RTE_Record_Component (RE_Prims_Ptr))
9099 then
9100 Apply_Range_Check (Drange, Index_Type);
9101 end if;
9102 end if;
9103 end if;
9105 Set_Slice_Subtype (N);
9107 -- Check bad use of type with predicates
9109 if Has_Predicates (Etype (Drange)) then
9110 Bad_Predicated_Subtype_Use
9111 ("subtype& has predicate, not allowed in slice",
9112 Drange, Etype (Drange));
9114 -- Otherwise here is where we check suspicious indexes
9116 elsif Nkind (Drange) = N_Range then
9117 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
9118 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
9119 end if;
9121 Analyze_Dimension (N);
9122 Eval_Slice (N);
9123 end Resolve_Slice;
9125 ----------------------------
9126 -- Resolve_String_Literal --
9127 ----------------------------
9129 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
9130 C_Typ : constant Entity_Id := Component_Type (Typ);
9131 R_Typ : constant Entity_Id := Root_Type (C_Typ);
9132 Loc : constant Source_Ptr := Sloc (N);
9133 Str : constant String_Id := Strval (N);
9134 Strlen : constant Nat := String_Length (Str);
9135 Subtype_Id : Entity_Id;
9136 Need_Check : Boolean;
9138 begin
9139 -- For a string appearing in a concatenation, defer creation of the
9140 -- string_literal_subtype until the end of the resolution of the
9141 -- concatenation, because the literal may be constant-folded away. This
9142 -- is a useful optimization for long concatenation expressions.
9144 -- If the string is an aggregate built for a single character (which
9145 -- happens in a non-static context) or a is null string to which special
9146 -- checks may apply, we build the subtype. Wide strings must also get a
9147 -- string subtype if they come from a one character aggregate. Strings
9148 -- generated by attributes might be static, but it is often hard to
9149 -- determine whether the enclosing context is static, so we generate
9150 -- subtypes for them as well, thus losing some rarer optimizations ???
9151 -- Same for strings that come from a static conversion.
9153 Need_Check :=
9154 (Strlen = 0 and then Typ /= Standard_String)
9155 or else Nkind (Parent (N)) /= N_Op_Concat
9156 or else (N /= Left_Opnd (Parent (N))
9157 and then N /= Right_Opnd (Parent (N)))
9158 or else ((Typ = Standard_Wide_String
9159 or else Typ = Standard_Wide_Wide_String)
9160 and then Nkind (Original_Node (N)) /= N_String_Literal);
9162 -- If the resolving type is itself a string literal subtype, we can just
9163 -- reuse it, since there is no point in creating another.
9165 if Ekind (Typ) = E_String_Literal_Subtype then
9166 Subtype_Id := Typ;
9168 elsif Nkind (Parent (N)) = N_Op_Concat
9169 and then not Need_Check
9170 and then not Nkind_In (Original_Node (N), N_Character_Literal,
9171 N_Attribute_Reference,
9172 N_Qualified_Expression,
9173 N_Type_Conversion)
9174 then
9175 Subtype_Id := Typ;
9177 -- Otherwise we must create a string literal subtype. Note that the
9178 -- whole idea of string literal subtypes is simply to avoid the need
9179 -- for building a full fledged array subtype for each literal.
9181 else
9182 Set_String_Literal_Subtype (N, Typ);
9183 Subtype_Id := Etype (N);
9184 end if;
9186 if Nkind (Parent (N)) /= N_Op_Concat
9187 or else Need_Check
9188 then
9189 Set_Etype (N, Subtype_Id);
9190 Eval_String_Literal (N);
9191 end if;
9193 if Is_Limited_Composite (Typ)
9194 or else Is_Private_Composite (Typ)
9195 then
9196 Error_Msg_N ("string literal not available for private array", N);
9197 Set_Etype (N, Any_Type);
9198 return;
9199 end if;
9201 -- The validity of a null string has been checked in the call to
9202 -- Eval_String_Literal.
9204 if Strlen = 0 then
9205 return;
9207 -- Always accept string literal with component type Any_Character, which
9208 -- occurs in error situations and in comparisons of literals, both of
9209 -- which should accept all literals.
9211 elsif R_Typ = Any_Character then
9212 return;
9214 -- If the type is bit-packed, then we always transform the string
9215 -- literal into a full fledged aggregate.
9217 elsif Is_Bit_Packed_Array (Typ) then
9218 null;
9220 -- Deal with cases of Wide_Wide_String, Wide_String, and String
9222 else
9223 -- For Standard.Wide_Wide_String, or any other type whose component
9224 -- type is Standard.Wide_Wide_Character, we know that all the
9225 -- characters in the string must be acceptable, since the parser
9226 -- accepted the characters as valid character literals.
9228 if R_Typ = Standard_Wide_Wide_Character then
9229 null;
9231 -- For the case of Standard.String, or any other type whose component
9232 -- type is Standard.Character, we must make sure that there are no
9233 -- wide characters in the string, i.e. that it is entirely composed
9234 -- of characters in range of type Character.
9236 -- If the string literal is the result of a static concatenation, the
9237 -- test has already been performed on the components, and need not be
9238 -- repeated.
9240 elsif R_Typ = Standard_Character
9241 and then Nkind (Original_Node (N)) /= N_Op_Concat
9242 then
9243 for J in 1 .. Strlen loop
9244 if not In_Character_Range (Get_String_Char (Str, J)) then
9246 -- If we are out of range, post error. This is one of the
9247 -- very few places that we place the flag in the middle of
9248 -- a token, right under the offending wide character. Not
9249 -- quite clear if this is right wrt wide character encoding
9250 -- sequences, but it's only an error message!
9252 Error_Msg
9253 ("literal out of range of type Standard.Character",
9254 Source_Ptr (Int (Loc) + J));
9255 return;
9256 end if;
9257 end loop;
9259 -- For the case of Standard.Wide_String, or any other type whose
9260 -- component type is Standard.Wide_Character, we must make sure that
9261 -- there are no wide characters in the string, i.e. that it is
9262 -- entirely composed of characters in range of type Wide_Character.
9264 -- If the string literal is the result of a static concatenation,
9265 -- the test has already been performed on the components, and need
9266 -- not be repeated.
9268 elsif R_Typ = Standard_Wide_Character
9269 and then Nkind (Original_Node (N)) /= N_Op_Concat
9270 then
9271 for J in 1 .. Strlen loop
9272 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
9274 -- If we are out of range, post error. This is one of the
9275 -- very few places that we place the flag in the middle of
9276 -- a token, right under the offending wide character.
9278 -- This is not quite right, because characters in general
9279 -- will take more than one character position ???
9281 Error_Msg
9282 ("literal out of range of type Standard.Wide_Character",
9283 Source_Ptr (Int (Loc) + J));
9284 return;
9285 end if;
9286 end loop;
9288 -- If the root type is not a standard character, then we will convert
9289 -- the string into an aggregate and will let the aggregate code do
9290 -- the checking. Standard Wide_Wide_Character is also OK here.
9292 else
9293 null;
9294 end if;
9296 -- See if the component type of the array corresponding to the string
9297 -- has compile time known bounds. If yes we can directly check
9298 -- whether the evaluation of the string will raise constraint error.
9299 -- Otherwise we need to transform the string literal into the
9300 -- corresponding character aggregate and let the aggregate code do
9301 -- the checking.
9303 if Is_Standard_Character_Type (R_Typ) then
9305 -- Check for the case of full range, where we are definitely OK
9307 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
9308 return;
9309 end if;
9311 -- Here the range is not the complete base type range, so check
9313 declare
9314 Comp_Typ_Lo : constant Node_Id :=
9315 Type_Low_Bound (Component_Type (Typ));
9316 Comp_Typ_Hi : constant Node_Id :=
9317 Type_High_Bound (Component_Type (Typ));
9319 Char_Val : Uint;
9321 begin
9322 if Compile_Time_Known_Value (Comp_Typ_Lo)
9323 and then Compile_Time_Known_Value (Comp_Typ_Hi)
9324 then
9325 for J in 1 .. Strlen loop
9326 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
9328 if Char_Val < Expr_Value (Comp_Typ_Lo)
9329 or else Char_Val > Expr_Value (Comp_Typ_Hi)
9330 then
9331 Apply_Compile_Time_Constraint_Error
9332 (N, "character out of range?", CE_Range_Check_Failed,
9333 Loc => Source_Ptr (Int (Loc) + J));
9334 end if;
9335 end loop;
9337 return;
9338 end if;
9339 end;
9340 end if;
9341 end if;
9343 -- If we got here we meed to transform the string literal into the
9344 -- equivalent qualified positional array aggregate. This is rather
9345 -- heavy artillery for this situation, but it is hard work to avoid.
9347 declare
9348 Lits : constant List_Id := New_List;
9349 P : Source_Ptr := Loc + 1;
9350 C : Char_Code;
9352 begin
9353 -- Build the character literals, we give them source locations that
9354 -- correspond to the string positions, which is a bit tricky given
9355 -- the possible presence of wide character escape sequences.
9357 for J in 1 .. Strlen loop
9358 C := Get_String_Char (Str, J);
9359 Set_Character_Literal_Name (C);
9361 Append_To (Lits,
9362 Make_Character_Literal (P,
9363 Chars => Name_Find,
9364 Char_Literal_Value => UI_From_CC (C)));
9366 if In_Character_Range (C) then
9367 P := P + 1;
9369 -- Should we have a call to Skip_Wide here ???
9371 -- ??? else
9372 -- Skip_Wide (P);
9374 end if;
9375 end loop;
9377 Rewrite (N,
9378 Make_Qualified_Expression (Loc,
9379 Subtype_Mark => New_Reference_To (Typ, Loc),
9380 Expression =>
9381 Make_Aggregate (Loc, Expressions => Lits)));
9383 Analyze_And_Resolve (N, Typ);
9384 end;
9385 end Resolve_String_Literal;
9387 -----------------------------
9388 -- Resolve_Subprogram_Info --
9389 -----------------------------
9391 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
9392 begin
9393 Set_Etype (N, Typ);
9394 end Resolve_Subprogram_Info;
9396 -----------------------------
9397 -- Resolve_Type_Conversion --
9398 -----------------------------
9400 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
9401 Conv_OK : constant Boolean := Conversion_OK (N);
9402 Operand : constant Node_Id := Expression (N);
9403 Operand_Typ : constant Entity_Id := Etype (Operand);
9404 Target_Typ : constant Entity_Id := Etype (N);
9405 Rop : Node_Id;
9406 Orig_N : Node_Id;
9407 Orig_T : Node_Id;
9409 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
9410 -- Set to False to suppress cases where we want to suppress the test
9411 -- for redundancy to avoid possible false positives on this warning.
9413 begin
9414 if not Conv_OK
9415 and then not Valid_Conversion (N, Target_Typ, Operand)
9416 then
9417 return;
9418 end if;
9420 -- If the Operand Etype is Universal_Fixed, then the conversion is
9421 -- never redundant. We need this check because by the time we have
9422 -- finished the rather complex transformation, the conversion looks
9423 -- redundant when it is not.
9425 if Operand_Typ = Universal_Fixed then
9426 Test_Redundant := False;
9428 -- If the operand is marked as Any_Fixed, then special processing is
9429 -- required. This is also a case where we suppress the test for a
9430 -- redundant conversion, since most certainly it is not redundant.
9432 elsif Operand_Typ = Any_Fixed then
9433 Test_Redundant := False;
9435 -- Mixed-mode operation involving a literal. Context must be a fixed
9436 -- type which is applied to the literal subsequently.
9438 if Is_Fixed_Point_Type (Typ) then
9439 Set_Etype (Operand, Universal_Real);
9441 elsif Is_Numeric_Type (Typ)
9442 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
9443 and then (Etype (Right_Opnd (Operand)) = Universal_Real
9444 or else
9445 Etype (Left_Opnd (Operand)) = Universal_Real)
9446 then
9447 -- Return if expression is ambiguous
9449 if Unique_Fixed_Point_Type (N) = Any_Type then
9450 return;
9452 -- If nothing else, the available fixed type is Duration
9454 else
9455 Set_Etype (Operand, Standard_Duration);
9456 end if;
9458 -- Resolve the real operand with largest available precision
9460 if Etype (Right_Opnd (Operand)) = Universal_Real then
9461 Rop := New_Copy_Tree (Right_Opnd (Operand));
9462 else
9463 Rop := New_Copy_Tree (Left_Opnd (Operand));
9464 end if;
9466 Resolve (Rop, Universal_Real);
9468 -- If the operand is a literal (it could be a non-static and
9469 -- illegal exponentiation) check whether the use of Duration
9470 -- is potentially inaccurate.
9472 if Nkind (Rop) = N_Real_Literal
9473 and then Realval (Rop) /= Ureal_0
9474 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
9475 then
9476 Error_Msg_N
9477 ("?universal real operand can only " &
9478 "be interpreted as Duration!",
9479 Rop);
9480 Error_Msg_N
9481 ("\?precision will be lost in the conversion!", Rop);
9482 end if;
9484 elsif Is_Numeric_Type (Typ)
9485 and then Nkind (Operand) in N_Op
9486 and then Unique_Fixed_Point_Type (N) /= Any_Type
9487 then
9488 Set_Etype (Operand, Standard_Duration);
9490 else
9491 Error_Msg_N ("invalid context for mixed mode operation", N);
9492 Set_Etype (Operand, Any_Type);
9493 return;
9494 end if;
9495 end if;
9497 Resolve (Operand);
9499 -- In SPARK, a type conversion between array types should be restricted
9500 -- to types which have matching static bounds.
9502 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9503 -- operation if not needed.
9505 if Restriction_Check_Required (SPARK)
9506 and then Is_Array_Type (Target_Typ)
9507 and then Is_Array_Type (Operand_Typ)
9508 and then Operand_Typ /= Any_Composite -- or else Operand in error
9509 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
9510 then
9511 Check_SPARK_Restriction
9512 ("array types should have matching static bounds", N);
9513 end if;
9515 -- In formal mode, the operand of an ancestor type conversion must be an
9516 -- object (not an expression).
9518 if Is_Tagged_Type (Target_Typ)
9519 and then not Is_Class_Wide_Type (Target_Typ)
9520 and then Is_Tagged_Type (Operand_Typ)
9521 and then not Is_Class_Wide_Type (Operand_Typ)
9522 and then Is_Ancestor (Target_Typ, Operand_Typ)
9523 and then not Is_SPARK_Object_Reference (Operand)
9524 then
9525 Check_SPARK_Restriction ("object required", Operand);
9526 end if;
9528 Analyze_Dimension (N);
9530 -- Note: we do the Eval_Type_Conversion call before applying the
9531 -- required checks for a subtype conversion. This is important, since
9532 -- both are prepared under certain circumstances to change the type
9533 -- conversion to a constraint error node, but in the case of
9534 -- Eval_Type_Conversion this may reflect an illegality in the static
9535 -- case, and we would miss the illegality (getting only a warning
9536 -- message), if we applied the type conversion checks first.
9538 Eval_Type_Conversion (N);
9540 -- Even when evaluation is not possible, we may be able to simplify the
9541 -- conversion or its expression. This needs to be done before applying
9542 -- checks, since otherwise the checks may use the original expression
9543 -- and defeat the simplifications. This is specifically the case for
9544 -- elimination of the floating-point Truncation attribute in
9545 -- float-to-int conversions.
9547 Simplify_Type_Conversion (N);
9549 -- If after evaluation we still have a type conversion, then we may need
9550 -- to apply checks required for a subtype conversion.
9552 -- Skip these type conversion checks if universal fixed operands
9553 -- operands involved, since range checks are handled separately for
9554 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
9556 if Nkind (N) = N_Type_Conversion
9557 and then not Is_Generic_Type (Root_Type (Target_Typ))
9558 and then Target_Typ /= Universal_Fixed
9559 and then Operand_Typ /= Universal_Fixed
9560 then
9561 Apply_Type_Conversion_Checks (N);
9562 end if;
9564 -- Issue warning for conversion of simple object to its own type. We
9565 -- have to test the original nodes, since they may have been rewritten
9566 -- by various optimizations.
9568 Orig_N := Original_Node (N);
9570 -- Here we test for a redundant conversion if the warning mode is
9571 -- active (and was not locally reset), and we have a type conversion
9572 -- from source not appearing in a generic instance.
9574 if Test_Redundant
9575 and then Nkind (Orig_N) = N_Type_Conversion
9576 and then Comes_From_Source (Orig_N)
9577 and then not In_Instance
9578 then
9579 Orig_N := Original_Node (Expression (Orig_N));
9580 Orig_T := Target_Typ;
9582 -- If the node is part of a larger expression, the Target_Type
9583 -- may not be the original type of the node if the context is a
9584 -- condition. Recover original type to see if conversion is needed.
9586 if Is_Boolean_Type (Orig_T)
9587 and then Nkind (Parent (N)) in N_Op
9588 then
9589 Orig_T := Etype (Parent (N));
9590 end if;
9592 -- If we have an entity name, then give the warning if the entity
9593 -- is the right type, or if it is a loop parameter covered by the
9594 -- original type (that's needed because loop parameters have an
9595 -- odd subtype coming from the bounds).
9597 if (Is_Entity_Name (Orig_N)
9598 and then
9599 (Etype (Entity (Orig_N)) = Orig_T
9600 or else
9601 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
9602 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
9604 -- If not an entity, then type of expression must match
9606 or else Etype (Orig_N) = Orig_T
9607 then
9608 -- One more check, do not give warning if the analyzed conversion
9609 -- has an expression with non-static bounds, and the bounds of the
9610 -- target are static. This avoids junk warnings in cases where the
9611 -- conversion is necessary to establish staticness, for example in
9612 -- a case statement.
9614 if not Is_OK_Static_Subtype (Operand_Typ)
9615 and then Is_OK_Static_Subtype (Target_Typ)
9616 then
9617 null;
9619 -- Finally, if this type conversion occurs in a context requiring
9620 -- a prefix, and the expression is a qualified expression then the
9621 -- type conversion is not redundant, since a qualified expression
9622 -- is not a prefix, whereas a type conversion is. For example, "X
9623 -- := T'(Funx(...)).Y;" is illegal because a selected component
9624 -- requires a prefix, but a type conversion makes it legal: "X :=
9625 -- T(T'(Funx(...))).Y;"
9627 -- In Ada 2012, a qualified expression is a name, so this idiom is
9628 -- no longer needed, but we still suppress the warning because it
9629 -- seems unfriendly for warnings to pop up when you switch to the
9630 -- newer language version.
9632 elsif Nkind (Orig_N) = N_Qualified_Expression
9633 and then Nkind_In (Parent (N), N_Attribute_Reference,
9634 N_Indexed_Component,
9635 N_Selected_Component,
9636 N_Slice,
9637 N_Explicit_Dereference)
9638 then
9639 null;
9641 -- Never warn on conversion to Long_Long_Integer'Base since
9642 -- that is most likely an artifact of the extended overflow
9643 -- checking and comes from complex expanded code.
9645 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
9646 null;
9648 -- Here we give the redundant conversion warning. If it is an
9649 -- entity, give the name of the entity in the message. If not,
9650 -- just mention the expression.
9652 else
9653 if Is_Entity_Name (Orig_N) then
9654 Error_Msg_Node_2 := Orig_T;
9655 Error_Msg_NE -- CODEFIX
9656 ("?redundant conversion, & is of type &!",
9657 N, Entity (Orig_N));
9658 else
9659 Error_Msg_NE
9660 ("?redundant conversion, expression is of type&!",
9661 N, Orig_T);
9662 end if;
9663 end if;
9664 end if;
9665 end if;
9667 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
9668 -- No need to perform any interface conversion if the type of the
9669 -- expression coincides with the target type.
9671 if Ada_Version >= Ada_2005
9672 and then Full_Expander_Active
9673 and then Operand_Typ /= Target_Typ
9674 then
9675 declare
9676 Opnd : Entity_Id := Operand_Typ;
9677 Target : Entity_Id := Target_Typ;
9679 begin
9680 if Is_Access_Type (Opnd) then
9681 Opnd := Designated_Type (Opnd);
9682 end if;
9684 if Is_Access_Type (Target_Typ) then
9685 Target := Designated_Type (Target);
9686 end if;
9688 if Opnd = Target then
9689 null;
9691 -- Conversion from interface type
9693 elsif Is_Interface (Opnd) then
9695 -- Ada 2005 (AI-217): Handle entities from limited views
9697 if From_With_Type (Opnd) then
9698 Error_Msg_Qual_Level := 99;
9699 Error_Msg_NE -- CODEFIX
9700 ("missing WITH clause on package &", N,
9701 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
9702 Error_Msg_N
9703 ("type conversions require visibility of the full view",
9706 elsif From_With_Type (Target)
9707 and then not
9708 (Is_Access_Type (Target_Typ)
9709 and then Present (Non_Limited_View (Etype (Target))))
9710 then
9711 Error_Msg_Qual_Level := 99;
9712 Error_Msg_NE -- CODEFIX
9713 ("missing WITH clause on package &", N,
9714 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
9715 Error_Msg_N
9716 ("type conversions require visibility of the full view",
9719 else
9720 Expand_Interface_Conversion (N, Is_Static => False);
9721 end if;
9723 -- Conversion to interface type
9725 elsif Is_Interface (Target) then
9727 -- Handle subtypes
9729 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
9730 Opnd := Etype (Opnd);
9731 end if;
9733 if not Interface_Present_In_Ancestor
9734 (Typ => Opnd,
9735 Iface => Target)
9736 then
9737 if Is_Class_Wide_Type (Opnd) then
9739 -- The static analysis is not enough to know if the
9740 -- interface is implemented or not. Hence we must pass
9741 -- the work to the expander to generate code to evaluate
9742 -- the conversion at run time.
9744 Expand_Interface_Conversion (N, Is_Static => False);
9746 else
9747 Error_Msg_Name_1 := Chars (Etype (Target));
9748 Error_Msg_Name_2 := Chars (Opnd);
9749 Error_Msg_N
9750 ("wrong interface conversion (% is not a progenitor " &
9751 "of %)", N);
9752 end if;
9754 else
9755 Expand_Interface_Conversion (N);
9756 end if;
9757 end if;
9758 end;
9759 end if;
9761 -- Ada 2012: if target type has predicates, the result requires a
9762 -- predicate check. If the context is a call to another predicate
9763 -- check we must prevent infinite recursion.
9765 if Has_Predicates (Target_Typ) then
9766 if Nkind (Parent (N)) = N_Function_Call
9767 and then Present (Name (Parent (N)))
9768 and then Has_Predicates (Entity (Name (Parent (N))))
9769 then
9770 null;
9772 else
9773 Apply_Predicate_Check (N, Target_Typ);
9774 end if;
9775 end if;
9776 end Resolve_Type_Conversion;
9778 ----------------------
9779 -- Resolve_Unary_Op --
9780 ----------------------
9782 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
9783 B_Typ : constant Entity_Id := Base_Type (Typ);
9784 R : constant Node_Id := Right_Opnd (N);
9785 OK : Boolean;
9786 Lo : Uint;
9787 Hi : Uint;
9789 begin
9790 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
9791 Error_Msg_Name_1 := Chars (Typ);
9792 Check_SPARK_Restriction
9793 ("unary operator not defined for modular type%", N);
9794 end if;
9796 -- Deal with intrinsic unary operators
9798 if Comes_From_Source (N)
9799 and then Ekind (Entity (N)) = E_Function
9800 and then Is_Imported (Entity (N))
9801 and then Is_Intrinsic_Subprogram (Entity (N))
9802 then
9803 Resolve_Intrinsic_Unary_Operator (N, Typ);
9804 return;
9805 end if;
9807 -- Deal with universal cases
9809 if Etype (R) = Universal_Integer
9810 or else
9811 Etype (R) = Universal_Real
9812 then
9813 Check_For_Visible_Operator (N, B_Typ);
9814 end if;
9816 Set_Etype (N, B_Typ);
9817 Resolve (R, B_Typ);
9819 -- Generate warning for expressions like abs (x mod 2)
9821 if Warn_On_Redundant_Constructs
9822 and then Nkind (N) = N_Op_Abs
9823 then
9824 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
9826 if OK and then Hi >= Lo and then Lo >= 0 then
9827 Error_Msg_N -- CODEFIX
9828 ("?abs applied to known non-negative value has no effect", N);
9829 end if;
9830 end if;
9832 -- Deal with reference generation
9834 Check_Unset_Reference (R);
9835 Generate_Operator_Reference (N, B_Typ);
9836 Analyze_Dimension (N);
9837 Eval_Unary_Op (N);
9839 -- Set overflow checking bit. Much cleverer code needed here eventually
9840 -- and perhaps the Resolve routines should be separated for the various
9841 -- arithmetic operations, since they will need different processing ???
9843 if Nkind (N) in N_Op then
9844 if not Overflow_Checks_Suppressed (Etype (N)) then
9845 Enable_Overflow_Check (N);
9846 end if;
9847 end if;
9849 -- Generate warning for expressions like -5 mod 3 for integers. No need
9850 -- to worry in the floating-point case, since parens do not affect the
9851 -- result so there is no point in giving in a warning.
9853 declare
9854 Norig : constant Node_Id := Original_Node (N);
9855 Rorig : Node_Id;
9856 Val : Uint;
9857 HB : Uint;
9858 LB : Uint;
9859 Lval : Uint;
9860 Opnd : Node_Id;
9862 begin
9863 if Warn_On_Questionable_Missing_Parens
9864 and then Comes_From_Source (Norig)
9865 and then Is_Integer_Type (Typ)
9866 and then Nkind (Norig) = N_Op_Minus
9867 then
9868 Rorig := Original_Node (Right_Opnd (Norig));
9870 -- We are looking for cases where the right operand is not
9871 -- parenthesized, and is a binary operator, multiply, divide, or
9872 -- mod. These are the cases where the grouping can affect results.
9874 if Paren_Count (Rorig) = 0
9875 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
9876 then
9877 -- For mod, we always give the warning, since the value is
9878 -- affected by the parenthesization (e.g. (-5) mod 315 /=
9879 -- -(5 mod 315)). But for the other cases, the only concern is
9880 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
9881 -- overflows, but (-2) * 64 does not). So we try to give the
9882 -- message only when overflow is possible.
9884 if Nkind (Rorig) /= N_Op_Mod
9885 and then Compile_Time_Known_Value (R)
9886 then
9887 Val := Expr_Value (R);
9889 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
9890 HB := Expr_Value (Type_High_Bound (Typ));
9891 else
9892 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
9893 end if;
9895 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
9896 LB := Expr_Value (Type_Low_Bound (Typ));
9897 else
9898 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
9899 end if;
9901 -- Note that the test below is deliberately excluding the
9902 -- largest negative number, since that is a potentially
9903 -- troublesome case (e.g. -2 * x, where the result is the
9904 -- largest negative integer has an overflow with 2 * x).
9906 if Val > LB and then Val <= HB then
9907 return;
9908 end if;
9909 end if;
9911 -- For the multiplication case, the only case we have to worry
9912 -- about is when (-a)*b is exactly the largest negative number
9913 -- so that -(a*b) can cause overflow. This can only happen if
9914 -- a is a power of 2, and more generally if any operand is a
9915 -- constant that is not a power of 2, then the parentheses
9916 -- cannot affect whether overflow occurs. We only bother to
9917 -- test the left most operand
9919 -- Loop looking at left operands for one that has known value
9921 Opnd := Rorig;
9922 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
9923 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
9924 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
9926 -- Operand value of 0 or 1 skips warning
9928 if Lval <= 1 then
9929 return;
9931 -- Otherwise check power of 2, if power of 2, warn, if
9932 -- anything else, skip warning.
9934 else
9935 while Lval /= 2 loop
9936 if Lval mod 2 = 1 then
9937 return;
9938 else
9939 Lval := Lval / 2;
9940 end if;
9941 end loop;
9943 exit Opnd_Loop;
9944 end if;
9945 end if;
9947 -- Keep looking at left operands
9949 Opnd := Left_Opnd (Opnd);
9950 end loop Opnd_Loop;
9952 -- For rem or "/" we can only have a problematic situation
9953 -- if the divisor has a value of minus one or one. Otherwise
9954 -- overflow is impossible (divisor > 1) or we have a case of
9955 -- division by zero in any case.
9957 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
9958 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
9959 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
9960 then
9961 return;
9962 end if;
9964 -- If we fall through warning should be issued
9966 Error_Msg_N
9967 ("?unary minus expression should be parenthesized here!", N);
9968 end if;
9969 end if;
9970 end;
9971 end Resolve_Unary_Op;
9973 ----------------------------------
9974 -- Resolve_Unchecked_Expression --
9975 ----------------------------------
9977 procedure Resolve_Unchecked_Expression
9978 (N : Node_Id;
9979 Typ : Entity_Id)
9981 begin
9982 Resolve (Expression (N), Typ, Suppress => All_Checks);
9983 Set_Etype (N, Typ);
9984 end Resolve_Unchecked_Expression;
9986 ---------------------------------------
9987 -- Resolve_Unchecked_Type_Conversion --
9988 ---------------------------------------
9990 procedure Resolve_Unchecked_Type_Conversion
9991 (N : Node_Id;
9992 Typ : Entity_Id)
9994 pragma Warnings (Off, Typ);
9996 Operand : constant Node_Id := Expression (N);
9997 Opnd_Type : constant Entity_Id := Etype (Operand);
9999 begin
10000 -- Resolve operand using its own type
10002 Resolve (Operand, Opnd_Type);
10003 Analyze_Dimension (N);
10004 Eval_Unchecked_Conversion (N);
10005 end Resolve_Unchecked_Type_Conversion;
10007 ------------------------------
10008 -- Rewrite_Operator_As_Call --
10009 ------------------------------
10011 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
10012 Loc : constant Source_Ptr := Sloc (N);
10013 Actuals : constant List_Id := New_List;
10014 New_N : Node_Id;
10016 begin
10017 if Nkind (N) in N_Binary_Op then
10018 Append (Left_Opnd (N), Actuals);
10019 end if;
10021 Append (Right_Opnd (N), Actuals);
10023 New_N :=
10024 Make_Function_Call (Sloc => Loc,
10025 Name => New_Occurrence_Of (Nam, Loc),
10026 Parameter_Associations => Actuals);
10028 Preserve_Comes_From_Source (New_N, N);
10029 Preserve_Comes_From_Source (Name (New_N), N);
10030 Rewrite (N, New_N);
10031 Set_Etype (N, Etype (Nam));
10032 end Rewrite_Operator_As_Call;
10034 ------------------------------
10035 -- Rewrite_Renamed_Operator --
10036 ------------------------------
10038 procedure Rewrite_Renamed_Operator
10039 (N : Node_Id;
10040 Op : Entity_Id;
10041 Typ : Entity_Id)
10043 Nam : constant Name_Id := Chars (Op);
10044 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
10045 Op_Node : Node_Id;
10047 begin
10048 -- Rewrite the operator node using the real operator, not its renaming.
10049 -- Exclude user-defined intrinsic operations of the same name, which are
10050 -- treated separately and rewritten as calls.
10052 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
10053 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
10054 Set_Chars (Op_Node, Nam);
10055 Set_Etype (Op_Node, Etype (N));
10056 Set_Entity (Op_Node, Op);
10057 Set_Right_Opnd (Op_Node, Right_Opnd (N));
10059 -- Indicate that both the original entity and its renaming are
10060 -- referenced at this point.
10062 Generate_Reference (Entity (N), N);
10063 Generate_Reference (Op, N);
10065 if Is_Binary then
10066 Set_Left_Opnd (Op_Node, Left_Opnd (N));
10067 end if;
10069 Rewrite (N, Op_Node);
10071 -- If the context type is private, add the appropriate conversions so
10072 -- that the operator is applied to the full view. This is done in the
10073 -- routines that resolve intrinsic operators.
10075 if Is_Intrinsic_Subprogram (Op)
10076 and then Is_Private_Type (Typ)
10077 then
10078 case Nkind (N) is
10079 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
10080 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
10081 Resolve_Intrinsic_Operator (N, Typ);
10083 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
10084 Resolve_Intrinsic_Unary_Operator (N, Typ);
10086 when others =>
10087 Resolve (N, Typ);
10088 end case;
10089 end if;
10091 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
10093 -- Operator renames a user-defined operator of the same name. Use the
10094 -- original operator in the node, which is the one Gigi knows about.
10096 Set_Entity (N, Op);
10097 Set_Is_Overloaded (N, False);
10098 end if;
10099 end Rewrite_Renamed_Operator;
10101 -----------------------
10102 -- Set_Slice_Subtype --
10103 -----------------------
10105 -- Build an implicit subtype declaration to represent the type delivered by
10106 -- the slice. This is an abbreviated version of an array subtype. We define
10107 -- an index subtype for the slice, using either the subtype name or the
10108 -- discrete range of the slice. To be consistent with index usage elsewhere
10109 -- we create a list header to hold the single index. This list is not
10110 -- otherwise attached to the syntax tree.
10112 procedure Set_Slice_Subtype (N : Node_Id) is
10113 Loc : constant Source_Ptr := Sloc (N);
10114 Index_List : constant List_Id := New_List;
10115 Index : Node_Id;
10116 Index_Subtype : Entity_Id;
10117 Index_Type : Entity_Id;
10118 Slice_Subtype : Entity_Id;
10119 Drange : constant Node_Id := Discrete_Range (N);
10121 begin
10122 if Is_Entity_Name (Drange) then
10123 Index_Subtype := Entity (Drange);
10125 else
10126 -- We force the evaluation of a range. This is definitely needed in
10127 -- the renamed case, and seems safer to do unconditionally. Note in
10128 -- any case that since we will create and insert an Itype referring
10129 -- to this range, we must make sure any side effect removal actions
10130 -- are inserted before the Itype definition.
10132 if Nkind (Drange) = N_Range then
10133 Force_Evaluation (Low_Bound (Drange));
10134 Force_Evaluation (High_Bound (Drange));
10135 end if;
10137 Index_Type := Base_Type (Etype (Drange));
10139 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
10141 -- Take a new copy of Drange (where bounds have been rewritten to
10142 -- reference side-effect-free names). Using a separate tree ensures
10143 -- that further expansion (e.g. while rewriting a slice assignment
10144 -- into a FOR loop) does not attempt to remove side effects on the
10145 -- bounds again (which would cause the bounds in the index subtype
10146 -- definition to refer to temporaries before they are defined) (the
10147 -- reason is that some names are considered side effect free here
10148 -- for the subtype, but not in the context of a loop iteration
10149 -- scheme).
10151 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
10152 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
10153 Set_Etype (Index_Subtype, Index_Type);
10154 Set_Size_Info (Index_Subtype, Index_Type);
10155 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
10156 end if;
10158 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
10160 Index := New_Occurrence_Of (Index_Subtype, Loc);
10161 Set_Etype (Index, Index_Subtype);
10162 Append (Index, Index_List);
10164 Set_First_Index (Slice_Subtype, Index);
10165 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
10166 Set_Is_Constrained (Slice_Subtype, True);
10168 Check_Compile_Time_Size (Slice_Subtype);
10170 -- The Etype of the existing Slice node is reset to this slice subtype.
10171 -- Its bounds are obtained from its first index.
10173 Set_Etype (N, Slice_Subtype);
10175 -- For packed slice subtypes, freeze immediately (except in the case of
10176 -- being in a "spec expression" where we never freeze when we first see
10177 -- the expression).
10179 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
10180 Freeze_Itype (Slice_Subtype, N);
10182 -- For all other cases insert an itype reference in the slice's actions
10183 -- so that the itype is frozen at the proper place in the tree (i.e. at
10184 -- the point where actions for the slice are analyzed). Note that this
10185 -- is different from freezing the itype immediately, which might be
10186 -- premature (e.g. if the slice is within a transient scope). This needs
10187 -- to be done only if expansion is enabled.
10189 elsif Full_Expander_Active then
10190 Ensure_Defined (Typ => Slice_Subtype, N => N);
10191 end if;
10192 end Set_Slice_Subtype;
10194 --------------------------------
10195 -- Set_String_Literal_Subtype --
10196 --------------------------------
10198 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
10199 Loc : constant Source_Ptr := Sloc (N);
10200 Low_Bound : constant Node_Id :=
10201 Type_Low_Bound (Etype (First_Index (Typ)));
10202 Subtype_Id : Entity_Id;
10204 begin
10205 if Nkind (N) /= N_String_Literal then
10206 return;
10207 end if;
10209 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
10210 Set_String_Literal_Length (Subtype_Id, UI_From_Int
10211 (String_Length (Strval (N))));
10212 Set_Etype (Subtype_Id, Base_Type (Typ));
10213 Set_Is_Constrained (Subtype_Id);
10214 Set_Etype (N, Subtype_Id);
10216 -- The low bound is set from the low bound of the corresponding index
10217 -- type. Note that we do not store the high bound in the string literal
10218 -- subtype, but it can be deduced if necessary from the length and the
10219 -- low bound.
10221 if Is_OK_Static_Expression (Low_Bound) then
10222 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
10224 -- If the lower bound is not static we create a range for the string
10225 -- literal, using the index type and the known length of the literal.
10226 -- The index type is not necessarily Positive, so the upper bound is
10227 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
10229 else
10230 declare
10231 Index_List : constant List_Id := New_List;
10232 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
10233 High_Bound : constant Node_Id :=
10234 Make_Attribute_Reference (Loc,
10235 Attribute_Name => Name_Val,
10236 Prefix =>
10237 New_Occurrence_Of (Index_Type, Loc),
10238 Expressions => New_List (
10239 Make_Op_Add (Loc,
10240 Left_Opnd =>
10241 Make_Attribute_Reference (Loc,
10242 Attribute_Name => Name_Pos,
10243 Prefix =>
10244 New_Occurrence_Of (Index_Type, Loc),
10245 Expressions =>
10246 New_List (New_Copy_Tree (Low_Bound))),
10247 Right_Opnd =>
10248 Make_Integer_Literal (Loc,
10249 String_Length (Strval (N)) - 1))));
10251 Array_Subtype : Entity_Id;
10252 Drange : Node_Id;
10253 Index : Node_Id;
10254 Index_Subtype : Entity_Id;
10256 begin
10257 if Is_Integer_Type (Index_Type) then
10258 Set_String_Literal_Low_Bound
10259 (Subtype_Id, Make_Integer_Literal (Loc, 1));
10261 else
10262 -- If the index type is an enumeration type, build bounds
10263 -- expression with attributes.
10265 Set_String_Literal_Low_Bound
10266 (Subtype_Id,
10267 Make_Attribute_Reference (Loc,
10268 Attribute_Name => Name_First,
10269 Prefix =>
10270 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
10271 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
10272 end if;
10274 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
10276 -- Build bona fide subtype for the string, and wrap it in an
10277 -- unchecked conversion, because the backend expects the
10278 -- String_Literal_Subtype to have a static lower bound.
10280 Index_Subtype :=
10281 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
10282 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
10283 Set_Scalar_Range (Index_Subtype, Drange);
10284 Set_Parent (Drange, N);
10285 Analyze_And_Resolve (Drange, Index_Type);
10287 -- In the context, the Index_Type may already have a constraint,
10288 -- so use common base type on string subtype. The base type may
10289 -- be used when generating attributes of the string, for example
10290 -- in the context of a slice assignment.
10292 Set_Etype (Index_Subtype, Base_Type (Index_Type));
10293 Set_Size_Info (Index_Subtype, Index_Type);
10294 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
10296 Array_Subtype := Create_Itype (E_Array_Subtype, N);
10298 Index := New_Occurrence_Of (Index_Subtype, Loc);
10299 Set_Etype (Index, Index_Subtype);
10300 Append (Index, Index_List);
10302 Set_First_Index (Array_Subtype, Index);
10303 Set_Etype (Array_Subtype, Base_Type (Typ));
10304 Set_Is_Constrained (Array_Subtype, True);
10306 Rewrite (N,
10307 Make_Unchecked_Type_Conversion (Loc,
10308 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
10309 Expression => Relocate_Node (N)));
10310 Set_Etype (N, Array_Subtype);
10311 end;
10312 end if;
10313 end Set_String_Literal_Subtype;
10315 ------------------------------
10316 -- Simplify_Type_Conversion --
10317 ------------------------------
10319 procedure Simplify_Type_Conversion (N : Node_Id) is
10320 begin
10321 if Nkind (N) = N_Type_Conversion then
10322 declare
10323 Operand : constant Node_Id := Expression (N);
10324 Target_Typ : constant Entity_Id := Etype (N);
10325 Opnd_Typ : constant Entity_Id := Etype (Operand);
10327 begin
10328 if Is_Floating_Point_Type (Opnd_Typ)
10329 and then
10330 (Is_Integer_Type (Target_Typ)
10331 or else (Is_Fixed_Point_Type (Target_Typ)
10332 and then Conversion_OK (N)))
10333 and then Nkind (Operand) = N_Attribute_Reference
10334 and then Attribute_Name (Operand) = Name_Truncation
10336 -- Special processing required if the conversion is the expression
10337 -- of a Truncation attribute reference. In this case we replace:
10339 -- ityp (ftyp'Truncation (x))
10341 -- by
10343 -- ityp (x)
10345 -- with the Float_Truncate flag set, which is more efficient.
10347 then
10348 Rewrite (Operand,
10349 Relocate_Node (First (Expressions (Operand))));
10350 Set_Float_Truncate (N, True);
10351 end if;
10352 end;
10353 end if;
10354 end Simplify_Type_Conversion;
10356 -----------------------------
10357 -- Unique_Fixed_Point_Type --
10358 -----------------------------
10360 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
10361 T1 : Entity_Id := Empty;
10362 T2 : Entity_Id;
10363 Item : Node_Id;
10364 Scop : Entity_Id;
10366 procedure Fixed_Point_Error;
10367 -- Give error messages for true ambiguity. Messages are posted on node
10368 -- N, and entities T1, T2 are the possible interpretations.
10370 -----------------------
10371 -- Fixed_Point_Error --
10372 -----------------------
10374 procedure Fixed_Point_Error is
10375 begin
10376 Error_Msg_N ("ambiguous universal_fixed_expression", N);
10377 Error_Msg_NE ("\\possible interpretation as}", N, T1);
10378 Error_Msg_NE ("\\possible interpretation as}", N, T2);
10379 end Fixed_Point_Error;
10381 -- Start of processing for Unique_Fixed_Point_Type
10383 begin
10384 -- The operations on Duration are visible, so Duration is always a
10385 -- possible interpretation.
10387 T1 := Standard_Duration;
10389 -- Look for fixed-point types in enclosing scopes
10391 Scop := Current_Scope;
10392 while Scop /= Standard_Standard loop
10393 T2 := First_Entity (Scop);
10394 while Present (T2) loop
10395 if Is_Fixed_Point_Type (T2)
10396 and then Current_Entity (T2) = T2
10397 and then Scope (Base_Type (T2)) = Scop
10398 then
10399 if Present (T1) then
10400 Fixed_Point_Error;
10401 return Any_Type;
10402 else
10403 T1 := T2;
10404 end if;
10405 end if;
10407 Next_Entity (T2);
10408 end loop;
10410 Scop := Scope (Scop);
10411 end loop;
10413 -- Look for visible fixed type declarations in the context
10415 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
10416 while Present (Item) loop
10417 if Nkind (Item) = N_With_Clause then
10418 Scop := Entity (Name (Item));
10419 T2 := First_Entity (Scop);
10420 while Present (T2) loop
10421 if Is_Fixed_Point_Type (T2)
10422 and then Scope (Base_Type (T2)) = Scop
10423 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
10424 then
10425 if Present (T1) then
10426 Fixed_Point_Error;
10427 return Any_Type;
10428 else
10429 T1 := T2;
10430 end if;
10431 end if;
10433 Next_Entity (T2);
10434 end loop;
10435 end if;
10437 Next (Item);
10438 end loop;
10440 if Nkind (N) = N_Real_Literal then
10441 Error_Msg_NE ("?real literal interpreted as }!", N, T1);
10442 else
10443 Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
10444 end if;
10446 return T1;
10447 end Unique_Fixed_Point_Type;
10449 ----------------------
10450 -- Valid_Conversion --
10451 ----------------------
10453 function Valid_Conversion
10454 (N : Node_Id;
10455 Target : Entity_Id;
10456 Operand : Node_Id;
10457 Report_Errs : Boolean := True) return Boolean
10459 Target_Type : constant Entity_Id := Base_Type (Target);
10460 Opnd_Type : Entity_Id := Etype (Operand);
10462 function Conversion_Check
10463 (Valid : Boolean;
10464 Msg : String) return Boolean;
10465 -- Little routine to post Msg if Valid is False, returns Valid value
10467 -- The following are badly named, this kind of overloading is actively
10468 -- confusing in reading code, please rename to something like
10469 -- Error_Msg_N_If_Reporting ???
10471 procedure Error_Msg_N (Msg : String; N : Node_Or_Entity_Id);
10472 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
10474 procedure Error_Msg_NE
10475 (Msg : String;
10476 N : Node_Or_Entity_Id;
10477 E : Node_Or_Entity_Id);
10478 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
10480 function Valid_Tagged_Conversion
10481 (Target_Type : Entity_Id;
10482 Opnd_Type : Entity_Id) return Boolean;
10483 -- Specifically test for validity of tagged conversions
10485 function Valid_Array_Conversion return Boolean;
10486 -- Check index and component conformance, and accessibility levels if
10487 -- the component types are anonymous access types (Ada 2005).
10489 ----------------------
10490 -- Conversion_Check --
10491 ----------------------
10493 function Conversion_Check
10494 (Valid : Boolean;
10495 Msg : String) return Boolean
10497 begin
10498 if not Valid
10500 -- A generic unit has already been analyzed and we have verified
10501 -- that a particular conversion is OK in that context. Since the
10502 -- instance is reanalyzed without relying on the relationships
10503 -- established during the analysis of the generic, it is possible
10504 -- to end up with inconsistent views of private types. Do not emit
10505 -- the error message in such cases. The rest of the machinery in
10506 -- Valid_Conversion still ensures the proper compatibility of
10507 -- target and operand types.
10509 and then not In_Instance
10510 then
10511 Error_Msg_N (Msg, Operand);
10512 end if;
10514 return Valid;
10515 end Conversion_Check;
10517 -----------------
10518 -- Error_Msg_N --
10519 -----------------
10521 procedure Error_Msg_N (Msg : String; N : Node_Or_Entity_Id) is
10522 begin
10523 if Report_Errs then
10524 Errout.Error_Msg_N (Msg, N);
10525 end if;
10526 end Error_Msg_N;
10528 ------------------
10529 -- Error_Msg_NE --
10530 ------------------
10532 procedure Error_Msg_NE
10533 (Msg : String;
10534 N : Node_Or_Entity_Id;
10535 E : Node_Or_Entity_Id)
10537 begin
10538 if Report_Errs then
10539 Errout.Error_Msg_NE (Msg, N, E);
10540 end if;
10541 end Error_Msg_NE;
10543 ----------------------------
10544 -- Valid_Array_Conversion --
10545 ----------------------------
10547 function Valid_Array_Conversion return Boolean
10549 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
10550 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
10552 Opnd_Index : Node_Id;
10553 Opnd_Index_Type : Entity_Id;
10555 Target_Comp_Type : constant Entity_Id :=
10556 Component_Type (Target_Type);
10557 Target_Comp_Base : constant Entity_Id :=
10558 Base_Type (Target_Comp_Type);
10560 Target_Index : Node_Id;
10561 Target_Index_Type : Entity_Id;
10563 begin
10564 -- Error if wrong number of dimensions
10567 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
10568 then
10569 Error_Msg_N
10570 ("incompatible number of dimensions for conversion", Operand);
10571 return False;
10573 -- Number of dimensions matches
10575 else
10576 -- Loop through indexes of the two arrays
10578 Target_Index := First_Index (Target_Type);
10579 Opnd_Index := First_Index (Opnd_Type);
10580 while Present (Target_Index) and then Present (Opnd_Index) loop
10581 Target_Index_Type := Etype (Target_Index);
10582 Opnd_Index_Type := Etype (Opnd_Index);
10584 -- Error if index types are incompatible
10586 if not (Is_Integer_Type (Target_Index_Type)
10587 and then Is_Integer_Type (Opnd_Index_Type))
10588 and then (Root_Type (Target_Index_Type)
10589 /= Root_Type (Opnd_Index_Type))
10590 then
10591 Error_Msg_N
10592 ("incompatible index types for array conversion",
10593 Operand);
10594 return False;
10595 end if;
10597 Next_Index (Target_Index);
10598 Next_Index (Opnd_Index);
10599 end loop;
10601 -- If component types have same base type, all set
10603 if Target_Comp_Base = Opnd_Comp_Base then
10604 null;
10606 -- Here if base types of components are not the same. The only
10607 -- time this is allowed is if we have anonymous access types.
10609 -- The conversion of arrays of anonymous access types can lead
10610 -- to dangling pointers. AI-392 formalizes the accessibility
10611 -- checks that must be applied to such conversions to prevent
10612 -- out-of-scope references.
10614 elsif Ekind_In
10615 (Target_Comp_Base, E_Anonymous_Access_Type,
10616 E_Anonymous_Access_Subprogram_Type)
10617 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
10618 and then
10619 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
10620 then
10621 if Type_Access_Level (Target_Type) <
10622 Deepest_Type_Access_Level (Opnd_Type)
10623 then
10624 if In_Instance_Body then
10625 Error_Msg_N
10626 ("?source array type has " &
10627 "deeper accessibility level than target", Operand);
10628 Error_Msg_N
10629 ("\?Program_Error will be raised at run time",
10630 Operand);
10631 Rewrite (N,
10632 Make_Raise_Program_Error (Sloc (N),
10633 Reason => PE_Accessibility_Check_Failed));
10634 Set_Etype (N, Target_Type);
10635 return False;
10637 -- Conversion not allowed because of accessibility levels
10639 else
10640 Error_Msg_N
10641 ("source array type has " &
10642 "deeper accessibility level than target", Operand);
10643 return False;
10644 end if;
10646 else
10647 null;
10648 end if;
10650 -- All other cases where component base types do not match
10652 else
10653 Error_Msg_N
10654 ("incompatible component types for array conversion",
10655 Operand);
10656 return False;
10657 end if;
10659 -- Check that component subtypes statically match. For numeric
10660 -- types this means that both must be either constrained or
10661 -- unconstrained. For enumeration types the bounds must match.
10662 -- All of this is checked in Subtypes_Statically_Match.
10664 if not Subtypes_Statically_Match
10665 (Target_Comp_Type, Opnd_Comp_Type)
10666 then
10667 Error_Msg_N
10668 ("component subtypes must statically match", Operand);
10669 return False;
10670 end if;
10671 end if;
10673 return True;
10674 end Valid_Array_Conversion;
10676 -----------------------------
10677 -- Valid_Tagged_Conversion --
10678 -----------------------------
10680 function Valid_Tagged_Conversion
10681 (Target_Type : Entity_Id;
10682 Opnd_Type : Entity_Id) return Boolean
10684 begin
10685 -- Upward conversions are allowed (RM 4.6(22))
10687 if Covers (Target_Type, Opnd_Type)
10688 or else Is_Ancestor (Target_Type, Opnd_Type)
10689 then
10690 return True;
10692 -- Downward conversion are allowed if the operand is class-wide
10693 -- (RM 4.6(23)).
10695 elsif Is_Class_Wide_Type (Opnd_Type)
10696 and then Covers (Opnd_Type, Target_Type)
10697 then
10698 return True;
10700 elsif Covers (Opnd_Type, Target_Type)
10701 or else Is_Ancestor (Opnd_Type, Target_Type)
10702 then
10703 return
10704 Conversion_Check (False,
10705 "downward conversion of tagged objects not allowed");
10707 -- Ada 2005 (AI-251): The conversion to/from interface types is
10708 -- always valid
10710 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
10711 return True;
10713 -- If the operand is a class-wide type obtained through a limited_
10714 -- with clause, and the context includes the non-limited view, use
10715 -- it to determine whether the conversion is legal.
10717 elsif Is_Class_Wide_Type (Opnd_Type)
10718 and then From_With_Type (Opnd_Type)
10719 and then Present (Non_Limited_View (Etype (Opnd_Type)))
10720 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
10721 then
10722 return True;
10724 elsif Is_Access_Type (Opnd_Type)
10725 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
10726 then
10727 return True;
10729 else
10730 Error_Msg_NE
10731 ("invalid tagged conversion, not compatible with}",
10732 N, First_Subtype (Opnd_Type));
10733 return False;
10734 end if;
10735 end Valid_Tagged_Conversion;
10737 -- Start of processing for Valid_Conversion
10739 begin
10740 Check_Parameterless_Call (Operand);
10742 if Is_Overloaded (Operand) then
10743 declare
10744 I : Interp_Index;
10745 I1 : Interp_Index;
10746 It : Interp;
10747 It1 : Interp;
10748 N1 : Entity_Id;
10749 T1 : Entity_Id;
10751 begin
10752 -- Remove procedure calls, which syntactically cannot appear in
10753 -- this context, but which cannot be removed by type checking,
10754 -- because the context does not impose a type.
10756 -- When compiling for VMS, spurious ambiguities can be produced
10757 -- when arithmetic operations have a literal operand and return
10758 -- System.Address or a descendant of it. These ambiguities are
10759 -- otherwise resolved by the context, but for conversions there
10760 -- is no context type and the removal of the spurious operations
10761 -- must be done explicitly here.
10763 -- The node may be labelled overloaded, but still contain only one
10764 -- interpretation because others were discarded earlier. If this
10765 -- is the case, retain the single interpretation if legal.
10767 Get_First_Interp (Operand, I, It);
10768 Opnd_Type := It.Typ;
10769 Get_Next_Interp (I, It);
10771 if Present (It.Typ)
10772 and then Opnd_Type /= Standard_Void_Type
10773 then
10774 -- More than one candidate interpretation is available
10776 Get_First_Interp (Operand, I, It);
10777 while Present (It.Typ) loop
10778 if It.Typ = Standard_Void_Type then
10779 Remove_Interp (I);
10780 end if;
10782 if Present (System_Aux_Id)
10783 and then Is_Descendent_Of_Address (It.Typ)
10784 then
10785 Remove_Interp (I);
10786 end if;
10788 Get_Next_Interp (I, It);
10789 end loop;
10790 end if;
10792 Get_First_Interp (Operand, I, It);
10793 I1 := I;
10794 It1 := It;
10796 if No (It.Typ) then
10797 Error_Msg_N ("illegal operand in conversion", Operand);
10798 return False;
10799 end if;
10801 Get_Next_Interp (I, It);
10803 if Present (It.Typ) then
10804 N1 := It1.Nam;
10805 T1 := It1.Typ;
10806 It1 := Disambiguate (Operand, I1, I, Any_Type);
10808 if It1 = No_Interp then
10809 Error_Msg_N ("ambiguous operand in conversion", Operand);
10811 -- If the interpretation involves a standard operator, use
10812 -- the location of the type, which may be user-defined.
10814 if Sloc (It.Nam) = Standard_Location then
10815 Error_Msg_Sloc := Sloc (It.Typ);
10816 else
10817 Error_Msg_Sloc := Sloc (It.Nam);
10818 end if;
10820 Error_Msg_N -- CODEFIX
10821 ("\\possible interpretation#!", Operand);
10823 if Sloc (N1) = Standard_Location then
10824 Error_Msg_Sloc := Sloc (T1);
10825 else
10826 Error_Msg_Sloc := Sloc (N1);
10827 end if;
10829 Error_Msg_N -- CODEFIX
10830 ("\\possible interpretation#!", Operand);
10832 return False;
10833 end if;
10834 end if;
10836 Set_Etype (Operand, It1.Typ);
10837 Opnd_Type := It1.Typ;
10838 end;
10839 end if;
10841 -- Numeric types
10843 if Is_Numeric_Type (Target_Type) then
10845 -- A universal fixed expression can be converted to any numeric type
10847 if Opnd_Type = Universal_Fixed then
10848 return True;
10850 -- Also no need to check when in an instance or inlined body, because
10851 -- the legality has been established when the template was analyzed.
10852 -- Furthermore, numeric conversions may occur where only a private
10853 -- view of the operand type is visible at the instantiation point.
10854 -- This results in a spurious error if we check that the operand type
10855 -- is a numeric type.
10857 -- Note: in a previous version of this unit, the following tests were
10858 -- applied only for generated code (Comes_From_Source set to False),
10859 -- but in fact the test is required for source code as well, since
10860 -- this situation can arise in source code.
10862 elsif In_Instance or else In_Inlined_Body then
10863 return True;
10865 -- Otherwise we need the conversion check
10867 else
10868 return Conversion_Check
10869 (Is_Numeric_Type (Opnd_Type),
10870 "illegal operand for numeric conversion");
10871 end if;
10873 -- Array types
10875 elsif Is_Array_Type (Target_Type) then
10876 if not Is_Array_Type (Opnd_Type)
10877 or else Opnd_Type = Any_Composite
10878 or else Opnd_Type = Any_String
10879 then
10880 Error_Msg_N ("illegal operand for array conversion", Operand);
10881 return False;
10882 else
10883 return Valid_Array_Conversion;
10884 end if;
10886 -- Ada 2005 (AI-251): Anonymous access types where target references an
10887 -- interface type.
10889 elsif Ekind_In (Target_Type, E_General_Access_Type,
10890 E_Anonymous_Access_Type)
10891 and then Is_Interface (Directly_Designated_Type (Target_Type))
10892 then
10893 -- Check the static accessibility rule of 4.6(17). Note that the
10894 -- check is not enforced when within an instance body, since the
10895 -- RM requires such cases to be caught at run time.
10897 -- If the operand is a rewriting of an allocator no check is needed
10898 -- because there are no accessibility issues.
10900 if Nkind (Original_Node (N)) = N_Allocator then
10901 null;
10903 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
10904 if Type_Access_Level (Opnd_Type) >
10905 Deepest_Type_Access_Level (Target_Type)
10906 then
10907 -- In an instance, this is a run-time check, but one we know
10908 -- will fail, so generate an appropriate warning. The raise
10909 -- will be generated by Expand_N_Type_Conversion.
10911 if In_Instance_Body then
10912 Error_Msg_N
10913 ("?cannot convert local pointer to non-local access type",
10914 Operand);
10915 Error_Msg_N
10916 ("\?Program_Error will be raised at run time", Operand);
10918 else
10919 Error_Msg_N
10920 ("cannot convert local pointer to non-local access type",
10921 Operand);
10922 return False;
10923 end if;
10925 -- Special accessibility checks are needed in the case of access
10926 -- discriminants declared for a limited type.
10928 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
10929 and then not Is_Local_Anonymous_Access (Opnd_Type)
10930 then
10931 -- When the operand is a selected access discriminant the check
10932 -- needs to be made against the level of the object denoted by
10933 -- the prefix of the selected name (Object_Access_Level handles
10934 -- checking the prefix of the operand for this case).
10936 if Nkind (Operand) = N_Selected_Component
10937 and then Object_Access_Level (Operand) >
10938 Deepest_Type_Access_Level (Target_Type)
10939 then
10940 -- In an instance, this is a run-time check, but one we know
10941 -- will fail, so generate an appropriate warning. The raise
10942 -- will be generated by Expand_N_Type_Conversion.
10944 if In_Instance_Body then
10945 Error_Msg_N
10946 ("?cannot convert access discriminant to non-local" &
10947 " access type", Operand);
10948 Error_Msg_N
10949 ("\?Program_Error will be raised at run time", Operand);
10950 else
10951 Error_Msg_N
10952 ("cannot convert access discriminant to non-local" &
10953 " access type", Operand);
10954 return False;
10955 end if;
10956 end if;
10958 -- The case of a reference to an access discriminant from
10959 -- within a limited type declaration (which will appear as
10960 -- a discriminal) is always illegal because the level of the
10961 -- discriminant is considered to be deeper than any (nameable)
10962 -- access type.
10964 if Is_Entity_Name (Operand)
10965 and then not Is_Local_Anonymous_Access (Opnd_Type)
10966 and then
10967 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
10968 and then Present (Discriminal_Link (Entity (Operand)))
10969 then
10970 Error_Msg_N
10971 ("discriminant has deeper accessibility level than target",
10972 Operand);
10973 return False;
10974 end if;
10975 end if;
10976 end if;
10978 return True;
10980 -- General and anonymous access types
10982 elsif Ekind_In (Target_Type, E_General_Access_Type,
10983 E_Anonymous_Access_Type)
10984 and then
10985 Conversion_Check
10986 (Is_Access_Type (Opnd_Type)
10987 and then not
10988 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
10989 E_Access_Protected_Subprogram_Type),
10990 "must be an access-to-object type")
10991 then
10992 if Is_Access_Constant (Opnd_Type)
10993 and then not Is_Access_Constant (Target_Type)
10994 then
10995 Error_Msg_N
10996 ("access-to-constant operand type not allowed", Operand);
10997 return False;
10998 end if;
11000 -- Check the static accessibility rule of 4.6(17). Note that the
11001 -- check is not enforced when within an instance body, since the RM
11002 -- requires such cases to be caught at run time.
11004 if Ekind (Target_Type) /= E_Anonymous_Access_Type
11005 or else Is_Local_Anonymous_Access (Target_Type)
11006 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
11007 N_Object_Declaration
11008 then
11009 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
11010 -- conversions from an anonymous access type to a named general
11011 -- access type. Such conversions are not allowed in the case of
11012 -- access parameters and stand-alone objects of an anonymous
11013 -- access type. The implicit conversion case is recognized by
11014 -- testing that Comes_From_Source is False and that it's been
11015 -- rewritten. The Comes_From_Source test isn't sufficient because
11016 -- nodes in inlined calls to predefined library routines can have
11017 -- Comes_From_Source set to False. (Is there a better way to test
11018 -- for implicit conversions???)
11020 if Ada_Version >= Ada_2012
11021 and then not Comes_From_Source (N)
11022 and then N /= Original_Node (N)
11023 and then Ekind (Target_Type) = E_General_Access_Type
11024 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
11025 then
11026 if Is_Itype (Opnd_Type) then
11028 -- Implicit conversions aren't allowed for objects of an
11029 -- anonymous access type, since such objects have nonstatic
11030 -- levels in Ada 2012.
11032 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
11033 N_Object_Declaration
11034 then
11035 Error_Msg_N
11036 ("implicit conversion of stand-alone anonymous " &
11037 "access object not allowed", Operand);
11038 return False;
11040 -- Implicit conversions aren't allowed for anonymous access
11041 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
11042 -- is done to exclude anonymous access results.
11044 elsif not Is_Local_Anonymous_Access (Opnd_Type)
11045 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
11046 N_Function_Specification,
11047 N_Procedure_Specification)
11048 then
11049 Error_Msg_N
11050 ("implicit conversion of anonymous access formal " &
11051 "not allowed", Operand);
11052 return False;
11054 -- This is a case where there's an enclosing object whose
11055 -- to which the "statically deeper than" relationship does
11056 -- not apply (such as an access discriminant selected from
11057 -- a dereference of an access parameter).
11059 elsif Object_Access_Level (Operand)
11060 = Scope_Depth (Standard_Standard)
11061 then
11062 Error_Msg_N
11063 ("implicit conversion of anonymous access value " &
11064 "not allowed", Operand);
11065 return False;
11067 -- In other cases, the level of the operand's type must be
11068 -- statically less deep than that of the target type, else
11069 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
11071 elsif Type_Access_Level (Opnd_Type) >
11072 Deepest_Type_Access_Level (Target_Type)
11073 then
11074 Error_Msg_N
11075 ("implicit conversion of anonymous access value " &
11076 "violates accessibility", Operand);
11077 return False;
11078 end if;
11079 end if;
11081 elsif Type_Access_Level (Opnd_Type) >
11082 Deepest_Type_Access_Level (Target_Type)
11083 then
11084 -- In an instance, this is a run-time check, but one we know
11085 -- will fail, so generate an appropriate warning. The raise
11086 -- will be generated by Expand_N_Type_Conversion.
11088 if In_Instance_Body then
11089 Error_Msg_N
11090 ("?cannot convert local pointer to non-local access type",
11091 Operand);
11092 Error_Msg_N
11093 ("\?Program_Error will be raised at run time", Operand);
11095 else
11096 -- Avoid generation of spurious error message
11098 if not Error_Posted (N) then
11099 Error_Msg_N
11100 ("cannot convert local pointer to non-local access type",
11101 Operand);
11102 end if;
11104 return False;
11105 end if;
11107 -- Special accessibility checks are needed in the case of access
11108 -- discriminants declared for a limited type.
11110 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
11111 and then not Is_Local_Anonymous_Access (Opnd_Type)
11112 then
11113 -- When the operand is a selected access discriminant the check
11114 -- needs to be made against the level of the object denoted by
11115 -- the prefix of the selected name (Object_Access_Level handles
11116 -- checking the prefix of the operand for this case).
11118 if Nkind (Operand) = N_Selected_Component
11119 and then Object_Access_Level (Operand) >
11120 Deepest_Type_Access_Level (Target_Type)
11121 then
11122 -- In an instance, this is a run-time check, but one we know
11123 -- will fail, so generate an appropriate warning. The raise
11124 -- will be generated by Expand_N_Type_Conversion.
11126 if In_Instance_Body then
11127 Error_Msg_N
11128 ("?cannot convert access discriminant to non-local" &
11129 " access type", Operand);
11130 Error_Msg_N
11131 ("\?Program_Error will be raised at run time",
11132 Operand);
11134 else
11135 Error_Msg_N
11136 ("cannot convert access discriminant to non-local" &
11137 " access type", Operand);
11138 return False;
11139 end if;
11140 end if;
11142 -- The case of a reference to an access discriminant from
11143 -- within a limited type declaration (which will appear as
11144 -- a discriminal) is always illegal because the level of the
11145 -- discriminant is considered to be deeper than any (nameable)
11146 -- access type.
11148 if Is_Entity_Name (Operand)
11149 and then
11150 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
11151 and then Present (Discriminal_Link (Entity (Operand)))
11152 then
11153 Error_Msg_N
11154 ("discriminant has deeper accessibility level than target",
11155 Operand);
11156 return False;
11157 end if;
11158 end if;
11159 end if;
11161 -- In the presence of limited_with clauses we have to use non-limited
11162 -- views, if available.
11164 Check_Limited : declare
11165 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
11166 -- Helper function to handle limited views
11168 --------------------------
11169 -- Full_Designated_Type --
11170 --------------------------
11172 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
11173 Desig : constant Entity_Id := Designated_Type (T);
11175 begin
11176 -- Handle the limited view of a type
11178 if Is_Incomplete_Type (Desig)
11179 and then From_With_Type (Desig)
11180 and then Present (Non_Limited_View (Desig))
11181 then
11182 return Available_View (Desig);
11183 else
11184 return Desig;
11185 end if;
11186 end Full_Designated_Type;
11188 -- Local Declarations
11190 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
11191 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
11193 Same_Base : constant Boolean :=
11194 Base_Type (Target) = Base_Type (Opnd);
11196 -- Start of processing for Check_Limited
11198 begin
11199 if Is_Tagged_Type (Target) then
11200 return Valid_Tagged_Conversion (Target, Opnd);
11202 else
11203 if not Same_Base then
11204 Error_Msg_NE
11205 ("target designated type not compatible with }",
11206 N, Base_Type (Opnd));
11207 return False;
11209 -- Ada 2005 AI-384: legality rule is symmetric in both
11210 -- designated types. The conversion is legal (with possible
11211 -- constraint check) if either designated type is
11212 -- unconstrained.
11214 elsif Subtypes_Statically_Match (Target, Opnd)
11215 or else
11216 (Has_Discriminants (Target)
11217 and then
11218 (not Is_Constrained (Opnd)
11219 or else not Is_Constrained (Target)))
11220 then
11221 -- Special case, if Value_Size has been used to make the
11222 -- sizes different, the conversion is not allowed even
11223 -- though the subtypes statically match.
11225 if Known_Static_RM_Size (Target)
11226 and then Known_Static_RM_Size (Opnd)
11227 and then RM_Size (Target) /= RM_Size (Opnd)
11228 then
11229 Error_Msg_NE
11230 ("target designated subtype not compatible with }",
11231 N, Opnd);
11232 Error_Msg_NE
11233 ("\because sizes of the two designated subtypes differ",
11234 N, Opnd);
11235 return False;
11237 -- Normal case where conversion is allowed
11239 else
11240 return True;
11241 end if;
11243 else
11244 Error_Msg_NE
11245 ("target designated subtype not compatible with }",
11246 N, Opnd);
11247 return False;
11248 end if;
11249 end if;
11250 end Check_Limited;
11252 -- Access to subprogram types. If the operand is an access parameter,
11253 -- the type has a deeper accessibility that any master, and cannot be
11254 -- assigned. We must make an exception if the conversion is part of an
11255 -- assignment and the target is the return object of an extended return
11256 -- statement, because in that case the accessibility check takes place
11257 -- after the return.
11259 elsif Is_Access_Subprogram_Type (Target_Type)
11260 and then No (Corresponding_Remote_Type (Opnd_Type))
11261 then
11262 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
11263 and then Is_Entity_Name (Operand)
11264 and then Ekind (Entity (Operand)) = E_In_Parameter
11265 and then
11266 (Nkind (Parent (N)) /= N_Assignment_Statement
11267 or else not Is_Entity_Name (Name (Parent (N)))
11268 or else not Is_Return_Object (Entity (Name (Parent (N)))))
11269 then
11270 Error_Msg_N
11271 ("illegal attempt to store anonymous access to subprogram",
11272 Operand);
11273 Error_Msg_N
11274 ("\value has deeper accessibility than any master " &
11275 "(RM 3.10.2 (13))",
11276 Operand);
11278 Error_Msg_NE
11279 ("\use named access type for& instead of access parameter",
11280 Operand, Entity (Operand));
11281 end if;
11283 -- Check that the designated types are subtype conformant
11285 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
11286 Old_Id => Designated_Type (Opnd_Type),
11287 Err_Loc => N);
11289 -- Check the static accessibility rule of 4.6(20)
11291 if Type_Access_Level (Opnd_Type) >
11292 Deepest_Type_Access_Level (Target_Type)
11293 then
11294 Error_Msg_N
11295 ("operand type has deeper accessibility level than target",
11296 Operand);
11298 -- Check that if the operand type is declared in a generic body,
11299 -- then the target type must be declared within that same body
11300 -- (enforces last sentence of 4.6(20)).
11302 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
11303 declare
11304 O_Gen : constant Node_Id :=
11305 Enclosing_Generic_Body (Opnd_Type);
11307 T_Gen : Node_Id;
11309 begin
11310 T_Gen := Enclosing_Generic_Body (Target_Type);
11311 while Present (T_Gen) and then T_Gen /= O_Gen loop
11312 T_Gen := Enclosing_Generic_Body (T_Gen);
11313 end loop;
11315 if T_Gen /= O_Gen then
11316 Error_Msg_N
11317 ("target type must be declared in same generic body"
11318 & " as operand type", N);
11319 end if;
11320 end;
11321 end if;
11323 return True;
11325 -- Remote subprogram access types
11327 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
11328 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
11329 then
11330 -- It is valid to convert from one RAS type to another provided
11331 -- that their specification statically match.
11333 Check_Subtype_Conformant
11334 (New_Id =>
11335 Designated_Type (Corresponding_Remote_Type (Target_Type)),
11336 Old_Id =>
11337 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
11338 Err_Loc =>
11340 return True;
11342 -- If it was legal in the generic, it's legal in the instance
11344 elsif In_Instance_Body then
11345 return True;
11347 -- If both are tagged types, check legality of view conversions
11349 elsif Is_Tagged_Type (Target_Type)
11350 and then
11351 Is_Tagged_Type (Opnd_Type)
11352 then
11353 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
11355 -- Types derived from the same root type are convertible
11357 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
11358 return True;
11360 -- In an instance or an inlined body, there may be inconsistent views of
11361 -- the same type, or of types derived from a common root.
11363 elsif (In_Instance or In_Inlined_Body)
11364 and then
11365 Root_Type (Underlying_Type (Target_Type)) =
11366 Root_Type (Underlying_Type (Opnd_Type))
11367 then
11368 return True;
11370 -- Special check for common access type error case
11372 elsif Ekind (Target_Type) = E_Access_Type
11373 and then Is_Access_Type (Opnd_Type)
11374 then
11375 Error_Msg_N ("target type must be general access type!", N);
11376 Error_Msg_NE -- CODEFIX
11377 ("add ALL to }!", N, Target_Type);
11378 return False;
11380 else
11381 Error_Msg_NE ("invalid conversion, not compatible with }",
11382 N, Opnd_Type);
11383 return False;
11384 end if;
11385 end Valid_Conversion;
11387 end Sem_Res;