1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
55 #include "coretypes.h"
59 #include "gensupport.h"
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr
= 0;
67 static int insn_name_ptr_size
= 0;
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
75 struct decision
*first
;
76 struct decision
*last
;
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
85 /* A linked list through the tests attached to a node. */
86 struct decision_test
*next
;
88 /* These types are roughly in the order in which we'd like to test them. */
91 DT_mode
, DT_code
, DT_veclen
,
92 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
94 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
95 DT_accept_op
, DT_accept_insn
100 enum machine_mode mode
; /* Machine mode of node. */
101 RTX_CODE code
; /* Code to test. */
105 const char *name
; /* Predicate to call. */
106 int index
; /* Index into `preds' or -1. */
107 enum machine_mode mode
; /* Machine mode for node. */
110 const char *c_test
; /* Additional test to perform. */
111 int veclen
; /* Length of vector. */
112 int dup
; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
114 int opno
; /* Operand number matched. */
117 int code_number
; /* Insn number matched. */
118 int lineno
; /* Line number of the insn. */
119 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
124 /* Data structure for decision tree for recognizing legitimate insns. */
128 struct decision_head success
; /* Nodes to test on success. */
129 struct decision
*next
; /* Node to test on failure. */
130 struct decision
*prev
; /* Node whose failure tests us. */
131 struct decision
*afterward
; /* Node to test on success,
132 but failure of successor nodes. */
134 const char *position
; /* String denoting position in pattern. */
136 struct decision_test
*tests
; /* The tests for this node. */
138 int number
; /* Node number, used for labels */
139 int subroutine_number
; /* Number of subroutine this node starts */
140 int need_label
; /* Label needs to be output. */
143 #define SUBROUTINE_THRESHOLD 100
145 static int next_subroutine_number
;
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
152 RECOG
, SPLIT
, PEEPHOLE2
155 #define IS_SPLIT(X) ((X) != RECOG)
157 /* Next available node number for tree nodes. */
159 static int next_number
;
161 /* Next number to use as an insn_code. */
163 static int next_insn_code
;
165 /* Similar, but counts all expressions in the MD file; used for
168 static int next_index
;
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
173 static int max_depth
;
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno
;
178 /* Count of errors. */
179 static int error_count
;
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
187 static const struct pred_table
189 const char *const name
;
190 const RTX_CODE codes
[NUM_RTX_CODE
];
192 {"general_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
193 LABEL_REF
, SUBREG
, REG
, MEM
, ADDRESSOF
}},
194 #ifdef PREDICATE_CODES
197 {"address_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
198 LABEL_REF
, SUBREG
, REG
, MEM
, ADDRESSOF
,
200 {"register_operand", {SUBREG
, REG
, ADDRESSOF
}},
201 {"pmode_register_operand", {SUBREG
, REG
, ADDRESSOF
}},
202 {"scratch_operand", {SCRATCH
, REG
}},
203 {"immediate_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
205 {"const_int_operand", {CONST_INT
}},
206 {"const_double_operand", {CONST_INT
, CONST_DOUBLE
}},
207 {"nonimmediate_operand", {SUBREG
, REG
, MEM
, ADDRESSOF
}},
208 {"nonmemory_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
209 LABEL_REF
, SUBREG
, REG
, ADDRESSOF
}},
210 {"push_operand", {MEM
}},
211 {"pop_operand", {MEM
}},
212 {"memory_operand", {SUBREG
, MEM
}},
213 {"indirect_operand", {SUBREG
, MEM
}},
214 {"comparison_operator", {EQ
, NE
, LE
, LT
, GE
, GT
, LEU
, LTU
, GEU
, GTU
,
215 UNORDERED
, ORDERED
, UNEQ
, UNGE
, UNGT
, UNLE
,
219 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
221 static const char *const special_mode_pred_table
[] = {
222 #ifdef SPECIAL_MODE_PREDICATES
223 SPECIAL_MODE_PREDICATES
225 "pmode_register_operand"
228 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
230 static struct decision
*new_decision
231 (const char *, struct decision_head
*);
232 static struct decision_test
*new_decision_test
233 (enum decision_type
, struct decision_test
***);
234 static rtx find_operand
236 static rtx find_matching_operand
238 static void validate_pattern
239 (rtx
, rtx
, rtx
, int);
240 static struct decision
*add_to_sequence
241 (rtx
, struct decision_head
*, const char *, enum routine_type
, int);
243 static int maybe_both_true_2
244 (struct decision_test
*, struct decision_test
*);
245 static int maybe_both_true_1
246 (struct decision_test
*, struct decision_test
*);
247 static int maybe_both_true
248 (struct decision
*, struct decision
*, int);
250 static int nodes_identical_1
251 (struct decision_test
*, struct decision_test
*);
252 static int nodes_identical
253 (struct decision
*, struct decision
*);
254 static void merge_accept_insn
255 (struct decision
*, struct decision
*);
256 static void merge_trees
257 (struct decision_head
*, struct decision_head
*);
259 static void factor_tests
260 (struct decision_head
*);
261 static void simplify_tests
262 (struct decision_head
*);
263 static int break_out_subroutines
264 (struct decision_head
*, int);
265 static void find_afterward
266 (struct decision_head
*, struct decision
*);
268 static void change_state
269 (const char *, const char *, struct decision
*, const char *);
270 static void print_code
272 static void write_afterward
273 (struct decision
*, struct decision
*, const char *);
274 static struct decision
*write_switch
275 (struct decision
*, int);
276 static void write_cond
277 (struct decision_test
*, int, enum routine_type
);
278 static void write_action
279 (struct decision
*, struct decision_test
*, int, int,
280 struct decision
*, enum routine_type
);
281 static int is_unconditional
282 (struct decision_test
*, enum routine_type
);
283 static int write_node
284 (struct decision
*, int, enum routine_type
);
285 static void write_tree_1
286 (struct decision_head
*, int, enum routine_type
);
287 static void write_tree
288 (struct decision_head
*, const char *, enum routine_type
, int);
289 static void write_subroutine
290 (struct decision_head
*, enum routine_type
);
291 static void write_subroutines
292 (struct decision_head
*, enum routine_type
);
293 static void write_header
296 static struct decision_head make_insn_sequence
297 (rtx
, enum routine_type
);
298 static void process_tree
299 (struct decision_head
*, enum routine_type
);
301 static void record_insn_name
304 static void debug_decision_0
305 (struct decision
*, int, int);
306 static void debug_decision_1
307 (struct decision
*, int);
308 static void debug_decision_2
309 (struct decision_test
*);
310 extern void debug_decision
312 extern void debug_decision_list
315 /* Create a new node in sequence after LAST. */
317 static struct decision
*
318 new_decision (const char *position
, struct decision_head
*last
)
320 struct decision
*new = xcalloc (1, sizeof (struct decision
));
322 new->success
= *last
;
323 new->position
= xstrdup (position
);
324 new->number
= next_number
++;
326 last
->first
= last
->last
= new;
330 /* Create a new test and link it in at PLACE. */
332 static struct decision_test
*
333 new_decision_test (enum decision_type type
, struct decision_test
***pplace
)
335 struct decision_test
**place
= *pplace
;
336 struct decision_test
*test
;
338 test
= xmalloc (sizeof (*test
));
349 /* Search for and return operand N, stop when reaching node STOP. */
352 find_operand (rtx pattern
, int n
, rtx stop
)
362 code
= GET_CODE (pattern
);
363 if ((code
== MATCH_SCRATCH
364 || code
== MATCH_OPERAND
365 || code
== MATCH_OPERATOR
366 || code
== MATCH_PARALLEL
)
367 && XINT (pattern
, 0) == n
)
370 fmt
= GET_RTX_FORMAT (code
);
371 len
= GET_RTX_LENGTH (code
);
372 for (i
= 0; i
< len
; i
++)
377 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
382 if (! XVEC (pattern
, i
))
387 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
388 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
393 case 'i': case 'w': case '0': case 's':
404 /* Search for and return operand M, such that it has a matching
405 constraint for operand N. */
408 find_matching_operand (rtx pattern
, int n
)
415 code
= GET_CODE (pattern
);
416 if (code
== MATCH_OPERAND
417 && (XSTR (pattern
, 2)[0] == '0' + n
418 || (XSTR (pattern
, 2)[0] == '%'
419 && XSTR (pattern
, 2)[1] == '0' + n
)))
422 fmt
= GET_RTX_FORMAT (code
);
423 len
= GET_RTX_LENGTH (code
);
424 for (i
= 0; i
< len
; i
++)
429 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
434 if (! XVEC (pattern
, i
))
439 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
440 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
444 case 'i': case 'w': case '0': case 's':
456 /* Check for various errors in patterns. SET is nonnull for a destination,
457 and is the complete set pattern. SET_CODE is '=' for normal sets, and
458 '+' within a context that requires in-out constraints. */
461 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
468 code
= GET_CODE (pattern
);
476 if (find_operand (insn
, XINT (pattern
, 0), pattern
) == pattern
)
478 message_with_line (pattern_lineno
,
479 "operand %i duplicated before defined",
487 const char *pred_name
= XSTR (pattern
, 1);
488 int allows_non_lvalue
= 1, allows_non_const
= 1;
489 int special_mode_pred
= 0;
492 if (GET_CODE (insn
) == DEFINE_INSN
)
493 c_test
= XSTR (insn
, 2);
495 c_test
= XSTR (insn
, 1);
497 if (pred_name
[0] != 0)
499 for (i
= 0; i
< NUM_KNOWN_PREDS
; i
++)
500 if (! strcmp (preds
[i
].name
, pred_name
))
503 if (i
< NUM_KNOWN_PREDS
)
507 allows_non_lvalue
= allows_non_const
= 0;
508 for (j
= 0; preds
[i
].codes
[j
] != 0; j
++)
510 RTX_CODE c
= preds
[i
].codes
[j
];
517 allows_non_const
= 1;
525 && c
!= STRICT_LOW_PART
)
526 allows_non_lvalue
= 1;
531 #ifdef PREDICATE_CODES
532 /* If the port has a list of the predicates it uses but
534 message_with_line (pattern_lineno
,
535 "warning: `%s' not in PREDICATE_CODES",
540 for (i
= 0; i
< NUM_SPECIAL_MODE_PREDS
; ++i
)
541 if (strcmp (pred_name
, special_mode_pred_table
[i
]) == 0)
543 special_mode_pred
= 1;
548 if (code
== MATCH_OPERAND
)
550 const char constraints0
= XSTR (pattern
, 2)[0];
552 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
553 don't use the MATCH_OPERAND constraint, only the predicate.
554 This is confusing to folks doing new ports, so help them
555 not make the mistake. */
556 if (GET_CODE (insn
) == DEFINE_EXPAND
557 || GET_CODE (insn
) == DEFINE_SPLIT
558 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
)
561 message_with_line (pattern_lineno
,
562 "warning: constraints not supported in %s",
563 rtx_name
[GET_CODE (insn
)]);
566 /* A MATCH_OPERAND that is a SET should have an output reload. */
567 else if (set
&& constraints0
)
571 if (constraints0
== '+')
573 /* If we've only got an output reload for this operand,
574 we'd better have a matching input operand. */
575 else if (constraints0
== '='
576 && find_matching_operand (insn
, XINT (pattern
, 0)))
580 message_with_line (pattern_lineno
,
581 "operand %d missing in-out reload",
586 else if (constraints0
!= '=' && constraints0
!= '+')
588 message_with_line (pattern_lineno
,
589 "operand %d missing output reload",
596 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
597 while not likely to occur at runtime, results in less efficient
598 code from insn-recog.c. */
600 && pred_name
[0] != '\0'
601 && allows_non_lvalue
)
603 message_with_line (pattern_lineno
,
604 "warning: destination operand %d allows non-lvalue",
608 /* A modeless MATCH_OPERAND can be handy when we can
609 check for multiple modes in the c_test. In most other cases,
610 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
611 and PEEP2 can FAIL within the output pattern. Exclude
612 address_operand, since its mode is related to the mode of
613 the memory not the operand. Exclude the SET_DEST of a call
614 instruction, as that is a common idiom. */
616 if (GET_MODE (pattern
) == VOIDmode
617 && code
== MATCH_OPERAND
618 && GET_CODE (insn
) == DEFINE_INSN
620 && ! special_mode_pred
621 && pred_name
[0] != '\0'
622 && strcmp (pred_name
, "address_operand") != 0
623 && strstr (c_test
, "operands") == NULL
625 && GET_CODE (set
) == SET
626 && GET_CODE (SET_SRC (set
)) == CALL
))
628 message_with_line (pattern_lineno
,
629 "warning: operand %d missing mode?",
637 enum machine_mode dmode
, smode
;
640 dest
= SET_DEST (pattern
);
641 src
= SET_SRC (pattern
);
643 /* STRICT_LOW_PART is a wrapper. Its argument is the real
644 destination, and it's mode should match the source. */
645 if (GET_CODE (dest
) == STRICT_LOW_PART
)
646 dest
= XEXP (dest
, 0);
648 /* Find the referent for a DUP. */
650 if (GET_CODE (dest
) == MATCH_DUP
651 || GET_CODE (dest
) == MATCH_OP_DUP
652 || GET_CODE (dest
) == MATCH_PAR_DUP
)
653 dest
= find_operand (insn
, XINT (dest
, 0), NULL
);
655 if (GET_CODE (src
) == MATCH_DUP
656 || GET_CODE (src
) == MATCH_OP_DUP
657 || GET_CODE (src
) == MATCH_PAR_DUP
)
658 src
= find_operand (insn
, XINT (src
, 0), NULL
);
660 dmode
= GET_MODE (dest
);
661 smode
= GET_MODE (src
);
663 /* The mode of an ADDRESS_OPERAND is the mode of the memory
664 reference, not the mode of the address. */
665 if (GET_CODE (src
) == MATCH_OPERAND
666 && ! strcmp (XSTR (src
, 1), "address_operand"))
669 /* The operands of a SET must have the same mode unless one
671 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
673 message_with_line (pattern_lineno
,
674 "mode mismatch in set: %smode vs %smode",
675 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
679 /* If only one of the operands is VOIDmode, and PC or CC0 is
680 not involved, it's probably a mistake. */
681 else if (dmode
!= smode
682 && GET_CODE (dest
) != PC
683 && GET_CODE (dest
) != CC0
684 && GET_CODE (src
) != PC
685 && GET_CODE (src
) != CC0
686 && GET_CODE (src
) != CONST_INT
)
689 which
= (dmode
== VOIDmode
? "destination" : "source");
690 message_with_line (pattern_lineno
,
691 "warning: %s missing a mode?", which
);
694 if (dest
!= SET_DEST (pattern
))
695 validate_pattern (dest
, insn
, pattern
, '=');
696 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
697 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
702 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
706 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
707 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
708 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
711 case STRICT_LOW_PART
:
712 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
716 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
718 message_with_line (pattern_lineno
,
719 "operand to label_ref %smode not VOIDmode",
720 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
729 fmt
= GET_RTX_FORMAT (code
);
730 len
= GET_RTX_LENGTH (code
);
731 for (i
= 0; i
< len
; i
++)
736 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
740 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
741 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
744 case 'i': case 'w': case '0': case 's':
753 /* Create a chain of nodes to verify that an rtl expression matches
756 LAST is a pointer to the listhead in the previous node in the chain (or
757 in the calling function, for the first node).
759 POSITION is the string representing the current position in the insn.
761 INSN_TYPE is the type of insn for which we are emitting code.
763 A pointer to the final node in the chain is returned. */
765 static struct decision
*
766 add_to_sequence (rtx pattern
, struct decision_head
*last
, const char *position
,
767 enum routine_type insn_type
, int top
)
770 struct decision
*this, *sub
;
771 struct decision_test
*test
;
772 struct decision_test
**place
;
776 int depth
= strlen (position
);
778 enum machine_mode mode
;
780 if (depth
> max_depth
)
783 subpos
= xmalloc (depth
+ 2);
784 strcpy (subpos
, position
);
785 subpos
[depth
+ 1] = 0;
787 sub
= this = new_decision (position
, last
);
788 place
= &this->tests
;
791 mode
= GET_MODE (pattern
);
792 code
= GET_CODE (pattern
);
797 /* Toplevel peephole pattern. */
798 if (insn_type
== PEEPHOLE2
&& top
)
800 /* We don't need the node we just created -- unlink it. */
801 last
->first
= last
->last
= NULL
;
803 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
805 /* Which insn we're looking at is represented by A-Z. We don't
806 ever use 'A', however; it is always implied. */
808 subpos
[depth
] = (i
> 0 ? 'A' + i
: 0);
809 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
810 last
, subpos
, insn_type
, 0);
811 last
= &sub
->success
;
816 /* Else nothing special. */
820 /* The explicit patterns within a match_parallel enforce a minimum
821 length on the vector. The match_parallel predicate may allow
822 for more elements. We do need to check for this minimum here
823 or the code generated to match the internals may reference data
824 beyond the end of the vector. */
825 test
= new_decision_test (DT_veclen_ge
, &place
);
826 test
->u
.veclen
= XVECLEN (pattern
, 2);
833 const char *pred_name
;
834 RTX_CODE was_code
= code
;
835 int allows_const_int
= 1;
837 if (code
== MATCH_SCRATCH
)
839 pred_name
= "scratch_operand";
844 pred_name
= XSTR (pattern
, 1);
845 if (code
== MATCH_PARALLEL
)
851 if (pred_name
[0] != 0)
853 test
= new_decision_test (DT_pred
, &place
);
854 test
->u
.pred
.name
= pred_name
;
855 test
->u
.pred
.mode
= mode
;
857 /* See if we know about this predicate and save its number.
858 If we do, and it only accepts one code, note that fact.
860 If we know that the predicate does not allow CONST_INT,
861 we know that the only way the predicate can match is if
862 the modes match (here we use the kludge of relying on the
863 fact that "address_operand" accepts CONST_INT; otherwise,
864 it would have to be a special case), so we can test the
865 mode (but we need not). This fact should considerably
866 simplify the generated code. */
868 for (i
= 0; i
< NUM_KNOWN_PREDS
; i
++)
869 if (! strcmp (preds
[i
].name
, pred_name
))
872 if (i
< NUM_KNOWN_PREDS
)
876 test
->u
.pred
.index
= i
;
878 if (preds
[i
].codes
[1] == 0 && code
== UNKNOWN
)
879 code
= preds
[i
].codes
[0];
881 allows_const_int
= 0;
882 for (j
= 0; preds
[i
].codes
[j
] != 0; j
++)
883 if (preds
[i
].codes
[j
] == CONST_INT
)
885 allows_const_int
= 1;
890 test
->u
.pred
.index
= -1;
893 /* Can't enforce a mode if we allow const_int. */
894 if (allows_const_int
)
897 /* Accept the operand, ie. record it in `operands'. */
898 test
= new_decision_test (DT_accept_op
, &place
);
899 test
->u
.opno
= XINT (pattern
, 0);
901 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
903 char base
= (was_code
== MATCH_OPERATOR
? '0' : 'a');
904 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
906 subpos
[depth
] = i
+ base
;
907 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
908 &sub
->success
, subpos
, insn_type
, 0);
917 test
= new_decision_test (DT_dup
, &place
);
918 test
->u
.dup
= XINT (pattern
, 0);
920 test
= new_decision_test (DT_accept_op
, &place
);
921 test
->u
.opno
= XINT (pattern
, 0);
923 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
925 subpos
[depth
] = i
+ '0';
926 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
927 &sub
->success
, subpos
, insn_type
, 0);
935 test
= new_decision_test (DT_dup
, &place
);
936 test
->u
.dup
= XINT (pattern
, 0);
940 pattern
= XEXP (pattern
, 0);
947 fmt
= GET_RTX_FORMAT (code
);
948 len
= GET_RTX_LENGTH (code
);
950 /* Do tests against the current node first. */
951 for (i
= 0; i
< (size_t) len
; i
++)
957 test
= new_decision_test (DT_elt_zero_int
, &place
);
958 test
->u
.intval
= XINT (pattern
, i
);
962 test
= new_decision_test (DT_elt_one_int
, &place
);
963 test
->u
.intval
= XINT (pattern
, i
);
968 else if (fmt
[i
] == 'w')
970 /* If this value actually fits in an int, we can use a switch
971 statement here, so indicate that. */
972 enum decision_type type
973 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
974 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
979 test
= new_decision_test (type
, &place
);
980 test
->u
.intval
= XWINT (pattern
, i
);
982 else if (fmt
[i
] == 'E')
987 test
= new_decision_test (DT_veclen
, &place
);
988 test
->u
.veclen
= XVECLEN (pattern
, i
);
992 /* Now test our sub-patterns. */
993 for (i
= 0; i
< (size_t) len
; i
++)
998 subpos
[depth
] = '0' + i
;
999 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
1000 subpos
, insn_type
, 0);
1006 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
1008 subpos
[depth
] = 'a' + j
;
1009 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
1010 &sub
->success
, subpos
, insn_type
, 0);
1016 /* Handled above. */
1027 /* Insert nodes testing mode and code, if they're still relevant,
1028 before any of the nodes we may have added above. */
1029 if (code
!= UNKNOWN
)
1031 place
= &this->tests
;
1032 test
= new_decision_test (DT_code
, &place
);
1033 test
->u
.code
= code
;
1036 if (mode
!= VOIDmode
)
1038 place
= &this->tests
;
1039 test
= new_decision_test (DT_mode
, &place
);
1040 test
->u
.mode
= mode
;
1043 /* If we didn't insert any tests or accept nodes, hork. */
1044 if (this->tests
== NULL
)
1052 /* A subroutine of maybe_both_true; examines only one test.
1053 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1056 maybe_both_true_2 (struct decision_test
*d1
, struct decision_test
*d2
)
1058 if (d1
->type
== d2
->type
)
1063 return d1
->u
.mode
== d2
->u
.mode
;
1066 return d1
->u
.code
== d2
->u
.code
;
1069 return d1
->u
.veclen
== d2
->u
.veclen
;
1071 case DT_elt_zero_int
:
1072 case DT_elt_one_int
:
1073 case DT_elt_zero_wide
:
1074 case DT_elt_zero_wide_safe
:
1075 return d1
->u
.intval
== d2
->u
.intval
;
1082 /* If either has a predicate that we know something about, set
1083 things up so that D1 is the one that always has a known
1084 predicate. Then see if they have any codes in common. */
1086 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1088 if (d2
->type
== DT_pred
)
1090 struct decision_test
*tmp
;
1091 tmp
= d1
, d1
= d2
, d2
= tmp
;
1094 /* If D2 tests a mode, see if it matches D1. */
1095 if (d1
->u
.pred
.mode
!= VOIDmode
)
1097 if (d2
->type
== DT_mode
)
1099 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1100 /* The mode of an address_operand predicate is the
1101 mode of the memory, not the operand. It can only
1102 be used for testing the predicate, so we must
1104 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1107 /* Don't check two predicate modes here, because if both predicates
1108 accept CONST_INT, then both can still be true even if the modes
1109 are different. If they don't accept CONST_INT, there will be a
1110 separate DT_mode that will make maybe_both_true_1 return 0. */
1113 if (d1
->u
.pred
.index
>= 0)
1115 /* If D2 tests a code, see if it is in the list of valid
1116 codes for D1's predicate. */
1117 if (d2
->type
== DT_code
)
1119 const RTX_CODE
*c
= &preds
[d1
->u
.pred
.index
].codes
[0];
1122 if (*c
== d2
->u
.code
)
1130 /* Otherwise see if the predicates have any codes in common. */
1131 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.index
>= 0)
1133 const RTX_CODE
*c1
= &preds
[d1
->u
.pred
.index
].codes
[0];
1136 while (*c1
!= 0 && !common
)
1138 const RTX_CODE
*c2
= &preds
[d2
->u
.pred
.index
].codes
[0];
1139 while (*c2
!= 0 && !common
)
1141 common
= (*c1
== *c2
);
1153 /* Tests vs veclen may be known when strict equality is involved. */
1154 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1155 return d1
->u
.veclen
>= d2
->u
.veclen
;
1156 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1157 return d2
->u
.veclen
>= d1
->u
.veclen
;
1162 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1163 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1166 maybe_both_true_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1168 struct decision_test
*t1
, *t2
;
1170 /* A match_operand with no predicate can match anything. Recognize
1171 this by the existence of a lone DT_accept_op test. */
1172 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1175 /* Eliminate pairs of tests while they can exactly match. */
1176 while (d1
&& d2
&& d1
->type
== d2
->type
)
1178 if (maybe_both_true_2 (d1
, d2
) == 0)
1180 d1
= d1
->next
, d2
= d2
->next
;
1183 /* After that, consider all pairs. */
1184 for (t1
= d1
; t1
; t1
= t1
->next
)
1185 for (t2
= d2
; t2
; t2
= t2
->next
)
1186 if (maybe_both_true_2 (t1
, t2
) == 0)
1192 /* Return 0 if we can prove that there is no RTL that can match both
1193 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1194 can match both or just that we couldn't prove there wasn't such an RTL).
1196 TOPLEVEL is nonzero if we are to only look at the top level and not
1197 recursively descend. */
1200 maybe_both_true (struct decision
*d1
, struct decision
*d2
,
1203 struct decision
*p1
, *p2
;
1206 /* Don't compare strings on the different positions in insn. Doing so
1207 is incorrect and results in false matches from constructs like
1209 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1210 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1212 [(set (match_operand:HI "register_operand" "r")
1213 (match_operand:HI "register_operand" "r"))]
1215 If we are presented with such, we are recursing through the remainder
1216 of a node's success nodes (from the loop at the end of this function).
1217 Skip forward until we come to a position that matches.
1219 Due to the way position strings are constructed, we know that iterating
1220 forward from the lexically lower position (e.g. "00") will run into
1221 the lexically higher position (e.g. "1") and not the other way around.
1222 This saves a bit of effort. */
1224 cmp
= strcmp (d1
->position
, d2
->position
);
1230 /* If the d2->position was lexically lower, swap. */
1232 p1
= d1
, d1
= d2
, d2
= p1
;
1234 if (d1
->success
.first
== 0)
1236 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1237 if (maybe_both_true (p1
, d2
, 0))
1243 /* Test the current level. */
1244 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1248 /* We can't prove that D1 and D2 cannot both be true. If we are only
1249 to check the top level, return 1. Otherwise, see if we can prove
1250 that all choices in both successors are mutually exclusive. If
1251 either does not have any successors, we can't prove they can't both
1254 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1257 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1258 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1259 if (maybe_both_true (p1
, p2
, 0))
1265 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1268 nodes_identical_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1273 return d1
->u
.mode
== d2
->u
.mode
;
1276 return d1
->u
.code
== d2
->u
.code
;
1279 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1280 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1283 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1287 return d1
->u
.veclen
== d2
->u
.veclen
;
1290 return d1
->u
.dup
== d2
->u
.dup
;
1292 case DT_elt_zero_int
:
1293 case DT_elt_one_int
:
1294 case DT_elt_zero_wide
:
1295 case DT_elt_zero_wide_safe
:
1296 return d1
->u
.intval
== d2
->u
.intval
;
1299 return d1
->u
.opno
== d2
->u
.opno
;
1301 case DT_accept_insn
:
1302 /* Differences will be handled in merge_accept_insn. */
1310 /* True iff the two nodes are identical (on one level only). Due
1311 to the way these lists are constructed, we shouldn't have to
1312 consider different orderings on the tests. */
1315 nodes_identical (struct decision
*d1
, struct decision
*d2
)
1317 struct decision_test
*t1
, *t2
;
1319 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1321 if (t1
->type
!= t2
->type
)
1323 if (! nodes_identical_1 (t1
, t2
))
1327 /* For success, they should now both be null. */
1331 /* Check that their subnodes are at the same position, as any one set
1332 of sibling decisions must be at the same position. Allowing this
1333 requires complications to find_afterward and when change_state is
1335 if (d1
->success
.first
1336 && d2
->success
.first
1337 && strcmp (d1
->success
.first
->position
, d2
->success
.first
->position
))
1343 /* A subroutine of merge_trees; given two nodes that have been declared
1344 identical, cope with two insn accept states. If they differ in the
1345 number of clobbers, then the conflict was created by make_insn_sequence
1346 and we can drop the with-clobbers version on the floor. If both
1347 nodes have no additional clobbers, we have found an ambiguity in the
1348 source machine description. */
1351 merge_accept_insn (struct decision
*oldd
, struct decision
*addd
)
1353 struct decision_test
*old
, *add
;
1355 for (old
= oldd
->tests
; old
; old
= old
->next
)
1356 if (old
->type
== DT_accept_insn
)
1361 for (add
= addd
->tests
; add
; add
= add
->next
)
1362 if (add
->type
== DT_accept_insn
)
1367 /* If one node is for a normal insn and the second is for the base
1368 insn with clobbers stripped off, the second node should be ignored. */
1370 if (old
->u
.insn
.num_clobbers_to_add
== 0
1371 && add
->u
.insn
.num_clobbers_to_add
> 0)
1373 /* Nothing to do here. */
1375 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1376 && add
->u
.insn
.num_clobbers_to_add
== 0)
1378 /* In this case, replace OLD with ADD. */
1379 old
->u
.insn
= add
->u
.insn
;
1383 message_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1384 get_insn_name (add
->u
.insn
.code_number
),
1385 get_insn_name (old
->u
.insn
.code_number
));
1386 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1387 get_insn_name (old
->u
.insn
.code_number
));
1392 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1395 merge_trees (struct decision_head
*oldh
, struct decision_head
*addh
)
1397 struct decision
*next
, *add
;
1399 if (addh
->first
== 0)
1401 if (oldh
->first
== 0)
1407 /* Trying to merge bits at different positions isn't possible. */
1408 if (strcmp (oldh
->first
->position
, addh
->first
->position
))
1411 for (add
= addh
->first
; add
; add
= next
)
1413 struct decision
*old
, *insert_before
= NULL
;
1417 /* The semantics of pattern matching state that the tests are
1418 done in the order given in the MD file so that if an insn
1419 matches two patterns, the first one will be used. However,
1420 in practice, most, if not all, patterns are unambiguous so
1421 that their order is independent. In that case, we can merge
1422 identical tests and group all similar modes and codes together.
1424 Scan starting from the end of OLDH until we reach a point
1425 where we reach the head of the list or where we pass a
1426 pattern that could also be true if NEW is true. If we find
1427 an identical pattern, we can merge them. Also, record the
1428 last node that tests the same code and mode and the last one
1429 that tests just the same mode.
1431 If we have no match, place NEW after the closest match we found. */
1433 for (old
= oldh
->last
; old
; old
= old
->prev
)
1435 if (nodes_identical (old
, add
))
1437 merge_accept_insn (old
, add
);
1438 merge_trees (&old
->success
, &add
->success
);
1442 if (maybe_both_true (old
, add
, 0))
1445 /* Insert the nodes in DT test type order, which is roughly
1446 how expensive/important the test is. Given that the tests
1447 are also ordered within the list, examining the first is
1449 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1450 insert_before
= old
;
1453 if (insert_before
== NULL
)
1456 add
->prev
= oldh
->last
;
1457 oldh
->last
->next
= add
;
1462 if ((add
->prev
= insert_before
->prev
) != NULL
)
1463 add
->prev
->next
= add
;
1466 add
->next
= insert_before
;
1467 insert_before
->prev
= add
;
1474 /* Walk the tree looking for sub-nodes that perform common tests.
1475 Factor out the common test into a new node. This enables us
1476 (depending on the test type) to emit switch statements later. */
1479 factor_tests (struct decision_head
*head
)
1481 struct decision
*first
, *next
;
1483 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1485 enum decision_type type
;
1486 struct decision
*new, *old_last
;
1488 type
= first
->tests
->type
;
1491 /* Want at least two compatible sequential nodes. */
1492 if (next
->tests
->type
!= type
)
1495 /* Don't want all node types, just those we can turn into
1496 switch statements. */
1499 && type
!= DT_veclen
1500 && type
!= DT_elt_zero_int
1501 && type
!= DT_elt_one_int
1502 && type
!= DT_elt_zero_wide_safe
)
1505 /* If we'd been performing more than one test, create a new node
1506 below our first test. */
1507 if (first
->tests
->next
!= NULL
)
1509 new = new_decision (first
->position
, &first
->success
);
1510 new->tests
= first
->tests
->next
;
1511 first
->tests
->next
= NULL
;
1514 /* Crop the node tree off after our first test. */
1516 old_last
= head
->last
;
1519 /* For each compatible test, adjust to perform only one test in
1520 the top level node, then merge the node back into the tree. */
1523 struct decision_head h
;
1525 if (next
->tests
->next
!= NULL
)
1527 new = new_decision (next
->position
, &next
->success
);
1528 new->tests
= next
->tests
->next
;
1529 next
->tests
->next
= NULL
;
1534 h
.first
= h
.last
= new;
1536 merge_trees (head
, &h
);
1538 while (next
&& next
->tests
->type
== type
);
1540 /* After we run out of compatible tests, graft the remaining nodes
1541 back onto the tree. */
1544 next
->prev
= head
->last
;
1545 head
->last
->next
= next
;
1546 head
->last
= old_last
;
1551 for (first
= head
->first
; first
; first
= first
->next
)
1552 factor_tests (&first
->success
);
1555 /* After factoring, try to simplify the tests on any one node.
1556 Tests that are useful for switch statements are recognizable
1557 by having only a single test on a node -- we'll be manipulating
1558 nodes with multiple tests:
1560 If we have mode tests or code tests that are redundant with
1561 predicates, remove them. */
1564 simplify_tests (struct decision_head
*head
)
1566 struct decision
*tree
;
1568 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1570 struct decision_test
*a
, *b
;
1577 /* Find a predicate node. */
1578 while (b
&& b
->type
!= DT_pred
)
1582 /* Due to how these tests are constructed, we don't even need
1583 to check that the mode and code are compatible -- they were
1584 generated from the predicate in the first place. */
1585 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1592 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1593 simplify_tests (&tree
->success
);
1596 /* Count the number of subnodes of HEAD. If the number is high enough,
1597 make the first node in HEAD start a separate subroutine in the C code
1598 that is generated. */
1601 break_out_subroutines (struct decision_head
*head
, int initial
)
1604 struct decision
*sub
;
1606 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1607 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1609 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1611 head
->first
->subroutine_number
= ++next_subroutine_number
;
1617 /* For each node p, find the next alternative that might be true
1621 find_afterward (struct decision_head
*head
, struct decision
*real_afterward
)
1623 struct decision
*p
, *q
, *afterward
;
1625 /* We can't propagate alternatives across subroutine boundaries.
1626 This is not incorrect, merely a minor optimization loss. */
1629 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1631 for ( ; p
; p
= p
->next
)
1633 /* Find the next node that might be true if this one fails. */
1634 for (q
= p
->next
; q
; q
= q
->next
)
1635 if (maybe_both_true (p
, q
, 1))
1638 /* If we reached the end of the list without finding one,
1639 use the incoming afterward position. */
1648 for (p
= head
->first
; p
; p
= p
->next
)
1649 if (p
->success
.first
)
1650 find_afterward (&p
->success
, p
->afterward
);
1652 /* When we are generating a subroutine, record the real afterward
1653 position in the first node where write_tree can find it, and we
1654 can do the right thing at the subroutine call site. */
1656 if (p
->subroutine_number
> 0)
1657 p
->afterward
= real_afterward
;
1660 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1661 actions are necessary to move to NEWPOS. If we fail to move to the
1662 new state, branch to node AFTERWARD if nonzero, otherwise return.
1664 Failure to move to the new state can only occur if we are trying to
1665 match multiple insns and we try to step past the end of the stream. */
1668 change_state (const char *oldpos
, const char *newpos
,
1669 struct decision
*afterward
, const char *indent
)
1671 int odepth
= strlen (oldpos
);
1672 int ndepth
= strlen (newpos
);
1674 int old_has_insn
, new_has_insn
;
1676 /* Pop up as many levels as necessary. */
1677 for (depth
= odepth
; strncmp (oldpos
, newpos
, depth
) != 0; --depth
)
1680 /* Hunt for the last [A-Z] in both strings. */
1681 for (old_has_insn
= odepth
- 1; old_has_insn
>= 0; --old_has_insn
)
1682 if (ISUPPER (oldpos
[old_has_insn
]))
1684 for (new_has_insn
= ndepth
- 1; new_has_insn
>= 0; --new_has_insn
)
1685 if (ISUPPER (newpos
[new_has_insn
]))
1688 /* Go down to desired level. */
1689 while (depth
< ndepth
)
1691 /* It's a different insn from the first one. */
1692 if (ISUPPER (newpos
[depth
]))
1694 /* We can only fail if we're moving down the tree. */
1695 if (old_has_insn
>= 0 && oldpos
[old_has_insn
] >= newpos
[depth
])
1697 printf ("%stem = peep2_next_insn (%d);\n",
1698 indent
, newpos
[depth
] - 'A');
1702 printf ("%stem = peep2_next_insn (%d);\n",
1703 indent
, newpos
[depth
] - 'A');
1704 printf ("%sif (tem == NULL_RTX)\n", indent
);
1706 printf ("%s goto L%d;\n", indent
, afterward
->number
);
1708 printf ("%s goto ret0;\n", indent
);
1710 printf ("%sx%d = PATTERN (tem);\n", indent
, depth
+ 1);
1712 else if (ISLOWER (newpos
[depth
]))
1713 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1714 indent
, depth
+ 1, depth
, newpos
[depth
] - 'a');
1716 printf ("%sx%d = XEXP (x%d, %c);\n",
1717 indent
, depth
+ 1, depth
, newpos
[depth
]);
1722 /* Print the enumerator constant for CODE -- the upcase version of
1726 print_code (enum rtx_code code
)
1729 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1730 putchar (TOUPPER (*p
));
1733 /* Emit code to cross an afterward link -- change state and branch. */
1736 write_afterward (struct decision
*start
, struct decision
*afterward
,
1739 if (!afterward
|| start
->subroutine_number
> 0)
1740 printf("%sgoto ret0;\n", indent
);
1743 change_state (start
->position
, afterward
->position
, NULL
, indent
);
1744 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1748 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1749 special care to avoid "decimal constant is so large that it is unsigned"
1750 warnings in the resulting code. */
1753 print_host_wide_int (HOST_WIDE_INT val
)
1755 HOST_WIDE_INT min
= (unsigned HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1);
1757 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
"-1)", val
+ 1);
1759 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
1762 /* Emit a switch statement, if possible, for an initial sequence of
1763 nodes at START. Return the first node yet untested. */
1765 static struct decision
*
1766 write_switch (struct decision
*start
, int depth
)
1768 struct decision
*p
= start
;
1769 enum decision_type type
= p
->tests
->type
;
1770 struct decision
*needs_label
= NULL
;
1772 /* If we have two or more nodes in sequence that test the same one
1773 thing, we may be able to use a switch statement. */
1777 || p
->next
->tests
->type
!= type
1778 || p
->next
->tests
->next
1779 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1782 /* DT_code is special in that we can do interesting things with
1783 known predicates at the same time. */
1784 if (type
== DT_code
)
1786 char codemap
[NUM_RTX_CODE
];
1787 struct decision
*ret
;
1790 memset (codemap
, 0, sizeof(codemap
));
1792 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1793 code
= p
->tests
->u
.code
;
1796 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1801 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1802 p
->success
.first
->need_label
= 1;
1809 && p
->tests
->type
== DT_code
1810 && ! codemap
[code
= p
->tests
->u
.code
]);
1812 /* If P is testing a predicate that we know about and we haven't
1813 seen any of the codes that are valid for the predicate, we can
1814 write a series of "case" statement, one for each possible code.
1815 Since we are already in a switch, these redundant tests are very
1816 cheap and will reduce the number of predicates called. */
1818 /* Note that while we write out cases for these predicates here,
1819 we don't actually write the test here, as it gets kinda messy.
1820 It is trivial to leave this to later by telling our caller that
1821 we only processed the CODE tests. */
1822 if (needs_label
!= NULL
)
1827 while (p
&& p
->tests
->type
== DT_pred
1828 && p
->tests
->u
.pred
.index
>= 0)
1832 for (c
= &preds
[p
->tests
->u
.pred
.index
].codes
[0]; *c
; ++c
)
1833 if (codemap
[(int) *c
] != 0)
1836 for (c
= &preds
[p
->tests
->u
.pred
.index
].codes
[0]; *c
; ++c
)
1841 codemap
[(int) *c
] = 1;
1844 printf (" goto L%d;\n", p
->number
);
1850 /* Make the default case skip the predicates we managed to match. */
1852 printf (" default:\n");
1857 printf (" goto L%d;\n", p
->number
);
1861 write_afterward (start
, start
->afterward
, " ");
1864 printf (" break;\n");
1869 else if (type
== DT_mode
1870 || type
== DT_veclen
1871 || type
== DT_elt_zero_int
1872 || type
== DT_elt_one_int
1873 || type
== DT_elt_zero_wide_safe
)
1875 const char *indent
= "";
1877 /* We cast switch parameter to integer, so we must ensure that the value
1879 if (type
== DT_elt_zero_wide_safe
)
1882 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth
, depth
);
1884 printf ("%s switch (", indent
);
1888 printf ("GET_MODE (x%d)", depth
);
1891 printf ("XVECLEN (x%d, 0)", depth
);
1893 case DT_elt_zero_int
:
1894 printf ("XINT (x%d, 0)", depth
);
1896 case DT_elt_one_int
:
1897 printf ("XINT (x%d, 1)", depth
);
1899 case DT_elt_zero_wide_safe
:
1900 /* Convert result of XWINT to int for portability since some C
1901 compilers won't do it and some will. */
1902 printf ("(int) XWINT (x%d, 0)", depth
);
1907 printf (")\n%s {\n", indent
);
1911 /* Merge trees will not unify identical nodes if their
1912 sub-nodes are at different levels. Thus we must check
1913 for duplicate cases. */
1915 for (q
= start
; q
!= p
; q
= q
->next
)
1916 if (nodes_identical_1 (p
->tests
, q
->tests
))
1919 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1922 printf ("%s case ", indent
);
1926 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
1929 printf ("%d", p
->tests
->u
.veclen
);
1931 case DT_elt_zero_int
:
1932 case DT_elt_one_int
:
1933 case DT_elt_zero_wide
:
1934 case DT_elt_zero_wide_safe
:
1935 print_host_wide_int (p
->tests
->u
.intval
);
1940 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
1941 p
->success
.first
->need_label
= 1;
1945 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
1948 printf ("%s default:\n%s break;\n%s }\n",
1949 indent
, indent
, indent
);
1951 return needs_label
!= NULL
? needs_label
: p
;
1955 /* None of the other tests are amenable. */
1960 /* Emit code for one test. */
1963 write_cond (struct decision_test
*p
, int depth
,
1964 enum routine_type subroutine_type
)
1969 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
1973 printf ("GET_CODE (x%d) == ", depth
);
1974 print_code (p
->u
.code
);
1978 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
1981 case DT_elt_zero_int
:
1982 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
1985 case DT_elt_one_int
:
1986 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
1989 case DT_elt_zero_wide
:
1990 case DT_elt_zero_wide_safe
:
1991 printf ("XWINT (x%d, 0) == ", depth
);
1992 print_host_wide_int (p
->u
.intval
);
1996 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
1997 depth
, (int) p
->u
.intval
);
2001 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
2005 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
2009 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
2010 GET_MODE_NAME (p
->u
.pred
.mode
));
2014 printf ("(%s)", p
->u
.c_test
);
2017 case DT_accept_insn
:
2018 switch (subroutine_type
)
2021 if (p
->u
.insn
.num_clobbers_to_add
== 0)
2023 printf ("pnum_clobbers != NULL");
2036 /* Emit code for one action. The previous tests have succeeded;
2037 TEST is the last of the chain. In the normal case we simply
2038 perform a state change. For the `accept' tests we must do more work. */
2041 write_action (struct decision
*p
, struct decision_test
*test
,
2042 int depth
, int uncond
, struct decision
*success
,
2043 enum routine_type subroutine_type
)
2050 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
2052 fputs (" {\n", stdout
);
2059 if (test
->type
== DT_accept_op
)
2061 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
2063 /* Only allow DT_accept_insn to follow. */
2067 if (test
->type
!= DT_accept_insn
)
2072 /* Sanity check that we're now at the end of the list of tests. */
2076 if (test
->type
== DT_accept_insn
)
2078 switch (subroutine_type
)
2081 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
2082 printf ("%s*pnum_clobbers = %d;\n",
2083 indent
, test
->u
.insn
.num_clobbers_to_add
);
2084 printf ("%sreturn %d;\n", indent
, test
->u
.insn
.code_number
);
2088 printf ("%sreturn gen_split_%d (insn, operands);\n",
2089 indent
, test
->u
.insn
.code_number
);
2094 int match_len
= 0, i
;
2096 for (i
= strlen (p
->position
) - 1; i
>= 0; --i
)
2097 if (ISUPPER (p
->position
[i
]))
2099 match_len
= p
->position
[i
] - 'A';
2102 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
2103 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2104 indent
, test
->u
.insn
.code_number
);
2105 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
2115 printf("%sgoto L%d;\n", indent
, success
->number
);
2116 success
->need_label
= 1;
2120 fputs (" }\n", stdout
);
2123 /* Return 1 if the test is always true and has no fallthru path. Return -1
2124 if the test does have a fallthru path, but requires that the condition be
2125 terminated. Otherwise return 0 for a normal test. */
2126 /* ??? is_unconditional is a stupid name for a tri-state function. */
2129 is_unconditional (struct decision_test
*t
, enum routine_type subroutine_type
)
2131 if (t
->type
== DT_accept_op
)
2134 if (t
->type
== DT_accept_insn
)
2136 switch (subroutine_type
)
2139 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2152 /* Emit code for one node -- the conditional and the accompanying action.
2153 Return true if there is no fallthru path. */
2156 write_node (struct decision
*p
, int depth
,
2157 enum routine_type subroutine_type
)
2159 struct decision_test
*test
, *last_test
;
2162 /* Scan the tests and simplify comparisons against small
2164 for (test
= p
->tests
; test
; test
= test
->next
)
2166 if (test
->type
== DT_code
2167 && test
->u
.code
== CONST_INT
2169 && test
->next
->type
== DT_elt_zero_wide_safe
2170 && -MAX_SAVED_CONST_INT
<= test
->next
->u
.intval
2171 && test
->next
->u
.intval
<= MAX_SAVED_CONST_INT
)
2173 test
->type
= DT_const_int
;
2174 test
->u
.intval
= test
->next
->u
.intval
;
2175 test
->next
= test
->next
->next
;
2179 last_test
= test
= p
->tests
;
2180 uncond
= is_unconditional (test
, subroutine_type
);
2184 write_cond (test
, depth
, subroutine_type
);
2186 while ((test
= test
->next
) != NULL
)
2189 if (is_unconditional (test
, subroutine_type
))
2193 write_cond (test
, depth
, subroutine_type
);
2199 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2204 /* Emit code for all of the sibling nodes of HEAD. */
2207 write_tree_1 (struct decision_head
*head
, int depth
,
2208 enum routine_type subroutine_type
)
2210 struct decision
*p
, *next
;
2213 for (p
= head
->first
; p
; p
= next
)
2215 /* The label for the first element was printed in write_tree. */
2216 if (p
!= head
->first
&& p
->need_label
)
2217 OUTPUT_LABEL (" ", p
->number
);
2219 /* Attempt to write a switch statement for a whole sequence. */
2220 next
= write_switch (p
, depth
);
2225 /* Failed -- fall back and write one node. */
2226 uncond
= write_node (p
, depth
, subroutine_type
);
2231 /* Finished with this chain. Close a fallthru path by branching
2232 to the afterward node. */
2234 write_afterward (head
->last
, head
->last
->afterward
, " ");
2237 /* Write out the decision tree starting at HEAD. PREVPOS is the
2238 position at the node that branched to this node. */
2241 write_tree (struct decision_head
*head
, const char *prevpos
,
2242 enum routine_type type
, int initial
)
2244 struct decision
*p
= head
->first
;
2248 OUTPUT_LABEL (" ", p
->number
);
2250 if (! initial
&& p
->subroutine_number
> 0)
2252 static const char * const name_prefix
[] = {
2253 "recog", "split", "peephole2"
2256 static const char * const call_suffix
[] = {
2257 ", pnum_clobbers", "", ", _pmatch_len"
2260 /* This node has been broken out into a separate subroutine.
2261 Call it, test the result, and branch accordingly. */
2265 printf (" tem = %s_%d (x0, insn%s);\n",
2266 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2267 if (IS_SPLIT (type
))
2268 printf (" if (tem != 0)\n return tem;\n");
2270 printf (" if (tem >= 0)\n return tem;\n");
2272 change_state (p
->position
, p
->afterward
->position
, NULL
, " ");
2273 printf (" goto L%d;\n", p
->afterward
->number
);
2277 printf (" return %s_%d (x0, insn%s);\n",
2278 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2283 int depth
= strlen (p
->position
);
2285 change_state (prevpos
, p
->position
, head
->last
->afterward
, " ");
2286 write_tree_1 (head
, depth
, type
);
2288 for (p
= head
->first
; p
; p
= p
->next
)
2289 if (p
->success
.first
)
2290 write_tree (&p
->success
, p
->position
, type
, 0);
2294 /* Write out a subroutine of type TYPE to do comparisons starting at
2298 write_subroutine (struct decision_head
*head
, enum routine_type type
)
2300 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2305 s_or_e
= subfunction
? "static " : "";
2308 sprintf (extension
, "_%d", subfunction
);
2309 else if (type
== RECOG
)
2310 extension
[0] = '\0';
2312 strcpy (extension
, "_insns");
2318 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e
, extension
);
2322 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2327 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2332 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2333 for (i
= 1; i
<= max_depth
; i
++)
2334 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2336 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2339 printf (" recog_data.insn = NULL_RTX;\n");
2342 write_tree (head
, "", type
, 1);
2344 printf (" goto ret0;\n");
2346 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2349 /* In break_out_subroutines, we discovered the boundaries for the
2350 subroutines, but did not write them out. Do so now. */
2353 write_subroutines (struct decision_head
*head
, enum routine_type type
)
2357 for (p
= head
->first
; p
; p
= p
->next
)
2358 if (p
->success
.first
)
2359 write_subroutines (&p
->success
, type
);
2361 if (head
->first
->subroutine_number
> 0)
2362 write_subroutine (head
, type
);
2365 /* Begin the output file. */
2371 /* Generated automatically by the program `genrecog' from the target\n\
2372 machine description file. */\n\
2374 #include \"config.h\"\n\
2375 #include \"system.h\"\n\
2376 #include \"coretypes.h\"\n\
2377 #include \"tm.h\"\n\
2378 #include \"rtl.h\"\n\
2379 #include \"tm_p.h\"\n\
2380 #include \"function.h\"\n\
2381 #include \"insn-config.h\"\n\
2382 #include \"recog.h\"\n\
2383 #include \"real.h\"\n\
2384 #include \"output.h\"\n\
2385 #include \"flags.h\"\n\
2386 #include \"hard-reg-set.h\"\n\
2387 #include \"resource.h\"\n\
2388 #include \"toplev.h\"\n\
2389 #include \"reload.h\"\n\
2393 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2394 X0 is a valid instruction.\n\
2396 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2397 returns a nonnegative number which is the insn code number for the\n\
2398 pattern that matched. This is the same as the order in the machine\n\
2399 description of the entry that matched. This number can be used as an\n\
2400 index into `insn_data' and other tables.\n");
2402 The third argument to recog is an optional pointer to an int. If\n\
2403 present, recog will accept a pattern if it matches except for missing\n\
2404 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2405 the optional pointer will be set to the number of CLOBBERs that need\n\
2406 to be added (it should be initialized to zero by the caller). If it");
2408 is set nonzero, the caller should allocate a PARALLEL of the\n\
2409 appropriate size, copy the initial entries, and call add_clobbers\n\
2410 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2414 The function split_insns returns 0 if the rtl could not\n\
2415 be split or the split rtl as an INSN list if it can be.\n\
2417 The function peephole2_insns returns 0 if the rtl could not\n\
2418 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2419 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2424 /* Construct and return a sequence of decisions
2425 that will recognize INSN.
2427 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2429 static struct decision_head
2430 make_insn_sequence (rtx insn
, enum routine_type type
)
2433 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2434 int truth
= maybe_eval_c_test (c_test
);
2435 struct decision
*last
;
2436 struct decision_test
*test
, **place
;
2437 struct decision_head head
;
2440 /* We should never see an insn whose C test is false at compile time. */
2444 record_insn_name (next_insn_code
, (type
== RECOG
? XSTR (insn
, 0) : NULL
));
2446 c_test_pos
[0] = '\0';
2447 if (type
== PEEPHOLE2
)
2451 /* peephole2 gets special treatment:
2452 - X always gets an outer parallel even if it's only one entry
2453 - we remove all traces of outer-level match_scratch and match_dup
2454 expressions here. */
2455 x
= rtx_alloc (PARALLEL
);
2456 PUT_MODE (x
, VOIDmode
);
2457 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2458 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2460 rtx tmp
= XVECEXP (insn
, 0, i
);
2461 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2463 XVECEXP (x
, 0, j
) = tmp
;
2469 c_test_pos
[0] = 'A' + j
- 1;
2470 c_test_pos
[1] = '\0';
2472 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2473 x
= XVECEXP (insn
, type
== RECOG
, 0);
2476 x
= rtx_alloc (PARALLEL
);
2477 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2478 PUT_MODE (x
, VOIDmode
);
2481 validate_pattern (x
, insn
, NULL_RTX
, 0);
2483 memset(&head
, 0, sizeof(head
));
2484 last
= add_to_sequence (x
, &head
, "", type
, 1);
2486 /* Find the end of the test chain on the last node. */
2487 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2489 place
= &test
->next
;
2491 /* Skip the C test if it's known to be true at compile time. */
2494 /* Need a new node if we have another test to add. */
2495 if (test
->type
== DT_accept_op
)
2497 last
= new_decision (c_test_pos
, &last
->success
);
2498 place
= &last
->tests
;
2500 test
= new_decision_test (DT_c_test
, &place
);
2501 test
->u
.c_test
= c_test
;
2504 test
= new_decision_test (DT_accept_insn
, &place
);
2505 test
->u
.insn
.code_number
= next_insn_code
;
2506 test
->u
.insn
.lineno
= pattern_lineno
;
2507 test
->u
.insn
.num_clobbers_to_add
= 0;
2512 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2513 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2514 If so, set up to recognize the pattern without these CLOBBERs. */
2516 if (GET_CODE (x
) == PARALLEL
)
2520 /* Find the last non-clobber in the parallel. */
2521 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2523 rtx y
= XVECEXP (x
, 0, i
- 1);
2524 if (GET_CODE (y
) != CLOBBER
2525 || (GET_CODE (XEXP (y
, 0)) != REG
2526 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2530 if (i
!= XVECLEN (x
, 0))
2533 struct decision_head clobber_head
;
2535 /* Build a similar insn without the clobbers. */
2537 new = XVECEXP (x
, 0, 0);
2542 new = rtx_alloc (PARALLEL
);
2543 XVEC (new, 0) = rtvec_alloc (i
);
2544 for (j
= i
- 1; j
>= 0; j
--)
2545 XVECEXP (new, 0, j
) = XVECEXP (x
, 0, j
);
2549 memset (&clobber_head
, 0, sizeof(clobber_head
));
2550 last
= add_to_sequence (new, &clobber_head
, "", type
, 1);
2552 /* Find the end of the test chain on the last node. */
2553 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2556 /* We definitely have a new test to add -- create a new
2558 place
= &test
->next
;
2559 if (test
->type
== DT_accept_op
)
2561 last
= new_decision ("", &last
->success
);
2562 place
= &last
->tests
;
2565 /* Skip the C test if it's known to be true at compile
2569 test
= new_decision_test (DT_c_test
, &place
);
2570 test
->u
.c_test
= c_test
;
2573 test
= new_decision_test (DT_accept_insn
, &place
);
2574 test
->u
.insn
.code_number
= next_insn_code
;
2575 test
->u
.insn
.lineno
= pattern_lineno
;
2576 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2578 merge_trees (&head
, &clobber_head
);
2584 /* Define the subroutine we will call below and emit in genemit. */
2585 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code
);
2589 /* Define the subroutine we will call below and emit in genemit. */
2590 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2599 process_tree (struct decision_head
*head
, enum routine_type subroutine_type
)
2601 if (head
->first
== NULL
)
2603 /* We can elide peephole2_insns, but not recog or split_insns. */
2604 if (subroutine_type
== PEEPHOLE2
)
2609 factor_tests (head
);
2611 next_subroutine_number
= 0;
2612 break_out_subroutines (head
, 1);
2613 find_afterward (head
, NULL
);
2615 /* We run this after find_afterward, because find_afterward needs
2616 the redundant DT_mode tests on predicates to determine whether
2617 two tests can both be true or not. */
2618 simplify_tests(head
);
2620 write_subroutines (head
, subroutine_type
);
2623 write_subroutine (head
, subroutine_type
);
2626 extern int main (int, char **);
2629 main (int argc
, char **argv
)
2632 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2634 progname
= "genrecog";
2636 memset (&recog_tree
, 0, sizeof recog_tree
);
2637 memset (&split_tree
, 0, sizeof split_tree
);
2638 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2641 fatal ("no input file name");
2643 if (init_md_reader_args (argc
, argv
) != SUCCESS_EXIT_CODE
)
2644 return (FATAL_EXIT_CODE
);
2651 /* Read the machine description. */
2655 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2659 if (GET_CODE (desc
) == DEFINE_INSN
)
2661 h
= make_insn_sequence (desc
, RECOG
);
2662 merge_trees (&recog_tree
, &h
);
2664 else if (GET_CODE (desc
) == DEFINE_SPLIT
)
2666 h
= make_insn_sequence (desc
, SPLIT
);
2667 merge_trees (&split_tree
, &h
);
2669 else if (GET_CODE (desc
) == DEFINE_PEEPHOLE2
)
2671 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2672 merge_trees (&peephole2_tree
, &h
);
2679 return FATAL_EXIT_CODE
;
2683 process_tree (&recog_tree
, RECOG
);
2684 process_tree (&split_tree
, SPLIT
);
2685 process_tree (&peephole2_tree
, PEEPHOLE2
);
2688 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2691 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2693 get_insn_name (int code
)
2695 if (code
< insn_name_ptr_size
)
2696 return insn_name_ptr
[code
];
2702 record_insn_name (int code
, const char *name
)
2704 static const char *last_real_name
= "insn";
2705 static int last_real_code
= 0;
2708 if (insn_name_ptr_size
<= code
)
2711 new_size
= (insn_name_ptr_size
? insn_name_ptr_size
* 2 : 512);
2712 insn_name_ptr
= xrealloc (insn_name_ptr
, sizeof(char *) * new_size
);
2713 memset (insn_name_ptr
+ insn_name_ptr_size
, 0,
2714 sizeof(char *) * (new_size
- insn_name_ptr_size
));
2715 insn_name_ptr_size
= new_size
;
2718 if (!name
|| name
[0] == '\0')
2720 new = xmalloc (strlen (last_real_name
) + 10);
2721 sprintf (new, "%s+%d", last_real_name
, code
- last_real_code
);
2725 last_real_name
= new = xstrdup (name
);
2726 last_real_code
= code
;
2729 insn_name_ptr
[code
] = new;
2733 debug_decision_2 (struct decision_test
*test
)
2738 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2741 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2744 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2746 case DT_elt_zero_int
:
2747 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2749 case DT_elt_one_int
:
2750 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2752 case DT_elt_zero_wide
:
2753 fprintf (stderr
, "elt0_w=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2755 case DT_elt_zero_wide_safe
:
2756 fprintf (stderr
, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2759 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2762 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2765 fprintf (stderr
, "pred=(%s,%s)",
2766 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2771 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2772 memcpy (sub
+16, "...", 4);
2773 fprintf (stderr
, "c_test=\"%s\"", sub
);
2777 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2779 case DT_accept_insn
:
2780 fprintf (stderr
, "A_insn=(%d,%d)",
2781 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2790 debug_decision_1 (struct decision
*d
, int indent
)
2793 struct decision_test
*test
;
2797 for (i
= 0; i
< indent
; ++i
)
2799 fputs ("(nil)\n", stderr
);
2803 for (i
= 0; i
< indent
; ++i
)
2810 debug_decision_2 (test
);
2811 while ((test
= test
->next
) != NULL
)
2813 fputs (" + ", stderr
);
2814 debug_decision_2 (test
);
2817 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2818 (d
->next
? d
->next
->number
: -1),
2819 (d
->afterward
? d
->afterward
->number
: -1));
2823 debug_decision_0 (struct decision
*d
, int indent
, int maxdepth
)
2832 for (i
= 0; i
< indent
; ++i
)
2834 fputs ("(nil)\n", stderr
);
2838 debug_decision_1 (d
, indent
);
2839 for (n
= d
->success
.first
; n
; n
= n
->next
)
2840 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2844 debug_decision (struct decision
*d
)
2846 debug_decision_0 (d
, 0, 1000000);
2850 debug_decision_list (struct decision
*d
)
2854 debug_decision_0 (d
, 0, 0);