* dwarf2out.c (file_table_last_lookup): Move this GC'd declaration
[official-gcc.git] / gcc / vec.h
blob1f13452837467c26c06b3f6a2839fee20d7cb0c0
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* The macros here implement a set of templated vector types and
26 associated interfaces. These templates are implemented with
27 macros, as we're not in C++ land. The interface functions are
28 typesafe and use static inline functions, sometimes backed by
29 out-of-line generic functions. The vectors are designed to
30 interoperate with the GTY machinery.
32 Because of the different behavior of structure objects, scalar
33 objects and of pointers, there are three flavors, one for each of
34 these variants. Both the structure object and pointer variants
35 pass pointers to objects around -- in the former case the pointers
36 are stored into the vector and in the latter case the pointers are
37 dereferenced and the objects copied into the vector. The scalar
38 object variant is suitable for int-like objects, and the vector
39 elements are returned by value.
41 There are both 'index' and 'iterate' accessors. The iterator
42 returns a boolean iteration condition and updates the iteration
43 variable passed by reference. Because the iterator will be
44 inlined, the address-of can be optimized away.
46 The vectors are implemented using the trailing array idiom, thus
47 they are not resizeable without changing the address of the vector
48 object itself. This means you cannot have variables or fields of
49 vector type -- always use a pointer to a vector. The one exception
50 is the final field of a structure, which could be a vector type.
51 You will have to use the embedded_size & embedded_init calls to
52 create such objects, and they will probably not be resizeable (so
53 don't use the 'safe' allocation variants). The trailing array
54 idiom is used (rather than a pointer to an array of data), because,
55 if we allow NULL to also represent an empty vector, empty vectors
56 occupy minimal space in the structure containing them.
58 Each operation that increases the number of active elements is
59 available in 'quick' and 'safe' variants. The former presumes that
60 there is sufficient allocated space for the operation to succeed
61 (it dies if there is not). The latter will reallocate the
62 vector, if needed. Reallocation causes an exponential increase in
63 vector size. If you know you will be adding N elements, it would
64 be more efficient to use the reserve operation before adding the
65 elements with the 'quick' operation. This will ensure there are at
66 least as many elements as you ask for, it will exponentially
67 increase if there are too few spare slots. If you want reserve a
68 specific number of slots, but do not want the exponential increase
69 (for instance, you know this is the last allocation), use a
70 negative number for reservation. You can also create a vector of a
71 specific size from the get go.
73 You should prefer the push and pop operations, as they append and
74 remove from the end of the vector. If you need to remove several
75 items in one go, use the truncate operation. The insert and remove
76 operations allow you to change elements in the middle of the
77 vector. There are two remove operations, one which preserves the
78 element ordering 'ordered_remove', and one which does not
79 'unordered_remove'. The latter function copies the end element
80 into the removed slot, rather than invoke a memmove operation. The
81 'lower_bound' function will determine where to place an item in the
82 array using insert that will maintain sorted order.
84 When a vector type is defined, first a non-memory managed version
85 is created. You can then define either or both garbage collected
86 and heap allocated versions. The allocation mechanism is specified
87 when the type is defined, and is therefore part of the type. If
88 you need both gc'd and heap allocated versions, you still must have
89 *exactly* one definition of the common non-memory managed base vector.
91 If you need to directly manipulate a vector, then the 'address'
92 accessor will return the address of the start of the vector. Also
93 the 'space' predicate will tell you whether there is spare capacity
94 in the vector. You will not normally need to use these two functions.
96 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
97 get the non-memory allocation version, and then a
98 DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
99 vectors. Variables of vector type are declared using a
100 VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
101 allocation strategy, and can be either 'gc' or 'heap' for garbage
102 collected and heap allocated respectively. It can be 'none' to get
103 a vector that must be explicitly allocated (for instance as a
104 trailing array of another structure). The characters O, P and I
105 indicate whether TYPEDEF is a pointer (P), object (O) or integral
106 (I) type. Be careful to pick the correct one, as you'll get an
107 awkward and inefficient API if you use the wrong one. There is a
108 check, which results in a compile-time warning, for the P and I
109 versions, but there is no check for the O versions, as that is not
110 possible in plain C. Due to the way GTY works, you must annotate
111 any structures you wish to insert or reference from a vector with a
112 GTY(()) tag. You need to do this even if you never declare the GC
113 allocated variants.
115 An example of their use would be,
117 DEF_VEC_P(tree); // non-managed tree vector.
118 DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
119 // appear at file scope.
121 struct my_struct {
122 VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
125 struct my_struct *s;
127 if (VEC_length(tree,s->v)) { we have some contents }
128 VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
129 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
130 { do something with elt }
134 /* Macros to invoke API calls. A single macro works for both pointer
135 and object vectors, but the argument and return types might well be
136 different. In each macro, T is the typedef of the vector elements,
137 and A is the allocation strategy. The allocation strategy is only
138 present when it is required. Some of these macros pass the vector,
139 V, by reference (by taking its address), this is noted in the
140 descriptions. */
142 /* Length of vector
143 unsigned VEC_T_length(const VEC(T) *v);
145 Return the number of active elements in V. V can be NULL, in which
146 case zero is returned. */
148 #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
151 /* Check if vector is empty
152 int VEC_T_empty(const VEC(T) *v);
154 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
156 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
159 /* Get the final element of the vector.
160 T VEC_T_last(VEC(T) *v); // Integer
161 T VEC_T_last(VEC(T) *v); // Pointer
162 T *VEC_T_last(VEC(T) *v); // Object
164 Return the final element. V must not be empty. */
166 #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
168 /* Index into vector
169 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
170 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
171 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
173 Return the IX'th element. If IX must be in the domain of V. */
175 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
177 /* Iterate over vector
178 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
179 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
180 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
182 Return iteration condition and update PTR to point to the IX'th
183 element. At the end of iteration, sets PTR to NULL. Use this to
184 iterate over the elements of a vector as follows,
186 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
187 continue; */
189 #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
191 /* Allocate new vector.
192 VEC(T,A) *VEC_T_A_alloc(int reserve);
194 Allocate a new vector with space for RESERVE objects. If RESERVE
195 is zero, NO vector is created. */
197 #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
199 /* Free a vector.
200 void VEC_T_A_free(VEC(T,A) *&);
202 Free a vector and set it to NULL. */
204 #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
206 /* Use these to determine the required size and initialization of a
207 vector embedded within another structure (as the final member).
209 size_t VEC_T_embedded_size(int reserve);
210 void VEC_T_embedded_init(VEC(T) *v, int reserve);
212 These allow the caller to perform the memory allocation. */
214 #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
215 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
217 /* Copy a vector.
218 VEC(T,A) *VEC_T_A_copy(VEC(T) *);
220 Copy the live elements of a vector into a new vector. The new and
221 old vectors need not be allocated by the same mechanism. */
223 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
225 /* Determine if a vector has additional capacity.
227 int VEC_T_space (VEC(T) *v,int reserve)
229 If V has space for RESERVE additional entries, return nonzero. You
230 usually only need to use this if you are doing your own vector
231 reallocation, for instance on an embedded vector. This returns
232 nonzero in exactly the same circumstances that VEC_T_reserve
233 will. */
235 #define VEC_space(T,V,R) \
236 (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
238 /* Reserve space.
239 int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
241 Ensure that V has at least abs(RESERVE) slots available. The
242 signedness of RESERVE determines the reallocation behavior. A
243 negative value will not create additional headroom beyond that
244 requested. A positive value will create additional headroom. Note
245 this can cause V to be reallocated. Returns nonzero iff
246 reallocation actually occurred. */
248 #define VEC_reserve(T,A,V,R) \
249 (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
251 /* Push object with no reallocation
252 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
253 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
254 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
256 Push a new element onto the end, returns a pointer to the slot
257 filled in. For object vectors, the new value can be NULL, in which
258 case NO initialization is performed. There must
259 be sufficient space in the vector. */
261 #define VEC_quick_push(T,V,O) \
262 (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
264 /* Push object with reallocation
265 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
266 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
267 T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
269 Push a new element onto the end, returns a pointer to the slot
270 filled in. For object vectors, the new value can be NULL, in which
271 case NO initialization is performed. Reallocates V, if needed. */
273 #define VEC_safe_push(T,A,V,O) \
274 (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
276 /* Pop element off end
277 T VEC_T_pop (VEC(T) *v); // Integer
278 T VEC_T_pop (VEC(T) *v); // Pointer
279 void VEC_T_pop (VEC(T) *v); // Object
281 Pop the last element off the end. Returns the element popped, for
282 pointer vectors. */
284 #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
286 /* Truncate to specific length
287 void VEC_T_truncate (VEC(T) *v, unsigned len);
289 Set the length as specified. The new length must be less than or
290 equal to the current length. This is an O(1) operation. */
292 #define VEC_truncate(T,V,I) \
293 (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
295 /* Grow to a specific length.
296 void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
298 Grow the vector to a specific length. The LEN must be as
299 long or longer than the current length. The new elements are
300 uninitialized. */
302 #define VEC_safe_grow(T,A,V,I) \
303 (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
305 /* Replace element
306 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
307 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
308 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
310 Replace the IXth element of V with a new value, VAL. For pointer
311 vectors returns the original value. For object vectors returns a
312 pointer to the new value. For object vectors the new value can be
313 NULL, in which case no overwriting of the slot is actually
314 performed. */
316 #define VEC_replace(T,V,I,O) \
317 (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
319 /* Insert object with no reallocation
320 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
321 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
322 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
324 Insert an element, VAL, at the IXth position of V. Return a pointer
325 to the slot created. For vectors of object, the new value can be
326 NULL, in which case no initialization of the inserted slot takes
327 place. There must be sufficient space. */
329 #define VEC_quick_insert(T,V,I,O) \
330 (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
332 /* Insert object with reallocation
333 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
334 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
335 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
337 Insert an element, VAL, at the IXth position of V. Return a pointer
338 to the slot created. For vectors of object, the new value can be
339 NULL, in which case no initialization of the inserted slot takes
340 place. Reallocate V, if necessary. */
342 #define VEC_safe_insert(T,A,V,I,O) \
343 (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
345 /* Remove element retaining order
346 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
347 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
348 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
350 Remove an element from the IXth position of V. Ordering of
351 remaining elements is preserved. For pointer vectors returns the
352 removed object. This is an O(N) operation due to a memmove. */
354 #define VEC_ordered_remove(T,V,I) \
355 (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
357 /* Remove element destroying order
358 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
359 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
360 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
362 Remove an element from the IXth position of V. Ordering of
363 remaining elements is destroyed. For pointer vectors returns the
364 removed object. This is an O(1) operation. */
366 #define VEC_unordered_remove(T,V,I) \
367 (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
369 /* Remove a block of elements
370 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
372 Remove LEN elements starting at the IXth. Ordering is retained.
373 This is an O(1) operation. */
375 #define VEC_block_remove(T,V,I,L) \
376 (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
378 /* Get the address of the array of elements
379 T *VEC_T_address (VEC(T) v)
381 If you need to directly manipulate the array (for instance, you
382 want to feed it to qsort), use this accessor. */
384 #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
386 /* Find the first index in the vector not less than the object.
387 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
388 bool (*lessthan) (const T, const T)); // Integer
389 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
390 bool (*lessthan) (const T, const T)); // Pointer
391 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
392 bool (*lessthan) (const T*, const T*)); // Object
394 Find the first position in which VAL could be inserted without
395 changing the ordering of V. LESSTHAN is a function that returns
396 true if the first argument is strictly less than the second. */
398 #define VEC_lower_bound(T,V,O,LT) \
399 (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
401 #if !IN_GENGTYPE
402 /* Reallocate an array of elements with prefix. */
403 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
404 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
405 extern void ggc_free (void *);
406 #define vec_gc_free(V) ggc_free (V)
407 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
408 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
409 #define vec_heap_free(V) free (V)
411 #if ENABLE_CHECKING
412 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
413 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
414 #define VEC_CHECK_PASS ,file_,line_,function_
416 #define VEC_ASSERT(EXPR,OP,T,A) \
417 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
419 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
420 ATTRIBUTE_NORETURN;
421 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
422 #else
423 #define VEC_CHECK_INFO
424 #define VEC_CHECK_DECL
425 #define VEC_CHECK_PASS
426 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
427 #endif
429 #define VEC(T,A) VEC_##T##_##A
430 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
431 #else /* IN_GENGTYPE */
432 #define VEC(T,A) VEC_ T _ A
433 #define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
434 #define VEC_STRINGIFY_(X) #X
435 #undef GTY
436 #endif /* IN_GENGTYPE */
438 /* Base of vector type, not user visible. */
439 #define VEC_T(T,B) \
440 typedef struct VEC(T,B) \
442 unsigned num; \
443 unsigned alloc; \
444 T vec[1]; \
445 } VEC(T,B)
447 #define VEC_T_GTY(T,B) \
448 typedef struct VEC(T,B) GTY(()) \
450 unsigned num; \
451 unsigned alloc; \
452 T GTY ((length ("%h.num"))) vec[1]; \
453 } VEC(T,B)
455 /* Derived vector type, user visible. */
456 #define VEC_TA_GTY(T,B,A,GTY) \
457 typedef struct VEC(T,A) GTY \
459 VEC(T,B) base; \
460 } VEC(T,A)
462 /* Convert to base type. */
463 #define VEC_BASE(P) ((P) ? &(P)->base : 0)
465 /* Vector of integer-like object. */
466 #if IN_GENGTYPE
467 {"DEF_VEC_I", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
468 {"DEF_VEC_ALLOC_I", VEC_STRINGIFY (VEC_TA (#0,#1,#2,#3)) ";", NULL},
469 #else
470 #define DEF_VEC_I(T) \
471 static inline void VEC_OP (T,must_be,integral_type) (void) \
473 (void)~(T)0; \
476 VEC_T(T,base); \
477 VEC_TA_GTY(T,base,none,); \
478 DEF_VEC_FUNC_P(T) \
479 struct vec_swallow_trailing_semi
480 #define DEF_VEC_ALLOC_I(T,A) \
481 VEC_TA_GTY(T,base,A,); \
482 DEF_VEC_ALLOC_FUNC_I(T,A) \
483 struct vec_swallow_trailing_semi
484 #endif
486 /* Vector of pointer to object. */
487 #if IN_GENGTYPE
488 {"DEF_VEC_P", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
489 {"DEF_VEC_ALLOC_P", VEC_STRINGIFY (VEC_TA_GTY (#0,#1,#2,#3)) ";", NULL},
490 #else
491 #define DEF_VEC_P(T) \
492 static inline void VEC_OP (T,must_be,pointer_type) (void) \
494 (void)((T)1 == (void *)1); \
497 VEC_T_GTY(T,base); \
498 VEC_TA_GTY(T,base,none,); \
499 DEF_VEC_FUNC_P(T) \
500 struct vec_swallow_trailing_semi
501 #define DEF_VEC_ALLOC_P(T,A) \
502 VEC_TA_GTY(T,base,A,); \
503 DEF_VEC_ALLOC_FUNC_P(T,A) \
504 struct vec_swallow_trailing_semi
505 #endif
507 #define DEF_VEC_FUNC_P(T) \
508 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
510 return vec_ ? vec_->num : 0; \
513 static inline T VEC_OP (T,base,last) \
514 (const VEC(T,base) *vec_ VEC_CHECK_DECL) \
516 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
518 return vec_->vec[vec_->num - 1]; \
521 static inline T VEC_OP (T,base,index) \
522 (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
524 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
526 return vec_->vec[ix_]; \
529 static inline int VEC_OP (T,base,iterate) \
530 (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
532 if (vec_ && ix_ < vec_->num) \
534 *ptr = vec_->vec[ix_]; \
535 return 1; \
537 else \
539 *ptr = 0; \
540 return 0; \
544 static inline size_t VEC_OP (T,base,embedded_size) \
545 (int alloc_) \
547 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
550 static inline void VEC_OP (T,base,embedded_init) \
551 (VEC(T,base) *vec_, int alloc_) \
553 vec_->num = 0; \
554 vec_->alloc = alloc_; \
557 static inline int VEC_OP (T,base,space) \
558 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
560 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
561 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
564 static inline T *VEC_OP (T,base,quick_push) \
565 (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
567 T *slot_; \
569 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
570 slot_ = &vec_->vec[vec_->num++]; \
571 *slot_ = obj_; \
573 return slot_; \
576 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
578 T obj_; \
580 VEC_ASSERT (vec_->num, "pop", T, base); \
581 obj_ = vec_->vec[--vec_->num]; \
583 return obj_; \
586 static inline void VEC_OP (T,base,truncate) \
587 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
589 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
590 if (vec_) \
591 vec_->num = size_; \
594 static inline T VEC_OP (T,base,replace) \
595 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
597 T old_obj_; \
599 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
600 old_obj_ = vec_->vec[ix_]; \
601 vec_->vec[ix_] = obj_; \
603 return old_obj_; \
606 static inline T *VEC_OP (T,base,quick_insert) \
607 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
609 T *slot_; \
611 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
612 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
613 slot_ = &vec_->vec[ix_]; \
614 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
615 *slot_ = obj_; \
617 return slot_; \
620 static inline T VEC_OP (T,base,ordered_remove) \
621 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
623 T *slot_; \
624 T obj_; \
626 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
627 slot_ = &vec_->vec[ix_]; \
628 obj_ = *slot_; \
629 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
631 return obj_; \
634 static inline T VEC_OP (T,base,unordered_remove) \
635 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
637 T *slot_; \
638 T obj_; \
640 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
641 slot_ = &vec_->vec[ix_]; \
642 obj_ = *slot_; \
643 *slot_ = vec_->vec[--vec_->num]; \
645 return obj_; \
648 static inline void VEC_OP (T,base,block_remove) \
649 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
651 T *slot_; \
653 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
654 slot_ = &vec_->vec[ix_]; \
655 vec_->num -= len_; \
656 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
659 static inline T *VEC_OP (T,base,address) \
660 (VEC(T,base) *vec_) \
662 return vec_ ? vec_->vec : 0; \
665 static inline unsigned VEC_OP (T,base,lower_bound) \
666 (VEC(T,base) *vec_, const T obj_, \
667 bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
669 unsigned int len_ = VEC_OP (T,base, length) (vec_); \
670 unsigned int half_, middle_; \
671 unsigned int first_ = 0; \
672 while (len_ > 0) \
674 T middle_elem_; \
675 half_ = len_ >> 1; \
676 middle_ = first_; \
677 middle_ += half_; \
678 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
679 if (lessthan_ (middle_elem_, obj_)) \
681 first_ = middle_; \
682 ++first_; \
683 len_ = len_ - half_ - 1; \
685 else \
686 len_ = half_; \
688 return first_; \
691 #define DEF_VEC_ALLOC_FUNC_P(T,A) \
692 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
693 (int alloc_ MEM_STAT_DECL) \
695 /* We must request exact size allocation, hence the negation. */ \
696 return (VEC(T,A) *) vec_##A##_p_reserve (NULL, -alloc_ PASS_MEM_STAT); \
699 static inline void VEC_OP (T,A,free) \
700 (VEC(T,A) **vec_) \
702 if (*vec_) \
703 vec_##A##_free (*vec_); \
704 *vec_ = NULL; \
707 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
709 size_t len_ = vec_ ? vec_->num : 0; \
710 VEC (T,A) *new_vec_ = NULL; \
712 if (len_) \
714 /* We must request exact size allocation, hence the negation. */ \
715 new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve \
716 (NULL, -len_ PASS_MEM_STAT)); \
718 new_vec_->base.num = len_; \
719 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
721 return new_vec_; \
724 static inline int VEC_OP (T,A,reserve) \
725 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
727 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
728 alloc_ < 0 ? -alloc_ : alloc_ \
729 VEC_CHECK_PASS); \
731 if (extend) \
732 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
734 return extend; \
737 static inline void VEC_OP (T,A,safe_grow) \
738 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
740 VEC_ASSERT (size_ >= 0 \
741 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
742 "grow", T, A); \
743 VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
744 VEC_CHECK_PASS PASS_MEM_STAT); \
745 VEC_BASE (*vec_)->num = size_; \
748 static inline T *VEC_OP (T,A,safe_push) \
749 (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
751 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
753 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
756 static inline T *VEC_OP (T,A,safe_insert) \
757 (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
759 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
761 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
762 VEC_CHECK_PASS); \
765 /* Vector of object. */
766 #if IN_GENGTYPE
767 {"DEF_VEC_O", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
768 {"DEF_VEC_ALLOC_O", VEC_STRINGIFY (VEC_TA_GTY(#0,#1,#2,#3)) ";", NULL},
769 #else
770 #define DEF_VEC_O(T) \
771 VEC_T_GTY(T,base); \
772 VEC_TA_GTY(T,base,none,); \
773 DEF_VEC_FUNC_O(T) \
774 struct vec_swallow_trailing_semi
775 #define DEF_VEC_ALLOC_O(T,A) \
776 VEC_TA_GTY(T,base,A,); \
777 DEF_VEC_ALLOC_FUNC_O(T,A) \
778 struct vec_swallow_trailing_semi
779 #endif
781 #define DEF_VEC_FUNC_O(T) \
782 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
784 return vec_ ? vec_->num : 0; \
787 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
789 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
791 return &vec_->vec[vec_->num - 1]; \
794 static inline T *VEC_OP (T,base,index) \
795 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
797 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
799 return &vec_->vec[ix_]; \
802 static inline int VEC_OP (T,base,iterate) \
803 (VEC(T,base) *vec_, unsigned ix_, T **ptr) \
805 if (vec_ && ix_ < vec_->num) \
807 *ptr = &vec_->vec[ix_]; \
808 return 1; \
810 else \
812 *ptr = 0; \
813 return 0; \
817 static inline size_t VEC_OP (T,base,embedded_size) \
818 (int alloc_) \
820 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
823 static inline void VEC_OP (T,base,embedded_init) \
824 (VEC(T,base) *vec_, int alloc_) \
826 vec_->num = 0; \
827 vec_->alloc = alloc_; \
830 static inline int VEC_OP (T,base,space) \
831 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
833 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
834 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
837 static inline T *VEC_OP (T,base,quick_push) \
838 (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
840 T *slot_; \
842 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
843 slot_ = &vec_->vec[vec_->num++]; \
844 if (obj_) \
845 *slot_ = *obj_; \
847 return slot_; \
850 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
852 VEC_ASSERT (vec_->num, "pop", T, base); \
853 --vec_->num; \
856 static inline void VEC_OP (T,base,truncate) \
857 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
859 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
860 if (vec_) \
861 vec_->num = size_; \
864 static inline T *VEC_OP (T,base,replace) \
865 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
867 T *slot_; \
869 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
870 slot_ = &vec_->vec[ix_]; \
871 if (obj_) \
872 *slot_ = *obj_; \
874 return slot_; \
877 static inline T *VEC_OP (T,base,quick_insert) \
878 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
880 T *slot_; \
882 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
883 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
884 slot_ = &vec_->vec[ix_]; \
885 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
886 if (obj_) \
887 *slot_ = *obj_; \
889 return slot_; \
892 static inline void VEC_OP (T,base,ordered_remove) \
893 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
895 T *slot_; \
897 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
898 slot_ = &vec_->vec[ix_]; \
899 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
902 static inline void VEC_OP (T,base,unordered_remove) \
903 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
905 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
906 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
909 static inline void VEC_OP (T,base,block_remove) \
910 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
912 T *slot_; \
914 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
915 slot_ = &vec_->vec[ix_]; \
916 vec_->num -= len_; \
917 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
920 static inline T *VEC_OP (T,base,address) \
921 (VEC(T,base) *vec_) \
923 return vec_ ? vec_->vec : 0; \
926 static inline unsigned VEC_OP (T,base,lower_bound) \
927 (VEC(T,base) *vec_, const T *obj_, \
928 bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
930 unsigned int len_ = VEC_OP (T, base, length) (vec_); \
931 unsigned int half_, middle_; \
932 unsigned int first_ = 0; \
933 while (len_ > 0) \
935 T *middle_elem_; \
936 half_ = len_ >> 1; \
937 middle_ = first_; \
938 middle_ += half_; \
939 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
940 if (lessthan_ (middle_elem_, obj_)) \
942 first_ = middle_; \
943 ++first_; \
944 len_ = len_ - half_ - 1; \
946 else \
947 len_ = half_; \
949 return first_; \
952 #define DEF_VEC_ALLOC_FUNC_O(T,A) \
953 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
954 (int alloc_ MEM_STAT_DECL) \
956 /* We must request exact size allocation, hence the negation. */ \
957 return (VEC(T,A) *) vec_##A##_o_reserve (NULL, -alloc_, \
958 offsetof (VEC(T,A),base.vec), \
959 sizeof (T) \
960 PASS_MEM_STAT); \
963 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
965 size_t len_ = vec_ ? vec_->num : 0; \
966 VEC (T,A) *new_vec_ = NULL; \
968 if (len_) \
970 /* We must request exact size allocation, hence the negation. */ \
971 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve \
972 (NULL, -len_, \
973 offsetof (VEC(T,A),base.vec), sizeof (T) \
974 PASS_MEM_STAT)); \
976 new_vec_->base.num = len_; \
977 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
979 return new_vec_; \
982 static inline void VEC_OP (T,A,free) \
983 (VEC(T,A) **vec_) \
985 if (*vec_) \
986 vec_##A##_free (*vec_); \
987 *vec_ = NULL; \
990 static inline int VEC_OP (T,A,reserve) \
991 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
993 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
994 alloc_ < 0 ? -alloc_ : alloc_ \
995 VEC_CHECK_PASS); \
997 if (extend) \
998 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
999 offsetof (VEC(T,A),base.vec),\
1000 sizeof (T) \
1001 PASS_MEM_STAT); \
1003 return extend; \
1006 static inline void VEC_OP (T,A,safe_grow) \
1007 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1009 VEC_ASSERT (size_ >= 0 \
1010 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1011 "grow", T, A); \
1012 VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
1013 VEC_CHECK_PASS PASS_MEM_STAT); \
1014 VEC_BASE (*vec_)->num = size_; \
1017 static inline T *VEC_OP (T,A,safe_push) \
1018 (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1020 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1022 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1025 static inline T *VEC_OP (T,A,safe_insert) \
1026 (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
1027 VEC_CHECK_DECL MEM_STAT_DECL) \
1029 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1031 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1032 VEC_CHECK_PASS); \
1035 #define DEF_VEC_ALLOC_FUNC_I(T,A) \
1036 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
1037 (int alloc_ MEM_STAT_DECL) \
1039 /* We must request exact size allocation, hence the negation. */ \
1040 return (VEC(T,A) *) vec_##A##_o_reserve (NULL, -alloc_, \
1041 offsetof (VEC(T,A),base.vec), \
1042 sizeof (T) \
1043 PASS_MEM_STAT); \
1046 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1048 size_t len_ = vec_ ? vec_->num : 0; \
1049 VEC (T,A) *new_vec_ = NULL; \
1051 if (len_) \
1053 /* We must request exact size allocation, hence the negation. */ \
1054 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve \
1055 (NULL, -len_, \
1056 offsetof (VEC(T,A),base.vec), sizeof (T) \
1057 PASS_MEM_STAT)); \
1059 new_vec_->base.num = len_; \
1060 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1062 return new_vec_; \
1065 static inline void VEC_OP (T,A,free) \
1066 (VEC(T,A) **vec_) \
1068 if (*vec_) \
1069 vec_##A##_free (*vec_); \
1070 *vec_ = NULL; \
1073 static inline int VEC_OP (T,A,reserve) \
1074 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1076 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
1077 alloc_ < 0 ? -alloc_ : alloc_ \
1078 VEC_CHECK_PASS); \
1080 if (extend) \
1081 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1082 offsetof (VEC(T,A),base.vec),\
1083 sizeof (T) \
1084 PASS_MEM_STAT); \
1086 return extend; \
1089 static inline void VEC_OP (T,A,safe_grow) \
1090 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1092 VEC_ASSERT (size_ >= 0 \
1093 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1094 "grow", T, A); \
1095 VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
1096 VEC_CHECK_PASS PASS_MEM_STAT); \
1097 VEC_BASE (*vec_)->num = size_; \
1100 static inline T *VEC_OP (T,A,safe_push) \
1101 (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1103 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1105 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1108 static inline T *VEC_OP (T,A,safe_insert) \
1109 (VEC(T,A) **vec_, unsigned ix_, const T obj_ \
1110 VEC_CHECK_DECL MEM_STAT_DECL) \
1112 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1114 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1115 VEC_CHECK_PASS); \
1118 #endif /* GCC_VEC_H */