* dwarf2out.c (file_table_last_lookup): Move this GC'd declaration
[official-gcc.git] / gcc / cp / init.c
blobad40736c60be30fb320902e841436f15291a3ae6
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_dtor_call (tree, special_function_kind, int);
56 static tree build_field_list (tree, tree, int *);
57 static tree build_vtbl_address (tree);
59 /* We are about to generate some complex initialization code.
60 Conceptually, it is all a single expression. However, we may want
61 to include conditionals, loops, and other such statement-level
62 constructs. Therefore, we build the initialization code inside a
63 statement-expression. This function starts such an expression.
64 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
65 pass them back to finish_init_stmts when the expression is
66 complete. */
68 static bool
69 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 bool is_global = !building_stmt_tree ();
73 *stmt_expr_p = begin_stmt_expr ();
74 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
76 return is_global;
79 /* Finish out the statement-expression begun by the previous call to
80 begin_init_stmts. Returns the statement-expression itself. */
82 static tree
83 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 finish_compound_stmt (compound_stmt);
87 stmt_expr = finish_stmt_expr (stmt_expr, true);
89 gcc_assert (!building_stmt_tree () == is_global);
91 return stmt_expr;
94 /* Constructors */
96 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
97 which we want to initialize the vtable pointer for, DATA is
98 TREE_LIST whose TREE_VALUE is the this ptr expression. */
100 static tree
101 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
104 return dfs_skip_bases;
106 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
108 tree base_ptr = TREE_VALUE ((tree) data);
110 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
112 expand_virtual_init (binfo, base_ptr);
115 return NULL_TREE;
118 /* Initialize all the vtable pointers in the object pointed to by
119 ADDR. */
121 void
122 initialize_vtbl_ptrs (tree addr)
124 tree list;
125 tree type;
127 type = TREE_TYPE (TREE_TYPE (addr));
128 list = build_tree_list (type, addr);
130 /* Walk through the hierarchy, initializing the vptr in each base
131 class. We do these in pre-order because we can't find the virtual
132 bases for a class until we've initialized the vtbl for that
133 class. */
134 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
137 /* Return an expression for the zero-initialization of an object with
138 type T. This expression will either be a constant (in the case
139 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
140 aggregate). In either case, the value can be used as DECL_INITIAL
141 for a decl of the indicated TYPE; it is a valid static initializer.
142 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
143 number of elements in the array. If STATIC_STORAGE_P is TRUE,
144 initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 tree init = NULL_TREE;
153 /* [dcl.init]
155 To zero-initialization storage for an object of type T means:
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
169 -- if T is a reference type, no initialization is performed. */
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173 if (type == error_mark_node)
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
181 else if (SCALAR_TYPE_P (type)
182 || TREE_CODE (type) == COMPLEX_TYPE)
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
215 else if (TREE_CODE (type) == ARRAY_TYPE)
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
226 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
228 /* A zero-sized array, which is accepted as an extension, will
229 have an upper bound of -1. */
230 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
232 constructor_elt *ce;
234 v = VEC_alloc (constructor_elt, gc, 1);
235 ce = VEC_quick_push (constructor_elt, v, NULL);
237 /* If this is a one element array, we just use a regular init. */
238 if (tree_int_cst_equal (size_zero_node, max_index))
239 ce->index = size_zero_node;
240 else
241 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
242 max_index);
244 ce->value = build_zero_init (TREE_TYPE (type),
245 /*nelts=*/NULL_TREE,
246 static_storage_p);
249 /* Build a constructor to contain the initializations. */
250 init = build_constructor (type, v);
252 else if (TREE_CODE (type) == VECTOR_TYPE)
253 init = fold_convert (type, integer_zero_node);
254 else
255 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
257 /* In all cases, the initializer is a constant. */
258 if (init)
260 TREE_CONSTANT (init) = 1;
261 TREE_INVARIANT (init) = 1;
264 return init;
267 /* Build an expression for the default-initialization of an object of
268 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
269 ARRAY_TYPE, NELTS is the number of elements in the array. If
270 initialization of TYPE requires calling constructors, this function
271 returns NULL_TREE; the caller is responsible for arranging for the
272 constructors to be called. */
274 static tree
275 build_default_init (tree type, tree nelts)
277 /* [dcl.init]:
279 To default-initialize an object of type T means:
281 --if T is a non-POD class type (clause _class_), the default construc-
282 tor for T is called (and the initialization is ill-formed if T has
283 no accessible default constructor);
285 --if T is an array type, each element is default-initialized;
287 --otherwise, the storage for the object is zero-initialized.
289 A program that calls for default-initialization of an entity of refer-
290 ence type is ill-formed. */
292 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
293 performing the initialization. This is confusing in that some
294 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
295 a class with a pointer-to-data member as a non-static data member
296 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
297 passing non-PODs to build_zero_init below, which is contrary to
298 the semantics quoted above from [dcl.init].
300 It happens, however, that the behavior of the constructor the
301 standard says we should have generated would be precisely the
302 same as that obtained by calling build_zero_init below, so things
303 work out OK. */
304 if (TYPE_NEEDS_CONSTRUCTING (type)
305 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
306 return NULL_TREE;
308 /* At this point, TYPE is either a POD class type, an array of POD
309 classes, or something even more innocuous. */
310 return build_zero_init (type, nelts, /*static_storage_p=*/false);
313 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
314 arguments. If TREE_LIST is void_type_node, an empty initializer
315 list was given; if NULL_TREE no initializer was given. */
317 static void
318 perform_member_init (tree member, tree init)
320 tree decl;
321 tree type = TREE_TYPE (member);
322 bool explicit;
324 explicit = (init != NULL_TREE);
326 /* Effective C++ rule 12 requires that all data members be
327 initialized. */
328 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
329 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
330 "list", current_function_decl, member);
332 if (init == void_type_node)
333 init = NULL_TREE;
335 /* Get an lvalue for the data member. */
336 decl = build_class_member_access_expr (current_class_ref, member,
337 /*access_path=*/NULL_TREE,
338 /*preserve_reference=*/true);
339 if (decl == error_mark_node)
340 return;
342 /* Deal with this here, as we will get confused if we try to call the
343 assignment op for an anonymous union. This can happen in a
344 synthesized copy constructor. */
345 if (ANON_AGGR_TYPE_P (type))
347 if (init)
349 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
350 finish_expr_stmt (init);
353 else if (TYPE_NEEDS_CONSTRUCTING (type))
355 if (explicit
356 && TREE_CODE (type) == ARRAY_TYPE
357 && init != NULL_TREE
358 && TREE_CHAIN (init) == NULL_TREE
359 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
361 /* Initialization of one array from another. */
362 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
363 /*explicit_default_init_p=*/false,
364 /* from_array=*/1));
366 else
367 finish_expr_stmt (build_aggr_init (decl, init, 0));
369 else
371 if (init == NULL_TREE)
373 if (explicit)
375 init = build_default_init (type, /*nelts=*/NULL_TREE);
376 if (TREE_CODE (type) == REFERENCE_TYPE)
377 warning (0, "%Jdefault-initialization of %q#D, "
378 "which has reference type",
379 current_function_decl, member);
381 /* member traversal: note it leaves init NULL */
382 else if (TREE_CODE (type) == REFERENCE_TYPE)
383 pedwarn ("%Juninitialized reference member %qD",
384 current_function_decl, member);
385 else if (CP_TYPE_CONST_P (type))
386 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
387 current_function_decl, member, type);
389 else if (TREE_CODE (init) == TREE_LIST)
390 /* There was an explicit member initialization. Do some work
391 in that case. */
392 init = build_x_compound_expr_from_list (init, "member initializer");
394 if (init)
395 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
398 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
400 tree expr;
402 expr = build_class_member_access_expr (current_class_ref, member,
403 /*access_path=*/NULL_TREE,
404 /*preserve_reference=*/false);
405 expr = build_delete (type, expr, sfk_complete_destructor,
406 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
408 if (expr != error_mark_node)
409 finish_eh_cleanup (expr);
413 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
414 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
416 static tree
417 build_field_list (tree t, tree list, int *uses_unions_p)
419 tree fields;
421 *uses_unions_p = 0;
423 /* Note whether or not T is a union. */
424 if (TREE_CODE (t) == UNION_TYPE)
425 *uses_unions_p = 1;
427 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
429 /* Skip CONST_DECLs for enumeration constants and so forth. */
430 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
431 continue;
433 /* Keep track of whether or not any fields are unions. */
434 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
435 *uses_unions_p = 1;
437 /* For an anonymous struct or union, we must recursively
438 consider the fields of the anonymous type. They can be
439 directly initialized from the constructor. */
440 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
442 /* Add this field itself. Synthesized copy constructors
443 initialize the entire aggregate. */
444 list = tree_cons (fields, NULL_TREE, list);
445 /* And now add the fields in the anonymous aggregate. */
446 list = build_field_list (TREE_TYPE (fields), list,
447 uses_unions_p);
449 /* Add this field. */
450 else if (DECL_NAME (fields))
451 list = tree_cons (fields, NULL_TREE, list);
454 return list;
457 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
458 a FIELD_DECL or BINFO in T that needs initialization. The
459 TREE_VALUE gives the initializer, or list of initializer arguments.
461 Return a TREE_LIST containing all of the initializations required
462 for T, in the order in which they should be performed. The output
463 list has the same format as the input. */
465 static tree
466 sort_mem_initializers (tree t, tree mem_inits)
468 tree init;
469 tree base, binfo, base_binfo;
470 tree sorted_inits;
471 tree next_subobject;
472 VEC(tree,gc) *vbases;
473 int i;
474 int uses_unions_p;
476 /* Build up a list of initializations. The TREE_PURPOSE of entry
477 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
478 TREE_VALUE will be the constructor arguments, or NULL if no
479 explicit initialization was provided. */
480 sorted_inits = NULL_TREE;
482 /* Process the virtual bases. */
483 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
484 VEC_iterate (tree, vbases, i, base); i++)
485 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
487 /* Process the direct bases. */
488 for (binfo = TYPE_BINFO (t), i = 0;
489 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
490 if (!BINFO_VIRTUAL_P (base_binfo))
491 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
493 /* Process the non-static data members. */
494 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
495 /* Reverse the entire list of initializations, so that they are in
496 the order that they will actually be performed. */
497 sorted_inits = nreverse (sorted_inits);
499 /* If the user presented the initializers in an order different from
500 that in which they will actually occur, we issue a warning. Keep
501 track of the next subobject which can be explicitly initialized
502 without issuing a warning. */
503 next_subobject = sorted_inits;
505 /* Go through the explicit initializers, filling in TREE_PURPOSE in
506 the SORTED_INITS. */
507 for (init = mem_inits; init; init = TREE_CHAIN (init))
509 tree subobject;
510 tree subobject_init;
512 subobject = TREE_PURPOSE (init);
514 /* If the explicit initializers are in sorted order, then
515 SUBOBJECT will be NEXT_SUBOBJECT, or something following
516 it. */
517 for (subobject_init = next_subobject;
518 subobject_init;
519 subobject_init = TREE_CHAIN (subobject_init))
520 if (TREE_PURPOSE (subobject_init) == subobject)
521 break;
523 /* Issue a warning if the explicit initializer order does not
524 match that which will actually occur.
525 ??? Are all these on the correct lines? */
526 if (warn_reorder && !subobject_init)
528 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
529 warning (OPT_Wreorder, "%q+D will be initialized after",
530 TREE_PURPOSE (next_subobject));
531 else
532 warning (OPT_Wreorder, "base %qT will be initialized after",
533 TREE_PURPOSE (next_subobject));
534 if (TREE_CODE (subobject) == FIELD_DECL)
535 warning (OPT_Wreorder, " %q+#D", subobject);
536 else
537 warning (OPT_Wreorder, " base %qT", subobject);
538 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
541 /* Look again, from the beginning of the list. */
542 if (!subobject_init)
544 subobject_init = sorted_inits;
545 while (TREE_PURPOSE (subobject_init) != subobject)
546 subobject_init = TREE_CHAIN (subobject_init);
549 /* It is invalid to initialize the same subobject more than
550 once. */
551 if (TREE_VALUE (subobject_init))
553 if (TREE_CODE (subobject) == FIELD_DECL)
554 error ("%Jmultiple initializations given for %qD",
555 current_function_decl, subobject);
556 else
557 error ("%Jmultiple initializations given for base %qT",
558 current_function_decl, subobject);
561 /* Record the initialization. */
562 TREE_VALUE (subobject_init) = TREE_VALUE (init);
563 next_subobject = subobject_init;
566 /* [class.base.init]
568 If a ctor-initializer specifies more than one mem-initializer for
569 multiple members of the same union (including members of
570 anonymous unions), the ctor-initializer is ill-formed. */
571 if (uses_unions_p)
573 tree last_field = NULL_TREE;
574 for (init = sorted_inits; init; init = TREE_CHAIN (init))
576 tree field;
577 tree field_type;
578 int done;
580 /* Skip uninitialized members and base classes. */
581 if (!TREE_VALUE (init)
582 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
583 continue;
584 /* See if this field is a member of a union, or a member of a
585 structure contained in a union, etc. */
586 field = TREE_PURPOSE (init);
587 for (field_type = DECL_CONTEXT (field);
588 !same_type_p (field_type, t);
589 field_type = TYPE_CONTEXT (field_type))
590 if (TREE_CODE (field_type) == UNION_TYPE)
591 break;
592 /* If this field is not a member of a union, skip it. */
593 if (TREE_CODE (field_type) != UNION_TYPE)
594 continue;
596 /* It's only an error if we have two initializers for the same
597 union type. */
598 if (!last_field)
600 last_field = field;
601 continue;
604 /* See if LAST_FIELD and the field initialized by INIT are
605 members of the same union. If so, there's a problem,
606 unless they're actually members of the same structure
607 which is itself a member of a union. For example, given:
609 union { struct { int i; int j; }; };
611 initializing both `i' and `j' makes sense. */
612 field_type = DECL_CONTEXT (field);
613 done = 0;
616 tree last_field_type;
618 last_field_type = DECL_CONTEXT (last_field);
619 while (1)
621 if (same_type_p (last_field_type, field_type))
623 if (TREE_CODE (field_type) == UNION_TYPE)
624 error ("%Jinitializations for multiple members of %qT",
625 current_function_decl, last_field_type);
626 done = 1;
627 break;
630 if (same_type_p (last_field_type, t))
631 break;
633 last_field_type = TYPE_CONTEXT (last_field_type);
636 /* If we've reached the outermost class, then we're
637 done. */
638 if (same_type_p (field_type, t))
639 break;
641 field_type = TYPE_CONTEXT (field_type);
643 while (!done);
645 last_field = field;
649 return sorted_inits;
652 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
653 is a TREE_LIST giving the explicit mem-initializer-list for the
654 constructor. The TREE_PURPOSE of each entry is a subobject (a
655 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
656 is a TREE_LIST giving the arguments to the constructor or
657 void_type_node for an empty list of arguments. */
659 void
660 emit_mem_initializers (tree mem_inits)
662 /* We will already have issued an error message about the fact that
663 the type is incomplete. */
664 if (!COMPLETE_TYPE_P (current_class_type))
665 return;
667 /* Sort the mem-initializers into the order in which the
668 initializations should be performed. */
669 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
671 in_base_initializer = 1;
673 /* Initialize base classes. */
674 while (mem_inits
675 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
677 tree subobject = TREE_PURPOSE (mem_inits);
678 tree arguments = TREE_VALUE (mem_inits);
680 /* If these initializations are taking place in a copy
681 constructor, the base class should probably be explicitly
682 initialized. */
683 if (extra_warnings && !arguments
684 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
685 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
686 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
687 "copy constructor",
688 current_function_decl, BINFO_TYPE (subobject));
690 /* If an explicit -- but empty -- initializer list was present,
691 treat it just like default initialization at this point. */
692 if (arguments == void_type_node)
693 arguments = NULL_TREE;
695 /* Initialize the base. */
696 if (BINFO_VIRTUAL_P (subobject))
697 construct_virtual_base (subobject, arguments);
698 else
700 tree base_addr;
702 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
703 subobject, 1);
704 expand_aggr_init_1 (subobject, NULL_TREE,
705 build_indirect_ref (base_addr, NULL),
706 arguments,
707 LOOKUP_NORMAL);
708 expand_cleanup_for_base (subobject, NULL_TREE);
711 mem_inits = TREE_CHAIN (mem_inits);
713 in_base_initializer = 0;
715 /* Initialize the vptrs. */
716 initialize_vtbl_ptrs (current_class_ptr);
718 /* Initialize the data members. */
719 while (mem_inits)
721 perform_member_init (TREE_PURPOSE (mem_inits),
722 TREE_VALUE (mem_inits));
723 mem_inits = TREE_CHAIN (mem_inits);
727 /* Returns the address of the vtable (i.e., the value that should be
728 assigned to the vptr) for BINFO. */
730 static tree
731 build_vtbl_address (tree binfo)
733 tree binfo_for = binfo;
734 tree vtbl;
736 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
737 /* If this is a virtual primary base, then the vtable we want to store
738 is that for the base this is being used as the primary base of. We
739 can't simply skip the initialization, because we may be expanding the
740 inits of a subobject constructor where the virtual base layout
741 can be different. */
742 while (BINFO_PRIMARY_P (binfo_for))
743 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
745 /* Figure out what vtable BINFO's vtable is based on, and mark it as
746 used. */
747 vtbl = get_vtbl_decl_for_binfo (binfo_for);
748 assemble_external (vtbl);
749 TREE_USED (vtbl) = 1;
751 /* Now compute the address to use when initializing the vptr. */
752 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
753 if (TREE_CODE (vtbl) == VAR_DECL)
754 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
756 return vtbl;
759 /* This code sets up the virtual function tables appropriate for
760 the pointer DECL. It is a one-ply initialization.
762 BINFO is the exact type that DECL is supposed to be. In
763 multiple inheritance, this might mean "C's A" if C : A, B. */
765 static void
766 expand_virtual_init (tree binfo, tree decl)
768 tree vtbl, vtbl_ptr;
769 tree vtt_index;
771 /* Compute the initializer for vptr. */
772 vtbl = build_vtbl_address (binfo);
774 /* We may get this vptr from a VTT, if this is a subobject
775 constructor or subobject destructor. */
776 vtt_index = BINFO_VPTR_INDEX (binfo);
777 if (vtt_index)
779 tree vtbl2;
780 tree vtt_parm;
782 /* Compute the value to use, when there's a VTT. */
783 vtt_parm = current_vtt_parm;
784 vtbl2 = build2 (PLUS_EXPR,
785 TREE_TYPE (vtt_parm),
786 vtt_parm,
787 vtt_index);
788 vtbl2 = build_indirect_ref (vtbl2, NULL);
789 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
791 /* The actual initializer is the VTT value only in the subobject
792 constructor. In maybe_clone_body we'll substitute NULL for
793 the vtt_parm in the case of the non-subobject constructor. */
794 vtbl = build3 (COND_EXPR,
795 TREE_TYPE (vtbl),
796 build2 (EQ_EXPR, boolean_type_node,
797 current_in_charge_parm, integer_zero_node),
798 vtbl2,
799 vtbl);
802 /* Compute the location of the vtpr. */
803 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
804 TREE_TYPE (binfo));
805 gcc_assert (vtbl_ptr != error_mark_node);
807 /* Assign the vtable to the vptr. */
808 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
809 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
812 /* If an exception is thrown in a constructor, those base classes already
813 constructed must be destroyed. This function creates the cleanup
814 for BINFO, which has just been constructed. If FLAG is non-NULL,
815 it is a DECL which is nonzero when this base needs to be
816 destroyed. */
818 static void
819 expand_cleanup_for_base (tree binfo, tree flag)
821 tree expr;
823 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
824 return;
826 /* Call the destructor. */
827 expr = build_special_member_call (current_class_ref,
828 base_dtor_identifier,
829 NULL_TREE,
830 binfo,
831 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
832 if (flag)
833 expr = fold_build3 (COND_EXPR, void_type_node,
834 c_common_truthvalue_conversion (flag),
835 expr, integer_zero_node);
837 finish_eh_cleanup (expr);
840 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
841 constructor. */
843 static void
844 construct_virtual_base (tree vbase, tree arguments)
846 tree inner_if_stmt;
847 tree exp;
848 tree flag;
850 /* If there are virtual base classes with destructors, we need to
851 emit cleanups to destroy them if an exception is thrown during
852 the construction process. These exception regions (i.e., the
853 period during which the cleanups must occur) begin from the time
854 the construction is complete to the end of the function. If we
855 create a conditional block in which to initialize the
856 base-classes, then the cleanup region for the virtual base begins
857 inside a block, and ends outside of that block. This situation
858 confuses the sjlj exception-handling code. Therefore, we do not
859 create a single conditional block, but one for each
860 initialization. (That way the cleanup regions always begin
861 in the outer block.) We trust the back-end to figure out
862 that the FLAG will not change across initializations, and
863 avoid doing multiple tests. */
864 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
865 inner_if_stmt = begin_if_stmt ();
866 finish_if_stmt_cond (flag, inner_if_stmt);
868 /* Compute the location of the virtual base. If we're
869 constructing virtual bases, then we must be the most derived
870 class. Therefore, we don't have to look up the virtual base;
871 we already know where it is. */
872 exp = convert_to_base_statically (current_class_ref, vbase);
874 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
875 LOOKUP_COMPLAIN);
876 finish_then_clause (inner_if_stmt);
877 finish_if_stmt (inner_if_stmt);
879 expand_cleanup_for_base (vbase, flag);
882 /* Find the context in which this FIELD can be initialized. */
884 static tree
885 initializing_context (tree field)
887 tree t = DECL_CONTEXT (field);
889 /* Anonymous union members can be initialized in the first enclosing
890 non-anonymous union context. */
891 while (t && ANON_AGGR_TYPE_P (t))
892 t = TYPE_CONTEXT (t);
893 return t;
896 /* Function to give error message if member initialization specification
897 is erroneous. FIELD is the member we decided to initialize.
898 TYPE is the type for which the initialization is being performed.
899 FIELD must be a member of TYPE.
901 MEMBER_NAME is the name of the member. */
903 static int
904 member_init_ok_or_else (tree field, tree type, tree member_name)
906 if (field == error_mark_node)
907 return 0;
908 if (!field)
910 error ("class %qT does not have any field named %qD", type,
911 member_name);
912 return 0;
914 if (TREE_CODE (field) == VAR_DECL)
916 error ("%q#D is a static data member; it can only be "
917 "initialized at its definition",
918 field);
919 return 0;
921 if (TREE_CODE (field) != FIELD_DECL)
923 error ("%q#D is not a non-static data member of %qT",
924 field, type);
925 return 0;
927 if (initializing_context (field) != type)
929 error ("class %qT does not have any field named %qD", type,
930 member_name);
931 return 0;
934 return 1;
937 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
938 is a _TYPE node or TYPE_DECL which names a base for that type.
939 Check the validity of NAME, and return either the base _TYPE, base
940 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
941 NULL_TREE and issue a diagnostic.
943 An old style unnamed direct single base construction is permitted,
944 where NAME is NULL. */
946 tree
947 expand_member_init (tree name)
949 tree basetype;
950 tree field;
952 if (!current_class_ref)
953 return NULL_TREE;
955 if (!name)
957 /* This is an obsolete unnamed base class initializer. The
958 parser will already have warned about its use. */
959 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
961 case 0:
962 error ("unnamed initializer for %qT, which has no base classes",
963 current_class_type);
964 return NULL_TREE;
965 case 1:
966 basetype = BINFO_TYPE
967 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
968 break;
969 default:
970 error ("unnamed initializer for %qT, which uses multiple inheritance",
971 current_class_type);
972 return NULL_TREE;
975 else if (TYPE_P (name))
977 basetype = TYPE_MAIN_VARIANT (name);
978 name = TYPE_NAME (name);
980 else if (TREE_CODE (name) == TYPE_DECL)
981 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
982 else
983 basetype = NULL_TREE;
985 if (basetype)
987 tree class_binfo;
988 tree direct_binfo;
989 tree virtual_binfo;
990 int i;
992 if (current_template_parms)
993 return basetype;
995 class_binfo = TYPE_BINFO (current_class_type);
996 direct_binfo = NULL_TREE;
997 virtual_binfo = NULL_TREE;
999 /* Look for a direct base. */
1000 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1001 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1002 break;
1004 /* Look for a virtual base -- unless the direct base is itself
1005 virtual. */
1006 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1007 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1009 /* [class.base.init]
1011 If a mem-initializer-id is ambiguous because it designates
1012 both a direct non-virtual base class and an inherited virtual
1013 base class, the mem-initializer is ill-formed. */
1014 if (direct_binfo && virtual_binfo)
1016 error ("%qD is both a direct base and an indirect virtual base",
1017 basetype);
1018 return NULL_TREE;
1021 if (!direct_binfo && !virtual_binfo)
1023 if (CLASSTYPE_VBASECLASSES (current_class_type))
1024 error ("type %qT is not a direct or virtual base of %qT",
1025 basetype, current_class_type);
1026 else
1027 error ("type %qT is not a direct base of %qT",
1028 basetype, current_class_type);
1029 return NULL_TREE;
1032 return direct_binfo ? direct_binfo : virtual_binfo;
1034 else
1036 if (TREE_CODE (name) == IDENTIFIER_NODE)
1037 field = lookup_field (current_class_type, name, 1, false);
1038 else
1039 field = name;
1041 if (member_init_ok_or_else (field, current_class_type, name))
1042 return field;
1045 return NULL_TREE;
1048 /* This is like `expand_member_init', only it stores one aggregate
1049 value into another.
1051 INIT comes in two flavors: it is either a value which
1052 is to be stored in EXP, or it is a parameter list
1053 to go to a constructor, which will operate on EXP.
1054 If INIT is not a parameter list for a constructor, then set
1055 LOOKUP_ONLYCONVERTING.
1056 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1057 the initializer, if FLAGS is 0, then it is the (init) form.
1058 If `init' is a CONSTRUCTOR, then we emit a warning message,
1059 explaining that such initializations are invalid.
1061 If INIT resolves to a CALL_EXPR which happens to return
1062 something of the type we are looking for, then we know
1063 that we can safely use that call to perform the
1064 initialization.
1066 The virtual function table pointer cannot be set up here, because
1067 we do not really know its type.
1069 This never calls operator=().
1071 When initializing, nothing is CONST.
1073 A default copy constructor may have to be used to perform the
1074 initialization.
1076 A constructor or a conversion operator may have to be used to
1077 perform the initialization, but not both, as it would be ambiguous. */
1079 tree
1080 build_aggr_init (tree exp, tree init, int flags)
1082 tree stmt_expr;
1083 tree compound_stmt;
1084 int destroy_temps;
1085 tree type = TREE_TYPE (exp);
1086 int was_const = TREE_READONLY (exp);
1087 int was_volatile = TREE_THIS_VOLATILE (exp);
1088 int is_global;
1090 if (init == error_mark_node)
1091 return error_mark_node;
1093 TREE_READONLY (exp) = 0;
1094 TREE_THIS_VOLATILE (exp) = 0;
1096 if (init && TREE_CODE (init) != TREE_LIST)
1097 flags |= LOOKUP_ONLYCONVERTING;
1099 if (TREE_CODE (type) == ARRAY_TYPE)
1101 tree itype;
1103 /* An array may not be initialized use the parenthesized
1104 initialization form -- unless the initializer is "()". */
1105 if (init && TREE_CODE (init) == TREE_LIST)
1107 error ("bad array initializer");
1108 return error_mark_node;
1110 /* Must arrange to initialize each element of EXP
1111 from elements of INIT. */
1112 itype = init ? TREE_TYPE (init) : NULL_TREE;
1113 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1114 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1115 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1116 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1117 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1118 /*explicit_default_init_p=*/false,
1119 itype && same_type_p (itype,
1120 TREE_TYPE (exp)));
1121 TREE_READONLY (exp) = was_const;
1122 TREE_THIS_VOLATILE (exp) = was_volatile;
1123 TREE_TYPE (exp) = type;
1124 if (init)
1125 TREE_TYPE (init) = itype;
1126 return stmt_expr;
1129 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1130 /* Just know that we've seen something for this node. */
1131 TREE_USED (exp) = 1;
1133 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1134 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1135 destroy_temps = stmts_are_full_exprs_p ();
1136 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1137 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1138 init, LOOKUP_NORMAL|flags);
1139 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1140 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1141 TREE_TYPE (exp) = type;
1142 TREE_READONLY (exp) = was_const;
1143 TREE_THIS_VOLATILE (exp) = was_volatile;
1145 return stmt_expr;
1148 static void
1149 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1151 tree type = TREE_TYPE (exp);
1152 tree ctor_name;
1154 /* It fails because there may not be a constructor which takes
1155 its own type as the first (or only parameter), but which does
1156 take other types via a conversion. So, if the thing initializing
1157 the expression is a unit element of type X, first try X(X&),
1158 followed by initialization by X. If neither of these work
1159 out, then look hard. */
1160 tree rval;
1161 tree parms;
1163 if (init && TREE_CODE (init) != TREE_LIST
1164 && (flags & LOOKUP_ONLYCONVERTING))
1166 /* Base subobjects should only get direct-initialization. */
1167 gcc_assert (true_exp == exp);
1169 if (flags & DIRECT_BIND)
1170 /* Do nothing. We hit this in two cases: Reference initialization,
1171 where we aren't initializing a real variable, so we don't want
1172 to run a new constructor; and catching an exception, where we
1173 have already built up the constructor call so we could wrap it
1174 in an exception region. */;
1175 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1177 /* A brace-enclosed initializer for an aggregate. */
1178 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1179 init = digest_init (type, init);
1181 else
1182 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1184 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1185 /* We need to protect the initialization of a catch parm with a
1186 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1187 around the TARGET_EXPR for the copy constructor. See
1188 initialize_handler_parm. */
1190 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1191 TREE_OPERAND (init, 0));
1192 TREE_TYPE (init) = void_type_node;
1194 else
1195 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1196 TREE_SIDE_EFFECTS (init) = 1;
1197 finish_expr_stmt (init);
1198 return;
1201 if (init == NULL_TREE
1202 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1204 parms = init;
1205 if (parms)
1206 init = TREE_VALUE (parms);
1208 else
1209 parms = build_tree_list (NULL_TREE, init);
1211 if (true_exp == exp)
1212 ctor_name = complete_ctor_identifier;
1213 else
1214 ctor_name = base_ctor_identifier;
1216 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1217 if (TREE_SIDE_EFFECTS (rval))
1218 finish_expr_stmt (convert_to_void (rval, NULL));
1221 /* This function is responsible for initializing EXP with INIT
1222 (if any).
1224 BINFO is the binfo of the type for who we are performing the
1225 initialization. For example, if W is a virtual base class of A and B,
1226 and C : A, B.
1227 If we are initializing B, then W must contain B's W vtable, whereas
1228 were we initializing C, W must contain C's W vtable.
1230 TRUE_EXP is nonzero if it is the true expression being initialized.
1231 In this case, it may be EXP, or may just contain EXP. The reason we
1232 need this is because if EXP is a base element of TRUE_EXP, we
1233 don't necessarily know by looking at EXP where its virtual
1234 baseclass fields should really be pointing. But we do know
1235 from TRUE_EXP. In constructors, we don't know anything about
1236 the value being initialized.
1238 FLAGS is just passed to `build_new_method_call'. See that function
1239 for its description. */
1241 static void
1242 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1244 tree type = TREE_TYPE (exp);
1246 gcc_assert (init != error_mark_node && type != error_mark_node);
1247 gcc_assert (building_stmt_tree ());
1249 /* Use a function returning the desired type to initialize EXP for us.
1250 If the function is a constructor, and its first argument is
1251 NULL_TREE, know that it was meant for us--just slide exp on
1252 in and expand the constructor. Constructors now come
1253 as TARGET_EXPRs. */
1255 if (init && TREE_CODE (exp) == VAR_DECL
1256 && COMPOUND_LITERAL_P (init))
1258 /* If store_init_value returns NULL_TREE, the INIT has been
1259 recorded as the DECL_INITIAL for EXP. That means there's
1260 nothing more we have to do. */
1261 init = store_init_value (exp, init);
1262 if (init)
1263 finish_expr_stmt (init);
1264 return;
1267 /* We know that expand_default_init can handle everything we want
1268 at this point. */
1269 expand_default_init (binfo, true_exp, exp, init, flags);
1272 /* Report an error if TYPE is not a user-defined, aggregate type. If
1273 OR_ELSE is nonzero, give an error message. */
1276 is_aggr_type (tree type, int or_else)
1278 if (type == error_mark_node)
1279 return 0;
1281 if (! IS_AGGR_TYPE (type)
1282 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1283 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1285 if (or_else)
1286 error ("%qT is not an aggregate type", type);
1287 return 0;
1289 return 1;
1292 tree
1293 get_type_value (tree name)
1295 if (name == error_mark_node)
1296 return NULL_TREE;
1298 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1299 return IDENTIFIER_TYPE_VALUE (name);
1300 else
1301 return NULL_TREE;
1304 /* Build a reference to a member of an aggregate. This is not a C++
1305 `&', but really something which can have its address taken, and
1306 then act as a pointer to member, for example TYPE :: FIELD can have
1307 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1308 this expression is the operand of "&".
1310 @@ Prints out lousy diagnostics for operator <typename>
1311 @@ fields.
1313 @@ This function should be rewritten and placed in search.c. */
1315 tree
1316 build_offset_ref (tree type, tree member, bool address_p)
1318 tree decl;
1319 tree basebinfo = NULL_TREE;
1321 /* class templates can come in as TEMPLATE_DECLs here. */
1322 if (TREE_CODE (member) == TEMPLATE_DECL)
1323 return member;
1325 if (dependent_type_p (type) || type_dependent_expression_p (member))
1326 return build_qualified_name (NULL_TREE, type, member,
1327 /*template_p=*/false);
1329 gcc_assert (TYPE_P (type));
1330 if (! is_aggr_type (type, 1))
1331 return error_mark_node;
1333 gcc_assert (DECL_P (member) || BASELINK_P (member));
1334 /* Callers should call mark_used before this point. */
1335 gcc_assert (!DECL_P (member) || TREE_USED (member));
1337 if (!COMPLETE_TYPE_P (complete_type (type))
1338 && !TYPE_BEING_DEFINED (type))
1340 error ("incomplete type %qT does not have member %qD", type, member);
1341 return error_mark_node;
1344 /* Entities other than non-static members need no further
1345 processing. */
1346 if (TREE_CODE (member) == TYPE_DECL)
1347 return member;
1348 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1349 return convert_from_reference (member);
1351 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1353 error ("invalid pointer to bit-field %qD", member);
1354 return error_mark_node;
1357 /* Set up BASEBINFO for member lookup. */
1358 decl = maybe_dummy_object (type, &basebinfo);
1360 /* A lot of this logic is now handled in lookup_member. */
1361 if (BASELINK_P (member))
1363 /* Go from the TREE_BASELINK to the member function info. */
1364 tree t = BASELINK_FUNCTIONS (member);
1366 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1368 /* Get rid of a potential OVERLOAD around it. */
1369 t = OVL_CURRENT (t);
1371 /* Unique functions are handled easily. */
1373 /* For non-static member of base class, we need a special rule
1374 for access checking [class.protected]:
1376 If the access is to form a pointer to member, the
1377 nested-name-specifier shall name the derived class
1378 (or any class derived from that class). */
1379 if (address_p && DECL_P (t)
1380 && DECL_NONSTATIC_MEMBER_P (t))
1381 perform_or_defer_access_check (TYPE_BINFO (type), t);
1382 else
1383 perform_or_defer_access_check (basebinfo, t);
1385 if (DECL_STATIC_FUNCTION_P (t))
1386 return t;
1387 member = t;
1389 else
1390 TREE_TYPE (member) = unknown_type_node;
1392 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1393 /* We need additional test besides the one in
1394 check_accessibility_of_qualified_id in case it is
1395 a pointer to non-static member. */
1396 perform_or_defer_access_check (TYPE_BINFO (type), member);
1398 if (!address_p)
1400 /* If MEMBER is non-static, then the program has fallen afoul of
1401 [expr.prim]:
1403 An id-expression that denotes a nonstatic data member or
1404 nonstatic member function of a class can only be used:
1406 -- as part of a class member access (_expr.ref_) in which the
1407 object-expression refers to the member's class or a class
1408 derived from that class, or
1410 -- to form a pointer to member (_expr.unary.op_), or
1412 -- in the body of a nonstatic member function of that class or
1413 of a class derived from that class (_class.mfct.nonstatic_), or
1415 -- in a mem-initializer for a constructor for that class or for
1416 a class derived from that class (_class.base.init_). */
1417 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1419 /* Build a representation of a the qualified name suitable
1420 for use as the operand to "&" -- even though the "&" is
1421 not actually present. */
1422 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1423 /* In Microsoft mode, treat a non-static member function as if
1424 it were a pointer-to-member. */
1425 if (flag_ms_extensions)
1427 PTRMEM_OK_P (member) = 1;
1428 return build_unary_op (ADDR_EXPR, member, 0);
1430 error ("invalid use of non-static member function %qD",
1431 TREE_OPERAND (member, 1));
1432 return error_mark_node;
1434 else if (TREE_CODE (member) == FIELD_DECL)
1436 error ("invalid use of non-static data member %qD", member);
1437 return error_mark_node;
1439 return member;
1442 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1443 PTRMEM_OK_P (member) = 1;
1444 return member;
1447 /* If DECL is a scalar enumeration constant or variable with a
1448 constant initializer, return the initializer (or, its initializers,
1449 recursively); otherwise, return DECL. If INTEGRAL_P, the
1450 initializer is only returned if DECL is an integral
1451 constant-expression. */
1453 static tree
1454 constant_value_1 (tree decl, bool integral_p)
1456 while (TREE_CODE (decl) == CONST_DECL
1457 || (integral_p
1458 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1459 : (TREE_CODE (decl) == VAR_DECL
1460 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1462 tree init;
1463 /* Static data members in template classes may have
1464 non-dependent initializers. References to such non-static
1465 data members are not value-dependent, so we must retrieve the
1466 initializer here. The DECL_INITIAL will have the right type,
1467 but will not have been folded because that would prevent us
1468 from performing all appropriate semantic checks at
1469 instantiation time. */
1470 if (DECL_CLASS_SCOPE_P (decl)
1471 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1472 && uses_template_parms (CLASSTYPE_TI_ARGS
1473 (DECL_CONTEXT (decl))))
1475 ++processing_template_decl;
1476 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1477 --processing_template_decl;
1479 else
1481 /* If DECL is a static data member in a template
1482 specialization, we must instantiate it here. The
1483 initializer for the static data member is not processed
1484 until needed; we need it now. */
1485 mark_used (decl);
1486 init = DECL_INITIAL (decl);
1488 if (init == error_mark_node)
1489 return decl;
1490 if (!init
1491 || !TREE_TYPE (init)
1492 || (integral_p
1493 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1494 : (!TREE_CONSTANT (init)
1495 /* Do not return an aggregate constant (of which
1496 string literals are a special case), as we do not
1497 want to make inadvertent copies of such entities,
1498 and we must be sure that their addresses are the
1499 same everywhere. */
1500 || TREE_CODE (init) == CONSTRUCTOR
1501 || TREE_CODE (init) == STRING_CST)))
1502 break;
1503 decl = unshare_expr (init);
1505 return decl;
1508 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1509 constant of integral or enumeration type, then return that value.
1510 These are those variables permitted in constant expressions by
1511 [5.19/1]. */
1513 tree
1514 integral_constant_value (tree decl)
1516 return constant_value_1 (decl, /*integral_p=*/true);
1519 /* A more relaxed version of integral_constant_value, used by the
1520 common C/C++ code and by the C++ front-end for optimization
1521 purposes. */
1523 tree
1524 decl_constant_value (tree decl)
1526 return constant_value_1 (decl,
1527 /*integral_p=*/processing_template_decl);
1530 /* Common subroutines of build_new and build_vec_delete. */
1532 /* Call the global __builtin_delete to delete ADDR. */
1534 static tree
1535 build_builtin_delete_call (tree addr)
1537 mark_used (global_delete_fndecl);
1538 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1541 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1542 the type of the object being allocated; otherwise, it's just TYPE.
1543 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1544 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1545 the TREE_LIST of arguments to be provided as arguments to a
1546 placement new operator. This routine performs no semantic checks;
1547 it just creates and returns a NEW_EXPR. */
1549 static tree
1550 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1551 int use_global_new)
1553 tree new_expr;
1555 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1556 nelts, init);
1557 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1558 TREE_SIDE_EFFECTS (new_expr) = 1;
1560 return new_expr;
1563 /* Generate code for a new-expression, including calling the "operator
1564 new" function, initializing the object, and, if an exception occurs
1565 during construction, cleaning up. The arguments are as for
1566 build_raw_new_expr. */
1568 static tree
1569 build_new_1 (tree placement, tree type, tree nelts, tree init,
1570 bool globally_qualified_p)
1572 tree size, rval;
1573 /* True iff this is a call to "operator new[]" instead of just
1574 "operator new". */
1575 bool array_p = false;
1576 /* True iff ARRAY_P is true and the bound of the array type is
1577 not necessarily a compile time constant. For example, VLA_P is
1578 true for "new int[f()]". */
1579 bool vla_p = false;
1580 /* The type being allocated. If ARRAY_P is true, this will be an
1581 ARRAY_TYPE. */
1582 tree full_type;
1583 /* If ARRAY_P is true, the element type of the array. This is an
1584 never ARRAY_TYPE; for something like "new int[3][4]", the
1585 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1586 FULL_TYPE. */
1587 tree elt_type;
1588 /* The type of the new-expression. (This type is always a pointer
1589 type.) */
1590 tree pointer_type;
1591 /* A pointer type pointing to the FULL_TYPE. */
1592 tree full_pointer_type;
1593 tree outer_nelts = NULL_TREE;
1594 tree alloc_call, alloc_expr;
1595 /* The address returned by the call to "operator new". This node is
1596 a VAR_DECL and is therefore reusable. */
1597 tree alloc_node;
1598 tree alloc_fn;
1599 tree cookie_expr, init_expr;
1600 int nothrow, check_new;
1601 int use_java_new = 0;
1602 /* If non-NULL, the number of extra bytes to allocate at the
1603 beginning of the storage allocated for an array-new expression in
1604 order to store the number of elements. */
1605 tree cookie_size = NULL_TREE;
1606 /* True if the function we are calling is a placement allocation
1607 function. */
1608 bool placement_allocation_fn_p;
1609 tree args = NULL_TREE;
1610 /* True if the storage must be initialized, either by a constructor
1611 or due to an explicit new-initializer. */
1612 bool is_initialized;
1613 /* The address of the thing allocated, not including any cookie. In
1614 particular, if an array cookie is in use, DATA_ADDR is the
1615 address of the first array element. This node is a VAR_DECL, and
1616 is therefore reusable. */
1617 tree data_addr;
1618 tree init_preeval_expr = NULL_TREE;
1620 if (nelts)
1622 tree index;
1624 outer_nelts = nelts;
1625 array_p = true;
1627 /* ??? The middle-end will error on us for building a VLA outside a
1628 function context. Methinks that's not it's purvey. So we'll do
1629 our own VLA layout later. */
1630 vla_p = true;
1631 index = convert (sizetype, nelts);
1632 index = size_binop (MINUS_EXPR, index, size_one_node);
1633 index = build_index_type (index);
1634 full_type = build_cplus_array_type (type, NULL_TREE);
1635 /* We need a copy of the type as build_array_type will return a shared copy
1636 of the incomplete array type. */
1637 full_type = build_distinct_type_copy (full_type);
1638 TYPE_DOMAIN (full_type) = index;
1640 else
1642 full_type = type;
1643 if (TREE_CODE (type) == ARRAY_TYPE)
1645 array_p = true;
1646 nelts = array_type_nelts_top (type);
1647 outer_nelts = nelts;
1648 type = TREE_TYPE (type);
1652 if (!complete_type_or_else (type, NULL_TREE))
1653 return error_mark_node;
1655 /* If our base type is an array, then make sure we know how many elements
1656 it has. */
1657 for (elt_type = type;
1658 TREE_CODE (elt_type) == ARRAY_TYPE;
1659 elt_type = TREE_TYPE (elt_type))
1660 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1661 array_type_nelts_top (elt_type));
1663 if (TREE_CODE (elt_type) == VOID_TYPE)
1665 error ("invalid type %<void%> for new");
1666 return error_mark_node;
1669 if (abstract_virtuals_error (NULL_TREE, elt_type))
1670 return error_mark_node;
1672 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1673 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1675 error ("uninitialized const in %<new%> of %q#T", elt_type);
1676 return error_mark_node;
1679 size = size_in_bytes (elt_type);
1680 if (array_p)
1682 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1683 if (vla_p)
1685 tree n, bitsize;
1687 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1688 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1689 ...>> to be valid. */
1690 TYPE_SIZE_UNIT (full_type) = size;
1691 n = convert (bitsizetype, nelts);
1692 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1693 TYPE_SIZE (full_type) = bitsize;
1697 alloc_fn = NULL_TREE;
1699 /* Allocate the object. */
1700 if (! placement && TYPE_FOR_JAVA (elt_type))
1702 tree class_addr;
1703 tree class_decl = build_java_class_ref (elt_type);
1704 static const char alloc_name[] = "_Jv_AllocObject";
1706 if (class_decl == error_mark_node)
1707 return error_mark_node;
1709 use_java_new = 1;
1710 if (!get_global_value_if_present (get_identifier (alloc_name),
1711 &alloc_fn))
1713 error ("call to Java constructor with %qs undefined", alloc_name);
1714 return error_mark_node;
1716 else if (really_overloaded_fn (alloc_fn))
1718 error ("%qD should never be overloaded", alloc_fn);
1719 return error_mark_node;
1721 alloc_fn = OVL_CURRENT (alloc_fn);
1722 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1723 alloc_call = (build_function_call
1724 (alloc_fn,
1725 build_tree_list (NULL_TREE, class_addr)));
1727 else
1729 tree fnname;
1730 tree fns;
1732 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1734 if (!globally_qualified_p
1735 && CLASS_TYPE_P (elt_type)
1736 && (array_p
1737 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1738 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1740 /* Use a class-specific operator new. */
1741 /* If a cookie is required, add some extra space. */
1742 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1744 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1745 size = size_binop (PLUS_EXPR, size, cookie_size);
1747 /* Create the argument list. */
1748 args = tree_cons (NULL_TREE, size, placement);
1749 /* Do name-lookup to find the appropriate operator. */
1750 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1751 if (fns == NULL_TREE)
1753 error ("no suitable %qD found in class %qT", fnname, elt_type);
1754 return error_mark_node;
1756 if (TREE_CODE (fns) == TREE_LIST)
1758 error ("request for member %qD is ambiguous", fnname);
1759 print_candidates (fns);
1760 return error_mark_node;
1762 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1763 fns, args,
1764 /*conversion_path=*/NULL_TREE,
1765 LOOKUP_NORMAL,
1766 &alloc_fn);
1768 else
1770 /* Use a global operator new. */
1771 /* See if a cookie might be required. */
1772 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1773 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1774 else
1775 cookie_size = NULL_TREE;
1777 alloc_call = build_operator_new_call (fnname, placement,
1778 &size, &cookie_size,
1779 &alloc_fn);
1783 if (alloc_call == error_mark_node)
1784 return error_mark_node;
1786 gcc_assert (alloc_fn != NULL_TREE);
1788 /* In the simple case, we can stop now. */
1789 pointer_type = build_pointer_type (type);
1790 if (!cookie_size && !is_initialized)
1791 return build_nop (pointer_type, alloc_call);
1793 /* While we're working, use a pointer to the type we've actually
1794 allocated. Store the result of the call in a variable so that we
1795 can use it more than once. */
1796 full_pointer_type = build_pointer_type (full_type);
1797 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1798 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1800 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1801 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1802 alloc_call = TREE_OPERAND (alloc_call, 1);
1804 /* Now, check to see if this function is actually a placement
1805 allocation function. This can happen even when PLACEMENT is NULL
1806 because we might have something like:
1808 struct S { void* operator new (size_t, int i = 0); };
1810 A call to `new S' will get this allocation function, even though
1811 there is no explicit placement argument. If there is more than
1812 one argument, or there are variable arguments, then this is a
1813 placement allocation function. */
1814 placement_allocation_fn_p
1815 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1816 || varargs_function_p (alloc_fn));
1818 /* Preevaluate the placement args so that we don't reevaluate them for a
1819 placement delete. */
1820 if (placement_allocation_fn_p)
1822 tree inits;
1823 stabilize_call (alloc_call, &inits);
1824 if (inits)
1825 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1826 alloc_expr);
1829 /* unless an allocation function is declared with an empty excep-
1830 tion-specification (_except.spec_), throw(), it indicates failure to
1831 allocate storage by throwing a bad_alloc exception (clause _except_,
1832 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1833 cation function is declared with an empty exception-specification,
1834 throw(), it returns null to indicate failure to allocate storage and a
1835 non-null pointer otherwise.
1837 So check for a null exception spec on the op new we just called. */
1839 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1840 check_new = (flag_check_new || nothrow) && ! use_java_new;
1842 if (cookie_size)
1844 tree cookie;
1845 tree cookie_ptr;
1847 /* Adjust so we're pointing to the start of the object. */
1848 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
1849 alloc_node, cookie_size));
1851 /* Store the number of bytes allocated so that we can know how
1852 many elements to destroy later. We use the last sizeof
1853 (size_t) bytes to store the number of elements. */
1854 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1855 data_addr, size_in_bytes (sizetype));
1856 cookie = build_indirect_ref (cookie_ptr, NULL);
1858 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
1860 if (targetm.cxx.cookie_has_size ())
1862 /* Also store the element size. */
1863 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1864 cookie_ptr, size_in_bytes (sizetype));
1865 cookie = build_indirect_ref (cookie_ptr, NULL);
1866 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
1867 size_in_bytes(elt_type));
1868 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
1869 cookie, cookie_expr);
1871 data_addr = TARGET_EXPR_SLOT (data_addr);
1873 else
1875 cookie_expr = NULL_TREE;
1876 data_addr = alloc_node;
1879 /* Now initialize the allocated object. Note that we preevaluate the
1880 initialization expression, apart from the actual constructor call or
1881 assignment--we do this because we want to delay the allocation as long
1882 as possible in order to minimize the size of the exception region for
1883 placement delete. */
1884 if (is_initialized)
1886 bool stable;
1888 init_expr = build_indirect_ref (data_addr, NULL);
1890 if (array_p)
1892 bool explicit_default_init_p = false;
1894 if (init == void_zero_node)
1896 init = NULL_TREE;
1897 explicit_default_init_p = true;
1899 else if (init)
1900 pedwarn ("ISO C++ forbids initialization in array new");
1902 init_expr
1903 = build_vec_init (init_expr,
1904 cp_build_binary_op (MINUS_EXPR, outer_nelts,
1905 integer_one_node),
1906 init,
1907 explicit_default_init_p,
1908 /*from_array=*/0);
1910 /* An array initialization is stable because the initialization
1911 of each element is a full-expression, so the temporaries don't
1912 leak out. */
1913 stable = true;
1915 else
1917 if (init == void_zero_node)
1918 init = build_default_init (full_type, nelts);
1920 if (TYPE_NEEDS_CONSTRUCTING (type))
1922 init_expr = build_special_member_call (init_expr,
1923 complete_ctor_identifier,
1924 init, elt_type,
1925 LOOKUP_NORMAL);
1926 stable = stabilize_init (init_expr, &init_preeval_expr);
1928 else
1930 /* We are processing something like `new int (10)', which
1931 means allocate an int, and initialize it with 10. */
1933 if (TREE_CODE (init) == TREE_LIST)
1934 init = build_x_compound_expr_from_list (init,
1935 "new initializer");
1936 else
1937 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
1938 || TREE_TYPE (init) != NULL_TREE);
1940 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
1941 stable = stabilize_init (init_expr, &init_preeval_expr);
1945 if (init_expr == error_mark_node)
1946 return error_mark_node;
1948 /* If any part of the object initialization terminates by throwing an
1949 exception and a suitable deallocation function can be found, the
1950 deallocation function is called to free the memory in which the
1951 object was being constructed, after which the exception continues
1952 to propagate in the context of the new-expression. If no
1953 unambiguous matching deallocation function can be found,
1954 propagating the exception does not cause the object's memory to be
1955 freed. */
1956 if (flag_exceptions && ! use_java_new)
1958 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
1959 tree cleanup;
1961 /* The Standard is unclear here, but the right thing to do
1962 is to use the same method for finding deallocation
1963 functions that we use for finding allocation functions. */
1964 cleanup = build_op_delete_call (dcode, alloc_node, size,
1965 globally_qualified_p,
1966 (placement_allocation_fn_p
1967 ? alloc_call : NULL_TREE),
1968 (placement_allocation_fn_p
1969 ? alloc_fn : NULL_TREE));
1971 if (!cleanup)
1972 /* We're done. */;
1973 else if (stable)
1974 /* This is much simpler if we were able to preevaluate all of
1975 the arguments to the constructor call. */
1976 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
1977 init_expr, cleanup);
1978 else
1979 /* Ack! First we allocate the memory. Then we set our sentry
1980 variable to true, and expand a cleanup that deletes the
1981 memory if sentry is true. Then we run the constructor, and
1982 finally clear the sentry.
1984 We need to do this because we allocate the space first, so
1985 if there are any temporaries with cleanups in the
1986 constructor args and we weren't able to preevaluate them, we
1987 need this EH region to extend until end of full-expression
1988 to preserve nesting. */
1990 tree end, sentry, begin;
1992 begin = get_target_expr (boolean_true_node);
1993 CLEANUP_EH_ONLY (begin) = 1;
1995 sentry = TARGET_EXPR_SLOT (begin);
1997 TARGET_EXPR_CLEANUP (begin)
1998 = build3 (COND_EXPR, void_type_node, sentry,
1999 cleanup, void_zero_node);
2001 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2002 sentry, boolean_false_node);
2004 init_expr
2005 = build2 (COMPOUND_EXPR, void_type_node, begin,
2006 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2007 end));
2012 else
2013 init_expr = NULL_TREE;
2015 /* Now build up the return value in reverse order. */
2017 rval = data_addr;
2019 if (init_expr)
2020 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2021 if (cookie_expr)
2022 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2024 if (rval == alloc_node)
2025 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2026 and return the call (which doesn't need to be adjusted). */
2027 rval = TARGET_EXPR_INITIAL (alloc_expr);
2028 else
2030 if (check_new)
2032 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2033 integer_zero_node);
2034 rval = build_conditional_expr (ifexp, rval, alloc_node);
2037 /* Perform the allocation before anything else, so that ALLOC_NODE
2038 has been initialized before we start using it. */
2039 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2042 if (init_preeval_expr)
2043 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2045 /* Convert to the final type. */
2046 rval = build_nop (pointer_type, rval);
2048 /* A new-expression is never an lvalue. */
2049 gcc_assert (!lvalue_p (rval));
2051 return rval;
2054 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2055 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2056 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2057 NELTS is not NULL, then this is an array-new allocation; TYPE is
2058 the type of the elements in the array and NELTS is the number of
2059 elements in the array. INIT, if non-NULL, is the initializer for
2060 the new object, or void_zero_node to indicate an initializer of
2061 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2062 "::new" rather than just "new". */
2064 tree
2065 build_new (tree placement, tree type, tree nelts, tree init,
2066 int use_global_new)
2068 tree rval;
2069 tree orig_placement;
2070 tree orig_nelts;
2071 tree orig_init;
2073 if (placement == error_mark_node || type == error_mark_node)
2074 return error_mark_node;
2076 orig_placement = placement;
2077 orig_nelts = nelts;
2078 orig_init = init;
2080 if (processing_template_decl)
2082 if (dependent_type_p (type)
2083 || any_type_dependent_arguments_p (placement)
2084 || (nelts && type_dependent_expression_p (nelts))
2085 || (init != void_zero_node
2086 && any_type_dependent_arguments_p (init)))
2087 return build_raw_new_expr (placement, type, nelts, init,
2088 use_global_new);
2089 placement = build_non_dependent_args (placement);
2090 if (nelts)
2091 nelts = build_non_dependent_expr (nelts);
2092 if (init != void_zero_node)
2093 init = build_non_dependent_args (init);
2096 if (nelts)
2098 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2099 pedwarn ("size in array new must have integral type");
2100 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2101 /* It is valid to allocate a zero-element array:
2103 [expr.new]
2105 When the value of the expression in a direct-new-declarator
2106 is zero, the allocation function is called to allocate an
2107 array with no elements. The pointer returned by the
2108 new-expression is non-null. [Note: If the library allocation
2109 function is called, the pointer returned is distinct from the
2110 pointer to any other object.]
2112 However, that is not generally useful, so we issue a
2113 warning. */
2114 if (integer_zerop (nelts))
2115 warning (0, "allocating zero-element array");
2118 /* ``A reference cannot be created by the new operator. A reference
2119 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2120 returned by new.'' ARM 5.3.3 */
2121 if (TREE_CODE (type) == REFERENCE_TYPE)
2123 error ("new cannot be applied to a reference type");
2124 type = TREE_TYPE (type);
2127 if (TREE_CODE (type) == FUNCTION_TYPE)
2129 error ("new cannot be applied to a function type");
2130 return error_mark_node;
2133 rval = build_new_1 (placement, type, nelts, init, use_global_new);
2134 if (rval == error_mark_node)
2135 return error_mark_node;
2137 if (processing_template_decl)
2138 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2139 use_global_new);
2141 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2142 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2143 TREE_NO_WARNING (rval) = 1;
2145 return rval;
2148 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2150 tree
2151 build_java_class_ref (tree type)
2153 tree name = NULL_TREE, class_decl;
2154 static tree CL_suffix = NULL_TREE;
2155 if (CL_suffix == NULL_TREE)
2156 CL_suffix = get_identifier("class$");
2157 if (jclass_node == NULL_TREE)
2159 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2160 if (jclass_node == NULL_TREE)
2162 error ("call to Java constructor, while %<jclass%> undefined");
2163 return error_mark_node;
2165 jclass_node = TREE_TYPE (jclass_node);
2168 /* Mangle the class$ field. */
2170 tree field;
2171 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2172 if (DECL_NAME (field) == CL_suffix)
2174 mangle_decl (field);
2175 name = DECL_ASSEMBLER_NAME (field);
2176 break;
2178 if (!field)
2180 error ("can't find %<class$%> in %qT", type);
2181 return error_mark_node;
2185 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2186 if (class_decl == NULL_TREE)
2188 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2189 TREE_STATIC (class_decl) = 1;
2190 DECL_EXTERNAL (class_decl) = 1;
2191 TREE_PUBLIC (class_decl) = 1;
2192 DECL_ARTIFICIAL (class_decl) = 1;
2193 DECL_IGNORED_P (class_decl) = 1;
2194 pushdecl_top_level (class_decl);
2195 make_decl_rtl (class_decl);
2197 return class_decl;
2200 static tree
2201 build_vec_delete_1 (tree base, tree maxindex, tree type,
2202 special_function_kind auto_delete_vec, int use_global_delete)
2204 tree virtual_size;
2205 tree ptype = build_pointer_type (type = complete_type (type));
2206 tree size_exp = size_in_bytes (type);
2208 /* Temporary variables used by the loop. */
2209 tree tbase, tbase_init;
2211 /* This is the body of the loop that implements the deletion of a
2212 single element, and moves temp variables to next elements. */
2213 tree body;
2215 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2216 tree loop = 0;
2218 /* This is the thing that governs what to do after the loop has run. */
2219 tree deallocate_expr = 0;
2221 /* This is the BIND_EXPR which holds the outermost iterator of the
2222 loop. It is convenient to set this variable up and test it before
2223 executing any other code in the loop.
2224 This is also the containing expression returned by this function. */
2225 tree controller = NULL_TREE;
2227 /* We should only have 1-D arrays here. */
2228 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2230 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2231 goto no_destructor;
2233 /* The below is short by the cookie size. */
2234 virtual_size = size_binop (MULT_EXPR, size_exp,
2235 convert (sizetype, maxindex));
2237 tbase = create_temporary_var (ptype);
2238 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2239 fold_build2 (PLUS_EXPR, ptype,
2240 base,
2241 virtual_size));
2242 DECL_REGISTER (tbase) = 1;
2243 controller = build3 (BIND_EXPR, void_type_node, tbase,
2244 NULL_TREE, NULL_TREE);
2245 TREE_SIDE_EFFECTS (controller) = 1;
2247 body = build1 (EXIT_EXPR, void_type_node,
2248 build2 (EQ_EXPR, boolean_type_node, tbase,
2249 fold_convert (ptype, base)));
2250 body = build_compound_expr
2251 (body, build_modify_expr (tbase, NOP_EXPR,
2252 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2253 body = build_compound_expr
2254 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2255 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2257 loop = build1 (LOOP_EXPR, void_type_node, body);
2258 loop = build_compound_expr (tbase_init, loop);
2260 no_destructor:
2261 /* If the delete flag is one, or anything else with the low bit set,
2262 delete the storage. */
2263 if (auto_delete_vec != sfk_base_destructor)
2265 tree base_tbd;
2267 /* The below is short by the cookie size. */
2268 virtual_size = size_binop (MULT_EXPR, size_exp,
2269 convert (sizetype, maxindex));
2271 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2272 /* no header */
2273 base_tbd = base;
2274 else
2276 tree cookie_size;
2278 cookie_size = targetm.cxx.get_cookie_size (type);
2279 base_tbd
2280 = cp_convert (ptype,
2281 cp_build_binary_op (MINUS_EXPR,
2282 cp_convert (string_type_node,
2283 base),
2284 cookie_size));
2285 /* True size with header. */
2286 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2289 if (auto_delete_vec == sfk_deleting_destructor)
2290 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2291 base_tbd, virtual_size,
2292 use_global_delete & 1,
2293 /*placement=*/NULL_TREE,
2294 /*alloc_fn=*/NULL_TREE);
2297 body = loop;
2298 if (!deallocate_expr)
2300 else if (!body)
2301 body = deallocate_expr;
2302 else
2303 body = build_compound_expr (body, deallocate_expr);
2305 if (!body)
2306 body = integer_zero_node;
2308 /* Outermost wrapper: If pointer is null, punt. */
2309 body = fold_build3 (COND_EXPR, void_type_node,
2310 fold_build2 (NE_EXPR, boolean_type_node, base,
2311 convert (TREE_TYPE (base),
2312 integer_zero_node)),
2313 body, integer_zero_node);
2314 body = build1 (NOP_EXPR, void_type_node, body);
2316 if (controller)
2318 TREE_OPERAND (controller, 1) = body;
2319 body = controller;
2322 if (TREE_CODE (base) == SAVE_EXPR)
2323 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2324 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2326 return convert_to_void (body, /*implicit=*/NULL);
2329 /* Create an unnamed variable of the indicated TYPE. */
2331 tree
2332 create_temporary_var (tree type)
2334 tree decl;
2336 decl = build_decl (VAR_DECL, NULL_TREE, type);
2337 TREE_USED (decl) = 1;
2338 DECL_ARTIFICIAL (decl) = 1;
2339 DECL_IGNORED_P (decl) = 1;
2340 DECL_SOURCE_LOCATION (decl) = input_location;
2341 DECL_CONTEXT (decl) = current_function_decl;
2343 return decl;
2346 /* Create a new temporary variable of the indicated TYPE, initialized
2347 to INIT.
2349 It is not entered into current_binding_level, because that breaks
2350 things when it comes time to do final cleanups (which take place
2351 "outside" the binding contour of the function). */
2353 static tree
2354 get_temp_regvar (tree type, tree init)
2356 tree decl;
2358 decl = create_temporary_var (type);
2359 add_decl_expr (decl);
2361 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2363 return decl;
2366 /* `build_vec_init' returns tree structure that performs
2367 initialization of a vector of aggregate types.
2369 BASE is a reference to the vector, of ARRAY_TYPE.
2370 MAXINDEX is the maximum index of the array (one less than the
2371 number of elements). It is only used if
2372 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2374 INIT is the (possibly NULL) initializer.
2376 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2377 elements in the array are default-initialized.
2379 FROM_ARRAY is 0 if we should init everything with INIT
2380 (i.e., every element initialized from INIT).
2381 FROM_ARRAY is 1 if we should index into INIT in parallel
2382 with initialization of DECL.
2383 FROM_ARRAY is 2 if we should index into INIT in parallel,
2384 but use assignment instead of initialization. */
2386 tree
2387 build_vec_init (tree base, tree maxindex, tree init,
2388 bool explicit_default_init_p,
2389 int from_array)
2391 tree rval;
2392 tree base2 = NULL_TREE;
2393 tree size;
2394 tree itype = NULL_TREE;
2395 tree iterator;
2396 /* The type of the array. */
2397 tree atype = TREE_TYPE (base);
2398 /* The type of an element in the array. */
2399 tree type = TREE_TYPE (atype);
2400 /* The element type reached after removing all outer array
2401 types. */
2402 tree inner_elt_type;
2403 /* The type of a pointer to an element in the array. */
2404 tree ptype;
2405 tree stmt_expr;
2406 tree compound_stmt;
2407 int destroy_temps;
2408 tree try_block = NULL_TREE;
2409 int num_initialized_elts = 0;
2410 bool is_global;
2412 if (TYPE_DOMAIN (atype))
2413 maxindex = array_type_nelts (atype);
2415 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2416 return error_mark_node;
2418 if (explicit_default_init_p)
2419 gcc_assert (!init);
2421 inner_elt_type = strip_array_types (atype);
2422 if (init
2423 && (from_array == 2
2424 ? (!CLASS_TYPE_P (inner_elt_type)
2425 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2426 : !TYPE_NEEDS_CONSTRUCTING (type))
2427 && ((TREE_CODE (init) == CONSTRUCTOR
2428 /* Don't do this if the CONSTRUCTOR might contain something
2429 that might throw and require us to clean up. */
2430 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2431 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2432 || from_array))
2434 /* Do non-default initialization of POD arrays resulting from
2435 brace-enclosed initializers. In this case, digest_init and
2436 store_constructor will handle the semantics for us. */
2438 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2439 return stmt_expr;
2442 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2443 ptype = build_pointer_type (type);
2444 size = size_in_bytes (type);
2445 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2446 base = cp_convert (ptype, decay_conversion (base));
2448 /* The code we are generating looks like:
2450 T* t1 = (T*) base;
2451 T* rval = t1;
2452 ptrdiff_t iterator = maxindex;
2453 try {
2454 for (; iterator != -1; --iterator) {
2455 ... initialize *t1 ...
2456 ++t1;
2458 } catch (...) {
2459 ... destroy elements that were constructed ...
2461 rval;
2464 We can omit the try and catch blocks if we know that the
2465 initialization will never throw an exception, or if the array
2466 elements do not have destructors. We can omit the loop completely if
2467 the elements of the array do not have constructors.
2469 We actually wrap the entire body of the above in a STMT_EXPR, for
2470 tidiness.
2472 When copying from array to another, when the array elements have
2473 only trivial copy constructors, we should use __builtin_memcpy
2474 rather than generating a loop. That way, we could take advantage
2475 of whatever cleverness the back-end has for dealing with copies
2476 of blocks of memory. */
2478 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2479 destroy_temps = stmts_are_full_exprs_p ();
2480 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2481 rval = get_temp_regvar (ptype, base);
2482 base = get_temp_regvar (ptype, rval);
2483 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2485 /* Protect the entire array initialization so that we can destroy
2486 the partially constructed array if an exception is thrown.
2487 But don't do this if we're assigning. */
2488 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2489 && from_array != 2)
2491 try_block = begin_try_block ();
2494 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2496 /* Do non-default initialization of non-POD arrays resulting from
2497 brace-enclosed initializers. */
2498 unsigned HOST_WIDE_INT idx;
2499 tree elt;
2500 from_array = 0;
2502 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2504 tree baseref = build1 (INDIRECT_REF, type, base);
2506 num_initialized_elts++;
2508 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2509 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2510 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2511 else
2512 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2513 elt));
2514 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2516 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2517 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2520 /* Clear out INIT so that we don't get confused below. */
2521 init = NULL_TREE;
2523 else if (from_array)
2525 /* If initializing one array from another, initialize element by
2526 element. We rely upon the below calls the do argument
2527 checking. */
2528 if (init)
2530 base2 = decay_conversion (init);
2531 itype = TREE_TYPE (base2);
2532 base2 = get_temp_regvar (itype, base2);
2533 itype = TREE_TYPE (itype);
2535 else if (TYPE_LANG_SPECIFIC (type)
2536 && TYPE_NEEDS_CONSTRUCTING (type)
2537 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2539 error ("initializer ends prematurely");
2540 return error_mark_node;
2544 /* Now, default-initialize any remaining elements. We don't need to
2545 do that if a) the type does not need constructing, or b) we've
2546 already initialized all the elements.
2548 We do need to keep going if we're copying an array. */
2550 if (from_array
2551 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2552 && ! (host_integerp (maxindex, 0)
2553 && (num_initialized_elts
2554 == tree_low_cst (maxindex, 0) + 1))))
2556 /* If the ITERATOR is equal to -1, then we don't have to loop;
2557 we've already initialized all the elements. */
2558 tree for_stmt;
2559 tree elt_init;
2560 tree to;
2562 for_stmt = begin_for_stmt ();
2563 finish_for_init_stmt (for_stmt);
2564 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2565 build_int_cst (TREE_TYPE (iterator), -1)),
2566 for_stmt);
2567 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2568 for_stmt);
2570 to = build1 (INDIRECT_REF, type, base);
2572 if (from_array)
2574 tree from;
2576 if (base2)
2577 from = build1 (INDIRECT_REF, itype, base2);
2578 else
2579 from = NULL_TREE;
2581 if (from_array == 2)
2582 elt_init = build_modify_expr (to, NOP_EXPR, from);
2583 else if (TYPE_NEEDS_CONSTRUCTING (type))
2584 elt_init = build_aggr_init (to, from, 0);
2585 else if (from)
2586 elt_init = build_modify_expr (to, NOP_EXPR, from);
2587 else
2588 gcc_unreachable ();
2590 else if (TREE_CODE (type) == ARRAY_TYPE)
2592 if (init != 0)
2593 sorry
2594 ("cannot initialize multi-dimensional array with initializer");
2595 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2596 0, 0,
2597 /*explicit_default_init_p=*/false,
2600 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2601 elt_init = (build_modify_expr
2602 (to, INIT_EXPR,
2603 build_zero_init (type, size_one_node,
2604 /*static_storage_p=*/false)));
2605 else
2606 elt_init = build_aggr_init (to, init, 0);
2608 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2609 finish_expr_stmt (elt_init);
2610 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2612 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2613 if (base2)
2614 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2616 finish_for_stmt (for_stmt);
2619 /* Make sure to cleanup any partially constructed elements. */
2620 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2621 && from_array != 2)
2623 tree e;
2624 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2626 /* Flatten multi-dimensional array since build_vec_delete only
2627 expects one-dimensional array. */
2628 if (TREE_CODE (type) == ARRAY_TYPE)
2629 m = cp_build_binary_op (MULT_EXPR, m,
2630 array_type_nelts_total (type));
2632 finish_cleanup_try_block (try_block);
2633 e = build_vec_delete_1 (rval, m,
2634 inner_elt_type, sfk_base_destructor,
2635 /*use_global_delete=*/0);
2636 finish_cleanup (e, try_block);
2639 /* The value of the array initialization is the array itself, RVAL
2640 is a pointer to the first element. */
2641 finish_stmt_expr_expr (rval, stmt_expr);
2643 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2645 /* Now convert make the result have the correct type. */
2646 atype = build_pointer_type (atype);
2647 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2648 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2650 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2651 return stmt_expr;
2654 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2655 build_delete. */
2657 static tree
2658 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2660 tree name;
2661 tree fn;
2662 switch (dtor_kind)
2664 case sfk_complete_destructor:
2665 name = complete_dtor_identifier;
2666 break;
2668 case sfk_base_destructor:
2669 name = base_dtor_identifier;
2670 break;
2672 case sfk_deleting_destructor:
2673 name = deleting_dtor_identifier;
2674 break;
2676 default:
2677 gcc_unreachable ();
2679 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2680 return build_new_method_call (exp, fn,
2681 /*args=*/NULL_TREE,
2682 /*conversion_path=*/NULL_TREE,
2683 flags,
2684 /*fn_p=*/NULL);
2687 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2688 ADDR is an expression which yields the store to be destroyed.
2689 AUTO_DELETE is the name of the destructor to call, i.e., either
2690 sfk_complete_destructor, sfk_base_destructor, or
2691 sfk_deleting_destructor.
2693 FLAGS is the logical disjunction of zero or more LOOKUP_
2694 flags. See cp-tree.h for more info. */
2696 tree
2697 build_delete (tree type, tree addr, special_function_kind auto_delete,
2698 int flags, int use_global_delete)
2700 tree expr;
2702 if (addr == error_mark_node)
2703 return error_mark_node;
2705 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2706 set to `error_mark_node' before it gets properly cleaned up. */
2707 if (type == error_mark_node)
2708 return error_mark_node;
2710 type = TYPE_MAIN_VARIANT (type);
2712 if (TREE_CODE (type) == POINTER_TYPE)
2714 bool complete_p = true;
2716 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2717 if (TREE_CODE (type) == ARRAY_TYPE)
2718 goto handle_array;
2720 /* We don't want to warn about delete of void*, only other
2721 incomplete types. Deleting other incomplete types
2722 invokes undefined behavior, but it is not ill-formed, so
2723 compile to something that would even do The Right Thing
2724 (TM) should the type have a trivial dtor and no delete
2725 operator. */
2726 if (!VOID_TYPE_P (type))
2728 complete_type (type);
2729 if (!COMPLETE_TYPE_P (type))
2731 warning (0, "possible problem detected in invocation of "
2732 "delete operator:");
2733 cxx_incomplete_type_diagnostic (addr, type, 1);
2734 inform ("neither the destructor nor the class-specific "
2735 "operator delete will be called, even if they are "
2736 "declared when the class is defined.");
2737 complete_p = false;
2740 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2741 /* Call the builtin operator delete. */
2742 return build_builtin_delete_call (addr);
2743 if (TREE_SIDE_EFFECTS (addr))
2744 addr = save_expr (addr);
2746 /* Throw away const and volatile on target type of addr. */
2747 addr = convert_force (build_pointer_type (type), addr, 0);
2749 else if (TREE_CODE (type) == ARRAY_TYPE)
2751 handle_array:
2753 if (TYPE_DOMAIN (type) == NULL_TREE)
2755 error ("unknown array size in delete");
2756 return error_mark_node;
2758 return build_vec_delete (addr, array_type_nelts (type),
2759 auto_delete, use_global_delete);
2761 else
2763 /* Don't check PROTECT here; leave that decision to the
2764 destructor. If the destructor is accessible, call it,
2765 else report error. */
2766 addr = build_unary_op (ADDR_EXPR, addr, 0);
2767 if (TREE_SIDE_EFFECTS (addr))
2768 addr = save_expr (addr);
2770 addr = convert_force (build_pointer_type (type), addr, 0);
2773 gcc_assert (IS_AGGR_TYPE (type));
2775 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2777 if (auto_delete != sfk_deleting_destructor)
2778 return void_zero_node;
2780 return build_op_delete_call (DELETE_EXPR, addr,
2781 cxx_sizeof_nowarn (type),
2782 use_global_delete,
2783 /*placement=*/NULL_TREE,
2784 /*alloc_fn=*/NULL_TREE);
2786 else
2788 tree do_delete = NULL_TREE;
2789 tree ifexp;
2791 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2792 lazily_declare_fn (sfk_destructor, type);
2794 /* For `::delete x', we must not use the deleting destructor
2795 since then we would not be sure to get the global `operator
2796 delete'. */
2797 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2799 /* We will use ADDR multiple times so we must save it. */
2800 addr = save_expr (addr);
2801 /* Delete the object. */
2802 do_delete = build_builtin_delete_call (addr);
2803 /* Otherwise, treat this like a complete object destructor
2804 call. */
2805 auto_delete = sfk_complete_destructor;
2807 /* If the destructor is non-virtual, there is no deleting
2808 variant. Instead, we must explicitly call the appropriate
2809 `operator delete' here. */
2810 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2811 && auto_delete == sfk_deleting_destructor)
2813 /* We will use ADDR multiple times so we must save it. */
2814 addr = save_expr (addr);
2815 /* Build the call. */
2816 do_delete = build_op_delete_call (DELETE_EXPR,
2817 addr,
2818 cxx_sizeof_nowarn (type),
2819 /*global_p=*/false,
2820 /*placement=*/NULL_TREE,
2821 /*alloc_fn=*/NULL_TREE);
2822 /* Call the complete object destructor. */
2823 auto_delete = sfk_complete_destructor;
2825 else if (auto_delete == sfk_deleting_destructor
2826 && TYPE_GETS_REG_DELETE (type))
2828 /* Make sure we have access to the member op delete, even though
2829 we'll actually be calling it from the destructor. */
2830 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2831 /*global_p=*/false,
2832 /*placement=*/NULL_TREE,
2833 /*alloc_fn=*/NULL_TREE);
2836 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2837 auto_delete, flags);
2838 if (do_delete)
2839 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2841 if (flags & LOOKUP_DESTRUCTOR)
2842 /* Explicit destructor call; don't check for null pointer. */
2843 ifexp = integer_one_node;
2844 else
2845 /* Handle deleting a null pointer. */
2846 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2848 if (ifexp != integer_one_node)
2849 expr = build3 (COND_EXPR, void_type_node,
2850 ifexp, expr, void_zero_node);
2852 return expr;
2856 /* At the beginning of a destructor, push cleanups that will call the
2857 destructors for our base classes and members.
2859 Called from begin_destructor_body. */
2861 void
2862 push_base_cleanups (void)
2864 tree binfo, base_binfo;
2865 int i;
2866 tree member;
2867 tree expr;
2868 VEC(tree,gc) *vbases;
2870 /* Run destructors for all virtual baseclasses. */
2871 if (CLASSTYPE_VBASECLASSES (current_class_type))
2873 tree cond = (condition_conversion
2874 (build2 (BIT_AND_EXPR, integer_type_node,
2875 current_in_charge_parm,
2876 integer_two_node)));
2878 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2879 order, which is also the right order for pushing cleanups. */
2880 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2881 VEC_iterate (tree, vbases, i, base_binfo); i++)
2883 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2885 expr = build_special_member_call (current_class_ref,
2886 base_dtor_identifier,
2887 NULL_TREE,
2888 base_binfo,
2889 (LOOKUP_NORMAL
2890 | LOOKUP_NONVIRTUAL));
2891 expr = build3 (COND_EXPR, void_type_node, cond,
2892 expr, void_zero_node);
2893 finish_decl_cleanup (NULL_TREE, expr);
2898 /* Take care of the remaining baseclasses. */
2899 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2900 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2902 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2903 || BINFO_VIRTUAL_P (base_binfo))
2904 continue;
2906 expr = build_special_member_call (current_class_ref,
2907 base_dtor_identifier,
2908 NULL_TREE, base_binfo,
2909 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2910 finish_decl_cleanup (NULL_TREE, expr);
2913 for (member = TYPE_FIELDS (current_class_type); member;
2914 member = TREE_CHAIN (member))
2916 if (TREE_TYPE (member) == error_mark_node
2917 || TREE_CODE (member) != FIELD_DECL
2918 || DECL_ARTIFICIAL (member))
2919 continue;
2920 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2922 tree this_member = (build_class_member_access_expr
2923 (current_class_ref, member,
2924 /*access_path=*/NULL_TREE,
2925 /*preserve_reference=*/false));
2926 tree this_type = TREE_TYPE (member);
2927 expr = build_delete (this_type, this_member,
2928 sfk_complete_destructor,
2929 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2931 finish_decl_cleanup (NULL_TREE, expr);
2936 /* Build a C++ vector delete expression.
2937 MAXINDEX is the number of elements to be deleted.
2938 ELT_SIZE is the nominal size of each element in the vector.
2939 BASE is the expression that should yield the store to be deleted.
2940 This function expands (or synthesizes) these calls itself.
2941 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2943 This also calls delete for virtual baseclasses of elements of the vector.
2945 Update: MAXINDEX is no longer needed. The size can be extracted from the
2946 start of the vector for pointers, and from the type for arrays. We still
2947 use MAXINDEX for arrays because it happens to already have one of the
2948 values we'd have to extract. (We could use MAXINDEX with pointers to
2949 confirm the size, and trap if the numbers differ; not clear that it'd
2950 be worth bothering.) */
2952 tree
2953 build_vec_delete (tree base, tree maxindex,
2954 special_function_kind auto_delete_vec, int use_global_delete)
2956 tree type;
2957 tree rval;
2958 tree base_init = NULL_TREE;
2960 type = TREE_TYPE (base);
2962 if (TREE_CODE (type) == POINTER_TYPE)
2964 /* Step back one from start of vector, and read dimension. */
2965 tree cookie_addr;
2967 if (TREE_SIDE_EFFECTS (base))
2969 base_init = get_target_expr (base);
2970 base = TARGET_EXPR_SLOT (base_init);
2972 type = strip_array_types (TREE_TYPE (type));
2973 cookie_addr = build2 (MINUS_EXPR,
2974 build_pointer_type (sizetype),
2975 base,
2976 TYPE_SIZE_UNIT (sizetype));
2977 maxindex = build_indirect_ref (cookie_addr, NULL);
2979 else if (TREE_CODE (type) == ARRAY_TYPE)
2981 /* Get the total number of things in the array, maxindex is a
2982 bad name. */
2983 maxindex = array_type_nelts_total (type);
2984 type = strip_array_types (type);
2985 base = build_unary_op (ADDR_EXPR, base, 1);
2986 if (TREE_SIDE_EFFECTS (base))
2988 base_init = get_target_expr (base);
2989 base = TARGET_EXPR_SLOT (base_init);
2992 else
2994 if (base != error_mark_node)
2995 error ("type to vector delete is neither pointer or array type");
2996 return error_mark_node;
2999 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3000 use_global_delete);
3001 if (base_init)
3002 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3004 return rval;