[committed] Fix minor testsuite problems on H8 after C99 changes
[official-gcc.git] / gcc / fold-const-call.cc
blob36f4eccb812acd2170f36bf6d4f6b565c5f43173
1 /* Constant folding for calls to built-in and internal functions.
2 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "realmpfr.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "options.h"
27 #include "fold-const.h"
28 #include "fold-const-call.h"
29 #include "case-cfn-macros.h"
30 #include "tm.h" /* For C[LT]Z_DEFINED_VALUE_AT_ZERO. */
31 #include "builtins.h"
32 #include "gimple-expr.h"
33 #include "tree-vector-builder.h"
35 /* Functions that test for certain constant types, abstracting away the
36 decision about whether to check for overflow. */
38 static inline bool
39 integer_cst_p (tree t)
41 return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
44 static inline bool
45 real_cst_p (tree t)
47 return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
50 static inline bool
51 complex_cst_p (tree t)
53 return TREE_CODE (t) == COMPLEX_CST;
56 /* Return true if ARG is a size_type_node constant.
57 Store it in *SIZE_OUT if so. */
59 static inline bool
60 size_t_cst_p (tree t, unsigned HOST_WIDE_INT *size_out)
62 if (types_compatible_p (size_type_node, TREE_TYPE (t))
63 && integer_cst_p (t)
64 && tree_fits_uhwi_p (t))
66 *size_out = tree_to_uhwi (t);
67 return true;
69 return false;
72 /* RES is the result of a comparison in which < 0 means "less", 0 means
73 "equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and
74 return it in type TYPE. */
76 tree
77 build_cmp_result (tree type, int res)
79 return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0);
82 /* M is the result of trying to constant-fold an expression (starting
83 with clear MPFR flags) and INEXACT says whether the result in M is
84 exact or inexact. Return true if M can be used as a constant-folded
85 result in format FORMAT, storing the value in *RESULT if so. */
87 static bool
88 do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
89 const real_format *format)
91 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
92 overflow/underflow occurred. If -frounding-math, proceed iff the
93 result of calling FUNC was exact. */
94 if (!mpfr_number_p (m)
95 || mpfr_overflow_p ()
96 || mpfr_underflow_p ()
97 || (flag_rounding_math && inexact))
98 return false;
100 REAL_VALUE_TYPE tmp;
101 real_from_mpfr (&tmp, m, format, MPFR_RNDN);
103 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
104 If the REAL_VALUE_TYPE is zero but the mpfr_t is not, then we
105 underflowed in the conversion. */
106 if (!real_isfinite (&tmp)
107 || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
108 return false;
110 real_convert (result, format, &tmp);
111 return real_identical (result, &tmp);
114 /* Try to evaluate:
116 *RESULT = f (*ARG)
118 in format FORMAT, given that FUNC is the MPFR implementation of f.
119 Return true on success. */
121 static bool
122 do_mpfr_arg1 (real_value *result,
123 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
124 const real_value *arg, const real_format *format)
126 /* To proceed, MPFR must exactly represent the target floating point
127 format, which only happens when the target base equals two. */
128 if (format->b != 2 || !real_isfinite (arg))
129 return false;
131 int prec = format->p;
132 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
134 auto_mpfr m (prec);
135 mpfr_from_real (m, arg, MPFR_RNDN);
136 mpfr_clear_flags ();
137 bool inexact = func (m, m, rnd);
138 bool ok = do_mpfr_ckconv (result, m, inexact, format);
140 return ok;
143 /* Try to evaluate:
145 *RESULT_SIN = sin (*ARG);
146 *RESULT_COS = cos (*ARG);
148 for format FORMAT. Return true on success. */
150 static bool
151 do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
152 const real_value *arg, const real_format *format)
154 /* To proceed, MPFR must exactly represent the target floating point
155 format, which only happens when the target base equals two. */
156 if (format->b != 2 || !real_isfinite (arg))
157 return false;
159 int prec = format->p;
160 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
161 mpfr_t m, ms, mc;
163 mpfr_inits2 (prec, m, ms, mc, NULL);
164 mpfr_from_real (m, arg, MPFR_RNDN);
165 mpfr_clear_flags ();
166 bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
167 bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
168 && do_mpfr_ckconv (result_cos, mc, inexact, format));
169 mpfr_clears (m, ms, mc, NULL);
171 return ok;
174 /* Try to evaluate:
176 *RESULT = f (*ARG0, *ARG1)
178 in format FORMAT, given that FUNC is the MPFR implementation of f.
179 Return true on success. */
181 static bool
182 do_mpfr_arg2 (real_value *result,
183 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
184 const real_value *arg0, const real_value *arg1,
185 const real_format *format)
187 /* To proceed, MPFR must exactly represent the target floating point
188 format, which only happens when the target base equals two. */
189 if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
190 return false;
192 int prec = format->p;
193 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
194 mpfr_t m0, m1;
196 mpfr_inits2 (prec, m0, m1, NULL);
197 mpfr_from_real (m0, arg0, MPFR_RNDN);
198 mpfr_from_real (m1, arg1, MPFR_RNDN);
199 mpfr_clear_flags ();
200 bool inexact = func (m0, m0, m1, rnd);
201 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
202 mpfr_clears (m0, m1, NULL);
204 return ok;
207 /* Try to evaluate:
209 *RESULT = f (ARG0, *ARG1)
211 in format FORMAT, given that FUNC is the MPFR implementation of f.
212 Return true on success. */
214 static bool
215 do_mpfr_arg2 (real_value *result,
216 int (*func) (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t),
217 const wide_int_ref &arg0, const real_value *arg1,
218 const real_format *format)
220 if (format->b != 2 || !real_isfinite (arg1))
221 return false;
223 int prec = format->p;
224 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
226 auto_mpfr m (prec);
227 mpfr_from_real (m, arg1, MPFR_RNDN);
228 mpfr_clear_flags ();
229 bool inexact = func (m, arg0.to_shwi (), m, rnd);
230 bool ok = do_mpfr_ckconv (result, m, inexact, format);
232 return ok;
235 /* Try to evaluate:
237 *RESULT = f (*ARG0, *ARG1, *ARG2)
239 in format FORMAT, given that FUNC is the MPFR implementation of f.
240 Return true on success. */
242 static bool
243 do_mpfr_arg3 (real_value *result,
244 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
245 mpfr_srcptr, mpfr_rnd_t),
246 const real_value *arg0, const real_value *arg1,
247 const real_value *arg2, const real_format *format)
249 /* To proceed, MPFR must exactly represent the target floating point
250 format, which only happens when the target base equals two. */
251 if (format->b != 2
252 || !real_isfinite (arg0)
253 || !real_isfinite (arg1)
254 || !real_isfinite (arg2))
255 return false;
257 int prec = format->p;
258 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
259 mpfr_t m0, m1, m2;
261 mpfr_inits2 (prec, m0, m1, m2, NULL);
262 mpfr_from_real (m0, arg0, MPFR_RNDN);
263 mpfr_from_real (m1, arg1, MPFR_RNDN);
264 mpfr_from_real (m2, arg2, MPFR_RNDN);
265 mpfr_clear_flags ();
266 bool inexact = func (m0, m0, m1, m2, rnd);
267 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
268 mpfr_clears (m0, m1, m2, NULL);
270 return ok;
273 /* M is the result of trying to constant-fold an expression (starting
274 with clear MPFR flags) and INEXACT says whether the result in M is
275 exact or inexact. Return true if M can be used as a constant-folded
276 result in which the real and imaginary parts have format FORMAT.
277 Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
279 static bool
280 do_mpc_ckconv (real_value *result_real, real_value *result_imag,
281 mpc_srcptr m, bool inexact, const real_format *format)
283 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
284 overflow/underflow occurred. If -frounding-math, proceed iff the
285 result of calling FUNC was exact. */
286 if (!mpfr_number_p (mpc_realref (m))
287 || !mpfr_number_p (mpc_imagref (m))
288 || mpfr_overflow_p ()
289 || mpfr_underflow_p ()
290 || (flag_rounding_math && inexact))
291 return false;
293 REAL_VALUE_TYPE tmp_real, tmp_imag;
294 real_from_mpfr (&tmp_real, mpc_realref (m), format, MPFR_RNDN);
295 real_from_mpfr (&tmp_imag, mpc_imagref (m), format, MPFR_RNDN);
297 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
298 If the REAL_VALUE_TYPE is zero but the mpfr_t is not, then we
299 underflowed in the conversion. */
300 if (!real_isfinite (&tmp_real)
301 || !real_isfinite (&tmp_imag)
302 || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
303 || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
304 return false;
306 real_convert (result_real, format, &tmp_real);
307 real_convert (result_imag, format, &tmp_imag);
309 return (real_identical (result_real, &tmp_real)
310 && real_identical (result_imag, &tmp_imag));
313 /* Try to evaluate:
315 RESULT = f (ARG)
317 in format FORMAT, given that FUNC is the mpc implementation of f.
318 Return true on success. Both RESULT and ARG are represented as
319 real and imaginary pairs. */
321 static bool
322 do_mpc_arg1 (real_value *result_real, real_value *result_imag,
323 int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
324 const real_value *arg_real, const real_value *arg_imag,
325 const real_format *format)
327 /* To proceed, MPFR must exactly represent the target floating point
328 format, which only happens when the target base equals two. */
329 if (format->b != 2
330 || !real_isfinite (arg_real)
331 || !real_isfinite (arg_imag))
332 return false;
334 int prec = format->p;
335 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
336 mpc_t m;
338 mpc_init2 (m, prec);
339 mpfr_from_real (mpc_realref (m), arg_real, MPFR_RNDN);
340 mpfr_from_real (mpc_imagref (m), arg_imag, MPFR_RNDN);
341 mpfr_clear_flags ();
342 bool inexact = func (m, m, crnd);
343 bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
344 mpc_clear (m);
346 return ok;
349 /* Try to evaluate:
351 RESULT = f (ARG0, ARG1)
353 in format FORMAT, given that FUNC is the mpc implementation of f.
354 Return true on success. RESULT, ARG0 and ARG1 are represented as
355 real and imaginary pairs. */
357 static bool
358 do_mpc_arg2 (real_value *result_real, real_value *result_imag,
359 int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
360 const real_value *arg0_real, const real_value *arg0_imag,
361 const real_value *arg1_real, const real_value *arg1_imag,
362 const real_format *format)
364 if (!real_isfinite (arg0_real)
365 || !real_isfinite (arg0_imag)
366 || !real_isfinite (arg1_real)
367 || !real_isfinite (arg1_imag))
368 return false;
370 int prec = format->p;
371 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
372 mpc_t m0, m1;
374 mpc_init2 (m0, prec);
375 mpc_init2 (m1, prec);
376 mpfr_from_real (mpc_realref (m0), arg0_real, MPFR_RNDN);
377 mpfr_from_real (mpc_imagref (m0), arg0_imag, MPFR_RNDN);
378 mpfr_from_real (mpc_realref (m1), arg1_real, MPFR_RNDN);
379 mpfr_from_real (mpc_imagref (m1), arg1_imag, MPFR_RNDN);
380 mpfr_clear_flags ();
381 bool inexact = func (m0, m0, m1, crnd);
382 bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
383 mpc_clear (m0);
384 mpc_clear (m1);
386 return ok;
389 /* Try to evaluate:
391 *RESULT = logb (*ARG)
393 in format FORMAT. Return true on success. */
395 static bool
396 fold_const_logb (real_value *result, const real_value *arg,
397 const real_format *format)
399 switch (arg->cl)
401 case rvc_nan:
402 /* If arg is +-NaN, then return it. */
403 *result = *arg;
404 return true;
406 case rvc_inf:
407 /* If arg is +-Inf, then return +Inf. */
408 *result = *arg;
409 result->sign = 0;
410 return true;
412 case rvc_zero:
413 /* Zero may set errno and/or raise an exception. */
414 return false;
416 case rvc_normal:
417 /* For normal numbers, proceed iff radix == 2. In GCC,
418 normalized significands are in the range [0.5, 1.0). We
419 want the exponent as if they were [1.0, 2.0) so get the
420 exponent and subtract 1. */
421 if (format->b == 2)
423 real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
424 return true;
426 return false;
430 /* Try to evaluate:
432 *RESULT = significand (*ARG)
434 in format FORMAT. Return true on success. */
436 static bool
437 fold_const_significand (real_value *result, const real_value *arg,
438 const real_format *format)
440 switch (arg->cl)
442 case rvc_zero:
443 case rvc_nan:
444 case rvc_inf:
445 /* If arg is +-0, +-Inf or +-NaN, then return it. */
446 *result = *arg;
447 return true;
449 case rvc_normal:
450 /* For normal numbers, proceed iff radix == 2. */
451 if (format->b == 2)
453 *result = *arg;
454 /* In GCC, normalized significands are in the range [0.5, 1.0).
455 We want them to be [1.0, 2.0) so set the exponent to 1. */
456 SET_REAL_EXP (result, 1);
457 return true;
459 return false;
463 /* Try to evaluate:
465 *RESULT = f (*ARG)
467 where FORMAT is the format of *ARG and PRECISION is the number of
468 significant bits in the result. Return true on success. */
470 static bool
471 fold_const_conversion (wide_int *result,
472 void (*fn) (real_value *, format_helper,
473 const real_value *),
474 const real_value *arg, unsigned int precision,
475 const real_format *format)
477 if (!real_isfinite (arg))
478 return false;
480 real_value rounded;
481 fn (&rounded, format, arg);
483 bool fail = false;
484 *result = real_to_integer (&rounded, &fail, precision);
485 return !fail;
488 /* Try to evaluate:
490 *RESULT = pow (*ARG0, *ARG1)
492 in format FORMAT. Return true on success. */
494 static bool
495 fold_const_pow (real_value *result, const real_value *arg0,
496 const real_value *arg1, const real_format *format)
498 if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
499 return true;
501 /* Check for an integer exponent. */
502 REAL_VALUE_TYPE cint1;
503 HOST_WIDE_INT n1 = real_to_integer (arg1);
504 real_from_integer (&cint1, VOIDmode, n1, SIGNED);
505 /* Attempt to evaluate pow at compile-time, unless this should
506 raise an exception. */
507 if (real_identical (arg1, &cint1)
508 && (n1 > 0
509 || (!flag_trapping_math && !flag_errno_math)
510 || !real_equal (arg0, &dconst0)))
512 bool inexact = real_powi (result, format, arg0, n1);
513 /* Avoid the folding if flag_signaling_nans is on. */
514 if (flag_unsafe_math_optimizations
515 || (!inexact
516 && !(flag_signaling_nans
517 && REAL_VALUE_ISSIGNALING_NAN (*arg0))))
518 return true;
521 return false;
524 /* Try to evaluate:
526 *RESULT = nextafter (*ARG0, *ARG1)
530 *RESULT = nexttoward (*ARG0, *ARG1)
532 in format FORMAT. Return true on success. */
534 static bool
535 fold_const_nextafter (real_value *result, const real_value *arg0,
536 const real_value *arg1, const real_format *format)
538 if (REAL_VALUE_ISSIGNALING_NAN (*arg0)
539 || REAL_VALUE_ISSIGNALING_NAN (*arg1))
540 return false;
542 /* Don't handle composite modes, nor decimal, nor modes without
543 inf or denorm at least for now. */
544 if (format->pnan < format->p
545 || format->b == 10
546 || !format->has_inf
547 || !format->has_denorm)
548 return false;
550 if (real_nextafter (result, format, arg0, arg1)
551 /* If raising underflow or overflow and setting errno to ERANGE,
552 fail if we care about those side-effects. */
553 && (flag_trapping_math || flag_errno_math))
554 return false;
555 /* Similarly for nextafter (0, 1) raising underflow. */
556 else if (flag_trapping_math
557 && arg0->cl == rvc_zero
558 && result->cl != rvc_zero)
559 return false;
561 real_convert (result, format, result);
563 return true;
566 /* Try to evaluate:
568 *RESULT = ldexp (*ARG0, ARG1)
570 in format FORMAT. Return true on success. */
572 static bool
573 fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
574 const wide_int_ref &arg1,
575 const real_format *format)
577 /* Bound the maximum adjustment to twice the range of the
578 mode's valid exponents. Use abs to ensure the range is
579 positive as a sanity check. */
580 int max_exp_adj = 2 * labs (format->emax - format->emin);
582 /* The requested adjustment must be inside this range. This
583 is a preliminary cap to avoid things like overflow, we
584 may still fail to compute the result for other reasons. */
585 if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
586 return false;
588 /* Don't perform operation if we honor signaling NaNs and
589 operand is a signaling NaN. */
590 if (!flag_unsafe_math_optimizations
591 && flag_signaling_nans
592 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
593 return false;
595 REAL_VALUE_TYPE initial_result;
596 real_ldexp (&initial_result, arg0, arg1.to_shwi ());
598 /* Ensure we didn't overflow. */
599 if (real_isinf (&initial_result))
600 return false;
602 /* Only proceed if the target mode can hold the
603 resulting value. */
604 *result = real_value_truncate (format, initial_result);
605 return real_equal (&initial_result, result);
608 /* Fold a call to __builtin_nan or __builtin_nans with argument ARG and
609 return type TYPE. QUIET is true if a quiet rather than signalling
610 NaN is required. */
612 static tree
613 fold_const_builtin_nan (tree type, tree arg, bool quiet)
615 REAL_VALUE_TYPE real;
616 const char *str = c_getstr (arg);
617 if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
618 return build_real (type, real);
619 return NULL_TREE;
622 /* Fold a call to IFN_REDUC_<CODE> (ARG), returning a value of type TYPE. */
624 static tree
625 fold_const_reduction (tree type, tree arg, tree_code code)
627 unsigned HOST_WIDE_INT nelts;
628 if (TREE_CODE (arg) != VECTOR_CST
629 || !VECTOR_CST_NELTS (arg).is_constant (&nelts))
630 return NULL_TREE;
632 tree res = VECTOR_CST_ELT (arg, 0);
633 for (unsigned HOST_WIDE_INT i = 1; i < nelts; i++)
635 res = const_binop (code, type, res, VECTOR_CST_ELT (arg, i));
636 if (res == NULL_TREE || !CONSTANT_CLASS_P (res))
637 return NULL_TREE;
639 return res;
642 /* Fold a call to IFN_VEC_CONVERT (ARG) returning TYPE. */
644 static tree
645 fold_const_vec_convert (tree ret_type, tree arg)
647 enum tree_code code = NOP_EXPR;
648 tree arg_type = TREE_TYPE (arg);
649 if (TREE_CODE (arg) != VECTOR_CST)
650 return NULL_TREE;
652 gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type));
654 if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
655 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type)))
656 code = FIX_TRUNC_EXPR;
657 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
658 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type)))
659 code = FLOAT_EXPR;
661 /* We can't handle steps directly when extending, since the
662 values need to wrap at the original precision first. */
663 bool step_ok_p
664 = (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
665 && INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
666 && (TYPE_PRECISION (TREE_TYPE (ret_type))
667 <= TYPE_PRECISION (TREE_TYPE (arg_type))));
668 tree_vector_builder elts;
669 if (!elts.new_unary_operation (ret_type, arg, step_ok_p))
670 return NULL_TREE;
672 unsigned int count = elts.encoded_nelts ();
673 for (unsigned int i = 0; i < count; ++i)
675 tree elt = fold_unary (code, TREE_TYPE (ret_type),
676 VECTOR_CST_ELT (arg, i));
677 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
678 return NULL_TREE;
679 elts.quick_push (elt);
682 return elts.build ();
685 /* Try to evaluate:
687 IFN_WHILE_ULT (ARG0, ARG1, (TYPE) { ... })
689 Return the value on success and null on failure. */
691 static tree
692 fold_while_ult (tree type, poly_uint64 arg0, poly_uint64 arg1)
694 if (known_ge (arg0, arg1))
695 return build_zero_cst (type);
697 if (maybe_ge (arg0, arg1))
698 return NULL_TREE;
700 poly_uint64 diff = arg1 - arg0;
701 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
702 if (known_ge (diff, nelts))
703 return build_all_ones_cst (type);
705 unsigned HOST_WIDE_INT const_diff;
706 if (known_le (diff, nelts) && diff.is_constant (&const_diff))
708 tree minus_one = build_minus_one_cst (TREE_TYPE (type));
709 tree zero = build_zero_cst (TREE_TYPE (type));
710 return build_vector_a_then_b (type, const_diff, minus_one, zero);
712 return NULL_TREE;
715 /* Try to evaluate:
717 *RESULT = FN (*ARG)
719 in format FORMAT. Return true on success. */
721 static bool
722 fold_const_call_ss (real_value *result, combined_fn fn,
723 const real_value *arg, const real_format *format)
725 switch (fn)
727 CASE_CFN_SQRT:
728 CASE_CFN_SQRT_FN:
729 return (real_compare (GE_EXPR, arg, &dconst0)
730 && do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
732 CASE_CFN_CBRT:
733 CASE_CFN_CBRT_FN:
734 return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
736 CASE_CFN_ASIN:
737 CASE_CFN_ASIN_FN:
738 return (real_compare (GE_EXPR, arg, &dconstm1)
739 && real_compare (LE_EXPR, arg, &dconst1)
740 && do_mpfr_arg1 (result, mpfr_asin, arg, format));
742 CASE_CFN_ACOS:
743 CASE_CFN_ACOS_FN:
744 return (real_compare (GE_EXPR, arg, &dconstm1)
745 && real_compare (LE_EXPR, arg, &dconst1)
746 && do_mpfr_arg1 (result, mpfr_acos, arg, format));
748 CASE_CFN_ATAN:
749 CASE_CFN_ATAN_FN:
750 return do_mpfr_arg1 (result, mpfr_atan, arg, format);
752 CASE_CFN_ASINH:
753 CASE_CFN_ASINH_FN:
754 return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
756 CASE_CFN_ACOSH:
757 CASE_CFN_ACOSH_FN:
758 return (real_compare (GE_EXPR, arg, &dconst1)
759 && do_mpfr_arg1 (result, mpfr_acosh, arg, format));
761 CASE_CFN_ATANH:
762 CASE_CFN_ATANH_FN:
763 return (real_compare (GE_EXPR, arg, &dconstm1)
764 && real_compare (LE_EXPR, arg, &dconst1)
765 && do_mpfr_arg1 (result, mpfr_atanh, arg, format));
767 CASE_CFN_SIN:
768 CASE_CFN_SIN_FN:
769 return do_mpfr_arg1 (result, mpfr_sin, arg, format);
771 CASE_CFN_COS:
772 CASE_CFN_COS_FN:
773 return do_mpfr_arg1 (result, mpfr_cos, arg, format);
775 CASE_CFN_TAN:
776 CASE_CFN_TAN_FN:
777 return do_mpfr_arg1 (result, mpfr_tan, arg, format);
779 CASE_CFN_SINH:
780 CASE_CFN_SINH_FN:
781 return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
783 CASE_CFN_COSH:
784 CASE_CFN_COSH_FN:
785 return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
787 CASE_CFN_TANH:
788 CASE_CFN_TANH_FN:
789 return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
791 CASE_CFN_ERF:
792 CASE_CFN_ERF_FN:
793 return do_mpfr_arg1 (result, mpfr_erf, arg, format);
795 CASE_CFN_ERFC:
796 CASE_CFN_ERFC_FN:
797 return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
799 CASE_CFN_TGAMMA:
800 CASE_CFN_TGAMMA_FN:
801 return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
803 CASE_CFN_EXP:
804 CASE_CFN_EXP_FN:
805 return do_mpfr_arg1 (result, mpfr_exp, arg, format);
807 CASE_CFN_EXP2:
808 CASE_CFN_EXP2_FN:
809 return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
811 CASE_CFN_EXP10:
812 CASE_CFN_POW10:
813 return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
815 CASE_CFN_EXPM1:
816 CASE_CFN_EXPM1_FN:
817 return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
819 CASE_CFN_LOG:
820 CASE_CFN_LOG_FN:
821 return (real_compare (GT_EXPR, arg, &dconst0)
822 && do_mpfr_arg1 (result, mpfr_log, arg, format));
824 CASE_CFN_LOG2:
825 CASE_CFN_LOG2_FN:
826 return (real_compare (GT_EXPR, arg, &dconst0)
827 && do_mpfr_arg1 (result, mpfr_log2, arg, format));
829 CASE_CFN_LOG10:
830 CASE_CFN_LOG10_FN:
831 return (real_compare (GT_EXPR, arg, &dconst0)
832 && do_mpfr_arg1 (result, mpfr_log10, arg, format));
834 CASE_CFN_LOG1P:
835 CASE_CFN_LOG1P_FN:
836 return (real_compare (GT_EXPR, arg, &dconstm1)
837 && do_mpfr_arg1 (result, mpfr_log1p, arg, format));
839 CASE_CFN_J0:
840 return do_mpfr_arg1 (result, mpfr_j0, arg, format);
842 CASE_CFN_J1:
843 return do_mpfr_arg1 (result, mpfr_j1, arg, format);
845 CASE_CFN_Y0:
846 return (real_compare (GT_EXPR, arg, &dconst0)
847 && do_mpfr_arg1 (result, mpfr_y0, arg, format));
849 CASE_CFN_Y1:
850 return (real_compare (GT_EXPR, arg, &dconst0)
851 && do_mpfr_arg1 (result, mpfr_y1, arg, format));
853 CASE_CFN_FLOOR:
854 CASE_CFN_FLOOR_FN:
855 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
857 real_floor (result, format, arg);
858 return true;
860 return false;
862 CASE_CFN_CEIL:
863 CASE_CFN_CEIL_FN:
864 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
866 real_ceil (result, format, arg);
867 return true;
869 return false;
871 CASE_CFN_TRUNC:
872 CASE_CFN_TRUNC_FN:
873 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
875 real_trunc (result, format, arg);
876 return true;
878 return false;
880 CASE_CFN_ROUND:
881 CASE_CFN_ROUND_FN:
882 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
884 real_round (result, format, arg);
885 return true;
887 return false;
889 CASE_CFN_ROUNDEVEN:
890 CASE_CFN_ROUNDEVEN_FN:
891 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
893 real_roundeven (result, format, arg);
894 return true;
896 return false;
898 CASE_CFN_LOGB:
899 CASE_CFN_LOGB_FN:
900 return fold_const_logb (result, arg, format);
902 CASE_CFN_SIGNIFICAND:
903 return fold_const_significand (result, arg, format);
905 default:
906 return false;
910 /* Try to evaluate:
912 *RESULT = FN (*ARG)
914 where FORMAT is the format of ARG and PRECISION is the number of
915 significant bits in the result. Return true on success. */
917 static bool
918 fold_const_call_ss (wide_int *result, combined_fn fn,
919 const real_value *arg, unsigned int precision,
920 const real_format *format)
922 switch (fn)
924 CASE_CFN_SIGNBIT:
925 if (real_isneg (arg))
926 *result = wi::one (precision);
927 else
928 *result = wi::zero (precision);
929 return true;
931 CASE_CFN_ILOGB:
932 CASE_CFN_ILOGB_FN:
933 /* For ilogb we don't know FP_ILOGB0, so only handle normal values.
934 Proceed iff radix == 2. In GCC, normalized significands are in
935 the range [0.5, 1.0). We want the exponent as if they were
936 [1.0, 2.0) so get the exponent and subtract 1. */
937 if (arg->cl == rvc_normal && format->b == 2)
939 *result = wi::shwi (REAL_EXP (arg) - 1, precision);
940 return true;
942 return false;
944 CASE_CFN_ICEIL:
945 CASE_CFN_LCEIL:
946 CASE_CFN_LLCEIL:
947 return fold_const_conversion (result, real_ceil, arg,
948 precision, format);
950 CASE_CFN_LFLOOR:
951 CASE_CFN_IFLOOR:
952 CASE_CFN_LLFLOOR:
953 return fold_const_conversion (result, real_floor, arg,
954 precision, format);
956 CASE_CFN_IROUND:
957 CASE_CFN_LROUND:
958 CASE_CFN_LROUND_FN:
959 CASE_CFN_LLROUND:
960 CASE_CFN_LLROUND_FN:
961 return fold_const_conversion (result, real_round, arg,
962 precision, format);
964 CASE_CFN_IRINT:
965 CASE_CFN_LRINT:
966 CASE_CFN_LRINT_FN:
967 CASE_CFN_LLRINT:
968 CASE_CFN_LLRINT_FN:
969 /* Not yet folded to a constant. */
970 return false;
972 CASE_CFN_FINITE:
973 case CFN_BUILT_IN_FINITED32:
974 case CFN_BUILT_IN_FINITED64:
975 case CFN_BUILT_IN_FINITED128:
976 case CFN_BUILT_IN_ISFINITE:
977 *result = wi::shwi (real_isfinite (arg) ? 1 : 0, precision);
978 return true;
980 case CFN_BUILT_IN_ISSIGNALING:
981 *result = wi::shwi (real_issignaling_nan (arg) ? 1 : 0, precision);
982 return true;
984 CASE_CFN_ISINF:
985 case CFN_BUILT_IN_ISINFD32:
986 case CFN_BUILT_IN_ISINFD64:
987 case CFN_BUILT_IN_ISINFD128:
988 if (real_isinf (arg))
989 *result = wi::shwi (arg->sign ? -1 : 1, precision);
990 else
991 *result = wi::shwi (0, precision);
992 return true;
994 CASE_CFN_ISNAN:
995 case CFN_BUILT_IN_ISNAND32:
996 case CFN_BUILT_IN_ISNAND64:
997 case CFN_BUILT_IN_ISNAND128:
998 *result = wi::shwi (real_isnan (arg) ? 1 : 0, precision);
999 return true;
1001 default:
1002 return false;
1006 /* Try to evaluate:
1008 *RESULT = FN (ARG)
1010 where ARG_TYPE is the type of ARG and PRECISION is the number of bits
1011 in the result. Return true on success. */
1013 static bool
1014 fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg,
1015 unsigned int precision, tree arg_type)
1017 switch (fn)
1019 CASE_CFN_FFS:
1020 case CFN_BUILT_IN_FFSG:
1021 *result = wi::shwi (wi::ffs (arg), precision);
1022 return true;
1024 CASE_CFN_CLZ:
1025 case CFN_BUILT_IN_CLZG:
1027 int tmp;
1028 if (wi::ne_p (arg, 0))
1029 tmp = wi::clz (arg);
1030 else if (TREE_CODE (arg_type) == BITINT_TYPE)
1031 tmp = TYPE_PRECISION (arg_type);
1032 else if (!CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
1033 tmp))
1034 tmp = TYPE_PRECISION (arg_type);
1035 *result = wi::shwi (tmp, precision);
1036 return true;
1039 CASE_CFN_CTZ:
1040 case CFN_BUILT_IN_CTZG:
1042 int tmp;
1043 if (wi::ne_p (arg, 0))
1044 tmp = wi::ctz (arg);
1045 else if (TREE_CODE (arg_type) == BITINT_TYPE)
1046 tmp = TYPE_PRECISION (arg_type);
1047 else if (!CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
1048 tmp))
1049 tmp = TYPE_PRECISION (arg_type);
1050 *result = wi::shwi (tmp, precision);
1051 return true;
1054 CASE_CFN_CLRSB:
1055 case CFN_BUILT_IN_CLRSBG:
1056 *result = wi::shwi (wi::clrsb (arg), precision);
1057 return true;
1059 CASE_CFN_POPCOUNT:
1060 case CFN_BUILT_IN_POPCOUNTG:
1061 *result = wi::shwi (wi::popcount (arg), precision);
1062 return true;
1064 CASE_CFN_PARITY:
1065 case CFN_BUILT_IN_PARITYG:
1066 *result = wi::shwi (wi::parity (arg), precision);
1067 return true;
1069 case CFN_BUILT_IN_BSWAP16:
1070 case CFN_BUILT_IN_BSWAP32:
1071 case CFN_BUILT_IN_BSWAP64:
1072 case CFN_BUILT_IN_BSWAP128:
1073 *result = wi::bswap (wide_int::from (arg, precision,
1074 TYPE_SIGN (arg_type)));
1075 return true;
1077 default:
1078 return false;
1082 /* Try to evaluate:
1084 RESULT = FN (*ARG)
1086 where FORMAT is the format of ARG and of the real and imaginary parts
1087 of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
1088 true on success. */
1090 static bool
1091 fold_const_call_cs (real_value *result_real, real_value *result_imag,
1092 combined_fn fn, const real_value *arg,
1093 const real_format *format)
1095 switch (fn)
1097 CASE_CFN_CEXPI:
1098 /* cexpi(x+yi) = cos(x)+sin(y)*i. */
1099 return do_mpfr_sincos (result_imag, result_real, arg, format);
1101 default:
1102 return false;
1106 /* Try to evaluate:
1108 *RESULT = fn (ARG)
1110 where FORMAT is the format of RESULT and of the real and imaginary parts
1111 of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
1112 success. */
1114 static bool
1115 fold_const_call_sc (real_value *result, combined_fn fn,
1116 const real_value *arg_real, const real_value *arg_imag,
1117 const real_format *format)
1119 switch (fn)
1121 CASE_CFN_CABS:
1122 CASE_CFN_CABS_FN:
1123 return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
1125 default:
1126 return false;
1130 /* Try to evaluate:
1132 RESULT = fn (ARG)
1134 where FORMAT is the format of the real and imaginary parts of RESULT
1135 (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
1136 Return true on success. */
1138 static bool
1139 fold_const_call_cc (real_value *result_real, real_value *result_imag,
1140 combined_fn fn, const real_value *arg_real,
1141 const real_value *arg_imag, const real_format *format)
1143 switch (fn)
1145 CASE_CFN_CCOS:
1146 CASE_CFN_CCOS_FN:
1147 return do_mpc_arg1 (result_real, result_imag, mpc_cos,
1148 arg_real, arg_imag, format);
1150 CASE_CFN_CCOSH:
1151 CASE_CFN_CCOSH_FN:
1152 return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
1153 arg_real, arg_imag, format);
1155 CASE_CFN_CPROJ:
1156 CASE_CFN_CPROJ_FN:
1157 if (real_isinf (arg_real) || real_isinf (arg_imag))
1159 *result_real = dconstinf;
1160 *result_imag = dconst0;
1161 result_imag->sign = arg_imag->sign;
1163 else
1165 *result_real = *arg_real;
1166 *result_imag = *arg_imag;
1168 return true;
1170 CASE_CFN_CSIN:
1171 CASE_CFN_CSIN_FN:
1172 return do_mpc_arg1 (result_real, result_imag, mpc_sin,
1173 arg_real, arg_imag, format);
1175 CASE_CFN_CSINH:
1176 CASE_CFN_CSINH_FN:
1177 return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
1178 arg_real, arg_imag, format);
1180 CASE_CFN_CTAN:
1181 CASE_CFN_CTAN_FN:
1182 return do_mpc_arg1 (result_real, result_imag, mpc_tan,
1183 arg_real, arg_imag, format);
1185 CASE_CFN_CTANH:
1186 CASE_CFN_CTANH_FN:
1187 return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
1188 arg_real, arg_imag, format);
1190 CASE_CFN_CLOG:
1191 CASE_CFN_CLOG_FN:
1192 return do_mpc_arg1 (result_real, result_imag, mpc_log,
1193 arg_real, arg_imag, format);
1195 CASE_CFN_CSQRT:
1196 CASE_CFN_CSQRT_FN:
1197 return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
1198 arg_real, arg_imag, format);
1200 CASE_CFN_CASIN:
1201 CASE_CFN_CASIN_FN:
1202 return do_mpc_arg1 (result_real, result_imag, mpc_asin,
1203 arg_real, arg_imag, format);
1205 CASE_CFN_CACOS:
1206 CASE_CFN_CACOS_FN:
1207 return do_mpc_arg1 (result_real, result_imag, mpc_acos,
1208 arg_real, arg_imag, format);
1210 CASE_CFN_CATAN:
1211 CASE_CFN_CATAN_FN:
1212 return do_mpc_arg1 (result_real, result_imag, mpc_atan,
1213 arg_real, arg_imag, format);
1215 CASE_CFN_CASINH:
1216 CASE_CFN_CASINH_FN:
1217 return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
1218 arg_real, arg_imag, format);
1220 CASE_CFN_CACOSH:
1221 CASE_CFN_CACOSH_FN:
1222 return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
1223 arg_real, arg_imag, format);
1225 CASE_CFN_CATANH:
1226 CASE_CFN_CATANH_FN:
1227 return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
1228 arg_real, arg_imag, format);
1230 CASE_CFN_CEXP:
1231 CASE_CFN_CEXP_FN:
1232 return do_mpc_arg1 (result_real, result_imag, mpc_exp,
1233 arg_real, arg_imag, format);
1235 default:
1236 return false;
1240 /* Subroutine of fold_const_call, with the same interface. Handle cases
1241 where the arguments and result are numerical. */
1243 static tree
1244 fold_const_call_1 (combined_fn fn, tree type, tree arg)
1246 machine_mode mode = TYPE_MODE (type);
1247 machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
1249 if (integer_cst_p (arg))
1251 if (SCALAR_INT_MODE_P (mode))
1253 wide_int result;
1254 if (fold_const_call_ss (&result, fn, wi::to_wide (arg),
1255 TYPE_PRECISION (type), TREE_TYPE (arg)))
1256 return wide_int_to_tree (type, result);
1258 return NULL_TREE;
1261 if (real_cst_p (arg))
1263 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
1264 if (mode == arg_mode)
1266 /* real -> real. */
1267 REAL_VALUE_TYPE result;
1268 if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
1269 REAL_MODE_FORMAT (mode)))
1270 return build_real (type, result);
1272 else if (COMPLEX_MODE_P (mode)
1273 && GET_MODE_INNER (mode) == arg_mode)
1275 /* real -> complex real. */
1276 REAL_VALUE_TYPE result_real, result_imag;
1277 if (fold_const_call_cs (&result_real, &result_imag, fn,
1278 TREE_REAL_CST_PTR (arg),
1279 REAL_MODE_FORMAT (arg_mode)))
1280 return build_complex (type,
1281 build_real (TREE_TYPE (type), result_real),
1282 build_real (TREE_TYPE (type), result_imag));
1284 else if (INTEGRAL_TYPE_P (type))
1286 /* real -> int. */
1287 wide_int result;
1288 if (fold_const_call_ss (&result, fn,
1289 TREE_REAL_CST_PTR (arg),
1290 TYPE_PRECISION (type),
1291 REAL_MODE_FORMAT (arg_mode)))
1292 return wide_int_to_tree (type, result);
1294 return NULL_TREE;
1297 if (complex_cst_p (arg))
1299 gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
1300 machine_mode inner_mode = GET_MODE_INNER (arg_mode);
1301 tree argr = TREE_REALPART (arg);
1302 tree argi = TREE_IMAGPART (arg);
1303 if (mode == arg_mode
1304 && real_cst_p (argr)
1305 && real_cst_p (argi))
1307 /* complex real -> complex real. */
1308 REAL_VALUE_TYPE result_real, result_imag;
1309 if (fold_const_call_cc (&result_real, &result_imag, fn,
1310 TREE_REAL_CST_PTR (argr),
1311 TREE_REAL_CST_PTR (argi),
1312 REAL_MODE_FORMAT (inner_mode)))
1313 return build_complex (type,
1314 build_real (TREE_TYPE (type), result_real),
1315 build_real (TREE_TYPE (type), result_imag));
1317 if (mode == inner_mode
1318 && real_cst_p (argr)
1319 && real_cst_p (argi))
1321 /* complex real -> real. */
1322 REAL_VALUE_TYPE result;
1323 if (fold_const_call_sc (&result, fn,
1324 TREE_REAL_CST_PTR (argr),
1325 TREE_REAL_CST_PTR (argi),
1326 REAL_MODE_FORMAT (inner_mode)))
1327 return build_real (type, result);
1329 return NULL_TREE;
1332 return NULL_TREE;
1335 /* Try to fold FN (ARG) to a constant. Return the constant on success,
1336 otherwise return null. TYPE is the type of the return value. */
1338 tree
1339 fold_const_call (combined_fn fn, tree type, tree arg)
1341 switch (fn)
1343 case CFN_BUILT_IN_STRLEN:
1344 if (const char *str = c_getstr (arg))
1345 return build_int_cst (type, strlen (str));
1346 return NULL_TREE;
1348 CASE_CFN_NAN:
1349 CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NAN):
1350 case CFN_BUILT_IN_NAND32:
1351 case CFN_BUILT_IN_NAND64:
1352 case CFN_BUILT_IN_NAND128:
1353 return fold_const_builtin_nan (type, arg, true);
1355 CASE_CFN_NANS:
1356 CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NANS):
1357 case CFN_BUILT_IN_NANSF16B:
1358 case CFN_BUILT_IN_NANSD32:
1359 case CFN_BUILT_IN_NANSD64:
1360 case CFN_BUILT_IN_NANSD128:
1361 return fold_const_builtin_nan (type, arg, false);
1363 case CFN_REDUC_PLUS:
1364 return fold_const_reduction (type, arg, PLUS_EXPR);
1366 case CFN_REDUC_MAX:
1367 return fold_const_reduction (type, arg, MAX_EXPR);
1369 case CFN_REDUC_MIN:
1370 return fold_const_reduction (type, arg, MIN_EXPR);
1372 case CFN_REDUC_AND:
1373 return fold_const_reduction (type, arg, BIT_AND_EXPR);
1375 case CFN_REDUC_IOR:
1376 return fold_const_reduction (type, arg, BIT_IOR_EXPR);
1378 case CFN_REDUC_XOR:
1379 return fold_const_reduction (type, arg, BIT_XOR_EXPR);
1381 case CFN_VEC_CONVERT:
1382 return fold_const_vec_convert (type, arg);
1384 default:
1385 return fold_const_call_1 (fn, type, arg);
1389 /* Fold a call to IFN_FOLD_LEFT_<CODE> (ARG0, ARG1), returning a value
1390 of type TYPE. */
1392 static tree
1393 fold_const_fold_left (tree type, tree arg0, tree arg1, tree_code code)
1395 if (TREE_CODE (arg1) != VECTOR_CST)
1396 return NULL_TREE;
1398 unsigned HOST_WIDE_INT nelts;
1399 if (!VECTOR_CST_NELTS (arg1).is_constant (&nelts))
1400 return NULL_TREE;
1402 for (unsigned HOST_WIDE_INT i = 0; i < nelts; i++)
1404 arg0 = const_binop (code, type, arg0, VECTOR_CST_ELT (arg1, i));
1405 if (arg0 == NULL_TREE || !CONSTANT_CLASS_P (arg0))
1406 return NULL_TREE;
1408 return arg0;
1411 /* Try to evaluate:
1413 *RESULT = FN (*ARG0, *ARG1)
1415 in format FORMAT. Return true on success. */
1417 static bool
1418 fold_const_call_sss (real_value *result, combined_fn fn,
1419 const real_value *arg0, const real_value *arg1,
1420 const real_format *format)
1422 switch (fn)
1424 CASE_CFN_DREM:
1425 CASE_CFN_REMAINDER:
1426 CASE_CFN_REMAINDER_FN:
1427 return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
1429 CASE_CFN_ATAN2:
1430 CASE_CFN_ATAN2_FN:
1431 return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
1433 CASE_CFN_FDIM:
1434 CASE_CFN_FDIM_FN:
1435 return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
1437 CASE_CFN_FMOD:
1438 CASE_CFN_FMOD_FN:
1439 return do_mpfr_arg2 (result, mpfr_fmod, arg0, arg1, format);
1441 CASE_CFN_HYPOT:
1442 CASE_CFN_HYPOT_FN:
1443 return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
1445 CASE_CFN_COPYSIGN:
1446 CASE_CFN_COPYSIGN_FN:
1447 *result = *arg0;
1448 real_copysign (result, arg1);
1449 return true;
1451 CASE_CFN_FMIN:
1452 CASE_CFN_FMIN_FN:
1453 return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
1455 CASE_CFN_FMAX:
1456 CASE_CFN_FMAX_FN:
1457 return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
1459 CASE_CFN_POW:
1460 CASE_CFN_POW_FN:
1461 return fold_const_pow (result, arg0, arg1, format);
1463 CASE_CFN_NEXTAFTER:
1464 CASE_CFN_NEXTAFTER_FN:
1465 case CFN_BUILT_IN_NEXTAFTERF16B:
1466 CASE_CFN_NEXTTOWARD:
1467 return fold_const_nextafter (result, arg0, arg1, format);
1469 default:
1470 return false;
1474 /* Try to evaluate:
1476 *RESULT = FN (*ARG0, ARG1)
1478 where FORMAT is the format of *RESULT and *ARG0. Return true on
1479 success. */
1481 static bool
1482 fold_const_call_sss (real_value *result, combined_fn fn,
1483 const real_value *arg0, const wide_int_ref &arg1,
1484 const real_format *format)
1486 switch (fn)
1488 CASE_CFN_LDEXP:
1489 CASE_CFN_LDEXP_FN:
1490 return fold_const_builtin_load_exponent (result, arg0, arg1, format);
1492 CASE_CFN_SCALBN:
1493 CASE_CFN_SCALBN_FN:
1494 CASE_CFN_SCALBLN:
1495 CASE_CFN_SCALBLN_FN:
1496 return (format->b == 2
1497 && fold_const_builtin_load_exponent (result, arg0, arg1,
1498 format));
1500 CASE_CFN_POWI:
1501 /* Avoid the folding if flag_signaling_nans is on and
1502 operand is a signaling NaN. */
1503 if (!flag_unsafe_math_optimizations
1504 && flag_signaling_nans
1505 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
1506 return false;
1508 real_powi (result, format, arg0, arg1.to_shwi ());
1509 return true;
1511 default:
1512 return false;
1516 /* Try to evaluate:
1518 *RESULT = FN (ARG0, *ARG1)
1520 where FORMAT is the format of *RESULT and *ARG1. Return true on
1521 success. */
1523 static bool
1524 fold_const_call_sss (real_value *result, combined_fn fn,
1525 const wide_int_ref &arg0, const real_value *arg1,
1526 const real_format *format)
1528 switch (fn)
1530 CASE_CFN_JN:
1531 return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
1533 CASE_CFN_YN:
1534 return (real_compare (GT_EXPR, arg1, &dconst0)
1535 && do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
1537 default:
1538 return false;
1542 /* Try to evaluate:
1544 *RESULT = FN (ARG0, ARG1)
1546 where ARG_TYPE is the type of ARG0 and PRECISION is the number of bits in
1547 the result. Return true on success. */
1549 static bool
1550 fold_const_call_sss (wide_int *result, combined_fn fn,
1551 const wide_int_ref &arg0, const wide_int_ref &arg1,
1552 unsigned int precision, tree arg_type ATTRIBUTE_UNUSED)
1554 switch (fn)
1556 case CFN_CLZ:
1557 case CFN_BUILT_IN_CLZG:
1559 int tmp;
1560 if (wi::ne_p (arg0, 0))
1561 tmp = wi::clz (arg0);
1562 else
1563 tmp = arg1.to_shwi ();
1564 *result = wi::shwi (tmp, precision);
1565 return true;
1568 case CFN_CTZ:
1569 case CFN_BUILT_IN_CTZG:
1571 int tmp;
1572 if (wi::ne_p (arg0, 0))
1573 tmp = wi::ctz (arg0);
1574 else
1575 tmp = arg1.to_shwi ();
1576 *result = wi::shwi (tmp, precision);
1577 return true;
1580 default:
1581 return false;
1585 /* Try to evaluate:
1587 RESULT = fn (ARG0, ARG1)
1589 where FORMAT is the format of the real and imaginary parts of RESULT
1590 (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
1591 and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
1593 static bool
1594 fold_const_call_ccc (real_value *result_real, real_value *result_imag,
1595 combined_fn fn, const real_value *arg0_real,
1596 const real_value *arg0_imag, const real_value *arg1_real,
1597 const real_value *arg1_imag, const real_format *format)
1599 switch (fn)
1601 CASE_CFN_CPOW:
1602 CASE_CFN_CPOW_FN:
1603 return do_mpc_arg2 (result_real, result_imag, mpc_pow,
1604 arg0_real, arg0_imag, arg1_real, arg1_imag, format);
1606 default:
1607 return false;
1611 /* Subroutine of fold_const_call, with the same interface. Handle cases
1612 where the arguments and result are numerical. */
1614 static tree
1615 fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1)
1617 machine_mode mode = TYPE_MODE (type);
1618 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1619 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1621 if (integer_cst_p (arg0) && integer_cst_p (arg1))
1623 if (SCALAR_INT_MODE_P (mode))
1625 wide_int result;
1626 if (fold_const_call_sss (&result, fn, wi::to_wide (arg0),
1627 wi::to_wide (arg1), TYPE_PRECISION (type),
1628 TREE_TYPE (arg0)))
1629 return wide_int_to_tree (type, result);
1631 return NULL_TREE;
1634 if (mode == arg0_mode
1635 && real_cst_p (arg0)
1636 && real_cst_p (arg1))
1638 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1639 REAL_VALUE_TYPE result;
1640 if (arg0_mode == arg1_mode)
1642 /* real, real -> real. */
1643 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1644 TREE_REAL_CST_PTR (arg1),
1645 REAL_MODE_FORMAT (mode)))
1646 return build_real (type, result);
1648 else if (arg1_mode == TYPE_MODE (long_double_type_node))
1649 switch (fn)
1651 CASE_CFN_NEXTTOWARD:
1652 /* real, long double -> real. */
1653 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1654 TREE_REAL_CST_PTR (arg1),
1655 REAL_MODE_FORMAT (mode)))
1656 return build_real (type, result);
1657 break;
1658 default:
1659 break;
1661 return NULL_TREE;
1664 if (real_cst_p (arg0)
1665 && integer_cst_p (arg1))
1667 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1668 if (mode == arg0_mode)
1670 /* real, int -> real. */
1671 REAL_VALUE_TYPE result;
1672 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1673 wi::to_wide (arg1),
1674 REAL_MODE_FORMAT (mode)))
1675 return build_real (type, result);
1677 return NULL_TREE;
1680 if (integer_cst_p (arg0)
1681 && real_cst_p (arg1))
1683 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
1684 if (mode == arg1_mode)
1686 /* int, real -> real. */
1687 REAL_VALUE_TYPE result;
1688 if (fold_const_call_sss (&result, fn, wi::to_wide (arg0),
1689 TREE_REAL_CST_PTR (arg1),
1690 REAL_MODE_FORMAT (mode)))
1691 return build_real (type, result);
1693 return NULL_TREE;
1696 if (arg0_mode == arg1_mode
1697 && complex_cst_p (arg0)
1698 && complex_cst_p (arg1))
1700 gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
1701 machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
1702 tree arg0r = TREE_REALPART (arg0);
1703 tree arg0i = TREE_IMAGPART (arg0);
1704 tree arg1r = TREE_REALPART (arg1);
1705 tree arg1i = TREE_IMAGPART (arg1);
1706 if (mode == arg0_mode
1707 && real_cst_p (arg0r)
1708 && real_cst_p (arg0i)
1709 && real_cst_p (arg1r)
1710 && real_cst_p (arg1i))
1712 /* complex real, complex real -> complex real. */
1713 REAL_VALUE_TYPE result_real, result_imag;
1714 if (fold_const_call_ccc (&result_real, &result_imag, fn,
1715 TREE_REAL_CST_PTR (arg0r),
1716 TREE_REAL_CST_PTR (arg0i),
1717 TREE_REAL_CST_PTR (arg1r),
1718 TREE_REAL_CST_PTR (arg1i),
1719 REAL_MODE_FORMAT (inner_mode)))
1720 return build_complex (type,
1721 build_real (TREE_TYPE (type), result_real),
1722 build_real (TREE_TYPE (type), result_imag));
1724 return NULL_TREE;
1727 return NULL_TREE;
1730 /* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
1731 otherwise return null. TYPE is the type of the return value. */
1733 tree
1734 fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1)
1736 const char *p0, *p1;
1737 char c;
1738 tree_code subcode;
1739 switch (fn)
1741 case CFN_BUILT_IN_STRSPN:
1742 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1743 return build_int_cst (type, strspn (p0, p1));
1744 return NULL_TREE;
1746 case CFN_BUILT_IN_STRCSPN:
1747 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1748 return build_int_cst (type, strcspn (p0, p1));
1749 return NULL_TREE;
1751 case CFN_BUILT_IN_STRCMP:
1752 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1753 return build_cmp_result (type, strcmp (p0, p1));
1754 return NULL_TREE;
1756 case CFN_BUILT_IN_STRCASECMP:
1757 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1759 int r = strcmp (p0, p1);
1760 if (r == 0)
1761 return build_cmp_result (type, r);
1763 return NULL_TREE;
1765 case CFN_BUILT_IN_INDEX:
1766 case CFN_BUILT_IN_STRCHR:
1767 if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
1769 const char *r = strchr (p0, c);
1770 if (r == NULL)
1771 return build_int_cst (type, 0);
1772 return fold_convert (type,
1773 fold_build_pointer_plus_hwi (arg0, r - p0));
1775 return NULL_TREE;
1777 case CFN_BUILT_IN_RINDEX:
1778 case CFN_BUILT_IN_STRRCHR:
1779 if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
1781 const char *r = strrchr (p0, c);
1782 if (r == NULL)
1783 return build_int_cst (type, 0);
1784 return fold_convert (type,
1785 fold_build_pointer_plus_hwi (arg0, r - p0));
1787 return NULL_TREE;
1789 case CFN_BUILT_IN_STRSTR:
1790 if ((p1 = c_getstr (arg1)))
1792 if ((p0 = c_getstr (arg0)))
1794 const char *r = strstr (p0, p1);
1795 if (r == NULL)
1796 return build_int_cst (type, 0);
1797 return fold_convert (type,
1798 fold_build_pointer_plus_hwi (arg0, r - p0));
1800 if (*p1 == '\0')
1801 return fold_convert (type, arg0);
1803 return NULL_TREE;
1805 case CFN_FOLD_LEFT_PLUS:
1806 return fold_const_fold_left (type, arg0, arg1, PLUS_EXPR);
1808 case CFN_UBSAN_CHECK_ADD:
1809 case CFN_ADD_OVERFLOW:
1810 subcode = PLUS_EXPR;
1811 goto arith_overflow;
1813 case CFN_UBSAN_CHECK_SUB:
1814 case CFN_SUB_OVERFLOW:
1815 subcode = MINUS_EXPR;
1816 goto arith_overflow;
1818 case CFN_UBSAN_CHECK_MUL:
1819 case CFN_MUL_OVERFLOW:
1820 subcode = MULT_EXPR;
1821 goto arith_overflow;
1823 arith_overflow:
1824 if (integer_cst_p (arg0) && integer_cst_p (arg1))
1826 tree itype
1827 = TREE_CODE (type) == COMPLEX_TYPE ? TREE_TYPE (type) : type;
1828 bool ovf = false;
1829 tree r = int_const_binop (subcode, fold_convert (itype, arg0),
1830 fold_convert (itype, arg1));
1831 if (!r || TREE_CODE (r) != INTEGER_CST)
1832 return NULL_TREE;
1833 if (arith_overflowed_p (subcode, itype, arg0, arg1))
1834 ovf = true;
1835 if (TREE_OVERFLOW (r))
1836 r = drop_tree_overflow (r);
1837 if (itype == type)
1839 if (ovf)
1840 return NULL_TREE;
1841 return r;
1843 else
1844 return build_complex (type, r, build_int_cst (itype, ovf));
1846 return NULL_TREE;
1848 default:
1849 return fold_const_call_1 (fn, type, arg0, arg1);
1853 /* Try to evaluate:
1855 *RESULT = FN (*ARG0, *ARG1, *ARG2)
1857 in format FORMAT. Return true on success. */
1859 static bool
1860 fold_const_call_ssss (real_value *result, combined_fn fn,
1861 const real_value *arg0, const real_value *arg1,
1862 const real_value *arg2, const real_format *format)
1864 switch (fn)
1866 CASE_CFN_FMA:
1867 CASE_CFN_FMA_FN:
1868 return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
1870 case CFN_FMS:
1872 real_value new_arg2 = real_value_negate (arg2);
1873 return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, &new_arg2, format);
1876 case CFN_FNMA:
1878 real_value new_arg0 = real_value_negate (arg0);
1879 return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1, arg2, format);
1882 case CFN_FNMS:
1884 real_value new_arg0 = real_value_negate (arg0);
1885 real_value new_arg2 = real_value_negate (arg2);
1886 return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1,
1887 &new_arg2, format);
1890 default:
1891 return false;
1895 /* Subroutine of fold_const_call, with the same interface. Handle cases
1896 where the arguments and result are numerical. */
1898 static tree
1899 fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1901 machine_mode mode = TYPE_MODE (type);
1902 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1903 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1904 machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
1906 if (arg0_mode == arg1_mode
1907 && arg0_mode == arg2_mode
1908 && real_cst_p (arg0)
1909 && real_cst_p (arg1)
1910 && real_cst_p (arg2))
1912 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1913 if (mode == arg0_mode)
1915 /* real, real, real -> real. */
1916 REAL_VALUE_TYPE result;
1917 if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
1918 TREE_REAL_CST_PTR (arg1),
1919 TREE_REAL_CST_PTR (arg2),
1920 REAL_MODE_FORMAT (mode)))
1921 return build_real (type, result);
1923 return NULL_TREE;
1926 return NULL_TREE;
1929 /* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
1930 success, otherwise return null. TYPE is the type of the return value. */
1932 tree
1933 fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1935 const char *p0, *p1;
1936 char c;
1937 unsigned HOST_WIDE_INT s0, s1, s2 = 0;
1938 switch (fn)
1940 case CFN_BUILT_IN_STRNCMP:
1941 if (!size_t_cst_p (arg2, &s2))
1942 return NULL_TREE;
1943 if (s2 == 0
1944 && !TREE_SIDE_EFFECTS (arg0)
1945 && !TREE_SIDE_EFFECTS (arg1))
1946 return build_int_cst (type, 0);
1947 else if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1948 return build_int_cst (type, strncmp (p0, p1, MIN (s2, SIZE_MAX)));
1949 return NULL_TREE;
1951 case CFN_BUILT_IN_STRNCASECMP:
1952 if (!size_t_cst_p (arg2, &s2))
1953 return NULL_TREE;
1954 if (s2 == 0
1955 && !TREE_SIDE_EFFECTS (arg0)
1956 && !TREE_SIDE_EFFECTS (arg1))
1957 return build_int_cst (type, 0);
1958 else if ((p0 = c_getstr (arg0))
1959 && (p1 = c_getstr (arg1))
1960 && strncmp (p0, p1, MIN (s2, SIZE_MAX)) == 0)
1961 return build_int_cst (type, 0);
1962 return NULL_TREE;
1964 case CFN_BUILT_IN_BCMP:
1965 case CFN_BUILT_IN_MEMCMP:
1966 if (!size_t_cst_p (arg2, &s2))
1967 return NULL_TREE;
1968 if (s2 == 0
1969 && !TREE_SIDE_EFFECTS (arg0)
1970 && !TREE_SIDE_EFFECTS (arg1))
1971 return build_int_cst (type, 0);
1972 if ((p0 = getbyterep (arg0, &s0))
1973 && (p1 = getbyterep (arg1, &s1))
1974 && s2 <= s0
1975 && s2 <= s1)
1976 return build_cmp_result (type, memcmp (p0, p1, s2));
1977 return NULL_TREE;
1979 case CFN_BUILT_IN_MEMCHR:
1980 if (!size_t_cst_p (arg2, &s2))
1981 return NULL_TREE;
1982 if (s2 == 0
1983 && !TREE_SIDE_EFFECTS (arg0)
1984 && !TREE_SIDE_EFFECTS (arg1))
1985 return build_int_cst (type, 0);
1986 if ((p0 = getbyterep (arg0, &s0))
1987 && s2 <= s0
1988 && target_char_cst_p (arg1, &c))
1990 const char *r = (const char *) memchr (p0, c, s2);
1991 if (r == NULL)
1992 return build_int_cst (type, 0);
1993 return fold_convert (type,
1994 fold_build_pointer_plus_hwi (arg0, r - p0));
1996 return NULL_TREE;
1998 case CFN_WHILE_ULT:
2000 poly_uint64 parg0, parg1;
2001 if (poly_int_tree_p (arg0, &parg0) && poly_int_tree_p (arg1, &parg1))
2002 return fold_while_ult (type, parg0, parg1);
2003 return NULL_TREE;
2006 case CFN_UADDC:
2007 case CFN_USUBC:
2008 if (integer_cst_p (arg0) && integer_cst_p (arg1) && integer_cst_p (arg2))
2010 tree itype = TREE_TYPE (type);
2011 bool ovf = false;
2012 tree_code subcode = fn == CFN_UADDC ? PLUS_EXPR : MINUS_EXPR;
2013 tree r = int_const_binop (subcode, fold_convert (itype, arg0),
2014 fold_convert (itype, arg1));
2015 if (!r)
2016 return NULL_TREE;
2017 if (arith_overflowed_p (subcode, itype, arg0, arg1))
2018 ovf = true;
2019 tree r2 = int_const_binop (subcode, r, fold_convert (itype, arg2));
2020 if (!r2 || TREE_CODE (r2) != INTEGER_CST)
2021 return NULL_TREE;
2022 if (arith_overflowed_p (subcode, itype, r, arg2))
2023 ovf = true;
2024 if (TREE_OVERFLOW (r2))
2025 r2 = drop_tree_overflow (r2);
2026 return build_complex (type, r2, build_int_cst (itype, ovf));
2028 return NULL_TREE;
2030 default:
2031 return fold_const_call_1 (fn, type, arg0, arg1, arg2);