1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
34 #include "insn-attr.h"
36 /* This structure is used to record liveness information at the targets or
37 fallthrough insns of branches. We will most likely need the information
38 at targets again, so save them in a hash table rather than recomputing them
43 int uid
; /* INSN_UID of target. */
44 struct target_info
*next
; /* Next info for same hash bucket. */
45 HARD_REG_SET live_regs
; /* Registers live at target. */
46 int block
; /* Basic block number containing target. */
47 int bb_tick
; /* Generation count of basic block info. */
50 #define TARGET_HASH_PRIME 257
52 /* Indicates what resources are required at the beginning of the epilogue. */
53 static struct resources start_of_epilogue_needs
;
55 /* Indicates what resources are required at function end. */
56 static struct resources end_of_function_needs
;
58 /* Define the hash table itself. */
59 static struct target_info
**target_hash_table
= NULL
;
61 /* For each basic block, we maintain a generation number of its basic
62 block info, which is updated each time we move an insn from the
63 target of a jump. This is the generation number indexed by block
68 /* Marks registers possibly live at the current place being scanned by
69 mark_target_live_regs. Used only by next two function. */
71 static HARD_REG_SET current_live_regs
;
73 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
74 Also only used by the next two functions. */
76 static HARD_REG_SET pending_dead_regs
;
78 static void update_live_status
PARAMS ((rtx
, rtx
, void *));
79 static int find_basic_block
PARAMS ((rtx
));
80 static rtx next_insn_no_annul
PARAMS ((rtx
));
81 static rtx find_dead_or_set_registers
PARAMS ((rtx
, struct resources
*,
82 rtx
*, int, struct resources
,
85 /* Utility function called from mark_target_live_regs via note_stores.
86 It deadens any CLOBBERed registers and livens any SET registers. */
89 update_live_status (dest
, x
, data
)
92 void *data ATTRIBUTE_UNUSED
;
94 int first_regno
, last_regno
;
97 if (GET_CODE (dest
) != REG
98 && (GET_CODE (dest
) != SUBREG
|| GET_CODE (SUBREG_REG (dest
)) != REG
))
101 if (GET_CODE (dest
) == SUBREG
)
102 first_regno
= REGNO (SUBREG_REG (dest
)) + SUBREG_WORD (dest
);
104 first_regno
= REGNO (dest
);
106 last_regno
= first_regno
+ HARD_REGNO_NREGS (first_regno
, GET_MODE (dest
));
108 if (GET_CODE (x
) == CLOBBER
)
109 for (i
= first_regno
; i
< last_regno
; i
++)
110 CLEAR_HARD_REG_BIT (current_live_regs
, i
);
112 for (i
= first_regno
; i
< last_regno
; i
++)
114 SET_HARD_REG_BIT (current_live_regs
, i
);
115 CLEAR_HARD_REG_BIT (pending_dead_regs
, i
);
118 /* Find the number of the basic block that starts closest to INSN. Return -1
119 if we couldn't find such a basic block. */
122 find_basic_block (insn
)
127 /* Scan backwards to the previous BARRIER. Then see if we can find a
128 label that starts a basic block. Return the basic block number. */
130 for (insn
= prev_nonnote_insn (insn
);
131 insn
&& GET_CODE (insn
) != BARRIER
;
132 insn
= prev_nonnote_insn (insn
))
135 /* The start of the function is basic block zero. */
139 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
140 anything other than a CODE_LABEL or note, we can't find this code. */
141 for (insn
= next_nonnote_insn (insn
);
142 insn
&& GET_CODE (insn
) == CODE_LABEL
;
143 insn
= next_nonnote_insn (insn
))
145 for (i
= 0; i
< n_basic_blocks
; i
++)
146 if (insn
== BLOCK_HEAD (i
))
153 /* Similar to next_insn, but ignores insns in the delay slots of
154 an annulled branch. */
157 next_insn_no_annul (insn
)
162 /* If INSN is an annulled branch, skip any insns from the target
164 if (INSN_ANNULLED_BRANCH_P (insn
)
165 && NEXT_INSN (PREV_INSN (insn
)) != insn
)
166 while (INSN_FROM_TARGET_P (NEXT_INSN (insn
)))
167 insn
= NEXT_INSN (insn
);
169 insn
= NEXT_INSN (insn
);
170 if (insn
&& GET_CODE (insn
) == INSN
171 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
172 insn
= XVECEXP (PATTERN (insn
), 0, 0);
178 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
179 which resources are references by the insn. If INCLUDE_DELAYED_EFFECTS
180 is TRUE, resources used by the called routine will be included for
184 mark_referenced_resources (x
, res
, include_delayed_effects
)
186 register struct resources
*res
;
187 register int include_delayed_effects
;
189 enum rtx_code code
= GET_CODE (x
);
192 register const char *format_ptr
;
194 /* Handle leaf items for which we set resource flags. Also, special-case
195 CALL, SET and CLOBBER operators. */
207 if (GET_CODE (SUBREG_REG (x
)) != REG
)
208 mark_referenced_resources (SUBREG_REG (x
), res
, 0);
211 unsigned int regno
= REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
);
212 unsigned int last_regno
213 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
215 for (r
= regno
; r
< last_regno
; r
++)
216 SET_HARD_REG_BIT (res
->regs
, r
);
221 for (r
= 0; r
< HARD_REGNO_NREGS (REGNO (x
), GET_MODE (x
)); r
++)
222 SET_HARD_REG_BIT (res
->regs
, REGNO (x
) + r
);
226 /* If this memory shouldn't change, it really isn't referencing
228 if (RTX_UNCHANGING_P (x
))
229 res
->unch_memory
= 1;
232 res
->volatil
|= MEM_VOLATILE_P (x
);
234 /* Mark registers used to access memory. */
235 mark_referenced_resources (XEXP (x
, 0), res
, 0);
242 case UNSPEC_VOLATILE
:
244 /* Traditional asm's are always volatile. */
253 res
->volatil
|= MEM_VOLATILE_P (x
);
255 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
256 We can not just fall through here since then we would be confused
257 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
258 traditional asms unlike their normal usage. */
260 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
261 mark_referenced_resources (ASM_OPERANDS_INPUT (x
, i
), res
, 0);
265 /* The first operand will be a (MEM (xxx)) but doesn't really reference
266 memory. The second operand may be referenced, though. */
267 mark_referenced_resources (XEXP (XEXP (x
, 0), 0), res
, 0);
268 mark_referenced_resources (XEXP (x
, 1), res
, 0);
272 /* Usually, the first operand of SET is set, not referenced. But
273 registers used to access memory are referenced. SET_DEST is
274 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
276 mark_referenced_resources (SET_SRC (x
), res
, 0);
279 if (GET_CODE (x
) == SIGN_EXTRACT
280 || GET_CODE (x
) == ZERO_EXTRACT
281 || GET_CODE (x
) == STRICT_LOW_PART
)
282 mark_referenced_resources (x
, res
, 0);
283 else if (GET_CODE (x
) == SUBREG
)
285 if (GET_CODE (x
) == MEM
)
286 mark_referenced_resources (XEXP (x
, 0), res
, 0);
293 if (include_delayed_effects
)
295 /* A CALL references memory, the frame pointer if it exists, the
296 stack pointer, any global registers and any registers given in
297 USE insns immediately in front of the CALL.
299 However, we may have moved some of the parameter loading insns
300 into the delay slot of this CALL. If so, the USE's for them
301 don't count and should be skipped. */
302 rtx insn
= PREV_INSN (x
);
305 rtx next
= NEXT_INSN (x
);
308 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
309 if (NEXT_INSN (insn
) != x
)
311 next
= NEXT_INSN (NEXT_INSN (insn
));
312 sequence
= PATTERN (NEXT_INSN (insn
));
313 seq_size
= XVECLEN (sequence
, 0);
314 if (GET_CODE (sequence
) != SEQUENCE
)
319 SET_HARD_REG_BIT (res
->regs
, STACK_POINTER_REGNUM
);
320 if (frame_pointer_needed
)
322 SET_HARD_REG_BIT (res
->regs
, FRAME_POINTER_REGNUM
);
323 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
324 SET_HARD_REG_BIT (res
->regs
, HARD_FRAME_POINTER_REGNUM
);
328 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
330 SET_HARD_REG_BIT (res
->regs
, i
);
332 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
333 assume that this call can need any register.
335 This is done to be more conservative about how we handle setjmp.
336 We assume that they both use and set all registers. Using all
337 registers ensures that a register will not be considered dead
338 just because it crosses a setjmp call. A register should be
339 considered dead only if the setjmp call returns non-zero. */
340 if (next
&& GET_CODE (next
) == NOTE
341 && NOTE_LINE_NUMBER (next
) == NOTE_INSN_SETJMP
)
342 SET_HARD_REG_SET (res
->regs
);
347 for (link
= CALL_INSN_FUNCTION_USAGE (x
);
349 link
= XEXP (link
, 1))
350 if (GET_CODE (XEXP (link
, 0)) == USE
)
352 for (i
= 1; i
< seq_size
; i
++)
354 rtx slot_pat
= PATTERN (XVECEXP (sequence
, 0, i
));
355 if (GET_CODE (slot_pat
) == SET
356 && rtx_equal_p (SET_DEST (slot_pat
),
357 XEXP (XEXP (link
, 0), 0)))
361 mark_referenced_resources (XEXP (XEXP (link
, 0), 0),
367 /* ... fall through to other INSN processing ... */
372 #ifdef INSN_REFERENCES_ARE_DELAYED
373 if (! include_delayed_effects
374 && INSN_REFERENCES_ARE_DELAYED (x
))
378 /* No special processing, just speed up. */
379 mark_referenced_resources (PATTERN (x
), res
, include_delayed_effects
);
386 /* Process each sub-expression and flag what it needs. */
387 format_ptr
= GET_RTX_FORMAT (code
);
388 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
389 switch (*format_ptr
++)
392 mark_referenced_resources (XEXP (x
, i
), res
, include_delayed_effects
);
396 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
397 mark_referenced_resources (XVECEXP (x
, i
, j
), res
,
398 include_delayed_effects
);
403 /* A subroutine of mark_target_live_regs. Search forward from TARGET
404 looking for registers that are set before they are used. These are dead.
405 Stop after passing a few conditional jumps, and/or a small
406 number of unconditional branches. */
409 find_dead_or_set_registers (target
, res
, jump_target
, jump_count
, set
, needed
)
411 struct resources
*res
;
414 struct resources set
, needed
;
416 HARD_REG_SET scratch
;
421 for (insn
= target
; insn
; insn
= next
)
423 rtx this_jump_insn
= insn
;
425 next
= NEXT_INSN (insn
);
427 /* If this instruction can throw an exception, then we don't
428 know where we might end up next. That means that we have to
429 assume that whatever we have already marked as live really is
431 if (can_throw (insn
))
434 switch (GET_CODE (insn
))
437 /* After a label, any pending dead registers that weren't yet
438 used can be made dead. */
439 AND_COMPL_HARD_REG_SET (pending_dead_regs
, needed
.regs
);
440 AND_COMPL_HARD_REG_SET (res
->regs
, pending_dead_regs
);
441 CLEAR_HARD_REG_SET (pending_dead_regs
);
450 if (GET_CODE (PATTERN (insn
)) == USE
)
452 /* If INSN is a USE made by update_block, we care about the
453 underlying insn. Any registers set by the underlying insn
454 are live since the insn is being done somewhere else. */
455 if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn
), 0))) == 'i')
456 mark_set_resources (XEXP (PATTERN (insn
), 0), res
, 0,
459 /* All other USE insns are to be ignored. */
462 else if (GET_CODE (PATTERN (insn
)) == CLOBBER
)
464 else if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
466 /* An unconditional jump can be used to fill the delay slot
467 of a call, so search for a JUMP_INSN in any position. */
468 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
470 this_jump_insn
= XVECEXP (PATTERN (insn
), 0, i
);
471 if (GET_CODE (this_jump_insn
) == JUMP_INSN
)
480 if (GET_CODE (this_jump_insn
) == JUMP_INSN
)
482 if (jump_count
++ < 10)
484 if (any_uncondjump_p (this_jump_insn
)
485 || GET_CODE (PATTERN (this_jump_insn
)) == RETURN
)
487 next
= JUMP_LABEL (this_jump_insn
);
492 *jump_target
= JUMP_LABEL (this_jump_insn
);
495 else if (any_condjump_p (this_jump_insn
))
497 struct resources target_set
, target_res
;
498 struct resources fallthrough_res
;
500 /* We can handle conditional branches here by following
501 both paths, and then IOR the results of the two paths
502 together, which will give us registers that are dead
503 on both paths. Since this is expensive, we give it
504 a much higher cost than unconditional branches. The
505 cost was chosen so that we will follow at most 1
506 conditional branch. */
509 if (jump_count
>= 10)
512 mark_referenced_resources (insn
, &needed
, 1);
514 /* For an annulled branch, mark_set_resources ignores slots
515 filled by instructions from the target. This is correct
516 if the branch is not taken. Since we are following both
517 paths from the branch, we must also compute correct info
518 if the branch is taken. We do this by inverting all of
519 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
520 and then inverting the INSN_FROM_TARGET_P bits again. */
522 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
523 && INSN_ANNULLED_BRANCH_P (this_jump_insn
))
525 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
526 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
))
527 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
));
530 mark_set_resources (insn
, &target_set
, 0,
533 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
534 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
))
535 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
));
537 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
541 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
546 COPY_HARD_REG_SET (scratch
, target_set
.regs
);
547 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
548 AND_COMPL_HARD_REG_SET (target_res
.regs
, scratch
);
550 fallthrough_res
= *res
;
551 COPY_HARD_REG_SET (scratch
, set
.regs
);
552 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
553 AND_COMPL_HARD_REG_SET (fallthrough_res
.regs
, scratch
);
555 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn
),
556 &target_res
, 0, jump_count
,
558 find_dead_or_set_registers (next
,
559 &fallthrough_res
, 0, jump_count
,
561 IOR_HARD_REG_SET (fallthrough_res
.regs
, target_res
.regs
);
562 AND_HARD_REG_SET (res
->regs
, fallthrough_res
.regs
);
570 /* Don't try this optimization if we expired our jump count
571 above, since that would mean there may be an infinite loop
572 in the function being compiled. */
578 mark_referenced_resources (insn
, &needed
, 1);
579 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
581 COPY_HARD_REG_SET (scratch
, set
.regs
);
582 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
583 AND_COMPL_HARD_REG_SET (res
->regs
, scratch
);
589 /* Given X, a part of an insn, and a pointer to a `struct resource',
590 RES, indicate which resources are modified by the insn. If
591 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
592 set by the called routine. If MARK_TYPE is MARK_DEST, only mark SET_DESTs
594 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
595 objects are being referenced instead of set.
597 We never mark the insn as modifying the condition code unless it explicitly
598 SETs CC0 even though this is not totally correct. The reason for this is
599 that we require a SET of CC0 to immediately precede the reference to CC0.
600 So if some other insn sets CC0 as a side-effect, we know it cannot affect
601 our computation and thus may be placed in a delay slot. */
604 mark_set_resources (x
, res
, in_dest
, mark_type
)
606 register struct resources
*res
;
608 enum mark_resource_type mark_type
;
613 const char *format_ptr
;
631 /* These don't set any resources. */
640 /* Called routine modifies the condition code, memory, any registers
641 that aren't saved across calls, global registers and anything
642 explicitly CLOBBERed immediately after the CALL_INSN. */
644 if (mark_type
== MARK_SRC_DEST_CALL
)
646 rtx next
= NEXT_INSN (x
);
647 rtx prev
= PREV_INSN (x
);
650 res
->cc
= res
->memory
= 1;
651 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
652 if (call_used_regs
[r
] || global_regs
[r
])
653 SET_HARD_REG_BIT (res
->regs
, r
);
655 /* If X is part of a delay slot sequence, then NEXT should be
656 the first insn after the sequence. */
657 if (NEXT_INSN (prev
) != x
)
658 next
= NEXT_INSN (NEXT_INSN (prev
));
660 for (link
= CALL_INSN_FUNCTION_USAGE (x
);
661 link
; link
= XEXP (link
, 1))
662 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
663 mark_set_resources (SET_DEST (XEXP (link
, 0)), res
, 1,
666 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
667 assume that this call can clobber any register. */
668 if (next
&& GET_CODE (next
) == NOTE
669 && NOTE_LINE_NUMBER (next
) == NOTE_INSN_SETJMP
)
670 SET_HARD_REG_SET (res
->regs
);
673 /* ... and also what its RTL says it modifies, if anything. */
678 /* An insn consisting of just a CLOBBER (or USE) is just for flow
679 and doesn't actually do anything, so we ignore it. */
681 #ifdef INSN_SETS_ARE_DELAYED
682 if (mark_type
!= MARK_SRC_DEST_CALL
683 && INSN_SETS_ARE_DELAYED (x
))
688 if (GET_CODE (x
) != USE
&& GET_CODE (x
) != CLOBBER
)
693 /* If the source of a SET is a CALL, this is actually done by
694 the called routine. So only include it if we are to include the
695 effects of the calling routine. */
697 mark_set_resources (SET_DEST (x
), res
,
698 (mark_type
== MARK_SRC_DEST_CALL
699 || GET_CODE (SET_SRC (x
)) != CALL
),
702 if (mark_type
!= MARK_DEST
)
703 mark_set_resources (SET_SRC (x
), res
, 0, MARK_SRC_DEST
);
707 mark_set_resources (XEXP (x
, 0), res
, 1, MARK_SRC_DEST
);
711 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
712 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x
, 0, 0))
713 && INSN_FROM_TARGET_P (XVECEXP (x
, 0, i
))))
714 mark_set_resources (XVECEXP (x
, 0, i
), res
, 0, mark_type
);
721 mark_set_resources (XEXP (x
, 0), res
, 1, MARK_SRC_DEST
);
726 if (! (mark_type
== MARK_DEST
&& in_dest
))
728 mark_set_resources (XEXP (x
, 0), res
, in_dest
, MARK_SRC_DEST
);
729 mark_set_resources (XEXP (x
, 1), res
, 0, MARK_SRC_DEST
);
730 mark_set_resources (XEXP (x
, 2), res
, 0, MARK_SRC_DEST
);
738 res
->unch_memory
|= RTX_UNCHANGING_P (x
);
739 res
->volatil
|= MEM_VOLATILE_P (x
);
742 mark_set_resources (XEXP (x
, 0), res
, 0, MARK_SRC_DEST
);
748 if (GET_CODE (SUBREG_REG (x
)) != REG
)
749 mark_set_resources (SUBREG_REG (x
), res
, in_dest
, mark_type
);
752 unsigned int regno
= REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
);
753 unsigned int last_regno
754 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
756 for (r
= regno
; r
< last_regno
; r
++)
757 SET_HARD_REG_BIT (res
->regs
, r
);
764 for (r
= 0; r
< HARD_REGNO_NREGS (REGNO (x
), GET_MODE (x
)); r
++)
765 SET_HARD_REG_BIT (res
->regs
, REGNO (x
) + r
);
768 case STRICT_LOW_PART
:
769 if (! (mark_type
== MARK_DEST
&& in_dest
))
771 mark_set_resources (XEXP (x
, 0), res
, 0, MARK_SRC_DEST
);
775 case UNSPEC_VOLATILE
:
777 /* Traditional asm's are always volatile. */
786 res
->volatil
|= MEM_VOLATILE_P (x
);
788 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
789 We can not just fall through here since then we would be confused
790 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
791 traditional asms unlike their normal usage. */
793 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
794 mark_set_resources (ASM_OPERANDS_INPUT (x
, i
), res
, in_dest
,
802 /* Process each sub-expression and flag what it needs. */
803 format_ptr
= GET_RTX_FORMAT (code
);
804 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
805 switch (*format_ptr
++)
808 mark_set_resources (XEXP (x
, i
), res
, in_dest
, mark_type
);
812 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
813 mark_set_resources (XVECEXP (x
, i
, j
), res
, in_dest
, mark_type
);
818 /* Set the resources that are live at TARGET.
820 If TARGET is zero, we refer to the end of the current function and can
821 return our precomputed value.
823 Otherwise, we try to find out what is live by consulting the basic block
824 information. This is tricky, because we must consider the actions of
825 reload and jump optimization, which occur after the basic block information
828 Accordingly, we proceed as follows::
830 We find the previous BARRIER and look at all immediately following labels
831 (with no intervening active insns) to see if any of them start a basic
832 block. If we hit the start of the function first, we use block 0.
834 Once we have found a basic block and a corresponding first insns, we can
835 accurately compute the live status from basic_block_live_regs and
836 reg_renumber. (By starting at a label following a BARRIER, we are immune
837 to actions taken by reload and jump.) Then we scan all insns between
838 that point and our target. For each CLOBBER (or for call-clobbered regs
839 when we pass a CALL_INSN), mark the appropriate registers are dead. For
840 a SET, mark them as live.
842 We have to be careful when using REG_DEAD notes because they are not
843 updated by such things as find_equiv_reg. So keep track of registers
844 marked as dead that haven't been assigned to, and mark them dead at the
845 next CODE_LABEL since reload and jump won't propagate values across labels.
847 If we cannot find the start of a basic block (should be a very rare
848 case, if it can happen at all), mark everything as potentially live.
850 Next, scan forward from TARGET looking for things set or clobbered
851 before they are used. These are not live.
853 Because we can be called many times on the same target, save our results
854 in a hash table indexed by INSN_UID. This is only done if the function
855 init_resource_info () was invoked before we are called. */
858 mark_target_live_regs (insns
, target
, res
)
861 struct resources
*res
;
865 struct target_info
*tinfo
= NULL
;
869 HARD_REG_SET scratch
;
870 struct resources set
, needed
;
872 /* Handle end of function. */
875 *res
= end_of_function_needs
;
879 /* We have to assume memory is needed, but the CC isn't. */
881 res
->volatil
= res
->unch_memory
= 0;
884 /* See if we have computed this value already. */
885 if (target_hash_table
!= NULL
)
887 for (tinfo
= target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
];
888 tinfo
; tinfo
= tinfo
->next
)
889 if (tinfo
->uid
== INSN_UID (target
))
892 /* Start by getting the basic block number. If we have saved
893 information, we can get it from there unless the insn at the
894 start of the basic block has been deleted. */
895 if (tinfo
&& tinfo
->block
!= -1
896 && ! INSN_DELETED_P (BLOCK_HEAD (tinfo
->block
)))
901 b
= find_basic_block (target
);
903 if (target_hash_table
!= NULL
)
907 /* If the information is up-to-date, use it. Otherwise, we will
909 if (b
== tinfo
->block
&& b
!= -1 && tinfo
->bb_tick
== bb_ticks
[b
])
911 COPY_HARD_REG_SET (res
->regs
, tinfo
->live_regs
);
917 /* Allocate a place to put our results and chain it into the
919 tinfo
= (struct target_info
*) oballoc (sizeof (struct target_info
));
920 tinfo
->uid
= INSN_UID (target
);
922 tinfo
->next
= target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
];
923 target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
] = tinfo
;
927 CLEAR_HARD_REG_SET (pending_dead_regs
);
929 /* If we found a basic block, get the live registers from it and update
930 them with anything set or killed between its start and the insn before
931 TARGET. Otherwise, we must assume everything is live. */
934 regset regs_live
= BASIC_BLOCK (b
)->global_live_at_start
;
937 rtx start_insn
, stop_insn
;
939 /* Compute hard regs live at start of block -- this is the real hard regs
940 marked live, plus live pseudo regs that have been renumbered to
943 REG_SET_TO_HARD_REG_SET (current_live_regs
, regs_live
);
945 EXECUTE_IF_SET_IN_REG_SET
946 (regs_live
, FIRST_PSEUDO_REGISTER
, i
,
948 if (reg_renumber
[i
] >= 0)
950 regno
= reg_renumber
[i
];
952 j
< regno
+ HARD_REGNO_NREGS (regno
,
953 PSEUDO_REGNO_MODE (i
));
955 SET_HARD_REG_BIT (current_live_regs
, j
);
959 /* Get starting and ending insn, handling the case where each might
961 start_insn
= (b
== 0 ? insns
: BLOCK_HEAD (b
));
964 if (GET_CODE (start_insn
) == INSN
965 && GET_CODE (PATTERN (start_insn
)) == SEQUENCE
)
966 start_insn
= XVECEXP (PATTERN (start_insn
), 0, 0);
968 if (GET_CODE (stop_insn
) == INSN
969 && GET_CODE (PATTERN (stop_insn
)) == SEQUENCE
)
970 stop_insn
= next_insn (PREV_INSN (stop_insn
));
972 for (insn
= start_insn
; insn
!= stop_insn
;
973 insn
= next_insn_no_annul (insn
))
976 rtx real_insn
= insn
;
978 /* If this insn is from the target of a branch, it isn't going to
979 be used in the sequel. If it is used in both cases, this
980 test will not be true. */
981 if (INSN_FROM_TARGET_P (insn
))
984 /* If this insn is a USE made by update_block, we care about the
986 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
987 && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn
), 0))) == 'i')
988 real_insn
= XEXP (PATTERN (insn
), 0);
990 if (GET_CODE (real_insn
) == CALL_INSN
)
992 /* CALL clobbers all call-used regs that aren't fixed except
993 sp, ap, and fp. Do this before setting the result of the
995 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
996 if (call_used_regs
[i
]
997 && i
!= STACK_POINTER_REGNUM
&& i
!= FRAME_POINTER_REGNUM
998 && i
!= ARG_POINTER_REGNUM
999 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1000 && i
!= HARD_FRAME_POINTER_REGNUM
1002 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1003 && ! (i
== ARG_POINTER_REGNUM
&& fixed_regs
[i
])
1005 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
1006 && ! (i
== PIC_OFFSET_TABLE_REGNUM
&& flag_pic
)
1009 CLEAR_HARD_REG_BIT (current_live_regs
, i
);
1011 /* A CALL_INSN sets any global register live, since it may
1012 have been modified by the call. */
1013 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1015 SET_HARD_REG_BIT (current_live_regs
, i
);
1018 /* Mark anything killed in an insn to be deadened at the next
1019 label. Ignore USE insns; the only REG_DEAD notes will be for
1020 parameters. But they might be early. A CALL_INSN will usually
1021 clobber registers used for parameters. It isn't worth bothering
1022 with the unlikely case when it won't. */
1023 if ((GET_CODE (real_insn
) == INSN
1024 && GET_CODE (PATTERN (real_insn
)) != USE
1025 && GET_CODE (PATTERN (real_insn
)) != CLOBBER
)
1026 || GET_CODE (real_insn
) == JUMP_INSN
1027 || GET_CODE (real_insn
) == CALL_INSN
)
1029 for (link
= REG_NOTES (real_insn
); link
; link
= XEXP (link
, 1))
1030 if (REG_NOTE_KIND (link
) == REG_DEAD
1031 && GET_CODE (XEXP (link
, 0)) == REG
1032 && REGNO (XEXP (link
, 0)) < FIRST_PSEUDO_REGISTER
)
1034 int first_regno
= REGNO (XEXP (link
, 0));
1037 + HARD_REGNO_NREGS (first_regno
,
1038 GET_MODE (XEXP (link
, 0))));
1040 for (i
= first_regno
; i
< last_regno
; i
++)
1041 SET_HARD_REG_BIT (pending_dead_regs
, i
);
1044 note_stores (PATTERN (real_insn
), update_live_status
, NULL
);
1046 /* If any registers were unused after this insn, kill them.
1047 These notes will always be accurate. */
1048 for (link
= REG_NOTES (real_insn
); link
; link
= XEXP (link
, 1))
1049 if (REG_NOTE_KIND (link
) == REG_UNUSED
1050 && GET_CODE (XEXP (link
, 0)) == REG
1051 && REGNO (XEXP (link
, 0)) < FIRST_PSEUDO_REGISTER
)
1053 int first_regno
= REGNO (XEXP (link
, 0));
1056 + HARD_REGNO_NREGS (first_regno
,
1057 GET_MODE (XEXP (link
, 0))));
1059 for (i
= first_regno
; i
< last_regno
; i
++)
1060 CLEAR_HARD_REG_BIT (current_live_regs
, i
);
1064 else if (GET_CODE (real_insn
) == CODE_LABEL
)
1066 /* A label clobbers the pending dead registers since neither
1067 reload nor jump will propagate a value across a label. */
1068 AND_COMPL_HARD_REG_SET (current_live_regs
, pending_dead_regs
);
1069 CLEAR_HARD_REG_SET (pending_dead_regs
);
1072 /* The beginning of the epilogue corresponds to the end of the
1073 RTL chain when there are no epilogue insns. Certain resources
1074 are implicitly required at that point. */
1075 else if (GET_CODE (real_insn
) == NOTE
1076 && NOTE_LINE_NUMBER (real_insn
) == NOTE_INSN_EPILOGUE_BEG
)
1077 IOR_HARD_REG_SET (current_live_regs
, start_of_epilogue_needs
.regs
);
1080 COPY_HARD_REG_SET (res
->regs
, current_live_regs
);
1084 tinfo
->bb_tick
= bb_ticks
[b
];
1088 /* We didn't find the start of a basic block. Assume everything
1089 in use. This should happen only extremely rarely. */
1090 SET_HARD_REG_SET (res
->regs
);
1092 CLEAR_RESOURCE (&set
);
1093 CLEAR_RESOURCE (&needed
);
1095 jump_insn
= find_dead_or_set_registers (target
, res
, &jump_target
, 0,
1098 /* If we hit an unconditional branch, we have another way of finding out
1099 what is live: we can see what is live at the branch target and include
1100 anything used but not set before the branch. We add the live
1101 resources found using the test below to those found until now. */
1105 struct resources new_resources
;
1106 rtx stop_insn
= next_active_insn (jump_insn
);
1108 mark_target_live_regs (insns
, next_active_insn (jump_target
),
1110 CLEAR_RESOURCE (&set
);
1111 CLEAR_RESOURCE (&needed
);
1113 /* Include JUMP_INSN in the needed registers. */
1114 for (insn
= target
; insn
!= stop_insn
; insn
= next_active_insn (insn
))
1116 mark_referenced_resources (insn
, &needed
, 1);
1118 COPY_HARD_REG_SET (scratch
, needed
.regs
);
1119 AND_COMPL_HARD_REG_SET (scratch
, set
.regs
);
1120 IOR_HARD_REG_SET (new_resources
.regs
, scratch
);
1122 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1125 IOR_HARD_REG_SET (res
->regs
, new_resources
.regs
);
1130 COPY_HARD_REG_SET (tinfo
->live_regs
, res
->regs
);
1134 /* Initialize the resources required by mark_target_live_regs ().
1135 This should be invoked before the first call to mark_target_live_regs. */
1138 init_resource_info (epilogue_insn
)
1143 /* Indicate what resources are required to be valid at the end of the current
1144 function. The condition code never is and memory always is. If the
1145 frame pointer is needed, it is and so is the stack pointer unless
1146 EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
1147 stack pointer is. Registers used to return the function value are
1148 needed. Registers holding global variables are needed. */
1150 end_of_function_needs
.cc
= 0;
1151 end_of_function_needs
.memory
= 1;
1152 end_of_function_needs
.unch_memory
= 0;
1153 CLEAR_HARD_REG_SET (end_of_function_needs
.regs
);
1155 if (frame_pointer_needed
)
1157 SET_HARD_REG_BIT (end_of_function_needs
.regs
, FRAME_POINTER_REGNUM
);
1158 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1159 SET_HARD_REG_BIT (end_of_function_needs
.regs
, HARD_FRAME_POINTER_REGNUM
);
1161 #ifdef EXIT_IGNORE_STACK
1162 if (! EXIT_IGNORE_STACK
1163 || current_function_sp_is_unchanging
)
1165 SET_HARD_REG_BIT (end_of_function_needs
.regs
, STACK_POINTER_REGNUM
);
1168 SET_HARD_REG_BIT (end_of_function_needs
.regs
, STACK_POINTER_REGNUM
);
1170 if (current_function_return_rtx
!= 0)
1171 mark_referenced_resources (current_function_return_rtx
,
1172 &end_of_function_needs
, 1);
1174 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1176 #ifdef EPILOGUE_USES
1177 || EPILOGUE_USES (i
)
1180 SET_HARD_REG_BIT (end_of_function_needs
.regs
, i
);
1182 /* The registers required to be live at the end of the function are
1183 represented in the flow information as being dead just prior to
1184 reaching the end of the function. For example, the return of a value
1185 might be represented by a USE of the return register immediately
1186 followed by an unconditional jump to the return label where the
1187 return label is the end of the RTL chain. The end of the RTL chain
1188 is then taken to mean that the return register is live.
1190 This sequence is no longer maintained when epilogue instructions are
1191 added to the RTL chain. To reconstruct the original meaning, the
1192 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1193 point where these registers become live (start_of_epilogue_needs).
1194 If epilogue instructions are present, the registers set by those
1195 instructions won't have been processed by flow. Thus, those
1196 registers are additionally required at the end of the RTL chain
1197 (end_of_function_needs). */
1199 start_of_epilogue_needs
= end_of_function_needs
;
1201 while ((epilogue_insn
= next_nonnote_insn (epilogue_insn
)))
1202 mark_set_resources (epilogue_insn
, &end_of_function_needs
, 0,
1203 MARK_SRC_DEST_CALL
);
1205 /* Allocate and initialize the tables used by mark_target_live_regs. */
1206 target_hash_table
= (struct target_info
**)
1207 xcalloc (TARGET_HASH_PRIME
, sizeof (struct target_info
*));
1208 bb_ticks
= (int *) xcalloc (n_basic_blocks
, sizeof (int));
1211 /* Free up the resources allcated to mark_target_live_regs (). This
1212 should be invoked after the last call to mark_target_live_regs (). */
1215 free_resource_info ()
1217 if (target_hash_table
!= NULL
)
1219 free (target_hash_table
);
1220 target_hash_table
= NULL
;
1223 if (bb_ticks
!= NULL
)
1230 /* Clear any hashed information that we have stored for INSN. */
1233 clear_hashed_info_for_insn (insn
)
1236 struct target_info
*tinfo
;
1238 if (target_hash_table
!= NULL
)
1240 for (tinfo
= target_hash_table
[INSN_UID (insn
) % TARGET_HASH_PRIME
];
1241 tinfo
; tinfo
= tinfo
->next
)
1242 if (tinfo
->uid
== INSN_UID (insn
))
1250 /* Increment the tick count for the basic block that contains INSN. */
1253 incr_ticks_for_insn (insn
)
1256 int b
= find_basic_block (insn
);
1262 /* Add TRIAL to the set of resources used at the end of the current
1265 mark_end_of_function_resources (trial
, include_delayed_effects
)
1267 int include_delayed_effects
;
1269 mark_referenced_resources (trial
, &end_of_function_needs
,
1270 include_delayed_effects
);