2000-07-03 Donn Terry (donnte@microsoft.com)
[official-gcc.git] / gcc / local-alloc.c
blobe2c00bf8decb28d5ad72f9e71d0b6e7a41459bba
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Allocation of hard register numbers to pseudo registers is done in
24 two passes. In this pass we consider only regs that are born and
25 die once within one basic block. We do this one basic block at a
26 time. Then the next pass allocates the registers that remain.
27 Two passes are used because this pass uses methods that work only
28 on linear code, but that do a better job than the general methods
29 used in global_alloc, and more quickly too.
31 The assignments made are recorded in the vector reg_renumber
32 whose space is allocated here. The rtl code itself is not altered.
34 We assign each instruction in the basic block a number
35 which is its order from the beginning of the block.
36 Then we can represent the lifetime of a pseudo register with
37 a pair of numbers, and check for conflicts easily.
38 We can record the availability of hard registers with a
39 HARD_REG_SET for each instruction. The HARD_REG_SET
40 contains 0 or 1 for each hard reg.
42 To avoid register shuffling, we tie registers together when one
43 dies by being copied into another, or dies in an instruction that
44 does arithmetic to produce another. The tied registers are
45 allocated as one. Registers with different reg class preferences
46 can never be tied unless the class preferred by one is a subclass
47 of the one preferred by the other.
49 Tying is represented with "quantity numbers".
50 A non-tied register is given a new quantity number.
51 Tied registers have the same quantity number.
53 We have provision to exempt registers, even when they are contained
54 within the block, that can be tied to others that are not contained in it.
55 This is so that global_alloc could process them both and tie them then.
56 But this is currently disabled since tying in global_alloc is not
57 yet implemented. */
59 /* Pseudos allocated here can be reallocated by global.c if the hard register
60 is used as a spill register. Currently we don't allocate such pseudos
61 here if their preferred class is likely to be used by spills. */
63 #include "config.h"
64 #include "system.h"
65 #include "rtl.h"
66 #include "tm_p.h"
67 #include "flags.h"
68 #include "hard-reg-set.h"
69 #include "basic-block.h"
70 #include "regs.h"
71 #include "function.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
78 /* Next quantity number available for allocation. */
80 static int next_qty;
82 /* Information we maitain about each quantity. */
83 struct qty
85 /* The number of refs to quantity Q. */
87 int n_refs;
89 /* Insn number (counting from head of basic block)
90 where quantity Q was born. -1 if birth has not been recorded. */
92 int birth;
94 /* Insn number (counting from head of basic block)
95 where given quantity died. Due to the way tying is done,
96 and the fact that we consider in this pass only regs that die but once,
97 a quantity can die only once. Each quantity's life span
98 is a set of consecutive insns. -1 if death has not been recorded. */
100 int death;
102 /* Number of words needed to hold the data in given quantity.
103 This depends on its machine mode. It is used for these purposes:
104 1. It is used in computing the relative importances of qtys,
105 which determines the order in which we look for regs for them.
106 2. It is used in rules that prevent tying several registers of
107 different sizes in a way that is geometrically impossible
108 (see combine_regs). */
110 int size;
112 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
114 int n_calls_crossed;
116 /* The register number of one pseudo register whose reg_qty value is Q.
117 This register should be the head of the chain
118 maintained in reg_next_in_qty. */
120 int first_reg;
122 /* Reg class contained in (smaller than) the preferred classes of all
123 the pseudo regs that are tied in given quantity.
124 This is the preferred class for allocating that quantity. */
126 enum reg_class min_class;
128 /* Register class within which we allocate given qty if we can't get
129 its preferred class. */
131 enum reg_class alternate_class;
133 /* This holds the mode of the registers that are tied to given qty,
134 or VOIDmode if registers with differing modes are tied together. */
136 enum machine_mode mode;
138 /* the hard reg number chosen for given quantity,
139 or -1 if none was found. */
141 short phys_reg;
143 /* Nonzero if this quantity has been used in a SUBREG in some
144 way that is illegal. */
146 char changes_mode;
150 static struct qty *qty;
152 /* These fields are kept separately to speedup their clearing. */
154 /* We maintain two hard register sets that indicate suggested hard registers
155 for each quantity. The first, phys_copy_sugg, contains hard registers
156 that are tied to the quantity by a simple copy. The second contains all
157 hard registers that are tied to the quantity via an arithmetic operation.
159 The former register set is given priority for allocation. This tends to
160 eliminate copy insns. */
162 /* Element Q is a set of hard registers that are suggested for quantity Q by
163 copy insns. */
165 static HARD_REG_SET *qty_phys_copy_sugg;
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 arithmetic insns. */
170 static HARD_REG_SET *qty_phys_sugg;
172 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
174 static short *qty_phys_num_copy_sugg;
176 /* Element Q is the number of suggested registers in qty_phys_sugg. */
178 static short *qty_phys_num_sugg;
181 /* If (REG N) has been assigned a quantity number, is a register number
182 of another register assigned the same quantity number, or -1 for the
183 end of the chain. qty->first_reg point to the head of this chain. */
185 static int *reg_next_in_qty;
187 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
188 if it is >= 0,
189 of -1 if this register cannot be allocated by local-alloc,
190 or -2 if not known yet.
192 Note that if we see a use or death of pseudo register N with
193 reg_qty[N] == -2, register N must be local to the current block. If
194 it were used in more than one block, we would have reg_qty[N] == -1.
195 This relies on the fact that if reg_basic_block[N] is >= 0, register N
196 will not appear in any other block. We save a considerable number of
197 tests by exploiting this.
199 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
200 be referenced. */
202 static int *reg_qty;
204 /* The offset (in words) of register N within its quantity.
205 This can be nonzero if register N is SImode, and has been tied
206 to a subreg of a DImode register. */
208 static char *reg_offset;
210 /* Vector of substitutions of register numbers,
211 used to map pseudo regs into hardware regs.
212 This is set up as a result of register allocation.
213 Element N is the hard reg assigned to pseudo reg N,
214 or is -1 if no hard reg was assigned.
215 If N is a hard reg number, element N is N. */
217 short *reg_renumber;
219 /* Set of hard registers live at the current point in the scan
220 of the instructions in a basic block. */
222 static HARD_REG_SET regs_live;
224 /* Each set of hard registers indicates registers live at a particular
225 point in the basic block. For N even, regs_live_at[N] says which
226 hard registers are needed *after* insn N/2 (i.e., they may not
227 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
229 If an object is to conflict with the inputs of insn J but not the
230 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
231 if it is to conflict with the outputs of insn J but not the inputs of
232 insn J + 1, it is said to die at index J*2 + 1. */
234 static HARD_REG_SET *regs_live_at;
236 /* Communicate local vars `insn_number' and `insn'
237 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
238 static int this_insn_number;
239 static rtx this_insn;
241 /* Used to communicate changes made by update_equiv_regs to
242 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
243 found or created, so that we can keep track of what memory accesses might
244 be created later, e.g. by reload. */
246 static rtx *reg_equiv_replacement;
248 /* Used for communication between update_equiv_regs and no_equiv. */
249 static rtx *reg_equiv_init_insns;
251 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
252 static int recorded_label_ref;
254 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
255 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
256 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
257 static int contains_replace_regs PARAMS ((rtx, char *));
258 static int memref_referenced_p PARAMS ((rtx, rtx));
259 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
260 static void update_equiv_regs PARAMS ((void));
261 static void no_equiv PARAMS ((rtx, rtx, void *));
262 static void block_alloc PARAMS ((int));
263 static int qty_sugg_compare PARAMS ((int, int));
264 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
265 static int qty_compare PARAMS ((int, int));
266 static int qty_compare_1 PARAMS ((const PTR, const PTR));
267 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
268 static int reg_meets_class_p PARAMS ((int, enum reg_class));
269 static void update_qty_class PARAMS ((int, int));
270 static void reg_is_set PARAMS ((rtx, rtx, void *));
271 static void reg_is_born PARAMS ((rtx, int));
272 static void wipe_dead_reg PARAMS ((rtx, int));
273 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
274 int, int, int, int, int));
275 static void mark_life PARAMS ((int, enum machine_mode, int));
276 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
277 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
278 static int requires_inout PARAMS ((const char *));
280 /* Allocate a new quantity (new within current basic block)
281 for register number REGNO which is born at index BIRTH
282 within the block. MODE and SIZE are info on reg REGNO. */
284 static void
285 alloc_qty (regno, mode, size, birth)
286 int regno;
287 enum machine_mode mode;
288 int size, birth;
290 register int qtyno = next_qty++;
292 reg_qty[regno] = qtyno;
293 reg_offset[regno] = 0;
294 reg_next_in_qty[regno] = -1;
296 qty[qtyno].first_reg = regno;
297 qty[qtyno].size = size;
298 qty[qtyno].mode = mode;
299 qty[qtyno].birth = birth;
300 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
301 qty[qtyno].min_class = reg_preferred_class (regno);
302 qty[qtyno].alternate_class = reg_alternate_class (regno);
303 qty[qtyno].n_refs = REG_N_REFS (regno);
304 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
307 /* Main entry point of this file. */
310 local_alloc ()
312 register int b, i;
313 int max_qty;
315 /* We need to keep track of whether or not we recorded a LABEL_REF so
316 that we know if the jump optimizer needs to be rerun. */
317 recorded_label_ref = 0;
319 /* Leaf functions and non-leaf functions have different needs.
320 If defined, let the machine say what kind of ordering we
321 should use. */
322 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
323 ORDER_REGS_FOR_LOCAL_ALLOC;
324 #endif
326 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
327 registers. */
328 update_equiv_regs ();
330 /* This sets the maximum number of quantities we can have. Quantity
331 numbers start at zero and we can have one for each pseudo. */
332 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
334 /* Allocate vectors of temporary data.
335 See the declarations of these variables, above,
336 for what they mean. */
338 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
339 qty_phys_copy_sugg
340 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
341 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
342 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
343 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
345 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
346 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
347 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
349 /* Allocate the reg_renumber array */
350 allocate_reg_info (max_regno, FALSE, TRUE);
352 /* Determine which pseudo-registers can be allocated by local-alloc.
353 In general, these are the registers used only in a single block and
354 which only die once. However, if a register's preferred class has only
355 a few entries, don't allocate this register here unless it is preferred
356 or nothing since retry_global_alloc won't be able to move it to
357 GENERAL_REGS if a reload register of this class is needed.
359 We need not be concerned with which block actually uses the register
360 since we will never see it outside that block. */
362 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
364 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
365 && (reg_alternate_class (i) == NO_REGS
366 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
367 reg_qty[i] = -2;
368 else
369 reg_qty[i] = -1;
372 /* Force loop below to initialize entire quantity array. */
373 next_qty = max_qty;
375 /* Allocate each block's local registers, block by block. */
377 for (b = 0; b < n_basic_blocks; b++)
379 /* NEXT_QTY indicates which elements of the `qty_...'
380 vectors might need to be initialized because they were used
381 for the previous block; it is set to the entire array before
382 block 0. Initialize those, with explicit loop if there are few,
383 else with bzero and bcopy. Do not initialize vectors that are
384 explicit set by `alloc_qty'. */
386 if (next_qty < 6)
388 for (i = 0; i < next_qty; i++)
390 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
391 qty_phys_num_copy_sugg[i] = 0;
392 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
393 qty_phys_num_sugg[i] = 0;
396 else
398 #define CLEAR(vector) \
399 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
401 CLEAR (qty_phys_copy_sugg);
402 CLEAR (qty_phys_num_copy_sugg);
403 CLEAR (qty_phys_sugg);
404 CLEAR (qty_phys_num_sugg);
407 next_qty = 0;
409 block_alloc (b);
412 free (qty);
413 free (qty_phys_copy_sugg);
414 free (qty_phys_num_copy_sugg);
415 free (qty_phys_sugg);
416 free (qty_phys_num_sugg);
418 free (reg_qty);
419 free (reg_offset);
420 free (reg_next_in_qty);
422 return recorded_label_ref;
425 /* Depth of loops we are in while in update_equiv_regs. */
426 static int loop_depth;
428 /* Used for communication between the following two functions: contains
429 a MEM that we wish to ensure remains unchanged. */
430 static rtx equiv_mem;
432 /* Set nonzero if EQUIV_MEM is modified. */
433 static int equiv_mem_modified;
435 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
436 Called via note_stores. */
438 static void
439 validate_equiv_mem_from_store (dest, set, data)
440 rtx dest;
441 rtx set ATTRIBUTE_UNUSED;
442 void *data ATTRIBUTE_UNUSED;
444 if ((GET_CODE (dest) == REG
445 && reg_overlap_mentioned_p (dest, equiv_mem))
446 || (GET_CODE (dest) == MEM
447 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
448 equiv_mem_modified = 1;
451 /* Verify that no store between START and the death of REG invalidates
452 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
453 by storing into an overlapping memory location, or with a non-const
454 CALL_INSN.
456 Return 1 if MEMREF remains valid. */
458 static int
459 validate_equiv_mem (start, reg, memref)
460 rtx start;
461 rtx reg;
462 rtx memref;
464 rtx insn;
465 rtx note;
467 equiv_mem = memref;
468 equiv_mem_modified = 0;
470 /* If the memory reference has side effects or is volatile, it isn't a
471 valid equivalence. */
472 if (side_effects_p (memref))
473 return 0;
475 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
477 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
478 continue;
480 if (find_reg_note (insn, REG_DEAD, reg))
481 return 1;
483 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
484 && ! CONST_CALL_P (insn))
485 return 0;
487 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
489 /* If a register mentioned in MEMREF is modified via an
490 auto-increment, we lose the equivalence. Do the same if one
491 dies; although we could extend the life, it doesn't seem worth
492 the trouble. */
494 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
495 if ((REG_NOTE_KIND (note) == REG_INC
496 || REG_NOTE_KIND (note) == REG_DEAD)
497 && GET_CODE (XEXP (note, 0)) == REG
498 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
499 return 0;
502 return 0;
505 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
507 static int
508 contains_replace_regs (x, reg_equiv_replace)
509 rtx x;
510 char *reg_equiv_replace;
512 int i, j;
513 const char *fmt;
514 enum rtx_code code = GET_CODE (x);
516 switch (code)
518 case CONST_INT:
519 case CONST:
520 case LABEL_REF:
521 case SYMBOL_REF:
522 case CONST_DOUBLE:
523 case PC:
524 case CC0:
525 case HIGH:
526 case LO_SUM:
527 return 0;
529 case REG:
530 return reg_equiv_replace[REGNO (x)];
532 default:
533 break;
536 fmt = GET_RTX_FORMAT (code);
537 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
538 switch (fmt[i])
540 case 'e':
541 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
542 return 1;
543 break;
544 case 'E':
545 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
546 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
547 return 1;
548 break;
551 return 0;
554 /* TRUE if X references a memory location that would be affected by a store
555 to MEMREF. */
557 static int
558 memref_referenced_p (memref, x)
559 rtx x;
560 rtx memref;
562 int i, j;
563 const char *fmt;
564 enum rtx_code code = GET_CODE (x);
566 switch (code)
568 case CONST_INT:
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 case CONST_DOUBLE:
573 case PC:
574 case CC0:
575 case HIGH:
576 case LO_SUM:
577 return 0;
579 case REG:
580 return (reg_equiv_replacement[REGNO (x)]
581 && memref_referenced_p (memref,
582 reg_equiv_replacement[REGNO (x)]));
584 case MEM:
585 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
586 return 1;
587 break;
589 case SET:
590 /* If we are setting a MEM, it doesn't count (its address does), but any
591 other SET_DEST that has a MEM in it is referencing the MEM. */
592 if (GET_CODE (SET_DEST (x)) == MEM)
594 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
595 return 1;
597 else if (memref_referenced_p (memref, SET_DEST (x)))
598 return 1;
600 return memref_referenced_p (memref, SET_SRC (x));
602 default:
603 break;
606 fmt = GET_RTX_FORMAT (code);
607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
608 switch (fmt[i])
610 case 'e':
611 if (memref_referenced_p (memref, XEXP (x, i)))
612 return 1;
613 break;
614 case 'E':
615 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
616 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
617 return 1;
618 break;
621 return 0;
624 /* TRUE if some insn in the range (START, END] references a memory location
625 that would be affected by a store to MEMREF. */
627 static int
628 memref_used_between_p (memref, start, end)
629 rtx memref;
630 rtx start;
631 rtx end;
633 rtx insn;
635 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
636 insn = NEXT_INSN (insn))
637 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
638 && memref_referenced_p (memref, PATTERN (insn)))
639 return 1;
641 return 0;
644 /* Return nonzero if the rtx X is invariant over the current function. */
646 function_invariant_p (x)
647 rtx x;
649 if (CONSTANT_P (x))
650 return 1;
651 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
652 return 1;
653 if (GET_CODE (x) == PLUS
654 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
655 && CONSTANT_P (XEXP (x, 1)))
656 return 1;
657 return 0;
660 /* Find registers that are equivalent to a single value throughout the
661 compilation (either because they can be referenced in memory or are set once
662 from a single constant). Lower their priority for a register.
664 If such a register is only referenced once, try substituting its value
665 into the using insn. If it succeeds, we can eliminate the register
666 completely. */
668 static void
669 update_equiv_regs ()
671 /* Set when an attempt should be made to replace a register with the
672 associated reg_equiv_replacement entry at the end of this function. */
673 char *reg_equiv_replace;
674 rtx insn;
675 int block, depth;
677 reg_equiv_replace = (char *) xcalloc (max_regno, sizeof *reg_equiv_replace);
678 reg_equiv_init_insns = (rtx *) xcalloc (max_regno, sizeof (rtx));
679 reg_equiv_replacement = (rtx *) xcalloc (max_regno, sizeof (rtx));
681 init_alias_analysis ();
683 loop_depth = 0;
685 /* Scan the insns and find which registers have equivalences. Do this
686 in a separate scan of the insns because (due to -fcse-follow-jumps)
687 a register can be set below its use. */
688 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
690 rtx note;
691 rtx set;
692 rtx dest, src;
693 int regno;
695 if (GET_CODE (insn) == NOTE)
697 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
698 loop_depth++;
699 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
700 loop_depth--;
703 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
704 continue;
706 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
707 if (REG_NOTE_KIND (note) == REG_INC)
708 no_equiv (XEXP (note, 0), note, NULL);
710 set = single_set (insn);
712 /* If this insn contains more (or less) than a single SET,
713 only mark all destinations as having no known equivalence. */
714 if (set == 0)
716 note_stores (PATTERN (insn), no_equiv, NULL);
717 continue;
719 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
721 int i;
723 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
725 rtx part = XVECEXP (PATTERN (insn), 0, i);
726 if (part != set)
727 note_stores (part, no_equiv, NULL);
731 dest = SET_DEST (set);
732 src = SET_SRC (set);
734 /* If this sets a MEM to the contents of a REG that is only used
735 in a single basic block, see if the register is always equivalent
736 to that memory location and if moving the store from INSN to the
737 insn that set REG is safe. If so, put a REG_EQUIV note on the
738 initializing insn.
740 Don't add a REG_EQUIV note if the insn already has one. The existing
741 REG_EQUIV is likely more useful than the one we are adding.
743 If one of the regs in the address is marked as reg_equiv_replace,
744 then we can't add this REG_EQUIV note. The reg_equiv_replace
745 optimization may move the set of this register immediately before
746 insn, which puts it after reg_equiv_init_insns[regno], and hence
747 the mention in the REG_EQUIV note would be to an uninitialized
748 pseudo. */
749 /* ????? This test isn't good enough; we might see a MEM with a use of
750 a pseudo register before we see its setting insn that will cause
751 reg_equiv_replace for that pseudo to be set.
752 Equivalences to MEMs should be made in another pass, after the
753 reg_equiv_replace information has been gathered. */
755 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
756 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
757 && REG_BASIC_BLOCK (regno) >= 0
758 && REG_N_SETS (regno) == 1
759 && reg_equiv_init_insns[regno] != 0
760 && reg_equiv_init_insns[regno] != const0_rtx
761 && ! find_reg_note (XEXP (reg_equiv_init_insns[regno], 0),
762 REG_EQUIV, NULL_RTX)
763 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
765 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
766 if (validate_equiv_mem (init_insn, src, dest)
767 && ! memref_used_between_p (dest, init_insn, insn))
768 REG_NOTES (init_insn)
769 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
772 /* We only handle the case of a pseudo register being set
773 once, or always to the same value. */
774 /* ??? The mn10200 port breaks if we add equivalences for
775 values that need an ADDRESS_REGS register and set them equivalent
776 to a MEM of a pseudo. The actual problem is in the over-conservative
777 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
778 calculate_needs, but we traditionally work around this problem
779 here by rejecting equivalences when the destination is in a register
780 that's likely spilled. This is fragile, of course, since the
781 preferred class of a pseudo depends on all instructions that set
782 or use it. */
784 if (GET_CODE (dest) != REG
785 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
786 || reg_equiv_init_insns[regno] == const0_rtx
787 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
788 && GET_CODE (src) == MEM))
790 /* This might be seting a SUBREG of a pseudo, a pseudo that is
791 also set somewhere else to a constant. */
792 note_stores (set, no_equiv, NULL);
793 continue;
795 /* Don't handle the equivalence if the source is in a register
796 class that's likely to be spilled. */
797 if (GET_CODE (src) == REG
798 && REGNO (src) >= FIRST_PSEUDO_REGISTER
799 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
801 no_equiv (dest, set, NULL);
802 continue;
805 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
807 if (REG_N_SETS (regno) != 1
808 && (! note
809 || ! function_invariant_p (XEXP (note, 0))
810 || (reg_equiv_replacement[regno]
811 && ! rtx_equal_p (XEXP (note, 0),
812 reg_equiv_replacement[regno]))))
814 no_equiv (dest, set, NULL);
815 continue;
817 /* Record this insn as initializing this register. */
818 reg_equiv_init_insns[regno]
819 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
821 /* If this register is known to be equal to a constant, record that
822 it is always equivalent to the constant. */
823 if (note && function_invariant_p (XEXP (note, 0)))
824 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
826 /* If this insn introduces a "constant" register, decrease the priority
827 of that register. Record this insn if the register is only used once
828 more and the equivalence value is the same as our source.
830 The latter condition is checked for two reasons: First, it is an
831 indication that it may be more efficient to actually emit the insn
832 as written (if no registers are available, reload will substitute
833 the equivalence). Secondly, it avoids problems with any registers
834 dying in this insn whose death notes would be missed.
836 If we don't have a REG_EQUIV note, see if this insn is loading
837 a register used only in one basic block from a MEM. If so, and the
838 MEM remains unchanged for the life of the register, add a REG_EQUIV
839 note. */
841 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
843 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
844 && GET_CODE (SET_SRC (set)) == MEM
845 && validate_equiv_mem (insn, dest, SET_SRC (set)))
846 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
847 REG_NOTES (insn));
849 if (note)
851 int regno = REGNO (dest);
853 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
854 We might end up substituting the LABEL_REF for uses of the
855 pseudo here or later. That kind of transformation may turn an
856 indirect jump into a direct jump, in which case we must rerun the
857 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
858 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
859 || (GET_CODE (XEXP (note, 0)) == CONST
860 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
861 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
862 == LABEL_REF)))
863 recorded_label_ref = 1;
866 reg_equiv_replacement[regno] = XEXP (note, 0);
868 /* Don't mess with things live during setjmp. */
869 if (REG_LIVE_LENGTH (regno) >= 0)
871 /* Note that the statement below does not affect the priority
872 in local-alloc! */
873 REG_LIVE_LENGTH (regno) *= 2;
876 /* If the register is referenced exactly twice, meaning it is
877 set once and used once, indicate that the reference may be
878 replaced by the equivalence we computed above. If the
879 register is only used in one basic block, this can't succeed
880 or combine would have done it.
882 It would be nice to use "loop_depth * 2" in the compare
883 below. Unfortunately, LOOP_DEPTH need not be constant within
884 a basic block so this would be too complicated.
886 This case normally occurs when a parameter is read from
887 memory and then used exactly once, not in a loop. */
889 if (REG_N_REFS (regno) == 2
890 && REG_BASIC_BLOCK (regno) < 0
891 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
892 reg_equiv_replace[regno] = 1;
897 /* Now scan all regs killed in an insn to see if any of them are
898 registers only used that once. If so, see if we can replace the
899 reference with the equivalent from. If we can, delete the
900 initializing reference and this register will go away. If we
901 can't replace the reference, and the instruction is not in a
902 loop, then move the register initialization just before the use,
903 so that they are in the same basic block. */
904 block = -1;
905 depth = 0;
906 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
908 rtx link;
910 /* Keep track of which basic block we are in. */
911 if (block + 1 < n_basic_blocks
912 && BLOCK_HEAD (block + 1) == insn)
913 ++block;
915 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
917 if (GET_CODE (insn) == NOTE)
919 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
920 ++depth;
921 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
923 --depth;
924 if (depth < 0)
925 abort ();
929 continue;
932 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
934 if (REG_NOTE_KIND (link) == REG_DEAD
935 /* Make sure this insn still refers to the register. */
936 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
938 int regno = REGNO (XEXP (link, 0));
939 rtx equiv_insn;
941 if (! reg_equiv_replace[regno])
942 continue;
944 /* reg_equiv_replace[REGNO] gets set only when
945 REG_N_REFS[REGNO] is 2, i.e. the register is set
946 once and used once. (If it were only set, but not used,
947 flow would have deleted the setting insns.) Hence
948 there can only be one insn in reg_equiv_init_insns. */
949 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
951 if (validate_replace_rtx (regno_reg_rtx[regno],
952 reg_equiv_replacement[regno], insn))
954 remove_death (regno, insn);
955 REG_N_REFS (regno) = 0;
956 PUT_CODE (equiv_insn, NOTE);
957 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
958 NOTE_SOURCE_FILE (equiv_insn) = 0;
960 /* If we aren't in a loop, and there are no calls in
961 INSN or in the initialization of the register, then
962 move the initialization of the register to just
963 before INSN. Update the flow information. */
964 else if (depth == 0
965 && GET_CODE (equiv_insn) == INSN
966 && GET_CODE (insn) == INSN
967 && REG_BASIC_BLOCK (regno) < 0)
969 int l;
971 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
972 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
973 REG_NOTES (equiv_insn) = 0;
975 PUT_CODE (equiv_insn, NOTE);
976 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
977 NOTE_SOURCE_FILE (equiv_insn) = 0;
979 if (block < 0)
980 REG_BASIC_BLOCK (regno) = 0;
981 else
982 REG_BASIC_BLOCK (regno) = block;
983 REG_N_CALLS_CROSSED (regno) = 0;
984 REG_LIVE_LENGTH (regno) = 2;
986 if (block >= 0 && insn == BLOCK_HEAD (block))
987 BLOCK_HEAD (block) = PREV_INSN (insn);
989 for (l = 0; l < n_basic_blocks; l++)
990 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
991 regno);
997 /* Clean up. */
998 end_alias_analysis ();
999 free (reg_equiv_replace);
1000 free (reg_equiv_init_insns);
1001 free (reg_equiv_replacement);
1004 /* Mark REG as having no known equivalence.
1005 Some instructions might have been proceessed before and furnished
1006 with REG_EQUIV notes for this register; these notes will have to be
1007 removed.
1008 STORE is the piece of RTL that does the non-constant / conflicting
1009 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1010 but needs to be there because this function is called from note_stores. */
1011 static void
1012 no_equiv (reg, store, data)
1013 rtx reg, store ATTRIBUTE_UNUSED;
1014 void *data ATTRIBUTE_UNUSED;
1016 int regno;
1017 rtx list;
1019 if (GET_CODE (reg) != REG)
1020 return;
1021 regno = REGNO (reg);
1022 list = reg_equiv_init_insns[regno];
1023 if (list == const0_rtx)
1024 return;
1025 for (; list; list = XEXP (list, 1))
1027 rtx insn = XEXP (list, 0);
1028 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1030 reg_equiv_init_insns[regno] = const0_rtx;
1031 reg_equiv_replacement[regno] = NULL_RTX;
1034 /* Allocate hard regs to the pseudo regs used only within block number B.
1035 Only the pseudos that die but once can be handled. */
1037 static void
1038 block_alloc (b)
1039 int b;
1041 register int i, q;
1042 register rtx insn;
1043 rtx note;
1044 int insn_number = 0;
1045 int insn_count = 0;
1046 int max_uid = get_max_uid ();
1047 int *qty_order;
1048 int no_conflict_combined_regno = -1;
1050 /* Count the instructions in the basic block. */
1052 insn = BLOCK_END (b);
1053 while (1)
1055 if (GET_CODE (insn) != NOTE)
1056 if (++insn_count > max_uid)
1057 abort ();
1058 if (insn == BLOCK_HEAD (b))
1059 break;
1060 insn = PREV_INSN (insn);
1063 /* +2 to leave room for a post_mark_life at the last insn and for
1064 the birth of a CLOBBER in the first insn. */
1065 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1066 sizeof (HARD_REG_SET));
1068 /* Initialize table of hardware registers currently live. */
1070 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1072 /* This loop scans the instructions of the basic block
1073 and assigns quantities to registers.
1074 It computes which registers to tie. */
1076 insn = BLOCK_HEAD (b);
1077 while (1)
1079 if (GET_CODE (insn) != NOTE)
1080 insn_number++;
1082 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1084 register rtx link, set;
1085 register int win = 0;
1086 register rtx r0, r1 = NULL_RTX;
1087 int combined_regno = -1;
1088 int i;
1090 this_insn_number = insn_number;
1091 this_insn = insn;
1093 extract_insn (insn);
1094 which_alternative = -1;
1096 /* Is this insn suitable for tying two registers?
1097 If so, try doing that.
1098 Suitable insns are those with at least two operands and where
1099 operand 0 is an output that is a register that is not
1100 earlyclobber.
1102 We can tie operand 0 with some operand that dies in this insn.
1103 First look for operands that are required to be in the same
1104 register as operand 0. If we find such, only try tying that
1105 operand or one that can be put into that operand if the
1106 operation is commutative. If we don't find an operand
1107 that is required to be in the same register as operand 0,
1108 we can tie with any operand.
1110 Subregs in place of regs are also ok.
1112 If tying is done, WIN is set nonzero. */
1114 if (optimize
1115 && recog_data.n_operands > 1
1116 && recog_data.constraints[0][0] == '='
1117 && recog_data.constraints[0][1] != '&')
1119 /* If non-negative, is an operand that must match operand 0. */
1120 int must_match_0 = -1;
1121 /* Counts number of alternatives that require a match with
1122 operand 0. */
1123 int n_matching_alts = 0;
1125 for (i = 1; i < recog_data.n_operands; i++)
1127 const char *p = recog_data.constraints[i];
1128 int this_match = (requires_inout (p));
1130 n_matching_alts += this_match;
1131 if (this_match == recog_data.n_alternatives)
1132 must_match_0 = i;
1135 r0 = recog_data.operand[0];
1136 for (i = 1; i < recog_data.n_operands; i++)
1138 /* Skip this operand if we found an operand that
1139 must match operand 0 and this operand isn't it
1140 and can't be made to be it by commutativity. */
1142 if (must_match_0 >= 0 && i != must_match_0
1143 && ! (i == must_match_0 + 1
1144 && recog_data.constraints[i-1][0] == '%')
1145 && ! (i == must_match_0 - 1
1146 && recog_data.constraints[i][0] == '%'))
1147 continue;
1149 /* Likewise if each alternative has some operand that
1150 must match operand zero. In that case, skip any
1151 operand that doesn't list operand 0 since we know that
1152 the operand always conflicts with operand 0. We
1153 ignore commutatity in this case to keep things simple. */
1154 if (n_matching_alts == recog_data.n_alternatives
1155 && 0 == requires_inout (recog_data.constraints[i]))
1156 continue;
1158 r1 = recog_data.operand[i];
1160 /* If the operand is an address, find a register in it.
1161 There may be more than one register, but we only try one
1162 of them. */
1163 if (recog_data.constraints[i][0] == 'p')
1164 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1165 r1 = XEXP (r1, 0);
1167 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1169 /* We have two priorities for hard register preferences.
1170 If we have a move insn or an insn whose first input
1171 can only be in the same register as the output, give
1172 priority to an equivalence found from that insn. */
1173 int may_save_copy
1174 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1176 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1177 win = combine_regs (r1, r0, may_save_copy,
1178 insn_number, insn, 0);
1180 if (win)
1181 break;
1185 /* Recognize an insn sequence with an ultimate result
1186 which can safely overlap one of the inputs.
1187 The sequence begins with a CLOBBER of its result,
1188 and ends with an insn that copies the result to itself
1189 and has a REG_EQUAL note for an equivalent formula.
1190 That note indicates what the inputs are.
1191 The result and the input can overlap if each insn in
1192 the sequence either doesn't mention the input
1193 or has a REG_NO_CONFLICT note to inhibit the conflict.
1195 We do the combining test at the CLOBBER so that the
1196 destination register won't have had a quantity number
1197 assigned, since that would prevent combining. */
1199 if (optimize
1200 && GET_CODE (PATTERN (insn)) == CLOBBER
1201 && (r0 = XEXP (PATTERN (insn), 0),
1202 GET_CODE (r0) == REG)
1203 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1204 && XEXP (link, 0) != 0
1205 && GET_CODE (XEXP (link, 0)) == INSN
1206 && (set = single_set (XEXP (link, 0))) != 0
1207 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1208 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1209 NULL_RTX)) != 0)
1211 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1212 /* Check that we have such a sequence. */
1213 && no_conflict_p (insn, r0, r1))
1214 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1215 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1216 && (r1 = XEXP (XEXP (note, 0), 0),
1217 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1218 && no_conflict_p (insn, r0, r1))
1219 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1221 /* Here we care if the operation to be computed is
1222 commutative. */
1223 else if ((GET_CODE (XEXP (note, 0)) == EQ
1224 || GET_CODE (XEXP (note, 0)) == NE
1225 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1226 && (r1 = XEXP (XEXP (note, 0), 1),
1227 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1228 && no_conflict_p (insn, r0, r1))
1229 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1231 /* If we did combine something, show the register number
1232 in question so that we know to ignore its death. */
1233 if (win)
1234 no_conflict_combined_regno = REGNO (r1);
1237 /* If registers were just tied, set COMBINED_REGNO
1238 to the number of the register used in this insn
1239 that was tied to the register set in this insn.
1240 This register's qty should not be "killed". */
1242 if (win)
1244 while (GET_CODE (r1) == SUBREG)
1245 r1 = SUBREG_REG (r1);
1246 combined_regno = REGNO (r1);
1249 /* Mark the death of everything that dies in this instruction,
1250 except for anything that was just combined. */
1252 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1253 if (REG_NOTE_KIND (link) == REG_DEAD
1254 && GET_CODE (XEXP (link, 0)) == REG
1255 && combined_regno != (int) REGNO (XEXP (link, 0))
1256 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1257 || ! find_reg_note (insn, REG_NO_CONFLICT,
1258 XEXP (link, 0))))
1259 wipe_dead_reg (XEXP (link, 0), 0);
1261 /* Allocate qty numbers for all registers local to this block
1262 that are born (set) in this instruction.
1263 A pseudo that already has a qty is not changed. */
1265 note_stores (PATTERN (insn), reg_is_set, NULL);
1267 /* If anything is set in this insn and then unused, mark it as dying
1268 after this insn, so it will conflict with our outputs. This
1269 can't match with something that combined, and it doesn't matter
1270 if it did. Do this after the calls to reg_is_set since these
1271 die after, not during, the current insn. */
1273 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1274 if (REG_NOTE_KIND (link) == REG_UNUSED
1275 && GET_CODE (XEXP (link, 0)) == REG)
1276 wipe_dead_reg (XEXP (link, 0), 1);
1278 /* If this is an insn that has a REG_RETVAL note pointing at a
1279 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1280 block, so clear any register number that combined within it. */
1281 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1282 && GET_CODE (XEXP (note, 0)) == INSN
1283 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1284 no_conflict_combined_regno = -1;
1287 /* Set the registers live after INSN_NUMBER. Note that we never
1288 record the registers live before the block's first insn, since no
1289 pseudos we care about are live before that insn. */
1291 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1292 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1294 if (insn == BLOCK_END (b))
1295 break;
1297 insn = NEXT_INSN (insn);
1300 /* Now every register that is local to this basic block
1301 should have been given a quantity, or else -1 meaning ignore it.
1302 Every quantity should have a known birth and death.
1304 Order the qtys so we assign them registers in order of the
1305 number of suggested registers they need so we allocate those with
1306 the most restrictive needs first. */
1308 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1309 for (i = 0; i < next_qty; i++)
1310 qty_order[i] = i;
1312 #define EXCHANGE(I1, I2) \
1313 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1315 switch (next_qty)
1317 case 3:
1318 /* Make qty_order[2] be the one to allocate last. */
1319 if (qty_sugg_compare (0, 1) > 0)
1320 EXCHANGE (0, 1);
1321 if (qty_sugg_compare (1, 2) > 0)
1322 EXCHANGE (2, 1);
1324 /* ... Fall through ... */
1325 case 2:
1326 /* Put the best one to allocate in qty_order[0]. */
1327 if (qty_sugg_compare (0, 1) > 0)
1328 EXCHANGE (0, 1);
1330 /* ... Fall through ... */
1332 case 1:
1333 case 0:
1334 /* Nothing to do here. */
1335 break;
1337 default:
1338 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1341 /* Try to put each quantity in a suggested physical register, if it has one.
1342 This may cause registers to be allocated that otherwise wouldn't be, but
1343 this seems acceptable in local allocation (unlike global allocation). */
1344 for (i = 0; i < next_qty; i++)
1346 q = qty_order[i];
1347 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1348 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1349 0, 1, qty[q].birth, qty[q].death);
1350 else
1351 qty[q].phys_reg = -1;
1354 /* Order the qtys so we assign them registers in order of
1355 decreasing length of life. Normally call qsort, but if we
1356 have only a very small number of quantities, sort them ourselves. */
1358 for (i = 0; i < next_qty; i++)
1359 qty_order[i] = i;
1361 #define EXCHANGE(I1, I2) \
1362 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1364 switch (next_qty)
1366 case 3:
1367 /* Make qty_order[2] be the one to allocate last. */
1368 if (qty_compare (0, 1) > 0)
1369 EXCHANGE (0, 1);
1370 if (qty_compare (1, 2) > 0)
1371 EXCHANGE (2, 1);
1373 /* ... Fall through ... */
1374 case 2:
1375 /* Put the best one to allocate in qty_order[0]. */
1376 if (qty_compare (0, 1) > 0)
1377 EXCHANGE (0, 1);
1379 /* ... Fall through ... */
1381 case 1:
1382 case 0:
1383 /* Nothing to do here. */
1384 break;
1386 default:
1387 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1390 /* Now for each qty that is not a hardware register,
1391 look for a hardware register to put it in.
1392 First try the register class that is cheapest for this qty,
1393 if there is more than one class. */
1395 for (i = 0; i < next_qty; i++)
1397 q = qty_order[i];
1398 if (qty[q].phys_reg < 0)
1400 #ifdef INSN_SCHEDULING
1401 /* These values represent the adjusted lifetime of a qty so
1402 that it conflicts with qtys which appear near the start/end
1403 of this qty's lifetime.
1405 The purpose behind extending the lifetime of this qty is to
1406 discourage the register allocator from creating false
1407 dependencies.
1409 The adjustment value is choosen to indicate that this qty
1410 conflicts with all the qtys in the instructions immediately
1411 before and after the lifetime of this qty.
1413 Experiments have shown that higher values tend to hurt
1414 overall code performance.
1416 If allocation using the extended lifetime fails we will try
1417 again with the qty's unadjusted lifetime. */
1418 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1419 int fake_death = MIN (insn_number * 2 + 1,
1420 qty[q].death + 2 - qty[q].death % 2);
1421 #endif
1423 if (N_REG_CLASSES > 1)
1425 #ifdef INSN_SCHEDULING
1426 /* We try to avoid using hard registers allocated to qtys which
1427 are born immediately after this qty or die immediately before
1428 this qty.
1430 This optimization is only appropriate when we will run
1431 a scheduling pass after reload and we are not optimizing
1432 for code size. */
1433 if (flag_schedule_insns_after_reload
1434 && !optimize_size
1435 && !SMALL_REGISTER_CLASSES)
1438 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1439 qty[q].mode, q, 0, 0,
1440 fake_birth, fake_death);
1441 if (qty[q].phys_reg >= 0)
1442 continue;
1444 #endif
1445 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1446 qty[q].mode, q, 0, 0,
1447 qty[q].birth, qty[q].death);
1448 if (qty[q].phys_reg >= 0)
1449 continue;
1452 #ifdef INSN_SCHEDULING
1453 /* Similarly, avoid false dependencies. */
1454 if (flag_schedule_insns_after_reload
1455 && !optimize_size
1456 && !SMALL_REGISTER_CLASSES
1457 && qty[q].alternate_class != NO_REGS)
1458 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1459 qty[q].mode, q, 0, 0,
1460 fake_birth, fake_death);
1461 #endif
1462 if (qty[q].alternate_class != NO_REGS)
1463 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1464 qty[q].mode, q, 0, 0,
1465 qty[q].birth, qty[q].death);
1469 /* Now propagate the register assignments
1470 to the pseudo regs belonging to the qtys. */
1472 for (q = 0; q < next_qty; q++)
1473 if (qty[q].phys_reg >= 0)
1475 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1476 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1479 /* Clean up. */
1480 free (regs_live_at);
1481 free (qty_order);
1484 /* Compare two quantities' priority for getting real registers.
1485 We give shorter-lived quantities higher priority.
1486 Quantities with more references are also preferred, as are quantities that
1487 require multiple registers. This is the identical prioritization as
1488 done by global-alloc.
1490 We used to give preference to registers with *longer* lives, but using
1491 the same algorithm in both local- and global-alloc can speed up execution
1492 of some programs by as much as a factor of three! */
1494 /* Note that the quotient will never be bigger than
1495 the value of floor_log2 times the maximum number of
1496 times a register can occur in one insn (surely less than 100).
1497 Multiplying this by 10000 can't overflow.
1498 QTY_CMP_PRI is also used by qty_sugg_compare. */
1500 #define QTY_CMP_PRI(q) \
1501 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1502 / (qty[q].death - qty[q].birth)) * 10000))
1504 static int
1505 qty_compare (q1, q2)
1506 int q1, q2;
1508 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1511 static int
1512 qty_compare_1 (q1p, q2p)
1513 const PTR q1p;
1514 const PTR q2p;
1516 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1517 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1519 if (tem != 0)
1520 return tem;
1522 /* If qtys are equally good, sort by qty number,
1523 so that the results of qsort leave nothing to chance. */
1524 return q1 - q2;
1527 /* Compare two quantities' priority for getting real registers. This version
1528 is called for quantities that have suggested hard registers. First priority
1529 goes to quantities that have copy preferences, then to those that have
1530 normal preferences. Within those groups, quantities with the lower
1531 number of preferences have the highest priority. Of those, we use the same
1532 algorithm as above. */
1534 #define QTY_CMP_SUGG(q) \
1535 (qty_phys_num_copy_sugg[q] \
1536 ? qty_phys_num_copy_sugg[q] \
1537 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1539 static int
1540 qty_sugg_compare (q1, q2)
1541 int q1, q2;
1543 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1545 if (tem != 0)
1546 return tem;
1548 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1551 static int
1552 qty_sugg_compare_1 (q1p, q2p)
1553 const PTR q1p;
1554 const PTR q2p;
1556 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1557 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1559 if (tem != 0)
1560 return tem;
1562 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1563 if (tem != 0)
1564 return tem;
1566 /* If qtys are equally good, sort by qty number,
1567 so that the results of qsort leave nothing to chance. */
1568 return q1 - q2;
1571 #undef QTY_CMP_SUGG
1572 #undef QTY_CMP_PRI
1574 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1575 Returns 1 if have done so, or 0 if cannot.
1577 Combining registers means marking them as having the same quantity
1578 and adjusting the offsets within the quantity if either of
1579 them is a SUBREG).
1581 We don't actually combine a hard reg with a pseudo; instead
1582 we just record the hard reg as the suggestion for the pseudo's quantity.
1583 If we really combined them, we could lose if the pseudo lives
1584 across an insn that clobbers the hard reg (eg, movstr).
1586 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1587 there is no REG_DEAD note on INSN. This occurs during the processing
1588 of REG_NO_CONFLICT blocks.
1590 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1591 SETREG or if the input and output must share a register.
1592 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1594 There are elaborate checks for the validity of combining. */
1597 static int
1598 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1599 rtx usedreg, setreg;
1600 int may_save_copy;
1601 int insn_number;
1602 rtx insn;
1603 int already_dead;
1605 register int ureg, sreg;
1606 register int offset = 0;
1607 int usize, ssize;
1608 register int sqty;
1610 /* Determine the numbers and sizes of registers being used. If a subreg
1611 is present that does not change the entire register, don't consider
1612 this a copy insn. */
1614 while (GET_CODE (usedreg) == SUBREG)
1616 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1617 may_save_copy = 0;
1618 offset += SUBREG_WORD (usedreg);
1619 usedreg = SUBREG_REG (usedreg);
1621 if (GET_CODE (usedreg) != REG)
1622 return 0;
1623 ureg = REGNO (usedreg);
1624 usize = REG_SIZE (usedreg);
1626 while (GET_CODE (setreg) == SUBREG)
1628 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1629 may_save_copy = 0;
1630 offset -= SUBREG_WORD (setreg);
1631 setreg = SUBREG_REG (setreg);
1633 if (GET_CODE (setreg) != REG)
1634 return 0;
1635 sreg = REGNO (setreg);
1636 ssize = REG_SIZE (setreg);
1638 /* If UREG is a pseudo-register that hasn't already been assigned a
1639 quantity number, it means that it is not local to this block or dies
1640 more than once. In either event, we can't do anything with it. */
1641 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1642 /* Do not combine registers unless one fits within the other. */
1643 || (offset > 0 && usize + offset > ssize)
1644 || (offset < 0 && usize + offset < ssize)
1645 /* Do not combine with a smaller already-assigned object
1646 if that smaller object is already combined with something bigger. */
1647 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1648 && usize < qty[reg_qty[ureg]].size)
1649 /* Can't combine if SREG is not a register we can allocate. */
1650 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1651 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1652 These have already been taken care of. This probably wouldn't
1653 combine anyway, but don't take any chances. */
1654 || (ureg >= FIRST_PSEUDO_REGISTER
1655 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1656 /* Don't tie something to itself. In most cases it would make no
1657 difference, but it would screw up if the reg being tied to itself
1658 also dies in this insn. */
1659 || ureg == sreg
1660 /* Don't try to connect two different hardware registers. */
1661 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1662 /* Don't use a hard reg that might be spilled. */
1663 || (ureg < FIRST_PSEUDO_REGISTER
1664 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1665 || (sreg < FIRST_PSEUDO_REGISTER
1666 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1667 /* Don't connect two different machine modes if they have different
1668 implications as to which registers may be used. */
1669 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1670 return 0;
1672 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1673 qty_phys_sugg for the pseudo instead of tying them.
1675 Return "failure" so that the lifespan of UREG is terminated here;
1676 that way the two lifespans will be disjoint and nothing will prevent
1677 the pseudo reg from being given this hard reg. */
1679 if (ureg < FIRST_PSEUDO_REGISTER)
1681 /* Allocate a quantity number so we have a place to put our
1682 suggestions. */
1683 if (reg_qty[sreg] == -2)
1684 reg_is_born (setreg, 2 * insn_number);
1686 if (reg_qty[sreg] >= 0)
1688 if (may_save_copy
1689 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1691 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1692 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1694 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1696 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1697 qty_phys_num_sugg[reg_qty[sreg]]++;
1700 return 0;
1703 /* Similarly for SREG a hard register and UREG a pseudo register. */
1705 if (sreg < FIRST_PSEUDO_REGISTER)
1707 if (may_save_copy
1708 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1710 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1711 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1713 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1715 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1716 qty_phys_num_sugg[reg_qty[ureg]]++;
1718 return 0;
1721 /* At this point we know that SREG and UREG are both pseudos.
1722 Do nothing if SREG already has a quantity or is a register that we
1723 don't allocate. */
1724 if (reg_qty[sreg] >= -1
1725 /* If we are not going to let any regs live across calls,
1726 don't tie a call-crossing reg to a non-call-crossing reg. */
1727 || (current_function_has_nonlocal_label
1728 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1729 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1730 return 0;
1732 /* We don't already know about SREG, so tie it to UREG
1733 if this is the last use of UREG, provided the classes they want
1734 are compatible. */
1736 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1737 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1739 /* Add SREG to UREG's quantity. */
1740 sqty = reg_qty[ureg];
1741 reg_qty[sreg] = sqty;
1742 reg_offset[sreg] = reg_offset[ureg] + offset;
1743 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1744 qty[sqty].first_reg = sreg;
1746 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1747 update_qty_class (sqty, sreg);
1749 /* Update info about quantity SQTY. */
1750 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1751 qty[sqty].n_refs += REG_N_REFS (sreg);
1752 if (usize < ssize)
1754 register int i;
1756 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1757 reg_offset[i] -= offset;
1759 qty[sqty].size = ssize;
1760 qty[sqty].mode = GET_MODE (setreg);
1763 else
1764 return 0;
1766 return 1;
1769 /* Return 1 if the preferred class of REG allows it to be tied
1770 to a quantity or register whose class is CLASS.
1771 True if REG's reg class either contains or is contained in CLASS. */
1773 static int
1774 reg_meets_class_p (reg, class)
1775 int reg;
1776 enum reg_class class;
1778 register enum reg_class rclass = reg_preferred_class (reg);
1779 return (reg_class_subset_p (rclass, class)
1780 || reg_class_subset_p (class, rclass));
1783 /* Update the class of QTYNO assuming that REG is being tied to it. */
1785 static void
1786 update_qty_class (qtyno, reg)
1787 int qtyno;
1788 int reg;
1790 enum reg_class rclass = reg_preferred_class (reg);
1791 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1792 qty[qtyno].min_class = rclass;
1794 rclass = reg_alternate_class (reg);
1795 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1796 qty[qtyno].alternate_class = rclass;
1798 if (REG_CHANGES_MODE (reg))
1799 qty[qtyno].changes_mode = 1;
1802 /* Handle something which alters the value of an rtx REG.
1804 REG is whatever is set or clobbered. SETTER is the rtx that
1805 is modifying the register.
1807 If it is not really a register, we do nothing.
1808 The file-global variables `this_insn' and `this_insn_number'
1809 carry info from `block_alloc'. */
1811 static void
1812 reg_is_set (reg, setter, data)
1813 rtx reg;
1814 rtx setter;
1815 void *data ATTRIBUTE_UNUSED;
1817 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1818 a hard register. These may actually not exist any more. */
1820 if (GET_CODE (reg) != SUBREG
1821 && GET_CODE (reg) != REG)
1822 return;
1824 /* Mark this register as being born. If it is used in a CLOBBER, mark
1825 it as being born halfway between the previous insn and this insn so that
1826 it conflicts with our inputs but not the outputs of the previous insn. */
1828 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1831 /* Handle beginning of the life of register REG.
1832 BIRTH is the index at which this is happening. */
1834 static void
1835 reg_is_born (reg, birth)
1836 rtx reg;
1837 int birth;
1839 register int regno;
1841 if (GET_CODE (reg) == SUBREG)
1842 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1843 else
1844 regno = REGNO (reg);
1846 if (regno < FIRST_PSEUDO_REGISTER)
1848 mark_life (regno, GET_MODE (reg), 1);
1850 /* If the register was to have been born earlier that the present
1851 insn, mark it as live where it is actually born. */
1852 if (birth < 2 * this_insn_number)
1853 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1855 else
1857 if (reg_qty[regno] == -2)
1858 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1860 /* If this register has a quantity number, show that it isn't dead. */
1861 if (reg_qty[regno] >= 0)
1862 qty[reg_qty[regno]].death = -1;
1866 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1867 REG is an output that is dying (i.e., it is never used), otherwise it
1868 is an input (the normal case).
1869 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1871 static void
1872 wipe_dead_reg (reg, output_p)
1873 register rtx reg;
1874 int output_p;
1876 register int regno = REGNO (reg);
1878 /* If this insn has multiple results,
1879 and the dead reg is used in one of the results,
1880 extend its life to after this insn,
1881 so it won't get allocated together with any other result of this insn.
1883 It is unsafe to use !single_set here since it will ignore an unused
1884 output. Just because an output is unused does not mean the compiler
1885 can assume the side effect will not occur. Consider if REG appears
1886 in the address of an output and we reload the output. If we allocate
1887 REG to the same hard register as an unused output we could set the hard
1888 register before the output reload insn. */
1889 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1890 && multiple_sets (this_insn))
1892 int i;
1893 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1895 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1896 if (GET_CODE (set) == SET
1897 && GET_CODE (SET_DEST (set)) != REG
1898 && !rtx_equal_p (reg, SET_DEST (set))
1899 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1900 output_p = 1;
1904 /* If this register is used in an auto-increment address, then extend its
1905 life to after this insn, so that it won't get allocated together with
1906 the result of this insn. */
1907 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1908 output_p = 1;
1910 if (regno < FIRST_PSEUDO_REGISTER)
1912 mark_life (regno, GET_MODE (reg), 0);
1914 /* If a hard register is dying as an output, mark it as in use at
1915 the beginning of this insn (the above statement would cause this
1916 not to happen). */
1917 if (output_p)
1918 post_mark_life (regno, GET_MODE (reg), 1,
1919 2 * this_insn_number, 2 * this_insn_number+ 1);
1922 else if (reg_qty[regno] >= 0)
1923 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
1926 /* Find a block of SIZE words of hard regs in reg_class CLASS
1927 that can hold something of machine-mode MODE
1928 (but actually we test only the first of the block for holding MODE)
1929 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1930 and return the number of the first of them.
1931 Return -1 if such a block cannot be found.
1932 If QTYNO crosses calls, insist on a register preserved by calls,
1933 unless ACCEPT_CALL_CLOBBERED is nonzero.
1935 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1936 register is available. If not, return -1. */
1938 static int
1939 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
1940 born_index, dead_index)
1941 enum reg_class class;
1942 enum machine_mode mode;
1943 int qtyno;
1944 int accept_call_clobbered;
1945 int just_try_suggested;
1946 int born_index, dead_index;
1948 register int i, ins;
1949 #ifdef HARD_REG_SET
1950 register /* Declare it register if it's a scalar. */
1951 #endif
1952 HARD_REG_SET used, first_used;
1953 #ifdef ELIMINABLE_REGS
1954 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1955 #endif
1957 /* Validate our parameters. */
1958 if (born_index < 0 || born_index > dead_index)
1959 abort ();
1961 /* Don't let a pseudo live in a reg across a function call
1962 if we might get a nonlocal goto. */
1963 if (current_function_has_nonlocal_label
1964 && qty[qtyno].n_calls_crossed > 0)
1965 return -1;
1967 if (accept_call_clobbered)
1968 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1969 else if (qty[qtyno].n_calls_crossed == 0)
1970 COPY_HARD_REG_SET (used, fixed_reg_set);
1971 else
1972 COPY_HARD_REG_SET (used, call_used_reg_set);
1974 if (accept_call_clobbered)
1975 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1977 for (ins = born_index; ins < dead_index; ins++)
1978 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1980 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1982 /* Don't use the frame pointer reg in local-alloc even if
1983 we may omit the frame pointer, because if we do that and then we
1984 need a frame pointer, reload won't know how to move the pseudo
1985 to another hard reg. It can move only regs made by global-alloc.
1987 This is true of any register that can be eliminated. */
1988 #ifdef ELIMINABLE_REGS
1989 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1990 SET_HARD_REG_BIT (used, eliminables[i].from);
1991 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1992 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1993 that it might be eliminated into. */
1994 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1995 #endif
1996 #else
1997 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1998 #endif
2000 #ifdef CLASS_CANNOT_CHANGE_MODE
2001 if (qty[qtyno].changes_mode)
2002 IOR_HARD_REG_SET (used,
2003 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2004 #endif
2006 /* Normally, the registers that can be used for the first register in
2007 a multi-register quantity are the same as those that can be used for
2008 subsequent registers. However, if just trying suggested registers,
2009 restrict our consideration to them. If there are copy-suggested
2010 register, try them. Otherwise, try the arithmetic-suggested
2011 registers. */
2012 COPY_HARD_REG_SET (first_used, used);
2014 if (just_try_suggested)
2016 if (qty_phys_num_copy_sugg[qtyno] != 0)
2017 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2018 else
2019 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2022 /* If all registers are excluded, we can't do anything. */
2023 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2025 /* If at least one would be suitable, test each hard reg. */
2027 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2029 #ifdef REG_ALLOC_ORDER
2030 int regno = reg_alloc_order[i];
2031 #else
2032 int regno = i;
2033 #endif
2034 if (! TEST_HARD_REG_BIT (first_used, regno)
2035 && HARD_REGNO_MODE_OK (regno, mode)
2036 && (qty[qtyno].n_calls_crossed == 0
2037 || accept_call_clobbered
2038 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2040 register int j;
2041 register int size1 = HARD_REGNO_NREGS (regno, mode);
2042 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2043 if (j == size1)
2045 /* Mark that this register is in use between its birth and death
2046 insns. */
2047 post_mark_life (regno, mode, 1, born_index, dead_index);
2048 return regno;
2050 #ifndef REG_ALLOC_ORDER
2051 i += j; /* Skip starting points we know will lose */
2052 #endif
2056 fail:
2058 /* If we are just trying suggested register, we have just tried copy-
2059 suggested registers, and there are arithmetic-suggested registers,
2060 try them. */
2062 /* If it would be profitable to allocate a call-clobbered register
2063 and save and restore it around calls, do that. */
2064 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2065 && qty_phys_num_sugg[qtyno] != 0)
2067 /* Don't try the copy-suggested regs again. */
2068 qty_phys_num_copy_sugg[qtyno] = 0;
2069 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2070 born_index, dead_index);
2073 /* We need not check to see if the current function has nonlocal
2074 labels because we don't put any pseudos that are live over calls in
2075 registers in that case. */
2077 if (! accept_call_clobbered
2078 && flag_caller_saves
2079 && ! just_try_suggested
2080 && qty[qtyno].n_calls_crossed != 0
2081 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs, qty[qtyno].n_calls_crossed))
2083 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2084 if (i >= 0)
2085 caller_save_needed = 1;
2086 return i;
2088 return -1;
2091 /* Mark that REGNO with machine-mode MODE is live starting from the current
2092 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2093 is zero). */
2095 static void
2096 mark_life (regno, mode, life)
2097 register int regno;
2098 enum machine_mode mode;
2099 int life;
2101 register int j = HARD_REGNO_NREGS (regno, mode);
2102 if (life)
2103 while (--j >= 0)
2104 SET_HARD_REG_BIT (regs_live, regno + j);
2105 else
2106 while (--j >= 0)
2107 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2110 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2111 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2112 to insn number DEATH (exclusive). */
2114 static void
2115 post_mark_life (regno, mode, life, birth, death)
2116 int regno;
2117 enum machine_mode mode;
2118 int life, birth, death;
2120 register int j = HARD_REGNO_NREGS (regno, mode);
2121 #ifdef HARD_REG_SET
2122 register /* Declare it register if it's a scalar. */
2123 #endif
2124 HARD_REG_SET this_reg;
2126 CLEAR_HARD_REG_SET (this_reg);
2127 while (--j >= 0)
2128 SET_HARD_REG_BIT (this_reg, regno + j);
2130 if (life)
2131 while (birth < death)
2133 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2134 birth++;
2136 else
2137 while (birth < death)
2139 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2140 birth++;
2144 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2145 is the register being clobbered, and R1 is a register being used in
2146 the equivalent expression.
2148 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2149 in which it is used, return 1.
2151 Otherwise, return 0. */
2153 static int
2154 no_conflict_p (insn, r0, r1)
2155 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2157 int ok = 0;
2158 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2159 rtx p, last;
2161 /* If R1 is a hard register, return 0 since we handle this case
2162 when we scan the insns that actually use it. */
2164 if (note == 0
2165 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2166 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2167 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2168 return 0;
2170 last = XEXP (note, 0);
2172 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2173 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2175 if (find_reg_note (p, REG_DEAD, r1))
2176 ok = 1;
2178 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2179 some earlier optimization pass has inserted instructions into
2180 the sequence, and it is not safe to perform this optimization.
2181 Note that emit_no_conflict_block always ensures that this is
2182 true when these sequences are created. */
2183 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2184 return 0;
2187 return ok;
2190 /* Return the number of alternatives for which the constraint string P
2191 indicates that the operand must be equal to operand 0 and that no register
2192 is acceptable. */
2194 static int
2195 requires_inout (p)
2196 const char *p;
2198 char c;
2199 int found_zero = 0;
2200 int reg_allowed = 0;
2201 int num_matching_alts = 0;
2203 while ((c = *p++))
2204 switch (c)
2206 case '=': case '+': case '?':
2207 case '#': case '&': case '!':
2208 case '*': case '%':
2209 case '1': case '2': case '3': case '4': case '5':
2210 case '6': case '7': case '8': case '9':
2211 case 'm': case '<': case '>': case 'V': case 'o':
2212 case 'E': case 'F': case 'G': case 'H':
2213 case 's': case 'i': case 'n':
2214 case 'I': case 'J': case 'K': case 'L':
2215 case 'M': case 'N': case 'O': case 'P':
2216 #ifdef EXTRA_CONSTRAINT
2217 case 'Q': case 'R': case 'S': case 'T': case 'U':
2218 #endif
2219 case 'X':
2220 /* These don't say anything we care about. */
2221 break;
2223 case ',':
2224 if (found_zero && ! reg_allowed)
2225 num_matching_alts++;
2227 found_zero = reg_allowed = 0;
2228 break;
2230 case '0':
2231 found_zero = 1;
2232 break;
2234 case 'p':
2235 case 'g': case 'r':
2236 default:
2237 reg_allowed = 1;
2238 break;
2241 if (found_zero && ! reg_allowed)
2242 num_matching_alts++;
2244 return num_matching_alts;
2247 void
2248 dump_local_alloc (file)
2249 FILE *file;
2251 register int i;
2252 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2253 if (reg_renumber[i] != -1)
2254 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);