1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
100 #include "insn-config.h"
102 #include "emit-rtl.h"
104 #include "diagnostic.h"
106 #include "stor-layout.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
119 typedef fibonacci_heap
<long, basic_block_def
> bb_heap_t
;
120 typedef fibonacci_node
<long, basic_block_def
> bb_heap_node_t
;
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE
, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE
, /* Use location which is associated with a value. */
136 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
137 MO_VAL_SET
, /* Set location associated with a value. */
138 MO_SET
, /* Set location. */
139 MO_COPY
, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER
, /* Clobber location. */
142 MO_CALL
, /* Call insn. */
143 MO_ADJUST
/* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name
[] = {
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
166 EMIT_NOTE_BEFORE_INSN
,
167 EMIT_NOTE_AFTER_INSN
,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 struct micro_operation
174 /* Type of micro operation. */
175 enum micro_operation_type type
;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust
;
199 /* A declaration of a variable, or an RTL value being handled like a
201 typedef void *decl_or_value
;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
205 dv_is_decl_p (decl_or_value dv
)
207 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
210 /* Return true if a decl_or_value is a VALUE rtl. */
212 dv_is_value_p (decl_or_value dv
)
214 return dv
&& !dv_is_decl_p (dv
);
217 /* Return the decl in the decl_or_value. */
219 dv_as_decl (decl_or_value dv
)
221 gcc_checking_assert (dv_is_decl_p (dv
));
225 /* Return the value in the decl_or_value. */
227 dv_as_value (decl_or_value dv
)
229 gcc_checking_assert (dv_is_value_p (dv
));
233 /* Return the opaque pointer in the decl_or_value. */
235 dv_as_opaque (decl_or_value dv
)
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
247 /* Pointer to next member of the list. */
250 /* The rtx of register. */
253 /* The declaration corresponding to LOC. */
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset
;
260 /* Structure for chaining the locations. */
261 struct location_chain
263 /* Next element in the chain. */
264 location_chain
*next
;
266 /* The location (REG, MEM or VALUE). */
269 /* The "value" stored in this location. */
273 enum var_init_status init
;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
282 /* The dependent DV. */
284 /* The dependency VALUE or DECL_DEBUG. */
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep
*next
;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep
**pprev
;
294 /* This data structure holds information about the depth of a variable
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep
*backlinks
;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
324 /* The depth of the cur_loc expression. */
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec
<loc_exp_dep
, va_heap
, vl_embed
> deps
;
330 /* Structure describing one part of variable. */
333 /* Chain of locations of the part. */
334 location_chain
*loc_chain
;
336 /* Location which was last emitted to location list. */
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset
;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux
*onepaux
;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
356 /* Not a one-part variable. */
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
360 /* A DEBUG_EXPR_DECL. */
366 /* Structure describing where the variable is located. */
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
373 /* Reference count. */
376 /* Number of variable parts. */
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables
;
386 /* The variable parts. */
387 variable_part var_part
[1];
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
393 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
395 static inline HOST_WIDE_INT
396 int_mem_offset (const_rtx mem
)
398 HOST_WIDE_INT offset
;
399 if (MEM_OFFSET_KNOWN_P (mem
) && MEM_OFFSET (mem
).is_constant (&offset
))
404 #if CHECKING_P && (GCC_VERSION >= 2007)
406 /* Access VAR's Ith part's offset, checking that it's not a one-part
408 #define VAR_PART_OFFSET(var, i) __extension__ \
409 (*({ variable *const __v = (var); \
410 gcc_checking_assert (!__v->onepart); \
411 &__v->var_part[(i)].aux.offset; }))
413 /* Access VAR's one-part auxiliary data, checking that it is a
414 one-part variable. */
415 #define VAR_LOC_1PAUX(var) __extension__ \
416 (*({ variable *const __v = (var); \
417 gcc_checking_assert (__v->onepart); \
418 &__v->var_part[0].aux.onepaux; }))
421 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
422 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
425 /* These are accessor macros for the one-part auxiliary data. When
426 convenient for users, they're guarded by tests that the data was
428 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
429 ? VAR_LOC_1PAUX (var)->backlinks \
431 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
432 ? &VAR_LOC_1PAUX (var)->backlinks \
434 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
435 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
436 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
437 ? &VAR_LOC_1PAUX (var)->deps \
442 typedef unsigned int dvuid
;
444 /* Return the uid of DV. */
447 dv_uid (decl_or_value dv
)
449 if (dv_is_value_p (dv
))
450 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
452 return DECL_UID (dv_as_decl (dv
));
455 /* Compute the hash from the uid. */
457 static inline hashval_t
458 dv_uid2hash (dvuid uid
)
463 /* The hash function for a mask table in a shared_htab chain. */
465 static inline hashval_t
466 dv_htab_hash (decl_or_value dv
)
468 return dv_uid2hash (dv_uid (dv
));
471 static void variable_htab_free (void *);
473 /* Variable hashtable helpers. */
475 struct variable_hasher
: pointer_hash
<variable
>
477 typedef void *compare_type
;
478 static inline hashval_t
hash (const variable
*);
479 static inline bool equal (const variable
*, const void *);
480 static inline void remove (variable
*);
483 /* The hash function for variable_htab, computes the hash value
484 from the declaration of variable X. */
487 variable_hasher::hash (const variable
*v
)
489 return dv_htab_hash (v
->dv
);
492 /* Compare the declaration of variable X with declaration Y. */
495 variable_hasher::equal (const variable
*v
, const void *y
)
497 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
499 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
502 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
505 variable_hasher::remove (variable
*var
)
507 variable_htab_free (var
);
510 typedef hash_table
<variable_hasher
> variable_table_type
;
511 typedef variable_table_type::iterator variable_iterator_type
;
513 /* Structure for passing some other parameters to function
514 emit_note_insn_var_location. */
515 struct emit_note_data
517 /* The instruction which the note will be emitted before/after. */
520 /* Where the note will be emitted (before/after insn)? */
521 enum emit_note_where where
;
523 /* The variables and values active at this point. */
524 variable_table_type
*vars
;
527 /* Structure holding a refcounted hash table. If refcount > 1,
528 it must be first unshared before modified. */
531 /* Reference count. */
534 /* Actual hash table. */
535 variable_table_type
*htab
;
538 /* Structure holding the IN or OUT set for a basic block. */
541 /* Adjustment of stack offset. */
542 HOST_WIDE_INT stack_adjust
;
544 /* Attributes for registers (lists of attrs). */
545 attrs
*regs
[FIRST_PSEUDO_REGISTER
];
547 /* Variable locations. */
550 /* Vars that is being traversed. */
551 shared_hash
*traversed_vars
;
554 /* The structure (one for each basic block) containing the information
555 needed for variable tracking. */
556 struct variable_tracking_info
558 /* The vector of micro operations. */
559 vec
<micro_operation
> mos
;
561 /* The IN and OUT set for dataflow analysis. */
565 /* The permanent-in dataflow set for this block. This is used to
566 hold values for which we had to compute entry values. ??? This
567 should probably be dynamically allocated, to avoid using more
568 memory in non-debug builds. */
571 /* Has the block been visited in DFS? */
574 /* Has the block been flooded in VTA? */
579 /* Alloc pool for struct attrs_def. */
580 object_allocator
<attrs
> attrs_pool ("attrs pool");
582 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
584 static pool_allocator var_pool
585 ("variable_def pool", sizeof (variable
) +
586 (MAX_VAR_PARTS
- 1) * sizeof (((variable
*)NULL
)->var_part
[0]));
588 /* Alloc pool for struct variable_def with a single var_part entry. */
589 static pool_allocator valvar_pool
590 ("small variable_def pool", sizeof (variable
));
592 /* Alloc pool for struct location_chain. */
593 static object_allocator
<location_chain
> location_chain_pool
594 ("location_chain pool");
596 /* Alloc pool for struct shared_hash. */
597 static object_allocator
<shared_hash
> shared_hash_pool ("shared_hash pool");
599 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
600 object_allocator
<loc_exp_dep
> loc_exp_dep_pool ("loc_exp_dep pool");
602 /* Changed variables, notes will be emitted for them. */
603 static variable_table_type
*changed_variables
;
605 /* Shall notes be emitted? */
606 static bool emit_notes
;
608 /* Values whose dynamic location lists have gone empty, but whose
609 cselib location lists are still usable. Use this to hold the
610 current location, the backlinks, etc, during emit_notes. */
611 static variable_table_type
*dropped_values
;
613 /* Empty shared hashtable. */
614 static shared_hash
*empty_shared_hash
;
616 /* Scratch register bitmap used by cselib_expand_value_rtx. */
617 static bitmap scratch_regs
= NULL
;
619 #ifdef HAVE_window_save
620 struct GTY(()) parm_reg
{
626 /* Vector of windowed parameter registers, if any. */
627 static vec
<parm_reg
, va_gc
> *windowed_parm_regs
= NULL
;
630 /* Variable used to tell whether cselib_process_insn called our hook. */
631 static bool cselib_hook_called
;
633 /* Local function prototypes. */
634 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
636 static void insn_stack_adjust_offset_pre_post (rtx_insn
*, HOST_WIDE_INT
*,
638 static bool vt_stack_adjustments (void);
640 static void init_attrs_list_set (attrs
**);
641 static void attrs_list_clear (attrs
**);
642 static attrs
*attrs_list_member (attrs
*, decl_or_value
, HOST_WIDE_INT
);
643 static void attrs_list_insert (attrs
**, decl_or_value
, HOST_WIDE_INT
, rtx
);
644 static void attrs_list_copy (attrs
**, attrs
*);
645 static void attrs_list_union (attrs
**, attrs
*);
647 static variable
**unshare_variable (dataflow_set
*set
, variable
**slot
,
648 variable
*var
, enum var_init_status
);
649 static void vars_copy (variable_table_type
*, variable_table_type
*);
650 static tree
var_debug_decl (tree
);
651 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
652 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
653 enum var_init_status
, rtx
);
654 static void var_reg_delete (dataflow_set
*, rtx
, bool);
655 static void var_regno_delete (dataflow_set
*, int);
656 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
657 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
658 enum var_init_status
, rtx
);
659 static void var_mem_delete (dataflow_set
*, rtx
, bool);
661 static void dataflow_set_init (dataflow_set
*);
662 static void dataflow_set_clear (dataflow_set
*);
663 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
664 static int variable_union_info_cmp_pos (const void *, const void *);
665 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
666 static location_chain
*find_loc_in_1pdv (rtx
, variable
*,
667 variable_table_type
*);
668 static bool canon_value_cmp (rtx
, rtx
);
669 static int loc_cmp (rtx
, rtx
);
670 static bool variable_part_different_p (variable_part
*, variable_part
*);
671 static bool onepart_variable_different_p (variable
*, variable
*);
672 static bool variable_different_p (variable
*, variable
*);
673 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
674 static void dataflow_set_destroy (dataflow_set
*);
676 static bool track_expr_p (tree
, bool);
677 static void add_uses_1 (rtx
*, void *);
678 static void add_stores (rtx
, const_rtx
, void *);
679 static bool compute_bb_dataflow (basic_block
);
680 static bool vt_find_locations (void);
682 static void dump_attrs_list (attrs
*);
683 static void dump_var (variable
*);
684 static void dump_vars (variable_table_type
*);
685 static void dump_dataflow_set (dataflow_set
*);
686 static void dump_dataflow_sets (void);
688 static void set_dv_changed (decl_or_value
, bool);
689 static void variable_was_changed (variable
*, dataflow_set
*);
690 static variable
**set_slot_part (dataflow_set
*, rtx
, variable
**,
691 decl_or_value
, HOST_WIDE_INT
,
692 enum var_init_status
, rtx
);
693 static void set_variable_part (dataflow_set
*, rtx
,
694 decl_or_value
, HOST_WIDE_INT
,
695 enum var_init_status
, rtx
, enum insert_option
);
696 static variable
**clobber_slot_part (dataflow_set
*, rtx
,
697 variable
**, HOST_WIDE_INT
, rtx
);
698 static void clobber_variable_part (dataflow_set
*, rtx
,
699 decl_or_value
, HOST_WIDE_INT
, rtx
);
700 static variable
**delete_slot_part (dataflow_set
*, rtx
, variable
**,
702 static void delete_variable_part (dataflow_set
*, rtx
,
703 decl_or_value
, HOST_WIDE_INT
);
704 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
705 static void vt_emit_notes (void);
707 static void vt_add_function_parameters (void);
708 static bool vt_initialize (void);
709 static void vt_finalize (void);
711 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
714 stack_adjust_offset_pre_post_cb (rtx
, rtx op
, rtx dest
, rtx src
, rtx srcoff
,
717 if (dest
!= stack_pointer_rtx
)
720 switch (GET_CODE (op
))
724 ((HOST_WIDE_INT
*)arg
)[0] -= INTVAL (srcoff
);
728 ((HOST_WIDE_INT
*)arg
)[1] -= INTVAL (srcoff
);
732 /* We handle only adjustments by constant amount. */
733 gcc_assert (GET_CODE (src
) == PLUS
734 && CONST_INT_P (XEXP (src
, 1))
735 && XEXP (src
, 0) == stack_pointer_rtx
);
736 ((HOST_WIDE_INT
*)arg
)[GET_CODE (op
) == POST_MODIFY
]
737 -= INTVAL (XEXP (src
, 1));
744 /* Given a SET, calculate the amount of stack adjustment it contains
745 PRE- and POST-modifying stack pointer.
746 This function is similar to stack_adjust_offset. */
749 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
752 rtx src
= SET_SRC (pattern
);
753 rtx dest
= SET_DEST (pattern
);
756 if (dest
== stack_pointer_rtx
)
758 /* (set (reg sp) (plus (reg sp) (const_int))) */
759 code
= GET_CODE (src
);
760 if (! (code
== PLUS
|| code
== MINUS
)
761 || XEXP (src
, 0) != stack_pointer_rtx
762 || !CONST_INT_P (XEXP (src
, 1)))
766 *post
+= INTVAL (XEXP (src
, 1));
768 *post
-= INTVAL (XEXP (src
, 1));
771 HOST_WIDE_INT res
[2] = { 0, 0 };
772 for_each_inc_dec (pattern
, stack_adjust_offset_pre_post_cb
, res
);
777 /* Given an INSN, calculate the amount of stack adjustment it contains
778 PRE- and POST-modifying stack pointer. */
781 insn_stack_adjust_offset_pre_post (rtx_insn
*insn
, HOST_WIDE_INT
*pre
,
789 pattern
= PATTERN (insn
);
790 if (RTX_FRAME_RELATED_P (insn
))
792 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
794 pattern
= XEXP (expr
, 0);
797 if (GET_CODE (pattern
) == SET
)
798 stack_adjust_offset_pre_post (pattern
, pre
, post
);
799 else if (GET_CODE (pattern
) == PARALLEL
800 || GET_CODE (pattern
) == SEQUENCE
)
804 /* There may be stack adjustments inside compound insns. Search
806 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
807 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
808 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
812 /* Compute stack adjustments for all blocks by traversing DFS tree.
813 Return true when the adjustments on all incoming edges are consistent.
814 Heavily borrowed from pre_and_rev_post_order_compute. */
817 vt_stack_adjustments (void)
819 edge_iterator
*stack
;
822 /* Initialize entry block. */
823 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
825 = INCOMING_FRAME_SP_OFFSET
;
826 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
827 = INCOMING_FRAME_SP_OFFSET
;
829 /* Allocate stack for back-tracking up CFG. */
830 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
833 /* Push the first edge on to the stack. */
834 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
842 /* Look at the edge on the top of the stack. */
844 src
= ei_edge (ei
)->src
;
845 dest
= ei_edge (ei
)->dest
;
847 /* Check if the edge destination has been visited yet. */
848 if (!VTI (dest
)->visited
)
851 HOST_WIDE_INT pre
, post
, offset
;
852 VTI (dest
)->visited
= true;
853 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
855 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
856 for (insn
= BB_HEAD (dest
);
857 insn
!= NEXT_INSN (BB_END (dest
));
858 insn
= NEXT_INSN (insn
))
861 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
862 offset
+= pre
+ post
;
865 VTI (dest
)->out
.stack_adjust
= offset
;
867 if (EDGE_COUNT (dest
->succs
) > 0)
868 /* Since the DEST node has been visited for the first
869 time, check its successors. */
870 stack
[sp
++] = ei_start (dest
->succs
);
874 /* We can end up with different stack adjustments for the exit block
875 of a shrink-wrapped function if stack_adjust_offset_pre_post
876 doesn't understand the rtx pattern used to restore the stack
877 pointer in the epilogue. For example, on s390(x), the stack
878 pointer is often restored via a load-multiple instruction
879 and so no stack_adjust offset is recorded for it. This means
880 that the stack offset at the end of the epilogue block is the
881 same as the offset before the epilogue, whereas other paths
882 to the exit block will have the correct stack_adjust.
884 It is safe to ignore these differences because (a) we never
885 use the stack_adjust for the exit block in this pass and
886 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
887 function are correct.
889 We must check whether the adjustments on other edges are
891 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
892 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
898 if (! ei_one_before_end_p (ei
))
899 /* Go to the next edge. */
900 ei_next (&stack
[sp
- 1]);
902 /* Return to previous level if there are no more edges. */
911 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
912 hard_frame_pointer_rtx is being mapped to it and offset for it. */
913 static rtx cfa_base_rtx
;
914 static HOST_WIDE_INT cfa_base_offset
;
916 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
917 or hard_frame_pointer_rtx. */
920 compute_cfa_pointer (HOST_WIDE_INT adjustment
)
922 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
925 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
926 or -1 if the replacement shouldn't be done. */
927 static HOST_WIDE_INT hard_frame_pointer_adjustment
= -1;
929 /* Data for adjust_mems callback. */
931 struct adjust_mem_data
934 machine_mode mem_mode
;
935 HOST_WIDE_INT stack_adjust
;
936 auto_vec
<rtx
> side_effects
;
939 /* Helper for adjust_mems. Return true if X is suitable for
940 transformation of wider mode arithmetics to narrower mode. */
943 use_narrower_mode_test (rtx x
, const_rtx subreg
)
945 subrtx_var_iterator::array_type array
;
946 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
950 iter
.skip_subrtxes ();
952 switch (GET_CODE (x
))
955 if (cselib_lookup (x
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
957 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (x
), x
,
958 subreg_lowpart_offset (GET_MODE (subreg
),
967 iter
.substitute (XEXP (x
, 0));
976 /* Transform X into narrower mode MODE from wider mode WMODE. */
979 use_narrower_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode wmode
)
983 return lowpart_subreg (mode
, x
, wmode
);
984 switch (GET_CODE (x
))
987 return lowpart_subreg (mode
, x
, wmode
);
991 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
992 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
993 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
995 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
997 /* Ensure shift amount is not wider than mode. */
998 if (GET_MODE (op1
) == VOIDmode
)
999 op1
= lowpart_subreg (mode
, op1
, wmode
);
1000 else if (GET_MODE_PRECISION (mode
)
1001 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (GET_MODE (op1
))))
1002 op1
= lowpart_subreg (mode
, op1
, GET_MODE (op1
));
1003 return simplify_gen_binary (ASHIFT
, mode
, op0
, op1
);
1009 /* Helper function for adjusting used MEMs. */
1012 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1014 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
1015 rtx mem
, addr
= loc
, tem
;
1016 machine_mode mem_mode_save
;
1018 scalar_int_mode tem_mode
, tem_subreg_mode
;
1020 switch (GET_CODE (loc
))
1023 /* Don't do any sp or fp replacements outside of MEM addresses
1025 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1027 if (loc
== stack_pointer_rtx
1028 && !frame_pointer_needed
1030 return compute_cfa_pointer (amd
->stack_adjust
);
1031 else if (loc
== hard_frame_pointer_rtx
1032 && frame_pointer_needed
1033 && hard_frame_pointer_adjustment
!= -1
1035 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1036 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1042 mem
= targetm
.delegitimize_address (mem
);
1043 if (mem
!= loc
&& !MEM_P (mem
))
1044 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1047 addr
= XEXP (mem
, 0);
1048 mem_mode_save
= amd
->mem_mode
;
1049 amd
->mem_mode
= GET_MODE (mem
);
1050 store_save
= amd
->store
;
1052 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1053 amd
->store
= store_save
;
1054 amd
->mem_mode
= mem_mode_save
;
1056 addr
= targetm
.delegitimize_address (addr
);
1057 if (addr
!= XEXP (mem
, 0))
1058 mem
= replace_equiv_address_nv (mem
, addr
);
1060 mem
= avoid_constant_pool_reference (mem
);
1064 size
= GET_MODE_SIZE (amd
->mem_mode
);
1065 addr
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1066 GET_CODE (loc
) == PRE_INC
? size
: -size
);
1071 addr
= XEXP (loc
, 0);
1072 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1073 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1074 size
= GET_MODE_SIZE (amd
->mem_mode
);
1075 tem
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1076 (GET_CODE (loc
) == PRE_INC
1077 || GET_CODE (loc
) == POST_INC
) ? size
: -size
);
1078 store_save
= amd
->store
;
1080 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1081 amd
->store
= store_save
;
1082 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1085 addr
= XEXP (loc
, 1);
1089 addr
= XEXP (loc
, 0);
1090 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1091 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1092 store_save
= amd
->store
;
1094 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1096 amd
->store
= store_save
;
1097 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1100 /* First try without delegitimization of whole MEMs and
1101 avoid_constant_pool_reference, which is more likely to succeed. */
1102 store_save
= amd
->store
;
1104 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1106 amd
->store
= store_save
;
1107 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1108 if (mem
== SUBREG_REG (loc
))
1113 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1114 GET_MODE (SUBREG_REG (loc
)),
1118 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1119 GET_MODE (SUBREG_REG (loc
)),
1121 if (tem
== NULL_RTX
)
1122 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1124 if (MAY_HAVE_DEBUG_BIND_INSNS
1125 && GET_CODE (tem
) == SUBREG
1126 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1127 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1128 || GET_CODE (SUBREG_REG (tem
)) == MULT
1129 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1130 && is_a
<scalar_int_mode
> (GET_MODE (tem
), &tem_mode
)
1131 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (tem
)),
1133 && (GET_MODE_PRECISION (tem_mode
)
1134 < GET_MODE_PRECISION (tem_subreg_mode
))
1135 && subreg_lowpart_p (tem
)
1136 && use_narrower_mode_test (SUBREG_REG (tem
), tem
))
1137 return use_narrower_mode (SUBREG_REG (tem
), tem_mode
, tem_subreg_mode
);
1140 /* Don't do any replacements in second and following
1141 ASM_OPERANDS of inline-asm with multiple sets.
1142 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1143 and ASM_OPERANDS_LABEL_VEC need to be equal between
1144 all the ASM_OPERANDs in the insn and adjust_insn will
1146 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1155 /* Helper function for replacement of uses. */
1158 adjust_mem_uses (rtx
*x
, void *data
)
1160 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1162 validate_change (NULL_RTX
, x
, new_x
, true);
1165 /* Helper function for replacement of stores. */
1168 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1172 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1174 if (new_dest
!= SET_DEST (expr
))
1176 rtx xexpr
= CONST_CAST_RTX (expr
);
1177 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1182 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1183 replace them with their value in the insn and add the side-effects
1184 as other sets to the insn. */
1187 adjust_insn (basic_block bb
, rtx_insn
*insn
)
1191 #ifdef HAVE_window_save
1192 /* If the target machine has an explicit window save instruction, the
1193 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1194 if (RTX_FRAME_RELATED_P (insn
)
1195 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1197 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1198 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1201 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1203 XVECEXP (rtl
, 0, i
* 2)
1204 = gen_rtx_SET (p
->incoming
, p
->outgoing
);
1205 /* Do not clobber the attached DECL, but only the REG. */
1206 XVECEXP (rtl
, 0, i
* 2 + 1)
1207 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1208 gen_raw_REG (GET_MODE (p
->outgoing
),
1209 REGNO (p
->outgoing
)));
1212 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1217 adjust_mem_data amd
;
1218 amd
.mem_mode
= VOIDmode
;
1219 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1222 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
1225 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1226 && asm_noperands (PATTERN (insn
)) > 0
1227 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1232 /* inline-asm with multiple sets is tiny bit more complicated,
1233 because the 3 vectors in ASM_OPERANDS need to be shared between
1234 all ASM_OPERANDS in the instruction. adjust_mems will
1235 not touch ASM_OPERANDS other than the first one, asm_noperands
1236 test above needs to be called before that (otherwise it would fail)
1237 and afterwards this code fixes it up. */
1238 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1239 body
= PATTERN (insn
);
1240 set0
= XVECEXP (body
, 0, 0);
1241 gcc_checking_assert (GET_CODE (set0
) == SET
1242 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1243 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1244 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1245 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1249 set
= XVECEXP (body
, 0, i
);
1250 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1251 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1253 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1254 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1255 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1256 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1257 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1258 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1260 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1261 ASM_OPERANDS_INPUT_VEC (newsrc
)
1262 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1263 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1264 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1265 ASM_OPERANDS_LABEL_VEC (newsrc
)
1266 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1267 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1272 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1274 /* For read-only MEMs containing some constant, prefer those
1276 set
= single_set (insn
);
1277 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1279 rtx note
= find_reg_equal_equiv_note (insn
);
1281 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1282 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1285 if (!amd
.side_effects
.is_empty ())
1290 pat
= &PATTERN (insn
);
1291 if (GET_CODE (*pat
) == COND_EXEC
)
1292 pat
= &COND_EXEC_CODE (*pat
);
1293 if (GET_CODE (*pat
) == PARALLEL
)
1294 oldn
= XVECLEN (*pat
, 0);
1297 unsigned int newn
= amd
.side_effects
.length ();
1298 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1299 if (GET_CODE (*pat
) == PARALLEL
)
1300 for (i
= 0; i
< oldn
; i
++)
1301 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1303 XVECEXP (new_pat
, 0, 0) = *pat
;
1307 FOR_EACH_VEC_ELT_REVERSE (amd
.side_effects
, j
, effect
)
1308 XVECEXP (new_pat
, 0, j
+ oldn
) = effect
;
1309 validate_change (NULL_RTX
, pat
, new_pat
, true);
1313 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1315 dv_as_rtx (decl_or_value dv
)
1319 if (dv_is_value_p (dv
))
1320 return dv_as_value (dv
);
1322 decl
= dv_as_decl (dv
);
1324 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1325 return DECL_RTL_KNOWN_SET (decl
);
1328 /* Return nonzero if a decl_or_value must not have more than one
1329 variable part. The returned value discriminates among various
1330 kinds of one-part DVs ccording to enum onepart_enum. */
1331 static inline onepart_enum
1332 dv_onepart_p (decl_or_value dv
)
1336 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
1339 if (dv_is_value_p (dv
))
1340 return ONEPART_VALUE
;
1342 decl
= dv_as_decl (dv
);
1344 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1345 return ONEPART_DEXPR
;
1347 if (target_for_debug_bind (decl
) != NULL_TREE
)
1348 return ONEPART_VDECL
;
1353 /* Return the variable pool to be used for a dv of type ONEPART. */
1354 static inline pool_allocator
&
1355 onepart_pool (onepart_enum onepart
)
1357 return onepart
? valvar_pool
: var_pool
;
1360 /* Allocate a variable_def from the corresponding variable pool. */
1361 static inline variable
*
1362 onepart_pool_allocate (onepart_enum onepart
)
1364 return (variable
*) onepart_pool (onepart
).allocate ();
1367 /* Build a decl_or_value out of a decl. */
1368 static inline decl_or_value
1369 dv_from_decl (tree decl
)
1373 gcc_checking_assert (dv_is_decl_p (dv
));
1377 /* Build a decl_or_value out of a value. */
1378 static inline decl_or_value
1379 dv_from_value (rtx value
)
1383 gcc_checking_assert (dv_is_value_p (dv
));
1387 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1388 static inline decl_or_value
1393 switch (GET_CODE (x
))
1396 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1397 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1401 dv
= dv_from_value (x
);
1411 extern void debug_dv (decl_or_value dv
);
1414 debug_dv (decl_or_value dv
)
1416 if (dv_is_value_p (dv
))
1417 debug_rtx (dv_as_value (dv
));
1419 debug_generic_stmt (dv_as_decl (dv
));
1422 static void loc_exp_dep_clear (variable
*var
);
1424 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1427 variable_htab_free (void *elem
)
1430 variable
*var
= (variable
*) elem
;
1431 location_chain
*node
, *next
;
1433 gcc_checking_assert (var
->refcount
> 0);
1436 if (var
->refcount
> 0)
1439 for (i
= 0; i
< var
->n_var_parts
; i
++)
1441 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1446 var
->var_part
[i
].loc_chain
= NULL
;
1448 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1450 loc_exp_dep_clear (var
);
1451 if (VAR_LOC_DEP_LST (var
))
1452 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1453 XDELETE (VAR_LOC_1PAUX (var
));
1454 /* These may be reused across functions, so reset
1456 if (var
->onepart
== ONEPART_DEXPR
)
1457 set_dv_changed (var
->dv
, true);
1459 onepart_pool (var
->onepart
).remove (var
);
1462 /* Initialize the set (array) SET of attrs to empty lists. */
1465 init_attrs_list_set (attrs
**set
)
1469 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1473 /* Make the list *LISTP empty. */
1476 attrs_list_clear (attrs
**listp
)
1480 for (list
= *listp
; list
; list
= next
)
1488 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1491 attrs_list_member (attrs
*list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1493 for (; list
; list
= list
->next
)
1494 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1499 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1502 attrs_list_insert (attrs
**listp
, decl_or_value dv
,
1503 HOST_WIDE_INT offset
, rtx loc
)
1505 attrs
*list
= new attrs
;
1508 list
->offset
= offset
;
1509 list
->next
= *listp
;
1513 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1516 attrs_list_copy (attrs
**dstp
, attrs
*src
)
1518 attrs_list_clear (dstp
);
1519 for (; src
; src
= src
->next
)
1521 attrs
*n
= new attrs
;
1524 n
->offset
= src
->offset
;
1530 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1533 attrs_list_union (attrs
**dstp
, attrs
*src
)
1535 for (; src
; src
= src
->next
)
1537 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1538 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1542 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1546 attrs_list_mpdv_union (attrs
**dstp
, attrs
*src
, attrs
*src2
)
1548 gcc_assert (!*dstp
);
1549 for (; src
; src
= src
->next
)
1551 if (!dv_onepart_p (src
->dv
))
1552 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1554 for (src
= src2
; src
; src
= src
->next
)
1556 if (!dv_onepart_p (src
->dv
)
1557 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1558 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1562 /* Shared hashtable support. */
1564 /* Return true if VARS is shared. */
1567 shared_hash_shared (shared_hash
*vars
)
1569 return vars
->refcount
> 1;
1572 /* Return the hash table for VARS. */
1574 static inline variable_table_type
*
1575 shared_hash_htab (shared_hash
*vars
)
1580 /* Return true if VAR is shared, or maybe because VARS is shared. */
1583 shared_var_p (variable
*var
, shared_hash
*vars
)
1585 /* Don't count an entry in the changed_variables table as a duplicate. */
1586 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1587 || shared_hash_shared (vars
));
1590 /* Copy variables into a new hash table. */
1592 static shared_hash
*
1593 shared_hash_unshare (shared_hash
*vars
)
1595 shared_hash
*new_vars
= new shared_hash
;
1596 gcc_assert (vars
->refcount
> 1);
1597 new_vars
->refcount
= 1;
1598 new_vars
->htab
= new variable_table_type (vars
->htab
->elements () + 3);
1599 vars_copy (new_vars
->htab
, vars
->htab
);
1604 /* Increment reference counter on VARS and return it. */
1606 static inline shared_hash
*
1607 shared_hash_copy (shared_hash
*vars
)
1613 /* Decrement reference counter and destroy hash table if not shared
1617 shared_hash_destroy (shared_hash
*vars
)
1619 gcc_checking_assert (vars
->refcount
> 0);
1620 if (--vars
->refcount
== 0)
1627 /* Unshare *PVARS if shared and return slot for DV. If INS is
1628 INSERT, insert it if not already present. */
1630 static inline variable
**
1631 shared_hash_find_slot_unshare_1 (shared_hash
**pvars
, decl_or_value dv
,
1632 hashval_t dvhash
, enum insert_option ins
)
1634 if (shared_hash_shared (*pvars
))
1635 *pvars
= shared_hash_unshare (*pvars
);
1636 return shared_hash_htab (*pvars
)->find_slot_with_hash (dv
, dvhash
, ins
);
1639 static inline variable
**
1640 shared_hash_find_slot_unshare (shared_hash
**pvars
, decl_or_value dv
,
1641 enum insert_option ins
)
1643 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1646 /* Return slot for DV, if it is already present in the hash table.
1647 If it is not present, insert it only VARS is not shared, otherwise
1650 static inline variable
**
1651 shared_hash_find_slot_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1653 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
,
1654 shared_hash_shared (vars
)
1655 ? NO_INSERT
: INSERT
);
1658 static inline variable
**
1659 shared_hash_find_slot (shared_hash
*vars
, decl_or_value dv
)
1661 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1664 /* Return slot for DV only if it is already present in the hash table. */
1666 static inline variable
**
1667 shared_hash_find_slot_noinsert_1 (shared_hash
*vars
, decl_or_value dv
,
1670 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1673 static inline variable
**
1674 shared_hash_find_slot_noinsert (shared_hash
*vars
, decl_or_value dv
)
1676 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1679 /* Return variable for DV or NULL if not already present in the hash
1682 static inline variable
*
1683 shared_hash_find_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1685 return shared_hash_htab (vars
)->find_with_hash (dv
, dvhash
);
1688 static inline variable
*
1689 shared_hash_find (shared_hash
*vars
, decl_or_value dv
)
1691 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1694 /* Return true if TVAL is better than CVAL as a canonival value. We
1695 choose lowest-numbered VALUEs, using the RTX address as a
1696 tie-breaker. The idea is to arrange them into a star topology,
1697 such that all of them are at most one step away from the canonical
1698 value, and the canonical value has backlinks to all of them, in
1699 addition to all the actual locations. We don't enforce this
1700 topology throughout the entire dataflow analysis, though.
1704 canon_value_cmp (rtx tval
, rtx cval
)
1707 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1710 static bool dst_can_be_shared
;
1712 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1715 unshare_variable (dataflow_set
*set
, variable
**slot
, variable
*var
,
1716 enum var_init_status initialized
)
1721 new_var
= onepart_pool_allocate (var
->onepart
);
1722 new_var
->dv
= var
->dv
;
1723 new_var
->refcount
= 1;
1725 new_var
->n_var_parts
= var
->n_var_parts
;
1726 new_var
->onepart
= var
->onepart
;
1727 new_var
->in_changed_variables
= false;
1729 if (! flag_var_tracking_uninit
)
1730 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1732 for (i
= 0; i
< var
->n_var_parts
; i
++)
1734 location_chain
*node
;
1735 location_chain
**nextp
;
1737 if (i
== 0 && var
->onepart
)
1739 /* One-part auxiliary data is only used while emitting
1740 notes, so propagate it to the new variable in the active
1741 dataflow set. If we're not emitting notes, this will be
1743 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1744 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1745 VAR_LOC_1PAUX (var
) = NULL
;
1748 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1749 nextp
= &new_var
->var_part
[i
].loc_chain
;
1750 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1752 location_chain
*new_lc
;
1754 new_lc
= new location_chain
;
1755 new_lc
->next
= NULL
;
1756 if (node
->init
> initialized
)
1757 new_lc
->init
= node
->init
;
1759 new_lc
->init
= initialized
;
1760 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1761 new_lc
->set_src
= node
->set_src
;
1763 new_lc
->set_src
= NULL
;
1764 new_lc
->loc
= node
->loc
;
1767 nextp
= &new_lc
->next
;
1770 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1773 dst_can_be_shared
= false;
1774 if (shared_hash_shared (set
->vars
))
1775 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1776 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1777 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1779 if (var
->in_changed_variables
)
1782 = changed_variables
->find_slot_with_hash (var
->dv
,
1783 dv_htab_hash (var
->dv
),
1785 gcc_assert (*cslot
== (void *) var
);
1786 var
->in_changed_variables
= false;
1787 variable_htab_free (var
);
1789 new_var
->in_changed_variables
= true;
1794 /* Copy all variables from hash table SRC to hash table DST. */
1797 vars_copy (variable_table_type
*dst
, variable_table_type
*src
)
1799 variable_iterator_type hi
;
1802 FOR_EACH_HASH_TABLE_ELEMENT (*src
, var
, variable
, hi
)
1806 dstp
= dst
->find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
),
1812 /* Map a decl to its main debug decl. */
1815 var_debug_decl (tree decl
)
1817 if (decl
&& VAR_P (decl
) && DECL_HAS_DEBUG_EXPR_P (decl
))
1819 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1820 if (DECL_P (debugdecl
))
1827 /* Set the register LOC to contain DV, OFFSET. */
1830 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1831 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1832 enum insert_option iopt
)
1835 bool decl_p
= dv_is_decl_p (dv
);
1838 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1840 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1841 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1842 && node
->offset
== offset
)
1845 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1846 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1849 /* Return true if we should track a location that is OFFSET bytes from
1850 a variable. Store the constant offset in *OFFSET_OUT if so. */
1853 track_offset_p (poly_int64 offset
, HOST_WIDE_INT
*offset_out
)
1855 HOST_WIDE_INT const_offset
;
1856 if (!offset
.is_constant (&const_offset
)
1857 || !IN_RANGE (const_offset
, 0, MAX_VAR_PARTS
- 1))
1859 *offset_out
= const_offset
;
1863 /* Return the offset of a register that track_offset_p says we
1866 static HOST_WIDE_INT
1867 get_tracked_reg_offset (rtx loc
)
1869 HOST_WIDE_INT offset
;
1870 if (!track_offset_p (REG_OFFSET (loc
), &offset
))
1875 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1878 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1881 tree decl
= REG_EXPR (loc
);
1882 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1884 var_reg_decl_set (set
, loc
, initialized
,
1885 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1888 static enum var_init_status
1889 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1893 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1895 if (! flag_var_tracking_uninit
)
1896 return VAR_INIT_STATUS_INITIALIZED
;
1898 var
= shared_hash_find (set
->vars
, dv
);
1901 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1903 location_chain
*nextp
;
1904 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1905 if (rtx_equal_p (nextp
->loc
, loc
))
1907 ret_val
= nextp
->init
;
1916 /* Delete current content of register LOC in dataflow set SET and set
1917 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1918 MODIFY is true, any other live copies of the same variable part are
1919 also deleted from the dataflow set, otherwise the variable part is
1920 assumed to be copied from another location holding the same
1924 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1925 enum var_init_status initialized
, rtx set_src
)
1927 tree decl
= REG_EXPR (loc
);
1928 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1932 decl
= var_debug_decl (decl
);
1934 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1935 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1937 nextp
= &set
->regs
[REGNO (loc
)];
1938 for (node
= *nextp
; node
; node
= next
)
1941 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1943 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1950 nextp
= &node
->next
;
1954 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1955 var_reg_set (set
, loc
, initialized
, set_src
);
1958 /* Delete the association of register LOC in dataflow set SET with any
1959 variables that aren't onepart. If CLOBBER is true, also delete any
1960 other live copies of the same variable part, and delete the
1961 association with onepart dvs too. */
1964 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1966 attrs
**nextp
= &set
->regs
[REGNO (loc
)];
1969 HOST_WIDE_INT offset
;
1970 if (clobber
&& track_offset_p (REG_OFFSET (loc
), &offset
))
1972 tree decl
= REG_EXPR (loc
);
1974 decl
= var_debug_decl (decl
);
1976 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1979 for (node
= *nextp
; node
; node
= next
)
1982 if (clobber
|| !dv_onepart_p (node
->dv
))
1984 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1989 nextp
= &node
->next
;
1993 /* Delete content of register with number REGNO in dataflow set SET. */
1996 var_regno_delete (dataflow_set
*set
, int regno
)
1998 attrs
**reg
= &set
->regs
[regno
];
2001 for (node
= *reg
; node
; node
= next
)
2004 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2010 /* Return true if I is the negated value of a power of two. */
2012 negative_power_of_two_p (HOST_WIDE_INT i
)
2014 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
2015 return pow2_or_zerop (x
);
2018 /* Strip constant offsets and alignments off of LOC. Return the base
2022 vt_get_canonicalize_base (rtx loc
)
2024 while ((GET_CODE (loc
) == PLUS
2025 || GET_CODE (loc
) == AND
)
2026 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2027 && (GET_CODE (loc
) != AND
2028 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2029 loc
= XEXP (loc
, 0);
2034 /* This caches canonicalized addresses for VALUEs, computed using
2035 information in the global cselib table. */
2036 static hash_map
<rtx
, rtx
> *global_get_addr_cache
;
2038 /* This caches canonicalized addresses for VALUEs, computed using
2039 information from the global cache and information pertaining to a
2040 basic block being analyzed. */
2041 static hash_map
<rtx
, rtx
> *local_get_addr_cache
;
2043 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2045 /* Return the canonical address for LOC, that must be a VALUE, using a
2046 cached global equivalence or computing it and storing it in the
2050 get_addr_from_global_cache (rtx
const loc
)
2054 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2057 rtx
*slot
= &global_get_addr_cache
->get_or_insert (loc
, &existed
);
2061 x
= canon_rtx (get_addr (loc
));
2063 /* Tentative, avoiding infinite recursion. */
2068 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2071 /* The table may have moved during recursion, recompute
2073 *global_get_addr_cache
->get (loc
) = x
= nx
;
2080 /* Return the canonical address for LOC, that must be a VALUE, using a
2081 cached local equivalence or computing it and storing it in the
2085 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2092 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2095 rtx
*slot
= &local_get_addr_cache
->get_or_insert (loc
, &existed
);
2099 x
= get_addr_from_global_cache (loc
);
2101 /* Tentative, avoiding infinite recursion. */
2104 /* Recurse to cache local expansion of X, or if we need to search
2105 for a VALUE in the expansion. */
2108 rtx nx
= vt_canonicalize_addr (set
, x
);
2111 slot
= local_get_addr_cache
->get (loc
);
2117 dv
= dv_from_rtx (x
);
2118 var
= shared_hash_find (set
->vars
, dv
);
2122 /* Look for an improved equivalent expression. */
2123 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2125 rtx base
= vt_get_canonicalize_base (l
->loc
);
2126 if (GET_CODE (base
) == VALUE
2127 && canon_value_cmp (base
, loc
))
2129 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2132 slot
= local_get_addr_cache
->get (loc
);
2142 /* Canonicalize LOC using equivalences from SET in addition to those
2143 in the cselib static table. It expects a VALUE-based expression,
2144 and it will only substitute VALUEs with other VALUEs or
2145 function-global equivalences, so that, if two addresses have base
2146 VALUEs that are locally or globally related in ways that
2147 memrefs_conflict_p cares about, they will both canonicalize to
2148 expressions that have the same base VALUE.
2150 The use of VALUEs as canonical base addresses enables the canonical
2151 RTXs to remain unchanged globally, if they resolve to a constant,
2152 or throughout a basic block otherwise, so that they can be cached
2153 and the cache needs not be invalidated when REGs, MEMs or such
2157 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2159 HOST_WIDE_INT ofst
= 0;
2160 machine_mode mode
= GET_MODE (oloc
);
2167 while (GET_CODE (loc
) == PLUS
2168 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2170 ofst
+= INTVAL (XEXP (loc
, 1));
2171 loc
= XEXP (loc
, 0);
2174 /* Alignment operations can't normally be combined, so just
2175 canonicalize the base and we're done. We'll normally have
2176 only one stack alignment anyway. */
2177 if (GET_CODE (loc
) == AND
2178 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2179 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2181 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2182 if (x
!= XEXP (loc
, 0))
2183 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2187 if (GET_CODE (loc
) == VALUE
)
2190 loc
= get_addr_from_local_cache (set
, loc
);
2192 loc
= get_addr_from_global_cache (loc
);
2194 /* Consolidate plus_constants. */
2195 while (ofst
&& GET_CODE (loc
) == PLUS
2196 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2198 ofst
+= INTVAL (XEXP (loc
, 1));
2199 loc
= XEXP (loc
, 0);
2206 x
= canon_rtx (loc
);
2213 /* Add OFST back in. */
2216 /* Don't build new RTL if we can help it. */
2217 if (GET_CODE (oloc
) == PLUS
2218 && XEXP (oloc
, 0) == loc
2219 && INTVAL (XEXP (oloc
, 1)) == ofst
)
2222 loc
= plus_constant (mode
, loc
, ofst
);
2228 /* Return true iff there's a true dependence between MLOC and LOC.
2229 MADDR must be a canonicalized version of MLOC's address. */
2232 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2234 if (GET_CODE (loc
) != MEM
)
2237 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2238 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2244 /* Hold parameters for the hashtab traversal function
2245 drop_overlapping_mem_locs, see below. */
2247 struct overlapping_mems
2253 /* Remove all MEMs that overlap with COMS->LOC from the location list
2254 of a hash table entry for a onepart variable. COMS->ADDR must be a
2255 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2256 canonicalized itself. */
2259 drop_overlapping_mem_locs (variable
**slot
, overlapping_mems
*coms
)
2261 dataflow_set
*set
= coms
->set
;
2262 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2263 variable
*var
= *slot
;
2265 if (var
->onepart
!= NOT_ONEPART
)
2267 location_chain
*loc
, **locp
;
2268 bool changed
= false;
2271 gcc_assert (var
->n_var_parts
== 1);
2273 if (shared_var_p (var
, set
->vars
))
2275 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2276 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2282 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2284 gcc_assert (var
->n_var_parts
== 1);
2287 if (VAR_LOC_1PAUX (var
))
2288 cur_loc
= VAR_LOC_FROM (var
);
2290 cur_loc
= var
->var_part
[0].cur_loc
;
2292 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2295 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2302 /* If we have deleted the location which was last emitted
2303 we have to emit new location so add the variable to set
2304 of changed variables. */
2305 if (cur_loc
== loc
->loc
)
2308 var
->var_part
[0].cur_loc
= NULL
;
2309 if (VAR_LOC_1PAUX (var
))
2310 VAR_LOC_FROM (var
) = NULL
;
2315 if (!var
->var_part
[0].loc_chain
)
2321 variable_was_changed (var
, set
);
2327 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2330 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2332 struct overlapping_mems coms
;
2334 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2337 coms
.loc
= canon_rtx (loc
);
2338 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2340 set
->traversed_vars
= set
->vars
;
2341 shared_hash_htab (set
->vars
)
2342 ->traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2343 set
->traversed_vars
= NULL
;
2346 /* Set the location of DV, OFFSET as the MEM LOC. */
2349 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2350 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2351 enum insert_option iopt
)
2353 if (dv_is_decl_p (dv
))
2354 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2356 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2359 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2361 Adjust the address first if it is stack pointer based. */
2364 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2367 tree decl
= MEM_EXPR (loc
);
2368 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2370 var_mem_decl_set (set
, loc
, initialized
,
2371 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2374 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2375 dataflow set SET to LOC. If MODIFY is true, any other live copies
2376 of the same variable part are also deleted from the dataflow set,
2377 otherwise the variable part is assumed to be copied from another
2378 location holding the same part.
2379 Adjust the address first if it is stack pointer based. */
2382 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2383 enum var_init_status initialized
, rtx set_src
)
2385 tree decl
= MEM_EXPR (loc
);
2386 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2388 clobber_overlapping_mems (set
, loc
);
2389 decl
= var_debug_decl (decl
);
2391 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2392 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2395 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2396 var_mem_set (set
, loc
, initialized
, set_src
);
2399 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2400 true, also delete any other live copies of the same variable part.
2401 Adjust the address first if it is stack pointer based. */
2404 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2406 tree decl
= MEM_EXPR (loc
);
2407 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2409 clobber_overlapping_mems (set
, loc
);
2410 decl
= var_debug_decl (decl
);
2412 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2413 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2416 /* Return true if LOC should not be expanded for location expressions,
2420 unsuitable_loc (rtx loc
)
2422 switch (GET_CODE (loc
))
2436 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2440 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2445 var_regno_delete (set
, REGNO (loc
));
2446 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2447 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2449 else if (MEM_P (loc
))
2451 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2454 clobber_overlapping_mems (set
, loc
);
2456 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2457 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2459 /* If this MEM is a global constant, we don't need it in the
2460 dynamic tables. ??? We should test this before emitting the
2461 micro-op in the first place. */
2463 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2469 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2470 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2474 /* Other kinds of equivalences are necessarily static, at least
2475 so long as we do not perform substitutions while merging
2478 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2479 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2483 /* Bind a value to a location it was just stored in. If MODIFIED
2484 holds, assume the location was modified, detaching it from any
2485 values bound to it. */
2488 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
,
2491 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2493 gcc_assert (cselib_preserved_value_p (v
));
2497 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2498 print_inline_rtx (dump_file
, loc
, 0);
2499 fprintf (dump_file
, " evaluates to ");
2500 print_inline_rtx (dump_file
, val
, 0);
2503 struct elt_loc_list
*l
;
2504 for (l
= v
->locs
; l
; l
= l
->next
)
2506 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2507 print_inline_rtx (dump_file
, l
->loc
, 0);
2510 fprintf (dump_file
, "\n");
2513 gcc_checking_assert (!unsuitable_loc (loc
));
2515 val_bind (set
, val
, loc
, modified
);
2518 /* Clear (canonical address) slots that reference X. */
2521 local_get_addr_clear_given_value (rtx
const &, rtx
*slot
, rtx x
)
2523 if (vt_get_canonicalize_base (*slot
) == x
)
2528 /* Reset this node, detaching all its equivalences. Return the slot
2529 in the variable hash table that holds dv, if there is one. */
2532 val_reset (dataflow_set
*set
, decl_or_value dv
)
2534 variable
*var
= shared_hash_find (set
->vars
, dv
) ;
2535 location_chain
*node
;
2538 if (!var
|| !var
->n_var_parts
)
2541 gcc_assert (var
->n_var_parts
== 1);
2543 if (var
->onepart
== ONEPART_VALUE
)
2545 rtx x
= dv_as_value (dv
);
2547 /* Relationships in the global cache don't change, so reset the
2548 local cache entry only. */
2549 rtx
*slot
= local_get_addr_cache
->get (x
);
2552 /* If the value resolved back to itself, odds are that other
2553 values may have cached it too. These entries now refer
2554 to the old X, so detach them too. Entries that used the
2555 old X but resolved to something else remain ok as long as
2556 that something else isn't also reset. */
2558 local_get_addr_cache
2559 ->traverse
<rtx
, local_get_addr_clear_given_value
> (x
);
2565 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2566 if (GET_CODE (node
->loc
) == VALUE
2567 && canon_value_cmp (node
->loc
, cval
))
2570 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2571 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2573 /* Redirect the equivalence link to the new canonical
2574 value, or simply remove it if it would point at
2577 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2578 0, node
->init
, node
->set_src
, NO_INSERT
);
2579 delete_variable_part (set
, dv_as_value (dv
),
2580 dv_from_value (node
->loc
), 0);
2585 decl_or_value cdv
= dv_from_value (cval
);
2587 /* Keep the remaining values connected, accumulating links
2588 in the canonical value. */
2589 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2591 if (node
->loc
== cval
)
2593 else if (GET_CODE (node
->loc
) == REG
)
2594 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2595 node
->set_src
, NO_INSERT
);
2596 else if (GET_CODE (node
->loc
) == MEM
)
2597 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2598 node
->set_src
, NO_INSERT
);
2600 set_variable_part (set
, node
->loc
, cdv
, 0,
2601 node
->init
, node
->set_src
, NO_INSERT
);
2605 /* We remove this last, to make sure that the canonical value is not
2606 removed to the point of requiring reinsertion. */
2608 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2610 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2613 /* Find the values in a given location and map the val to another
2614 value, if it is unique, or add the location as one holding the
2618 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
)
2620 decl_or_value dv
= dv_from_value (val
);
2622 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2625 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2627 fprintf (dump_file
, "head: ");
2628 print_inline_rtx (dump_file
, val
, 0);
2629 fputs (" is at ", dump_file
);
2630 print_inline_rtx (dump_file
, loc
, 0);
2631 fputc ('\n', dump_file
);
2634 val_reset (set
, dv
);
2636 gcc_checking_assert (!unsuitable_loc (loc
));
2640 attrs
*node
, *found
= NULL
;
2642 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2643 if (dv_is_value_p (node
->dv
)
2644 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2648 /* Map incoming equivalences. ??? Wouldn't it be nice if
2649 we just started sharing the location lists? Maybe a
2650 circular list ending at the value itself or some
2652 set_variable_part (set
, dv_as_value (node
->dv
),
2653 dv_from_value (val
), node
->offset
,
2654 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2655 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2656 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2659 /* If we didn't find any equivalence, we need to remember that
2660 this value is held in the named register. */
2664 /* ??? Attempt to find and merge equivalent MEMs or other
2667 val_bind (set
, val
, loc
, false);
2670 /* Initialize dataflow set SET to be empty.
2671 VARS_SIZE is the initial size of hash table VARS. */
2674 dataflow_set_init (dataflow_set
*set
)
2676 init_attrs_list_set (set
->regs
);
2677 set
->vars
= shared_hash_copy (empty_shared_hash
);
2678 set
->stack_adjust
= 0;
2679 set
->traversed_vars
= NULL
;
2682 /* Delete the contents of dataflow set SET. */
2685 dataflow_set_clear (dataflow_set
*set
)
2689 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2690 attrs_list_clear (&set
->regs
[i
]);
2692 shared_hash_destroy (set
->vars
);
2693 set
->vars
= shared_hash_copy (empty_shared_hash
);
2696 /* Copy the contents of dataflow set SRC to DST. */
2699 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2703 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2704 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2706 shared_hash_destroy (dst
->vars
);
2707 dst
->vars
= shared_hash_copy (src
->vars
);
2708 dst
->stack_adjust
= src
->stack_adjust
;
2711 /* Information for merging lists of locations for a given offset of variable.
2713 struct variable_union_info
2715 /* Node of the location chain. */
2718 /* The sum of positions in the input chains. */
2721 /* The position in the chain of DST dataflow set. */
2725 /* Buffer for location list sorting and its allocated size. */
2726 static struct variable_union_info
*vui_vec
;
2727 static int vui_allocated
;
2729 /* Compare function for qsort, order the structures by POS element. */
2732 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2734 const struct variable_union_info
*const i1
=
2735 (const struct variable_union_info
*) n1
;
2736 const struct variable_union_info
*const i2
=
2737 ( const struct variable_union_info
*) n2
;
2739 if (i1
->pos
!= i2
->pos
)
2740 return i1
->pos
- i2
->pos
;
2742 return (i1
->pos_dst
- i2
->pos_dst
);
2745 /* Compute union of location parts of variable *SLOT and the same variable
2746 from hash table DATA. Compute "sorted" union of the location chains
2747 for common offsets, i.e. the locations of a variable part are sorted by
2748 a priority where the priority is the sum of the positions in the 2 chains
2749 (if a location is only in one list the position in the second list is
2750 defined to be larger than the length of the chains).
2751 When we are updating the location parts the newest location is in the
2752 beginning of the chain, so when we do the described "sorted" union
2753 we keep the newest locations in the beginning. */
2756 variable_union (variable
*src
, dataflow_set
*set
)
2762 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2763 if (!dstp
|| !*dstp
)
2767 dst_can_be_shared
= false;
2769 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2773 /* Continue traversing the hash table. */
2779 gcc_assert (src
->n_var_parts
);
2780 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2782 /* We can combine one-part variables very efficiently, because their
2783 entries are in canonical order. */
2786 location_chain
**nodep
, *dnode
, *snode
;
2788 gcc_assert (src
->n_var_parts
== 1
2789 && dst
->n_var_parts
== 1);
2791 snode
= src
->var_part
[0].loc_chain
;
2794 restart_onepart_unshared
:
2795 nodep
= &dst
->var_part
[0].loc_chain
;
2801 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2805 location_chain
*nnode
;
2807 if (shared_var_p (dst
, set
->vars
))
2809 dstp
= unshare_variable (set
, dstp
, dst
,
2810 VAR_INIT_STATUS_INITIALIZED
);
2812 goto restart_onepart_unshared
;
2815 *nodep
= nnode
= new location_chain
;
2816 nnode
->loc
= snode
->loc
;
2817 nnode
->init
= snode
->init
;
2818 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2819 nnode
->set_src
= NULL
;
2821 nnode
->set_src
= snode
->set_src
;
2822 nnode
->next
= dnode
;
2826 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2829 snode
= snode
->next
;
2831 nodep
= &dnode
->next
;
2838 gcc_checking_assert (!src
->onepart
);
2840 /* Count the number of location parts, result is K. */
2841 for (i
= 0, j
= 0, k
= 0;
2842 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2844 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2849 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2854 k
+= src
->n_var_parts
- i
;
2855 k
+= dst
->n_var_parts
- j
;
2857 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2858 thus there are at most MAX_VAR_PARTS different offsets. */
2859 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2861 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2863 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2867 i
= src
->n_var_parts
- 1;
2868 j
= dst
->n_var_parts
- 1;
2869 dst
->n_var_parts
= k
;
2871 for (k
--; k
>= 0; k
--)
2873 location_chain
*node
, *node2
;
2875 if (i
>= 0 && j
>= 0
2876 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2878 /* Compute the "sorted" union of the chains, i.e. the locations which
2879 are in both chains go first, they are sorted by the sum of
2880 positions in the chains. */
2883 struct variable_union_info
*vui
;
2885 /* If DST is shared compare the location chains.
2886 If they are different we will modify the chain in DST with
2887 high probability so make a copy of DST. */
2888 if (shared_var_p (dst
, set
->vars
))
2890 for (node
= src
->var_part
[i
].loc_chain
,
2891 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2892 node
= node
->next
, node2
= node2
->next
)
2894 if (!((REG_P (node2
->loc
)
2895 && REG_P (node
->loc
)
2896 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2897 || rtx_equal_p (node2
->loc
, node
->loc
)))
2899 if (node2
->init
< node
->init
)
2900 node2
->init
= node
->init
;
2906 dstp
= unshare_variable (set
, dstp
, dst
,
2907 VAR_INIT_STATUS_UNKNOWN
);
2908 dst
= (variable
*)*dstp
;
2913 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2916 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2921 /* The most common case, much simpler, no qsort is needed. */
2922 location_chain
*dstnode
= dst
->var_part
[j
].loc_chain
;
2923 dst
->var_part
[k
].loc_chain
= dstnode
;
2924 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2926 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2927 if (!((REG_P (dstnode
->loc
)
2928 && REG_P (node
->loc
)
2929 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2930 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2932 location_chain
*new_node
;
2934 /* Copy the location from SRC. */
2935 new_node
= new location_chain
;
2936 new_node
->loc
= node
->loc
;
2937 new_node
->init
= node
->init
;
2938 if (!node
->set_src
|| MEM_P (node
->set_src
))
2939 new_node
->set_src
= NULL
;
2941 new_node
->set_src
= node
->set_src
;
2942 node2
->next
= new_node
;
2949 if (src_l
+ dst_l
> vui_allocated
)
2951 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2952 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2957 /* Fill in the locations from DST. */
2958 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2959 node
= node
->next
, jj
++)
2962 vui
[jj
].pos_dst
= jj
;
2964 /* Pos plus value larger than a sum of 2 valid positions. */
2965 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2968 /* Fill in the locations from SRC. */
2970 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2971 node
= node
->next
, ii
++)
2973 /* Find location from NODE. */
2974 for (jj
= 0; jj
< dst_l
; jj
++)
2976 if ((REG_P (vui
[jj
].lc
->loc
)
2977 && REG_P (node
->loc
)
2978 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2979 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2981 vui
[jj
].pos
= jj
+ ii
;
2985 if (jj
>= dst_l
) /* The location has not been found. */
2987 location_chain
*new_node
;
2989 /* Copy the location from SRC. */
2990 new_node
= new location_chain
;
2991 new_node
->loc
= node
->loc
;
2992 new_node
->init
= node
->init
;
2993 if (!node
->set_src
|| MEM_P (node
->set_src
))
2994 new_node
->set_src
= NULL
;
2996 new_node
->set_src
= node
->set_src
;
2997 vui
[n
].lc
= new_node
;
2998 vui
[n
].pos_dst
= src_l
+ dst_l
;
2999 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
3006 /* Special case still very common case. For dst_l == 2
3007 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3008 vui[i].pos == i + src_l + dst_l. */
3009 if (vui
[0].pos
> vui
[1].pos
)
3011 /* Order should be 1, 0, 2... */
3012 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
3013 vui
[1].lc
->next
= vui
[0].lc
;
3016 vui
[0].lc
->next
= vui
[2].lc
;
3017 vui
[n
- 1].lc
->next
= NULL
;
3020 vui
[0].lc
->next
= NULL
;
3025 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3026 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3028 /* Order should be 0, 2, 1, 3... */
3029 vui
[0].lc
->next
= vui
[2].lc
;
3030 vui
[2].lc
->next
= vui
[1].lc
;
3033 vui
[1].lc
->next
= vui
[3].lc
;
3034 vui
[n
- 1].lc
->next
= NULL
;
3037 vui
[1].lc
->next
= NULL
;
3042 /* Order should be 0, 1, 2... */
3044 vui
[n
- 1].lc
->next
= NULL
;
3047 for (; ii
< n
; ii
++)
3048 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3052 qsort (vui
, n
, sizeof (struct variable_union_info
),
3053 variable_union_info_cmp_pos
);
3055 /* Reconnect the nodes in sorted order. */
3056 for (ii
= 1; ii
< n
; ii
++)
3057 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3058 vui
[n
- 1].lc
->next
= NULL
;
3059 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3062 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3067 else if ((i
>= 0 && j
>= 0
3068 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3071 dst
->var_part
[k
] = dst
->var_part
[j
];
3074 else if ((i
>= 0 && j
>= 0
3075 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3078 location_chain
**nextp
;
3080 /* Copy the chain from SRC. */
3081 nextp
= &dst
->var_part
[k
].loc_chain
;
3082 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3084 location_chain
*new_lc
;
3086 new_lc
= new location_chain
;
3087 new_lc
->next
= NULL
;
3088 new_lc
->init
= node
->init
;
3089 if (!node
->set_src
|| MEM_P (node
->set_src
))
3090 new_lc
->set_src
= NULL
;
3092 new_lc
->set_src
= node
->set_src
;
3093 new_lc
->loc
= node
->loc
;
3096 nextp
= &new_lc
->next
;
3099 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3102 dst
->var_part
[k
].cur_loc
= NULL
;
3105 if (flag_var_tracking_uninit
)
3106 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3108 location_chain
*node
, *node2
;
3109 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3110 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3111 if (rtx_equal_p (node
->loc
, node2
->loc
))
3113 if (node
->init
> node2
->init
)
3114 node2
->init
= node
->init
;
3118 /* Continue traversing the hash table. */
3122 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3125 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3129 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3130 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3132 if (dst
->vars
== empty_shared_hash
)
3134 shared_hash_destroy (dst
->vars
);
3135 dst
->vars
= shared_hash_copy (src
->vars
);
3139 variable_iterator_type hi
;
3142 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src
->vars
),
3144 variable_union (var
, dst
);
3148 /* Whether the value is currently being expanded. */
3149 #define VALUE_RECURSED_INTO(x) \
3150 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3152 /* Whether no expansion was found, saving useless lookups.
3153 It must only be set when VALUE_CHANGED is clear. */
3154 #define NO_LOC_P(x) \
3155 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3157 /* Whether cur_loc in the value needs to be (re)computed. */
3158 #define VALUE_CHANGED(x) \
3159 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3160 /* Whether cur_loc in the decl needs to be (re)computed. */
3161 #define DECL_CHANGED(x) TREE_VISITED (x)
3163 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3164 user DECLs, this means they're in changed_variables. Values and
3165 debug exprs may be left with this flag set if no user variable
3166 requires them to be evaluated. */
3169 set_dv_changed (decl_or_value dv
, bool newv
)
3171 switch (dv_onepart_p (dv
))
3175 NO_LOC_P (dv_as_value (dv
)) = false;
3176 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3181 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3185 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3190 /* Return true if DV needs to have its cur_loc recomputed. */
3193 dv_changed_p (decl_or_value dv
)
3195 return (dv_is_value_p (dv
)
3196 ? VALUE_CHANGED (dv_as_value (dv
))
3197 : DECL_CHANGED (dv_as_decl (dv
)));
3200 /* Return a location list node whose loc is rtx_equal to LOC, in the
3201 location list of a one-part variable or value VAR, or in that of
3202 any values recursively mentioned in the location lists. VARS must
3203 be in star-canonical form. */
3205 static location_chain
*
3206 find_loc_in_1pdv (rtx loc
, variable
*var
, variable_table_type
*vars
)
3208 location_chain
*node
;
3209 enum rtx_code loc_code
;
3214 gcc_checking_assert (var
->onepart
);
3216 if (!var
->n_var_parts
)
3219 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
3221 loc_code
= GET_CODE (loc
);
3222 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3227 if (GET_CODE (node
->loc
) != loc_code
)
3229 if (GET_CODE (node
->loc
) != VALUE
)
3232 else if (loc
== node
->loc
)
3234 else if (loc_code
!= VALUE
)
3236 if (rtx_equal_p (loc
, node
->loc
))
3241 /* Since we're in star-canonical form, we don't need to visit
3242 non-canonical nodes: one-part variables and non-canonical
3243 values would only point back to the canonical node. */
3244 if (dv_is_value_p (var
->dv
)
3245 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3247 /* Skip all subsequent VALUEs. */
3248 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3251 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3252 dv_as_value (var
->dv
)));
3253 if (loc
== node
->loc
)
3259 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3260 gcc_checking_assert (!node
->next
);
3262 dv
= dv_from_value (node
->loc
);
3263 rvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
3264 return find_loc_in_1pdv (loc
, rvar
, vars
);
3267 /* ??? Gotta look in cselib_val locations too. */
3272 /* Hash table iteration argument passed to variable_merge. */
3275 /* The set in which the merge is to be inserted. */
3277 /* The set that we're iterating in. */
3279 /* The set that may contain the other dv we are to merge with. */
3281 /* Number of onepart dvs in src. */
3282 int src_onepart_cnt
;
3285 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3286 loc_cmp order, and it is maintained as such. */
3289 insert_into_intersection (location_chain
**nodep
, rtx loc
,
3290 enum var_init_status status
)
3292 location_chain
*node
;
3295 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3296 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3298 node
->init
= MIN (node
->init
, status
);
3304 node
= new location_chain
;
3307 node
->set_src
= NULL
;
3308 node
->init
= status
;
3309 node
->next
= *nodep
;
3313 /* Insert in DEST the intersection of the locations present in both
3314 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3315 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3319 intersect_loc_chains (rtx val
, location_chain
**dest
, struct dfset_merge
*dsm
,
3320 location_chain
*s1node
, variable
*s2var
)
3322 dataflow_set
*s1set
= dsm
->cur
;
3323 dataflow_set
*s2set
= dsm
->src
;
3324 location_chain
*found
;
3328 location_chain
*s2node
;
3330 gcc_checking_assert (s2var
->onepart
);
3332 if (s2var
->n_var_parts
)
3334 s2node
= s2var
->var_part
[0].loc_chain
;
3336 for (; s1node
&& s2node
;
3337 s1node
= s1node
->next
, s2node
= s2node
->next
)
3338 if (s1node
->loc
!= s2node
->loc
)
3340 else if (s1node
->loc
== val
)
3343 insert_into_intersection (dest
, s1node
->loc
,
3344 MIN (s1node
->init
, s2node
->init
));
3348 for (; s1node
; s1node
= s1node
->next
)
3350 if (s1node
->loc
== val
)
3353 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3354 shared_hash_htab (s2set
->vars
))))
3356 insert_into_intersection (dest
, s1node
->loc
,
3357 MIN (s1node
->init
, found
->init
));
3361 if (GET_CODE (s1node
->loc
) == VALUE
3362 && !VALUE_RECURSED_INTO (s1node
->loc
))
3364 decl_or_value dv
= dv_from_value (s1node
->loc
);
3365 variable
*svar
= shared_hash_find (s1set
->vars
, dv
);
3368 if (svar
->n_var_parts
== 1)
3370 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3371 intersect_loc_chains (val
, dest
, dsm
,
3372 svar
->var_part
[0].loc_chain
,
3374 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3379 /* ??? gotta look in cselib_val locations too. */
3381 /* ??? if the location is equivalent to any location in src,
3382 searched recursively
3384 add to dst the values needed to represent the equivalence
3386 telling whether locations S is equivalent to another dv's
3389 for each location D in the list
3391 if S and D satisfy rtx_equal_p, then it is present
3393 else if D is a value, recurse without cycles
3395 else if S and D have the same CODE and MODE
3397 for each operand oS and the corresponding oD
3399 if oS and oD are not equivalent, then S an D are not equivalent
3401 else if they are RTX vectors
3403 if any vector oS element is not equivalent to its respective oD,
3404 then S and D are not equivalent
3412 /* Return -1 if X should be before Y in a location list for a 1-part
3413 variable, 1 if Y should be before X, and 0 if they're equivalent
3414 and should not appear in the list. */
3417 loc_cmp (rtx x
, rtx y
)
3420 RTX_CODE code
= GET_CODE (x
);
3430 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3431 if (REGNO (x
) == REGNO (y
))
3433 else if (REGNO (x
) < REGNO (y
))
3446 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3447 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3453 if (GET_CODE (x
) == VALUE
)
3455 if (GET_CODE (y
) != VALUE
)
3457 /* Don't assert the modes are the same, that is true only
3458 when not recursing. (subreg:QI (value:SI 1:1) 0)
3459 and (subreg:QI (value:DI 2:2) 0) can be compared,
3460 even when the modes are different. */
3461 if (canon_value_cmp (x
, y
))
3467 if (GET_CODE (y
) == VALUE
)
3470 /* Entry value is the least preferable kind of expression. */
3471 if (GET_CODE (x
) == ENTRY_VALUE
)
3473 if (GET_CODE (y
) != ENTRY_VALUE
)
3475 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3476 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3479 if (GET_CODE (y
) == ENTRY_VALUE
)
3482 if (GET_CODE (x
) == GET_CODE (y
))
3483 /* Compare operands below. */;
3484 else if (GET_CODE (x
) < GET_CODE (y
))
3489 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3491 if (GET_CODE (x
) == DEBUG_EXPR
)
3493 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3494 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3496 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3497 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3501 fmt
= GET_RTX_FORMAT (code
);
3502 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3506 if (XWINT (x
, i
) == XWINT (y
, i
))
3508 else if (XWINT (x
, i
) < XWINT (y
, i
))
3515 if (XINT (x
, i
) == XINT (y
, i
))
3517 else if (XINT (x
, i
) < XINT (y
, i
))
3523 r
= compare_sizes_for_sort (SUBREG_BYTE (x
), SUBREG_BYTE (y
));
3530 /* Compare the vector length first. */
3531 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3532 /* Compare the vectors elements. */;
3533 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3538 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3539 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3540 XVECEXP (y
, i
, j
))))
3545 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3551 if (XSTR (x
, i
) == XSTR (y
, i
))
3557 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3565 /* These are just backpointers, so they don't matter. */
3572 /* It is believed that rtx's at this level will never
3573 contain anything but integers and other rtx's,
3574 except for within LABEL_REFs and SYMBOL_REFs. */
3578 if (CONST_WIDE_INT_P (x
))
3580 /* Compare the vector length first. */
3581 if (CONST_WIDE_INT_NUNITS (x
) >= CONST_WIDE_INT_NUNITS (y
))
3583 else if (CONST_WIDE_INT_NUNITS (x
) < CONST_WIDE_INT_NUNITS (y
))
3586 /* Compare the vectors elements. */;
3587 for (j
= CONST_WIDE_INT_NUNITS (x
) - 1; j
>= 0 ; j
--)
3589 if (CONST_WIDE_INT_ELT (x
, j
) < CONST_WIDE_INT_ELT (y
, j
))
3591 if (CONST_WIDE_INT_ELT (x
, j
) > CONST_WIDE_INT_ELT (y
, j
))
3599 /* Check the order of entries in one-part variables. */
3602 canonicalize_loc_order_check (variable
**slot
,
3603 dataflow_set
*data ATTRIBUTE_UNUSED
)
3605 variable
*var
= *slot
;
3606 location_chain
*node
, *next
;
3608 #ifdef ENABLE_RTL_CHECKING
3610 for (i
= 0; i
< var
->n_var_parts
; i
++)
3611 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3612 gcc_assert (!var
->in_changed_variables
);
3618 gcc_assert (var
->n_var_parts
== 1);
3619 node
= var
->var_part
[0].loc_chain
;
3622 while ((next
= node
->next
))
3624 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3631 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3632 more likely to be chosen as canonical for an equivalence set.
3633 Ensure less likely values can reach more likely neighbors, making
3634 the connections bidirectional. */
3637 canonicalize_values_mark (variable
**slot
, dataflow_set
*set
)
3639 variable
*var
= *slot
;
3640 decl_or_value dv
= var
->dv
;
3642 location_chain
*node
;
3644 if (!dv_is_value_p (dv
))
3647 gcc_checking_assert (var
->n_var_parts
== 1);
3649 val
= dv_as_value (dv
);
3651 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3652 if (GET_CODE (node
->loc
) == VALUE
)
3654 if (canon_value_cmp (node
->loc
, val
))
3655 VALUE_RECURSED_INTO (val
) = true;
3658 decl_or_value odv
= dv_from_value (node
->loc
);
3660 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3662 set_slot_part (set
, val
, oslot
, odv
, 0,
3663 node
->init
, NULL_RTX
);
3665 VALUE_RECURSED_INTO (node
->loc
) = true;
3672 /* Remove redundant entries from equivalence lists in onepart
3673 variables, canonicalizing equivalence sets into star shapes. */
3676 canonicalize_values_star (variable
**slot
, dataflow_set
*set
)
3678 variable
*var
= *slot
;
3679 decl_or_value dv
= var
->dv
;
3680 location_chain
*node
;
3690 gcc_checking_assert (var
->n_var_parts
== 1);
3692 if (dv_is_value_p (dv
))
3694 cval
= dv_as_value (dv
);
3695 if (!VALUE_RECURSED_INTO (cval
))
3697 VALUE_RECURSED_INTO (cval
) = false;
3707 gcc_assert (var
->n_var_parts
== 1);
3709 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3710 if (GET_CODE (node
->loc
) == VALUE
)
3713 if (VALUE_RECURSED_INTO (node
->loc
))
3715 if (canon_value_cmp (node
->loc
, cval
))
3724 if (!has_marks
|| dv_is_decl_p (dv
))
3727 /* Keep it marked so that we revisit it, either after visiting a
3728 child node, or after visiting a new parent that might be
3730 VALUE_RECURSED_INTO (val
) = true;
3732 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3733 if (GET_CODE (node
->loc
) == VALUE
3734 && VALUE_RECURSED_INTO (node
->loc
))
3738 VALUE_RECURSED_INTO (cval
) = false;
3739 dv
= dv_from_value (cval
);
3740 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3743 gcc_assert (dv_is_decl_p (var
->dv
));
3744 /* The canonical value was reset and dropped.
3746 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3750 gcc_assert (dv_is_value_p (var
->dv
));
3751 if (var
->n_var_parts
== 0)
3753 gcc_assert (var
->n_var_parts
== 1);
3757 VALUE_RECURSED_INTO (val
) = false;
3762 /* Push values to the canonical one. */
3763 cdv
= dv_from_value (cval
);
3764 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3766 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3767 if (node
->loc
!= cval
)
3769 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3770 node
->init
, NULL_RTX
);
3771 if (GET_CODE (node
->loc
) == VALUE
)
3773 decl_or_value ndv
= dv_from_value (node
->loc
);
3775 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3778 if (canon_value_cmp (node
->loc
, val
))
3780 /* If it could have been a local minimum, it's not any more,
3781 since it's now neighbor to cval, so it may have to push
3782 to it. Conversely, if it wouldn't have prevailed over
3783 val, then whatever mark it has is fine: if it was to
3784 push, it will now push to a more canonical node, but if
3785 it wasn't, then it has already pushed any values it might
3787 VALUE_RECURSED_INTO (node
->loc
) = true;
3788 /* Make sure we visit node->loc by ensuring we cval is
3790 VALUE_RECURSED_INTO (cval
) = true;
3792 else if (!VALUE_RECURSED_INTO (node
->loc
))
3793 /* If we have no need to "recurse" into this node, it's
3794 already "canonicalized", so drop the link to the old
3796 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3798 else if (GET_CODE (node
->loc
) == REG
)
3800 attrs
*list
= set
->regs
[REGNO (node
->loc
)], **listp
;
3802 /* Change an existing attribute referring to dv so that it
3803 refers to cdv, removing any duplicate this might
3804 introduce, and checking that no previous duplicates
3805 existed, all in a single pass. */
3809 if (list
->offset
== 0
3810 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3811 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3818 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3821 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3826 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3828 *listp
= list
->next
;
3834 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3837 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3839 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3844 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3846 *listp
= list
->next
;
3852 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3861 if (list
->offset
== 0
3862 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3863 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3872 set_slot_part (set
, val
, cslot
, cdv
, 0,
3873 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3875 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3877 /* Variable may have been unshared. */
3879 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3880 && var
->var_part
[0].loc_chain
->next
== NULL
);
3882 if (VALUE_RECURSED_INTO (cval
))
3883 goto restart_with_cval
;
3888 /* Bind one-part variables to the canonical value in an equivalence
3889 set. Not doing this causes dataflow convergence failure in rare
3890 circumstances, see PR42873. Unfortunately we can't do this
3891 efficiently as part of canonicalize_values_star, since we may not
3892 have determined or even seen the canonical value of a set when we
3893 get to a variable that references another member of the set. */
3896 canonicalize_vars_star (variable
**slot
, dataflow_set
*set
)
3898 variable
*var
= *slot
;
3899 decl_or_value dv
= var
->dv
;
3900 location_chain
*node
;
3905 location_chain
*cnode
;
3907 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3910 gcc_assert (var
->n_var_parts
== 1);
3912 node
= var
->var_part
[0].loc_chain
;
3914 if (GET_CODE (node
->loc
) != VALUE
)
3917 gcc_assert (!node
->next
);
3920 /* Push values to the canonical one. */
3921 cdv
= dv_from_value (cval
);
3922 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3926 gcc_assert (cvar
->n_var_parts
== 1);
3928 cnode
= cvar
->var_part
[0].loc_chain
;
3930 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3931 that are not “more canonical” than it. */
3932 if (GET_CODE (cnode
->loc
) != VALUE
3933 || !canon_value_cmp (cnode
->loc
, cval
))
3936 /* CVAL was found to be non-canonical. Change the variable to point
3937 to the canonical VALUE. */
3938 gcc_assert (!cnode
->next
);
3941 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3942 node
->init
, node
->set_src
);
3943 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3948 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3949 corresponding entry in DSM->src. Multi-part variables are combined
3950 with variable_union, whereas onepart dvs are combined with
3954 variable_merge_over_cur (variable
*s1var
, struct dfset_merge
*dsm
)
3956 dataflow_set
*dst
= dsm
->dst
;
3958 variable
*s2var
, *dvar
= NULL
;
3959 decl_or_value dv
= s1var
->dv
;
3960 onepart_enum onepart
= s1var
->onepart
;
3963 location_chain
*node
, **nodep
;
3965 /* If the incoming onepart variable has an empty location list, then
3966 the intersection will be just as empty. For other variables,
3967 it's always union. */
3968 gcc_checking_assert (s1var
->n_var_parts
3969 && s1var
->var_part
[0].loc_chain
);
3972 return variable_union (s1var
, dst
);
3974 gcc_checking_assert (s1var
->n_var_parts
== 1);
3976 dvhash
= dv_htab_hash (dv
);
3977 if (dv_is_value_p (dv
))
3978 val
= dv_as_value (dv
);
3982 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
3985 dst_can_be_shared
= false;
3989 dsm
->src_onepart_cnt
--;
3990 gcc_assert (s2var
->var_part
[0].loc_chain
3991 && s2var
->onepart
== onepart
3992 && s2var
->n_var_parts
== 1);
3994 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3998 gcc_assert (dvar
->refcount
== 1
3999 && dvar
->onepart
== onepart
4000 && dvar
->n_var_parts
== 1);
4001 nodep
= &dvar
->var_part
[0].loc_chain
;
4009 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
4011 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
4013 *dstslot
= dvar
= s2var
;
4018 dst_can_be_shared
= false;
4020 intersect_loc_chains (val
, nodep
, dsm
,
4021 s1var
->var_part
[0].loc_chain
, s2var
);
4027 dvar
= onepart_pool_allocate (onepart
);
4030 dvar
->n_var_parts
= 1;
4031 dvar
->onepart
= onepart
;
4032 dvar
->in_changed_variables
= false;
4033 dvar
->var_part
[0].loc_chain
= node
;
4034 dvar
->var_part
[0].cur_loc
= NULL
;
4036 VAR_LOC_1PAUX (dvar
) = NULL
;
4038 VAR_PART_OFFSET (dvar
, 0) = 0;
4041 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4043 gcc_assert (!*dstslot
);
4051 nodep
= &dvar
->var_part
[0].loc_chain
;
4052 while ((node
= *nodep
))
4054 location_chain
**nextp
= &node
->next
;
4056 if (GET_CODE (node
->loc
) == REG
)
4060 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4061 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4062 && dv_is_value_p (list
->dv
))
4066 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4068 /* If this value became canonical for another value that had
4069 this register, we want to leave it alone. */
4070 else if (dv_as_value (list
->dv
) != val
)
4072 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4074 node
->init
, NULL_RTX
);
4075 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4077 /* Since nextp points into the removed node, we can't
4078 use it. The pointer to the next node moved to nodep.
4079 However, if the variable we're walking is unshared
4080 during our walk, we'll keep walking the location list
4081 of the previously-shared variable, in which case the
4082 node won't have been removed, and we'll want to skip
4083 it. That's why we test *nodep here. */
4089 /* Canonicalization puts registers first, so we don't have to
4095 if (dvar
!= *dstslot
)
4097 nodep
= &dvar
->var_part
[0].loc_chain
;
4101 /* Mark all referenced nodes for canonicalization, and make sure
4102 we have mutual equivalence links. */
4103 VALUE_RECURSED_INTO (val
) = true;
4104 for (node
= *nodep
; node
; node
= node
->next
)
4105 if (GET_CODE (node
->loc
) == VALUE
)
4107 VALUE_RECURSED_INTO (node
->loc
) = true;
4108 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4109 node
->init
, NULL
, INSERT
);
4112 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4113 gcc_assert (*dstslot
== dvar
);
4114 canonicalize_values_star (dstslot
, dst
);
4115 gcc_checking_assert (dstslot
4116 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4122 bool has_value
= false, has_other
= false;
4124 /* If we have one value and anything else, we're going to
4125 canonicalize this, so make sure all values have an entry in
4126 the table and are marked for canonicalization. */
4127 for (node
= *nodep
; node
; node
= node
->next
)
4129 if (GET_CODE (node
->loc
) == VALUE
)
4131 /* If this was marked during register canonicalization,
4132 we know we have to canonicalize values. */
4147 if (has_value
&& has_other
)
4149 for (node
= *nodep
; node
; node
= node
->next
)
4151 if (GET_CODE (node
->loc
) == VALUE
)
4153 decl_or_value dv
= dv_from_value (node
->loc
);
4154 variable
**slot
= NULL
;
4156 if (shared_hash_shared (dst
->vars
))
4157 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4159 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4163 variable
*var
= onepart_pool_allocate (ONEPART_VALUE
);
4166 var
->n_var_parts
= 1;
4167 var
->onepart
= ONEPART_VALUE
;
4168 var
->in_changed_variables
= false;
4169 var
->var_part
[0].loc_chain
= NULL
;
4170 var
->var_part
[0].cur_loc
= NULL
;
4171 VAR_LOC_1PAUX (var
) = NULL
;
4175 VALUE_RECURSED_INTO (node
->loc
) = true;
4179 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4180 gcc_assert (*dstslot
== dvar
);
4181 canonicalize_values_star (dstslot
, dst
);
4182 gcc_checking_assert (dstslot
4183 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4189 if (!onepart_variable_different_p (dvar
, s2var
))
4191 variable_htab_free (dvar
);
4192 *dstslot
= dvar
= s2var
;
4195 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4197 variable_htab_free (dvar
);
4198 *dstslot
= dvar
= s1var
;
4200 dst_can_be_shared
= false;
4203 dst_can_be_shared
= false;
4208 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4209 multi-part variable. Unions of multi-part variables and
4210 intersections of one-part ones will be handled in
4211 variable_merge_over_cur(). */
4214 variable_merge_over_src (variable
*s2var
, struct dfset_merge
*dsm
)
4216 dataflow_set
*dst
= dsm
->dst
;
4217 decl_or_value dv
= s2var
->dv
;
4219 if (!s2var
->onepart
)
4221 variable
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4227 dsm
->src_onepart_cnt
++;
4231 /* Combine dataflow set information from SRC2 into DST, using PDST
4232 to carry over information across passes. */
4235 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4237 dataflow_set cur
= *dst
;
4238 dataflow_set
*src1
= &cur
;
4239 struct dfset_merge dsm
;
4241 size_t src1_elems
, src2_elems
;
4242 variable_iterator_type hi
;
4245 src1_elems
= shared_hash_htab (src1
->vars
)->elements ();
4246 src2_elems
= shared_hash_htab (src2
->vars
)->elements ();
4247 dataflow_set_init (dst
);
4248 dst
->stack_adjust
= cur
.stack_adjust
;
4249 shared_hash_destroy (dst
->vars
);
4250 dst
->vars
= new shared_hash
;
4251 dst
->vars
->refcount
= 1;
4252 dst
->vars
->htab
= new variable_table_type (MAX (src1_elems
, src2_elems
));
4254 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4255 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4260 dsm
.src_onepart_cnt
= 0;
4262 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.src
->vars
),
4264 variable_merge_over_src (var
, &dsm
);
4265 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.cur
->vars
),
4267 variable_merge_over_cur (var
, &dsm
);
4269 if (dsm
.src_onepart_cnt
)
4270 dst_can_be_shared
= false;
4272 dataflow_set_destroy (src1
);
4275 /* Mark register equivalences. */
4278 dataflow_set_equiv_regs (dataflow_set
*set
)
4281 attrs
*list
, **listp
;
4283 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4285 rtx canon
[NUM_MACHINE_MODES
];
4287 /* If the list is empty or one entry, no need to canonicalize
4289 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4292 memset (canon
, 0, sizeof (canon
));
4294 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4295 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4297 rtx val
= dv_as_value (list
->dv
);
4298 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4301 if (canon_value_cmp (val
, cval
))
4305 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4306 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4308 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4313 if (dv_is_value_p (list
->dv
))
4315 rtx val
= dv_as_value (list
->dv
);
4320 VALUE_RECURSED_INTO (val
) = true;
4321 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4322 VAR_INIT_STATUS_INITIALIZED
,
4326 VALUE_RECURSED_INTO (cval
) = true;
4327 set_variable_part (set
, cval
, list
->dv
, 0,
4328 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4331 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4332 listp
= list
? &list
->next
: listp
)
4333 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4335 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4341 if (dv_is_value_p (list
->dv
))
4343 rtx val
= dv_as_value (list
->dv
);
4344 if (!VALUE_RECURSED_INTO (val
))
4348 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4349 canonicalize_values_star (slot
, set
);
4356 /* Remove any redundant values in the location list of VAR, which must
4357 be unshared and 1-part. */
4360 remove_duplicate_values (variable
*var
)
4362 location_chain
*node
, **nodep
;
4364 gcc_assert (var
->onepart
);
4365 gcc_assert (var
->n_var_parts
== 1);
4366 gcc_assert (var
->refcount
== 1);
4368 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4370 if (GET_CODE (node
->loc
) == VALUE
)
4372 if (VALUE_RECURSED_INTO (node
->loc
))
4374 /* Remove duplicate value node. */
4375 *nodep
= node
->next
;
4380 VALUE_RECURSED_INTO (node
->loc
) = true;
4382 nodep
= &node
->next
;
4385 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4386 if (GET_CODE (node
->loc
) == VALUE
)
4388 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4389 VALUE_RECURSED_INTO (node
->loc
) = false;
4394 /* Hash table iteration argument passed to variable_post_merge. */
4395 struct dfset_post_merge
4397 /* The new input set for the current block. */
4399 /* Pointer to the permanent input set for the current block, or
4401 dataflow_set
**permp
;
4404 /* Create values for incoming expressions associated with one-part
4405 variables that don't have value numbers for them. */
4408 variable_post_merge_new_vals (variable
**slot
, dfset_post_merge
*dfpm
)
4410 dataflow_set
*set
= dfpm
->set
;
4411 variable
*var
= *slot
;
4412 location_chain
*node
;
4414 if (!var
->onepart
|| !var
->n_var_parts
)
4417 gcc_assert (var
->n_var_parts
== 1);
4419 if (dv_is_decl_p (var
->dv
))
4421 bool check_dupes
= false;
4424 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4426 if (GET_CODE (node
->loc
) == VALUE
)
4427 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4428 else if (GET_CODE (node
->loc
) == REG
)
4430 attrs
*att
, **attp
, **curp
= NULL
;
4432 if (var
->refcount
!= 1)
4434 slot
= unshare_variable (set
, slot
, var
,
4435 VAR_INIT_STATUS_INITIALIZED
);
4440 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4442 if (att
->offset
== 0
4443 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4445 if (dv_is_value_p (att
->dv
))
4447 rtx cval
= dv_as_value (att
->dv
);
4452 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
4460 if ((*curp
)->offset
== 0
4461 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4462 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
4465 curp
= &(*curp
)->next
;
4476 *dfpm
->permp
= XNEW (dataflow_set
);
4477 dataflow_set_init (*dfpm
->permp
);
4480 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4481 att
; att
= att
->next
)
4482 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4484 gcc_assert (att
->offset
== 0
4485 && dv_is_value_p (att
->dv
));
4486 val_reset (set
, att
->dv
);
4493 cval
= dv_as_value (cdv
);
4497 /* Create a unique value to hold this register,
4498 that ought to be found and reused in
4499 subsequent rounds. */
4501 gcc_assert (!cselib_lookup (node
->loc
,
4502 GET_MODE (node
->loc
), 0,
4504 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4506 cselib_preserve_value (v
);
4507 cselib_invalidate_rtx (node
->loc
);
4509 cdv
= dv_from_value (cval
);
4512 "Created new value %u:%u for reg %i\n",
4513 v
->uid
, v
->hash
, REGNO (node
->loc
));
4516 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4517 VAR_INIT_STATUS_INITIALIZED
,
4518 cdv
, 0, NULL
, INSERT
);
4524 /* Remove attribute referring to the decl, which now
4525 uses the value for the register, already existing or
4526 to be added when we bring perm in. */
4534 remove_duplicate_values (var
);
4540 /* Reset values in the permanent set that are not associated with the
4541 chosen expression. */
4544 variable_post_merge_perm_vals (variable
**pslot
, dfset_post_merge
*dfpm
)
4546 dataflow_set
*set
= dfpm
->set
;
4547 variable
*pvar
= *pslot
, *var
;
4548 location_chain
*pnode
;
4552 gcc_assert (dv_is_value_p (pvar
->dv
)
4553 && pvar
->n_var_parts
== 1);
4554 pnode
= pvar
->var_part
[0].loc_chain
;
4557 && REG_P (pnode
->loc
));
4561 var
= shared_hash_find (set
->vars
, dv
);
4564 /* Although variable_post_merge_new_vals may have made decls
4565 non-star-canonical, values that pre-existed in canonical form
4566 remain canonical, and newly-created values reference a single
4567 REG, so they are canonical as well. Since VAR has the
4568 location list for a VALUE, using find_loc_in_1pdv for it is
4569 fine, since VALUEs don't map back to DECLs. */
4570 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4572 val_reset (set
, dv
);
4575 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4576 if (att
->offset
== 0
4577 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4578 && dv_is_value_p (att
->dv
))
4581 /* If there is a value associated with this register already, create
4583 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4585 rtx cval
= dv_as_value (att
->dv
);
4586 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4587 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4592 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4594 variable_union (pvar
, set
);
4600 /* Just checking stuff and registering register attributes for
4604 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4606 struct dfset_post_merge dfpm
;
4611 shared_hash_htab (set
->vars
)
4612 ->traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4614 shared_hash_htab ((*permp
)->vars
)
4615 ->traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4616 shared_hash_htab (set
->vars
)
4617 ->traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4618 shared_hash_htab (set
->vars
)
4619 ->traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4622 /* Return a node whose loc is a MEM that refers to EXPR in the
4623 location list of a one-part variable or value VAR, or in that of
4624 any values recursively mentioned in the location lists. */
4626 static location_chain
*
4627 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type
*vars
)
4629 location_chain
*node
;
4632 location_chain
*where
= NULL
;
4637 gcc_assert (GET_CODE (val
) == VALUE
4638 && !VALUE_RECURSED_INTO (val
));
4640 dv
= dv_from_value (val
);
4641 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
4646 gcc_assert (var
->onepart
);
4648 if (!var
->n_var_parts
)
4651 VALUE_RECURSED_INTO (val
) = true;
4653 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4654 if (MEM_P (node
->loc
)
4655 && MEM_EXPR (node
->loc
) == expr
4656 && int_mem_offset (node
->loc
) == 0)
4661 else if (GET_CODE (node
->loc
) == VALUE
4662 && !VALUE_RECURSED_INTO (node
->loc
)
4663 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4666 VALUE_RECURSED_INTO (val
) = false;
4671 /* Return TRUE if the value of MEM may vary across a call. */
4674 mem_dies_at_call (rtx mem
)
4676 tree expr
= MEM_EXPR (mem
);
4682 decl
= get_base_address (expr
);
4690 return (may_be_aliased (decl
)
4691 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4694 /* Remove all MEMs from the location list of a hash table entry for a
4695 one-part variable, except those whose MEM attributes map back to
4696 the variable itself, directly or within a VALUE. */
4699 dataflow_set_preserve_mem_locs (variable
**slot
, dataflow_set
*set
)
4701 variable
*var
= *slot
;
4703 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4705 tree decl
= dv_as_decl (var
->dv
);
4706 location_chain
*loc
, **locp
;
4707 bool changed
= false;
4709 if (!var
->n_var_parts
)
4712 gcc_assert (var
->n_var_parts
== 1);
4714 if (shared_var_p (var
, set
->vars
))
4716 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4718 /* We want to remove dying MEMs that don't refer to DECL. */
4719 if (GET_CODE (loc
->loc
) == MEM
4720 && (MEM_EXPR (loc
->loc
) != decl
4721 || int_mem_offset (loc
->loc
) != 0)
4722 && mem_dies_at_call (loc
->loc
))
4724 /* We want to move here MEMs that do refer to DECL. */
4725 else if (GET_CODE (loc
->loc
) == VALUE
4726 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4727 shared_hash_htab (set
->vars
)))
4734 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4736 gcc_assert (var
->n_var_parts
== 1);
4739 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4742 rtx old_loc
= loc
->loc
;
4743 if (GET_CODE (old_loc
) == VALUE
)
4745 location_chain
*mem_node
4746 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4747 shared_hash_htab (set
->vars
));
4749 /* ??? This picks up only one out of multiple MEMs that
4750 refer to the same variable. Do we ever need to be
4751 concerned about dealing with more than one, or, given
4752 that they should all map to the same variable
4753 location, their addresses will have been merged and
4754 they will be regarded as equivalent? */
4757 loc
->loc
= mem_node
->loc
;
4758 loc
->set_src
= mem_node
->set_src
;
4759 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4763 if (GET_CODE (loc
->loc
) != MEM
4764 || (MEM_EXPR (loc
->loc
) == decl
4765 && int_mem_offset (loc
->loc
) == 0)
4766 || !mem_dies_at_call (loc
->loc
))
4768 if (old_loc
!= loc
->loc
&& emit_notes
)
4770 if (old_loc
== var
->var_part
[0].cur_loc
)
4773 var
->var_part
[0].cur_loc
= NULL
;
4782 if (old_loc
== var
->var_part
[0].cur_loc
)
4785 var
->var_part
[0].cur_loc
= NULL
;
4792 if (!var
->var_part
[0].loc_chain
)
4798 variable_was_changed (var
, set
);
4804 /* Remove all MEMs from the location list of a hash table entry for a
4805 onepart variable. */
4808 dataflow_set_remove_mem_locs (variable
**slot
, dataflow_set
*set
)
4810 variable
*var
= *slot
;
4812 if (var
->onepart
!= NOT_ONEPART
)
4814 location_chain
*loc
, **locp
;
4815 bool changed
= false;
4818 gcc_assert (var
->n_var_parts
== 1);
4820 if (shared_var_p (var
, set
->vars
))
4822 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4823 if (GET_CODE (loc
->loc
) == MEM
4824 && mem_dies_at_call (loc
->loc
))
4830 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4832 gcc_assert (var
->n_var_parts
== 1);
4835 if (VAR_LOC_1PAUX (var
))
4836 cur_loc
= VAR_LOC_FROM (var
);
4838 cur_loc
= var
->var_part
[0].cur_loc
;
4840 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4843 if (GET_CODE (loc
->loc
) != MEM
4844 || !mem_dies_at_call (loc
->loc
))
4851 /* If we have deleted the location which was last emitted
4852 we have to emit new location so add the variable to set
4853 of changed variables. */
4854 if (cur_loc
== loc
->loc
)
4857 var
->var_part
[0].cur_loc
= NULL
;
4858 if (VAR_LOC_1PAUX (var
))
4859 VAR_LOC_FROM (var
) = NULL
;
4864 if (!var
->var_part
[0].loc_chain
)
4870 variable_was_changed (var
, set
);
4876 /* Remove all variable-location information about call-clobbered
4877 registers, as well as associations between MEMs and VALUEs. */
4880 dataflow_set_clear_at_call (dataflow_set
*set
, rtx_insn
*call_insn
)
4883 hard_reg_set_iterator hrsi
;
4884 HARD_REG_SET invalidated_regs
;
4886 get_call_reg_set_usage (call_insn
, &invalidated_regs
,
4887 regs_invalidated_by_call
);
4889 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs
, 0, r
, hrsi
)
4890 var_regno_delete (set
, r
);
4892 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4894 set
->traversed_vars
= set
->vars
;
4895 shared_hash_htab (set
->vars
)
4896 ->traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4897 set
->traversed_vars
= set
->vars
;
4898 shared_hash_htab (set
->vars
)
4899 ->traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4900 set
->traversed_vars
= NULL
;
4905 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4907 location_chain
*lc1
, *lc2
;
4909 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4911 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4913 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4915 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4918 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4927 /* Return true if one-part variables VAR1 and VAR2 are different.
4928 They must be in canonical order. */
4931 onepart_variable_different_p (variable
*var1
, variable
*var2
)
4933 location_chain
*lc1
, *lc2
;
4938 gcc_assert (var1
->n_var_parts
== 1
4939 && var2
->n_var_parts
== 1);
4941 lc1
= var1
->var_part
[0].loc_chain
;
4942 lc2
= var2
->var_part
[0].loc_chain
;
4944 gcc_assert (lc1
&& lc2
);
4948 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4957 /* Return true if one-part variables VAR1 and VAR2 are different.
4958 They must be in canonical order. */
4961 dump_onepart_variable_differences (variable
*var1
, variable
*var2
)
4963 location_chain
*lc1
, *lc2
;
4965 gcc_assert (var1
!= var2
);
4966 gcc_assert (dump_file
);
4967 gcc_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
));
4968 gcc_assert (var1
->n_var_parts
== 1
4969 && var2
->n_var_parts
== 1);
4971 lc1
= var1
->var_part
[0].loc_chain
;
4972 lc2
= var2
->var_part
[0].loc_chain
;
4974 gcc_assert (lc1
&& lc2
);
4978 switch (loc_cmp (lc1
->loc
, lc2
->loc
))
4981 fprintf (dump_file
, "removed: ");
4982 print_rtl_single (dump_file
, lc1
->loc
);
4988 fprintf (dump_file
, "added: ");
4989 print_rtl_single (dump_file
, lc2
->loc
);
5001 fprintf (dump_file
, "removed: ");
5002 print_rtl_single (dump_file
, lc1
->loc
);
5008 fprintf (dump_file
, "added: ");
5009 print_rtl_single (dump_file
, lc2
->loc
);
5014 /* Return true if variables VAR1 and VAR2 are different. */
5017 variable_different_p (variable
*var1
, variable
*var2
)
5024 if (var1
->onepart
!= var2
->onepart
)
5027 if (var1
->n_var_parts
!= var2
->n_var_parts
)
5030 if (var1
->onepart
&& var1
->n_var_parts
)
5032 gcc_checking_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
)
5033 && var1
->n_var_parts
== 1);
5034 /* One-part values have locations in a canonical order. */
5035 return onepart_variable_different_p (var1
, var2
);
5038 for (i
= 0; i
< var1
->n_var_parts
; i
++)
5040 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
5042 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
5044 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
5050 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5053 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
5055 variable_iterator_type hi
;
5057 bool diffound
= false;
5058 bool details
= (dump_file
&& (dump_flags
& TDF_DETAILS
));
5070 if (old_set
->vars
== new_set
->vars
)
5073 if (shared_hash_htab (old_set
->vars
)->elements ()
5074 != shared_hash_htab (new_set
->vars
)->elements ())
5077 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set
->vars
),
5080 variable_table_type
*htab
= shared_hash_htab (new_set
->vars
);
5081 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5085 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5087 fprintf (dump_file
, "dataflow difference found: removal of:\n");
5092 else if (variable_different_p (var1
, var2
))
5096 fprintf (dump_file
, "dataflow difference found: "
5097 "old and new follow:\n");
5099 if (dv_onepart_p (var1
->dv
))
5100 dump_onepart_variable_differences (var1
, var2
);
5107 /* There's no need to traverse the second hashtab unless we want to
5108 print the details. If both have the same number of elements and
5109 the second one had all entries found in the first one, then the
5110 second can't have any extra entries. */
5114 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set
->vars
),
5117 variable_table_type
*htab
= shared_hash_htab (old_set
->vars
);
5118 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5123 fprintf (dump_file
, "dataflow difference found: addition of:\n");
5135 /* Free the contents of dataflow set SET. */
5138 dataflow_set_destroy (dataflow_set
*set
)
5142 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5143 attrs_list_clear (&set
->regs
[i
]);
5145 shared_hash_destroy (set
->vars
);
5149 /* Return true if T is a tracked parameter with non-degenerate record type. */
5152 tracked_record_parameter_p (tree t
)
5154 if (TREE_CODE (t
) != PARM_DECL
)
5157 if (DECL_MODE (t
) == BLKmode
)
5160 tree type
= TREE_TYPE (t
);
5161 if (TREE_CODE (type
) != RECORD_TYPE
)
5164 if (TYPE_FIELDS (type
) == NULL_TREE
5165 || DECL_CHAIN (TYPE_FIELDS (type
)) == NULL_TREE
)
5171 /* Shall EXPR be tracked? */
5174 track_expr_p (tree expr
, bool need_rtl
)
5179 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5180 return DECL_RTL_SET_P (expr
);
5182 /* If EXPR is not a parameter or a variable do not track it. */
5183 if (!VAR_P (expr
) && TREE_CODE (expr
) != PARM_DECL
)
5186 /* It also must have a name... */
5187 if (!DECL_NAME (expr
) && need_rtl
)
5190 /* ... and a RTL assigned to it. */
5191 decl_rtl
= DECL_RTL_IF_SET (expr
);
5192 if (!decl_rtl
&& need_rtl
)
5195 /* If this expression is really a debug alias of some other declaration, we
5196 don't need to track this expression if the ultimate declaration is
5199 if (VAR_P (realdecl
) && DECL_HAS_DEBUG_EXPR_P (realdecl
))
5201 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5202 if (!DECL_P (realdecl
))
5204 if (handled_component_p (realdecl
)
5205 || (TREE_CODE (realdecl
) == MEM_REF
5206 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5208 HOST_WIDE_INT bitsize
, bitpos
;
5211 = get_ref_base_and_extent_hwi (realdecl
, &bitpos
,
5212 &bitsize
, &reverse
);
5214 || !DECL_P (innerdecl
)
5215 || DECL_IGNORED_P (innerdecl
)
5216 /* Do not track declarations for parts of tracked record
5217 parameters since we want to track them as a whole. */
5218 || tracked_record_parameter_p (innerdecl
)
5219 || TREE_STATIC (innerdecl
)
5221 || bitpos
+ bitsize
> 256)
5231 /* Do not track EXPR if REALDECL it should be ignored for debugging
5233 if (DECL_IGNORED_P (realdecl
))
5236 /* Do not track global variables until we are able to emit correct location
5238 if (TREE_STATIC (realdecl
))
5241 /* When the EXPR is a DECL for alias of some variable (see example)
5242 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5243 DECL_RTL contains SYMBOL_REF.
5246 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5249 if (decl_rtl
&& MEM_P (decl_rtl
)
5250 && contains_symbol_ref_p (XEXP (decl_rtl
, 0)))
5253 /* If RTX is a memory it should not be very large (because it would be
5254 an array or struct). */
5255 if (decl_rtl
&& MEM_P (decl_rtl
))
5257 /* Do not track structures and arrays. */
5258 if ((GET_MODE (decl_rtl
) == BLKmode
5259 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5260 && !tracked_record_parameter_p (realdecl
))
5262 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5263 && maybe_gt (MEM_SIZE (decl_rtl
), MAX_VAR_PARTS
))
5267 DECL_CHANGED (expr
) = 0;
5268 DECL_CHANGED (realdecl
) = 0;
5272 /* Determine whether a given LOC refers to the same variable part as
5276 same_variable_part_p (rtx loc
, tree expr
, poly_int64 offset
)
5281 if (! DECL_P (expr
))
5286 expr2
= REG_EXPR (loc
);
5287 offset2
= REG_OFFSET (loc
);
5289 else if (MEM_P (loc
))
5291 expr2
= MEM_EXPR (loc
);
5292 offset2
= int_mem_offset (loc
);
5297 if (! expr2
|| ! DECL_P (expr2
))
5300 expr
= var_debug_decl (expr
);
5301 expr2
= var_debug_decl (expr2
);
5303 return (expr
== expr2
&& known_eq (offset
, offset2
));
5306 /* LOC is a REG or MEM that we would like to track if possible.
5307 If EXPR is null, we don't know what expression LOC refers to,
5308 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5309 LOC is an lvalue register.
5311 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5312 is something we can track. When returning true, store the mode of
5313 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5314 from EXPR in *OFFSET_OUT (if nonnull). */
5317 track_loc_p (rtx loc
, tree expr
, poly_int64 offset
, bool store_reg_p
,
5318 machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5322 if (expr
== NULL
|| !track_expr_p (expr
, true))
5325 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5326 whole subreg, but only the old inner part is really relevant. */
5327 mode
= GET_MODE (loc
);
5328 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5330 machine_mode pseudo_mode
;
5332 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5333 if (paradoxical_subreg_p (mode
, pseudo_mode
))
5335 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5340 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5341 Do the same if we are storing to a register and EXPR occupies
5342 the whole of register LOC; in that case, the whole of EXPR is
5343 being changed. We exclude complex modes from the second case
5344 because the real and imaginary parts are represented as separate
5345 pseudo registers, even if the whole complex value fits into one
5347 if ((paradoxical_subreg_p (mode
, DECL_MODE (expr
))
5349 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5350 && hard_regno_nregs (REGNO (loc
), DECL_MODE (expr
)) == 1))
5351 && known_eq (offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
), 0))
5353 mode
= DECL_MODE (expr
);
5357 HOST_WIDE_INT const_offset
;
5358 if (!track_offset_p (offset
, &const_offset
))
5364 *offset_out
= const_offset
;
5368 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5369 want to track. When returning nonnull, make sure that the attributes
5370 on the returned value are updated. */
5373 var_lowpart (machine_mode mode
, rtx loc
)
5377 if (GET_MODE (loc
) == mode
)
5380 if (!REG_P (loc
) && !MEM_P (loc
))
5383 poly_uint64 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5386 return adjust_address_nv (loc
, mode
, offset
);
5388 poly_uint64 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5389 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5391 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5394 /* Carry information about uses and stores while walking rtx. */
5396 struct count_use_info
5398 /* The insn where the RTX is. */
5401 /* The basic block where insn is. */
5404 /* The array of n_sets sets in the insn, as determined by cselib. */
5405 struct cselib_set
*sets
;
5408 /* True if we're counting stores, false otherwise. */
5412 /* Find a VALUE corresponding to X. */
5414 static inline cselib_val
*
5415 find_use_val (rtx x
, machine_mode mode
, struct count_use_info
*cui
)
5421 /* This is called after uses are set up and before stores are
5422 processed by cselib, so it's safe to look up srcs, but not
5423 dsts. So we look up expressions that appear in srcs or in
5424 dest expressions, but we search the sets array for dests of
5428 /* Some targets represent memset and memcpy patterns
5429 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5430 (set (mem:BLK ...) (const_int ...)) or
5431 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5432 in that case, otherwise we end up with mode mismatches. */
5433 if (mode
== BLKmode
&& MEM_P (x
))
5435 for (i
= 0; i
< cui
->n_sets
; i
++)
5436 if (cui
->sets
[i
].dest
== x
)
5437 return cui
->sets
[i
].src_elt
;
5440 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5446 /* Replace all registers and addresses in an expression with VALUE
5447 expressions that map back to them, unless the expression is a
5448 register. If no mapping is or can be performed, returns NULL. */
5451 replace_expr_with_values (rtx loc
)
5453 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5455 else if (MEM_P (loc
))
5457 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5458 get_address_mode (loc
), 0,
5461 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5466 return cselib_subst_to_values (loc
, VOIDmode
);
5469 /* Return true if X contains a DEBUG_EXPR. */
5472 rtx_debug_expr_p (const_rtx x
)
5474 subrtx_iterator::array_type array
;
5475 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5476 if (GET_CODE (*iter
) == DEBUG_EXPR
)
5481 /* Determine what kind of micro operation to choose for a USE. Return
5482 MO_CLOBBER if no micro operation is to be generated. */
5484 static enum micro_operation_type
5485 use_type (rtx loc
, struct count_use_info
*cui
, machine_mode
*modep
)
5489 if (cui
&& cui
->sets
)
5491 if (GET_CODE (loc
) == VAR_LOCATION
)
5493 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5495 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5496 if (! VAR_LOC_UNKNOWN_P (ploc
))
5498 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5501 /* ??? flag_float_store and volatile mems are never
5502 given values, but we could in theory use them for
5504 gcc_assert (val
|| 1);
5512 if (REG_P (loc
) || MEM_P (loc
))
5515 *modep
= GET_MODE (loc
);
5519 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5520 && cselib_lookup (XEXP (loc
, 0),
5521 get_address_mode (loc
), 0,
5527 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5529 if (val
&& !cselib_preserved_value_p (val
))
5537 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5539 if (loc
== cfa_base_rtx
)
5541 expr
= REG_EXPR (loc
);
5544 return MO_USE_NO_VAR
;
5545 else if (target_for_debug_bind (var_debug_decl (expr
)))
5547 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5548 false, modep
, NULL
))
5551 return MO_USE_NO_VAR
;
5553 else if (MEM_P (loc
))
5555 expr
= MEM_EXPR (loc
);
5559 else if (target_for_debug_bind (var_debug_decl (expr
)))
5561 else if (track_loc_p (loc
, expr
, int_mem_offset (loc
),
5563 /* Multi-part variables shouldn't refer to one-part
5564 variable names such as VALUEs (never happens) or
5565 DEBUG_EXPRs (only happens in the presence of debug
5567 && (!MAY_HAVE_DEBUG_BIND_INSNS
5568 || !rtx_debug_expr_p (XEXP (loc
, 0))))
5577 /* Log to OUT information about micro-operation MOPT involving X in
5581 log_op_type (rtx x
, basic_block bb
, rtx_insn
*insn
,
5582 enum micro_operation_type mopt
, FILE *out
)
5584 fprintf (out
, "bb %i op %i insn %i %s ",
5585 bb
->index
, VTI (bb
)->mos
.length (),
5586 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5587 print_inline_rtx (out
, x
, 2);
5591 /* Tell whether the CONCAT used to holds a VALUE and its location
5592 needs value resolution, i.e., an attempt of mapping the location
5593 back to other incoming values. */
5594 #define VAL_NEEDS_RESOLUTION(x) \
5595 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5596 /* Whether the location in the CONCAT is a tracked expression, that
5597 should also be handled like a MO_USE. */
5598 #define VAL_HOLDS_TRACK_EXPR(x) \
5599 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5600 /* Whether the location in the CONCAT should be handled like a MO_COPY
5602 #define VAL_EXPR_IS_COPIED(x) \
5603 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5604 /* Whether the location in the CONCAT should be handled like a
5605 MO_CLOBBER as well. */
5606 #define VAL_EXPR_IS_CLOBBERED(x) \
5607 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5609 /* All preserved VALUEs. */
5610 static vec
<rtx
> preserved_values
;
5612 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5615 preserve_value (cselib_val
*val
)
5617 cselib_preserve_value (val
);
5618 preserved_values
.safe_push (val
->val_rtx
);
5621 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5622 any rtxes not suitable for CONST use not replaced by VALUEs
5626 non_suitable_const (const_rtx x
)
5628 subrtx_iterator::array_type array
;
5629 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5631 const_rtx x
= *iter
;
5632 switch (GET_CODE (x
))
5643 if (!MEM_READONLY_P (x
))
5653 /* Add uses (register and memory references) LOC which will be tracked
5654 to VTI (bb)->mos. */
5657 add_uses (rtx loc
, struct count_use_info
*cui
)
5659 machine_mode mode
= VOIDmode
;
5660 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5662 if (type
!= MO_CLOBBER
)
5664 basic_block bb
= cui
->bb
;
5668 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5669 mo
.insn
= cui
->insn
;
5671 if (type
== MO_VAL_LOC
)
5674 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5677 gcc_assert (cui
->sets
);
5680 && !REG_P (XEXP (vloc
, 0))
5681 && !MEM_P (XEXP (vloc
, 0)))
5684 machine_mode address_mode
= get_address_mode (mloc
);
5686 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5689 if (val
&& !cselib_preserved_value_p (val
))
5690 preserve_value (val
);
5693 if (CONSTANT_P (vloc
)
5694 && (GET_CODE (vloc
) != CONST
|| non_suitable_const (vloc
)))
5695 /* For constants don't look up any value. */;
5696 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5697 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5700 enum micro_operation_type type2
;
5702 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5705 nloc
= replace_expr_with_values (vloc
);
5709 oloc
= shallow_copy_rtx (oloc
);
5710 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5713 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5715 type2
= use_type (vloc
, 0, &mode2
);
5717 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5718 || type2
== MO_CLOBBER
);
5720 if (type2
== MO_CLOBBER
5721 && !cselib_preserved_value_p (val
))
5723 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5724 preserve_value (val
);
5727 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5729 oloc
= shallow_copy_rtx (oloc
);
5730 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5735 else if (type
== MO_VAL_USE
)
5737 machine_mode mode2
= VOIDmode
;
5738 enum micro_operation_type type2
;
5739 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5740 rtx vloc
, oloc
= loc
, nloc
;
5742 gcc_assert (cui
->sets
);
5745 && !REG_P (XEXP (oloc
, 0))
5746 && !MEM_P (XEXP (oloc
, 0)))
5749 machine_mode address_mode
= get_address_mode (mloc
);
5751 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5754 if (val
&& !cselib_preserved_value_p (val
))
5755 preserve_value (val
);
5758 type2
= use_type (loc
, 0, &mode2
);
5760 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5761 || type2
== MO_CLOBBER
);
5763 if (type2
== MO_USE
)
5764 vloc
= var_lowpart (mode2
, loc
);
5768 /* The loc of a MO_VAL_USE may have two forms:
5770 (concat val src): val is at src, a value-based
5773 (concat (concat val use) src): same as above, with use as
5774 the MO_USE tracked value, if it differs from src.
5778 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5779 nloc
= replace_expr_with_values (loc
);
5784 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5786 oloc
= val
->val_rtx
;
5788 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5790 if (type2
== MO_USE
)
5791 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5792 if (!cselib_preserved_value_p (val
))
5794 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5795 preserve_value (val
);
5799 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5801 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5802 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5803 VTI (bb
)->mos
.safe_push (mo
);
5807 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5810 add_uses_1 (rtx
*x
, void *cui
)
5812 subrtx_var_iterator::array_type array
;
5813 FOR_EACH_SUBRTX_VAR (iter
, array
, *x
, NONCONST
)
5814 add_uses (*iter
, (struct count_use_info
*) cui
);
5817 /* This is the value used during expansion of locations. We want it
5818 to be unbounded, so that variables expanded deep in a recursion
5819 nest are fully evaluated, so that their values are cached
5820 correctly. We avoid recursion cycles through other means, and we
5821 don't unshare RTL, so excess complexity is not a problem. */
5822 #define EXPR_DEPTH (INT_MAX)
5823 /* We use this to keep too-complex expressions from being emitted as
5824 location notes, and then to debug information. Users can trade
5825 compile time for ridiculously complex expressions, although they're
5826 seldom useful, and they may often have to be discarded as not
5827 representable anyway. */
5828 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5830 /* Attempt to reverse the EXPR operation in the debug info and record
5831 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5832 no longer live we can express its value as VAL - 6. */
5835 reverse_op (rtx val
, const_rtx expr
, rtx_insn
*insn
)
5839 struct elt_loc_list
*l
;
5843 if (GET_CODE (expr
) != SET
)
5846 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5849 src
= SET_SRC (expr
);
5850 switch (GET_CODE (src
))
5857 if (!REG_P (XEXP (src
, 0)))
5862 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5869 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5872 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5873 if (!v
|| !cselib_preserved_value_p (v
))
5876 /* Use canonical V to avoid creating multiple redundant expressions
5877 for different VALUES equivalent to V. */
5878 v
= canonical_cselib_val (v
);
5880 /* Adding a reverse op isn't useful if V already has an always valid
5881 location. Ignore ENTRY_VALUE, while it is always constant, we should
5882 prefer non-ENTRY_VALUE locations whenever possible. */
5883 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5884 if (CONSTANT_P (l
->loc
)
5885 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5887 /* Avoid creating too large locs lists. */
5888 else if (count
== PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE
))
5891 switch (GET_CODE (src
))
5895 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5897 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5901 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5913 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5915 arg
= XEXP (src
, 1);
5916 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5918 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5919 if (arg
== NULL_RTX
)
5921 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5924 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5930 cselib_add_permanent_equiv (v
, ret
, insn
);
5933 /* Add stores (register and memory references) LOC which will be tracked
5934 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5935 CUIP->insn is instruction which the LOC is part of. */
5938 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5940 machine_mode mode
= VOIDmode
, mode2
;
5941 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5942 basic_block bb
= cui
->bb
;
5944 rtx oloc
= loc
, nloc
, src
= NULL
;
5945 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5946 bool track_p
= false;
5948 bool resolve
, preserve
;
5950 if (type
== MO_CLOBBER
)
5957 gcc_assert (loc
!= cfa_base_rtx
);
5958 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5959 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5960 || GET_CODE (expr
) == CLOBBER
)
5962 mo
.type
= MO_CLOBBER
;
5964 if (GET_CODE (expr
) == SET
5965 && SET_DEST (expr
) == loc
5966 && !unsuitable_loc (SET_SRC (expr
))
5967 && find_use_val (loc
, mode
, cui
))
5969 gcc_checking_assert (type
== MO_VAL_SET
);
5970 mo
.u
.loc
= gen_rtx_SET (loc
, SET_SRC (expr
));
5975 if (GET_CODE (expr
) == SET
5976 && SET_DEST (expr
) == loc
5977 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5978 src
= var_lowpart (mode2
, SET_SRC (expr
));
5979 loc
= var_lowpart (mode2
, loc
);
5988 rtx xexpr
= gen_rtx_SET (loc
, src
);
5989 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
5991 /* If this is an instruction copying (part of) a parameter
5992 passed by invisible reference to its register location,
5993 pretend it's a SET so that the initial memory location
5994 is discarded, as the parameter register can be reused
5995 for other purposes and we do not track locations based
5996 on generic registers. */
5999 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
6000 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
6001 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
6002 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
6013 mo
.insn
= cui
->insn
;
6015 else if (MEM_P (loc
)
6016 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
6019 if (MEM_P (loc
) && type
== MO_VAL_SET
6020 && !REG_P (XEXP (loc
, 0))
6021 && !MEM_P (XEXP (loc
, 0)))
6024 machine_mode address_mode
= get_address_mode (mloc
);
6025 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
6029 if (val
&& !cselib_preserved_value_p (val
))
6030 preserve_value (val
);
6033 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
6035 mo
.type
= MO_CLOBBER
;
6036 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
6040 if (GET_CODE (expr
) == SET
6041 && SET_DEST (expr
) == loc
6042 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
6043 src
= var_lowpart (mode2
, SET_SRC (expr
));
6044 loc
= var_lowpart (mode2
, loc
);
6053 rtx xexpr
= gen_rtx_SET (loc
, src
);
6054 if (same_variable_part_p (SET_SRC (xexpr
),
6056 int_mem_offset (loc
)))
6063 mo
.insn
= cui
->insn
;
6068 if (type
!= MO_VAL_SET
)
6069 goto log_and_return
;
6071 v
= find_use_val (oloc
, mode
, cui
);
6074 goto log_and_return
;
6076 resolve
= preserve
= !cselib_preserved_value_p (v
);
6078 /* We cannot track values for multiple-part variables, so we track only
6079 locations for tracked record parameters. */
6083 && tracked_record_parameter_p (REG_EXPR (loc
)))
6085 /* Although we don't use the value here, it could be used later by the
6086 mere virtue of its existence as the operand of the reverse operation
6087 that gave rise to it (typically extension/truncation). Make sure it
6088 is preserved as required by vt_expand_var_loc_chain. */
6091 goto log_and_return
;
6094 if (loc
== stack_pointer_rtx
6095 && hard_frame_pointer_adjustment
!= -1
6097 cselib_set_value_sp_based (v
);
6099 nloc
= replace_expr_with_values (oloc
);
6103 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
6105 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6109 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6111 if (oval
&& !cselib_preserved_value_p (oval
))
6113 micro_operation moa
;
6115 preserve_value (oval
);
6117 moa
.type
= MO_VAL_USE
;
6118 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6119 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6120 moa
.insn
= cui
->insn
;
6122 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6123 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6124 moa
.type
, dump_file
);
6125 VTI (bb
)->mos
.safe_push (moa
);
6130 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6132 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6133 nloc
= replace_expr_with_values (SET_SRC (expr
));
6137 /* Avoid the mode mismatch between oexpr and expr. */
6138 if (!nloc
&& mode
!= mode2
)
6140 nloc
= SET_SRC (expr
);
6141 gcc_assert (oloc
== SET_DEST (expr
));
6144 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6145 oloc
= gen_rtx_SET (oloc
, nloc
);
6148 if (oloc
== SET_DEST (mo
.u
.loc
))
6149 /* No point in duplicating. */
6151 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6157 if (GET_CODE (mo
.u
.loc
) == SET
6158 && oloc
== SET_DEST (mo
.u
.loc
))
6159 /* No point in duplicating. */
6165 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6167 if (mo
.u
.loc
!= oloc
)
6168 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6170 /* The loc of a MO_VAL_SET may have various forms:
6172 (concat val dst): dst now holds val
6174 (concat val (set dst src)): dst now holds val, copied from src
6176 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6177 after replacing mems and non-top-level regs with values.
6179 (concat (concat val dstv) (set dst src)): dst now holds val,
6180 copied from src. dstv is a value-based representation of dst, if
6181 it differs from dst. If resolution is needed, src is a REG, and
6182 its mode is the same as that of val.
6184 (concat (concat val (set dstv srcv)) (set dst src)): src
6185 copied to dst, holding val. dstv and srcv are value-based
6186 representations of dst and src, respectively.
6190 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6191 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6196 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6199 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6202 if (mo
.type
== MO_CLOBBER
)
6203 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6204 if (mo
.type
== MO_COPY
)
6205 VAL_EXPR_IS_COPIED (loc
) = 1;
6207 mo
.type
= MO_VAL_SET
;
6210 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6211 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6212 VTI (bb
)->mos
.safe_push (mo
);
6215 /* Arguments to the call. */
6216 static rtx call_arguments
;
6218 /* Compute call_arguments. */
6221 prepare_call_arguments (basic_block bb
, rtx_insn
*insn
)
6224 rtx prev
, cur
, next
;
6225 rtx this_arg
= NULL_RTX
;
6226 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6227 tree obj_type_ref
= NULL_TREE
;
6228 CUMULATIVE_ARGS args_so_far_v
;
6229 cumulative_args_t args_so_far
;
6231 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6232 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6233 call
= get_call_rtx_from (insn
);
6236 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6238 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6239 if (SYMBOL_REF_DECL (symbol
))
6240 fndecl
= SYMBOL_REF_DECL (symbol
);
6242 if (fndecl
== NULL_TREE
)
6243 fndecl
= MEM_EXPR (XEXP (call
, 0));
6245 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6246 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6248 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6249 type
= TREE_TYPE (fndecl
);
6250 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6252 if (TREE_CODE (fndecl
) == INDIRECT_REF
6253 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6254 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6259 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6261 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6262 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6264 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6268 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6269 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6270 #ifndef PCC_STATIC_STRUCT_RETURN
6271 if (aggregate_value_p (TREE_TYPE (type
), type
)
6272 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6274 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6275 machine_mode mode
= TYPE_MODE (struct_addr
);
6277 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6279 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6281 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6283 if (reg
== NULL_RTX
)
6285 for (; link
; link
= XEXP (link
, 1))
6286 if (GET_CODE (XEXP (link
, 0)) == USE
6287 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6289 link
= XEXP (link
, 1);
6296 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6298 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6301 t
= TYPE_ARG_TYPES (type
);
6302 mode
= TYPE_MODE (TREE_VALUE (t
));
6303 this_arg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6304 TREE_VALUE (t
), true);
6305 if (this_arg
&& !REG_P (this_arg
))
6306 this_arg
= NULL_RTX
;
6307 else if (this_arg
== NULL_RTX
)
6309 for (; link
; link
= XEXP (link
, 1))
6310 if (GET_CODE (XEXP (link
, 0)) == USE
6311 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6313 this_arg
= XEXP (XEXP (link
, 0), 0);
6321 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6323 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6324 if (GET_CODE (XEXP (link
, 0)) == USE
)
6326 rtx item
= NULL_RTX
;
6327 x
= XEXP (XEXP (link
, 0), 0);
6328 if (GET_MODE (link
) == VOIDmode
6329 || GET_MODE (link
) == BLKmode
6330 || (GET_MODE (link
) != GET_MODE (x
)
6331 && ((GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6332 && GET_MODE_CLASS (GET_MODE (link
)) != MODE_PARTIAL_INT
)
6333 || (GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
6334 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_PARTIAL_INT
))))
6335 /* Can't do anything for these, if the original type mode
6336 isn't known or can't be converted. */;
6339 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6340 scalar_int_mode mode
;
6341 if (val
&& cselib_preserved_value_p (val
))
6342 item
= val
->val_rtx
;
6343 else if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
6345 opt_scalar_int_mode mode_iter
;
6346 FOR_EACH_WIDER_MODE (mode_iter
, mode
)
6348 mode
= mode_iter
.require ();
6349 if (GET_MODE_BITSIZE (mode
) > BITS_PER_WORD
)
6352 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6353 if (reg
== NULL_RTX
|| !REG_P (reg
))
6355 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6356 if (val
&& cselib_preserved_value_p (val
))
6358 item
= val
->val_rtx
;
6369 if (!frame_pointer_needed
)
6371 struct adjust_mem_data amd
;
6372 amd
.mem_mode
= VOIDmode
;
6373 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6375 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6377 gcc_assert (amd
.side_effects
.is_empty ());
6379 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6380 if (val
&& cselib_preserved_value_p (val
))
6381 item
= val
->val_rtx
;
6382 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
6383 && GET_MODE_CLASS (GET_MODE (mem
)) != MODE_PARTIAL_INT
)
6385 /* For non-integer stack argument see also if they weren't
6386 initialized by integers. */
6387 scalar_int_mode imode
;
6388 if (int_mode_for_mode (GET_MODE (mem
)).exists (&imode
)
6389 && imode
!= GET_MODE (mem
))
6391 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6392 imode
, 0, VOIDmode
);
6393 if (val
&& cselib_preserved_value_p (val
))
6394 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6402 if (GET_MODE (item
) != GET_MODE (link
))
6403 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6404 if (GET_MODE (x2
) != GET_MODE (link
))
6405 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6406 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6408 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6410 if (t
&& t
!= void_list_node
)
6412 tree argtype
= TREE_VALUE (t
);
6413 machine_mode mode
= TYPE_MODE (argtype
);
6415 if (pass_by_reference (&args_so_far_v
, mode
, argtype
, true))
6417 argtype
= build_pointer_type (argtype
);
6418 mode
= TYPE_MODE (argtype
);
6420 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6422 if (TREE_CODE (argtype
) == REFERENCE_TYPE
6423 && INTEGRAL_TYPE_P (TREE_TYPE (argtype
))
6426 && GET_MODE (reg
) == mode
6427 && (GET_MODE_CLASS (mode
) == MODE_INT
6428 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
6430 && REGNO (x
) == REGNO (reg
)
6431 && GET_MODE (x
) == mode
6434 machine_mode indmode
6435 = TYPE_MODE (TREE_TYPE (argtype
));
6436 rtx mem
= gen_rtx_MEM (indmode
, x
);
6437 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6438 if (val
&& cselib_preserved_value_p (val
))
6440 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6441 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6446 struct elt_loc_list
*l
;
6449 /* Try harder, when passing address of a constant
6450 pool integer it can be easily read back. */
6451 item
= XEXP (item
, 1);
6452 if (GET_CODE (item
) == SUBREG
)
6453 item
= SUBREG_REG (item
);
6454 gcc_assert (GET_CODE (item
) == VALUE
);
6455 val
= CSELIB_VAL_PTR (item
);
6456 for (l
= val
->locs
; l
; l
= l
->next
)
6457 if (GET_CODE (l
->loc
) == SYMBOL_REF
6458 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6459 && SYMBOL_REF_DECL (l
->loc
)
6460 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6462 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6463 if (tree_fits_shwi_p (initial
))
6465 item
= GEN_INT (tree_to_shwi (initial
));
6466 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6468 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6475 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6481 /* Add debug arguments. */
6483 && TREE_CODE (fndecl
) == FUNCTION_DECL
6484 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6486 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6491 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6494 tree dtemp
= (**debug_args
)[ix
+ 1];
6495 machine_mode mode
= DECL_MODE (dtemp
);
6496 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6497 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6498 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6504 /* Reverse call_arguments chain. */
6506 for (cur
= call_arguments
; cur
; cur
= next
)
6508 next
= XEXP (cur
, 1);
6509 XEXP (cur
, 1) = prev
;
6512 call_arguments
= prev
;
6514 x
= get_call_rtx_from (insn
);
6517 x
= XEXP (XEXP (x
, 0), 0);
6518 if (GET_CODE (x
) == SYMBOL_REF
)
6519 /* Don't record anything. */;
6520 else if (CONSTANT_P (x
))
6522 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6525 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6529 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6530 if (val
&& cselib_preserved_value_p (val
))
6532 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6534 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6541 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6542 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6544 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6546 clobbered
= plus_constant (mode
, clobbered
,
6547 token
* GET_MODE_SIZE (mode
));
6548 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6549 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6551 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6555 /* Callback for cselib_record_sets_hook, that records as micro
6556 operations uses and stores in an insn after cselib_record_sets has
6557 analyzed the sets in an insn, but before it modifies the stored
6558 values in the internal tables, unless cselib_record_sets doesn't
6559 call it directly (perhaps because we're not doing cselib in the
6560 first place, in which case sets and n_sets will be 0). */
6563 add_with_sets (rtx_insn
*insn
, struct cselib_set
*sets
, int n_sets
)
6565 basic_block bb
= BLOCK_FOR_INSN (insn
);
6567 struct count_use_info cui
;
6568 micro_operation
*mos
;
6570 cselib_hook_called
= true;
6575 cui
.n_sets
= n_sets
;
6577 n1
= VTI (bb
)->mos
.length ();
6578 cui
.store_p
= false;
6579 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6580 n2
= VTI (bb
)->mos
.length () - 1;
6581 mos
= VTI (bb
)->mos
.address ();
6583 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6587 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6589 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6592 std::swap (mos
[n1
], mos
[n2
]);
6595 n2
= VTI (bb
)->mos
.length () - 1;
6598 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6600 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6603 std::swap (mos
[n1
], mos
[n2
]);
6612 mo
.u
.loc
= call_arguments
;
6613 call_arguments
= NULL_RTX
;
6615 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6616 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6617 VTI (bb
)->mos
.safe_push (mo
);
6620 n1
= VTI (bb
)->mos
.length ();
6621 /* This will record NEXT_INSN (insn), such that we can
6622 insert notes before it without worrying about any
6623 notes that MO_USEs might emit after the insn. */
6625 note_stores (PATTERN (insn
), add_stores
, &cui
);
6626 n2
= VTI (bb
)->mos
.length () - 1;
6627 mos
= VTI (bb
)->mos
.address ();
6629 /* Order the MO_VAL_USEs first (note_stores does nothing
6630 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6631 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6634 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6636 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6639 std::swap (mos
[n1
], mos
[n2
]);
6642 n2
= VTI (bb
)->mos
.length () - 1;
6645 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6647 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6650 std::swap (mos
[n1
], mos
[n2
]);
6654 static enum var_init_status
6655 find_src_status (dataflow_set
*in
, rtx src
)
6657 tree decl
= NULL_TREE
;
6658 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6660 if (! flag_var_tracking_uninit
)
6661 status
= VAR_INIT_STATUS_INITIALIZED
;
6663 if (src
&& REG_P (src
))
6664 decl
= var_debug_decl (REG_EXPR (src
));
6665 else if (src
&& MEM_P (src
))
6666 decl
= var_debug_decl (MEM_EXPR (src
));
6669 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6674 /* SRC is the source of an assignment. Use SET to try to find what
6675 was ultimately assigned to SRC. Return that value if known,
6676 otherwise return SRC itself. */
6679 find_src_set_src (dataflow_set
*set
, rtx src
)
6681 tree decl
= NULL_TREE
; /* The variable being copied around. */
6682 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6684 location_chain
*nextp
;
6688 if (src
&& REG_P (src
))
6689 decl
= var_debug_decl (REG_EXPR (src
));
6690 else if (src
&& MEM_P (src
))
6691 decl
= var_debug_decl (MEM_EXPR (src
));
6695 decl_or_value dv
= dv_from_decl (decl
);
6697 var
= shared_hash_find (set
->vars
, dv
);
6701 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6702 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6703 nextp
= nextp
->next
)
6704 if (rtx_equal_p (nextp
->loc
, src
))
6706 set_src
= nextp
->set_src
;
6716 /* Compute the changes of variable locations in the basic block BB. */
6719 compute_bb_dataflow (basic_block bb
)
6722 micro_operation
*mo
;
6724 dataflow_set old_out
;
6725 dataflow_set
*in
= &VTI (bb
)->in
;
6726 dataflow_set
*out
= &VTI (bb
)->out
;
6728 dataflow_set_init (&old_out
);
6729 dataflow_set_copy (&old_out
, out
);
6730 dataflow_set_copy (out
, in
);
6732 if (MAY_HAVE_DEBUG_BIND_INSNS
)
6733 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
6735 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6737 rtx_insn
*insn
= mo
->insn
;
6742 dataflow_set_clear_at_call (out
, insn
);
6747 rtx loc
= mo
->u
.loc
;
6750 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6751 else if (MEM_P (loc
))
6752 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6758 rtx loc
= mo
->u
.loc
;
6762 if (GET_CODE (loc
) == CONCAT
)
6764 val
= XEXP (loc
, 0);
6765 vloc
= XEXP (loc
, 1);
6773 var
= PAT_VAR_LOCATION_DECL (vloc
);
6775 clobber_variable_part (out
, NULL_RTX
,
6776 dv_from_decl (var
), 0, NULL_RTX
);
6779 if (VAL_NEEDS_RESOLUTION (loc
))
6780 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6781 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6782 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6785 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6786 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6787 dv_from_decl (var
), 0,
6788 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6795 rtx loc
= mo
->u
.loc
;
6796 rtx val
, vloc
, uloc
;
6798 vloc
= uloc
= XEXP (loc
, 1);
6799 val
= XEXP (loc
, 0);
6801 if (GET_CODE (val
) == CONCAT
)
6803 uloc
= XEXP (val
, 1);
6804 val
= XEXP (val
, 0);
6807 if (VAL_NEEDS_RESOLUTION (loc
))
6808 val_resolve (out
, val
, vloc
, insn
);
6810 val_store (out
, val
, uloc
, insn
, false);
6812 if (VAL_HOLDS_TRACK_EXPR (loc
))
6814 if (GET_CODE (uloc
) == REG
)
6815 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6817 else if (GET_CODE (uloc
) == MEM
)
6818 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6826 rtx loc
= mo
->u
.loc
;
6827 rtx val
, vloc
, uloc
;
6831 uloc
= XEXP (vloc
, 1);
6832 val
= XEXP (vloc
, 0);
6835 if (GET_CODE (uloc
) == SET
)
6837 dstv
= SET_DEST (uloc
);
6838 srcv
= SET_SRC (uloc
);
6846 if (GET_CODE (val
) == CONCAT
)
6848 dstv
= vloc
= XEXP (val
, 1);
6849 val
= XEXP (val
, 0);
6852 if (GET_CODE (vloc
) == SET
)
6854 srcv
= SET_SRC (vloc
);
6856 gcc_assert (val
!= srcv
);
6857 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6859 dstv
= vloc
= SET_DEST (vloc
);
6861 if (VAL_NEEDS_RESOLUTION (loc
))
6862 val_resolve (out
, val
, srcv
, insn
);
6864 else if (VAL_NEEDS_RESOLUTION (loc
))
6866 gcc_assert (GET_CODE (uloc
) == SET
6867 && GET_CODE (SET_SRC (uloc
)) == REG
);
6868 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6871 if (VAL_HOLDS_TRACK_EXPR (loc
))
6873 if (VAL_EXPR_IS_CLOBBERED (loc
))
6876 var_reg_delete (out
, uloc
, true);
6877 else if (MEM_P (uloc
))
6879 gcc_assert (MEM_P (dstv
));
6880 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6881 var_mem_delete (out
, dstv
, true);
6886 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6887 rtx src
= NULL
, dst
= uloc
;
6888 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6890 if (GET_CODE (uloc
) == SET
)
6892 src
= SET_SRC (uloc
);
6893 dst
= SET_DEST (uloc
);
6898 if (flag_var_tracking_uninit
)
6900 status
= find_src_status (in
, src
);
6902 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6903 status
= find_src_status (out
, src
);
6906 src
= find_src_set_src (in
, src
);
6910 var_reg_delete_and_set (out
, dst
, !copied_p
,
6912 else if (MEM_P (dst
))
6914 gcc_assert (MEM_P (dstv
));
6915 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6916 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6921 else if (REG_P (uloc
))
6922 var_regno_delete (out
, REGNO (uloc
));
6923 else if (MEM_P (uloc
))
6925 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6926 gcc_checking_assert (dstv
== vloc
);
6928 clobber_overlapping_mems (out
, vloc
);
6931 val_store (out
, val
, dstv
, insn
, true);
6937 rtx loc
= mo
->u
.loc
;
6940 if (GET_CODE (loc
) == SET
)
6942 set_src
= SET_SRC (loc
);
6943 loc
= SET_DEST (loc
);
6947 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6949 else if (MEM_P (loc
))
6950 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6957 rtx loc
= mo
->u
.loc
;
6958 enum var_init_status src_status
;
6961 if (GET_CODE (loc
) == SET
)
6963 set_src
= SET_SRC (loc
);
6964 loc
= SET_DEST (loc
);
6967 if (! flag_var_tracking_uninit
)
6968 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6971 src_status
= find_src_status (in
, set_src
);
6973 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6974 src_status
= find_src_status (out
, set_src
);
6977 set_src
= find_src_set_src (in
, set_src
);
6980 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
6981 else if (MEM_P (loc
))
6982 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
6988 rtx loc
= mo
->u
.loc
;
6991 var_reg_delete (out
, loc
, false);
6992 else if (MEM_P (loc
))
6993 var_mem_delete (out
, loc
, false);
6999 rtx loc
= mo
->u
.loc
;
7002 var_reg_delete (out
, loc
, true);
7003 else if (MEM_P (loc
))
7004 var_mem_delete (out
, loc
, true);
7009 out
->stack_adjust
+= mo
->u
.adjust
;
7014 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7016 delete local_get_addr_cache
;
7017 local_get_addr_cache
= NULL
;
7019 dataflow_set_equiv_regs (out
);
7020 shared_hash_htab (out
->vars
)
7021 ->traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
7022 shared_hash_htab (out
->vars
)
7023 ->traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
7025 shared_hash_htab (out
->vars
)
7026 ->traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
7028 changed
= dataflow_set_different (&old_out
, out
);
7029 dataflow_set_destroy (&old_out
);
7033 /* Find the locations of variables in the whole function. */
7036 vt_find_locations (void)
7038 bb_heap_t
*worklist
= new bb_heap_t (LONG_MIN
);
7039 bb_heap_t
*pending
= new bb_heap_t (LONG_MIN
);
7040 sbitmap in_worklist
, in_pending
;
7047 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
7048 bool success
= true;
7050 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
7051 /* Compute reverse completion order of depth first search of the CFG
7052 so that the data-flow runs faster. */
7053 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
7054 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
7055 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
7056 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
7057 bb_order
[rc_order
[i
]] = i
;
7060 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
7061 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7062 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7063 bitmap_clear (in_worklist
);
7065 FOR_EACH_BB_FN (bb
, cfun
)
7066 pending
->insert (bb_order
[bb
->index
], bb
);
7067 bitmap_ones (in_pending
);
7069 while (success
&& !pending
->empty ())
7071 std::swap (worklist
, pending
);
7072 std::swap (in_worklist
, in_pending
);
7074 bitmap_clear (visited
);
7076 while (!worklist
->empty ())
7078 bb
= worklist
->extract_min ();
7079 bitmap_clear_bit (in_worklist
, bb
->index
);
7080 gcc_assert (!bitmap_bit_p (visited
, bb
->index
));
7081 if (!bitmap_bit_p (visited
, bb
->index
))
7085 int oldinsz
, oldoutsz
;
7087 bitmap_set_bit (visited
, bb
->index
);
7089 if (VTI (bb
)->in
.vars
)
7092 -= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7093 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7094 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
)->elements ();
7096 = shared_hash_htab (VTI (bb
)->out
.vars
)->elements ();
7099 oldinsz
= oldoutsz
= 0;
7101 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7103 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7104 bool first
= true, adjust
= false;
7106 /* Calculate the IN set as the intersection of
7107 predecessor OUT sets. */
7109 dataflow_set_clear (in
);
7110 dst_can_be_shared
= true;
7112 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7113 if (!VTI (e
->src
)->flooded
)
7114 gcc_assert (bb_order
[bb
->index
]
7115 <= bb_order
[e
->src
->index
]);
7118 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7119 first_out
= &VTI (e
->src
)->out
;
7124 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7130 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7133 /* Merge and merge_adjust should keep entries in
7135 shared_hash_htab (in
->vars
)
7136 ->traverse
<dataflow_set
*,
7137 canonicalize_loc_order_check
> (in
);
7139 if (dst_can_be_shared
)
7141 shared_hash_destroy (in
->vars
);
7142 in
->vars
= shared_hash_copy (first_out
->vars
);
7146 VTI (bb
)->flooded
= true;
7150 /* Calculate the IN set as union of predecessor OUT sets. */
7151 dataflow_set_clear (&VTI (bb
)->in
);
7152 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7153 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7156 changed
= compute_bb_dataflow (bb
);
7157 htabsz
+= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7158 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7160 if (htabmax
&& htabsz
> htabmax
)
7162 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7163 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7164 "variable tracking size limit exceeded with "
7165 "-fvar-tracking-assignments, retrying without");
7167 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7168 "variable tracking size limit exceeded");
7175 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7177 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7180 if (bitmap_bit_p (visited
, e
->dest
->index
))
7182 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7184 /* Send E->DEST to next round. */
7185 bitmap_set_bit (in_pending
, e
->dest
->index
);
7186 pending
->insert (bb_order
[e
->dest
->index
],
7190 else if (!bitmap_bit_p (in_worklist
, e
->dest
->index
))
7192 /* Add E->DEST to current round. */
7193 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7194 worklist
->insert (bb_order
[e
->dest
->index
],
7202 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7204 (int)shared_hash_htab (VTI (bb
)->in
.vars
)->size (),
7206 (int)shared_hash_htab (VTI (bb
)->out
.vars
)->size (),
7208 (int)worklist
->nodes (), (int)pending
->nodes (),
7211 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7213 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7214 dump_dataflow_set (&VTI (bb
)->in
);
7215 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7216 dump_dataflow_set (&VTI (bb
)->out
);
7222 if (success
&& MAY_HAVE_DEBUG_BIND_INSNS
)
7223 FOR_EACH_BB_FN (bb
, cfun
)
7224 gcc_assert (VTI (bb
)->flooded
);
7229 sbitmap_free (in_worklist
);
7230 sbitmap_free (in_pending
);
7232 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7236 /* Print the content of the LIST to dump file. */
7239 dump_attrs_list (attrs
*list
)
7241 for (; list
; list
= list
->next
)
7243 if (dv_is_decl_p (list
->dv
))
7244 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7246 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7247 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7249 fprintf (dump_file
, "\n");
7252 /* Print the information about variable *SLOT to dump file. */
7255 dump_var_tracking_slot (variable
**slot
, void *data ATTRIBUTE_UNUSED
)
7257 variable
*var
= *slot
;
7261 /* Continue traversing the hash table. */
7265 /* Print the information about variable VAR to dump file. */
7268 dump_var (variable
*var
)
7271 location_chain
*node
;
7273 if (dv_is_decl_p (var
->dv
))
7275 const_tree decl
= dv_as_decl (var
->dv
);
7277 if (DECL_NAME (decl
))
7279 fprintf (dump_file
, " name: %s",
7280 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7281 if (dump_flags
& TDF_UID
)
7282 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7284 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7285 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7287 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7288 fprintf (dump_file
, "\n");
7292 fputc (' ', dump_file
);
7293 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7296 for (i
= 0; i
< var
->n_var_parts
; i
++)
7298 fprintf (dump_file
, " offset %ld\n",
7299 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7300 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7302 fprintf (dump_file
, " ");
7303 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7304 fprintf (dump_file
, "[uninit]");
7305 print_rtl_single (dump_file
, node
->loc
);
7310 /* Print the information about variables from hash table VARS to dump file. */
7313 dump_vars (variable_table_type
*vars
)
7315 if (vars
->elements () > 0)
7317 fprintf (dump_file
, "Variables:\n");
7318 vars
->traverse
<void *, dump_var_tracking_slot
> (NULL
);
7322 /* Print the dataflow set SET to dump file. */
7325 dump_dataflow_set (dataflow_set
*set
)
7329 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7331 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7335 fprintf (dump_file
, "Reg %d:", i
);
7336 dump_attrs_list (set
->regs
[i
]);
7339 dump_vars (shared_hash_htab (set
->vars
));
7340 fprintf (dump_file
, "\n");
7343 /* Print the IN and OUT sets for each basic block to dump file. */
7346 dump_dataflow_sets (void)
7350 FOR_EACH_BB_FN (bb
, cfun
)
7352 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7353 fprintf (dump_file
, "IN:\n");
7354 dump_dataflow_set (&VTI (bb
)->in
);
7355 fprintf (dump_file
, "OUT:\n");
7356 dump_dataflow_set (&VTI (bb
)->out
);
7360 /* Return the variable for DV in dropped_values, inserting one if
7361 requested with INSERT. */
7363 static inline variable
*
7364 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7367 variable
*empty_var
;
7368 onepart_enum onepart
;
7370 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7378 gcc_checking_assert (insert
== INSERT
);
7380 onepart
= dv_onepart_p (dv
);
7382 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7384 empty_var
= onepart_pool_allocate (onepart
);
7386 empty_var
->refcount
= 1;
7387 empty_var
->n_var_parts
= 0;
7388 empty_var
->onepart
= onepart
;
7389 empty_var
->in_changed_variables
= false;
7390 empty_var
->var_part
[0].loc_chain
= NULL
;
7391 empty_var
->var_part
[0].cur_loc
= NULL
;
7392 VAR_LOC_1PAUX (empty_var
) = NULL
;
7393 set_dv_changed (dv
, true);
7400 /* Recover the one-part aux from dropped_values. */
7402 static struct onepart_aux
*
7403 recover_dropped_1paux (variable
*var
)
7407 gcc_checking_assert (var
->onepart
);
7409 if (VAR_LOC_1PAUX (var
))
7410 return VAR_LOC_1PAUX (var
);
7412 if (var
->onepart
== ONEPART_VDECL
)
7415 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7420 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7421 VAR_LOC_1PAUX (dvar
) = NULL
;
7423 return VAR_LOC_1PAUX (var
);
7426 /* Add variable VAR to the hash table of changed variables and
7427 if it has no locations delete it from SET's hash table. */
7430 variable_was_changed (variable
*var
, dataflow_set
*set
)
7432 hashval_t hash
= dv_htab_hash (var
->dv
);
7438 /* Remember this decl or VALUE has been added to changed_variables. */
7439 set_dv_changed (var
->dv
, true);
7441 slot
= changed_variables
->find_slot_with_hash (var
->dv
, hash
, INSERT
);
7445 variable
*old_var
= *slot
;
7446 gcc_assert (old_var
->in_changed_variables
);
7447 old_var
->in_changed_variables
= false;
7448 if (var
!= old_var
&& var
->onepart
)
7450 /* Restore the auxiliary info from an empty variable
7451 previously created for changed_variables, so it is
7453 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7454 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7455 VAR_LOC_1PAUX (old_var
) = NULL
;
7457 variable_htab_free (*slot
);
7460 if (set
&& var
->n_var_parts
== 0)
7462 onepart_enum onepart
= var
->onepart
;
7463 variable
*empty_var
= NULL
;
7464 variable
**dslot
= NULL
;
7466 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7468 dslot
= dropped_values
->find_slot_with_hash (var
->dv
,
7469 dv_htab_hash (var
->dv
),
7475 gcc_checking_assert (!empty_var
->in_changed_variables
);
7476 if (!VAR_LOC_1PAUX (var
))
7478 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7479 VAR_LOC_1PAUX (empty_var
) = NULL
;
7482 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7488 empty_var
= onepart_pool_allocate (onepart
);
7489 empty_var
->dv
= var
->dv
;
7490 empty_var
->refcount
= 1;
7491 empty_var
->n_var_parts
= 0;
7492 empty_var
->onepart
= onepart
;
7495 empty_var
->refcount
++;
7500 empty_var
->refcount
++;
7501 empty_var
->in_changed_variables
= true;
7505 empty_var
->var_part
[0].loc_chain
= NULL
;
7506 empty_var
->var_part
[0].cur_loc
= NULL
;
7507 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7508 VAR_LOC_1PAUX (var
) = NULL
;
7514 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7515 recover_dropped_1paux (var
);
7517 var
->in_changed_variables
= true;
7524 if (var
->n_var_parts
== 0)
7529 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7532 if (shared_hash_shared (set
->vars
))
7533 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7535 shared_hash_htab (set
->vars
)->clear_slot (slot
);
7541 /* Look for the index in VAR->var_part corresponding to OFFSET.
7542 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7543 referenced int will be set to the index that the part has or should
7544 have, if it should be inserted. */
7547 find_variable_location_part (variable
*var
, HOST_WIDE_INT offset
,
7548 int *insertion_point
)
7557 if (insertion_point
)
7558 *insertion_point
= 0;
7560 return var
->n_var_parts
- 1;
7563 /* Find the location part. */
7565 high
= var
->n_var_parts
;
7568 pos
= (low
+ high
) / 2;
7569 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7576 if (insertion_point
)
7577 *insertion_point
= pos
;
7579 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7586 set_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7587 decl_or_value dv
, HOST_WIDE_INT offset
,
7588 enum var_init_status initialized
, rtx set_src
)
7591 location_chain
*node
, *next
;
7592 location_chain
**nextp
;
7594 onepart_enum onepart
;
7599 onepart
= var
->onepart
;
7601 onepart
= dv_onepart_p (dv
);
7603 gcc_checking_assert (offset
== 0 || !onepart
);
7604 gcc_checking_assert (loc
!= dv_as_opaque (dv
));
7606 if (! flag_var_tracking_uninit
)
7607 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7611 /* Create new variable information. */
7612 var
= onepart_pool_allocate (onepart
);
7615 var
->n_var_parts
= 1;
7616 var
->onepart
= onepart
;
7617 var
->in_changed_variables
= false;
7619 VAR_LOC_1PAUX (var
) = NULL
;
7621 VAR_PART_OFFSET (var
, 0) = offset
;
7622 var
->var_part
[0].loc_chain
= NULL
;
7623 var
->var_part
[0].cur_loc
= NULL
;
7626 nextp
= &var
->var_part
[0].loc_chain
;
7632 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
7636 if (GET_CODE (loc
) == VALUE
)
7638 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7639 nextp
= &node
->next
)
7640 if (GET_CODE (node
->loc
) == VALUE
)
7642 if (node
->loc
== loc
)
7647 if (canon_value_cmp (node
->loc
, loc
))
7655 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7663 else if (REG_P (loc
))
7665 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7666 nextp
= &node
->next
)
7667 if (REG_P (node
->loc
))
7669 if (REGNO (node
->loc
) < REGNO (loc
))
7673 if (REGNO (node
->loc
) == REGNO (loc
))
7686 else if (MEM_P (loc
))
7688 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7689 nextp
= &node
->next
)
7690 if (REG_P (node
->loc
))
7692 else if (MEM_P (node
->loc
))
7694 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7706 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7707 nextp
= &node
->next
)
7708 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7716 if (shared_var_p (var
, set
->vars
))
7718 slot
= unshare_variable (set
, slot
, var
, initialized
);
7720 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7721 nextp
= &(*nextp
)->next
)
7723 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7730 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7732 pos
= find_variable_location_part (var
, offset
, &inspos
);
7736 node
= var
->var_part
[pos
].loc_chain
;
7739 && ((REG_P (node
->loc
) && REG_P (loc
)
7740 && REGNO (node
->loc
) == REGNO (loc
))
7741 || rtx_equal_p (node
->loc
, loc
)))
7743 /* LOC is in the beginning of the chain so we have nothing
7745 if (node
->init
< initialized
)
7746 node
->init
= initialized
;
7747 if (set_src
!= NULL
)
7748 node
->set_src
= set_src
;
7754 /* We have to make a copy of a shared variable. */
7755 if (shared_var_p (var
, set
->vars
))
7757 slot
= unshare_variable (set
, slot
, var
, initialized
);
7764 /* We have not found the location part, new one will be created. */
7766 /* We have to make a copy of the shared variable. */
7767 if (shared_var_p (var
, set
->vars
))
7769 slot
= unshare_variable (set
, slot
, var
, initialized
);
7773 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7774 thus there are at most MAX_VAR_PARTS different offsets. */
7775 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7776 && (!var
->n_var_parts
|| !onepart
));
7778 /* We have to move the elements of array starting at index
7779 inspos to the next position. */
7780 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7781 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7784 gcc_checking_assert (!onepart
);
7785 VAR_PART_OFFSET (var
, pos
) = offset
;
7786 var
->var_part
[pos
].loc_chain
= NULL
;
7787 var
->var_part
[pos
].cur_loc
= NULL
;
7790 /* Delete the location from the list. */
7791 nextp
= &var
->var_part
[pos
].loc_chain
;
7792 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7795 if ((REG_P (node
->loc
) && REG_P (loc
)
7796 && REGNO (node
->loc
) == REGNO (loc
))
7797 || rtx_equal_p (node
->loc
, loc
))
7799 /* Save these values, to assign to the new node, before
7800 deleting this one. */
7801 if (node
->init
> initialized
)
7802 initialized
= node
->init
;
7803 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7804 set_src
= node
->set_src
;
7805 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7806 var
->var_part
[pos
].cur_loc
= NULL
;
7812 nextp
= &node
->next
;
7815 nextp
= &var
->var_part
[pos
].loc_chain
;
7818 /* Add the location to the beginning. */
7819 node
= new location_chain
;
7821 node
->init
= initialized
;
7822 node
->set_src
= set_src
;
7823 node
->next
= *nextp
;
7826 /* If no location was emitted do so. */
7827 if (var
->var_part
[pos
].cur_loc
== NULL
)
7828 variable_was_changed (var
, set
);
7833 /* Set the part of variable's location in the dataflow set SET. The
7834 variable part is specified by variable's declaration in DV and
7835 offset OFFSET and the part's location by LOC. IOPT should be
7836 NO_INSERT if the variable is known to be in SET already and the
7837 variable hash table must not be resized, and INSERT otherwise. */
7840 set_variable_part (dataflow_set
*set
, rtx loc
,
7841 decl_or_value dv
, HOST_WIDE_INT offset
,
7842 enum var_init_status initialized
, rtx set_src
,
7843 enum insert_option iopt
)
7847 if (iopt
== NO_INSERT
)
7848 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7851 slot
= shared_hash_find_slot (set
->vars
, dv
);
7853 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7855 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7858 /* Remove all recorded register locations for the given variable part
7859 from dataflow set SET, except for those that are identical to loc.
7860 The variable part is specified by variable's declaration or value
7861 DV and offset OFFSET. */
7864 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7865 HOST_WIDE_INT offset
, rtx set_src
)
7867 variable
*var
= *slot
;
7868 int pos
= find_variable_location_part (var
, offset
, NULL
);
7872 location_chain
*node
, *next
;
7874 /* Remove the register locations from the dataflow set. */
7875 next
= var
->var_part
[pos
].loc_chain
;
7876 for (node
= next
; node
; node
= next
)
7879 if (node
->loc
!= loc
7880 && (!flag_var_tracking_uninit
7883 || !rtx_equal_p (set_src
, node
->set_src
)))
7885 if (REG_P (node
->loc
))
7887 attrs
*anode
, *anext
;
7890 /* Remove the variable part from the register's
7891 list, but preserve any other variable parts
7892 that might be regarded as live in that same
7894 anextp
= &set
->regs
[REGNO (node
->loc
)];
7895 for (anode
= *anextp
; anode
; anode
= anext
)
7897 anext
= anode
->next
;
7898 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
7899 && anode
->offset
== offset
)
7905 anextp
= &anode
->next
;
7909 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7917 /* Remove all recorded register locations for the given variable part
7918 from dataflow set SET, except for those that are identical to loc.
7919 The variable part is specified by variable's declaration or value
7920 DV and offset OFFSET. */
7923 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7924 HOST_WIDE_INT offset
, rtx set_src
)
7928 if (!dv_as_opaque (dv
)
7929 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7932 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7936 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7939 /* Delete the part of variable's location from dataflow set SET. The
7940 variable part is specified by its SET->vars slot SLOT and offset
7941 OFFSET and the part's location by LOC. */
7944 delete_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7945 HOST_WIDE_INT offset
)
7947 variable
*var
= *slot
;
7948 int pos
= find_variable_location_part (var
, offset
, NULL
);
7952 location_chain
*node
, *next
;
7953 location_chain
**nextp
;
7957 if (shared_var_p (var
, set
->vars
))
7959 /* If the variable contains the location part we have to
7960 make a copy of the variable. */
7961 for (node
= var
->var_part
[pos
].loc_chain
; node
;
7964 if ((REG_P (node
->loc
) && REG_P (loc
)
7965 && REGNO (node
->loc
) == REGNO (loc
))
7966 || rtx_equal_p (node
->loc
, loc
))
7968 slot
= unshare_variable (set
, slot
, var
,
7969 VAR_INIT_STATUS_UNKNOWN
);
7976 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7977 cur_loc
= VAR_LOC_FROM (var
);
7979 cur_loc
= var
->var_part
[pos
].cur_loc
;
7981 /* Delete the location part. */
7983 nextp
= &var
->var_part
[pos
].loc_chain
;
7984 for (node
= *nextp
; node
; node
= next
)
7987 if ((REG_P (node
->loc
) && REG_P (loc
)
7988 && REGNO (node
->loc
) == REGNO (loc
))
7989 || rtx_equal_p (node
->loc
, loc
))
7991 /* If we have deleted the location which was last emitted
7992 we have to emit new location so add the variable to set
7993 of changed variables. */
7994 if (cur_loc
== node
->loc
)
7997 var
->var_part
[pos
].cur_loc
= NULL
;
7998 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7999 VAR_LOC_FROM (var
) = NULL
;
8006 nextp
= &node
->next
;
8009 if (var
->var_part
[pos
].loc_chain
== NULL
)
8013 while (pos
< var
->n_var_parts
)
8015 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
8020 variable_was_changed (var
, set
);
8026 /* Delete the part of variable's location from dataflow set SET. The
8027 variable part is specified by variable's declaration or value DV
8028 and offset OFFSET and the part's location by LOC. */
8031 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
8032 HOST_WIDE_INT offset
)
8034 variable
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
8038 delete_slot_part (set
, loc
, slot
, offset
);
8042 /* Structure for passing some other parameters to function
8043 vt_expand_loc_callback. */
8044 struct expand_loc_callback_data
8046 /* The variables and values active at this point. */
8047 variable_table_type
*vars
;
8049 /* Stack of values and debug_exprs under expansion, and their
8051 auto_vec
<rtx
, 4> expanding
;
8053 /* Stack of values and debug_exprs whose expansion hit recursion
8054 cycles. They will have VALUE_RECURSED_INTO marked when added to
8055 this list. This flag will be cleared if any of its dependencies
8056 resolves to a valid location. So, if the flag remains set at the
8057 end of the search, we know no valid location for this one can
8059 auto_vec
<rtx
, 4> pending
;
8061 /* The maximum depth among the sub-expressions under expansion.
8062 Zero indicates no expansion so far. */
8066 /* Allocate the one-part auxiliary data structure for VAR, with enough
8067 room for COUNT dependencies. */
8070 loc_exp_dep_alloc (variable
*var
, int count
)
8074 gcc_checking_assert (var
->onepart
);
8076 /* We can be called with COUNT == 0 to allocate the data structure
8077 without any dependencies, e.g. for the backlinks only. However,
8078 if we are specifying a COUNT, then the dependency list must have
8079 been emptied before. It would be possible to adjust pointers or
8080 force it empty here, but this is better done at an earlier point
8081 in the algorithm, so we instead leave an assertion to catch
8083 gcc_checking_assert (!count
8084 || VAR_LOC_DEP_VEC (var
) == NULL
8085 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8087 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8090 allocsize
= offsetof (struct onepart_aux
, deps
)
8091 + vec
<loc_exp_dep
, va_heap
, vl_embed
>::embedded_size (count
);
8093 if (VAR_LOC_1PAUX (var
))
8095 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8096 VAR_LOC_1PAUX (var
), allocsize
);
8097 /* If the reallocation moves the onepaux structure, the
8098 back-pointer to BACKLINKS in the first list member will still
8099 point to its old location. Adjust it. */
8100 if (VAR_LOC_DEP_LST (var
))
8101 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8105 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8106 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8107 VAR_LOC_FROM (var
) = NULL
;
8108 VAR_LOC_DEPTH (var
).complexity
= 0;
8109 VAR_LOC_DEPTH (var
).entryvals
= 0;
8111 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8114 /* Remove all entries from the vector of active dependencies of VAR,
8115 removing them from the back-links lists too. */
8118 loc_exp_dep_clear (variable
*var
)
8120 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8122 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8124 led
->next
->pprev
= led
->pprev
;
8126 *led
->pprev
= led
->next
;
8127 VAR_LOC_DEP_VEC (var
)->pop ();
8131 /* Insert an active dependency from VAR on X to the vector of
8132 dependencies, and add the corresponding back-link to X's list of
8133 back-links in VARS. */
8136 loc_exp_insert_dep (variable
*var
, rtx x
, variable_table_type
*vars
)
8142 dv
= dv_from_rtx (x
);
8144 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8145 an additional look up? */
8146 xvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8150 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8151 gcc_checking_assert (xvar
);
8154 /* No point in adding the same backlink more than once. This may
8155 arise if say the same value appears in two complex expressions in
8156 the same loc_list, or even more than once in a single
8158 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8161 if (var
->onepart
== NOT_ONEPART
)
8162 led
= new loc_exp_dep
;
8166 memset (&empty
, 0, sizeof (empty
));
8167 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8168 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8173 loc_exp_dep_alloc (xvar
, 0);
8174 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8175 led
->next
= *led
->pprev
;
8177 led
->next
->pprev
= &led
->next
;
8181 /* Create active dependencies of VAR on COUNT values starting at
8182 VALUE, and corresponding back-links to the entries in VARS. Return
8183 true if we found any pending-recursion results. */
8186 loc_exp_dep_set (variable
*var
, rtx result
, rtx
*value
, int count
,
8187 variable_table_type
*vars
)
8189 bool pending_recursion
= false;
8191 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8192 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8194 /* Set up all dependencies from last_child (as set up at the end of
8195 the loop above) to the end. */
8196 loc_exp_dep_alloc (var
, count
);
8202 if (!pending_recursion
)
8203 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8205 loc_exp_insert_dep (var
, x
, vars
);
8208 return pending_recursion
;
8211 /* Notify the back-links of IVAR that are pending recursion that we
8212 have found a non-NIL value for it, so they are cleared for another
8213 attempt to compute a current location. */
8216 notify_dependents_of_resolved_value (variable
*ivar
, variable_table_type
*vars
)
8218 loc_exp_dep
*led
, *next
;
8220 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8222 decl_or_value dv
= led
->dv
;
8227 if (dv_is_value_p (dv
))
8229 rtx value
= dv_as_value (dv
);
8231 /* If we have already resolved it, leave it alone. */
8232 if (!VALUE_RECURSED_INTO (value
))
8235 /* Check that VALUE_RECURSED_INTO, true from the test above,
8236 implies NO_LOC_P. */
8237 gcc_checking_assert (NO_LOC_P (value
));
8239 /* We won't notify variables that are being expanded,
8240 because their dependency list is cleared before
8242 NO_LOC_P (value
) = false;
8243 VALUE_RECURSED_INTO (value
) = false;
8245 gcc_checking_assert (dv_changed_p (dv
));
8249 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8250 if (!dv_changed_p (dv
))
8254 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8257 var
= variable_from_dropped (dv
, NO_INSERT
);
8260 notify_dependents_of_resolved_value (var
, vars
);
8263 next
->pprev
= led
->pprev
;
8271 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8272 int max_depth
, void *data
);
8274 /* Return the combined depth, when one sub-expression evaluated to
8275 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8277 static inline expand_depth
8278 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8280 /* If we didn't find anything, stick with what we had. */
8281 if (!best_depth
.complexity
)
8284 /* If we found hadn't found anything, use the depth of the current
8285 expression. Do NOT add one extra level, we want to compute the
8286 maximum depth among sub-expressions. We'll increment it later,
8288 if (!saved_depth
.complexity
)
8291 /* Combine the entryval count so that regardless of which one we
8292 return, the entryval count is accurate. */
8293 best_depth
.entryvals
= saved_depth
.entryvals
8294 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8296 if (saved_depth
.complexity
< best_depth
.complexity
)
8302 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8303 DATA for cselib expand callback. If PENDRECP is given, indicate in
8304 it whether any sub-expression couldn't be fully evaluated because
8305 it is pending recursion resolution. */
8308 vt_expand_var_loc_chain (variable
*var
, bitmap regs
, void *data
,
8311 struct expand_loc_callback_data
*elcd
8312 = (struct expand_loc_callback_data
*) data
;
8313 location_chain
*loc
, *next
;
8315 int first_child
, result_first_child
, last_child
;
8316 bool pending_recursion
;
8317 rtx loc_from
= NULL
;
8318 struct elt_loc_list
*cloc
= NULL
;
8319 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8320 int wanted_entryvals
, found_entryvals
= 0;
8322 /* Clear all backlinks pointing at this, so that we're not notified
8323 while we're active. */
8324 loc_exp_dep_clear (var
);
8327 if (var
->onepart
== ONEPART_VALUE
)
8329 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8331 gcc_checking_assert (cselib_preserved_value_p (val
));
8336 first_child
= result_first_child
= last_child
8337 = elcd
->expanding
.length ();
8339 wanted_entryvals
= found_entryvals
;
8341 /* Attempt to expand each available location in turn. */
8342 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8343 loc
|| cloc
; loc
= next
)
8345 result_first_child
= last_child
;
8349 loc_from
= cloc
->loc
;
8352 if (unsuitable_loc (loc_from
))
8357 loc_from
= loc
->loc
;
8361 gcc_checking_assert (!unsuitable_loc (loc_from
));
8363 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8364 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8365 vt_expand_loc_callback
, data
);
8366 last_child
= elcd
->expanding
.length ();
8370 depth
= elcd
->depth
;
8372 gcc_checking_assert (depth
.complexity
8373 || result_first_child
== last_child
);
8375 if (last_child
- result_first_child
!= 1)
8377 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8382 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8384 if (depth
.entryvals
<= wanted_entryvals
)
8386 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8387 found_entryvals
= depth
.entryvals
;
8393 /* Set it up in case we leave the loop. */
8394 depth
.complexity
= depth
.entryvals
= 0;
8396 result_first_child
= first_child
;
8399 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8401 /* We found entries with ENTRY_VALUEs and skipped them. Since
8402 we could not find any expansions without ENTRY_VALUEs, but we
8403 found at least one with them, go back and get an entry with
8404 the minimum number ENTRY_VALUE count that we found. We could
8405 avoid looping, but since each sub-loc is already resolved,
8406 the re-expansion should be trivial. ??? Should we record all
8407 attempted locs as dependencies, so that we retry the
8408 expansion should any of them change, in the hope it can give
8409 us a new entry without an ENTRY_VALUE? */
8410 elcd
->expanding
.truncate (first_child
);
8414 /* Register all encountered dependencies as active. */
8415 pending_recursion
= loc_exp_dep_set
8416 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8417 last_child
- result_first_child
, elcd
->vars
);
8419 elcd
->expanding
.truncate (first_child
);
8421 /* Record where the expansion came from. */
8422 gcc_checking_assert (!result
|| !pending_recursion
);
8423 VAR_LOC_FROM (var
) = loc_from
;
8424 VAR_LOC_DEPTH (var
) = depth
;
8426 gcc_checking_assert (!depth
.complexity
== !result
);
8428 elcd
->depth
= update_depth (saved_depth
, depth
);
8430 /* Indicate whether any of the dependencies are pending recursion
8433 *pendrecp
= pending_recursion
;
8435 if (!pendrecp
|| !pending_recursion
)
8436 var
->var_part
[0].cur_loc
= result
;
8441 /* Callback for cselib_expand_value, that looks for expressions
8442 holding the value in the var-tracking hash tables. Return X for
8443 standard processing, anything else is to be used as-is. */
8446 vt_expand_loc_callback (rtx x
, bitmap regs
,
8447 int max_depth ATTRIBUTE_UNUSED
,
8450 struct expand_loc_callback_data
*elcd
8451 = (struct expand_loc_callback_data
*) data
;
8455 bool pending_recursion
= false;
8456 bool from_empty
= false;
8458 switch (GET_CODE (x
))
8461 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8463 vt_expand_loc_callback
, data
);
8468 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8469 GET_MODE (SUBREG_REG (x
)),
8472 /* Invalid SUBREGs are ok in debug info. ??? We could try
8473 alternate expansions for the VALUE as well. */
8475 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8481 dv
= dv_from_rtx (x
);
8488 elcd
->expanding
.safe_push (x
);
8490 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8491 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8495 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8499 var
= elcd
->vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8504 var
= variable_from_dropped (dv
, INSERT
);
8507 gcc_checking_assert (var
);
8509 if (!dv_changed_p (dv
))
8511 gcc_checking_assert (!NO_LOC_P (x
));
8512 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8513 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8514 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8516 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8518 return var
->var_part
[0].cur_loc
;
8521 VALUE_RECURSED_INTO (x
) = true;
8522 /* This is tentative, but it makes some tests simpler. */
8523 NO_LOC_P (x
) = true;
8525 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8527 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8529 if (pending_recursion
)
8531 gcc_checking_assert (!result
);
8532 elcd
->pending
.safe_push (x
);
8536 NO_LOC_P (x
) = !result
;
8537 VALUE_RECURSED_INTO (x
) = false;
8538 set_dv_changed (dv
, false);
8541 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8547 /* While expanding variables, we may encounter recursion cycles
8548 because of mutual (possibly indirect) dependencies between two
8549 particular variables (or values), say A and B. If we're trying to
8550 expand A when we get to B, which in turn attempts to expand A, if
8551 we can't find any other expansion for B, we'll add B to this
8552 pending-recursion stack, and tentatively return NULL for its
8553 location. This tentative value will be used for any other
8554 occurrences of B, unless A gets some other location, in which case
8555 it will notify B that it is worth another try at computing a
8556 location for it, and it will use the location computed for A then.
8557 At the end of the expansion, the tentative NULL locations become
8558 final for all members of PENDING that didn't get a notification.
8559 This function performs this finalization of NULL locations. */
8562 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8564 while (!pending
->is_empty ())
8566 rtx x
= pending
->pop ();
8569 if (!VALUE_RECURSED_INTO (x
))
8572 gcc_checking_assert (NO_LOC_P (x
));
8573 VALUE_RECURSED_INTO (x
) = false;
8574 dv
= dv_from_rtx (x
);
8575 gcc_checking_assert (dv_changed_p (dv
));
8576 set_dv_changed (dv
, false);
8580 /* Initialize expand_loc_callback_data D with variable hash table V.
8581 It must be a macro because of alloca (vec stack). */
8582 #define INIT_ELCD(d, v) \
8586 (d).depth.complexity = (d).depth.entryvals = 0; \
8589 /* Finalize expand_loc_callback_data D, resolved to location L. */
8590 #define FINI_ELCD(d, l) \
8593 resolve_expansions_pending_recursion (&(d).pending); \
8594 (d).pending.release (); \
8595 (d).expanding.release (); \
8597 if ((l) && MEM_P (l)) \
8598 (l) = targetm.delegitimize_address (l); \
8602 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8603 equivalences in VARS, updating their CUR_LOCs in the process. */
8606 vt_expand_loc (rtx loc
, variable_table_type
*vars
)
8608 struct expand_loc_callback_data data
;
8611 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
8614 INIT_ELCD (data
, vars
);
8616 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8617 vt_expand_loc_callback
, &data
);
8619 FINI_ELCD (data
, result
);
8624 /* Expand the one-part VARiable to a location, using the equivalences
8625 in VARS, updating their CUR_LOCs in the process. */
8628 vt_expand_1pvar (variable
*var
, variable_table_type
*vars
)
8630 struct expand_loc_callback_data data
;
8633 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8635 if (!dv_changed_p (var
->dv
))
8636 return var
->var_part
[0].cur_loc
;
8638 INIT_ELCD (data
, vars
);
8640 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8642 gcc_checking_assert (data
.expanding
.is_empty ());
8644 FINI_ELCD (data
, loc
);
8649 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8650 additional parameters: WHERE specifies whether the note shall be emitted
8651 before or after instruction INSN. */
8654 emit_note_insn_var_location (variable
**varp
, emit_note_data
*data
)
8656 variable
*var
= *varp
;
8657 rtx_insn
*insn
= data
->insn
;
8658 enum emit_note_where where
= data
->where
;
8659 variable_table_type
*vars
= data
->vars
;
8662 int i
, j
, n_var_parts
;
8664 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8665 HOST_WIDE_INT last_limit
;
8666 tree type_size_unit
;
8667 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8668 rtx loc
[MAX_VAR_PARTS
];
8672 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8673 || var
->onepart
== ONEPART_VDECL
);
8675 decl
= dv_as_decl (var
->dv
);
8681 for (i
= 0; i
< var
->n_var_parts
; i
++)
8682 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8683 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8684 for (i
= 0; i
< var
->n_var_parts
; i
++)
8686 machine_mode mode
, wider_mode
;
8688 HOST_WIDE_INT offset
, size
, wider_size
;
8690 if (i
== 0 && var
->onepart
)
8692 gcc_checking_assert (var
->n_var_parts
== 1);
8694 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8695 loc2
= vt_expand_1pvar (var
, vars
);
8699 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8704 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8706 offset
= VAR_PART_OFFSET (var
, i
);
8707 loc2
= var
->var_part
[i
].cur_loc
;
8708 if (loc2
&& GET_CODE (loc2
) == MEM
8709 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8711 rtx depval
= XEXP (loc2
, 0);
8713 loc2
= vt_expand_loc (loc2
, vars
);
8716 loc_exp_insert_dep (var
, depval
, vars
);
8723 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8724 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8725 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8727 initialized
= lc
->init
;
8733 offsets
[n_var_parts
] = offset
;
8739 loc
[n_var_parts
] = loc2
;
8740 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8741 if (mode
== VOIDmode
&& var
->onepart
)
8742 mode
= DECL_MODE (decl
);
8743 /* We ony track subparts of constant-sized objects, since at present
8744 there's no representation for polynomial pieces. */
8745 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
8750 last_limit
= offsets
[n_var_parts
] + size
;
8752 /* Attempt to merge adjacent registers or memory. */
8753 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8754 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8756 if (j
< var
->n_var_parts
8757 && GET_MODE_WIDER_MODE (mode
).exists (&wider_mode
)
8758 && GET_MODE_SIZE (wider_mode
).is_constant (&wider_size
)
8759 && var
->var_part
[j
].cur_loc
8760 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8761 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8762 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8763 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8764 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8768 if (REG_P (loc
[n_var_parts
])
8769 && hard_regno_nregs (REGNO (loc
[n_var_parts
]), mode
) * 2
8770 == hard_regno_nregs (REGNO (loc
[n_var_parts
]), wider_mode
)
8771 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8774 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8775 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8777 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8778 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8781 if (!REG_P (new_loc
)
8782 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8785 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8788 else if (MEM_P (loc
[n_var_parts
])
8789 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8790 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8791 && CONST_INT_P (XEXP (XEXP (loc2
, 0), 1)))
8793 if ((REG_P (XEXP (loc
[n_var_parts
], 0))
8794 && rtx_equal_p (XEXP (loc
[n_var_parts
], 0),
8795 XEXP (XEXP (loc2
, 0), 0))
8796 && INTVAL (XEXP (XEXP (loc2
, 0), 1)) == size
)
8797 || (GET_CODE (XEXP (loc
[n_var_parts
], 0)) == PLUS
8798 && CONST_INT_P (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
8799 && rtx_equal_p (XEXP (XEXP (loc
[n_var_parts
], 0), 0),
8800 XEXP (XEXP (loc2
, 0), 0))
8801 && INTVAL (XEXP (XEXP (loc
[n_var_parts
], 0), 1)) + size
8802 == INTVAL (XEXP (XEXP (loc2
, 0), 1))))
8803 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8809 loc
[n_var_parts
] = new_loc
;
8811 last_limit
= offsets
[n_var_parts
] + wider_size
;
8817 type_size_unit
= TYPE_SIZE_UNIT (TREE_TYPE (decl
));
8818 if ((unsigned HOST_WIDE_INT
) last_limit
< TREE_INT_CST_LOW (type_size_unit
))
8821 if (! flag_var_tracking_uninit
)
8822 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8826 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
, initialized
);
8827 else if (n_var_parts
== 1)
8831 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8832 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8836 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
, initialized
);
8838 else if (n_var_parts
)
8842 for (i
= 0; i
< n_var_parts
; i
++)
8844 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8846 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8847 gen_rtvec_v (n_var_parts
, loc
));
8848 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8849 parallel
, initialized
);
8852 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8854 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8855 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8856 NOTE_DURING_CALL_P (note
) = true;
8860 /* Make sure that the call related notes come first. */
8861 while (NEXT_INSN (insn
)
8863 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8864 && NOTE_DURING_CALL_P (insn
))
8865 insn
= NEXT_INSN (insn
);
8867 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8868 && NOTE_DURING_CALL_P (insn
))
8869 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8871 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8873 NOTE_VAR_LOCATION (note
) = note_vl
;
8875 set_dv_changed (var
->dv
, false);
8876 gcc_assert (var
->in_changed_variables
);
8877 var
->in_changed_variables
= false;
8878 changed_variables
->clear_slot (varp
);
8880 /* Continue traversing the hash table. */
8884 /* While traversing changed_variables, push onto DATA (a stack of RTX
8885 values) entries that aren't user variables. */
8888 var_track_values_to_stack (variable
**slot
,
8889 vec
<rtx
, va_heap
> *changed_values_stack
)
8891 variable
*var
= *slot
;
8893 if (var
->onepart
== ONEPART_VALUE
)
8894 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8895 else if (var
->onepart
== ONEPART_DEXPR
)
8896 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8901 /* Remove from changed_variables the entry whose DV corresponds to
8902 value or debug_expr VAL. */
8904 remove_value_from_changed_variables (rtx val
)
8906 decl_or_value dv
= dv_from_rtx (val
);
8910 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8913 var
->in_changed_variables
= false;
8914 changed_variables
->clear_slot (slot
);
8917 /* If VAL (a value or debug_expr) has backlinks to variables actively
8918 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8919 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8920 have dependencies of their own to notify. */
8923 notify_dependents_of_changed_value (rtx val
, variable_table_type
*htab
,
8924 vec
<rtx
, va_heap
> *changed_values_stack
)
8929 decl_or_value dv
= dv_from_rtx (val
);
8931 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8934 slot
= htab
->find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8936 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8940 while ((led
= VAR_LOC_DEP_LST (var
)))
8942 decl_or_value ldv
= led
->dv
;
8945 /* Deactivate and remove the backlink, as it was “used up”. It
8946 makes no sense to attempt to notify the same entity again:
8947 either it will be recomputed and re-register an active
8948 dependency, or it will still have the changed mark. */
8950 led
->next
->pprev
= led
->pprev
;
8952 *led
->pprev
= led
->next
;
8956 if (dv_changed_p (ldv
))
8959 switch (dv_onepart_p (ldv
))
8963 set_dv_changed (ldv
, true);
8964 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
8968 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8969 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
8970 variable_was_changed (ivar
, NULL
);
8975 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8978 int i
= ivar
->n_var_parts
;
8981 rtx loc
= ivar
->var_part
[i
].cur_loc
;
8983 if (loc
&& GET_CODE (loc
) == MEM
8984 && XEXP (loc
, 0) == val
)
8986 variable_was_changed (ivar
, NULL
);
8999 /* Take out of changed_variables any entries that don't refer to use
9000 variables. Back-propagate change notifications from values and
9001 debug_exprs to their active dependencies in HTAB or in
9002 CHANGED_VARIABLES. */
9005 process_changed_values (variable_table_type
*htab
)
9009 auto_vec
<rtx
, 20> changed_values_stack
;
9011 /* Move values from changed_variables to changed_values_stack. */
9013 ->traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
9014 (&changed_values_stack
);
9016 /* Back-propagate change notifications in values while popping
9017 them from the stack. */
9018 for (n
= i
= changed_values_stack
.length ();
9019 i
> 0; i
= changed_values_stack
.length ())
9021 val
= changed_values_stack
.pop ();
9022 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
9024 /* This condition will hold when visiting each of the entries
9025 originally in changed_variables. We can't remove them
9026 earlier because this could drop the backlinks before we got a
9027 chance to use them. */
9030 remove_value_from_changed_variables (val
);
9036 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9037 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9038 the notes shall be emitted before of after instruction INSN. */
9041 emit_notes_for_changes (rtx_insn
*insn
, enum emit_note_where where
,
9044 emit_note_data data
;
9045 variable_table_type
*htab
= shared_hash_htab (vars
);
9047 if (!changed_variables
->elements ())
9050 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9051 process_changed_values (htab
);
9058 ->traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
9061 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9062 same variable in hash table DATA or is not there at all. */
9065 emit_notes_for_differences_1 (variable
**slot
, variable_table_type
*new_vars
)
9067 variable
*old_var
, *new_var
;
9070 new_var
= new_vars
->find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
9074 /* Variable has disappeared. */
9075 variable
*empty_var
= NULL
;
9077 if (old_var
->onepart
== ONEPART_VALUE
9078 || old_var
->onepart
== ONEPART_DEXPR
)
9080 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
9083 gcc_checking_assert (!empty_var
->in_changed_variables
);
9084 if (!VAR_LOC_1PAUX (old_var
))
9086 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
9087 VAR_LOC_1PAUX (empty_var
) = NULL
;
9090 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9096 empty_var
= onepart_pool_allocate (old_var
->onepart
);
9097 empty_var
->dv
= old_var
->dv
;
9098 empty_var
->refcount
= 0;
9099 empty_var
->n_var_parts
= 0;
9100 empty_var
->onepart
= old_var
->onepart
;
9101 empty_var
->in_changed_variables
= false;
9104 if (empty_var
->onepart
)
9106 /* Propagate the auxiliary data to (ultimately)
9107 changed_variables. */
9108 empty_var
->var_part
[0].loc_chain
= NULL
;
9109 empty_var
->var_part
[0].cur_loc
= NULL
;
9110 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9111 VAR_LOC_1PAUX (old_var
) = NULL
;
9113 variable_was_changed (empty_var
, NULL
);
9114 /* Continue traversing the hash table. */
9117 /* Update cur_loc and one-part auxiliary data, before new_var goes
9118 through variable_was_changed. */
9119 if (old_var
!= new_var
&& new_var
->onepart
)
9121 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9122 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9123 VAR_LOC_1PAUX (old_var
) = NULL
;
9124 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9126 if (variable_different_p (old_var
, new_var
))
9127 variable_was_changed (new_var
, NULL
);
9129 /* Continue traversing the hash table. */
9133 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9137 emit_notes_for_differences_2 (variable
**slot
, variable_table_type
*old_vars
)
9139 variable
*old_var
, *new_var
;
9142 old_var
= old_vars
->find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9146 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9147 new_var
->var_part
[i
].cur_loc
= NULL
;
9148 variable_was_changed (new_var
, NULL
);
9151 /* Continue traversing the hash table. */
9155 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9159 emit_notes_for_differences (rtx_insn
*insn
, dataflow_set
*old_set
,
9160 dataflow_set
*new_set
)
9162 shared_hash_htab (old_set
->vars
)
9163 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9164 (shared_hash_htab (new_set
->vars
));
9165 shared_hash_htab (new_set
->vars
)
9166 ->traverse
<variable_table_type
*, emit_notes_for_differences_2
>
9167 (shared_hash_htab (old_set
->vars
));
9168 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9171 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9174 next_non_note_insn_var_location (rtx_insn
*insn
)
9178 insn
= NEXT_INSN (insn
);
9181 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9188 /* Emit the notes for changes of location parts in the basic block BB. */
9191 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9194 micro_operation
*mo
;
9196 dataflow_set_clear (set
);
9197 dataflow_set_copy (set
, &VTI (bb
)->in
);
9199 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9201 rtx_insn
*insn
= mo
->insn
;
9202 rtx_insn
*next_insn
= next_non_note_insn_var_location (insn
);
9207 dataflow_set_clear_at_call (set
, insn
);
9208 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9210 rtx arguments
= mo
->u
.loc
, *p
= &arguments
;
9213 XEXP (XEXP (*p
, 0), 1)
9214 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9215 shared_hash_htab (set
->vars
));
9216 /* If expansion is successful, keep it in the list. */
9217 if (XEXP (XEXP (*p
, 0), 1))
9219 XEXP (XEXP (*p
, 0), 1)
9220 = copy_rtx_if_shared (XEXP (XEXP (*p
, 0), 1));
9223 /* Otherwise, if the following item is data_value for it,
9225 else if (XEXP (*p
, 1)
9226 && REG_P (XEXP (XEXP (*p
, 0), 0))
9227 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9228 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9230 && REGNO (XEXP (XEXP (*p
, 0), 0))
9231 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9233 *p
= XEXP (XEXP (*p
, 1), 1);
9234 /* Just drop this item. */
9238 add_reg_note (insn
, REG_CALL_ARG_LOCATION
, arguments
);
9244 rtx loc
= mo
->u
.loc
;
9247 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9249 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9251 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9257 rtx loc
= mo
->u
.loc
;
9261 if (GET_CODE (loc
) == CONCAT
)
9263 val
= XEXP (loc
, 0);
9264 vloc
= XEXP (loc
, 1);
9272 var
= PAT_VAR_LOCATION_DECL (vloc
);
9274 clobber_variable_part (set
, NULL_RTX
,
9275 dv_from_decl (var
), 0, NULL_RTX
);
9278 if (VAL_NEEDS_RESOLUTION (loc
))
9279 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9280 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9281 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9284 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9285 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9286 dv_from_decl (var
), 0,
9287 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9290 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9296 rtx loc
= mo
->u
.loc
;
9297 rtx val
, vloc
, uloc
;
9299 vloc
= uloc
= XEXP (loc
, 1);
9300 val
= XEXP (loc
, 0);
9302 if (GET_CODE (val
) == CONCAT
)
9304 uloc
= XEXP (val
, 1);
9305 val
= XEXP (val
, 0);
9308 if (VAL_NEEDS_RESOLUTION (loc
))
9309 val_resolve (set
, val
, vloc
, insn
);
9311 val_store (set
, val
, uloc
, insn
, false);
9313 if (VAL_HOLDS_TRACK_EXPR (loc
))
9315 if (GET_CODE (uloc
) == REG
)
9316 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9318 else if (GET_CODE (uloc
) == MEM
)
9319 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9323 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9329 rtx loc
= mo
->u
.loc
;
9330 rtx val
, vloc
, uloc
;
9334 uloc
= XEXP (vloc
, 1);
9335 val
= XEXP (vloc
, 0);
9338 if (GET_CODE (uloc
) == SET
)
9340 dstv
= SET_DEST (uloc
);
9341 srcv
= SET_SRC (uloc
);
9349 if (GET_CODE (val
) == CONCAT
)
9351 dstv
= vloc
= XEXP (val
, 1);
9352 val
= XEXP (val
, 0);
9355 if (GET_CODE (vloc
) == SET
)
9357 srcv
= SET_SRC (vloc
);
9359 gcc_assert (val
!= srcv
);
9360 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9362 dstv
= vloc
= SET_DEST (vloc
);
9364 if (VAL_NEEDS_RESOLUTION (loc
))
9365 val_resolve (set
, val
, srcv
, insn
);
9367 else if (VAL_NEEDS_RESOLUTION (loc
))
9369 gcc_assert (GET_CODE (uloc
) == SET
9370 && GET_CODE (SET_SRC (uloc
)) == REG
);
9371 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9374 if (VAL_HOLDS_TRACK_EXPR (loc
))
9376 if (VAL_EXPR_IS_CLOBBERED (loc
))
9379 var_reg_delete (set
, uloc
, true);
9380 else if (MEM_P (uloc
))
9382 gcc_assert (MEM_P (dstv
));
9383 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9384 var_mem_delete (set
, dstv
, true);
9389 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9390 rtx src
= NULL
, dst
= uloc
;
9391 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9393 if (GET_CODE (uloc
) == SET
)
9395 src
= SET_SRC (uloc
);
9396 dst
= SET_DEST (uloc
);
9401 status
= find_src_status (set
, src
);
9403 src
= find_src_set_src (set
, src
);
9407 var_reg_delete_and_set (set
, dst
, !copied_p
,
9409 else if (MEM_P (dst
))
9411 gcc_assert (MEM_P (dstv
));
9412 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9413 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9418 else if (REG_P (uloc
))
9419 var_regno_delete (set
, REGNO (uloc
));
9420 else if (MEM_P (uloc
))
9422 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9423 gcc_checking_assert (vloc
== dstv
);
9425 clobber_overlapping_mems (set
, vloc
);
9428 val_store (set
, val
, dstv
, insn
, true);
9430 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9437 rtx loc
= mo
->u
.loc
;
9440 if (GET_CODE (loc
) == SET
)
9442 set_src
= SET_SRC (loc
);
9443 loc
= SET_DEST (loc
);
9447 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9450 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9453 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9460 rtx loc
= mo
->u
.loc
;
9461 enum var_init_status src_status
;
9464 if (GET_CODE (loc
) == SET
)
9466 set_src
= SET_SRC (loc
);
9467 loc
= SET_DEST (loc
);
9470 src_status
= find_src_status (set
, set_src
);
9471 set_src
= find_src_set_src (set
, set_src
);
9474 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9476 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9478 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9485 rtx loc
= mo
->u
.loc
;
9488 var_reg_delete (set
, loc
, false);
9490 var_mem_delete (set
, loc
, false);
9492 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9498 rtx loc
= mo
->u
.loc
;
9501 var_reg_delete (set
, loc
, true);
9503 var_mem_delete (set
, loc
, true);
9505 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9511 set
->stack_adjust
+= mo
->u
.adjust
;
9517 /* Emit notes for the whole function. */
9520 vt_emit_notes (void)
9525 gcc_assert (!changed_variables
->elements ());
9527 /* Free memory occupied by the out hash tables, as they aren't used
9529 FOR_EACH_BB_FN (bb
, cfun
)
9530 dataflow_set_clear (&VTI (bb
)->out
);
9532 /* Enable emitting notes by functions (mainly by set_variable_part and
9533 delete_variable_part). */
9536 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9537 dropped_values
= new variable_table_type (cselib_get_next_uid () * 2);
9539 dataflow_set_init (&cur
);
9541 FOR_EACH_BB_FN (bb
, cfun
)
9543 /* Emit the notes for changes of variable locations between two
9544 subsequent basic blocks. */
9545 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9547 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9548 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9550 /* Emit the notes for the changes in the basic block itself. */
9551 emit_notes_in_bb (bb
, &cur
);
9553 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9554 delete local_get_addr_cache
;
9555 local_get_addr_cache
= NULL
;
9557 /* Free memory occupied by the in hash table, we won't need it
9559 dataflow_set_clear (&VTI (bb
)->in
);
9563 shared_hash_htab (cur
.vars
)
9564 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9565 (shared_hash_htab (empty_shared_hash
));
9567 dataflow_set_destroy (&cur
);
9569 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9570 delete dropped_values
;
9571 dropped_values
= NULL
;
9576 /* If there is a declaration and offset associated with register/memory RTL
9577 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9580 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, poly_int64
*offsetp
)
9584 if (REG_ATTRS (rtl
))
9586 *declp
= REG_EXPR (rtl
);
9587 *offsetp
= REG_OFFSET (rtl
);
9591 else if (GET_CODE (rtl
) == PARALLEL
)
9593 tree decl
= NULL_TREE
;
9594 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9595 int len
= XVECLEN (rtl
, 0), i
;
9597 for (i
= 0; i
< len
; i
++)
9599 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9600 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9603 decl
= REG_EXPR (reg
);
9604 if (REG_EXPR (reg
) != decl
)
9606 HOST_WIDE_INT this_offset
;
9607 if (!track_offset_p (REG_OFFSET (reg
), &this_offset
))
9609 offset
= MIN (offset
, this_offset
);
9619 else if (MEM_P (rtl
))
9621 if (MEM_ATTRS (rtl
))
9623 *declp
= MEM_EXPR (rtl
);
9624 *offsetp
= int_mem_offset (rtl
);
9631 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9635 record_entry_value (cselib_val
*val
, rtx rtl
)
9637 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9639 ENTRY_VALUE_EXP (ev
) = rtl
;
9641 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9644 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9647 vt_add_function_parameter (tree parm
)
9649 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9650 rtx incoming
= DECL_INCOMING_RTL (parm
);
9656 bool incoming_ok
= true;
9658 if (TREE_CODE (parm
) != PARM_DECL
)
9661 if (!decl_rtl
|| !incoming
)
9664 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9667 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9668 rewrite the incoming location of parameters passed on the stack
9669 into MEMs based on the argument pointer, so that incoming doesn't
9670 depend on a pseudo. */
9671 if (MEM_P (incoming
)
9672 && (XEXP (incoming
, 0) == crtl
->args
.internal_arg_pointer
9673 || (GET_CODE (XEXP (incoming
, 0)) == PLUS
9674 && XEXP (XEXP (incoming
, 0), 0)
9675 == crtl
->args
.internal_arg_pointer
9676 && CONST_INT_P (XEXP (XEXP (incoming
, 0), 1)))))
9678 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9679 if (GET_CODE (XEXP (incoming
, 0)) == PLUS
)
9680 off
+= INTVAL (XEXP (XEXP (incoming
, 0), 1));
9682 = replace_equiv_address_nv (incoming
,
9683 plus_constant (Pmode
,
9684 arg_pointer_rtx
, off
));
9687 #ifdef HAVE_window_save
9688 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9689 If the target machine has an explicit window save instruction, the
9690 actual entry value is the corresponding OUTGOING_REGNO instead. */
9691 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9693 if (REG_P (incoming
)
9694 && HARD_REGISTER_P (incoming
)
9695 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9698 p
.incoming
= incoming
;
9700 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9701 OUTGOING_REGNO (REGNO (incoming
)), 0);
9702 p
.outgoing
= incoming
;
9703 vec_safe_push (windowed_parm_regs
, p
);
9705 else if (GET_CODE (incoming
) == PARALLEL
)
9708 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9711 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9713 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9716 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9717 OUTGOING_REGNO (REGNO (reg
)), 0);
9719 XVECEXP (outgoing
, 0, i
)
9720 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9721 XEXP (XVECEXP (incoming
, 0, i
), 1));
9722 vec_safe_push (windowed_parm_regs
, p
);
9725 incoming
= outgoing
;
9727 else if (MEM_P (incoming
)
9728 && REG_P (XEXP (incoming
, 0))
9729 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9731 rtx reg
= XEXP (incoming
, 0);
9732 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9736 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9738 vec_safe_push (windowed_parm_regs
, p
);
9739 incoming
= replace_equiv_address_nv (incoming
, reg
);
9745 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9747 incoming_ok
= false;
9748 if (MEM_P (incoming
))
9750 /* This means argument is passed by invisible reference. */
9756 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9758 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9759 GET_MODE (decl_rtl
));
9768 /* If that DECL_RTL wasn't a pseudo that got spilled to
9769 memory, bail out. Otherwise, the spill slot sharing code
9770 will force the memory to reference spill_slot_decl (%sfp),
9771 so we don't match above. That's ok, the pseudo must have
9772 referenced the entire parameter, so just reset OFFSET. */
9773 if (decl
!= get_spill_slot_decl (false))
9778 HOST_WIDE_INT const_offset
;
9779 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &const_offset
))
9782 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9784 dv
= dv_from_decl (parm
);
9786 if (target_for_debug_bind (parm
)
9787 /* We can't deal with these right now, because this kind of
9788 variable is single-part. ??? We could handle parallels
9789 that describe multiple locations for the same single
9790 value, but ATM we don't. */
9791 && GET_CODE (incoming
) != PARALLEL
)
9796 /* ??? We shouldn't ever hit this, but it may happen because
9797 arguments passed by invisible reference aren't dealt with
9798 above: incoming-rtl will have Pmode rather than the
9799 expected mode for the type. */
9803 lowpart
= var_lowpart (mode
, incoming
);
9807 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9808 VOIDmode
, get_insns ());
9810 /* ??? Float-typed values in memory are not handled by
9814 preserve_value (val
);
9815 set_variable_part (out
, val
->val_rtx
, dv
, const_offset
,
9816 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9817 dv
= dv_from_value (val
->val_rtx
);
9820 if (MEM_P (incoming
))
9822 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9823 VOIDmode
, get_insns ());
9826 preserve_value (val
);
9827 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9832 if (REG_P (incoming
))
9834 incoming
= var_lowpart (mode
, incoming
);
9835 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9836 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, const_offset
,
9838 set_variable_part (out
, incoming
, dv
, const_offset
,
9839 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9840 if (dv_is_value_p (dv
))
9842 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9843 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9844 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9846 machine_mode indmode
9847 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9848 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9849 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9854 preserve_value (val
);
9855 record_entry_value (val
, mem
);
9856 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9857 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9862 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9866 /* The following code relies on vt_get_decl_and_offset returning true for
9867 incoming, which might not be always the case. */
9870 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9872 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9873 /* vt_get_decl_and_offset has already checked that the offset
9874 is a valid variable part. */
9875 const_offset
= get_tracked_reg_offset (reg
);
9876 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9877 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, const_offset
, reg
);
9878 set_variable_part (out
, reg
, dv
, const_offset
,
9879 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9882 else if (MEM_P (incoming
))
9884 incoming
= var_lowpart (mode
, incoming
);
9885 set_variable_part (out
, incoming
, dv
, const_offset
,
9886 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9890 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9893 vt_add_function_parameters (void)
9897 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9898 parm
; parm
= DECL_CHAIN (parm
))
9899 if (!POINTER_BOUNDS_P (parm
))
9900 vt_add_function_parameter (parm
);
9902 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9904 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9906 if (TREE_CODE (vexpr
) == INDIRECT_REF
)
9907 vexpr
= TREE_OPERAND (vexpr
, 0);
9909 if (TREE_CODE (vexpr
) == PARM_DECL
9910 && DECL_ARTIFICIAL (vexpr
)
9911 && !DECL_IGNORED_P (vexpr
)
9912 && DECL_NAMELESS (vexpr
))
9913 vt_add_function_parameter (vexpr
);
9917 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9918 ensure it isn't flushed during cselib_reset_table.
9919 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9920 has been eliminated. */
9923 vt_init_cfa_base (void)
9927 #ifdef FRAME_POINTER_CFA_OFFSET
9928 cfa_base_rtx
= frame_pointer_rtx
;
9929 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9931 cfa_base_rtx
= arg_pointer_rtx
;
9932 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9934 if (cfa_base_rtx
== hard_frame_pointer_rtx
9935 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9937 cfa_base_rtx
= NULL_RTX
;
9940 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
9943 /* Tell alias analysis that cfa_base_rtx should share
9944 find_base_term value with stack pointer or hard frame pointer. */
9945 if (!frame_pointer_needed
)
9946 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9947 else if (!crtl
->stack_realign_tried
)
9948 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9950 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9951 VOIDmode
, get_insns ());
9952 preserve_value (val
);
9953 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
9956 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9959 reemit_marker_as_note (rtx_insn
*insn
)
9961 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn
));
9963 enum insn_note kind
= INSN_DEBUG_MARKER_KIND (insn
);
9967 case NOTE_INSN_BEGIN_STMT
:
9968 case NOTE_INSN_INLINE_ENTRY
:
9970 rtx_insn
*note
= NULL
;
9971 if (cfun
->debug_nonbind_markers
)
9973 note
= emit_note_before (kind
, insn
);
9974 NOTE_MARKER_LOCATION (note
) = INSN_LOCATION (insn
);
9985 /* Allocate and initialize the data structures for variable tracking
9986 and parse the RTL to get the micro operations. */
9989 vt_initialize (void)
9992 HOST_WIDE_INT fp_cfa_offset
= -1;
9994 alloc_aux_for_blocks (sizeof (variable_tracking_info
));
9996 empty_shared_hash
= shared_hash_pool
.allocate ();
9997 empty_shared_hash
->refcount
= 1;
9998 empty_shared_hash
->htab
= new variable_table_type (1);
9999 changed_variables
= new variable_table_type (10);
10001 /* Init the IN and OUT sets. */
10002 FOR_ALL_BB_FN (bb
, cfun
)
10004 VTI (bb
)->visited
= false;
10005 VTI (bb
)->flooded
= false;
10006 dataflow_set_init (&VTI (bb
)->in
);
10007 dataflow_set_init (&VTI (bb
)->out
);
10008 VTI (bb
)->permp
= NULL
;
10011 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10013 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
10014 scratch_regs
= BITMAP_ALLOC (NULL
);
10015 preserved_values
.create (256);
10016 global_get_addr_cache
= new hash_map
<rtx
, rtx
>;
10020 scratch_regs
= NULL
;
10021 global_get_addr_cache
= NULL
;
10024 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10030 #ifdef FRAME_POINTER_CFA_OFFSET
10031 reg
= frame_pointer_rtx
;
10032 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10034 reg
= arg_pointer_rtx
;
10035 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10038 ofst
-= INCOMING_FRAME_SP_OFFSET
;
10040 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
10041 VOIDmode
, get_insns ());
10042 preserve_value (val
);
10043 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
10044 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
10045 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
10046 stack_pointer_rtx
, -ofst
);
10047 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10051 val
= cselib_lookup_from_insn (stack_pointer_rtx
,
10052 GET_MODE (stack_pointer_rtx
), 1,
10053 VOIDmode
, get_insns ());
10054 preserve_value (val
);
10055 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
10056 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10060 /* In order to factor out the adjustments made to the stack pointer or to
10061 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10062 instead of individual location lists, we're going to rewrite MEMs based
10063 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10064 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10065 resp. arg_pointer_rtx. We can do this either when there is no frame
10066 pointer in the function and stack adjustments are consistent for all
10067 basic blocks or when there is a frame pointer and no stack realignment.
10068 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10069 has been eliminated. */
10070 if (!frame_pointer_needed
)
10074 if (!vt_stack_adjustments ())
10077 #ifdef FRAME_POINTER_CFA_OFFSET
10078 reg
= frame_pointer_rtx
;
10080 reg
= arg_pointer_rtx
;
10082 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10085 if (GET_CODE (elim
) == PLUS
)
10086 elim
= XEXP (elim
, 0);
10087 if (elim
== stack_pointer_rtx
)
10088 vt_init_cfa_base ();
10091 else if (!crtl
->stack_realign_tried
)
10095 #ifdef FRAME_POINTER_CFA_OFFSET
10096 reg
= frame_pointer_rtx
;
10097 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10099 reg
= arg_pointer_rtx
;
10100 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10102 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10105 if (GET_CODE (elim
) == PLUS
)
10107 fp_cfa_offset
-= INTVAL (XEXP (elim
, 1));
10108 elim
= XEXP (elim
, 0);
10110 if (elim
!= hard_frame_pointer_rtx
)
10111 fp_cfa_offset
= -1;
10114 fp_cfa_offset
= -1;
10117 /* If the stack is realigned and a DRAP register is used, we're going to
10118 rewrite MEMs based on it representing incoming locations of parameters
10119 passed on the stack into MEMs based on the argument pointer. Although
10120 we aren't going to rewrite other MEMs, we still need to initialize the
10121 virtual CFA pointer in order to ensure that the argument pointer will
10122 be seen as a constant throughout the function.
10124 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10125 else if (stack_realign_drap
)
10129 #ifdef FRAME_POINTER_CFA_OFFSET
10130 reg
= frame_pointer_rtx
;
10132 reg
= arg_pointer_rtx
;
10134 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10137 if (GET_CODE (elim
) == PLUS
)
10138 elim
= XEXP (elim
, 0);
10139 if (elim
== hard_frame_pointer_rtx
)
10140 vt_init_cfa_base ();
10144 hard_frame_pointer_adjustment
= -1;
10146 vt_add_function_parameters ();
10148 FOR_EACH_BB_FN (bb
, cfun
)
10151 HOST_WIDE_INT pre
, post
= 0;
10152 basic_block first_bb
, last_bb
;
10154 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10156 cselib_record_sets_hook
= add_with_sets
;
10157 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10158 fprintf (dump_file
, "first value: %i\n",
10159 cselib_get_next_uid ());
10166 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10167 || ! single_pred_p (bb
->next_bb
))
10169 e
= find_edge (bb
, bb
->next_bb
);
10170 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10176 /* Add the micro-operations to the vector. */
10177 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10179 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10180 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10183 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10187 if (!frame_pointer_needed
)
10189 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10192 micro_operation mo
;
10193 mo
.type
= MO_ADJUST
;
10196 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10197 log_op_type (PATTERN (insn
), bb
, insn
,
10198 MO_ADJUST
, dump_file
);
10199 VTI (bb
)->mos
.safe_push (mo
);
10200 VTI (bb
)->out
.stack_adjust
+= pre
;
10204 cselib_hook_called
= false;
10205 adjust_insn (bb
, insn
);
10206 if (DEBUG_MARKER_INSN_P (insn
))
10208 reemit_marker_as_note (insn
);
10212 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10215 prepare_call_arguments (bb
, insn
);
10216 cselib_process_insn (insn
);
10217 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10219 print_rtl_single (dump_file
, insn
);
10220 dump_cselib_table (dump_file
);
10223 if (!cselib_hook_called
)
10224 add_with_sets (insn
, 0, 0);
10225 cancel_changes (0);
10227 if (!frame_pointer_needed
&& post
)
10229 micro_operation mo
;
10230 mo
.type
= MO_ADJUST
;
10231 mo
.u
.adjust
= post
;
10233 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10234 log_op_type (PATTERN (insn
), bb
, insn
,
10235 MO_ADJUST
, dump_file
);
10236 VTI (bb
)->mos
.safe_push (mo
);
10237 VTI (bb
)->out
.stack_adjust
+= post
;
10240 if (fp_cfa_offset
!= -1
10241 && hard_frame_pointer_adjustment
== -1
10242 && fp_setter_insn (insn
))
10244 vt_init_cfa_base ();
10245 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10246 /* Disassociate sp from fp now. */
10247 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10250 cselib_invalidate_rtx (stack_pointer_rtx
);
10251 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10253 if (v
&& !cselib_preserved_value_p (v
))
10255 cselib_set_value_sp_based (v
);
10256 preserve_value (v
);
10262 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10267 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10269 cselib_preserve_only_values ();
10270 cselib_reset_table (cselib_get_next_uid ());
10271 cselib_record_sets_hook
= NULL
;
10275 hard_frame_pointer_adjustment
= -1;
10276 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10277 cfa_base_rtx
= NULL_RTX
;
10281 /* This is *not* reset after each function. It gives each
10282 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10283 a unique label number. */
10285 static int debug_label_num
= 1;
10287 /* Remove from the insn stream a single debug insn used for
10288 variable tracking at assignments. */
10291 delete_vta_debug_insn (rtx_insn
*insn
)
10293 if (DEBUG_MARKER_INSN_P (insn
))
10295 reemit_marker_as_note (insn
);
10299 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10300 if (TREE_CODE (decl
) == LABEL_DECL
10301 && DECL_NAME (decl
)
10302 && !DECL_RTL_SET_P (decl
))
10304 PUT_CODE (insn
, NOTE
);
10305 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10306 NOTE_DELETED_LABEL_NAME (insn
)
10307 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10308 SET_DECL_RTL (decl
, insn
);
10309 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10312 delete_insn (insn
);
10315 /* Remove from the insn stream all debug insns used for variable
10316 tracking at assignments. USE_CFG should be false if the cfg is no
10320 delete_vta_debug_insns (bool use_cfg
)
10323 rtx_insn
*insn
, *next
;
10325 if (!MAY_HAVE_DEBUG_INSNS
)
10329 FOR_EACH_BB_FN (bb
, cfun
)
10331 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10332 if (DEBUG_INSN_P (insn
))
10333 delete_vta_debug_insn (insn
);
10336 for (insn
= get_insns (); insn
; insn
= next
)
10338 next
= NEXT_INSN (insn
);
10339 if (DEBUG_INSN_P (insn
))
10340 delete_vta_debug_insn (insn
);
10344 /* Run a fast, BB-local only version of var tracking, to take care of
10345 information that we don't do global analysis on, such that not all
10346 information is lost. If SKIPPED holds, we're skipping the global
10347 pass entirely, so we should try to use information it would have
10348 handled as well.. */
10351 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10353 /* ??? Just skip it all for now. */
10354 delete_vta_debug_insns (true);
10357 /* Free the data structures needed for variable tracking. */
10364 FOR_EACH_BB_FN (bb
, cfun
)
10366 VTI (bb
)->mos
.release ();
10369 FOR_ALL_BB_FN (bb
, cfun
)
10371 dataflow_set_destroy (&VTI (bb
)->in
);
10372 dataflow_set_destroy (&VTI (bb
)->out
);
10373 if (VTI (bb
)->permp
)
10375 dataflow_set_destroy (VTI (bb
)->permp
);
10376 XDELETE (VTI (bb
)->permp
);
10379 free_aux_for_blocks ();
10380 delete empty_shared_hash
->htab
;
10381 empty_shared_hash
->htab
= NULL
;
10382 delete changed_variables
;
10383 changed_variables
= NULL
;
10384 attrs_pool
.release ();
10385 var_pool
.release ();
10386 location_chain_pool
.release ();
10387 shared_hash_pool
.release ();
10389 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10391 if (global_get_addr_cache
)
10392 delete global_get_addr_cache
;
10393 global_get_addr_cache
= NULL
;
10394 loc_exp_dep_pool
.release ();
10395 valvar_pool
.release ();
10396 preserved_values
.release ();
10398 BITMAP_FREE (scratch_regs
);
10399 scratch_regs
= NULL
;
10402 #ifdef HAVE_window_save
10403 vec_free (windowed_parm_regs
);
10407 XDELETEVEC (vui_vec
);
10412 /* The entry point to variable tracking pass. */
10414 static inline unsigned int
10415 variable_tracking_main_1 (void)
10419 /* We won't be called as a separate pass if flag_var_tracking is not
10420 set, but final may call us to turn debug markers into notes. */
10421 if ((!flag_var_tracking
&& MAY_HAVE_DEBUG_INSNS
)
10422 || flag_var_tracking_assignments
< 0
10423 /* Var-tracking right now assumes the IR doesn't contain
10424 any pseudos at this point. */
10425 || targetm
.no_register_allocation
)
10427 delete_vta_debug_insns (true);
10431 if (!flag_var_tracking
)
10434 if (n_basic_blocks_for_fn (cfun
) > 500
10435 && n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10437 vt_debug_insns_local (true);
10441 mark_dfs_back_edges ();
10442 if (!vt_initialize ())
10445 vt_debug_insns_local (true);
10449 success
= vt_find_locations ();
10451 if (!success
&& flag_var_tracking_assignments
> 0)
10455 delete_vta_debug_insns (true);
10457 /* This is later restored by our caller. */
10458 flag_var_tracking_assignments
= 0;
10460 success
= vt_initialize ();
10461 gcc_assert (success
);
10463 success
= vt_find_locations ();
10469 vt_debug_insns_local (false);
10473 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10475 dump_dataflow_sets ();
10476 dump_reg_info (dump_file
);
10477 dump_flow_info (dump_file
, dump_flags
);
10480 timevar_push (TV_VAR_TRACKING_EMIT
);
10482 timevar_pop (TV_VAR_TRACKING_EMIT
);
10485 vt_debug_insns_local (false);
10490 variable_tracking_main (void)
10493 int save
= flag_var_tracking_assignments
;
10495 ret
= variable_tracking_main_1 ();
10497 flag_var_tracking_assignments
= save
;
10504 const pass_data pass_data_variable_tracking
=
10506 RTL_PASS
, /* type */
10507 "vartrack", /* name */
10508 OPTGROUP_NONE
, /* optinfo_flags */
10509 TV_VAR_TRACKING
, /* tv_id */
10510 0, /* properties_required */
10511 0, /* properties_provided */
10512 0, /* properties_destroyed */
10513 0, /* todo_flags_start */
10514 0, /* todo_flags_finish */
10517 class pass_variable_tracking
: public rtl_opt_pass
10520 pass_variable_tracking (gcc::context
*ctxt
)
10521 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10524 /* opt_pass methods: */
10525 virtual bool gate (function
*)
10527 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10530 virtual unsigned int execute (function
*)
10532 return variable_tracking_main ();
10535 }; // class pass_variable_tracking
10537 } // anon namespace
10540 make_pass_variable_tracking (gcc::context
*ctxt
)
10542 return new pass_variable_tracking (ctxt
);