Use hard_regno_nregs instead of HARD_REGNO_NREGS
[official-gcc.git] / libdecnumber / dpd / decimal64.c
blob80f4a3d23cbb9ac95969e002fa7358b30e65f9e3
1 /* Decimal 64-bit format module for the decNumber C Library.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by IBM Corporation. Author Mike Cowlishaw.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* ------------------------------------------------------------------ */
27 /* Decimal 64-bit format module */
28 /* ------------------------------------------------------------------ */
29 /* This module comprises the routines for decimal64 format numbers. */
30 /* Conversions are supplied to and from decNumber and String. */
31 /* */
32 /* This is used when decNumber provides operations, either for all */
33 /* operations or as a proxy between decNumber and decSingle. */
34 /* */
35 /* Error handling is the same as decNumber (qv.). */
36 /* ------------------------------------------------------------------ */
37 #include <string.h> /* [for memset/memcpy] */
38 #include <stdio.h> /* [for printf] */
40 #include "dconfig.h" /* GCC definitions */
41 #define DECNUMDIGITS 16 /* make decNumbers with space for 16 */
42 #include "decNumber.h" /* base number library */
43 #include "decNumberLocal.h" /* decNumber local types, etc. */
44 #include "decimal64.h" /* our primary include */
46 /* Utility routines and tables [in decimal64.c]; externs for C++ */
47 extern const uInt COMBEXP[32], COMBMSD[32];
48 extern const uShort DPD2BIN[1024];
49 extern const uShort BIN2DPD[1000];
50 extern const uByte BIN2CHAR[4001];
52 extern void decDigitsFromDPD(decNumber *, const uInt *, Int);
53 extern void decDigitsToDPD(const decNumber *, uInt *, Int);
55 #if DECTRACE || DECCHECK
56 void decimal64Show(const decimal64 *); /* for debug */
57 extern void decNumberShow(const decNumber *); /* .. */
58 #endif
60 /* Useful macro */
61 /* Clear a structure (e.g., a decNumber) */
62 #define DEC_clear(d) memset(d, 0, sizeof(*d))
64 /* define and include the tables to use for conversions */
65 #define DEC_BIN2CHAR 1
66 #define DEC_DPD2BIN 1
67 #define DEC_BIN2DPD 1 /* used for all sizes */
68 #include "decDPD.h" /* lookup tables */
70 /* ------------------------------------------------------------------ */
71 /* decimal64FromNumber -- convert decNumber to decimal64 */
72 /* */
73 /* ds is the target decimal64 */
74 /* dn is the source number (assumed valid) */
75 /* set is the context, used only for reporting errors */
76 /* */
77 /* The set argument is used only for status reporting and for the */
78 /* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */
79 /* digits or an overflow is detected). If the exponent is out of the */
80 /* valid range then Overflow or Underflow will be raised. */
81 /* After Underflow a subnormal result is possible. */
82 /* */
83 /* DEC_Clamped is set if the number has to be 'folded down' to fit, */
84 /* by reducing its exponent and multiplying the coefficient by a */
85 /* power of ten, or if the exponent on a zero had to be clamped. */
86 /* ------------------------------------------------------------------ */
87 decimal64 * decimal64FromNumber(decimal64 *d64, const decNumber *dn,
88 decContext *set) {
89 uInt status=0; /* status accumulator */
90 Int ae; /* adjusted exponent */
91 decNumber dw; /* work */
92 decContext dc; /* .. */
93 uInt comb, exp; /* .. */
94 uInt uiwork; /* for macros */
95 uInt targar[2]={0, 0}; /* target 64-bit */
96 #define targhi targar[1] /* name the word with the sign */
97 #define targlo targar[0] /* and the other */
99 /* If the number has too many digits, or the exponent could be */
100 /* out of range then reduce the number under the appropriate */
101 /* constraints. This could push the number to Infinity or zero, */
102 /* so this check and rounding must be done before generating the */
103 /* decimal64] */
104 ae=dn->exponent+dn->digits-1; /* [0 if special] */
105 if (dn->digits>DECIMAL64_Pmax /* too many digits */
106 || ae>DECIMAL64_Emax /* likely overflow */
107 || ae<DECIMAL64_Emin) { /* likely underflow */
108 decContextDefault(&dc, DEC_INIT_DECIMAL64); /* [no traps] */
109 dc.round=set->round; /* use supplied rounding */
110 decNumberPlus(&dw, dn, &dc); /* (round and check) */
111 /* [this changes -0 to 0, so enforce the sign...] */
112 dw.bits|=dn->bits&DECNEG;
113 status=dc.status; /* save status */
114 dn=&dw; /* use the work number */
115 } /* maybe out of range */
117 if (dn->bits&DECSPECIAL) { /* a special value */
118 if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24;
119 else { /* sNaN or qNaN */
120 if ((*dn->lsu!=0 || dn->digits>1) /* non-zero coefficient */
121 && (dn->digits<DECIMAL64_Pmax)) { /* coefficient fits */
122 decDigitsToDPD(dn, targar, 0);
124 if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24;
125 else targhi|=DECIMAL_sNaN<<24;
126 } /* a NaN */
127 } /* special */
129 else { /* is finite */
130 if (decNumberIsZero(dn)) { /* is a zero */
131 /* set and clamp exponent */
132 if (dn->exponent<-DECIMAL64_Bias) {
133 exp=0; /* low clamp */
134 status|=DEC_Clamped;
136 else {
137 exp=dn->exponent+DECIMAL64_Bias; /* bias exponent */
138 if (exp>DECIMAL64_Ehigh) { /* top clamp */
139 exp=DECIMAL64_Ehigh;
140 status|=DEC_Clamped;
143 comb=(exp>>5) & 0x18; /* msd=0, exp top 2 bits .. */
145 else { /* non-zero finite number */
146 uInt msd; /* work */
147 Int pad=0; /* coefficient pad digits */
149 /* the dn is known to fit, but it may need to be padded */
150 exp=(uInt)(dn->exponent+DECIMAL64_Bias); /* bias exponent */
151 if (exp>DECIMAL64_Ehigh) { /* fold-down case */
152 pad=exp-DECIMAL64_Ehigh;
153 exp=DECIMAL64_Ehigh; /* [to maximum] */
154 status|=DEC_Clamped;
157 /* fastpath common case */
158 if (DECDPUN==3 && pad==0) {
159 uInt dpd[6]={0,0,0,0,0,0};
160 uInt i;
161 Int d=dn->digits;
162 for (i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]];
163 targlo =dpd[0];
164 targlo|=dpd[1]<<10;
165 targlo|=dpd[2]<<20;
166 if (dn->digits>6) {
167 targlo|=dpd[3]<<30;
168 targhi =dpd[3]>>2;
169 targhi|=dpd[4]<<8;
171 msd=dpd[5]; /* [did not really need conversion] */
173 else { /* general case */
174 decDigitsToDPD(dn, targar, pad);
175 /* save and clear the top digit */
176 msd=targhi>>18;
177 targhi&=0x0003ffff;
180 /* create the combination field */
181 if (msd>=8) comb=0x18 | ((exp>>7) & 0x06) | (msd & 0x01);
182 else comb=((exp>>5) & 0x18) | msd;
184 targhi|=comb<<26; /* add combination field .. */
185 targhi|=(exp&0xff)<<18; /* .. and exponent continuation */
186 } /* finite */
188 if (dn->bits&DECNEG) targhi|=0x80000000; /* add sign bit */
190 /* now write to storage; this is now always endian */
191 if (DECLITEND) {
192 /* lo int then hi */
193 UBFROMUI(d64->bytes, targar[0]);
194 UBFROMUI(d64->bytes+4, targar[1]);
196 else {
197 /* hi int then lo */
198 UBFROMUI(d64->bytes, targar[1]);
199 UBFROMUI(d64->bytes+4, targar[0]);
202 if (status!=0) decContextSetStatus(set, status); /* pass on status */
203 /* decimal64Show(d64); */
204 return d64;
205 } /* decimal64FromNumber */
207 /* ------------------------------------------------------------------ */
208 /* decimal64ToNumber -- convert decimal64 to decNumber */
209 /* d64 is the source decimal64 */
210 /* dn is the target number, with appropriate space */
211 /* No error is possible. */
212 /* ------------------------------------------------------------------ */
213 decNumber * decimal64ToNumber(const decimal64 *d64, decNumber *dn) {
214 uInt msd; /* coefficient MSD */
215 uInt exp; /* exponent top two bits */
216 uInt comb; /* combination field */
217 Int need; /* work */
218 uInt uiwork; /* for macros */
219 uInt sourar[2]; /* source 64-bit */
220 #define sourhi sourar[1] /* name the word with the sign */
221 #define sourlo sourar[0] /* and the lower word */
223 /* load source from storage; this is endian */
224 if (DECLITEND) {
225 sourlo=UBTOUI(d64->bytes ); /* directly load the low int */
226 sourhi=UBTOUI(d64->bytes+4); /* then the high int */
228 else {
229 sourhi=UBTOUI(d64->bytes ); /* directly load the high int */
230 sourlo=UBTOUI(d64->bytes+4); /* then the low int */
233 comb=(sourhi>>26)&0x1f; /* combination field */
235 decNumberZero(dn); /* clean number */
236 if (sourhi&0x80000000) dn->bits=DECNEG; /* set sign if negative */
238 msd=COMBMSD[comb]; /* decode the combination field */
239 exp=COMBEXP[comb]; /* .. */
241 if (exp==3) { /* is a special */
242 if (msd==0) {
243 dn->bits|=DECINF;
244 return dn; /* no coefficient needed */
246 else if (sourhi&0x02000000) dn->bits|=DECSNAN;
247 else dn->bits|=DECNAN;
248 msd=0; /* no top digit */
250 else { /* is a finite number */
251 dn->exponent=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; /* unbiased */
254 /* get the coefficient */
255 sourhi&=0x0003ffff; /* clean coefficient continuation */
256 if (msd) { /* non-zero msd */
257 sourhi|=msd<<18; /* prefix to coefficient */
258 need=6; /* process 6 declets */
260 else { /* msd=0 */
261 if (!sourhi) { /* top word 0 */
262 if (!sourlo) return dn; /* easy: coefficient is 0 */
263 need=3; /* process at least 3 declets */
264 if (sourlo&0xc0000000) need++; /* process 4 declets */
265 /* [could reduce some more, here] */
267 else { /* some bits in top word, msd=0 */
268 need=4; /* process at least 4 declets */
269 if (sourhi&0x0003ff00) need++; /* top declet!=0, process 5 */
271 } /*msd=0 */
273 decDigitsFromDPD(dn, sourar, need); /* process declets */
274 return dn;
275 } /* decimal64ToNumber */
278 /* ------------------------------------------------------------------ */
279 /* to-scientific-string -- conversion to numeric string */
280 /* to-engineering-string -- conversion to numeric string */
281 /* */
282 /* decimal64ToString(d64, string); */
283 /* decimal64ToEngString(d64, string); */
284 /* */
285 /* d64 is the decimal64 format number to convert */
286 /* string is the string where the result will be laid out */
287 /* */
288 /* string must be at least 24 characters */
289 /* */
290 /* No error is possible, and no status can be set. */
291 /* ------------------------------------------------------------------ */
292 char * decimal64ToEngString(const decimal64 *d64, char *string){
293 decNumber dn; /* work */
294 decimal64ToNumber(d64, &dn);
295 decNumberToEngString(&dn, string);
296 return string;
297 } /* decimal64ToEngString */
299 char * decimal64ToString(const decimal64 *d64, char *string){
300 uInt msd; /* coefficient MSD */
301 Int exp; /* exponent top two bits or full */
302 uInt comb; /* combination field */
303 char *cstart; /* coefficient start */
304 char *c; /* output pointer in string */
305 const uByte *u; /* work */
306 char *s, *t; /* .. (source, target) */
307 Int dpd; /* .. */
308 Int pre, e; /* .. */
309 uInt uiwork; /* for macros */
311 uInt sourar[2]; /* source 64-bit */
312 #define sourhi sourar[1] /* name the word with the sign */
313 #define sourlo sourar[0] /* and the lower word */
315 /* load source from storage; this is endian */
316 if (DECLITEND) {
317 sourlo=UBTOUI(d64->bytes ); /* directly load the low int */
318 sourhi=UBTOUI(d64->bytes+4); /* then the high int */
320 else {
321 sourhi=UBTOUI(d64->bytes ); /* directly load the high int */
322 sourlo=UBTOUI(d64->bytes+4); /* then the low int */
325 c=string; /* where result will go */
326 if (((Int)sourhi)<0) *c++='-'; /* handle sign */
328 comb=(sourhi>>26)&0x1f; /* combination field */
329 msd=COMBMSD[comb]; /* decode the combination field */
330 exp=COMBEXP[comb]; /* .. */
332 if (exp==3) {
333 if (msd==0) { /* infinity */
334 strcpy(c, "Inf");
335 strcpy(c+3, "inity");
336 return string; /* easy */
338 if (sourhi&0x02000000) *c++='s'; /* sNaN */
339 strcpy(c, "NaN"); /* complete word */
340 c+=3; /* step past */
341 if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; /* zero payload */
342 /* otherwise drop through to add integer; set correct exp */
343 exp=0; msd=0; /* setup for following code */
345 else exp=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias;
347 /* convert 16 digits of significand to characters */
348 cstart=c; /* save start of coefficient */
349 if (msd) *c++='0'+(char)msd; /* non-zero most significant digit */
351 /* Now decode the declets. After extracting each one, it is */
352 /* decoded to binary and then to a 4-char sequence by table lookup; */
353 /* the 4-chars are a 1-char length (significant digits, except 000 */
354 /* has length 0). This allows us to left-align the first declet */
355 /* with non-zero content, then remaining ones are full 3-char */
356 /* length. We use fixed-length memcpys because variable-length */
357 /* causes a subroutine call in GCC. (These are length 4 for speed */
358 /* and are safe because the array has an extra terminator byte.) */
359 #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
360 if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \
361 else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;}
363 dpd=(sourhi>>8)&0x3ff; /* declet 1 */
364 dpd2char;
365 dpd=((sourhi&0xff)<<2) | (sourlo>>30); /* declet 2 */
366 dpd2char;
367 dpd=(sourlo>>20)&0x3ff; /* declet 3 */
368 dpd2char;
369 dpd=(sourlo>>10)&0x3ff; /* declet 4 */
370 dpd2char;
371 dpd=(sourlo)&0x3ff; /* declet 5 */
372 dpd2char;
374 if (c==cstart) *c++='0'; /* all zeros -- make 0 */
376 if (exp==0) { /* integer or NaN case -- easy */
377 *c='\0'; /* terminate */
378 return string;
381 /* non-0 exponent */
382 e=0; /* assume no E */
383 pre=c-cstart+exp;
384 /* [here, pre-exp is the digits count (==1 for zero)] */
385 if (exp>0 || pre<-5) { /* need exponential form */
386 e=pre-1; /* calculate E value */
387 pre=1; /* assume one digit before '.' */
388 } /* exponential form */
390 /* modify the coefficient, adding 0s, '.', and E+nn as needed */
391 s=c-1; /* source (LSD) */
392 if (pre>0) { /* ddd.ddd (plain), perhaps with E */
393 char *dotat=cstart+pre;
394 if (dotat<c) { /* if embedded dot needed... */
395 t=c; /* target */
396 for (; s>=dotat; s--, t--) *t=*s; /* open the gap; leave t at gap */
397 *t='.'; /* insert the dot */
398 c++; /* length increased by one */
401 /* finally add the E-part, if needed; it will never be 0, and has */
402 /* a maximum length of 3 digits */
403 if (e!=0) {
404 *c++='E'; /* starts with E */
405 *c++='+'; /* assume positive */
406 if (e<0) {
407 *(c-1)='-'; /* oops, need '-' */
408 e=-e; /* uInt, please */
410 u=&BIN2CHAR[e*4]; /* -> length byte */
411 memcpy(c, u+4-*u, 4); /* copy fixed 4 characters [is safe] */
412 c+=*u; /* bump pointer appropriately */
414 *c='\0'; /* add terminator */
415 /*printf("res %s\n", string); */
416 return string;
417 } /* pre>0 */
419 /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
420 t=c+1-pre;
421 *(t+1)='\0'; /* can add terminator now */
422 for (; s>=cstart; s--, t--) *t=*s; /* shift whole coefficient right */
423 c=cstart;
424 *c++='0'; /* always starts with 0. */
425 *c++='.';
426 for (; pre<0; pre++) *c++='0'; /* add any 0's after '.' */
427 /*printf("res %s\n", string); */
428 return string;
429 } /* decimal64ToString */
431 /* ------------------------------------------------------------------ */
432 /* to-number -- conversion from numeric string */
433 /* */
434 /* decimal64FromString(result, string, set); */
435 /* */
436 /* result is the decimal64 format number which gets the result of */
437 /* the conversion */
438 /* *string is the character string which should contain a valid */
439 /* number (which may be a special value) */
440 /* set is the context */
441 /* */
442 /* The context is supplied to this routine is used for error handling */
443 /* (setting of status and traps) and for the rounding mode, only. */
444 /* If an error occurs, the result will be a valid decimal64 NaN. */
445 /* ------------------------------------------------------------------ */
446 decimal64 * decimal64FromString(decimal64 *result, const char *string,
447 decContext *set) {
448 decContext dc; /* work */
449 decNumber dn; /* .. */
451 decContextDefault(&dc, DEC_INIT_DECIMAL64); /* no traps, please */
452 dc.round=set->round; /* use supplied rounding */
454 decNumberFromString(&dn, string, &dc); /* will round if needed */
456 decimal64FromNumber(result, &dn, &dc);
457 if (dc.status!=0) { /* something happened */
458 decContextSetStatus(set, dc.status); /* .. pass it on */
460 return result;
461 } /* decimal64FromString */
463 /* ------------------------------------------------------------------ */
464 /* decimal64IsCanonical -- test whether encoding is canonical */
465 /* d64 is the source decimal64 */
466 /* returns 1 if the encoding of d64 is canonical, 0 otherwise */
467 /* No error is possible. */
468 /* ------------------------------------------------------------------ */
469 uInt decimal64IsCanonical(const decimal64 *d64) {
470 decNumber dn; /* work */
471 decimal64 canon; /* .. */
472 decContext dc; /* .. */
473 decContextDefault(&dc, DEC_INIT_DECIMAL64);
474 decimal64ToNumber(d64, &dn);
475 decimal64FromNumber(&canon, &dn, &dc);/* canon will now be canonical */
476 return memcmp(d64, &canon, DECIMAL64_Bytes)==0;
477 } /* decimal64IsCanonical */
479 /* ------------------------------------------------------------------ */
480 /* decimal64Canonical -- copy an encoding, ensuring it is canonical */
481 /* d64 is the source decimal64 */
482 /* result is the target (may be the same decimal64) */
483 /* returns result */
484 /* No error is possible. */
485 /* ------------------------------------------------------------------ */
486 decimal64 * decimal64Canonical(decimal64 *result, const decimal64 *d64) {
487 decNumber dn; /* work */
488 decContext dc; /* .. */
489 decContextDefault(&dc, DEC_INIT_DECIMAL64);
490 decimal64ToNumber(d64, &dn);
491 decimal64FromNumber(result, &dn, &dc);/* result will now be canonical */
492 return result;
493 } /* decimal64Canonical */
495 #if DECTRACE || DECCHECK
496 /* Macros for accessing decimal64 fields. These assume the
497 argument is a reference (pointer) to the decimal64 structure,
498 and the decimal64 is in network byte order (big-endian) */
499 /* Get sign */
500 #define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7)
502 /* Get combination field */
503 #define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2)
505 /* Get exponent continuation [does not remove bias] */
506 #define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \
507 | ((unsigned)(d)->bytes[1]>>2))
509 /* Set sign [this assumes sign previously 0] */
510 #define decimal64SetSign(d, b) { \
511 (d)->bytes[0]|=((unsigned)(b)<<7);}
513 /* Set exponent continuation [does not apply bias] */
514 /* This assumes range has been checked and exponent previously 0; */
515 /* type of exponent must be unsigned */
516 #define decimal64SetExpCon(d, e) { \
517 (d)->bytes[0]|=(uByte)((e)>>6); \
518 (d)->bytes[1]|=(uByte)(((e)&0x3F)<<2);}
520 /* ------------------------------------------------------------------ */
521 /* decimal64Show -- display a decimal64 in hexadecimal [debug aid] */
522 /* d64 -- the number to show */
523 /* ------------------------------------------------------------------ */
524 /* Also shows sign/cob/expconfields extracted */
525 void decimal64Show(const decimal64 *d64) {
526 char buf[DECIMAL64_Bytes*2+1];
527 Int i, j=0;
529 if (DECLITEND) {
530 for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
531 sprintf(&buf[j], "%02x", d64->bytes[7-i]);
533 printf(" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf,
534 d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f,
535 ((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2));
537 else { /* big-endian */
538 for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
539 sprintf(&buf[j], "%02x", d64->bytes[i]);
541 printf(" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf,
542 decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64));
544 } /* decimal64Show */
545 #endif
547 /* ================================================================== */
548 /* Shared utility routines and tables */
549 /* ================================================================== */
550 /* define and include the conversion tables to use for shared code */
551 #if DECDPUN==3
552 #define DEC_DPD2BIN 1
553 #else
554 #define DEC_DPD2BCD 1
555 #endif
556 #include "decDPD.h" /* lookup tables */
558 /* The maximum number of decNumberUnits needed for a working copy of */
559 /* the units array is the ceiling of digits/DECDPUN, where digits is */
560 /* the maximum number of digits in any of the formats for which this */
561 /* is used. decimal128.h must not be included in this module, so, as */
562 /* a very special case, that number is defined as a literal here. */
563 #define DECMAX754 34
564 #define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN)
566 /* ------------------------------------------------------------------ */
567 /* Combination field lookup tables (uInts to save measurable work) */
568 /* */
569 /* COMBEXP - 2-bit most-significant-bits of exponent */
570 /* [11 if an Infinity or NaN] */
571 /* COMBMSD - 4-bit most-significant-digit */
572 /* [0=Infinity, 1=NaN if COMBEXP=11] */
573 /* */
574 /* Both are indexed by the 5-bit combination field (0-31) */
575 /* ------------------------------------------------------------------ */
576 const uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0,
577 1, 1, 1, 1, 1, 1, 1, 1,
578 2, 2, 2, 2, 2, 2, 2, 2,
579 0, 0, 1, 1, 2, 2, 3, 3};
580 const uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7,
581 0, 1, 2, 3, 4, 5, 6, 7,
582 0, 1, 2, 3, 4, 5, 6, 7,
583 8, 9, 8, 9, 8, 9, 0, 1};
585 /* ------------------------------------------------------------------ */
586 /* decDigitsToDPD -- pack coefficient into DPD form */
587 /* */
588 /* dn is the source number (assumed valid, max DECMAX754 digits) */
589 /* targ is 1, 2, or 4-element uInt array, which the caller must */
590 /* have cleared to zeros */
591 /* shift is the number of 0 digits to add on the right (normally 0) */
592 /* */
593 /* The coefficient must be known small enough to fit. The full */
594 /* coefficient is copied, including the leading 'odd' digit. This */
595 /* digit is retrieved and packed into the combination field by the */
596 /* caller. */
597 /* */
598 /* The target uInts are altered only as necessary to receive the */
599 /* digits of the decNumber. When more than one uInt is needed, they */
600 /* are filled from left to right (that is, the uInt at offset 0 will */
601 /* end up with the least-significant digits). */
602 /* */
603 /* shift is used for 'fold-down' padding. */
604 /* */
605 /* No error is possible. */
606 /* ------------------------------------------------------------------ */
607 #if DECDPUN<=4
608 /* Constant multipliers for divide-by-power-of five using reciprocal */
609 /* multiply, after removing powers of 2 by shifting, and final shift */
610 /* of 17 [we only need up to **4] */
611 static const uInt multies[]={131073, 26215, 5243, 1049, 210};
612 /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
613 #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
614 #endif
615 void decDigitsToDPD(const decNumber *dn, uInt *targ, Int shift) {
616 Int cut; /* work */
617 Int n; /* output bunch counter */
618 Int digits=dn->digits; /* digit countdown */
619 uInt dpd; /* densely packed decimal value */
620 uInt bin; /* binary value 0-999 */
621 uInt *uout=targ; /* -> current output uInt */
622 uInt uoff=0; /* -> current output offset [from right] */
623 const Unit *inu=dn->lsu; /* -> current input unit */
624 Unit uar[DECMAXUNITS]; /* working copy of units, iff shifted */
625 #if DECDPUN!=3 /* not fast path */
626 Unit in; /* current unit */
627 #endif
629 if (shift!=0) { /* shift towards most significant required */
630 /* shift the units array to the left by pad digits and copy */
631 /* [this code is a special case of decShiftToMost, which could */
632 /* be used instead if exposed and the array were copied first] */
633 const Unit *source; /* .. */
634 Unit *target, *first; /* .. */
635 uInt next=0; /* work */
637 source=dn->lsu+D2U(digits)-1; /* where msu comes from */
638 target=uar+D2U(digits)-1+D2U(shift);/* where upper part of first cut goes */
639 cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
640 if (cut==0) { /* unit-boundary case */
641 for (; source>=dn->lsu; source--, target--) *target=*source;
643 else {
644 first=uar+D2U(digits+shift)-1; /* where msu will end up */
645 for (; source>=dn->lsu; source--, target--) {
646 /* split the source Unit and accumulate remainder for next */
647 #if DECDPUN<=4
648 uInt quot=QUOT10(*source, cut);
649 uInt rem=*source-quot*DECPOWERS[cut];
650 next+=quot;
651 #else
652 uInt rem=*source%DECPOWERS[cut];
653 next+=*source/DECPOWERS[cut];
654 #endif
655 if (target<=first) *target=(Unit)next; /* write to target iff valid */
656 next=rem*DECPOWERS[DECDPUN-cut]; /* save remainder for next Unit */
658 } /* shift-move */
659 /* propagate remainder to one below and clear the rest */
660 for (; target>=uar; target--) {
661 *target=(Unit)next;
662 next=0;
664 digits+=shift; /* add count (shift) of zeros added */
665 inu=uar; /* use units in working array */
668 /* now densely pack the coefficient into DPD declets */
670 #if DECDPUN!=3 /* not fast path */
671 in=*inu; /* current unit */
672 cut=0; /* at lowest digit */
673 bin=0; /* [keep compiler quiet] */
674 #endif
676 for(n=0; digits>0; n++) { /* each output bunch */
677 #if DECDPUN==3 /* fast path, 3-at-a-time */
678 bin=*inu; /* 3 digits ready for convert */
679 digits-=3; /* [may go negative] */
680 inu++; /* may need another */
682 #else /* must collect digit-by-digit */
683 Unit dig; /* current digit */
684 Int j; /* digit-in-declet count */
685 for (j=0; j<3; j++) {
686 #if DECDPUN<=4
687 Unit temp=(Unit)((uInt)(in*6554)>>16);
688 dig=(Unit)(in-X10(temp));
689 in=temp;
690 #else
691 dig=in%10;
692 in=in/10;
693 #endif
694 if (j==0) bin=dig;
695 else if (j==1) bin+=X10(dig);
696 else /* j==2 */ bin+=X100(dig);
697 digits--;
698 if (digits==0) break; /* [also protects *inu below] */
699 cut++;
700 if (cut==DECDPUN) {inu++; in=*inu; cut=0;}
702 #endif
703 /* here there are 3 digits in bin, or have used all input digits */
705 dpd=BIN2DPD[bin];
707 /* write declet to uInt array */
708 *uout|=dpd<<uoff;
709 uoff+=10;
710 if (uoff<32) continue; /* no uInt boundary cross */
711 uout++;
712 uoff-=32;
713 *uout|=dpd>>(10-uoff); /* collect top bits */
714 } /* n declets */
715 return;
716 } /* decDigitsToDPD */
718 /* ------------------------------------------------------------------ */
719 /* decDigitsFromDPD -- unpack a format's coefficient */
720 /* */
721 /* dn is the target number, with 7, 16, or 34-digit space. */
722 /* sour is a 1, 2, or 4-element uInt array containing only declets */
723 /* declets is the number of (right-aligned) declets in sour to */
724 /* be processed. This may be 1 more than the obvious number in */
725 /* a format, as any top digit is prefixed to the coefficient */
726 /* continuation field. It also may be as small as 1, as the */
727 /* caller may pre-process leading zero declets. */
728 /* */
729 /* When doing the 'extra declet' case care is taken to avoid writing */
730 /* extra digits when there are leading zeros, as these could overflow */
731 /* the units array when DECDPUN is not 3. */
732 /* */
733 /* The target uInts are used only as necessary to process declets */
734 /* declets into the decNumber. When more than one uInt is needed, */
735 /* they are used from left to right (that is, the uInt at offset 0 */
736 /* provides the least-significant digits). */
737 /* */
738 /* dn->digits is set, but not the sign or exponent. */
739 /* No error is possible [the redundant 888 codes are allowed]. */
740 /* ------------------------------------------------------------------ */
741 void decDigitsFromDPD(decNumber *dn, const uInt *sour, Int declets) {
743 uInt dpd; /* collector for 10 bits */
744 Int n; /* counter */
745 Unit *uout=dn->lsu; /* -> current output unit */
746 Unit *last=uout; /* will be unit containing msd */
747 const uInt *uin=sour; /* -> current input uInt */
748 uInt uoff=0; /* -> current input offset [from right] */
750 #if DECDPUN!=3
751 uInt bcd; /* BCD result */
752 uInt nibble; /* work */
753 Unit out=0; /* accumulator */
754 Int cut=0; /* power of ten in current unit */
755 #endif
756 #if DECDPUN>4
757 uInt const *pow; /* work */
758 #endif
760 /* Expand the densely-packed integer, right to left */
761 for (n=declets-1; n>=0; n--) { /* count down declets of 10 bits */
762 dpd=*uin>>uoff;
763 uoff+=10;
764 if (uoff>32) { /* crossed uInt boundary */
765 uin++;
766 uoff-=32;
767 dpd|=*uin<<(10-uoff); /* get waiting bits */
769 dpd&=0x3ff; /* clear uninteresting bits */
771 #if DECDPUN==3
772 if (dpd==0) *uout=0;
773 else {
774 *uout=DPD2BIN[dpd]; /* convert 10 bits to binary 0-999 */
775 last=uout; /* record most significant unit */
777 uout++;
778 } /* n */
780 #else /* DECDPUN!=3 */
781 if (dpd==0) { /* fastpath [e.g., leading zeros] */
782 /* write out three 0 digits (nibbles); out may have digit(s) */
783 cut++;
784 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
785 if (n==0) break; /* [as below, works even if MSD=0] */
786 cut++;
787 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
788 cut++;
789 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
790 continue;
793 bcd=DPD2BCD[dpd]; /* convert 10 bits to 12 bits BCD */
795 /* now accumulate the 3 BCD nibbles into units */
796 nibble=bcd & 0x00f;
797 if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
798 cut++;
799 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
800 bcd>>=4;
802 /* if this is the last declet and the remaining nibbles in bcd */
803 /* are 00 then process no more nibbles, because this could be */
804 /* the 'odd' MSD declet and writing any more Units would then */
805 /* overflow the unit array */
806 if (n==0 && !bcd) break;
808 nibble=bcd & 0x00f;
809 if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
810 cut++;
811 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
812 bcd>>=4;
814 nibble=bcd & 0x00f;
815 if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
816 cut++;
817 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
818 } /* n */
819 if (cut!=0) { /* some more left over */
820 *uout=out; /* write out final unit */
821 if (out) last=uout; /* and note if non-zero */
823 #endif
825 /* here, last points to the most significant unit with digits; */
826 /* inspect it to get the final digits count -- this is essentially */
827 /* the same code as decGetDigits in decNumber.c */
828 dn->digits=(last-dn->lsu)*DECDPUN+1; /* floor of digits, plus */
829 /* must be at least 1 digit */
830 #if DECDPUN>1
831 if (*last<10) return; /* common odd digit or 0 */
832 dn->digits++; /* must be 2 at least */
833 #if DECDPUN>2
834 if (*last<100) return; /* 10-99 */
835 dn->digits++; /* must be 3 at least */
836 #if DECDPUN>3
837 if (*last<1000) return; /* 100-999 */
838 dn->digits++; /* must be 4 at least */
839 #if DECDPUN>4
840 for (pow=&DECPOWERS[4]; *last>=*pow; pow++) dn->digits++;
841 #endif
842 #endif
843 #endif
844 #endif
845 return;
846 } /*decDigitsFromDPD */