1 /* Vector API for GNU compiler.
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin (dan@cgsoftware.com).
4 Re-implemented in C++ by Martin Liska <mliska@suse.cz>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Fibonacci heaps are somewhat complex, but, there's an article in
23 DDJ that explains them pretty well:
25 http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms
27 Introduction to algorithms by Corman and Rivest also goes over them.
29 The original paper that introduced them is "Fibonacci heaps and their
30 uses in improved network optimization algorithms" by Tarjan and
31 Fredman (JACM 34(3), July 1987).
33 Amortized and real worst case time for operations:
35 ExtractMin: O(lg n) amortized. O(n) worst case.
36 DecreaseKey: O(1) amortized. O(lg n) worst case.
37 Insert: O(1) amortized.
38 Union: O(1) amortized. */
40 #ifndef GCC_FIBONACCI_HEAP_H
41 #define GCC_FIBONACCI_HEAP_H
43 /* Forward definition. */
45 template<class K
, class V
>
48 /* Fibonacci heap node class. */
50 template<class K
, class V
>
53 typedef fibonacci_node
<K
,V
> fibonacci_node_t
;
54 friend class fibonacci_heap
<K
,V
>;
57 /* Default constructor. */
58 fibonacci_node (): m_parent (NULL
), m_child (NULL
), m_left (this),
59 m_right (this), m_degree (0), m_mark (0)
63 /* Constructor for a node with given KEY. */
64 fibonacci_node (K key
): m_parent (NULL
), m_child (NULL
), m_left (this),
65 m_right (this), m_key (key
),
66 m_degree (0), m_mark (0)
70 /* Compare fibonacci node with OTHER node. */
71 int compare (fibonacci_node_t
*other
)
73 if (m_key
< other
->m_key
)
75 if (m_key
> other
->m_key
)
80 /* Compare the node with a given KEY. */
81 int compare_data (K key
)
83 return fibonacci_node_t (key
).compare (this);
86 /* Remove fibonacci heap node. */
87 fibonacci_node_t
*remove ();
89 /* Link the node with PARENT. */
90 void link (fibonacci_node_t
*parent
);
92 /* Return key associated with the node. */
98 /* Return data associated with the node. */
105 /* Put node B after this node. */
106 void insert_after (fibonacci_node_t
*b
);
108 /* Insert fibonacci node B after this node. */
109 void insert_before (fibonacci_node_t
*b
)
111 m_left
->insert_after (b
);
115 fibonacci_node
*m_parent
;
117 fibonacci_node
*m_child
;
119 fibonacci_node
*m_left
;
121 fibonacci_node
*m_right
;
122 /* Key associated with node. */
124 /* Data associated with node. */
127 #if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4)
128 /* Degree of the node. */
129 __extension__
unsigned long int m_degree
: 31;
130 /* Mark of the node. */
131 __extension__
unsigned long int m_mark
: 1;
133 /* Degree of the node. */
134 unsigned int m_degree
: 31;
135 /* Mark of the node. */
136 unsigned int m_mark
: 1;
140 /* Fibonacci heap class. */
141 template<class K
, class V
>
144 typedef fibonacci_node
<K
,V
> fibonacci_node_t
;
145 friend class fibonacci_node
<K
,V
>;
148 /* Default constructor. */
149 fibonacci_heap (K global_min_key
): m_nodes (0), m_min (NULL
), m_root (NULL
),
150 m_global_min_key (global_min_key
)
157 while (m_min
!= NULL
)
158 delete (extract_minimum_node ());
161 /* Insert new node given by KEY and DATA associated with the key. */
162 fibonacci_node_t
*insert (K key
, V
*data
);
164 /* Return true if no entry is present. */
170 /* Return the number of nodes. */
176 /* Return minimal key presented in the heap. */
185 /* For given NODE, set new KEY value. */
186 K
replace_key (fibonacci_node_t
*node
, K key
)
188 K okey
= node
->m_key
;
190 replace_key_data (node
, key
, node
->m_data
);
194 /* For given NODE, decrease value to new KEY. */
195 K
decrease_key (fibonacci_node_t
*node
, K key
)
197 gcc_assert (key
<= node
->m_key
);
198 return replace_key (node
, key
);
201 /* For given NODE, set new KEY and DATA value. */
202 V
*replace_key_data (fibonacci_node_t
*node
, K key
, V
*data
);
204 /* Extract minimum node in the heap. If RELEASE is specified,
205 memory is released. */
206 V
*extract_min (bool release
= true);
208 /* Return value associated with minimum node in the heap. */
214 return m_min
->m_data
;
217 /* Replace data associated with NODE and replace it with DATA. */
218 V
*replace_data (fibonacci_node_t
*node
, V
*data
)
220 return replace_key_data (node
, node
->m_key
, data
);
223 /* Delete NODE in the heap. */
224 V
*delete_node (fibonacci_node_t
*node
, bool release
= true);
226 /* Union the heap with HEAPB. */
227 fibonacci_heap
*union_with (fibonacci_heap
*heapb
);
230 /* Insert new NODE given by KEY and DATA associated with the key. */
231 fibonacci_node_t
*insert (fibonacci_node_t
*node
, K key
, V
*data
);
233 /* Insert it into the root list. */
234 void insert_root (fibonacci_node_t
*node
);
236 /* Remove NODE from PARENT's child list. */
237 void cut (fibonacci_node_t
*node
, fibonacci_node_t
*parent
);
239 /* Process cut of node Y and do it recursivelly. */
240 void cascading_cut (fibonacci_node_t
*y
);
242 /* Extract minimum node from the heap. */
243 fibonacci_node_t
* extract_minimum_node ();
245 /* Remove root NODE from the heap. */
246 void remove_root (fibonacci_node_t
*node
);
248 /* Consolidate heap. */
251 /* Number of nodes. */
253 /* Minimum node of the heap. */
254 fibonacci_node_t
*m_min
;
255 /* Root node of the heap. */
256 fibonacci_node_t
*m_root
;
257 /* Global minimum given in the heap construction. */
261 /* Remove fibonacci heap node. */
263 template<class K
, class V
>
264 fibonacci_node
<K
,V
> *
265 fibonacci_node
<K
,V
>::remove ()
267 fibonacci_node
<K
,V
> *ret
;
274 if (m_parent
!= NULL
&& m_parent
->m_child
== this)
275 m_parent
->m_child
= ret
;
277 m_right
->m_left
= m_left
;
278 m_left
->m_right
= m_right
;
287 /* Link the node with PARENT. */
289 template<class K
, class V
>
291 fibonacci_node
<K
,V
>::link (fibonacci_node
<K
,V
> *parent
)
293 if (parent
->m_child
== NULL
)
294 parent
->m_child
= this;
296 parent
->m_child
->insert_before (this);
302 /* Put node B after this node. */
304 template<class K
, class V
>
306 fibonacci_node
<K
,V
>::insert_after (fibonacci_node
<K
,V
> *b
)
308 fibonacci_node
<K
,V
> *a
= this;
319 b
->m_right
= a
->m_right
;
320 a
->m_right
->m_left
= b
;
326 /* Insert new node given by KEY and DATA associated with the key. */
328 template<class K
, class V
>
330 fibonacci_heap
<K
,V
>::insert (K key
, V
*data
)
332 /* Create the new node. */
333 fibonacci_node
<K
,V
> *node
= new fibonacci_node_t ();
335 return insert (node
, key
, data
);
338 /* Insert new NODE given by KEY and DATA associated with the key. */
340 template<class K
, class V
>
342 fibonacci_heap
<K
,V
>::insert (fibonacci_node_t
*node
, K key
, V
*data
)
344 /* Set the node's data. */
348 /* Insert it into the root list. */
351 /* If their was no minimum, or this key is less than the min,
353 if (m_min
== NULL
|| node
->m_key
< m_min
->m_key
)
361 /* For given NODE, set new KEY and DATA value. */
362 template<class K
, class V
>
364 fibonacci_heap
<K
,V
>::replace_key_data (fibonacci_node
<K
,V
> *node
, K key
,
368 fibonacci_node
<K
,V
> *y
;
369 V
*odata
= node
->m_data
;
371 /* If we wanted to, we do a real increase by redeleting and
373 if (node
->compare_data (key
) > 0)
375 delete_node (node
, false);
377 node
= new (node
) fibonacci_node_t ();
378 insert (node
, key
, data
);
388 /* Short-circuit if the key is the same, as we then don't have to
389 do anything. Except if we're trying to force the new node to
390 be the new minimum for delete. */
391 if (okey
== key
&& okey
!= m_global_min_key
)
394 /* These two compares are specifically <= 0 to make sure that in the case
395 of equality, a node we replaced the data on, becomes the new min. This
396 is needed so that delete's call to extractmin gets the right node. */
397 if (y
!= NULL
&& node
->compare (y
) <= 0)
403 if (node
->compare (m_min
) <= 0)
409 /* Extract minimum node in the heap. */
410 template<class K
, class V
>
412 fibonacci_heap
<K
,V
>::extract_min (bool release
)
414 fibonacci_node
<K
,V
> *z
;
417 /* If we don't have a min set, it means we have no nodes. */
420 /* Otherwise, extract the min node, free the node, and return the
422 z
= extract_minimum_node ();
432 /* Delete NODE in the heap, if RELEASE is specified memory is released. */
434 template<class K
, class V
>
436 fibonacci_heap
<K
,V
>::delete_node (fibonacci_node
<K
,V
> *node
, bool release
)
438 V
*ret
= node
->m_data
;
440 /* To perform delete, we just make it the min key, and extract. */
441 replace_key (node
, m_global_min_key
);
444 fprintf (stderr
, "Can't force minimum on fibheap.\n");
447 extract_min (release
);
452 /* Union the heap with HEAPB. */
454 template<class K
, class V
>
456 fibonacci_heap
<K
,V
>::union_with (fibonacci_heap
<K
,V
> *heapb
)
458 fibonacci_heap
<K
,V
> *heapa
= this;
460 fibonacci_node
<K
,V
> *a_root
, *b_root
, *temp
;
462 /* If one of the heaps is empty, the union is just the other heap. */
463 if ((a_root
= heapa
->m_root
) == NULL
)
468 if ((b_root
= heapb
->m_root
) == NULL
)
474 /* Merge them to the next nodes on the opposite chain. */
475 a_root
->m_left
->m_right
= b_root
;
476 b_root
->m_left
->m_right
= a_root
;
477 temp
= a_root
->m_left
;
478 a_root
->m_left
= b_root
->m_left
;
479 b_root
->m_left
= temp
;
480 heapa
->m_nodes
+= heapb
->m_nodes
;
482 /* And set the new minimum, if it's changed. */
483 if (heapb
->min
->compare (heapa
->min
) < 0)
484 heapa
->m_min
= heapb
->m_min
;
490 /* Insert it into the root list. */
492 template<class K
, class V
>
494 fibonacci_heap
<K
,V
>::insert_root (fibonacci_node_t
*node
)
496 /* If the heap is currently empty, the new node becomes the singleton
497 circular root list. */
502 node
->m_right
= node
;
506 /* Otherwise, insert it in the circular root list between the root
507 and it's right node. */
508 m_root
->insert_after (node
);
511 /* Remove NODE from PARENT's child list. */
513 template<class K
, class V
>
515 fibonacci_heap
<K
,V
>::cut (fibonacci_node
<K
,V
> *node
,
516 fibonacci_node
<K
,V
> *parent
)
521 node
->m_parent
= NULL
;
525 /* Process cut of node Y and do it recursivelly. */
527 template<class K
, class V
>
529 fibonacci_heap
<K
,V
>::cascading_cut (fibonacci_node
<K
,V
> *y
)
531 fibonacci_node
<K
,V
> *z
;
533 while ((z
= y
->m_parent
) != NULL
)
548 /* Extract minimum node from the heap. */
549 template<class K
, class V
>
551 fibonacci_heap
<K
,V
>::extract_minimum_node ()
553 fibonacci_node
<K
,V
> *ret
= m_min
;
554 fibonacci_node
<K
,V
> *x
, *y
, *orig
;
556 /* Attach the child list of the minimum node to the root list of the heap.
557 If there is no child list, we don't do squat. */
558 for (x
= ret
->m_child
, orig
= NULL
; x
!= orig
&& x
!= NULL
; x
= y
)
567 /* Remove the old root. */
571 /* If we are left with no nodes, then the min is NULL. */
576 /* Otherwise, consolidate to find new minimum, as well as do the reorg
577 work that needs to be done. */
578 m_min
= ret
->m_right
;
585 /* Remove root NODE from the heap. */
587 template<class K
, class V
>
589 fibonacci_heap
<K
,V
>::remove_root (fibonacci_node
<K
,V
> *node
)
591 if (node
->m_left
== node
)
594 m_root
= node
->remove ();
597 /* Consolidate heap. */
599 template<class K
, class V
>
600 void fibonacci_heap
<K
,V
>::consolidate ()
602 int D
= 1 + 8 * sizeof (long);
603 auto_vec
<fibonacci_node
<K
,V
> *> a (D
);
604 a
.safe_grow_cleared (D
);
605 fibonacci_node
<K
,V
> *w
, *x
, *y
;
608 while ((w
= m_root
) != NULL
)
616 if (x
->compare (y
) > 0)
625 for (i
= 0; i
< D
; i
++)
629 if (m_min
== NULL
|| a
[i
]->compare (m_min
) < 0)
634 #endif // GCC_FIBONACCI_HEAP_H