1 /* Tail merging for gimple.
2 Copyright (C) 2011-2016 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
33 const charD.1 * restrict outputFileName.0D.3914;
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
61 # SUCC: 7 [100.0%] (fallthru,exec)
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
83 # SUCC: 7 [100.0%] (fallthru,exec)
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
101 # VUSE <.MEMD.3923_11>
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
159 1. The pass first determines all groups of blocks with the same successor
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
190 #include "coretypes.h"
194 #include "cfghooks.h"
195 #include "tree-pass.h"
197 #include "fold-const.h"
198 #include "trans-mem.h"
200 #include "cfgcleanup.h"
201 #include "gimple-iterator.h"
202 #include "tree-cfg.h"
203 #include "tree-into-ssa.h"
205 #include "tree-ssa-sccvn.h"
208 /* Describes a group of bbs with the same successors. The successor bbs are
209 cached in succs, and the successor edge flags are cached in succ_flags.
210 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
211 it's marked in inverse.
212 Additionally, the hash value for the struct is cached in hashval, and
213 in_worklist indicates whether it's currently part of worklist. */
215 struct same_succ
: pointer_hash
<same_succ
>
217 /* The bbs that have the same successor bbs. */
219 /* The successor bbs. */
221 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
224 /* The edge flags for each of the successor bbs. */
226 /* Indicates whether the struct is currently in the worklist. */
228 /* The hash value of the struct. */
231 /* hash_table support. */
232 static inline hashval_t
hash (const same_succ
*);
233 static int equal (const same_succ
*, const same_succ
*);
234 static void remove (same_succ
*);
237 /* hash routine for hash_table support, returns hashval of E. */
240 same_succ::hash (const same_succ
*e
)
245 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
249 /* The bbs in the cluster. */
251 /* The preds of the bbs in the cluster. */
253 /* Index in all_clusters vector. */
255 /* The bb to replace the cluster with. */
263 /* The number of non-debug statements in the bb. */
265 /* The same_succ that this bb is a member of. */
266 same_succ
*bb_same_succ
;
267 /* The cluster that this bb is a member of. */
269 /* The vop state at the exit of a bb. This is shortlived data, used to
270 communicate data between update_block_by and update_vuses. */
272 /* The bb that either contains or is dominated by the dependencies of the
277 /* Macros to access the fields of struct aux_bb_info. */
279 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
280 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
281 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
282 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
283 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
285 /* Returns true if the only effect a statement STMT has, is to define locally
289 stmt_local_def (gimple
*stmt
)
291 basic_block bb
, def_bb
;
292 imm_use_iterator iter
;
297 if (gimple_vdef (stmt
) != NULL_TREE
298 || gimple_has_side_effects (stmt
)
299 || gimple_could_trap_p_1 (stmt
, false, false)
300 || gimple_vuse (stmt
) != NULL_TREE
)
303 def_p
= SINGLE_SSA_DEF_OPERAND (stmt
, SSA_OP_DEF
);
307 val
= DEF_FROM_PTR (def_p
);
308 if (val
== NULL_TREE
|| TREE_CODE (val
) != SSA_NAME
)
311 def_bb
= gimple_bb (stmt
);
313 FOR_EACH_IMM_USE_FAST (use_p
, iter
, val
)
315 if (is_gimple_debug (USE_STMT (use_p
)))
317 bb
= gimple_bb (USE_STMT (use_p
));
321 if (gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
322 && EDGE_PRED (bb
, PHI_ARG_INDEX_FROM_USE (use_p
))->src
== def_bb
)
331 /* Let GSI skip forwards over local defs. */
334 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
)
340 if (gsi_end_p (*gsi
))
342 stmt
= gsi_stmt (*gsi
);
343 if (!stmt_local_def (stmt
))
345 gsi_next_nondebug (gsi
);
349 /* VAL1 and VAL2 are either:
350 - uses in BB1 and BB2, or
351 - phi alternatives for BB1 and BB2.
352 Return true if the uses have the same gvn value. */
355 gvn_uses_equal (tree val1
, tree val2
)
357 gcc_checking_assert (val1
!= NULL_TREE
&& val2
!= NULL_TREE
);
362 if (vn_valueize (val1
) != vn_valueize (val2
))
365 return ((TREE_CODE (val1
) == SSA_NAME
|| CONSTANT_CLASS_P (val1
))
366 && (TREE_CODE (val2
) == SSA_NAME
|| CONSTANT_CLASS_P (val2
)));
369 /* Prints E to FILE. */
372 same_succ_print (FILE *file
, const same_succ
*e
)
375 bitmap_print (file
, e
->bbs
, "bbs:", "\n");
376 bitmap_print (file
, e
->succs
, "succs:", "\n");
377 bitmap_print (file
, e
->inverse
, "inverse:", "\n");
378 fprintf (file
, "flags:");
379 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
380 fprintf (file
, " %x", e
->succ_flags
[i
]);
381 fprintf (file
, "\n");
384 /* Prints same_succ VE to VFILE. */
387 ssa_same_succ_print_traverse (same_succ
**pe
, FILE *file
)
389 const same_succ
*e
= *pe
;
390 same_succ_print (file
, e
);
394 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
397 update_dep_bb (basic_block use_bb
, tree val
)
402 if (TREE_CODE (val
) != SSA_NAME
)
405 /* Skip use of global def. */
406 if (SSA_NAME_IS_DEFAULT_DEF (val
))
409 /* Skip use of local def. */
410 dep_bb
= gimple_bb (SSA_NAME_DEF_STMT (val
));
411 if (dep_bb
== use_bb
)
414 if (BB_DEP_BB (use_bb
) == NULL
415 || dominated_by_p (CDI_DOMINATORS
, dep_bb
, BB_DEP_BB (use_bb
)))
416 BB_DEP_BB (use_bb
) = dep_bb
;
419 /* Update BB_DEP_BB, given the dependencies in STMT. */
422 stmt_update_dep_bb (gimple
*stmt
)
427 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
428 update_dep_bb (gimple_bb (stmt
), USE_FROM_PTR (use
));
431 /* Calculates hash value for same_succ VE. */
434 same_succ_hash (const same_succ
*e
)
436 inchash::hash
hstate (bitmap_hash (e
->succs
));
439 unsigned int first
= bitmap_first_set_bit (e
->bbs
);
440 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, first
);
447 for (gimple_stmt_iterator gsi
= gsi_start_nondebug_bb (bb
);
448 !gsi_end_p (gsi
); gsi_next_nondebug (&gsi
))
450 stmt
= gsi_stmt (gsi
);
451 stmt_update_dep_bb (stmt
);
452 if (stmt_local_def (stmt
))
456 hstate
.add_int (gimple_code (stmt
));
457 if (is_gimple_assign (stmt
))
458 hstate
.add_int (gimple_assign_rhs_code (stmt
));
459 if (!is_gimple_call (stmt
))
461 if (gimple_call_internal_p (stmt
))
462 hstate
.add_int (gimple_call_internal_fn (stmt
));
465 inchash::add_expr (gimple_call_fn (stmt
), hstate
);
466 if (gimple_call_chain (stmt
))
467 inchash::add_expr (gimple_call_chain (stmt
), hstate
);
469 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
471 arg
= gimple_call_arg (stmt
, i
);
472 arg
= vn_valueize (arg
);
473 inchash::add_expr (arg
, hstate
);
477 hstate
.add_int (size
);
480 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
482 flags
= e
->succ_flags
[i
];
483 flags
= flags
& ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
484 hstate
.add_int (flags
);
487 EXECUTE_IF_SET_IN_BITMAP (e
->succs
, 0, s
, bs
)
489 int n
= find_edge (bb
, BASIC_BLOCK_FOR_FN (cfun
, s
))->dest_idx
;
490 for (gphi_iterator gsi
= gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun
, s
));
494 gphi
*phi
= gsi
.phi ();
495 tree lhs
= gimple_phi_result (phi
);
496 tree val
= gimple_phi_arg_def (phi
, n
);
498 if (virtual_operand_p (lhs
))
500 update_dep_bb (bb
, val
);
504 return hstate
.end ();
507 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
508 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
509 the other edge flags. */
512 inverse_flags (const same_succ
*e1
, const same_succ
*e2
)
514 int f1a
, f1b
, f2a
, f2b
;
515 int mask
= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
517 if (e1
->succ_flags
.length () != 2)
520 f1a
= e1
->succ_flags
[0];
521 f1b
= e1
->succ_flags
[1];
522 f2a
= e2
->succ_flags
[0];
523 f2b
= e2
->succ_flags
[1];
525 if (f1a
== f2a
&& f1b
== f2b
)
528 return (f1a
& mask
) == (f2a
& mask
) && (f1b
& mask
) == (f2b
& mask
);
531 /* Compares SAME_SUCCs E1 and E2. */
534 same_succ::equal (const same_succ
*e1
, const same_succ
*e2
)
536 unsigned int i
, first1
, first2
;
537 gimple_stmt_iterator gsi1
, gsi2
;
539 basic_block bb1
, bb2
;
541 if (e1
->hashval
!= e2
->hashval
)
544 if (e1
->succ_flags
.length () != e2
->succ_flags
.length ())
547 if (!bitmap_equal_p (e1
->succs
, e2
->succs
))
550 if (!inverse_flags (e1
, e2
))
552 for (i
= 0; i
< e1
->succ_flags
.length (); ++i
)
553 if (e1
->succ_flags
[i
] != e2
->succ_flags
[i
])
557 first1
= bitmap_first_set_bit (e1
->bbs
);
558 first2
= bitmap_first_set_bit (e2
->bbs
);
560 bb1
= BASIC_BLOCK_FOR_FN (cfun
, first1
);
561 bb2
= BASIC_BLOCK_FOR_FN (cfun
, first2
);
563 if (BB_SIZE (bb1
) != BB_SIZE (bb2
))
566 gsi1
= gsi_start_nondebug_bb (bb1
);
567 gsi2
= gsi_start_nondebug_bb (bb2
);
568 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
569 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
570 while (!(gsi_end_p (gsi1
) || gsi_end_p (gsi2
)))
572 s1
= gsi_stmt (gsi1
);
573 s2
= gsi_stmt (gsi2
);
574 if (gimple_code (s1
) != gimple_code (s2
))
576 if (is_gimple_call (s1
) && !gimple_call_same_target_p (s1
, s2
))
578 gsi_next_nondebug (&gsi1
);
579 gsi_next_nondebug (&gsi2
);
580 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
581 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
587 /* Alloc and init a new SAME_SUCC. */
590 same_succ_alloc (void)
592 same_succ
*same
= XNEW (struct same_succ
);
594 same
->bbs
= BITMAP_ALLOC (NULL
);
595 same
->succs
= BITMAP_ALLOC (NULL
);
596 same
->inverse
= BITMAP_ALLOC (NULL
);
597 same
->succ_flags
.create (10);
598 same
->in_worklist
= false;
603 /* Delete same_succ E. */
606 same_succ::remove (same_succ
*e
)
608 BITMAP_FREE (e
->bbs
);
609 BITMAP_FREE (e
->succs
);
610 BITMAP_FREE (e
->inverse
);
611 e
->succ_flags
.release ();
616 /* Reset same_succ SAME. */
619 same_succ_reset (same_succ
*same
)
621 bitmap_clear (same
->bbs
);
622 bitmap_clear (same
->succs
);
623 bitmap_clear (same
->inverse
);
624 same
->succ_flags
.truncate (0);
627 static hash_table
<same_succ
> *same_succ_htab
;
629 /* Array that is used to store the edge flags for a successor. */
631 static int *same_succ_edge_flags
;
633 /* Bitmap that is used to mark bbs that are recently deleted. */
635 static bitmap deleted_bbs
;
637 /* Bitmap that is used to mark predecessors of bbs that are
640 static bitmap deleted_bb_preds
;
642 /* Prints same_succ_htab to stderr. */
644 extern void debug_same_succ (void);
646 debug_same_succ ( void)
648 same_succ_htab
->traverse
<FILE *, ssa_same_succ_print_traverse
> (stderr
);
652 /* Vector of bbs to process. */
654 static vec
<same_succ
*> worklist
;
656 /* Prints worklist to FILE. */
659 print_worklist (FILE *file
)
662 for (i
= 0; i
< worklist
.length (); ++i
)
663 same_succ_print (file
, worklist
[i
]);
666 /* Adds SAME to worklist. */
669 add_to_worklist (same_succ
*same
)
671 if (same
->in_worklist
)
674 if (bitmap_count_bits (same
->bbs
) < 2)
677 same
->in_worklist
= true;
678 worklist
.safe_push (same
);
681 /* Add BB to same_succ_htab. */
684 find_same_succ_bb (basic_block bb
, same_succ
**same_p
)
688 same_succ
*same
= *same_p
;
694 /* Be conservative with loop structure. It's not evident that this test
695 is sufficient. Before tail-merge, we've just called
696 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
697 set, so there's no guarantee that the loop->latch value is still valid.
698 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
699 start of pre, we've kept that property intact throughout pre, and are
700 keeping it throughout tail-merge using this test. */
701 || bb
->loop_father
->latch
== bb
)
703 bitmap_set_bit (same
->bbs
, bb
->index
);
704 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
706 int index
= e
->dest
->index
;
707 bitmap_set_bit (same
->succs
, index
);
708 same_succ_edge_flags
[index
] = e
->flags
;
710 EXECUTE_IF_SET_IN_BITMAP (same
->succs
, 0, j
, bj
)
711 same
->succ_flags
.safe_push (same_succ_edge_flags
[j
]);
713 same
->hashval
= same_succ_hash (same
);
715 slot
= same_succ_htab
->find_slot_with_hash (same
, same
->hashval
, INSERT
);
719 BB_SAME_SUCC (bb
) = same
;
720 add_to_worklist (same
);
725 bitmap_set_bit ((*slot
)->bbs
, bb
->index
);
726 BB_SAME_SUCC (bb
) = *slot
;
727 add_to_worklist (*slot
);
728 if (inverse_flags (same
, *slot
))
729 bitmap_set_bit ((*slot
)->inverse
, bb
->index
);
730 same_succ_reset (same
);
734 /* Find bbs with same successors. */
737 find_same_succ (void)
739 same_succ
*same
= same_succ_alloc ();
742 FOR_EACH_BB_FN (bb
, cfun
)
744 find_same_succ_bb (bb
, &same
);
746 same
= same_succ_alloc ();
749 same_succ::remove (same
);
752 /* Initializes worklist administration. */
757 alloc_aux_for_blocks (sizeof (struct aux_bb_info
));
758 same_succ_htab
= new hash_table
<same_succ
> (n_basic_blocks_for_fn (cfun
));
759 same_succ_edge_flags
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
760 deleted_bbs
= BITMAP_ALLOC (NULL
);
761 deleted_bb_preds
= BITMAP_ALLOC (NULL
);
762 worklist
.create (n_basic_blocks_for_fn (cfun
));
765 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
767 fprintf (dump_file
, "initial worklist:\n");
768 print_worklist (dump_file
);
772 /* Deletes worklist administration. */
775 delete_worklist (void)
777 free_aux_for_blocks ();
778 delete same_succ_htab
;
779 same_succ_htab
= NULL
;
780 XDELETEVEC (same_succ_edge_flags
);
781 same_succ_edge_flags
= NULL
;
782 BITMAP_FREE (deleted_bbs
);
783 BITMAP_FREE (deleted_bb_preds
);
787 /* Mark BB as deleted, and mark its predecessors. */
790 mark_basic_block_deleted (basic_block bb
)
795 bitmap_set_bit (deleted_bbs
, bb
->index
);
797 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
798 bitmap_set_bit (deleted_bb_preds
, e
->src
->index
);
801 /* Removes BB from its corresponding same_succ. */
804 same_succ_flush_bb (basic_block bb
)
806 same_succ
*same
= BB_SAME_SUCC (bb
);
807 BB_SAME_SUCC (bb
) = NULL
;
808 if (bitmap_single_bit_set_p (same
->bbs
))
809 same_succ_htab
->remove_elt_with_hash (same
, same
->hashval
);
811 bitmap_clear_bit (same
->bbs
, bb
->index
);
814 /* Removes all bbs in BBS from their corresponding same_succ. */
817 same_succ_flush_bbs (bitmap bbs
)
822 EXECUTE_IF_SET_IN_BITMAP (bbs
, 0, i
, bi
)
823 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun
, i
));
826 /* Release the last vdef in BB, either normal or phi result. */
829 release_last_vdef (basic_block bb
)
831 for (gimple_stmt_iterator i
= gsi_last_bb (bb
); !gsi_end_p (i
);
832 gsi_prev_nondebug (&i
))
834 gimple
*stmt
= gsi_stmt (i
);
835 if (gimple_vdef (stmt
) == NULL_TREE
)
838 mark_virtual_operand_for_renaming (gimple_vdef (stmt
));
842 for (gphi_iterator i
= gsi_start_phis (bb
); !gsi_end_p (i
);
845 gphi
*phi
= i
.phi ();
846 tree res
= gimple_phi_result (phi
);
848 if (!virtual_operand_p (res
))
851 mark_virtual_phi_result_for_renaming (phi
);
856 /* For deleted_bb_preds, find bbs with same successors. */
859 update_worklist (void)
866 bitmap_and_compl_into (deleted_bb_preds
, deleted_bbs
);
867 bitmap_clear (deleted_bbs
);
869 bitmap_clear_bit (deleted_bb_preds
, ENTRY_BLOCK
);
870 same_succ_flush_bbs (deleted_bb_preds
);
872 same
= same_succ_alloc ();
873 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds
, 0, i
, bi
)
875 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
876 gcc_assert (bb
!= NULL
);
877 find_same_succ_bb (bb
, &same
);
879 same
= same_succ_alloc ();
881 same_succ::remove (same
);
882 bitmap_clear (deleted_bb_preds
);
885 /* Prints cluster C to FILE. */
888 print_cluster (FILE *file
, bb_cluster
*c
)
892 bitmap_print (file
, c
->bbs
, "bbs:", "\n");
893 bitmap_print (file
, c
->preds
, "preds:", "\n");
896 /* Prints cluster C to stderr. */
898 extern void debug_cluster (bb_cluster
*);
900 debug_cluster (bb_cluster
*c
)
902 print_cluster (stderr
, c
);
905 /* Update C->rep_bb, given that BB is added to the cluster. */
908 update_rep_bb (bb_cluster
*c
, basic_block bb
)
911 if (c
->rep_bb
== NULL
)
917 /* Current needs no deps, keep it. */
918 if (BB_DEP_BB (c
->rep_bb
) == NULL
)
921 /* Bb needs no deps, change rep_bb. */
922 if (BB_DEP_BB (bb
) == NULL
)
928 /* Bb needs last deps earlier than current, change rep_bb. A potential
929 problem with this, is that the first deps might also be earlier, which
930 would mean we prefer longer lifetimes for the deps. To be able to check
931 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
932 BB_DEP_BB, which is really BB_LAST_DEP_BB.
933 The benefit of choosing the bb with last deps earlier, is that it can
934 potentially be used as replacement for more bbs. */
935 if (dominated_by_p (CDI_DOMINATORS
, BB_DEP_BB (c
->rep_bb
), BB_DEP_BB (bb
)))
939 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
942 add_bb_to_cluster (bb_cluster
*c
, basic_block bb
)
947 bitmap_set_bit (c
->bbs
, bb
->index
);
949 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
950 bitmap_set_bit (c
->preds
, e
->src
->index
);
952 update_rep_bb (c
, bb
);
955 /* Allocate and init new cluster. */
961 c
= XCNEW (bb_cluster
);
962 c
->bbs
= BITMAP_ALLOC (NULL
);
963 c
->preds
= BITMAP_ALLOC (NULL
);
968 /* Delete clusters. */
971 delete_cluster (bb_cluster
*c
)
975 BITMAP_FREE (c
->bbs
);
976 BITMAP_FREE (c
->preds
);
981 /* Array that contains all clusters. */
983 static vec
<bb_cluster
*> all_clusters
;
985 /* Allocate all cluster vectors. */
988 alloc_cluster_vectors (void)
990 all_clusters
.create (n_basic_blocks_for_fn (cfun
));
993 /* Reset all cluster vectors. */
996 reset_cluster_vectors (void)
1000 for (i
= 0; i
< all_clusters
.length (); ++i
)
1001 delete_cluster (all_clusters
[i
]);
1002 all_clusters
.truncate (0);
1003 FOR_EACH_BB_FN (bb
, cfun
)
1004 BB_CLUSTER (bb
) = NULL
;
1007 /* Delete all cluster vectors. */
1010 delete_cluster_vectors (void)
1013 for (i
= 0; i
< all_clusters
.length (); ++i
)
1014 delete_cluster (all_clusters
[i
]);
1015 all_clusters
.release ();
1018 /* Merge cluster C2 into C1. */
1021 merge_clusters (bb_cluster
*c1
, bb_cluster
*c2
)
1023 bitmap_ior_into (c1
->bbs
, c2
->bbs
);
1024 bitmap_ior_into (c1
->preds
, c2
->preds
);
1027 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1028 all_clusters, or merge c with existing cluster. */
1031 set_cluster (basic_block bb1
, basic_block bb2
)
1033 basic_block merge_bb
, other_bb
;
1034 bb_cluster
*merge
, *old
, *c
;
1036 if (BB_CLUSTER (bb1
) == NULL
&& BB_CLUSTER (bb2
) == NULL
)
1039 add_bb_to_cluster (c
, bb1
);
1040 add_bb_to_cluster (c
, bb2
);
1041 BB_CLUSTER (bb1
) = c
;
1042 BB_CLUSTER (bb2
) = c
;
1043 c
->index
= all_clusters
.length ();
1044 all_clusters
.safe_push (c
);
1046 else if (BB_CLUSTER (bb1
) == NULL
|| BB_CLUSTER (bb2
) == NULL
)
1048 merge_bb
= BB_CLUSTER (bb1
) == NULL
? bb2
: bb1
;
1049 other_bb
= BB_CLUSTER (bb1
) == NULL
? bb1
: bb2
;
1050 merge
= BB_CLUSTER (merge_bb
);
1051 add_bb_to_cluster (merge
, other_bb
);
1052 BB_CLUSTER (other_bb
) = merge
;
1054 else if (BB_CLUSTER (bb1
) != BB_CLUSTER (bb2
))
1059 old
= BB_CLUSTER (bb2
);
1060 merge
= BB_CLUSTER (bb1
);
1061 merge_clusters (merge
, old
);
1062 EXECUTE_IF_SET_IN_BITMAP (old
->bbs
, 0, i
, bi
)
1063 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun
, i
)) = merge
;
1064 all_clusters
[old
->index
] = NULL
;
1065 update_rep_bb (merge
, old
->rep_bb
);
1066 delete_cluster (old
);
1072 /* Return true if gimple operands T1 and T2 have the same value. */
1075 gimple_operand_equal_value_p (tree t1
, tree t2
)
1084 if (operand_equal_p (t1
, t2
, OEP_MATCH_SIDE_EFFECTS
))
1087 return gvn_uses_equal (t1
, t2
);
1090 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1091 gimple_bb (s2) are members of SAME_SUCC. */
1094 gimple_equal_p (same_succ
*same_succ
, gimple
*s1
, gimple
*s2
)
1098 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1101 enum tree_code code1
, code2
;
1103 if (gimple_code (s1
) != gimple_code (s2
))
1106 switch (gimple_code (s1
))
1109 if (!gimple_call_same_target_p (s1
, s2
))
1112 t1
= gimple_call_chain (s1
);
1113 t2
= gimple_call_chain (s2
);
1114 if (!gimple_operand_equal_value_p (t1
, t2
))
1117 if (gimple_call_num_args (s1
) != gimple_call_num_args (s2
))
1120 for (i
= 0; i
< gimple_call_num_args (s1
); ++i
)
1122 t1
= gimple_call_arg (s1
, i
);
1123 t2
= gimple_call_arg (s2
, i
);
1124 if (!gimple_operand_equal_value_p (t1
, t2
))
1128 lhs1
= gimple_get_lhs (s1
);
1129 lhs2
= gimple_get_lhs (s2
);
1130 if (lhs1
== NULL_TREE
&& lhs2
== NULL_TREE
)
1132 if (lhs1
== NULL_TREE
|| lhs2
== NULL_TREE
)
1134 if (TREE_CODE (lhs1
) == SSA_NAME
&& TREE_CODE (lhs2
) == SSA_NAME
)
1135 return vn_valueize (lhs1
) == vn_valueize (lhs2
);
1136 return operand_equal_p (lhs1
, lhs2
, 0);
1139 lhs1
= gimple_get_lhs (s1
);
1140 lhs2
= gimple_get_lhs (s2
);
1141 if (TREE_CODE (lhs1
) != SSA_NAME
1142 && TREE_CODE (lhs2
) != SSA_NAME
)
1143 return (operand_equal_p (lhs1
, lhs2
, 0)
1144 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1
),
1145 gimple_assign_rhs1 (s2
)));
1146 else if (TREE_CODE (lhs1
) == SSA_NAME
1147 && TREE_CODE (lhs2
) == SSA_NAME
)
1148 return operand_equal_p (gimple_assign_rhs1 (s1
),
1149 gimple_assign_rhs1 (s2
), 0);
1153 t1
= gimple_cond_lhs (s1
);
1154 t2
= gimple_cond_lhs (s2
);
1155 if (!gimple_operand_equal_value_p (t1
, t2
))
1158 t1
= gimple_cond_rhs (s1
);
1159 t2
= gimple_cond_rhs (s2
);
1160 if (!gimple_operand_equal_value_p (t1
, t2
))
1163 code1
= gimple_expr_code (s1
);
1164 code2
= gimple_expr_code (s2
);
1165 inv_cond
= (bitmap_bit_p (same_succ
->inverse
, bb1
->index
)
1166 != bitmap_bit_p (same_succ
->inverse
, bb2
->index
));
1169 bool honor_nans
= HONOR_NANS (t1
);
1170 code2
= invert_tree_comparison (code2
, honor_nans
);
1172 return code1
== code2
;
1179 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1180 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1181 processed statements. */
1184 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
, tree
*vuse
,
1192 if (gsi_end_p (*gsi
))
1194 stmt
= gsi_stmt (*gsi
);
1196 lvuse
= gimple_vuse (stmt
);
1197 if (lvuse
!= NULL_TREE
)
1200 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_DEF
))
1201 *vuse_escaped
= true;
1204 if (!stmt_local_def (stmt
))
1206 gsi_prev_nondebug (gsi
);
1210 /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
1211 STMT2 are allowed to be merged. */
1214 merge_stmts_p (gimple
*stmt1
, gimple
*stmt2
)
1216 /* What could be better than this here is to blacklist the bb
1217 containing the stmt, when encountering the stmt f.i. in
1219 if (is_tm_ending (stmt1
))
1222 if (is_gimple_call (stmt1
)
1223 && gimple_call_internal_p (stmt1
))
1224 switch (gimple_call_internal_fn (stmt1
))
1226 case IFN_UBSAN_NULL
:
1227 case IFN_UBSAN_BOUNDS
:
1228 case IFN_UBSAN_VPTR
:
1229 case IFN_UBSAN_CHECK_ADD
:
1230 case IFN_UBSAN_CHECK_SUB
:
1231 case IFN_UBSAN_CHECK_MUL
:
1232 case IFN_UBSAN_OBJECT_SIZE
:
1233 case IFN_ASAN_CHECK
:
1234 /* For these internal functions, gimple_location is an implicit
1235 parameter, which will be used explicitly after expansion.
1236 Merging these statements may cause confusing line numbers in
1237 sanitizer messages. */
1238 return gimple_location (stmt1
) == gimple_location (stmt2
);
1246 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1250 find_duplicate (same_succ
*same_succ
, basic_block bb1
, basic_block bb2
)
1252 gimple_stmt_iterator gsi1
= gsi_last_nondebug_bb (bb1
);
1253 gimple_stmt_iterator gsi2
= gsi_last_nondebug_bb (bb2
);
1254 tree vuse1
= NULL_TREE
, vuse2
= NULL_TREE
;
1255 bool vuse_escaped
= false;
1257 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1258 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1260 while (!gsi_end_p (gsi1
) && !gsi_end_p (gsi2
))
1262 gimple
*stmt1
= gsi_stmt (gsi1
);
1263 gimple
*stmt2
= gsi_stmt (gsi2
);
1265 if (!gimple_equal_p (same_succ
, stmt1
, stmt2
))
1268 if (!merge_stmts_p (stmt1
, stmt2
))
1271 gsi_prev_nondebug (&gsi1
);
1272 gsi_prev_nondebug (&gsi2
);
1273 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1274 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1277 if (!(gsi_end_p (gsi1
) && gsi_end_p (gsi2
)))
1280 /* If the incoming vuses are not the same, and the vuse escaped into an
1281 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1282 which potentially means the semantics of one of the blocks will be changed.
1283 TODO: make this check more precise. */
1284 if (vuse_escaped
&& vuse1
!= vuse2
)
1288 fprintf (dump_file
, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1289 bb1
->index
, bb2
->index
);
1291 set_cluster (bb1
, bb2
);
1294 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1298 same_phi_alternatives_1 (basic_block dest
, edge e1
, edge e2
)
1300 int n1
= e1
->dest_idx
, n2
= e2
->dest_idx
;
1303 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1305 gphi
*phi
= gsi
.phi ();
1306 tree lhs
= gimple_phi_result (phi
);
1307 tree val1
= gimple_phi_arg_def (phi
, n1
);
1308 tree val2
= gimple_phi_arg_def (phi
, n2
);
1310 if (virtual_operand_p (lhs
))
1313 if (operand_equal_for_phi_arg_p (val1
, val2
))
1315 if (gvn_uses_equal (val1
, val2
))
1324 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1325 phi alternatives for BB1 and BB2 are equal. */
1328 same_phi_alternatives (same_succ
*same_succ
, basic_block bb1
, basic_block bb2
)
1335 EXECUTE_IF_SET_IN_BITMAP (same_succ
->succs
, 0, s
, bs
)
1337 succ
= BASIC_BLOCK_FOR_FN (cfun
, s
);
1338 e1
= find_edge (bb1
, succ
);
1339 e2
= find_edge (bb2
, succ
);
1340 if (e1
->flags
& EDGE_COMPLEX
1341 || e2
->flags
& EDGE_COMPLEX
)
1344 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1346 if (!same_phi_alternatives_1 (succ
, e1
, e2
))
1353 /* Return true if BB has non-vop phis. */
1356 bb_has_non_vop_phi (basic_block bb
)
1358 gimple_seq phis
= phi_nodes (bb
);
1364 if (!gimple_seq_singleton_p (phis
))
1367 phi
= gimple_seq_first_stmt (phis
);
1368 return !virtual_operand_p (gimple_phi_result (phi
));
1371 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1372 invariant that uses in FROM are dominates by their defs. */
1375 deps_ok_for_redirect_from_bb_to_bb (basic_block from
, basic_block to
)
1377 basic_block cd
, dep_bb
= BB_DEP_BB (to
);
1380 bitmap from_preds
= BITMAP_ALLOC (NULL
);
1385 FOR_EACH_EDGE (e
, ei
, from
->preds
)
1386 bitmap_set_bit (from_preds
, e
->src
->index
);
1387 cd
= nearest_common_dominator_for_set (CDI_DOMINATORS
, from_preds
);
1388 BITMAP_FREE (from_preds
);
1390 return dominated_by_p (CDI_DOMINATORS
, dep_bb
, cd
);
1393 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1394 replacement bb) and vice versa maintains the invariant that uses in the
1395 replacement are dominates by their defs. */
1398 deps_ok_for_redirect (basic_block bb1
, basic_block bb2
)
1400 if (BB_CLUSTER (bb1
) != NULL
)
1401 bb1
= BB_CLUSTER (bb1
)->rep_bb
;
1403 if (BB_CLUSTER (bb2
) != NULL
)
1404 bb2
= BB_CLUSTER (bb2
)->rep_bb
;
1406 return (deps_ok_for_redirect_from_bb_to_bb (bb1
, bb2
)
1407 && deps_ok_for_redirect_from_bb_to_bb (bb2
, bb1
));
1410 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1413 find_clusters_1 (same_succ
*same_succ
)
1415 basic_block bb1
, bb2
;
1417 bitmap_iterator bi
, bj
;
1419 int max_comparisons
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS
);
1421 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, 0, i
, bi
)
1423 bb1
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1425 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1426 phi-nodes in bb1 and bb2, with the same alternatives for the same
1428 if (bb_has_non_vop_phi (bb1
))
1432 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, i
+ 1, j
, bj
)
1434 bb2
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1436 if (bb_has_non_vop_phi (bb2
))
1439 if (BB_CLUSTER (bb1
) != NULL
&& BB_CLUSTER (bb1
) == BB_CLUSTER (bb2
))
1442 /* Limit quadratic behavior. */
1444 if (nr_comparisons
> max_comparisons
)
1447 /* This is a conservative dependency check. We could test more
1448 precise for allowed replacement direction. */
1449 if (!deps_ok_for_redirect (bb1
, bb2
))
1452 if (!(same_phi_alternatives (same_succ
, bb1
, bb2
)))
1455 find_duplicate (same_succ
, bb1
, bb2
);
1460 /* Find clusters of bbs which can be merged. */
1463 find_clusters (void)
1467 while (!worklist
.is_empty ())
1469 same
= worklist
.pop ();
1470 same
->in_worklist
= false;
1471 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1473 fprintf (dump_file
, "processing worklist entry\n");
1474 same_succ_print (dump_file
, same
);
1476 find_clusters_1 (same
);
1480 /* Returns the vop phi of BB, if any. */
1483 vop_phi (basic_block bb
)
1487 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1490 if (! virtual_operand_p (gimple_phi_result (stmt
)))
1497 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1500 replace_block_by (basic_block bb1
, basic_block bb2
)
1508 bb2_phi
= vop_phi (bb2
);
1510 /* Mark the basic block as deleted. */
1511 mark_basic_block_deleted (bb1
);
1513 /* Redirect the incoming edges of bb1 to bb2. */
1514 for (i
= EDGE_COUNT (bb1
->preds
); i
> 0 ; --i
)
1516 pred_edge
= EDGE_PRED (bb1
, i
- 1);
1517 pred_edge
= redirect_edge_and_branch (pred_edge
, bb2
);
1518 gcc_assert (pred_edge
!= NULL
);
1520 if (bb2_phi
== NULL
)
1523 /* The phi might have run out of capacity when the redirect added an
1524 argument, which means it could have been replaced. Refresh it. */
1525 bb2_phi
= vop_phi (bb2
);
1527 add_phi_arg (bb2_phi
, SSA_NAME_VAR (gimple_phi_result (bb2_phi
)),
1528 pred_edge
, UNKNOWN_LOCATION
);
1531 bb2
->frequency
+= bb1
->frequency
;
1532 if (bb2
->frequency
> BB_FREQ_MAX
)
1533 bb2
->frequency
= BB_FREQ_MAX
;
1535 bb2
->count
+= bb1
->count
;
1537 /* Merge the outgoing edge counts from bb1 onto bb2. */
1538 gcov_type out_sum
= 0;
1539 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1541 e2
= find_edge (bb2
, e1
->dest
);
1543 e2
->count
+= e1
->count
;
1544 out_sum
+= e2
->count
;
1546 /* Recompute the edge probabilities from the new merged edge count.
1547 Use the sum of the new merged edge counts computed above instead
1548 of bb2's merged count, in case there are profile count insanities
1549 making the bb count inconsistent with the edge weights. */
1550 FOR_EACH_EDGE (e2
, ei
, bb2
->succs
)
1552 e2
->probability
= GCOV_COMPUTE_SCALE (e2
->count
, out_sum
);
1555 /* Clear range info from all stmts in BB2 -- this transformation
1556 could make them out of date. */
1557 reset_flow_sensitive_info_in_bb (bb2
);
1559 /* Do updates that use bb1, before deleting bb1. */
1560 release_last_vdef (bb1
);
1561 same_succ_flush_bb (bb1
);
1563 delete_basic_block (bb1
);
1566 /* Bbs for which update_debug_stmt need to be called. */
1568 static bitmap update_bbs
;
1570 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1571 number of bbs removed. */
1574 apply_clusters (void)
1576 basic_block bb1
, bb2
;
1580 int nr_bbs_removed
= 0;
1582 for (i
= 0; i
< all_clusters
.length (); ++i
)
1584 c
= all_clusters
[i
];
1589 bitmap_set_bit (update_bbs
, bb2
->index
);
1591 bitmap_clear_bit (c
->bbs
, bb2
->index
);
1592 EXECUTE_IF_SET_IN_BITMAP (c
->bbs
, 0, j
, bj
)
1594 bb1
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1595 bitmap_clear_bit (update_bbs
, bb1
->index
);
1597 replace_block_by (bb1
, bb2
);
1602 return nr_bbs_removed
;
1605 /* Resets debug statement STMT if it has uses that are not dominated by their
1609 update_debug_stmt (gimple
*stmt
)
1611 use_operand_p use_p
;
1615 if (!gimple_debug_bind_p (stmt
))
1618 bbuse
= gimple_bb (stmt
);
1619 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, oi
, SSA_OP_USE
)
1621 tree name
= USE_FROM_PTR (use_p
);
1622 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
1623 basic_block bbdef
= gimple_bb (def_stmt
);
1624 if (bbdef
== NULL
|| bbuse
== bbdef
1625 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
))
1628 gimple_debug_bind_reset_value (stmt
);
1634 /* Resets all debug statements that have uses that are not
1635 dominated by their defs. */
1638 update_debug_stmts (void)
1644 EXECUTE_IF_SET_IN_BITMAP (update_bbs
, 0, i
, bi
)
1647 gimple_stmt_iterator gsi
;
1649 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1650 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1652 stmt
= gsi_stmt (gsi
);
1653 if (!is_gimple_debug (stmt
))
1655 update_debug_stmt (stmt
);
1660 /* Runs tail merge optimization. */
1663 tail_merge_optimize (unsigned int todo
)
1665 int nr_bbs_removed_total
= 0;
1667 bool loop_entered
= false;
1668 int iteration_nr
= 0;
1669 int max_iterations
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS
);
1671 if (!flag_tree_tail_merge
1672 || max_iterations
== 0)
1675 timevar_push (TV_TREE_TAIL_MERGE
);
1677 if (!dom_info_available_p (CDI_DOMINATORS
))
1679 /* PRE can leave us with unreachable blocks, remove them now. */
1680 delete_unreachable_blocks ();
1681 calculate_dominance_info (CDI_DOMINATORS
);
1685 while (!worklist
.is_empty ())
1689 loop_entered
= true;
1690 alloc_cluster_vectors ();
1691 update_bbs
= BITMAP_ALLOC (NULL
);
1694 reset_cluster_vectors ();
1697 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1698 fprintf (dump_file
, "worklist iteration #%d\n", iteration_nr
);
1701 gcc_assert (worklist
.is_empty ());
1702 if (all_clusters
.is_empty ())
1705 nr_bbs_removed
= apply_clusters ();
1706 nr_bbs_removed_total
+= nr_bbs_removed
;
1707 if (nr_bbs_removed
== 0)
1710 free_dominance_info (CDI_DOMINATORS
);
1712 if (iteration_nr
== max_iterations
)
1715 calculate_dominance_info (CDI_DOMINATORS
);
1719 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1720 fprintf (dump_file
, "htab collision / search: %f\n",
1721 same_succ_htab
->collisions ());
1723 if (nr_bbs_removed_total
> 0)
1725 if (MAY_HAVE_DEBUG_STMTS
)
1727 calculate_dominance_info (CDI_DOMINATORS
);
1728 update_debug_stmts ();
1731 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1733 fprintf (dump_file
, "Before TODOs.\n");
1734 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1737 mark_virtual_operands_for_renaming (cfun
);
1743 delete_cluster_vectors ();
1744 BITMAP_FREE (update_bbs
);
1747 timevar_pop (TV_TREE_TAIL_MERGE
);