gcc/
[official-gcc.git] / gcc / function.c
blob496339bdd60d52ab5ceb8e1016bc2a1c993ed2a6
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
67 #include "toplev.h"
68 #include "rtl-iter.h"
70 /* So we can assign to cfun in this file. */
71 #undef cfun
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
77 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
79 /* Round a value to the lowest integer less than it that is a multiple of
80 the required alignment. Avoid using division in case the value is
81 negative. Assume the alignment is a power of two. */
82 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
84 /* Similar, but round to the next highest integer that meets the
85 alignment. */
86 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
88 /* Nonzero once virtual register instantiation has been done.
89 assign_stack_local uses frame_pointer_rtx when this is nonzero.
90 calls.c:emit_library_call_value_1 uses it to set up
91 post-instantiation libcalls. */
92 int virtuals_instantiated;
94 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
95 static GTY(()) int funcdef_no;
97 /* These variables hold pointers to functions to create and destroy
98 target specific, per-function data structures. */
99 struct machine_function * (*init_machine_status) (void);
101 /* The currently compiled function. */
102 struct function *cfun = 0;
104 /* These hashes record the prologue and epilogue insns. */
105 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
106 htab_t prologue_insn_hash;
107 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
108 htab_t epilogue_insn_hash;
111 htab_t types_used_by_vars_hash = NULL;
112 vec<tree, va_gc> *types_used_by_cur_var_decl;
114 /* Forward declarations. */
116 static struct temp_slot *find_temp_slot_from_address (rtx);
117 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
118 static void pad_below (struct args_size *, enum machine_mode, tree);
119 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
120 static int all_blocks (tree, tree *);
121 static tree *get_block_vector (tree, int *);
122 extern tree debug_find_var_in_block_tree (tree, tree);
123 /* We always define `record_insns' even if it's not used so that we
124 can always export `prologue_epilogue_contains'. */
125 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
126 static bool contains (const_rtx, htab_t);
127 static void prepare_function_start (void);
128 static void do_clobber_return_reg (rtx, void *);
129 static void do_use_return_reg (rtx, void *);
131 /* Stack of nested functions. */
132 /* Keep track of the cfun stack. */
134 typedef struct function *function_p;
136 static vec<function_p> function_context_stack;
138 /* Save the current context for compilation of a nested function.
139 This is called from language-specific code. */
141 void
142 push_function_context (void)
144 if (cfun == 0)
145 allocate_struct_function (NULL, false);
147 function_context_stack.safe_push (cfun);
148 set_cfun (NULL);
151 /* Restore the last saved context, at the end of a nested function.
152 This function is called from language-specific code. */
154 void
155 pop_function_context (void)
157 struct function *p = function_context_stack.pop ();
158 set_cfun (p);
159 current_function_decl = p->decl;
161 /* Reset variables that have known state during rtx generation. */
162 virtuals_instantiated = 0;
163 generating_concat_p = 1;
166 /* Clear out all parts of the state in F that can safely be discarded
167 after the function has been parsed, but not compiled, to let
168 garbage collection reclaim the memory. */
170 void
171 free_after_parsing (struct function *f)
173 f->language = 0;
176 /* Clear out all parts of the state in F that can safely be discarded
177 after the function has been compiled, to let garbage collection
178 reclaim the memory. */
180 void
181 free_after_compilation (struct function *f)
183 prologue_insn_hash = NULL;
184 epilogue_insn_hash = NULL;
186 free (crtl->emit.regno_pointer_align);
188 memset (crtl, 0, sizeof (struct rtl_data));
189 f->eh = NULL;
190 f->machine = NULL;
191 f->cfg = NULL;
193 regno_reg_rtx = NULL;
196 /* Return size needed for stack frame based on slots so far allocated.
197 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
198 the caller may have to do that. */
200 HOST_WIDE_INT
201 get_frame_size (void)
203 if (FRAME_GROWS_DOWNWARD)
204 return -frame_offset;
205 else
206 return frame_offset;
209 /* Issue an error message and return TRUE if frame OFFSET overflows in
210 the signed target pointer arithmetics for function FUNC. Otherwise
211 return FALSE. */
213 bool
214 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
216 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
218 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
219 /* Leave room for the fixed part of the frame. */
220 - 64 * UNITS_PER_WORD)
222 error_at (DECL_SOURCE_LOCATION (func),
223 "total size of local objects too large");
224 return TRUE;
227 return FALSE;
230 /* Return stack slot alignment in bits for TYPE and MODE. */
232 static unsigned int
233 get_stack_local_alignment (tree type, enum machine_mode mode)
235 unsigned int alignment;
237 if (mode == BLKmode)
238 alignment = BIGGEST_ALIGNMENT;
239 else
240 alignment = GET_MODE_ALIGNMENT (mode);
242 /* Allow the frond-end to (possibly) increase the alignment of this
243 stack slot. */
244 if (! type)
245 type = lang_hooks.types.type_for_mode (mode, 0);
247 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
250 /* Determine whether it is possible to fit a stack slot of size SIZE and
251 alignment ALIGNMENT into an area in the stack frame that starts at
252 frame offset START and has a length of LENGTH. If so, store the frame
253 offset to be used for the stack slot in *POFFSET and return true;
254 return false otherwise. This function will extend the frame size when
255 given a start/length pair that lies at the end of the frame. */
257 static bool
258 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
259 HOST_WIDE_INT size, unsigned int alignment,
260 HOST_WIDE_INT *poffset)
262 HOST_WIDE_INT this_frame_offset;
263 int frame_off, frame_alignment, frame_phase;
265 /* Calculate how many bytes the start of local variables is off from
266 stack alignment. */
267 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
268 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
269 frame_phase = frame_off ? frame_alignment - frame_off : 0;
271 /* Round the frame offset to the specified alignment. */
273 /* We must be careful here, since FRAME_OFFSET might be negative and
274 division with a negative dividend isn't as well defined as we might
275 like. So we instead assume that ALIGNMENT is a power of two and
276 use logical operations which are unambiguous. */
277 if (FRAME_GROWS_DOWNWARD)
278 this_frame_offset
279 = (FLOOR_ROUND (start + length - size - frame_phase,
280 (unsigned HOST_WIDE_INT) alignment)
281 + frame_phase);
282 else
283 this_frame_offset
284 = (CEIL_ROUND (start - frame_phase,
285 (unsigned HOST_WIDE_INT) alignment)
286 + frame_phase);
288 /* See if it fits. If this space is at the edge of the frame,
289 consider extending the frame to make it fit. Our caller relies on
290 this when allocating a new slot. */
291 if (frame_offset == start && this_frame_offset < frame_offset)
292 frame_offset = this_frame_offset;
293 else if (this_frame_offset < start)
294 return false;
295 else if (start + length == frame_offset
296 && this_frame_offset + size > start + length)
297 frame_offset = this_frame_offset + size;
298 else if (this_frame_offset + size > start + length)
299 return false;
301 *poffset = this_frame_offset;
302 return true;
305 /* Create a new frame_space structure describing free space in the stack
306 frame beginning at START and ending at END, and chain it into the
307 function's frame_space_list. */
309 static void
310 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
312 struct frame_space *space = ggc_alloc<frame_space> ();
313 space->next = crtl->frame_space_list;
314 crtl->frame_space_list = space;
315 space->start = start;
316 space->length = end - start;
319 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
320 with machine mode MODE.
322 ALIGN controls the amount of alignment for the address of the slot:
323 0 means according to MODE,
324 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
325 -2 means use BITS_PER_UNIT,
326 positive specifies alignment boundary in bits.
328 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
329 alignment and ASLK_RECORD_PAD bit set if we should remember
330 extra space we allocated for alignment purposes. When we are
331 called from assign_stack_temp_for_type, it is not set so we don't
332 track the same stack slot in two independent lists.
334 We do not round to stack_boundary here. */
337 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
338 int align, int kind)
340 rtx x, addr;
341 int bigend_correction = 0;
342 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
343 unsigned int alignment, alignment_in_bits;
345 if (align == 0)
347 alignment = get_stack_local_alignment (NULL, mode);
348 alignment /= BITS_PER_UNIT;
350 else if (align == -1)
352 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
353 size = CEIL_ROUND (size, alignment);
355 else if (align == -2)
356 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
357 else
358 alignment = align / BITS_PER_UNIT;
360 alignment_in_bits = alignment * BITS_PER_UNIT;
362 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
363 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
365 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
366 alignment = alignment_in_bits / BITS_PER_UNIT;
369 if (SUPPORTS_STACK_ALIGNMENT)
371 if (crtl->stack_alignment_estimated < alignment_in_bits)
373 if (!crtl->stack_realign_processed)
374 crtl->stack_alignment_estimated = alignment_in_bits;
375 else
377 /* If stack is realigned and stack alignment value
378 hasn't been finalized, it is OK not to increase
379 stack_alignment_estimated. The bigger alignment
380 requirement is recorded in stack_alignment_needed
381 below. */
382 gcc_assert (!crtl->stack_realign_finalized);
383 if (!crtl->stack_realign_needed)
385 /* It is OK to reduce the alignment as long as the
386 requested size is 0 or the estimated stack
387 alignment >= mode alignment. */
388 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
389 || size == 0
390 || (crtl->stack_alignment_estimated
391 >= GET_MODE_ALIGNMENT (mode)));
392 alignment_in_bits = crtl->stack_alignment_estimated;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
399 if (crtl->stack_alignment_needed < alignment_in_bits)
400 crtl->stack_alignment_needed = alignment_in_bits;
401 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
402 crtl->max_used_stack_slot_alignment = alignment_in_bits;
404 if (mode != BLKmode || size != 0)
406 if (kind & ASLK_RECORD_PAD)
408 struct frame_space **psp;
410 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
412 struct frame_space *space = *psp;
413 if (!try_fit_stack_local (space->start, space->length, size,
414 alignment, &slot_offset))
415 continue;
416 *psp = space->next;
417 if (slot_offset > space->start)
418 add_frame_space (space->start, slot_offset);
419 if (slot_offset + size < space->start + space->length)
420 add_frame_space (slot_offset + size,
421 space->start + space->length);
422 goto found_space;
426 else if (!STACK_ALIGNMENT_NEEDED)
428 slot_offset = frame_offset;
429 goto found_space;
432 old_frame_offset = frame_offset;
434 if (FRAME_GROWS_DOWNWARD)
436 frame_offset -= size;
437 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
439 if (kind & ASLK_RECORD_PAD)
441 if (slot_offset > frame_offset)
442 add_frame_space (frame_offset, slot_offset);
443 if (slot_offset + size < old_frame_offset)
444 add_frame_space (slot_offset + size, old_frame_offset);
447 else
449 frame_offset += size;
450 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
452 if (kind & ASLK_RECORD_PAD)
454 if (slot_offset > old_frame_offset)
455 add_frame_space (old_frame_offset, slot_offset);
456 if (slot_offset + size < frame_offset)
457 add_frame_space (slot_offset + size, frame_offset);
461 found_space:
462 /* On a big-endian machine, if we are allocating more space than we will use,
463 use the least significant bytes of those that are allocated. */
464 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
465 bigend_correction = size - GET_MODE_SIZE (mode);
467 /* If we have already instantiated virtual registers, return the actual
468 address relative to the frame pointer. */
469 if (virtuals_instantiated)
470 addr = plus_constant (Pmode, frame_pointer_rtx,
471 trunc_int_for_mode
472 (slot_offset + bigend_correction
473 + STARTING_FRAME_OFFSET, Pmode));
474 else
475 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
476 trunc_int_for_mode
477 (slot_offset + bigend_correction,
478 Pmode));
480 x = gen_rtx_MEM (mode, addr);
481 set_mem_align (x, alignment_in_bits);
482 MEM_NOTRAP_P (x) = 1;
484 stack_slot_list
485 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
487 if (frame_offset_overflow (frame_offset, current_function_decl))
488 frame_offset = 0;
490 return x;
493 /* Wrap up assign_stack_local_1 with last parameter as false. */
496 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
498 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
501 /* In order to evaluate some expressions, such as function calls returning
502 structures in memory, we need to temporarily allocate stack locations.
503 We record each allocated temporary in the following structure.
505 Associated with each temporary slot is a nesting level. When we pop up
506 one level, all temporaries associated with the previous level are freed.
507 Normally, all temporaries are freed after the execution of the statement
508 in which they were created. However, if we are inside a ({...}) grouping,
509 the result may be in a temporary and hence must be preserved. If the
510 result could be in a temporary, we preserve it if we can determine which
511 one it is in. If we cannot determine which temporary may contain the
512 result, all temporaries are preserved. A temporary is preserved by
513 pretending it was allocated at the previous nesting level. */
515 struct GTY(()) temp_slot {
516 /* Points to next temporary slot. */
517 struct temp_slot *next;
518 /* Points to previous temporary slot. */
519 struct temp_slot *prev;
520 /* The rtx to used to reference the slot. */
521 rtx slot;
522 /* The size, in units, of the slot. */
523 HOST_WIDE_INT size;
524 /* The type of the object in the slot, or zero if it doesn't correspond
525 to a type. We use this to determine whether a slot can be reused.
526 It can be reused if objects of the type of the new slot will always
527 conflict with objects of the type of the old slot. */
528 tree type;
529 /* The alignment (in bits) of the slot. */
530 unsigned int align;
531 /* Nonzero if this temporary is currently in use. */
532 char in_use;
533 /* Nesting level at which this slot is being used. */
534 int level;
535 /* The offset of the slot from the frame_pointer, including extra space
536 for alignment. This info is for combine_temp_slots. */
537 HOST_WIDE_INT base_offset;
538 /* The size of the slot, including extra space for alignment. This
539 info is for combine_temp_slots. */
540 HOST_WIDE_INT full_size;
543 /* A table of addresses that represent a stack slot. The table is a mapping
544 from address RTXen to a temp slot. */
545 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
546 static size_t n_temp_slots_in_use;
548 /* Entry for the above hash table. */
549 struct GTY(()) temp_slot_address_entry {
550 hashval_t hash;
551 rtx address;
552 struct temp_slot *temp_slot;
555 /* Removes temporary slot TEMP from LIST. */
557 static void
558 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
560 if (temp->next)
561 temp->next->prev = temp->prev;
562 if (temp->prev)
563 temp->prev->next = temp->next;
564 else
565 *list = temp->next;
567 temp->prev = temp->next = NULL;
570 /* Inserts temporary slot TEMP to LIST. */
572 static void
573 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
575 temp->next = *list;
576 if (*list)
577 (*list)->prev = temp;
578 temp->prev = NULL;
579 *list = temp;
582 /* Returns the list of used temp slots at LEVEL. */
584 static struct temp_slot **
585 temp_slots_at_level (int level)
587 if (level >= (int) vec_safe_length (used_temp_slots))
588 vec_safe_grow_cleared (used_temp_slots, level + 1);
590 return &(*used_temp_slots)[level];
593 /* Returns the maximal temporary slot level. */
595 static int
596 max_slot_level (void)
598 if (!used_temp_slots)
599 return -1;
601 return used_temp_slots->length () - 1;
604 /* Moves temporary slot TEMP to LEVEL. */
606 static void
607 move_slot_to_level (struct temp_slot *temp, int level)
609 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
610 insert_slot_to_list (temp, temp_slots_at_level (level));
611 temp->level = level;
614 /* Make temporary slot TEMP available. */
616 static void
617 make_slot_available (struct temp_slot *temp)
619 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
620 insert_slot_to_list (temp, &avail_temp_slots);
621 temp->in_use = 0;
622 temp->level = -1;
623 n_temp_slots_in_use--;
626 /* Compute the hash value for an address -> temp slot mapping.
627 The value is cached on the mapping entry. */
628 static hashval_t
629 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
631 int do_not_record = 0;
632 return hash_rtx (t->address, GET_MODE (t->address),
633 &do_not_record, NULL, false);
636 /* Return the hash value for an address -> temp slot mapping. */
637 static hashval_t
638 temp_slot_address_hash (const void *p)
640 const struct temp_slot_address_entry *t;
641 t = (const struct temp_slot_address_entry *) p;
642 return t->hash;
645 /* Compare two address -> temp slot mapping entries. */
646 static int
647 temp_slot_address_eq (const void *p1, const void *p2)
649 const struct temp_slot_address_entry *t1, *t2;
650 t1 = (const struct temp_slot_address_entry *) p1;
651 t2 = (const struct temp_slot_address_entry *) p2;
652 return exp_equiv_p (t1->address, t2->address, 0, true);
655 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
656 static void
657 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
659 void **slot;
660 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
661 t->address = address;
662 t->temp_slot = temp_slot;
663 t->hash = temp_slot_address_compute_hash (t);
664 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
665 *slot = t;
668 /* Remove an address -> temp slot mapping entry if the temp slot is
669 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
670 static int
671 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
673 const struct temp_slot_address_entry *t;
674 t = (const struct temp_slot_address_entry *) *slot;
675 if (! t->temp_slot->in_use)
676 htab_clear_slot (temp_slot_address_table, slot);
677 return 1;
680 /* Remove all mappings of addresses to unused temp slots. */
681 static void
682 remove_unused_temp_slot_addresses (void)
684 /* Use quicker clearing if there aren't any active temp slots. */
685 if (n_temp_slots_in_use)
686 htab_traverse (temp_slot_address_table,
687 remove_unused_temp_slot_addresses_1,
688 NULL);
689 else
690 htab_empty (temp_slot_address_table);
693 /* Find the temp slot corresponding to the object at address X. */
695 static struct temp_slot *
696 find_temp_slot_from_address (rtx x)
698 struct temp_slot *p;
699 struct temp_slot_address_entry tmp, *t;
701 /* First try the easy way:
702 See if X exists in the address -> temp slot mapping. */
703 tmp.address = x;
704 tmp.temp_slot = NULL;
705 tmp.hash = temp_slot_address_compute_hash (&tmp);
706 t = (struct temp_slot_address_entry *)
707 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
708 if (t)
709 return t->temp_slot;
711 /* If we have a sum involving a register, see if it points to a temp
712 slot. */
713 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
714 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
715 return p;
716 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
717 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
718 return p;
720 /* Last resort: Address is a virtual stack var address. */
721 if (GET_CODE (x) == PLUS
722 && XEXP (x, 0) == virtual_stack_vars_rtx
723 && CONST_INT_P (XEXP (x, 1)))
725 int i;
726 for (i = max_slot_level (); i >= 0; i--)
727 for (p = *temp_slots_at_level (i); p; p = p->next)
729 if (INTVAL (XEXP (x, 1)) >= p->base_offset
730 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
731 return p;
735 return NULL;
738 /* Allocate a temporary stack slot and record it for possible later
739 reuse.
741 MODE is the machine mode to be given to the returned rtx.
743 SIZE is the size in units of the space required. We do no rounding here
744 since assign_stack_local will do any required rounding.
746 TYPE is the type that will be used for the stack slot. */
749 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
750 tree type)
752 unsigned int align;
753 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
754 rtx slot;
756 /* If SIZE is -1 it means that somebody tried to allocate a temporary
757 of a variable size. */
758 gcc_assert (size != -1);
760 align = get_stack_local_alignment (type, mode);
762 /* Try to find an available, already-allocated temporary of the proper
763 mode which meets the size and alignment requirements. Choose the
764 smallest one with the closest alignment.
766 If assign_stack_temp is called outside of the tree->rtl expansion,
767 we cannot reuse the stack slots (that may still refer to
768 VIRTUAL_STACK_VARS_REGNUM). */
769 if (!virtuals_instantiated)
771 for (p = avail_temp_slots; p; p = p->next)
773 if (p->align >= align && p->size >= size
774 && GET_MODE (p->slot) == mode
775 && objects_must_conflict_p (p->type, type)
776 && (best_p == 0 || best_p->size > p->size
777 || (best_p->size == p->size && best_p->align > p->align)))
779 if (p->align == align && p->size == size)
781 selected = p;
782 cut_slot_from_list (selected, &avail_temp_slots);
783 best_p = 0;
784 break;
786 best_p = p;
791 /* Make our best, if any, the one to use. */
792 if (best_p)
794 selected = best_p;
795 cut_slot_from_list (selected, &avail_temp_slots);
797 /* If there are enough aligned bytes left over, make them into a new
798 temp_slot so that the extra bytes don't get wasted. Do this only
799 for BLKmode slots, so that we can be sure of the alignment. */
800 if (GET_MODE (best_p->slot) == BLKmode)
802 int alignment = best_p->align / BITS_PER_UNIT;
803 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
805 if (best_p->size - rounded_size >= alignment)
807 p = ggc_alloc<temp_slot> ();
808 p->in_use = 0;
809 p->size = best_p->size - rounded_size;
810 p->base_offset = best_p->base_offset + rounded_size;
811 p->full_size = best_p->full_size - rounded_size;
812 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
813 p->align = best_p->align;
814 p->type = best_p->type;
815 insert_slot_to_list (p, &avail_temp_slots);
817 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
818 stack_slot_list);
820 best_p->size = rounded_size;
821 best_p->full_size = rounded_size;
826 /* If we still didn't find one, make a new temporary. */
827 if (selected == 0)
829 HOST_WIDE_INT frame_offset_old = frame_offset;
831 p = ggc_alloc<temp_slot> ();
833 /* We are passing an explicit alignment request to assign_stack_local.
834 One side effect of that is assign_stack_local will not round SIZE
835 to ensure the frame offset remains suitably aligned.
837 So for requests which depended on the rounding of SIZE, we go ahead
838 and round it now. We also make sure ALIGNMENT is at least
839 BIGGEST_ALIGNMENT. */
840 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
841 p->slot = assign_stack_local_1 (mode,
842 (mode == BLKmode
843 ? CEIL_ROUND (size,
844 (int) align
845 / BITS_PER_UNIT)
846 : size),
847 align, 0);
849 p->align = align;
851 /* The following slot size computation is necessary because we don't
852 know the actual size of the temporary slot until assign_stack_local
853 has performed all the frame alignment and size rounding for the
854 requested temporary. Note that extra space added for alignment
855 can be either above or below this stack slot depending on which
856 way the frame grows. We include the extra space if and only if it
857 is above this slot. */
858 if (FRAME_GROWS_DOWNWARD)
859 p->size = frame_offset_old - frame_offset;
860 else
861 p->size = size;
863 /* Now define the fields used by combine_temp_slots. */
864 if (FRAME_GROWS_DOWNWARD)
866 p->base_offset = frame_offset;
867 p->full_size = frame_offset_old - frame_offset;
869 else
871 p->base_offset = frame_offset_old;
872 p->full_size = frame_offset - frame_offset_old;
875 selected = p;
878 p = selected;
879 p->in_use = 1;
880 p->type = type;
881 p->level = temp_slot_level;
882 n_temp_slots_in_use++;
884 pp = temp_slots_at_level (p->level);
885 insert_slot_to_list (p, pp);
886 insert_temp_slot_address (XEXP (p->slot, 0), p);
888 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
889 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
890 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
892 /* If we know the alias set for the memory that will be used, use
893 it. If there's no TYPE, then we don't know anything about the
894 alias set for the memory. */
895 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
896 set_mem_align (slot, align);
898 /* If a type is specified, set the relevant flags. */
899 if (type != 0)
900 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
901 MEM_NOTRAP_P (slot) = 1;
903 return slot;
906 /* Allocate a temporary stack slot and record it for possible later
907 reuse. First two arguments are same as in preceding function. */
910 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
912 return assign_stack_temp_for_type (mode, size, NULL_TREE);
915 /* Assign a temporary.
916 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
917 and so that should be used in error messages. In either case, we
918 allocate of the given type.
919 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
920 it is 0 if a register is OK.
921 DONT_PROMOTE is 1 if we should not promote values in register
922 to wider modes. */
925 assign_temp (tree type_or_decl, int memory_required,
926 int dont_promote ATTRIBUTE_UNUSED)
928 tree type, decl;
929 enum machine_mode mode;
930 #ifdef PROMOTE_MODE
931 int unsignedp;
932 #endif
934 if (DECL_P (type_or_decl))
935 decl = type_or_decl, type = TREE_TYPE (decl);
936 else
937 decl = NULL, type = type_or_decl;
939 mode = TYPE_MODE (type);
940 #ifdef PROMOTE_MODE
941 unsignedp = TYPE_UNSIGNED (type);
942 #endif
944 if (mode == BLKmode || memory_required)
946 HOST_WIDE_INT size = int_size_in_bytes (type);
947 rtx tmp;
949 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
950 problems with allocating the stack space. */
951 if (size == 0)
952 size = 1;
954 /* Unfortunately, we don't yet know how to allocate variable-sized
955 temporaries. However, sometimes we can find a fixed upper limit on
956 the size, so try that instead. */
957 else if (size == -1)
958 size = max_int_size_in_bytes (type);
960 /* The size of the temporary may be too large to fit into an integer. */
961 /* ??? Not sure this should happen except for user silliness, so limit
962 this to things that aren't compiler-generated temporaries. The
963 rest of the time we'll die in assign_stack_temp_for_type. */
964 if (decl && size == -1
965 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
967 error ("size of variable %q+D is too large", decl);
968 size = 1;
971 tmp = assign_stack_temp_for_type (mode, size, type);
972 return tmp;
975 #ifdef PROMOTE_MODE
976 if (! dont_promote)
977 mode = promote_mode (type, mode, &unsignedp);
978 #endif
980 return gen_reg_rtx (mode);
983 /* Combine temporary stack slots which are adjacent on the stack.
985 This allows for better use of already allocated stack space. This is only
986 done for BLKmode slots because we can be sure that we won't have alignment
987 problems in this case. */
989 static void
990 combine_temp_slots (void)
992 struct temp_slot *p, *q, *next, *next_q;
993 int num_slots;
995 /* We can't combine slots, because the information about which slot
996 is in which alias set will be lost. */
997 if (flag_strict_aliasing)
998 return;
1000 /* If there are a lot of temp slots, don't do anything unless
1001 high levels of optimization. */
1002 if (! flag_expensive_optimizations)
1003 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1004 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1005 return;
1007 for (p = avail_temp_slots; p; p = next)
1009 int delete_p = 0;
1011 next = p->next;
1013 if (GET_MODE (p->slot) != BLKmode)
1014 continue;
1016 for (q = p->next; q; q = next_q)
1018 int delete_q = 0;
1020 next_q = q->next;
1022 if (GET_MODE (q->slot) != BLKmode)
1023 continue;
1025 if (p->base_offset + p->full_size == q->base_offset)
1027 /* Q comes after P; combine Q into P. */
1028 p->size += q->size;
1029 p->full_size += q->full_size;
1030 delete_q = 1;
1032 else if (q->base_offset + q->full_size == p->base_offset)
1034 /* P comes after Q; combine P into Q. */
1035 q->size += p->size;
1036 q->full_size += p->full_size;
1037 delete_p = 1;
1038 break;
1040 if (delete_q)
1041 cut_slot_from_list (q, &avail_temp_slots);
1044 /* Either delete P or advance past it. */
1045 if (delete_p)
1046 cut_slot_from_list (p, &avail_temp_slots);
1050 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1051 slot that previously was known by OLD_RTX. */
1053 void
1054 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1056 struct temp_slot *p;
1058 if (rtx_equal_p (old_rtx, new_rtx))
1059 return;
1061 p = find_temp_slot_from_address (old_rtx);
1063 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1064 NEW_RTX is a register, see if one operand of the PLUS is a
1065 temporary location. If so, NEW_RTX points into it. Otherwise,
1066 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1067 in common between them. If so, try a recursive call on those
1068 values. */
1069 if (p == 0)
1071 if (GET_CODE (old_rtx) != PLUS)
1072 return;
1074 if (REG_P (new_rtx))
1076 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1077 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1078 return;
1080 else if (GET_CODE (new_rtx) != PLUS)
1081 return;
1083 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1084 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1085 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1086 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1087 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1092 return;
1095 /* Otherwise add an alias for the temp's address. */
1096 insert_temp_slot_address (new_rtx, p);
1099 /* If X could be a reference to a temporary slot, mark that slot as
1100 belonging to the to one level higher than the current level. If X
1101 matched one of our slots, just mark that one. Otherwise, we can't
1102 easily predict which it is, so upgrade all of them.
1104 This is called when an ({...}) construct occurs and a statement
1105 returns a value in memory. */
1107 void
1108 preserve_temp_slots (rtx x)
1110 struct temp_slot *p = 0, *next;
1112 if (x == 0)
1113 return;
1115 /* If X is a register that is being used as a pointer, see if we have
1116 a temporary slot we know it points to. */
1117 if (REG_P (x) && REG_POINTER (x))
1118 p = find_temp_slot_from_address (x);
1120 /* If X is not in memory or is at a constant address, it cannot be in
1121 a temporary slot. */
1122 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1123 return;
1125 /* First see if we can find a match. */
1126 if (p == 0)
1127 p = find_temp_slot_from_address (XEXP (x, 0));
1129 if (p != 0)
1131 if (p->level == temp_slot_level)
1132 move_slot_to_level (p, temp_slot_level - 1);
1133 return;
1136 /* Otherwise, preserve all non-kept slots at this level. */
1137 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1139 next = p->next;
1140 move_slot_to_level (p, temp_slot_level - 1);
1144 /* Free all temporaries used so far. This is normally called at the
1145 end of generating code for a statement. */
1147 void
1148 free_temp_slots (void)
1150 struct temp_slot *p, *next;
1151 bool some_available = false;
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1155 next = p->next;
1156 make_slot_available (p);
1157 some_available = true;
1160 if (some_available)
1162 remove_unused_temp_slot_addresses ();
1163 combine_temp_slots ();
1167 /* Push deeper into the nesting level for stack temporaries. */
1169 void
1170 push_temp_slots (void)
1172 temp_slot_level++;
1175 /* Pop a temporary nesting level. All slots in use in the current level
1176 are freed. */
1178 void
1179 pop_temp_slots (void)
1181 free_temp_slots ();
1182 temp_slot_level--;
1185 /* Initialize temporary slots. */
1187 void
1188 init_temp_slots (void)
1190 /* We have not allocated any temporaries yet. */
1191 avail_temp_slots = 0;
1192 vec_alloc (used_temp_slots, 0);
1193 temp_slot_level = 0;
1194 n_temp_slots_in_use = 0;
1196 /* Set up the table to map addresses to temp slots. */
1197 if (! temp_slot_address_table)
1198 temp_slot_address_table = htab_create_ggc (32,
1199 temp_slot_address_hash,
1200 temp_slot_address_eq,
1201 NULL);
1202 else
1203 htab_empty (temp_slot_address_table);
1206 /* Functions and data structures to keep track of the values hard regs
1207 had at the start of the function. */
1209 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1210 and has_hard_reg_initial_val.. */
1211 typedef struct GTY(()) initial_value_pair {
1212 rtx hard_reg;
1213 rtx pseudo;
1214 } initial_value_pair;
1215 /* ??? This could be a VEC but there is currently no way to define an
1216 opaque VEC type. This could be worked around by defining struct
1217 initial_value_pair in function.h. */
1218 typedef struct GTY(()) initial_value_struct {
1219 int num_entries;
1220 int max_entries;
1221 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1222 } initial_value_struct;
1224 /* If a pseudo represents an initial hard reg (or expression), return
1225 it, else return NULL_RTX. */
1228 get_hard_reg_initial_reg (rtx reg)
1230 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1231 int i;
1233 if (ivs == 0)
1234 return NULL_RTX;
1236 for (i = 0; i < ivs->num_entries; i++)
1237 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1238 return ivs->entries[i].hard_reg;
1240 return NULL_RTX;
1243 /* Make sure that there's a pseudo register of mode MODE that stores the
1244 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1247 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1249 struct initial_value_struct *ivs;
1250 rtx rv;
1252 rv = has_hard_reg_initial_val (mode, regno);
1253 if (rv)
1254 return rv;
1256 ivs = crtl->hard_reg_initial_vals;
1257 if (ivs == 0)
1259 ivs = ggc_alloc<initial_value_struct> ();
1260 ivs->num_entries = 0;
1261 ivs->max_entries = 5;
1262 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1263 crtl->hard_reg_initial_vals = ivs;
1266 if (ivs->num_entries >= ivs->max_entries)
1268 ivs->max_entries += 5;
1269 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1270 ivs->max_entries);
1273 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1274 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1276 return ivs->entries[ivs->num_entries++].pseudo;
1279 /* See if get_hard_reg_initial_val has been used to create a pseudo
1280 for the initial value of hard register REGNO in mode MODE. Return
1281 the associated pseudo if so, otherwise return NULL. */
1284 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1286 struct initial_value_struct *ivs;
1287 int i;
1289 ivs = crtl->hard_reg_initial_vals;
1290 if (ivs != 0)
1291 for (i = 0; i < ivs->num_entries; i++)
1292 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1293 && REGNO (ivs->entries[i].hard_reg) == regno)
1294 return ivs->entries[i].pseudo;
1296 return NULL_RTX;
1299 unsigned int
1300 emit_initial_value_sets (void)
1302 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1303 int i;
1304 rtx_insn *seq;
1306 if (ivs == 0)
1307 return 0;
1309 start_sequence ();
1310 for (i = 0; i < ivs->num_entries; i++)
1311 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1312 seq = get_insns ();
1313 end_sequence ();
1315 emit_insn_at_entry (seq);
1316 return 0;
1319 /* Return the hardreg-pseudoreg initial values pair entry I and
1320 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1321 bool
1322 initial_value_entry (int i, rtx *hreg, rtx *preg)
1324 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1325 if (!ivs || i >= ivs->num_entries)
1326 return false;
1328 *hreg = ivs->entries[i].hard_reg;
1329 *preg = ivs->entries[i].pseudo;
1330 return true;
1333 /* These routines are responsible for converting virtual register references
1334 to the actual hard register references once RTL generation is complete.
1336 The following four variables are used for communication between the
1337 routines. They contain the offsets of the virtual registers from their
1338 respective hard registers. */
1340 static int in_arg_offset;
1341 static int var_offset;
1342 static int dynamic_offset;
1343 static int out_arg_offset;
1344 static int cfa_offset;
1346 /* In most machines, the stack pointer register is equivalent to the bottom
1347 of the stack. */
1349 #ifndef STACK_POINTER_OFFSET
1350 #define STACK_POINTER_OFFSET 0
1351 #endif
1353 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1354 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1355 #endif
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1361 #ifndef STACK_DYNAMIC_OFFSET
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1371 #ifdef INCOMING_REG_PARM_STACK_SPACE
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1396 if (x == virtual_incoming_args_rtx)
1398 if (stack_realign_drap)
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1428 else
1429 return NULL_RTX;
1431 *poffset = offset;
1432 return new_rtx;
1435 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1436 registers present inside of *LOC. The expression is simplified,
1437 as much as possible, but is not to be considered "valid" in any sense
1438 implied by the target. Return true if any change is made. */
1440 static bool
1441 instantiate_virtual_regs_in_rtx (rtx *loc)
1443 if (!*loc)
1444 return false;
1445 bool changed = false;
1446 subrtx_ptr_iterator::array_type array;
1447 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1449 rtx *loc = *iter;
1450 if (rtx x = *loc)
1452 rtx new_rtx;
1453 HOST_WIDE_INT offset;
1454 switch (GET_CODE (x))
1456 case REG:
1457 new_rtx = instantiate_new_reg (x, &offset);
1458 if (new_rtx)
1460 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1461 changed = true;
1463 iter.skip_subrtxes ();
1464 break;
1466 case PLUS:
1467 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1468 if (new_rtx)
1470 XEXP (x, 0) = new_rtx;
1471 *loc = plus_constant (GET_MODE (x), x, offset, true);
1472 changed = true;
1473 iter.skip_subrtxes ();
1474 break;
1477 /* FIXME -- from old code */
1478 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1479 we can commute the PLUS and SUBREG because pointers into the
1480 frame are well-behaved. */
1481 break;
1483 default:
1484 break;
1488 return changed;
1491 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1492 matches the predicate for insn CODE operand OPERAND. */
1494 static int
1495 safe_insn_predicate (int code, int operand, rtx x)
1497 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1500 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1501 registers present inside of insn. The result will be a valid insn. */
1503 static void
1504 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1506 HOST_WIDE_INT offset;
1507 int insn_code, i;
1508 bool any_change = false;
1509 rtx set, new_rtx, x;
1510 rtx_insn *seq;
1512 /* There are some special cases to be handled first. */
1513 set = single_set (insn);
1514 if (set)
1516 /* We're allowed to assign to a virtual register. This is interpreted
1517 to mean that the underlying register gets assigned the inverse
1518 transformation. This is used, for example, in the handling of
1519 non-local gotos. */
1520 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1521 if (new_rtx)
1523 start_sequence ();
1525 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1526 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1527 gen_int_mode (-offset, GET_MODE (new_rtx)));
1528 x = force_operand (x, new_rtx);
1529 if (x != new_rtx)
1530 emit_move_insn (new_rtx, x);
1532 seq = get_insns ();
1533 end_sequence ();
1535 emit_insn_before (seq, insn);
1536 delete_insn (insn);
1537 return;
1540 /* Handle a straight copy from a virtual register by generating a
1541 new add insn. The difference between this and falling through
1542 to the generic case is avoiding a new pseudo and eliminating a
1543 move insn in the initial rtl stream. */
1544 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1545 if (new_rtx && offset != 0
1546 && REG_P (SET_DEST (set))
1547 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1549 start_sequence ();
1551 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1552 gen_int_mode (offset,
1553 GET_MODE (SET_DEST (set))),
1554 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1555 if (x != SET_DEST (set))
1556 emit_move_insn (SET_DEST (set), x);
1558 seq = get_insns ();
1559 end_sequence ();
1561 emit_insn_before (seq, insn);
1562 delete_insn (insn);
1563 return;
1566 extract_insn (insn);
1567 insn_code = INSN_CODE (insn);
1569 /* Handle a plus involving a virtual register by determining if the
1570 operands remain valid if they're modified in place. */
1571 if (GET_CODE (SET_SRC (set)) == PLUS
1572 && recog_data.n_operands >= 3
1573 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1574 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1575 && CONST_INT_P (recog_data.operand[2])
1576 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1578 offset += INTVAL (recog_data.operand[2]);
1580 /* If the sum is zero, then replace with a plain move. */
1581 if (offset == 0
1582 && REG_P (SET_DEST (set))
1583 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1585 start_sequence ();
1586 emit_move_insn (SET_DEST (set), new_rtx);
1587 seq = get_insns ();
1588 end_sequence ();
1590 emit_insn_before (seq, insn);
1591 delete_insn (insn);
1592 return;
1595 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1597 /* Using validate_change and apply_change_group here leaves
1598 recog_data in an invalid state. Since we know exactly what
1599 we want to check, do those two by hand. */
1600 if (safe_insn_predicate (insn_code, 1, new_rtx)
1601 && safe_insn_predicate (insn_code, 2, x))
1603 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1604 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1605 any_change = true;
1607 /* Fall through into the regular operand fixup loop in
1608 order to take care of operands other than 1 and 2. */
1612 else
1614 extract_insn (insn);
1615 insn_code = INSN_CODE (insn);
1618 /* In the general case, we expect virtual registers to appear only in
1619 operands, and then only as either bare registers or inside memories. */
1620 for (i = 0; i < recog_data.n_operands; ++i)
1622 x = recog_data.operand[i];
1623 switch (GET_CODE (x))
1625 case MEM:
1627 rtx addr = XEXP (x, 0);
1629 if (!instantiate_virtual_regs_in_rtx (&addr))
1630 continue;
1632 start_sequence ();
1633 x = replace_equiv_address (x, addr, true);
1634 /* It may happen that the address with the virtual reg
1635 was valid (e.g. based on the virtual stack reg, which might
1636 be acceptable to the predicates with all offsets), whereas
1637 the address now isn't anymore, for instance when the address
1638 is still offsetted, but the base reg isn't virtual-stack-reg
1639 anymore. Below we would do a force_reg on the whole operand,
1640 but this insn might actually only accept memory. Hence,
1641 before doing that last resort, try to reload the address into
1642 a register, so this operand stays a MEM. */
1643 if (!safe_insn_predicate (insn_code, i, x))
1645 addr = force_reg (GET_MODE (addr), addr);
1646 x = replace_equiv_address (x, addr, true);
1648 seq = get_insns ();
1649 end_sequence ();
1650 if (seq)
1651 emit_insn_before (seq, insn);
1653 break;
1655 case REG:
1656 new_rtx = instantiate_new_reg (x, &offset);
1657 if (new_rtx == NULL)
1658 continue;
1659 if (offset == 0)
1660 x = new_rtx;
1661 else
1663 start_sequence ();
1665 /* Careful, special mode predicates may have stuff in
1666 insn_data[insn_code].operand[i].mode that isn't useful
1667 to us for computing a new value. */
1668 /* ??? Recognize address_operand and/or "p" constraints
1669 to see if (plus new offset) is a valid before we put
1670 this through expand_simple_binop. */
1671 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1672 gen_int_mode (offset, GET_MODE (x)),
1673 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1674 seq = get_insns ();
1675 end_sequence ();
1676 emit_insn_before (seq, insn);
1678 break;
1680 case SUBREG:
1681 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1682 if (new_rtx == NULL)
1683 continue;
1684 if (offset != 0)
1686 start_sequence ();
1687 new_rtx = expand_simple_binop
1688 (GET_MODE (new_rtx), PLUS, new_rtx,
1689 gen_int_mode (offset, GET_MODE (new_rtx)),
1690 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1691 seq = get_insns ();
1692 end_sequence ();
1693 emit_insn_before (seq, insn);
1695 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1696 GET_MODE (new_rtx), SUBREG_BYTE (x));
1697 gcc_assert (x);
1698 break;
1700 default:
1701 continue;
1704 /* At this point, X contains the new value for the operand.
1705 Validate the new value vs the insn predicate. Note that
1706 asm insns will have insn_code -1 here. */
1707 if (!safe_insn_predicate (insn_code, i, x))
1709 start_sequence ();
1710 if (REG_P (x))
1712 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1713 x = copy_to_reg (x);
1715 else
1716 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1717 seq = get_insns ();
1718 end_sequence ();
1719 if (seq)
1720 emit_insn_before (seq, insn);
1723 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1724 any_change = true;
1727 if (any_change)
1729 /* Propagate operand changes into the duplicates. */
1730 for (i = 0; i < recog_data.n_dups; ++i)
1731 *recog_data.dup_loc[i]
1732 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1734 /* Force re-recognition of the instruction for validation. */
1735 INSN_CODE (insn) = -1;
1738 if (asm_noperands (PATTERN (insn)) >= 0)
1740 if (!check_asm_operands (PATTERN (insn)))
1742 error_for_asm (insn, "impossible constraint in %<asm%>");
1743 /* For asm goto, instead of fixing up all the edges
1744 just clear the template and clear input operands
1745 (asm goto doesn't have any output operands). */
1746 if (JUMP_P (insn))
1748 rtx asm_op = extract_asm_operands (PATTERN (insn));
1749 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1750 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1751 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1753 else
1754 delete_insn (insn);
1757 else
1759 if (recog_memoized (insn) < 0)
1760 fatal_insn_not_found (insn);
1764 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1765 do any instantiation required. */
1767 void
1768 instantiate_decl_rtl (rtx x)
1770 rtx addr;
1772 if (x == 0)
1773 return;
1775 /* If this is a CONCAT, recurse for the pieces. */
1776 if (GET_CODE (x) == CONCAT)
1778 instantiate_decl_rtl (XEXP (x, 0));
1779 instantiate_decl_rtl (XEXP (x, 1));
1780 return;
1783 /* If this is not a MEM, no need to do anything. Similarly if the
1784 address is a constant or a register that is not a virtual register. */
1785 if (!MEM_P (x))
1786 return;
1788 addr = XEXP (x, 0);
1789 if (CONSTANT_P (addr)
1790 || (REG_P (addr)
1791 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1792 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1793 return;
1795 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1798 /* Helper for instantiate_decls called via walk_tree: Process all decls
1799 in the given DECL_VALUE_EXPR. */
1801 static tree
1802 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1804 tree t = *tp;
1805 if (! EXPR_P (t))
1807 *walk_subtrees = 0;
1808 if (DECL_P (t))
1810 if (DECL_RTL_SET_P (t))
1811 instantiate_decl_rtl (DECL_RTL (t));
1812 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1813 && DECL_INCOMING_RTL (t))
1814 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1815 if ((TREE_CODE (t) == VAR_DECL
1816 || TREE_CODE (t) == RESULT_DECL)
1817 && DECL_HAS_VALUE_EXPR_P (t))
1819 tree v = DECL_VALUE_EXPR (t);
1820 walk_tree (&v, instantiate_expr, NULL, NULL);
1824 return NULL;
1827 /* Subroutine of instantiate_decls: Process all decls in the given
1828 BLOCK node and all its subblocks. */
1830 static void
1831 instantiate_decls_1 (tree let)
1833 tree t;
1835 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1837 if (DECL_RTL_SET_P (t))
1838 instantiate_decl_rtl (DECL_RTL (t));
1839 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1841 tree v = DECL_VALUE_EXPR (t);
1842 walk_tree (&v, instantiate_expr, NULL, NULL);
1846 /* Process all subblocks. */
1847 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1848 instantiate_decls_1 (t);
1851 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1852 all virtual registers in their DECL_RTL's. */
1854 static void
1855 instantiate_decls (tree fndecl)
1857 tree decl;
1858 unsigned ix;
1860 /* Process all parameters of the function. */
1861 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1863 instantiate_decl_rtl (DECL_RTL (decl));
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1865 if (DECL_HAS_VALUE_EXPR_P (decl))
1867 tree v = DECL_VALUE_EXPR (decl);
1868 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 if ((decl = DECL_RESULT (fndecl))
1873 && TREE_CODE (decl) == RESULT_DECL)
1875 if (DECL_RTL_SET_P (decl))
1876 instantiate_decl_rtl (DECL_RTL (decl));
1877 if (DECL_HAS_VALUE_EXPR_P (decl))
1879 tree v = DECL_VALUE_EXPR (decl);
1880 walk_tree (&v, instantiate_expr, NULL, NULL);
1884 /* Process the saved static chain if it exists. */
1885 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1886 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1887 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1889 /* Now process all variables defined in the function or its subblocks. */
1890 instantiate_decls_1 (DECL_INITIAL (fndecl));
1892 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1893 if (DECL_RTL_SET_P (decl))
1894 instantiate_decl_rtl (DECL_RTL (decl));
1895 vec_free (cfun->local_decls);
1898 /* Pass through the INSNS of function FNDECL and convert virtual register
1899 references to hard register references. */
1901 static unsigned int
1902 instantiate_virtual_regs (void)
1904 rtx_insn *insn;
1906 /* Compute the offsets to use for this function. */
1907 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1908 var_offset = STARTING_FRAME_OFFSET;
1909 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1910 out_arg_offset = STACK_POINTER_OFFSET;
1911 #ifdef FRAME_POINTER_CFA_OFFSET
1912 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1913 #else
1914 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1915 #endif
1917 /* Initialize recognition, indicating that volatile is OK. */
1918 init_recog ();
1920 /* Scan through all the insns, instantiating every virtual register still
1921 present. */
1922 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1923 if (INSN_P (insn))
1925 /* These patterns in the instruction stream can never be recognized.
1926 Fortunately, they shouldn't contain virtual registers either. */
1927 if (GET_CODE (PATTERN (insn)) == USE
1928 || GET_CODE (PATTERN (insn)) == CLOBBER
1929 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1930 continue;
1931 else if (DEBUG_INSN_P (insn))
1932 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1933 else
1934 instantiate_virtual_regs_in_insn (insn);
1936 if (INSN_DELETED_P (insn))
1937 continue;
1939 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1941 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1942 if (CALL_P (insn))
1943 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1946 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1947 instantiate_decls (current_function_decl);
1949 targetm.instantiate_decls ();
1951 /* Indicate that, from now on, assign_stack_local should use
1952 frame_pointer_rtx. */
1953 virtuals_instantiated = 1;
1955 return 0;
1958 namespace {
1960 const pass_data pass_data_instantiate_virtual_regs =
1962 RTL_PASS, /* type */
1963 "vregs", /* name */
1964 OPTGROUP_NONE, /* optinfo_flags */
1965 TV_NONE, /* tv_id */
1966 0, /* properties_required */
1967 0, /* properties_provided */
1968 0, /* properties_destroyed */
1969 0, /* todo_flags_start */
1970 0, /* todo_flags_finish */
1973 class pass_instantiate_virtual_regs : public rtl_opt_pass
1975 public:
1976 pass_instantiate_virtual_regs (gcc::context *ctxt)
1977 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1980 /* opt_pass methods: */
1981 virtual unsigned int execute (function *)
1983 return instantiate_virtual_regs ();
1986 }; // class pass_instantiate_virtual_regs
1988 } // anon namespace
1990 rtl_opt_pass *
1991 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1993 return new pass_instantiate_virtual_regs (ctxt);
1997 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1998 This means a type for which function calls must pass an address to the
1999 function or get an address back from the function.
2000 EXP may be a type node or an expression (whose type is tested). */
2003 aggregate_value_p (const_tree exp, const_tree fntype)
2005 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2006 int i, regno, nregs;
2007 rtx reg;
2009 if (fntype)
2010 switch (TREE_CODE (fntype))
2012 case CALL_EXPR:
2014 tree fndecl = get_callee_fndecl (fntype);
2015 fntype = (fndecl
2016 ? TREE_TYPE (fndecl)
2017 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2019 break;
2020 case FUNCTION_DECL:
2021 fntype = TREE_TYPE (fntype);
2022 break;
2023 case FUNCTION_TYPE:
2024 case METHOD_TYPE:
2025 break;
2026 case IDENTIFIER_NODE:
2027 fntype = NULL_TREE;
2028 break;
2029 default:
2030 /* We don't expect other tree types here. */
2031 gcc_unreachable ();
2034 if (VOID_TYPE_P (type))
2035 return 0;
2037 /* If a record should be passed the same as its first (and only) member
2038 don't pass it as an aggregate. */
2039 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2040 return aggregate_value_p (first_field (type), fntype);
2042 /* If the front end has decided that this needs to be passed by
2043 reference, do so. */
2044 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2045 && DECL_BY_REFERENCE (exp))
2046 return 1;
2048 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2049 if (fntype && TREE_ADDRESSABLE (fntype))
2050 return 1;
2052 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2053 and thus can't be returned in registers. */
2054 if (TREE_ADDRESSABLE (type))
2055 return 1;
2057 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2058 return 1;
2060 if (targetm.calls.return_in_memory (type, fntype))
2061 return 1;
2063 /* Make sure we have suitable call-clobbered regs to return
2064 the value in; if not, we must return it in memory. */
2065 reg = hard_function_value (type, 0, fntype, 0);
2067 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2068 it is OK. */
2069 if (!REG_P (reg))
2070 return 0;
2072 regno = REGNO (reg);
2073 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2074 for (i = 0; i < nregs; i++)
2075 if (! call_used_regs[regno + i])
2076 return 1;
2078 return 0;
2081 /* Return true if we should assign DECL a pseudo register; false if it
2082 should live on the local stack. */
2084 bool
2085 use_register_for_decl (const_tree decl)
2087 if (!targetm.calls.allocate_stack_slots_for_args ())
2088 return true;
2090 /* Honor volatile. */
2091 if (TREE_SIDE_EFFECTS (decl))
2092 return false;
2094 /* Honor addressability. */
2095 if (TREE_ADDRESSABLE (decl))
2096 return false;
2098 /* Only register-like things go in registers. */
2099 if (DECL_MODE (decl) == BLKmode)
2100 return false;
2102 /* If -ffloat-store specified, don't put explicit float variables
2103 into registers. */
2104 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2105 propagates values across these stores, and it probably shouldn't. */
2106 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2107 return false;
2109 /* If we're not interested in tracking debugging information for
2110 this decl, then we can certainly put it in a register. */
2111 if (DECL_IGNORED_P (decl))
2112 return true;
2114 if (optimize)
2115 return true;
2117 if (!DECL_REGISTER (decl))
2118 return false;
2120 switch (TREE_CODE (TREE_TYPE (decl)))
2122 case RECORD_TYPE:
2123 case UNION_TYPE:
2124 case QUAL_UNION_TYPE:
2125 /* When not optimizing, disregard register keyword for variables with
2126 types containing methods, otherwise the methods won't be callable
2127 from the debugger. */
2128 if (TYPE_METHODS (TREE_TYPE (decl)))
2129 return false;
2130 break;
2131 default:
2132 break;
2135 return true;
2138 /* Return true if TYPE should be passed by invisible reference. */
2140 bool
2141 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2142 tree type, bool named_arg)
2144 if (type)
2146 /* If this type contains non-trivial constructors, then it is
2147 forbidden for the middle-end to create any new copies. */
2148 if (TREE_ADDRESSABLE (type))
2149 return true;
2151 /* GCC post 3.4 passes *all* variable sized types by reference. */
2152 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2153 return true;
2155 /* If a record type should be passed the same as its first (and only)
2156 member, use the type and mode of that member. */
2157 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2159 type = TREE_TYPE (first_field (type));
2160 mode = TYPE_MODE (type);
2164 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2165 type, named_arg);
2168 /* Return true if TYPE, which is passed by reference, should be callee
2169 copied instead of caller copied. */
2171 bool
2172 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2173 tree type, bool named_arg)
2175 if (type && TREE_ADDRESSABLE (type))
2176 return false;
2177 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2178 named_arg);
2181 /* Structures to communicate between the subroutines of assign_parms.
2182 The first holds data persistent across all parameters, the second
2183 is cleared out for each parameter. */
2185 struct assign_parm_data_all
2187 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2188 should become a job of the target or otherwise encapsulated. */
2189 CUMULATIVE_ARGS args_so_far_v;
2190 cumulative_args_t args_so_far;
2191 struct args_size stack_args_size;
2192 tree function_result_decl;
2193 tree orig_fnargs;
2194 rtx_insn *first_conversion_insn;
2195 rtx_insn *last_conversion_insn;
2196 HOST_WIDE_INT pretend_args_size;
2197 HOST_WIDE_INT extra_pretend_bytes;
2198 int reg_parm_stack_space;
2201 struct assign_parm_data_one
2203 tree nominal_type;
2204 tree passed_type;
2205 rtx entry_parm;
2206 rtx stack_parm;
2207 enum machine_mode nominal_mode;
2208 enum machine_mode passed_mode;
2209 enum machine_mode promoted_mode;
2210 struct locate_and_pad_arg_data locate;
2211 int partial;
2212 BOOL_BITFIELD named_arg : 1;
2213 BOOL_BITFIELD passed_pointer : 1;
2214 BOOL_BITFIELD on_stack : 1;
2215 BOOL_BITFIELD loaded_in_reg : 1;
2218 /* A subroutine of assign_parms. Initialize ALL. */
2220 static void
2221 assign_parms_initialize_all (struct assign_parm_data_all *all)
2223 tree fntype ATTRIBUTE_UNUSED;
2225 memset (all, 0, sizeof (*all));
2227 fntype = TREE_TYPE (current_function_decl);
2229 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2230 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2231 #else
2232 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2233 current_function_decl, -1);
2234 #endif
2235 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2237 #ifdef INCOMING_REG_PARM_STACK_SPACE
2238 all->reg_parm_stack_space
2239 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2240 #endif
2243 /* If ARGS contains entries with complex types, split the entry into two
2244 entries of the component type. Return a new list of substitutions are
2245 needed, else the old list. */
2247 static void
2248 split_complex_args (vec<tree> *args)
2250 unsigned i;
2251 tree p;
2253 FOR_EACH_VEC_ELT (*args, i, p)
2255 tree type = TREE_TYPE (p);
2256 if (TREE_CODE (type) == COMPLEX_TYPE
2257 && targetm.calls.split_complex_arg (type))
2259 tree decl;
2260 tree subtype = TREE_TYPE (type);
2261 bool addressable = TREE_ADDRESSABLE (p);
2263 /* Rewrite the PARM_DECL's type with its component. */
2264 p = copy_node (p);
2265 TREE_TYPE (p) = subtype;
2266 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2267 DECL_MODE (p) = VOIDmode;
2268 DECL_SIZE (p) = NULL;
2269 DECL_SIZE_UNIT (p) = NULL;
2270 /* If this arg must go in memory, put it in a pseudo here.
2271 We can't allow it to go in memory as per normal parms,
2272 because the usual place might not have the imag part
2273 adjacent to the real part. */
2274 DECL_ARTIFICIAL (p) = addressable;
2275 DECL_IGNORED_P (p) = addressable;
2276 TREE_ADDRESSABLE (p) = 0;
2277 layout_decl (p, 0);
2278 (*args)[i] = p;
2280 /* Build a second synthetic decl. */
2281 decl = build_decl (EXPR_LOCATION (p),
2282 PARM_DECL, NULL_TREE, subtype);
2283 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2284 DECL_ARTIFICIAL (decl) = addressable;
2285 DECL_IGNORED_P (decl) = addressable;
2286 layout_decl (decl, 0);
2287 args->safe_insert (++i, decl);
2292 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2293 the hidden struct return argument, and (abi willing) complex args.
2294 Return the new parameter list. */
2296 static vec<tree>
2297 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2299 tree fndecl = current_function_decl;
2300 tree fntype = TREE_TYPE (fndecl);
2301 vec<tree> fnargs = vNULL;
2302 tree arg;
2304 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2305 fnargs.safe_push (arg);
2307 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2309 /* If struct value address is treated as the first argument, make it so. */
2310 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2311 && ! cfun->returns_pcc_struct
2312 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2314 tree type = build_pointer_type (TREE_TYPE (fntype));
2315 tree decl;
2317 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2318 PARM_DECL, get_identifier (".result_ptr"), type);
2319 DECL_ARG_TYPE (decl) = type;
2320 DECL_ARTIFICIAL (decl) = 1;
2321 DECL_NAMELESS (decl) = 1;
2322 TREE_CONSTANT (decl) = 1;
2324 DECL_CHAIN (decl) = all->orig_fnargs;
2325 all->orig_fnargs = decl;
2326 fnargs.safe_insert (0, decl);
2328 all->function_result_decl = decl;
2331 /* If the target wants to split complex arguments into scalars, do so. */
2332 if (targetm.calls.split_complex_arg)
2333 split_complex_args (&fnargs);
2335 return fnargs;
2338 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2339 data for the parameter. Incorporate ABI specifics such as pass-by-
2340 reference and type promotion. */
2342 static void
2343 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2344 struct assign_parm_data_one *data)
2346 tree nominal_type, passed_type;
2347 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2348 int unsignedp;
2350 memset (data, 0, sizeof (*data));
2352 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2353 if (!cfun->stdarg)
2354 data->named_arg = 1; /* No variadic parms. */
2355 else if (DECL_CHAIN (parm))
2356 data->named_arg = 1; /* Not the last non-variadic parm. */
2357 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2358 data->named_arg = 1; /* Only variadic ones are unnamed. */
2359 else
2360 data->named_arg = 0; /* Treat as variadic. */
2362 nominal_type = TREE_TYPE (parm);
2363 passed_type = DECL_ARG_TYPE (parm);
2365 /* Look out for errors propagating this far. Also, if the parameter's
2366 type is void then its value doesn't matter. */
2367 if (TREE_TYPE (parm) == error_mark_node
2368 /* This can happen after weird syntax errors
2369 or if an enum type is defined among the parms. */
2370 || TREE_CODE (parm) != PARM_DECL
2371 || passed_type == NULL
2372 || VOID_TYPE_P (nominal_type))
2374 nominal_type = passed_type = void_type_node;
2375 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2376 goto egress;
2379 /* Find mode of arg as it is passed, and mode of arg as it should be
2380 during execution of this function. */
2381 passed_mode = TYPE_MODE (passed_type);
2382 nominal_mode = TYPE_MODE (nominal_type);
2384 /* If the parm is to be passed as a transparent union or record, use the
2385 type of the first field for the tests below. We have already verified
2386 that the modes are the same. */
2387 if ((TREE_CODE (passed_type) == UNION_TYPE
2388 || TREE_CODE (passed_type) == RECORD_TYPE)
2389 && TYPE_TRANSPARENT_AGGR (passed_type))
2390 passed_type = TREE_TYPE (first_field (passed_type));
2392 /* See if this arg was passed by invisible reference. */
2393 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2394 passed_type, data->named_arg))
2396 passed_type = nominal_type = build_pointer_type (passed_type);
2397 data->passed_pointer = true;
2398 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2401 /* Find mode as it is passed by the ABI. */
2402 unsignedp = TYPE_UNSIGNED (passed_type);
2403 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2404 TREE_TYPE (current_function_decl), 0);
2406 egress:
2407 data->nominal_type = nominal_type;
2408 data->passed_type = passed_type;
2409 data->nominal_mode = nominal_mode;
2410 data->passed_mode = passed_mode;
2411 data->promoted_mode = promoted_mode;
2414 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2416 static void
2417 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2418 struct assign_parm_data_one *data, bool no_rtl)
2420 int varargs_pretend_bytes = 0;
2422 targetm.calls.setup_incoming_varargs (all->args_so_far,
2423 data->promoted_mode,
2424 data->passed_type,
2425 &varargs_pretend_bytes, no_rtl);
2427 /* If the back-end has requested extra stack space, record how much is
2428 needed. Do not change pretend_args_size otherwise since it may be
2429 nonzero from an earlier partial argument. */
2430 if (varargs_pretend_bytes > 0)
2431 all->pretend_args_size = varargs_pretend_bytes;
2434 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2435 the incoming location of the current parameter. */
2437 static void
2438 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2439 struct assign_parm_data_one *data)
2441 HOST_WIDE_INT pretend_bytes = 0;
2442 rtx entry_parm;
2443 bool in_regs;
2445 if (data->promoted_mode == VOIDmode)
2447 data->entry_parm = data->stack_parm = const0_rtx;
2448 return;
2451 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2452 data->promoted_mode,
2453 data->passed_type,
2454 data->named_arg);
2456 if (entry_parm == 0)
2457 data->promoted_mode = data->passed_mode;
2459 /* Determine parm's home in the stack, in case it arrives in the stack
2460 or we should pretend it did. Compute the stack position and rtx where
2461 the argument arrives and its size.
2463 There is one complexity here: If this was a parameter that would
2464 have been passed in registers, but wasn't only because it is
2465 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2466 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2467 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2468 as it was the previous time. */
2469 in_regs = entry_parm != 0;
2470 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2471 in_regs = true;
2472 #endif
2473 if (!in_regs && !data->named_arg)
2475 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2477 rtx tem;
2478 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2479 data->promoted_mode,
2480 data->passed_type, true);
2481 in_regs = tem != NULL;
2485 /* If this parameter was passed both in registers and in the stack, use
2486 the copy on the stack. */
2487 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2488 data->passed_type))
2489 entry_parm = 0;
2491 if (entry_parm)
2493 int partial;
2495 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2496 data->promoted_mode,
2497 data->passed_type,
2498 data->named_arg);
2499 data->partial = partial;
2501 /* The caller might already have allocated stack space for the
2502 register parameters. */
2503 if (partial != 0 && all->reg_parm_stack_space == 0)
2505 /* Part of this argument is passed in registers and part
2506 is passed on the stack. Ask the prologue code to extend
2507 the stack part so that we can recreate the full value.
2509 PRETEND_BYTES is the size of the registers we need to store.
2510 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2511 stack space that the prologue should allocate.
2513 Internally, gcc assumes that the argument pointer is aligned
2514 to STACK_BOUNDARY bits. This is used both for alignment
2515 optimizations (see init_emit) and to locate arguments that are
2516 aligned to more than PARM_BOUNDARY bits. We must preserve this
2517 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2518 a stack boundary. */
2520 /* We assume at most one partial arg, and it must be the first
2521 argument on the stack. */
2522 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2524 pretend_bytes = partial;
2525 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2527 /* We want to align relative to the actual stack pointer, so
2528 don't include this in the stack size until later. */
2529 all->extra_pretend_bytes = all->pretend_args_size;
2533 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2534 all->reg_parm_stack_space,
2535 entry_parm ? data->partial : 0, current_function_decl,
2536 &all->stack_args_size, &data->locate);
2538 /* Update parm_stack_boundary if this parameter is passed in the
2539 stack. */
2540 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2541 crtl->parm_stack_boundary = data->locate.boundary;
2543 /* Adjust offsets to include the pretend args. */
2544 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2545 data->locate.slot_offset.constant += pretend_bytes;
2546 data->locate.offset.constant += pretend_bytes;
2548 data->entry_parm = entry_parm;
2551 /* A subroutine of assign_parms. If there is actually space on the stack
2552 for this parm, count it in stack_args_size and return true. */
2554 static bool
2555 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2556 struct assign_parm_data_one *data)
2558 /* Trivially true if we've no incoming register. */
2559 if (data->entry_parm == NULL)
2561 /* Also true if we're partially in registers and partially not,
2562 since we've arranged to drop the entire argument on the stack. */
2563 else if (data->partial != 0)
2565 /* Also true if the target says that it's passed in both registers
2566 and on the stack. */
2567 else if (GET_CODE (data->entry_parm) == PARALLEL
2568 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2570 /* Also true if the target says that there's stack allocated for
2571 all register parameters. */
2572 else if (all->reg_parm_stack_space > 0)
2574 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2575 else
2576 return false;
2578 all->stack_args_size.constant += data->locate.size.constant;
2579 if (data->locate.size.var)
2580 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2582 return true;
2585 /* A subroutine of assign_parms. Given that this parameter is allocated
2586 stack space by the ABI, find it. */
2588 static void
2589 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2591 rtx offset_rtx, stack_parm;
2592 unsigned int align, boundary;
2594 /* If we're passing this arg using a reg, make its stack home the
2595 aligned stack slot. */
2596 if (data->entry_parm)
2597 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2598 else
2599 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2601 stack_parm = crtl->args.internal_arg_pointer;
2602 if (offset_rtx != const0_rtx)
2603 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2604 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2606 if (!data->passed_pointer)
2608 set_mem_attributes (stack_parm, parm, 1);
2609 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2610 while promoted mode's size is needed. */
2611 if (data->promoted_mode != BLKmode
2612 && data->promoted_mode != DECL_MODE (parm))
2614 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2615 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2617 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2618 data->promoted_mode);
2619 if (offset)
2620 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2625 boundary = data->locate.boundary;
2626 align = BITS_PER_UNIT;
2628 /* If we're padding upward, we know that the alignment of the slot
2629 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2630 intentionally forcing upward padding. Otherwise we have to come
2631 up with a guess at the alignment based on OFFSET_RTX. */
2632 if (data->locate.where_pad != downward || data->entry_parm)
2633 align = boundary;
2634 else if (CONST_INT_P (offset_rtx))
2636 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2637 align = align & -align;
2639 set_mem_align (stack_parm, align);
2641 if (data->entry_parm)
2642 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2644 data->stack_parm = stack_parm;
2647 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2648 always valid and contiguous. */
2650 static void
2651 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2653 rtx entry_parm = data->entry_parm;
2654 rtx stack_parm = data->stack_parm;
2656 /* If this parm was passed part in regs and part in memory, pretend it
2657 arrived entirely in memory by pushing the register-part onto the stack.
2658 In the special case of a DImode or DFmode that is split, we could put
2659 it together in a pseudoreg directly, but for now that's not worth
2660 bothering with. */
2661 if (data->partial != 0)
2663 /* Handle calls that pass values in multiple non-contiguous
2664 locations. The Irix 6 ABI has examples of this. */
2665 if (GET_CODE (entry_parm) == PARALLEL)
2666 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2667 data->passed_type,
2668 int_size_in_bytes (data->passed_type));
2669 else
2671 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2672 move_block_from_reg (REGNO (entry_parm),
2673 validize_mem (copy_rtx (stack_parm)),
2674 data->partial / UNITS_PER_WORD);
2677 entry_parm = stack_parm;
2680 /* If we didn't decide this parm came in a register, by default it came
2681 on the stack. */
2682 else if (entry_parm == NULL)
2683 entry_parm = stack_parm;
2685 /* When an argument is passed in multiple locations, we can't make use
2686 of this information, but we can save some copying if the whole argument
2687 is passed in a single register. */
2688 else if (GET_CODE (entry_parm) == PARALLEL
2689 && data->nominal_mode != BLKmode
2690 && data->passed_mode != BLKmode)
2692 size_t i, len = XVECLEN (entry_parm, 0);
2694 for (i = 0; i < len; i++)
2695 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2696 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2697 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2698 == data->passed_mode)
2699 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2701 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2702 break;
2706 data->entry_parm = entry_parm;
2709 /* A subroutine of assign_parms. Reconstitute any values which were
2710 passed in multiple registers and would fit in a single register. */
2712 static void
2713 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2715 rtx entry_parm = data->entry_parm;
2717 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2718 This can be done with register operations rather than on the
2719 stack, even if we will store the reconstituted parameter on the
2720 stack later. */
2721 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2723 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2724 emit_group_store (parmreg, entry_parm, data->passed_type,
2725 GET_MODE_SIZE (GET_MODE (entry_parm)));
2726 entry_parm = parmreg;
2729 data->entry_parm = entry_parm;
2732 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2733 always valid and properly aligned. */
2735 static void
2736 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2738 rtx stack_parm = data->stack_parm;
2740 /* If we can't trust the parm stack slot to be aligned enough for its
2741 ultimate type, don't use that slot after entry. We'll make another
2742 stack slot, if we need one. */
2743 if (stack_parm
2744 && ((STRICT_ALIGNMENT
2745 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2746 || (data->nominal_type
2747 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2748 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2749 stack_parm = NULL;
2751 /* If parm was passed in memory, and we need to convert it on entry,
2752 don't store it back in that same slot. */
2753 else if (data->entry_parm == stack_parm
2754 && data->nominal_mode != BLKmode
2755 && data->nominal_mode != data->passed_mode)
2756 stack_parm = NULL;
2758 /* If stack protection is in effect for this function, don't leave any
2759 pointers in their passed stack slots. */
2760 else if (crtl->stack_protect_guard
2761 && (flag_stack_protect == 2
2762 || data->passed_pointer
2763 || POINTER_TYPE_P (data->nominal_type)))
2764 stack_parm = NULL;
2766 data->stack_parm = stack_parm;
2769 /* A subroutine of assign_parms. Return true if the current parameter
2770 should be stored as a BLKmode in the current frame. */
2772 static bool
2773 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2775 if (data->nominal_mode == BLKmode)
2776 return true;
2777 if (GET_MODE (data->entry_parm) == BLKmode)
2778 return true;
2780 #ifdef BLOCK_REG_PADDING
2781 /* Only assign_parm_setup_block knows how to deal with register arguments
2782 that are padded at the least significant end. */
2783 if (REG_P (data->entry_parm)
2784 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2785 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2786 == (BYTES_BIG_ENDIAN ? upward : downward)))
2787 return true;
2788 #endif
2790 return false;
2793 /* A subroutine of assign_parms. Arrange for the parameter to be
2794 present and valid in DATA->STACK_RTL. */
2796 static void
2797 assign_parm_setup_block (struct assign_parm_data_all *all,
2798 tree parm, struct assign_parm_data_one *data)
2800 rtx entry_parm = data->entry_parm;
2801 rtx stack_parm = data->stack_parm;
2802 HOST_WIDE_INT size;
2803 HOST_WIDE_INT size_stored;
2805 if (GET_CODE (entry_parm) == PARALLEL)
2806 entry_parm = emit_group_move_into_temps (entry_parm);
2808 size = int_size_in_bytes (data->passed_type);
2809 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2810 if (stack_parm == 0)
2812 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2813 stack_parm = assign_stack_local (BLKmode, size_stored,
2814 DECL_ALIGN (parm));
2815 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2816 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2817 set_mem_attributes (stack_parm, parm, 1);
2820 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2821 calls that pass values in multiple non-contiguous locations. */
2822 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2824 rtx mem;
2826 /* Note that we will be storing an integral number of words.
2827 So we have to be careful to ensure that we allocate an
2828 integral number of words. We do this above when we call
2829 assign_stack_local if space was not allocated in the argument
2830 list. If it was, this will not work if PARM_BOUNDARY is not
2831 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2832 if it becomes a problem. Exception is when BLKmode arrives
2833 with arguments not conforming to word_mode. */
2835 if (data->stack_parm == 0)
2837 else if (GET_CODE (entry_parm) == PARALLEL)
2839 else
2840 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2842 mem = validize_mem (copy_rtx (stack_parm));
2844 /* Handle values in multiple non-contiguous locations. */
2845 if (GET_CODE (entry_parm) == PARALLEL)
2847 push_to_sequence2 (all->first_conversion_insn,
2848 all->last_conversion_insn);
2849 emit_group_store (mem, entry_parm, data->passed_type, size);
2850 all->first_conversion_insn = get_insns ();
2851 all->last_conversion_insn = get_last_insn ();
2852 end_sequence ();
2855 else if (size == 0)
2858 /* If SIZE is that of a mode no bigger than a word, just use
2859 that mode's store operation. */
2860 else if (size <= UNITS_PER_WORD)
2862 enum machine_mode mode
2863 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2865 if (mode != BLKmode
2866 #ifdef BLOCK_REG_PADDING
2867 && (size == UNITS_PER_WORD
2868 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2869 != (BYTES_BIG_ENDIAN ? upward : downward)))
2870 #endif
2873 rtx reg;
2875 /* We are really truncating a word_mode value containing
2876 SIZE bytes into a value of mode MODE. If such an
2877 operation requires no actual instructions, we can refer
2878 to the value directly in mode MODE, otherwise we must
2879 start with the register in word_mode and explicitly
2880 convert it. */
2881 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2882 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2883 else
2885 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2886 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2888 emit_move_insn (change_address (mem, mode, 0), reg);
2891 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2892 machine must be aligned to the left before storing
2893 to memory. Note that the previous test doesn't
2894 handle all cases (e.g. SIZE == 3). */
2895 else if (size != UNITS_PER_WORD
2896 #ifdef BLOCK_REG_PADDING
2897 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2898 == downward)
2899 #else
2900 && BYTES_BIG_ENDIAN
2901 #endif
2904 rtx tem, x;
2905 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2906 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2908 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2909 tem = change_address (mem, word_mode, 0);
2910 emit_move_insn (tem, x);
2912 else
2913 move_block_from_reg (REGNO (entry_parm), mem,
2914 size_stored / UNITS_PER_WORD);
2916 else
2917 move_block_from_reg (REGNO (entry_parm), mem,
2918 size_stored / UNITS_PER_WORD);
2920 else if (data->stack_parm == 0)
2922 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2923 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2924 BLOCK_OP_NORMAL);
2925 all->first_conversion_insn = get_insns ();
2926 all->last_conversion_insn = get_last_insn ();
2927 end_sequence ();
2930 data->stack_parm = stack_parm;
2931 SET_DECL_RTL (parm, stack_parm);
2934 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2935 parameter. Get it there. Perform all ABI specified conversions. */
2937 static void
2938 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2939 struct assign_parm_data_one *data)
2941 rtx parmreg, validated_mem;
2942 rtx equiv_stack_parm;
2943 enum machine_mode promoted_nominal_mode;
2944 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2945 bool did_conversion = false;
2946 bool need_conversion, moved;
2948 /* Store the parm in a pseudoregister during the function, but we may
2949 need to do it in a wider mode. Using 2 here makes the result
2950 consistent with promote_decl_mode and thus expand_expr_real_1. */
2951 promoted_nominal_mode
2952 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2953 TREE_TYPE (current_function_decl), 2);
2955 parmreg = gen_reg_rtx (promoted_nominal_mode);
2957 if (!DECL_ARTIFICIAL (parm))
2958 mark_user_reg (parmreg);
2960 /* If this was an item that we received a pointer to,
2961 set DECL_RTL appropriately. */
2962 if (data->passed_pointer)
2964 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2965 set_mem_attributes (x, parm, 1);
2966 SET_DECL_RTL (parm, x);
2968 else
2969 SET_DECL_RTL (parm, parmreg);
2971 assign_parm_remove_parallels (data);
2973 /* Copy the value into the register, thus bridging between
2974 assign_parm_find_data_types and expand_expr_real_1. */
2976 equiv_stack_parm = data->stack_parm;
2977 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2979 need_conversion = (data->nominal_mode != data->passed_mode
2980 || promoted_nominal_mode != data->promoted_mode);
2981 moved = false;
2983 if (need_conversion
2984 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2985 && data->nominal_mode == data->passed_mode
2986 && data->nominal_mode == GET_MODE (data->entry_parm))
2988 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2989 mode, by the caller. We now have to convert it to
2990 NOMINAL_MODE, if different. However, PARMREG may be in
2991 a different mode than NOMINAL_MODE if it is being stored
2992 promoted.
2994 If ENTRY_PARM is a hard register, it might be in a register
2995 not valid for operating in its mode (e.g., an odd-numbered
2996 register for a DFmode). In that case, moves are the only
2997 thing valid, so we can't do a convert from there. This
2998 occurs when the calling sequence allow such misaligned
2999 usages.
3001 In addition, the conversion may involve a call, which could
3002 clobber parameters which haven't been copied to pseudo
3003 registers yet.
3005 First, we try to emit an insn which performs the necessary
3006 conversion. We verify that this insn does not clobber any
3007 hard registers. */
3009 enum insn_code icode;
3010 rtx op0, op1;
3012 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3013 unsignedp);
3015 op0 = parmreg;
3016 op1 = validated_mem;
3017 if (icode != CODE_FOR_nothing
3018 && insn_operand_matches (icode, 0, op0)
3019 && insn_operand_matches (icode, 1, op1))
3021 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3022 rtx insn, insns, t = op1;
3023 HARD_REG_SET hardregs;
3025 start_sequence ();
3026 /* If op1 is a hard register that is likely spilled, first
3027 force it into a pseudo, otherwise combiner might extend
3028 its lifetime too much. */
3029 if (GET_CODE (t) == SUBREG)
3030 t = SUBREG_REG (t);
3031 if (REG_P (t)
3032 && HARD_REGISTER_P (t)
3033 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3034 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3036 t = gen_reg_rtx (GET_MODE (op1));
3037 emit_move_insn (t, op1);
3039 else
3040 t = op1;
3041 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3042 data->passed_mode, unsignedp);
3043 emit_insn (insn);
3044 insns = get_insns ();
3046 moved = true;
3047 CLEAR_HARD_REG_SET (hardregs);
3048 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3050 if (INSN_P (insn))
3051 note_stores (PATTERN (insn), record_hard_reg_sets,
3052 &hardregs);
3053 if (!hard_reg_set_empty_p (hardregs))
3054 moved = false;
3057 end_sequence ();
3059 if (moved)
3061 emit_insn (insns);
3062 if (equiv_stack_parm != NULL_RTX)
3063 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3064 equiv_stack_parm);
3069 if (moved)
3070 /* Nothing to do. */
3072 else if (need_conversion)
3074 /* We did not have an insn to convert directly, or the sequence
3075 generated appeared unsafe. We must first copy the parm to a
3076 pseudo reg, and save the conversion until after all
3077 parameters have been moved. */
3079 int save_tree_used;
3080 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3082 emit_move_insn (tempreg, validated_mem);
3084 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3085 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3087 if (GET_CODE (tempreg) == SUBREG
3088 && GET_MODE (tempreg) == data->nominal_mode
3089 && REG_P (SUBREG_REG (tempreg))
3090 && data->nominal_mode == data->passed_mode
3091 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3092 && GET_MODE_SIZE (GET_MODE (tempreg))
3093 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3095 /* The argument is already sign/zero extended, so note it
3096 into the subreg. */
3097 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3098 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3101 /* TREE_USED gets set erroneously during expand_assignment. */
3102 save_tree_used = TREE_USED (parm);
3103 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3104 TREE_USED (parm) = save_tree_used;
3105 all->first_conversion_insn = get_insns ();
3106 all->last_conversion_insn = get_last_insn ();
3107 end_sequence ();
3109 did_conversion = true;
3111 else
3112 emit_move_insn (parmreg, validated_mem);
3114 /* If we were passed a pointer but the actual value can safely live
3115 in a register, retrieve it and use it directly. */
3116 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3118 /* We can't use nominal_mode, because it will have been set to
3119 Pmode above. We must use the actual mode of the parm. */
3120 if (use_register_for_decl (parm))
3122 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3123 mark_user_reg (parmreg);
3125 else
3127 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3128 TYPE_MODE (TREE_TYPE (parm)),
3129 TYPE_ALIGN (TREE_TYPE (parm)));
3130 parmreg
3131 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3132 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3133 align);
3134 set_mem_attributes (parmreg, parm, 1);
3137 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3139 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3140 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3142 push_to_sequence2 (all->first_conversion_insn,
3143 all->last_conversion_insn);
3144 emit_move_insn (tempreg, DECL_RTL (parm));
3145 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3146 emit_move_insn (parmreg, tempreg);
3147 all->first_conversion_insn = get_insns ();
3148 all->last_conversion_insn = get_last_insn ();
3149 end_sequence ();
3151 did_conversion = true;
3153 else
3154 emit_move_insn (parmreg, DECL_RTL (parm));
3156 SET_DECL_RTL (parm, parmreg);
3158 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3159 now the parm. */
3160 data->stack_parm = NULL;
3163 /* Mark the register as eliminable if we did no conversion and it was
3164 copied from memory at a fixed offset, and the arg pointer was not
3165 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3166 offset formed an invalid address, such memory-equivalences as we
3167 make here would screw up life analysis for it. */
3168 if (data->nominal_mode == data->passed_mode
3169 && !did_conversion
3170 && data->stack_parm != 0
3171 && MEM_P (data->stack_parm)
3172 && data->locate.offset.var == 0
3173 && reg_mentioned_p (virtual_incoming_args_rtx,
3174 XEXP (data->stack_parm, 0)))
3176 rtx_insn *linsn = get_last_insn ();
3177 rtx_insn *sinsn;
3178 rtx set;
3180 /* Mark complex types separately. */
3181 if (GET_CODE (parmreg) == CONCAT)
3183 enum machine_mode submode
3184 = GET_MODE_INNER (GET_MODE (parmreg));
3185 int regnor = REGNO (XEXP (parmreg, 0));
3186 int regnoi = REGNO (XEXP (parmreg, 1));
3187 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3188 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3189 GET_MODE_SIZE (submode));
3191 /* Scan backwards for the set of the real and
3192 imaginary parts. */
3193 for (sinsn = linsn; sinsn != 0;
3194 sinsn = prev_nonnote_insn (sinsn))
3196 set = single_set (sinsn);
3197 if (set == 0)
3198 continue;
3200 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3201 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3202 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3203 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3206 else
3207 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3210 /* For pointer data type, suggest pointer register. */
3211 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3212 mark_reg_pointer (parmreg,
3213 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3216 /* A subroutine of assign_parms. Allocate stack space to hold the current
3217 parameter. Get it there. Perform all ABI specified conversions. */
3219 static void
3220 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3221 struct assign_parm_data_one *data)
3223 /* Value must be stored in the stack slot STACK_PARM during function
3224 execution. */
3225 bool to_conversion = false;
3227 assign_parm_remove_parallels (data);
3229 if (data->promoted_mode != data->nominal_mode)
3231 /* Conversion is required. */
3232 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3234 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3236 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3237 to_conversion = true;
3239 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3240 TYPE_UNSIGNED (TREE_TYPE (parm)));
3242 if (data->stack_parm)
3244 int offset = subreg_lowpart_offset (data->nominal_mode,
3245 GET_MODE (data->stack_parm));
3246 /* ??? This may need a big-endian conversion on sparc64. */
3247 data->stack_parm
3248 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3249 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3250 set_mem_offset (data->stack_parm,
3251 MEM_OFFSET (data->stack_parm) + offset);
3255 if (data->entry_parm != data->stack_parm)
3257 rtx src, dest;
3259 if (data->stack_parm == 0)
3261 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3262 GET_MODE (data->entry_parm),
3263 TYPE_ALIGN (data->passed_type));
3264 data->stack_parm
3265 = assign_stack_local (GET_MODE (data->entry_parm),
3266 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3267 align);
3268 set_mem_attributes (data->stack_parm, parm, 1);
3271 dest = validize_mem (copy_rtx (data->stack_parm));
3272 src = validize_mem (copy_rtx (data->entry_parm));
3274 if (MEM_P (src))
3276 /* Use a block move to handle potentially misaligned entry_parm. */
3277 if (!to_conversion)
3278 push_to_sequence2 (all->first_conversion_insn,
3279 all->last_conversion_insn);
3280 to_conversion = true;
3282 emit_block_move (dest, src,
3283 GEN_INT (int_size_in_bytes (data->passed_type)),
3284 BLOCK_OP_NORMAL);
3286 else
3287 emit_move_insn (dest, src);
3290 if (to_conversion)
3292 all->first_conversion_insn = get_insns ();
3293 all->last_conversion_insn = get_last_insn ();
3294 end_sequence ();
3297 SET_DECL_RTL (parm, data->stack_parm);
3300 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3301 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3303 static void
3304 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3305 vec<tree> fnargs)
3307 tree parm;
3308 tree orig_fnargs = all->orig_fnargs;
3309 unsigned i = 0;
3311 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3313 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3314 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3316 rtx tmp, real, imag;
3317 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3319 real = DECL_RTL (fnargs[i]);
3320 imag = DECL_RTL (fnargs[i + 1]);
3321 if (inner != GET_MODE (real))
3323 real = gen_lowpart_SUBREG (inner, real);
3324 imag = gen_lowpart_SUBREG (inner, imag);
3327 if (TREE_ADDRESSABLE (parm))
3329 rtx rmem, imem;
3330 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3331 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3332 DECL_MODE (parm),
3333 TYPE_ALIGN (TREE_TYPE (parm)));
3335 /* split_complex_arg put the real and imag parts in
3336 pseudos. Move them to memory. */
3337 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3338 set_mem_attributes (tmp, parm, 1);
3339 rmem = adjust_address_nv (tmp, inner, 0);
3340 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3341 push_to_sequence2 (all->first_conversion_insn,
3342 all->last_conversion_insn);
3343 emit_move_insn (rmem, real);
3344 emit_move_insn (imem, imag);
3345 all->first_conversion_insn = get_insns ();
3346 all->last_conversion_insn = get_last_insn ();
3347 end_sequence ();
3349 else
3350 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3351 SET_DECL_RTL (parm, tmp);
3353 real = DECL_INCOMING_RTL (fnargs[i]);
3354 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3355 if (inner != GET_MODE (real))
3357 real = gen_lowpart_SUBREG (inner, real);
3358 imag = gen_lowpart_SUBREG (inner, imag);
3360 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3361 set_decl_incoming_rtl (parm, tmp, false);
3362 i++;
3367 /* Assign RTL expressions to the function's parameters. This may involve
3368 copying them into registers and using those registers as the DECL_RTL. */
3370 static void
3371 assign_parms (tree fndecl)
3373 struct assign_parm_data_all all;
3374 tree parm;
3375 vec<tree> fnargs;
3376 unsigned i;
3378 crtl->args.internal_arg_pointer
3379 = targetm.calls.internal_arg_pointer ();
3381 assign_parms_initialize_all (&all);
3382 fnargs = assign_parms_augmented_arg_list (&all);
3384 FOR_EACH_VEC_ELT (fnargs, i, parm)
3386 struct assign_parm_data_one data;
3388 /* Extract the type of PARM; adjust it according to ABI. */
3389 assign_parm_find_data_types (&all, parm, &data);
3391 /* Early out for errors and void parameters. */
3392 if (data.passed_mode == VOIDmode)
3394 SET_DECL_RTL (parm, const0_rtx);
3395 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3396 continue;
3399 /* Estimate stack alignment from parameter alignment. */
3400 if (SUPPORTS_STACK_ALIGNMENT)
3402 unsigned int align
3403 = targetm.calls.function_arg_boundary (data.promoted_mode,
3404 data.passed_type);
3405 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3406 align);
3407 if (TYPE_ALIGN (data.nominal_type) > align)
3408 align = MINIMUM_ALIGNMENT (data.nominal_type,
3409 TYPE_MODE (data.nominal_type),
3410 TYPE_ALIGN (data.nominal_type));
3411 if (crtl->stack_alignment_estimated < align)
3413 gcc_assert (!crtl->stack_realign_processed);
3414 crtl->stack_alignment_estimated = align;
3418 if (cfun->stdarg && !DECL_CHAIN (parm))
3419 assign_parms_setup_varargs (&all, &data, false);
3421 /* Find out where the parameter arrives in this function. */
3422 assign_parm_find_entry_rtl (&all, &data);
3424 /* Find out where stack space for this parameter might be. */
3425 if (assign_parm_is_stack_parm (&all, &data))
3427 assign_parm_find_stack_rtl (parm, &data);
3428 assign_parm_adjust_entry_rtl (&data);
3431 /* Record permanently how this parm was passed. */
3432 if (data.passed_pointer)
3434 rtx incoming_rtl
3435 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3436 data.entry_parm);
3437 set_decl_incoming_rtl (parm, incoming_rtl, true);
3439 else
3440 set_decl_incoming_rtl (parm, data.entry_parm, false);
3442 /* Update info on where next arg arrives in registers. */
3443 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3444 data.passed_type, data.named_arg);
3446 assign_parm_adjust_stack_rtl (&data);
3448 if (assign_parm_setup_block_p (&data))
3449 assign_parm_setup_block (&all, parm, &data);
3450 else if (data.passed_pointer || use_register_for_decl (parm))
3451 assign_parm_setup_reg (&all, parm, &data);
3452 else
3453 assign_parm_setup_stack (&all, parm, &data);
3456 if (targetm.calls.split_complex_arg)
3457 assign_parms_unsplit_complex (&all, fnargs);
3459 fnargs.release ();
3461 /* Output all parameter conversion instructions (possibly including calls)
3462 now that all parameters have been copied out of hard registers. */
3463 emit_insn (all.first_conversion_insn);
3465 /* Estimate reload stack alignment from scalar return mode. */
3466 if (SUPPORTS_STACK_ALIGNMENT)
3468 if (DECL_RESULT (fndecl))
3470 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3471 enum machine_mode mode = TYPE_MODE (type);
3473 if (mode != BLKmode
3474 && mode != VOIDmode
3475 && !AGGREGATE_TYPE_P (type))
3477 unsigned int align = GET_MODE_ALIGNMENT (mode);
3478 if (crtl->stack_alignment_estimated < align)
3480 gcc_assert (!crtl->stack_realign_processed);
3481 crtl->stack_alignment_estimated = align;
3487 /* If we are receiving a struct value address as the first argument, set up
3488 the RTL for the function result. As this might require code to convert
3489 the transmitted address to Pmode, we do this here to ensure that possible
3490 preliminary conversions of the address have been emitted already. */
3491 if (all.function_result_decl)
3493 tree result = DECL_RESULT (current_function_decl);
3494 rtx addr = DECL_RTL (all.function_result_decl);
3495 rtx x;
3497 if (DECL_BY_REFERENCE (result))
3499 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3500 x = addr;
3502 else
3504 SET_DECL_VALUE_EXPR (result,
3505 build1 (INDIRECT_REF, TREE_TYPE (result),
3506 all.function_result_decl));
3507 addr = convert_memory_address (Pmode, addr);
3508 x = gen_rtx_MEM (DECL_MODE (result), addr);
3509 set_mem_attributes (x, result, 1);
3512 DECL_HAS_VALUE_EXPR_P (result) = 1;
3514 SET_DECL_RTL (result, x);
3517 /* We have aligned all the args, so add space for the pretend args. */
3518 crtl->args.pretend_args_size = all.pretend_args_size;
3519 all.stack_args_size.constant += all.extra_pretend_bytes;
3520 crtl->args.size = all.stack_args_size.constant;
3522 /* Adjust function incoming argument size for alignment and
3523 minimum length. */
3525 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3526 crtl->args.size = CEIL_ROUND (crtl->args.size,
3527 PARM_BOUNDARY / BITS_PER_UNIT);
3529 #ifdef ARGS_GROW_DOWNWARD
3530 crtl->args.arg_offset_rtx
3531 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3532 : expand_expr (size_diffop (all.stack_args_size.var,
3533 size_int (-all.stack_args_size.constant)),
3534 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3535 #else
3536 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3537 #endif
3539 /* See how many bytes, if any, of its args a function should try to pop
3540 on return. */
3542 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3543 TREE_TYPE (fndecl),
3544 crtl->args.size);
3546 /* For stdarg.h function, save info about
3547 regs and stack space used by the named args. */
3549 crtl->args.info = all.args_so_far_v;
3551 /* Set the rtx used for the function return value. Put this in its
3552 own variable so any optimizers that need this information don't have
3553 to include tree.h. Do this here so it gets done when an inlined
3554 function gets output. */
3556 crtl->return_rtx
3557 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3558 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3560 /* If scalar return value was computed in a pseudo-reg, or was a named
3561 return value that got dumped to the stack, copy that to the hard
3562 return register. */
3563 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3565 tree decl_result = DECL_RESULT (fndecl);
3566 rtx decl_rtl = DECL_RTL (decl_result);
3568 if (REG_P (decl_rtl)
3569 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3570 : DECL_REGISTER (decl_result))
3572 rtx real_decl_rtl;
3574 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3575 fndecl, true);
3576 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3577 /* The delay slot scheduler assumes that crtl->return_rtx
3578 holds the hard register containing the return value, not a
3579 temporary pseudo. */
3580 crtl->return_rtx = real_decl_rtl;
3585 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3586 For all seen types, gimplify their sizes. */
3588 static tree
3589 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3591 tree t = *tp;
3593 *walk_subtrees = 0;
3594 if (TYPE_P (t))
3596 if (POINTER_TYPE_P (t))
3597 *walk_subtrees = 1;
3598 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3599 && !TYPE_SIZES_GIMPLIFIED (t))
3601 gimplify_type_sizes (t, (gimple_seq *) data);
3602 *walk_subtrees = 1;
3606 return NULL;
3609 /* Gimplify the parameter list for current_function_decl. This involves
3610 evaluating SAVE_EXPRs of variable sized parameters and generating code
3611 to implement callee-copies reference parameters. Returns a sequence of
3612 statements to add to the beginning of the function. */
3614 gimple_seq
3615 gimplify_parameters (void)
3617 struct assign_parm_data_all all;
3618 tree parm;
3619 gimple_seq stmts = NULL;
3620 vec<tree> fnargs;
3621 unsigned i;
3623 assign_parms_initialize_all (&all);
3624 fnargs = assign_parms_augmented_arg_list (&all);
3626 FOR_EACH_VEC_ELT (fnargs, i, parm)
3628 struct assign_parm_data_one data;
3630 /* Extract the type of PARM; adjust it according to ABI. */
3631 assign_parm_find_data_types (&all, parm, &data);
3633 /* Early out for errors and void parameters. */
3634 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3635 continue;
3637 /* Update info on where next arg arrives in registers. */
3638 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3639 data.passed_type, data.named_arg);
3641 /* ??? Once upon a time variable_size stuffed parameter list
3642 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3643 turned out to be less than manageable in the gimple world.
3644 Now we have to hunt them down ourselves. */
3645 walk_tree_without_duplicates (&data.passed_type,
3646 gimplify_parm_type, &stmts);
3648 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3650 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3651 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3654 if (data.passed_pointer)
3656 tree type = TREE_TYPE (data.passed_type);
3657 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3658 type, data.named_arg))
3660 tree local, t;
3662 /* For constant-sized objects, this is trivial; for
3663 variable-sized objects, we have to play games. */
3664 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3665 && !(flag_stack_check == GENERIC_STACK_CHECK
3666 && compare_tree_int (DECL_SIZE_UNIT (parm),
3667 STACK_CHECK_MAX_VAR_SIZE) > 0))
3669 local = create_tmp_var (type, get_name (parm));
3670 DECL_IGNORED_P (local) = 0;
3671 /* If PARM was addressable, move that flag over
3672 to the local copy, as its address will be taken,
3673 not the PARMs. Keep the parms address taken
3674 as we'll query that flag during gimplification. */
3675 if (TREE_ADDRESSABLE (parm))
3676 TREE_ADDRESSABLE (local) = 1;
3677 else if (TREE_CODE (type) == COMPLEX_TYPE
3678 || TREE_CODE (type) == VECTOR_TYPE)
3679 DECL_GIMPLE_REG_P (local) = 1;
3681 else
3683 tree ptr_type, addr;
3685 ptr_type = build_pointer_type (type);
3686 addr = create_tmp_reg (ptr_type, get_name (parm));
3687 DECL_IGNORED_P (addr) = 0;
3688 local = build_fold_indirect_ref (addr);
3690 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3691 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3692 size_int (DECL_ALIGN (parm)));
3694 /* The call has been built for a variable-sized object. */
3695 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3696 t = fold_convert (ptr_type, t);
3697 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3698 gimplify_and_add (t, &stmts);
3701 gimplify_assign (local, parm, &stmts);
3703 SET_DECL_VALUE_EXPR (parm, local);
3704 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3709 fnargs.release ();
3711 return stmts;
3714 /* Compute the size and offset from the start of the stacked arguments for a
3715 parm passed in mode PASSED_MODE and with type TYPE.
3717 INITIAL_OFFSET_PTR points to the current offset into the stacked
3718 arguments.
3720 The starting offset and size for this parm are returned in
3721 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3722 nonzero, the offset is that of stack slot, which is returned in
3723 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3724 padding required from the initial offset ptr to the stack slot.
3726 IN_REGS is nonzero if the argument will be passed in registers. It will
3727 never be set if REG_PARM_STACK_SPACE is not defined.
3729 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3730 for arguments which are passed in registers.
3732 FNDECL is the function in which the argument was defined.
3734 There are two types of rounding that are done. The first, controlled by
3735 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3736 argument list to be aligned to the specific boundary (in bits). This
3737 rounding affects the initial and starting offsets, but not the argument
3738 size.
3740 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3741 optionally rounds the size of the parm to PARM_BOUNDARY. The
3742 initial offset is not affected by this rounding, while the size always
3743 is and the starting offset may be. */
3745 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3746 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3747 callers pass in the total size of args so far as
3748 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3750 void
3751 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3752 int reg_parm_stack_space, int partial,
3753 tree fndecl ATTRIBUTE_UNUSED,
3754 struct args_size *initial_offset_ptr,
3755 struct locate_and_pad_arg_data *locate)
3757 tree sizetree;
3758 enum direction where_pad;
3759 unsigned int boundary, round_boundary;
3760 int part_size_in_regs;
3762 /* If we have found a stack parm before we reach the end of the
3763 area reserved for registers, skip that area. */
3764 if (! in_regs)
3766 if (reg_parm_stack_space > 0)
3768 if (initial_offset_ptr->var)
3770 initial_offset_ptr->var
3771 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3772 ssize_int (reg_parm_stack_space));
3773 initial_offset_ptr->constant = 0;
3775 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3776 initial_offset_ptr->constant = reg_parm_stack_space;
3780 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3782 sizetree
3783 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3784 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3785 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3786 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3787 type);
3788 locate->where_pad = where_pad;
3790 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3791 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3792 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3794 locate->boundary = boundary;
3796 if (SUPPORTS_STACK_ALIGNMENT)
3798 /* stack_alignment_estimated can't change after stack has been
3799 realigned. */
3800 if (crtl->stack_alignment_estimated < boundary)
3802 if (!crtl->stack_realign_processed)
3803 crtl->stack_alignment_estimated = boundary;
3804 else
3806 /* If stack is realigned and stack alignment value
3807 hasn't been finalized, it is OK not to increase
3808 stack_alignment_estimated. The bigger alignment
3809 requirement is recorded in stack_alignment_needed
3810 below. */
3811 gcc_assert (!crtl->stack_realign_finalized
3812 && crtl->stack_realign_needed);
3817 /* Remember if the outgoing parameter requires extra alignment on the
3818 calling function side. */
3819 if (crtl->stack_alignment_needed < boundary)
3820 crtl->stack_alignment_needed = boundary;
3821 if (crtl->preferred_stack_boundary < boundary)
3822 crtl->preferred_stack_boundary = boundary;
3824 #ifdef ARGS_GROW_DOWNWARD
3825 locate->slot_offset.constant = -initial_offset_ptr->constant;
3826 if (initial_offset_ptr->var)
3827 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3828 initial_offset_ptr->var);
3831 tree s2 = sizetree;
3832 if (where_pad != none
3833 && (!tree_fits_uhwi_p (sizetree)
3834 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3835 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3836 SUB_PARM_SIZE (locate->slot_offset, s2);
3839 locate->slot_offset.constant += part_size_in_regs;
3841 if (!in_regs || reg_parm_stack_space > 0)
3842 pad_to_arg_alignment (&locate->slot_offset, boundary,
3843 &locate->alignment_pad);
3845 locate->size.constant = (-initial_offset_ptr->constant
3846 - locate->slot_offset.constant);
3847 if (initial_offset_ptr->var)
3848 locate->size.var = size_binop (MINUS_EXPR,
3849 size_binop (MINUS_EXPR,
3850 ssize_int (0),
3851 initial_offset_ptr->var),
3852 locate->slot_offset.var);
3854 /* Pad_below needs the pre-rounded size to know how much to pad
3855 below. */
3856 locate->offset = locate->slot_offset;
3857 if (where_pad == downward)
3858 pad_below (&locate->offset, passed_mode, sizetree);
3860 #else /* !ARGS_GROW_DOWNWARD */
3861 if (!in_regs || reg_parm_stack_space > 0)
3862 pad_to_arg_alignment (initial_offset_ptr, boundary,
3863 &locate->alignment_pad);
3864 locate->slot_offset = *initial_offset_ptr;
3866 #ifdef PUSH_ROUNDING
3867 if (passed_mode != BLKmode)
3868 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3869 #endif
3871 /* Pad_below needs the pre-rounded size to know how much to pad below
3872 so this must be done before rounding up. */
3873 locate->offset = locate->slot_offset;
3874 if (where_pad == downward)
3875 pad_below (&locate->offset, passed_mode, sizetree);
3877 if (where_pad != none
3878 && (!tree_fits_uhwi_p (sizetree)
3879 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3880 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3882 ADD_PARM_SIZE (locate->size, sizetree);
3884 locate->size.constant -= part_size_in_regs;
3885 #endif /* ARGS_GROW_DOWNWARD */
3887 #ifdef FUNCTION_ARG_OFFSET
3888 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3889 #endif
3892 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3893 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3895 static void
3896 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3897 struct args_size *alignment_pad)
3899 tree save_var = NULL_TREE;
3900 HOST_WIDE_INT save_constant = 0;
3901 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3902 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3904 #ifdef SPARC_STACK_BOUNDARY_HACK
3905 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3906 the real alignment of %sp. However, when it does this, the
3907 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3908 if (SPARC_STACK_BOUNDARY_HACK)
3909 sp_offset = 0;
3910 #endif
3912 if (boundary > PARM_BOUNDARY)
3914 save_var = offset_ptr->var;
3915 save_constant = offset_ptr->constant;
3918 alignment_pad->var = NULL_TREE;
3919 alignment_pad->constant = 0;
3921 if (boundary > BITS_PER_UNIT)
3923 if (offset_ptr->var)
3925 tree sp_offset_tree = ssize_int (sp_offset);
3926 tree offset = size_binop (PLUS_EXPR,
3927 ARGS_SIZE_TREE (*offset_ptr),
3928 sp_offset_tree);
3929 #ifdef ARGS_GROW_DOWNWARD
3930 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3931 #else
3932 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3933 #endif
3935 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3936 /* ARGS_SIZE_TREE includes constant term. */
3937 offset_ptr->constant = 0;
3938 if (boundary > PARM_BOUNDARY)
3939 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3940 save_var);
3942 else
3944 offset_ptr->constant = -sp_offset +
3945 #ifdef ARGS_GROW_DOWNWARD
3946 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3947 #else
3948 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3949 #endif
3950 if (boundary > PARM_BOUNDARY)
3951 alignment_pad->constant = offset_ptr->constant - save_constant;
3956 static void
3957 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3959 if (passed_mode != BLKmode)
3961 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3962 offset_ptr->constant
3963 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3964 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3965 - GET_MODE_SIZE (passed_mode));
3967 else
3969 if (TREE_CODE (sizetree) != INTEGER_CST
3970 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3972 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3973 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3974 /* Add it in. */
3975 ADD_PARM_SIZE (*offset_ptr, s2);
3976 SUB_PARM_SIZE (*offset_ptr, sizetree);
3982 /* True if register REGNO was alive at a place where `setjmp' was
3983 called and was set more than once or is an argument. Such regs may
3984 be clobbered by `longjmp'. */
3986 static bool
3987 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3989 /* There appear to be cases where some local vars never reach the
3990 backend but have bogus regnos. */
3991 if (regno >= max_reg_num ())
3992 return false;
3994 return ((REG_N_SETS (regno) > 1
3995 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3996 regno))
3997 && REGNO_REG_SET_P (setjmp_crosses, regno));
4000 /* Walk the tree of blocks describing the binding levels within a
4001 function and warn about variables the might be killed by setjmp or
4002 vfork. This is done after calling flow_analysis before register
4003 allocation since that will clobber the pseudo-regs to hard
4004 regs. */
4006 static void
4007 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4009 tree decl, sub;
4011 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4013 if (TREE_CODE (decl) == VAR_DECL
4014 && DECL_RTL_SET_P (decl)
4015 && REG_P (DECL_RTL (decl))
4016 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4017 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4018 " %<longjmp%> or %<vfork%>", decl);
4021 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4022 setjmp_vars_warning (setjmp_crosses, sub);
4025 /* Do the appropriate part of setjmp_vars_warning
4026 but for arguments instead of local variables. */
4028 static void
4029 setjmp_args_warning (bitmap setjmp_crosses)
4031 tree decl;
4032 for (decl = DECL_ARGUMENTS (current_function_decl);
4033 decl; decl = DECL_CHAIN (decl))
4034 if (DECL_RTL (decl) != 0
4035 && REG_P (DECL_RTL (decl))
4036 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4037 warning (OPT_Wclobbered,
4038 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4039 decl);
4042 /* Generate warning messages for variables live across setjmp. */
4044 void
4045 generate_setjmp_warnings (void)
4047 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4049 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4050 || bitmap_empty_p (setjmp_crosses))
4051 return;
4053 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4054 setjmp_args_warning (setjmp_crosses);
4058 /* Reverse the order of elements in the fragment chain T of blocks,
4059 and return the new head of the chain (old last element).
4060 In addition to that clear BLOCK_SAME_RANGE flags when needed
4061 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4062 its super fragment origin. */
4064 static tree
4065 block_fragments_nreverse (tree t)
4067 tree prev = 0, block, next, prev_super = 0;
4068 tree super = BLOCK_SUPERCONTEXT (t);
4069 if (BLOCK_FRAGMENT_ORIGIN (super))
4070 super = BLOCK_FRAGMENT_ORIGIN (super);
4071 for (block = t; block; block = next)
4073 next = BLOCK_FRAGMENT_CHAIN (block);
4074 BLOCK_FRAGMENT_CHAIN (block) = prev;
4075 if ((prev && !BLOCK_SAME_RANGE (prev))
4076 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4077 != prev_super))
4078 BLOCK_SAME_RANGE (block) = 0;
4079 prev_super = BLOCK_SUPERCONTEXT (block);
4080 BLOCK_SUPERCONTEXT (block) = super;
4081 prev = block;
4083 t = BLOCK_FRAGMENT_ORIGIN (t);
4084 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4085 != prev_super)
4086 BLOCK_SAME_RANGE (t) = 0;
4087 BLOCK_SUPERCONTEXT (t) = super;
4088 return prev;
4091 /* Reverse the order of elements in the chain T of blocks,
4092 and return the new head of the chain (old last element).
4093 Also do the same on subblocks and reverse the order of elements
4094 in BLOCK_FRAGMENT_CHAIN as well. */
4096 static tree
4097 blocks_nreverse_all (tree t)
4099 tree prev = 0, block, next;
4100 for (block = t; block; block = next)
4102 next = BLOCK_CHAIN (block);
4103 BLOCK_CHAIN (block) = prev;
4104 if (BLOCK_FRAGMENT_CHAIN (block)
4105 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4107 BLOCK_FRAGMENT_CHAIN (block)
4108 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4109 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4110 BLOCK_SAME_RANGE (block) = 0;
4112 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4113 prev = block;
4115 return prev;
4119 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4120 and create duplicate blocks. */
4121 /* ??? Need an option to either create block fragments or to create
4122 abstract origin duplicates of a source block. It really depends
4123 on what optimization has been performed. */
4125 void
4126 reorder_blocks (void)
4128 tree block = DECL_INITIAL (current_function_decl);
4130 if (block == NULL_TREE)
4131 return;
4133 auto_vec<tree, 10> block_stack;
4135 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4136 clear_block_marks (block);
4138 /* Prune the old trees away, so that they don't get in the way. */
4139 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4140 BLOCK_CHAIN (block) = NULL_TREE;
4142 /* Recreate the block tree from the note nesting. */
4143 reorder_blocks_1 (get_insns (), block, &block_stack);
4144 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4147 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4149 void
4150 clear_block_marks (tree block)
4152 while (block)
4154 TREE_ASM_WRITTEN (block) = 0;
4155 clear_block_marks (BLOCK_SUBBLOCKS (block));
4156 block = BLOCK_CHAIN (block);
4160 static void
4161 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4162 vec<tree> *p_block_stack)
4164 rtx_insn *insn;
4165 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4167 for (insn = insns; insn; insn = NEXT_INSN (insn))
4169 if (NOTE_P (insn))
4171 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4173 tree block = NOTE_BLOCK (insn);
4174 tree origin;
4176 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4177 origin = block;
4179 if (prev_end)
4180 BLOCK_SAME_RANGE (prev_end) = 0;
4181 prev_end = NULL_TREE;
4183 /* If we have seen this block before, that means it now
4184 spans multiple address regions. Create a new fragment. */
4185 if (TREE_ASM_WRITTEN (block))
4187 tree new_block = copy_node (block);
4189 BLOCK_SAME_RANGE (new_block) = 0;
4190 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4191 BLOCK_FRAGMENT_CHAIN (new_block)
4192 = BLOCK_FRAGMENT_CHAIN (origin);
4193 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4195 NOTE_BLOCK (insn) = new_block;
4196 block = new_block;
4199 if (prev_beg == current_block && prev_beg)
4200 BLOCK_SAME_RANGE (block) = 1;
4202 prev_beg = origin;
4204 BLOCK_SUBBLOCKS (block) = 0;
4205 TREE_ASM_WRITTEN (block) = 1;
4206 /* When there's only one block for the entire function,
4207 current_block == block and we mustn't do this, it
4208 will cause infinite recursion. */
4209 if (block != current_block)
4211 tree super;
4212 if (block != origin)
4213 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4214 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4215 (origin))
4216 == current_block);
4217 if (p_block_stack->is_empty ())
4218 super = current_block;
4219 else
4221 super = p_block_stack->last ();
4222 gcc_assert (super == current_block
4223 || BLOCK_FRAGMENT_ORIGIN (super)
4224 == current_block);
4226 BLOCK_SUPERCONTEXT (block) = super;
4227 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4228 BLOCK_SUBBLOCKS (current_block) = block;
4229 current_block = origin;
4231 p_block_stack->safe_push (block);
4233 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4235 NOTE_BLOCK (insn) = p_block_stack->pop ();
4236 current_block = BLOCK_SUPERCONTEXT (current_block);
4237 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4238 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4239 prev_beg = NULL_TREE;
4240 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4241 ? NOTE_BLOCK (insn) : NULL_TREE;
4244 else
4246 prev_beg = NULL_TREE;
4247 if (prev_end)
4248 BLOCK_SAME_RANGE (prev_end) = 0;
4249 prev_end = NULL_TREE;
4254 /* Reverse the order of elements in the chain T of blocks,
4255 and return the new head of the chain (old last element). */
4257 tree
4258 blocks_nreverse (tree t)
4260 tree prev = 0, block, next;
4261 for (block = t; block; block = next)
4263 next = BLOCK_CHAIN (block);
4264 BLOCK_CHAIN (block) = prev;
4265 prev = block;
4267 return prev;
4270 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4271 by modifying the last node in chain 1 to point to chain 2. */
4273 tree
4274 block_chainon (tree op1, tree op2)
4276 tree t1;
4278 if (!op1)
4279 return op2;
4280 if (!op2)
4281 return op1;
4283 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4284 continue;
4285 BLOCK_CHAIN (t1) = op2;
4287 #ifdef ENABLE_TREE_CHECKING
4289 tree t2;
4290 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4291 gcc_assert (t2 != t1);
4293 #endif
4295 return op1;
4298 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4299 non-NULL, list them all into VECTOR, in a depth-first preorder
4300 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4301 blocks. */
4303 static int
4304 all_blocks (tree block, tree *vector)
4306 int n_blocks = 0;
4308 while (block)
4310 TREE_ASM_WRITTEN (block) = 0;
4312 /* Record this block. */
4313 if (vector)
4314 vector[n_blocks] = block;
4316 ++n_blocks;
4318 /* Record the subblocks, and their subblocks... */
4319 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4320 vector ? vector + n_blocks : 0);
4321 block = BLOCK_CHAIN (block);
4324 return n_blocks;
4327 /* Return a vector containing all the blocks rooted at BLOCK. The
4328 number of elements in the vector is stored in N_BLOCKS_P. The
4329 vector is dynamically allocated; it is the caller's responsibility
4330 to call `free' on the pointer returned. */
4332 static tree *
4333 get_block_vector (tree block, int *n_blocks_p)
4335 tree *block_vector;
4337 *n_blocks_p = all_blocks (block, NULL);
4338 block_vector = XNEWVEC (tree, *n_blocks_p);
4339 all_blocks (block, block_vector);
4341 return block_vector;
4344 static GTY(()) int next_block_index = 2;
4346 /* Set BLOCK_NUMBER for all the blocks in FN. */
4348 void
4349 number_blocks (tree fn)
4351 int i;
4352 int n_blocks;
4353 tree *block_vector;
4355 /* For SDB and XCOFF debugging output, we start numbering the blocks
4356 from 1 within each function, rather than keeping a running
4357 count. */
4358 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4359 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4360 next_block_index = 1;
4361 #endif
4363 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4365 /* The top-level BLOCK isn't numbered at all. */
4366 for (i = 1; i < n_blocks; ++i)
4367 /* We number the blocks from two. */
4368 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4370 free (block_vector);
4372 return;
4375 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4377 DEBUG_FUNCTION tree
4378 debug_find_var_in_block_tree (tree var, tree block)
4380 tree t;
4382 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4383 if (t == var)
4384 return block;
4386 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4388 tree ret = debug_find_var_in_block_tree (var, t);
4389 if (ret)
4390 return ret;
4393 return NULL_TREE;
4396 /* Keep track of whether we're in a dummy function context. If we are,
4397 we don't want to invoke the set_current_function hook, because we'll
4398 get into trouble if the hook calls target_reinit () recursively or
4399 when the initial initialization is not yet complete. */
4401 static bool in_dummy_function;
4403 /* Invoke the target hook when setting cfun. Update the optimization options
4404 if the function uses different options than the default. */
4406 static void
4407 invoke_set_current_function_hook (tree fndecl)
4409 if (!in_dummy_function)
4411 tree opts = ((fndecl)
4412 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4413 : optimization_default_node);
4415 if (!opts)
4416 opts = optimization_default_node;
4418 /* Change optimization options if needed. */
4419 if (optimization_current_node != opts)
4421 optimization_current_node = opts;
4422 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4425 targetm.set_current_function (fndecl);
4426 this_fn_optabs = this_target_optabs;
4428 if (opts != optimization_default_node)
4430 init_tree_optimization_optabs (opts);
4431 if (TREE_OPTIMIZATION_OPTABS (opts))
4432 this_fn_optabs = (struct target_optabs *)
4433 TREE_OPTIMIZATION_OPTABS (opts);
4438 /* cfun should never be set directly; use this function. */
4440 void
4441 set_cfun (struct function *new_cfun)
4443 if (cfun != new_cfun)
4445 cfun = new_cfun;
4446 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4450 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4452 static vec<function_p> cfun_stack;
4454 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4455 current_function_decl accordingly. */
4457 void
4458 push_cfun (struct function *new_cfun)
4460 gcc_assert ((!cfun && !current_function_decl)
4461 || (cfun && current_function_decl == cfun->decl));
4462 cfun_stack.safe_push (cfun);
4463 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4464 set_cfun (new_cfun);
4467 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4469 void
4470 pop_cfun (void)
4472 struct function *new_cfun = cfun_stack.pop ();
4473 /* When in_dummy_function, we do have a cfun but current_function_decl is
4474 NULL. We also allow pushing NULL cfun and subsequently changing
4475 current_function_decl to something else and have both restored by
4476 pop_cfun. */
4477 gcc_checking_assert (in_dummy_function
4478 || !cfun
4479 || current_function_decl == cfun->decl);
4480 set_cfun (new_cfun);
4481 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4484 /* Return value of funcdef and increase it. */
4486 get_next_funcdef_no (void)
4488 return funcdef_no++;
4491 /* Return value of funcdef. */
4493 get_last_funcdef_no (void)
4495 return funcdef_no;
4498 /* Allocate a function structure for FNDECL and set its contents
4499 to the defaults. Set cfun to the newly-allocated object.
4500 Some of the helper functions invoked during initialization assume
4501 that cfun has already been set. Therefore, assign the new object
4502 directly into cfun and invoke the back end hook explicitly at the
4503 very end, rather than initializing a temporary and calling set_cfun
4504 on it.
4506 ABSTRACT_P is true if this is a function that will never be seen by
4507 the middle-end. Such functions are front-end concepts (like C++
4508 function templates) that do not correspond directly to functions
4509 placed in object files. */
4511 void
4512 allocate_struct_function (tree fndecl, bool abstract_p)
4514 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4516 cfun = ggc_cleared_alloc<function> ();
4518 init_eh_for_function ();
4520 if (init_machine_status)
4521 cfun->machine = (*init_machine_status) ();
4523 #ifdef OVERRIDE_ABI_FORMAT
4524 OVERRIDE_ABI_FORMAT (fndecl);
4525 #endif
4527 if (fndecl != NULL_TREE)
4529 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4530 cfun->decl = fndecl;
4531 current_function_funcdef_no = get_next_funcdef_no ();
4534 invoke_set_current_function_hook (fndecl);
4536 if (fndecl != NULL_TREE)
4538 tree result = DECL_RESULT (fndecl);
4539 if (!abstract_p && aggregate_value_p (result, fndecl))
4541 #ifdef PCC_STATIC_STRUCT_RETURN
4542 cfun->returns_pcc_struct = 1;
4543 #endif
4544 cfun->returns_struct = 1;
4547 cfun->stdarg = stdarg_p (fntype);
4549 /* Assume all registers in stdarg functions need to be saved. */
4550 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4551 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4553 /* ??? This could be set on a per-function basis by the front-end
4554 but is this worth the hassle? */
4555 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4556 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4560 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4561 instead of just setting it. */
4563 void
4564 push_struct_function (tree fndecl)
4566 /* When in_dummy_function we might be in the middle of a pop_cfun and
4567 current_function_decl and cfun may not match. */
4568 gcc_assert (in_dummy_function
4569 || (!cfun && !current_function_decl)
4570 || (cfun && current_function_decl == cfun->decl));
4571 cfun_stack.safe_push (cfun);
4572 current_function_decl = fndecl;
4573 allocate_struct_function (fndecl, false);
4576 /* Reset crtl and other non-struct-function variables to defaults as
4577 appropriate for emitting rtl at the start of a function. */
4579 static void
4580 prepare_function_start (void)
4582 gcc_assert (!crtl->emit.x_last_insn);
4583 init_temp_slots ();
4584 init_emit ();
4585 init_varasm_status ();
4586 init_expr ();
4587 default_rtl_profile ();
4589 if (flag_stack_usage_info)
4591 cfun->su = ggc_cleared_alloc<stack_usage> ();
4592 cfun->su->static_stack_size = -1;
4595 cse_not_expected = ! optimize;
4597 /* Caller save not needed yet. */
4598 caller_save_needed = 0;
4600 /* We haven't done register allocation yet. */
4601 reg_renumber = 0;
4603 /* Indicate that we have not instantiated virtual registers yet. */
4604 virtuals_instantiated = 0;
4606 /* Indicate that we want CONCATs now. */
4607 generating_concat_p = 1;
4609 /* Indicate we have no need of a frame pointer yet. */
4610 frame_pointer_needed = 0;
4613 /* Initialize the rtl expansion mechanism so that we can do simple things
4614 like generate sequences. This is used to provide a context during global
4615 initialization of some passes. You must call expand_dummy_function_end
4616 to exit this context. */
4618 void
4619 init_dummy_function_start (void)
4621 gcc_assert (!in_dummy_function);
4622 in_dummy_function = true;
4623 push_struct_function (NULL_TREE);
4624 prepare_function_start ();
4627 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4628 and initialize static variables for generating RTL for the statements
4629 of the function. */
4631 void
4632 init_function_start (tree subr)
4634 if (subr && DECL_STRUCT_FUNCTION (subr))
4635 set_cfun (DECL_STRUCT_FUNCTION (subr));
4636 else
4637 allocate_struct_function (subr, false);
4639 /* Initialize backend, if needed. */
4640 initialize_rtl ();
4642 prepare_function_start ();
4643 decide_function_section (subr);
4645 /* Warn if this value is an aggregate type,
4646 regardless of which calling convention we are using for it. */
4647 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4648 warning (OPT_Waggregate_return, "function returns an aggregate");
4651 /* Expand code to verify the stack_protect_guard. This is invoked at
4652 the end of a function to be protected. */
4654 #ifndef HAVE_stack_protect_test
4655 # define HAVE_stack_protect_test 0
4656 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4657 #endif
4659 void
4660 stack_protect_epilogue (void)
4662 tree guard_decl = targetm.stack_protect_guard ();
4663 rtx label = gen_label_rtx ();
4664 rtx x, y, tmp;
4666 x = expand_normal (crtl->stack_protect_guard);
4667 y = expand_normal (guard_decl);
4669 /* Allow the target to compare Y with X without leaking either into
4670 a register. */
4671 switch ((int) (HAVE_stack_protect_test != 0))
4673 case 1:
4674 tmp = gen_stack_protect_test (x, y, label);
4675 if (tmp)
4677 emit_insn (tmp);
4678 break;
4680 /* FALLTHRU */
4682 default:
4683 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4684 break;
4687 /* The noreturn predictor has been moved to the tree level. The rtl-level
4688 predictors estimate this branch about 20%, which isn't enough to get
4689 things moved out of line. Since this is the only extant case of adding
4690 a noreturn function at the rtl level, it doesn't seem worth doing ought
4691 except adding the prediction by hand. */
4692 tmp = get_last_insn ();
4693 if (JUMP_P (tmp))
4694 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4696 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4697 free_temp_slots ();
4698 emit_label (label);
4701 /* Start the RTL for a new function, and set variables used for
4702 emitting RTL.
4703 SUBR is the FUNCTION_DECL node.
4704 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4705 the function's parameters, which must be run at any return statement. */
4707 void
4708 expand_function_start (tree subr)
4710 /* Make sure volatile mem refs aren't considered
4711 valid operands of arithmetic insns. */
4712 init_recog_no_volatile ();
4714 crtl->profile
4715 = (profile_flag
4716 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4718 crtl->limit_stack
4719 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4721 /* Make the label for return statements to jump to. Do not special
4722 case machines with special return instructions -- they will be
4723 handled later during jump, ifcvt, or epilogue creation. */
4724 return_label = gen_label_rtx ();
4726 /* Initialize rtx used to return the value. */
4727 /* Do this before assign_parms so that we copy the struct value address
4728 before any library calls that assign parms might generate. */
4730 /* Decide whether to return the value in memory or in a register. */
4731 if (aggregate_value_p (DECL_RESULT (subr), subr))
4733 /* Returning something that won't go in a register. */
4734 rtx value_address = 0;
4736 #ifdef PCC_STATIC_STRUCT_RETURN
4737 if (cfun->returns_pcc_struct)
4739 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4740 value_address = assemble_static_space (size);
4742 else
4743 #endif
4745 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4746 /* Expect to be passed the address of a place to store the value.
4747 If it is passed as an argument, assign_parms will take care of
4748 it. */
4749 if (sv)
4751 value_address = gen_reg_rtx (Pmode);
4752 emit_move_insn (value_address, sv);
4755 if (value_address)
4757 rtx x = value_address;
4758 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4760 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4761 set_mem_attributes (x, DECL_RESULT (subr), 1);
4763 SET_DECL_RTL (DECL_RESULT (subr), x);
4766 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4767 /* If return mode is void, this decl rtl should not be used. */
4768 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4769 else
4771 /* Compute the return values into a pseudo reg, which we will copy
4772 into the true return register after the cleanups are done. */
4773 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4774 if (TYPE_MODE (return_type) != BLKmode
4775 && targetm.calls.return_in_msb (return_type))
4776 /* expand_function_end will insert the appropriate padding in
4777 this case. Use the return value's natural (unpadded) mode
4778 within the function proper. */
4779 SET_DECL_RTL (DECL_RESULT (subr),
4780 gen_reg_rtx (TYPE_MODE (return_type)));
4781 else
4783 /* In order to figure out what mode to use for the pseudo, we
4784 figure out what the mode of the eventual return register will
4785 actually be, and use that. */
4786 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4788 /* Structures that are returned in registers are not
4789 aggregate_value_p, so we may see a PARALLEL or a REG. */
4790 if (REG_P (hard_reg))
4791 SET_DECL_RTL (DECL_RESULT (subr),
4792 gen_reg_rtx (GET_MODE (hard_reg)));
4793 else
4795 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4796 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4800 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4801 result to the real return register(s). */
4802 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4805 /* Initialize rtx for parameters and local variables.
4806 In some cases this requires emitting insns. */
4807 assign_parms (subr);
4809 /* If function gets a static chain arg, store it. */
4810 if (cfun->static_chain_decl)
4812 tree parm = cfun->static_chain_decl;
4813 rtx local, chain, insn;
4815 local = gen_reg_rtx (Pmode);
4816 chain = targetm.calls.static_chain (current_function_decl, true);
4818 set_decl_incoming_rtl (parm, chain, false);
4819 SET_DECL_RTL (parm, local);
4820 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4822 insn = emit_move_insn (local, chain);
4824 /* Mark the register as eliminable, similar to parameters. */
4825 if (MEM_P (chain)
4826 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4827 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4829 /* If we aren't optimizing, save the static chain onto the stack. */
4830 if (!optimize)
4832 tree saved_static_chain_decl
4833 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4834 DECL_NAME (parm), TREE_TYPE (parm));
4835 rtx saved_static_chain_rtx
4836 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4837 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4838 emit_move_insn (saved_static_chain_rtx, chain);
4839 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4840 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4844 /* If the function receives a non-local goto, then store the
4845 bits we need to restore the frame pointer. */
4846 if (cfun->nonlocal_goto_save_area)
4848 tree t_save;
4849 rtx r_save;
4851 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4852 gcc_assert (DECL_RTL_SET_P (var));
4854 t_save = build4 (ARRAY_REF,
4855 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4856 cfun->nonlocal_goto_save_area,
4857 integer_zero_node, NULL_TREE, NULL_TREE);
4858 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4859 gcc_assert (GET_MODE (r_save) == Pmode);
4861 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4862 update_nonlocal_goto_save_area ();
4865 /* The following was moved from init_function_start.
4866 The move is supposed to make sdb output more accurate. */
4867 /* Indicate the beginning of the function body,
4868 as opposed to parm setup. */
4869 emit_note (NOTE_INSN_FUNCTION_BEG);
4871 gcc_assert (NOTE_P (get_last_insn ()));
4873 parm_birth_insn = get_last_insn ();
4875 if (crtl->profile)
4877 #ifdef PROFILE_HOOK
4878 PROFILE_HOOK (current_function_funcdef_no);
4879 #endif
4882 /* If we are doing generic stack checking, the probe should go here. */
4883 if (flag_stack_check == GENERIC_STACK_CHECK)
4884 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4887 /* Undo the effects of init_dummy_function_start. */
4888 void
4889 expand_dummy_function_end (void)
4891 gcc_assert (in_dummy_function);
4893 /* End any sequences that failed to be closed due to syntax errors. */
4894 while (in_sequence_p ())
4895 end_sequence ();
4897 /* Outside function body, can't compute type's actual size
4898 until next function's body starts. */
4900 free_after_parsing (cfun);
4901 free_after_compilation (cfun);
4902 pop_cfun ();
4903 in_dummy_function = false;
4906 /* Call DOIT for each hard register used as a return value from
4907 the current function. */
4909 void
4910 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4912 rtx outgoing = crtl->return_rtx;
4914 if (! outgoing)
4915 return;
4917 if (REG_P (outgoing))
4918 (*doit) (outgoing, arg);
4919 else if (GET_CODE (outgoing) == PARALLEL)
4921 int i;
4923 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4925 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4927 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4928 (*doit) (x, arg);
4933 static void
4934 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4936 emit_clobber (reg);
4939 void
4940 clobber_return_register (void)
4942 diddle_return_value (do_clobber_return_reg, NULL);
4944 /* In case we do use pseudo to return value, clobber it too. */
4945 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4947 tree decl_result = DECL_RESULT (current_function_decl);
4948 rtx decl_rtl = DECL_RTL (decl_result);
4949 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4951 do_clobber_return_reg (decl_rtl, NULL);
4956 static void
4957 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4959 emit_use (reg);
4962 static void
4963 use_return_register (void)
4965 diddle_return_value (do_use_return_reg, NULL);
4968 /* Possibly warn about unused parameters. */
4969 void
4970 do_warn_unused_parameter (tree fn)
4972 tree decl;
4974 for (decl = DECL_ARGUMENTS (fn);
4975 decl; decl = DECL_CHAIN (decl))
4976 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4977 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4978 && !TREE_NO_WARNING (decl))
4979 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4982 /* Set the location of the insn chain starting at INSN to LOC. */
4984 static void
4985 set_insn_locations (rtx insn, int loc)
4987 while (insn != NULL_RTX)
4989 if (INSN_P (insn))
4990 INSN_LOCATION (insn) = loc;
4991 insn = NEXT_INSN (insn);
4995 /* Generate RTL for the end of the current function. */
4997 void
4998 expand_function_end (void)
5000 rtx clobber_after;
5002 /* If arg_pointer_save_area was referenced only from a nested
5003 function, we will not have initialized it yet. Do that now. */
5004 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5005 get_arg_pointer_save_area ();
5007 /* If we are doing generic stack checking and this function makes calls,
5008 do a stack probe at the start of the function to ensure we have enough
5009 space for another stack frame. */
5010 if (flag_stack_check == GENERIC_STACK_CHECK)
5012 rtx_insn *insn, *seq;
5014 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5015 if (CALL_P (insn))
5017 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5018 start_sequence ();
5019 if (STACK_CHECK_MOVING_SP)
5020 anti_adjust_stack_and_probe (max_frame_size, true);
5021 else
5022 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5023 seq = get_insns ();
5024 end_sequence ();
5025 set_insn_locations (seq, prologue_location);
5026 emit_insn_before (seq, stack_check_probe_note);
5027 break;
5031 /* End any sequences that failed to be closed due to syntax errors. */
5032 while (in_sequence_p ())
5033 end_sequence ();
5035 clear_pending_stack_adjust ();
5036 do_pending_stack_adjust ();
5038 /* Output a linenumber for the end of the function.
5039 SDB depends on this. */
5040 set_curr_insn_location (input_location);
5042 /* Before the return label (if any), clobber the return
5043 registers so that they are not propagated live to the rest of
5044 the function. This can only happen with functions that drop
5045 through; if there had been a return statement, there would
5046 have either been a return rtx, or a jump to the return label.
5048 We delay actual code generation after the current_function_value_rtx
5049 is computed. */
5050 clobber_after = get_last_insn ();
5052 /* Output the label for the actual return from the function. */
5053 emit_label (return_label);
5055 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5057 /* Let except.c know where it should emit the call to unregister
5058 the function context for sjlj exceptions. */
5059 if (flag_exceptions)
5060 sjlj_emit_function_exit_after (get_last_insn ());
5062 else
5064 /* We want to ensure that instructions that may trap are not
5065 moved into the epilogue by scheduling, because we don't
5066 always emit unwind information for the epilogue. */
5067 if (cfun->can_throw_non_call_exceptions)
5068 emit_insn (gen_blockage ());
5071 /* If this is an implementation of throw, do what's necessary to
5072 communicate between __builtin_eh_return and the epilogue. */
5073 expand_eh_return ();
5075 /* If scalar return value was computed in a pseudo-reg, or was a named
5076 return value that got dumped to the stack, copy that to the hard
5077 return register. */
5078 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5080 tree decl_result = DECL_RESULT (current_function_decl);
5081 rtx decl_rtl = DECL_RTL (decl_result);
5083 if (REG_P (decl_rtl)
5084 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5085 : DECL_REGISTER (decl_result))
5087 rtx real_decl_rtl = crtl->return_rtx;
5089 /* This should be set in assign_parms. */
5090 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5092 /* If this is a BLKmode structure being returned in registers,
5093 then use the mode computed in expand_return. Note that if
5094 decl_rtl is memory, then its mode may have been changed,
5095 but that crtl->return_rtx has not. */
5096 if (GET_MODE (real_decl_rtl) == BLKmode)
5097 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5099 /* If a non-BLKmode return value should be padded at the least
5100 significant end of the register, shift it left by the appropriate
5101 amount. BLKmode results are handled using the group load/store
5102 machinery. */
5103 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5104 && REG_P (real_decl_rtl)
5105 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5107 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5108 REGNO (real_decl_rtl)),
5109 decl_rtl);
5110 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5112 /* If a named return value dumped decl_return to memory, then
5113 we may need to re-do the PROMOTE_MODE signed/unsigned
5114 extension. */
5115 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5117 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5118 promote_function_mode (TREE_TYPE (decl_result),
5119 GET_MODE (decl_rtl), &unsignedp,
5120 TREE_TYPE (current_function_decl), 1);
5122 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5124 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5126 /* If expand_function_start has created a PARALLEL for decl_rtl,
5127 move the result to the real return registers. Otherwise, do
5128 a group load from decl_rtl for a named return. */
5129 if (GET_CODE (decl_rtl) == PARALLEL)
5130 emit_group_move (real_decl_rtl, decl_rtl);
5131 else
5132 emit_group_load (real_decl_rtl, decl_rtl,
5133 TREE_TYPE (decl_result),
5134 int_size_in_bytes (TREE_TYPE (decl_result)));
5136 /* In the case of complex integer modes smaller than a word, we'll
5137 need to generate some non-trivial bitfield insertions. Do that
5138 on a pseudo and not the hard register. */
5139 else if (GET_CODE (decl_rtl) == CONCAT
5140 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5141 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5143 int old_generating_concat_p;
5144 rtx tmp;
5146 old_generating_concat_p = generating_concat_p;
5147 generating_concat_p = 0;
5148 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5149 generating_concat_p = old_generating_concat_p;
5151 emit_move_insn (tmp, decl_rtl);
5152 emit_move_insn (real_decl_rtl, tmp);
5154 else
5155 emit_move_insn (real_decl_rtl, decl_rtl);
5159 /* If returning a structure, arrange to return the address of the value
5160 in a place where debuggers expect to find it.
5162 If returning a structure PCC style,
5163 the caller also depends on this value.
5164 And cfun->returns_pcc_struct is not necessarily set. */
5165 if (cfun->returns_struct
5166 || cfun->returns_pcc_struct)
5168 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5169 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5170 rtx outgoing;
5172 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5173 type = TREE_TYPE (type);
5174 else
5175 value_address = XEXP (value_address, 0);
5177 outgoing = targetm.calls.function_value (build_pointer_type (type),
5178 current_function_decl, true);
5180 /* Mark this as a function return value so integrate will delete the
5181 assignment and USE below when inlining this function. */
5182 REG_FUNCTION_VALUE_P (outgoing) = 1;
5184 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5185 value_address = convert_memory_address (GET_MODE (outgoing),
5186 value_address);
5188 emit_move_insn (outgoing, value_address);
5190 /* Show return register used to hold result (in this case the address
5191 of the result. */
5192 crtl->return_rtx = outgoing;
5195 /* Emit the actual code to clobber return register. Don't emit
5196 it if clobber_after is a barrier, then the previous basic block
5197 certainly doesn't fall thru into the exit block. */
5198 if (!BARRIER_P (clobber_after))
5200 rtx seq;
5202 start_sequence ();
5203 clobber_return_register ();
5204 seq = get_insns ();
5205 end_sequence ();
5207 emit_insn_after (seq, clobber_after);
5210 /* Output the label for the naked return from the function. */
5211 if (naked_return_label)
5212 emit_label (naked_return_label);
5214 /* @@@ This is a kludge. We want to ensure that instructions that
5215 may trap are not moved into the epilogue by scheduling, because
5216 we don't always emit unwind information for the epilogue. */
5217 if (cfun->can_throw_non_call_exceptions
5218 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5219 emit_insn (gen_blockage ());
5221 /* If stack protection is enabled for this function, check the guard. */
5222 if (crtl->stack_protect_guard)
5223 stack_protect_epilogue ();
5225 /* If we had calls to alloca, and this machine needs
5226 an accurate stack pointer to exit the function,
5227 insert some code to save and restore the stack pointer. */
5228 if (! EXIT_IGNORE_STACK
5229 && cfun->calls_alloca)
5231 rtx tem = 0, seq;
5233 start_sequence ();
5234 emit_stack_save (SAVE_FUNCTION, &tem);
5235 seq = get_insns ();
5236 end_sequence ();
5237 emit_insn_before (seq, parm_birth_insn);
5239 emit_stack_restore (SAVE_FUNCTION, tem);
5242 /* ??? This should no longer be necessary since stupid is no longer with
5243 us, but there are some parts of the compiler (eg reload_combine, and
5244 sh mach_dep_reorg) that still try and compute their own lifetime info
5245 instead of using the general framework. */
5246 use_return_register ();
5250 get_arg_pointer_save_area (void)
5252 rtx ret = arg_pointer_save_area;
5254 if (! ret)
5256 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5257 arg_pointer_save_area = ret;
5260 if (! crtl->arg_pointer_save_area_init)
5262 rtx seq;
5264 /* Save the arg pointer at the beginning of the function. The
5265 generated stack slot may not be a valid memory address, so we
5266 have to check it and fix it if necessary. */
5267 start_sequence ();
5268 emit_move_insn (validize_mem (copy_rtx (ret)),
5269 crtl->args.internal_arg_pointer);
5270 seq = get_insns ();
5271 end_sequence ();
5273 push_topmost_sequence ();
5274 emit_insn_after (seq, entry_of_function ());
5275 pop_topmost_sequence ();
5277 crtl->arg_pointer_save_area_init = true;
5280 return ret;
5283 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5284 for the first time. */
5286 static void
5287 record_insns (rtx insns, rtx end, htab_t *hashp)
5289 rtx tmp;
5290 htab_t hash = *hashp;
5292 if (hash == NULL)
5293 *hashp = hash
5294 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5296 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5298 void **slot = htab_find_slot (hash, tmp, INSERT);
5299 gcc_assert (*slot == NULL);
5300 *slot = tmp;
5304 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5305 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5306 insn, then record COPY as well. */
5308 void
5309 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5311 htab_t hash;
5312 void **slot;
5314 hash = epilogue_insn_hash;
5315 if (!hash || !htab_find (hash, insn))
5317 hash = prologue_insn_hash;
5318 if (!hash || !htab_find (hash, insn))
5319 return;
5322 slot = htab_find_slot (hash, copy, INSERT);
5323 gcc_assert (*slot == NULL);
5324 *slot = copy;
5327 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5328 we can be running after reorg, SEQUENCE rtl is possible. */
5330 static bool
5331 contains (const_rtx insn, htab_t hash)
5333 if (hash == NULL)
5334 return false;
5336 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5338 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5339 int i;
5340 for (i = seq->len () - 1; i >= 0; i--)
5341 if (htab_find (hash, seq->element (i)))
5342 return true;
5343 return false;
5346 return htab_find (hash, insn) != NULL;
5350 prologue_epilogue_contains (const_rtx insn)
5352 if (contains (insn, prologue_insn_hash))
5353 return 1;
5354 if (contains (insn, epilogue_insn_hash))
5355 return 1;
5356 return 0;
5359 #ifdef HAVE_return
5360 /* Insert use of return register before the end of BB. */
5362 static void
5363 emit_use_return_register_into_block (basic_block bb)
5365 rtx seq, insn;
5366 start_sequence ();
5367 use_return_register ();
5368 seq = get_insns ();
5369 end_sequence ();
5370 insn = BB_END (bb);
5371 #ifdef HAVE_cc0
5372 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5373 insn = prev_cc0_setter (insn);
5374 #endif
5375 emit_insn_before (seq, insn);
5379 /* Create a return pattern, either simple_return or return, depending on
5380 simple_p. */
5382 static rtx
5383 gen_return_pattern (bool simple_p)
5385 #ifdef HAVE_simple_return
5386 return simple_p ? gen_simple_return () : gen_return ();
5387 #else
5388 gcc_assert (!simple_p);
5389 return gen_return ();
5390 #endif
5393 /* Insert an appropriate return pattern at the end of block BB. This
5394 also means updating block_for_insn appropriately. SIMPLE_P is
5395 the same as in gen_return_pattern and passed to it. */
5397 void
5398 emit_return_into_block (bool simple_p, basic_block bb)
5400 rtx jump, pat;
5401 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5402 pat = PATTERN (jump);
5403 if (GET_CODE (pat) == PARALLEL)
5404 pat = XVECEXP (pat, 0, 0);
5405 gcc_assert (ANY_RETURN_P (pat));
5406 JUMP_LABEL (jump) = pat;
5408 #endif
5410 /* Set JUMP_LABEL for a return insn. */
5412 void
5413 set_return_jump_label (rtx returnjump)
5415 rtx pat = PATTERN (returnjump);
5416 if (GET_CODE (pat) == PARALLEL)
5417 pat = XVECEXP (pat, 0, 0);
5418 if (ANY_RETURN_P (pat))
5419 JUMP_LABEL (returnjump) = pat;
5420 else
5421 JUMP_LABEL (returnjump) = ret_rtx;
5424 #if defined (HAVE_return) || defined (HAVE_simple_return)
5425 /* Return true if there are any active insns between HEAD and TAIL. */
5426 bool
5427 active_insn_between (rtx head, rtx tail)
5429 while (tail)
5431 if (active_insn_p (tail))
5432 return true;
5433 if (tail == head)
5434 return false;
5435 tail = PREV_INSN (tail);
5437 return false;
5440 /* LAST_BB is a block that exits, and empty of active instructions.
5441 Examine its predecessors for jumps that can be converted to
5442 (conditional) returns. */
5443 vec<edge>
5444 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5445 vec<edge> unconverted ATTRIBUTE_UNUSED)
5447 int i;
5448 basic_block bb;
5449 rtx label;
5450 edge_iterator ei;
5451 edge e;
5452 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5454 FOR_EACH_EDGE (e, ei, last_bb->preds)
5455 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5456 src_bbs.quick_push (e->src);
5458 label = BB_HEAD (last_bb);
5460 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5462 rtx jump = BB_END (bb);
5464 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5465 continue;
5467 e = find_edge (bb, last_bb);
5469 /* If we have an unconditional jump, we can replace that
5470 with a simple return instruction. */
5471 if (simplejump_p (jump))
5473 /* The use of the return register might be present in the exit
5474 fallthru block. Either:
5475 - removing the use is safe, and we should remove the use in
5476 the exit fallthru block, or
5477 - removing the use is not safe, and we should add it here.
5478 For now, we conservatively choose the latter. Either of the
5479 2 helps in crossjumping. */
5480 emit_use_return_register_into_block (bb);
5482 emit_return_into_block (simple_p, bb);
5483 delete_insn (jump);
5486 /* If we have a conditional jump branching to the last
5487 block, we can try to replace that with a conditional
5488 return instruction. */
5489 else if (condjump_p (jump))
5491 rtx dest;
5493 if (simple_p)
5494 dest = simple_return_rtx;
5495 else
5496 dest = ret_rtx;
5497 if (!redirect_jump (jump, dest, 0))
5499 #ifdef HAVE_simple_return
5500 if (simple_p)
5502 if (dump_file)
5503 fprintf (dump_file,
5504 "Failed to redirect bb %d branch.\n", bb->index);
5505 unconverted.safe_push (e);
5507 #endif
5508 continue;
5511 /* See comment in simplejump_p case above. */
5512 emit_use_return_register_into_block (bb);
5514 /* If this block has only one successor, it both jumps
5515 and falls through to the fallthru block, so we can't
5516 delete the edge. */
5517 if (single_succ_p (bb))
5518 continue;
5520 else
5522 #ifdef HAVE_simple_return
5523 if (simple_p)
5525 if (dump_file)
5526 fprintf (dump_file,
5527 "Failed to redirect bb %d branch.\n", bb->index);
5528 unconverted.safe_push (e);
5530 #endif
5531 continue;
5534 /* Fix up the CFG for the successful change we just made. */
5535 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5536 e->flags &= ~EDGE_CROSSING;
5538 src_bbs.release ();
5539 return unconverted;
5542 /* Emit a return insn for the exit fallthru block. */
5543 basic_block
5544 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5546 basic_block last_bb = exit_fallthru_edge->src;
5548 if (JUMP_P (BB_END (last_bb)))
5550 last_bb = split_edge (exit_fallthru_edge);
5551 exit_fallthru_edge = single_succ_edge (last_bb);
5553 emit_barrier_after (BB_END (last_bb));
5554 emit_return_into_block (simple_p, last_bb);
5555 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5556 return last_bb;
5558 #endif
5561 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5562 this into place with notes indicating where the prologue ends and where
5563 the epilogue begins. Update the basic block information when possible.
5565 Notes on epilogue placement:
5566 There are several kinds of edges to the exit block:
5567 * a single fallthru edge from LAST_BB
5568 * possibly, edges from blocks containing sibcalls
5569 * possibly, fake edges from infinite loops
5571 The epilogue is always emitted on the fallthru edge from the last basic
5572 block in the function, LAST_BB, into the exit block.
5574 If LAST_BB is empty except for a label, it is the target of every
5575 other basic block in the function that ends in a return. If a
5576 target has a return or simple_return pattern (possibly with
5577 conditional variants), these basic blocks can be changed so that a
5578 return insn is emitted into them, and their target is adjusted to
5579 the real exit block.
5581 Notes on shrink wrapping: We implement a fairly conservative
5582 version of shrink-wrapping rather than the textbook one. We only
5583 generate a single prologue and a single epilogue. This is
5584 sufficient to catch a number of interesting cases involving early
5585 exits.
5587 First, we identify the blocks that require the prologue to occur before
5588 them. These are the ones that modify a call-saved register, or reference
5589 any of the stack or frame pointer registers. To simplify things, we then
5590 mark everything reachable from these blocks as also requiring a prologue.
5591 This takes care of loops automatically, and avoids the need to examine
5592 whether MEMs reference the frame, since it is sufficient to check for
5593 occurrences of the stack or frame pointer.
5595 We then compute the set of blocks for which the need for a prologue
5596 is anticipatable (borrowing terminology from the shrink-wrapping
5597 description in Muchnick's book). These are the blocks which either
5598 require a prologue themselves, or those that have only successors
5599 where the prologue is anticipatable. The prologue needs to be
5600 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5601 is not. For the moment, we ensure that only one such edge exists.
5603 The epilogue is placed as described above, but we make a
5604 distinction between inserting return and simple_return patterns
5605 when modifying other blocks that end in a return. Blocks that end
5606 in a sibcall omit the sibcall_epilogue if the block is not in
5607 ANTIC. */
5609 static void
5610 thread_prologue_and_epilogue_insns (void)
5612 bool inserted;
5613 #ifdef HAVE_simple_return
5614 vec<edge> unconverted_simple_returns = vNULL;
5615 bitmap_head bb_flags;
5616 #endif
5617 rtx_insn *returnjump;
5618 rtx seq ATTRIBUTE_UNUSED;
5619 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5620 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5621 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5622 edge_iterator ei;
5624 df_analyze ();
5626 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5628 inserted = false;
5629 seq = NULL_RTX;
5630 epilogue_end = NULL;
5631 returnjump = NULL;
5633 /* Can't deal with multiple successors of the entry block at the
5634 moment. Function should always have at least one entry
5635 point. */
5636 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5637 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5638 orig_entry_edge = entry_edge;
5640 split_prologue_seq = NULL_RTX;
5641 if (flag_split_stack
5642 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5643 == NULL))
5645 #ifndef HAVE_split_stack_prologue
5646 gcc_unreachable ();
5647 #else
5648 gcc_assert (HAVE_split_stack_prologue);
5650 start_sequence ();
5651 emit_insn (gen_split_stack_prologue ());
5652 split_prologue_seq = get_insns ();
5653 end_sequence ();
5655 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5656 set_insn_locations (split_prologue_seq, prologue_location);
5657 #endif
5660 prologue_seq = NULL_RTX;
5661 #ifdef HAVE_prologue
5662 if (HAVE_prologue)
5664 start_sequence ();
5665 seq = gen_prologue ();
5666 emit_insn (seq);
5668 /* Insert an explicit USE for the frame pointer
5669 if the profiling is on and the frame pointer is required. */
5670 if (crtl->profile && frame_pointer_needed)
5671 emit_use (hard_frame_pointer_rtx);
5673 /* Retain a map of the prologue insns. */
5674 record_insns (seq, NULL, &prologue_insn_hash);
5675 emit_note (NOTE_INSN_PROLOGUE_END);
5677 /* Ensure that instructions are not moved into the prologue when
5678 profiling is on. The call to the profiling routine can be
5679 emitted within the live range of a call-clobbered register. */
5680 if (!targetm.profile_before_prologue () && crtl->profile)
5681 emit_insn (gen_blockage ());
5683 prologue_seq = get_insns ();
5684 end_sequence ();
5685 set_insn_locations (prologue_seq, prologue_location);
5687 #endif
5689 #ifdef HAVE_simple_return
5690 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5692 /* Try to perform a kind of shrink-wrapping, making sure the
5693 prologue/epilogue is emitted only around those parts of the
5694 function that require it. */
5696 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5697 #endif
5699 if (split_prologue_seq != NULL_RTX)
5701 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5702 inserted = true;
5704 if (prologue_seq != NULL_RTX)
5706 insert_insn_on_edge (prologue_seq, entry_edge);
5707 inserted = true;
5710 /* If the exit block has no non-fake predecessors, we don't need
5711 an epilogue. */
5712 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5713 if ((e->flags & EDGE_FAKE) == 0)
5714 break;
5715 if (e == NULL)
5716 goto epilogue_done;
5718 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5720 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5722 #ifdef HAVE_simple_return
5723 if (entry_edge != orig_entry_edge)
5724 exit_fallthru_edge
5725 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5726 &unconverted_simple_returns,
5727 &returnjump);
5728 #endif
5729 #ifdef HAVE_return
5730 if (HAVE_return)
5732 if (exit_fallthru_edge == NULL)
5733 goto epilogue_done;
5735 if (optimize)
5737 basic_block last_bb = exit_fallthru_edge->src;
5739 if (LABEL_P (BB_HEAD (last_bb))
5740 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5741 convert_jumps_to_returns (last_bb, false, vNULL);
5743 if (EDGE_COUNT (last_bb->preds) != 0
5744 && single_succ_p (last_bb))
5746 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5747 epilogue_end = returnjump = BB_END (last_bb);
5748 #ifdef HAVE_simple_return
5749 /* Emitting the return may add a basic block.
5750 Fix bb_flags for the added block. */
5751 if (last_bb != exit_fallthru_edge->src)
5752 bitmap_set_bit (&bb_flags, last_bb->index);
5753 #endif
5754 goto epilogue_done;
5758 #endif
5760 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5761 this marker for the splits of EH_RETURN patterns, and nothing else
5762 uses the flag in the meantime. */
5763 epilogue_completed = 1;
5765 #ifdef HAVE_eh_return
5766 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5767 some targets, these get split to a special version of the epilogue
5768 code. In order to be able to properly annotate these with unwind
5769 info, try to split them now. If we get a valid split, drop an
5770 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5771 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5773 rtx_insn *prev, *last, *trial;
5775 if (e->flags & EDGE_FALLTHRU)
5776 continue;
5777 last = BB_END (e->src);
5778 if (!eh_returnjump_p (last))
5779 continue;
5781 prev = PREV_INSN (last);
5782 trial = try_split (PATTERN (last), last, 1);
5783 if (trial == last)
5784 continue;
5786 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5787 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5789 #endif
5791 /* If nothing falls through into the exit block, we don't need an
5792 epilogue. */
5794 if (exit_fallthru_edge == NULL)
5795 goto epilogue_done;
5797 #ifdef HAVE_epilogue
5798 if (HAVE_epilogue)
5800 start_sequence ();
5801 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5802 seq = gen_epilogue ();
5803 if (seq)
5804 emit_jump_insn (seq);
5806 /* Retain a map of the epilogue insns. */
5807 record_insns (seq, NULL, &epilogue_insn_hash);
5808 set_insn_locations (seq, epilogue_location);
5810 seq = get_insns ();
5811 returnjump = get_last_insn ();
5812 end_sequence ();
5814 insert_insn_on_edge (seq, exit_fallthru_edge);
5815 inserted = true;
5817 if (JUMP_P (returnjump))
5818 set_return_jump_label (returnjump);
5820 else
5821 #endif
5823 basic_block cur_bb;
5825 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5826 goto epilogue_done;
5827 /* We have a fall-through edge to the exit block, the source is not
5828 at the end of the function, and there will be an assembler epilogue
5829 at the end of the function.
5830 We can't use force_nonfallthru here, because that would try to
5831 use return. Inserting a jump 'by hand' is extremely messy, so
5832 we take advantage of cfg_layout_finalize using
5833 fixup_fallthru_exit_predecessor. */
5834 cfg_layout_initialize (0);
5835 FOR_EACH_BB_FN (cur_bb, cfun)
5836 if (cur_bb->index >= NUM_FIXED_BLOCKS
5837 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5838 cur_bb->aux = cur_bb->next_bb;
5839 cfg_layout_finalize ();
5842 epilogue_done:
5844 default_rtl_profile ();
5846 if (inserted)
5848 sbitmap blocks;
5850 commit_edge_insertions ();
5852 /* Look for basic blocks within the prologue insns. */
5853 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5854 bitmap_clear (blocks);
5855 bitmap_set_bit (blocks, entry_edge->dest->index);
5856 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5857 find_many_sub_basic_blocks (blocks);
5858 sbitmap_free (blocks);
5860 /* The epilogue insns we inserted may cause the exit edge to no longer
5861 be fallthru. */
5862 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5864 if (((e->flags & EDGE_FALLTHRU) != 0)
5865 && returnjump_p (BB_END (e->src)))
5866 e->flags &= ~EDGE_FALLTHRU;
5870 #ifdef HAVE_simple_return
5871 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5872 unconverted_simple_returns);
5873 #endif
5875 #ifdef HAVE_sibcall_epilogue
5876 /* Emit sibling epilogues before any sibling call sites. */
5877 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5878 ei_safe_edge (ei));
5881 basic_block bb = e->src;
5882 rtx_insn *insn = BB_END (bb);
5883 rtx ep_seq;
5885 if (!CALL_P (insn)
5886 || ! SIBLING_CALL_P (insn)
5887 #ifdef HAVE_simple_return
5888 || (entry_edge != orig_entry_edge
5889 && !bitmap_bit_p (&bb_flags, bb->index))
5890 #endif
5893 ei_next (&ei);
5894 continue;
5897 ep_seq = gen_sibcall_epilogue ();
5898 if (ep_seq)
5900 start_sequence ();
5901 emit_note (NOTE_INSN_EPILOGUE_BEG);
5902 emit_insn (ep_seq);
5903 seq = get_insns ();
5904 end_sequence ();
5906 /* Retain a map of the epilogue insns. Used in life analysis to
5907 avoid getting rid of sibcall epilogue insns. Do this before we
5908 actually emit the sequence. */
5909 record_insns (seq, NULL, &epilogue_insn_hash);
5910 set_insn_locations (seq, epilogue_location);
5912 emit_insn_before (seq, insn);
5914 ei_next (&ei);
5916 #endif
5918 #ifdef HAVE_epilogue
5919 if (epilogue_end)
5921 rtx_insn *insn, *next;
5923 /* Similarly, move any line notes that appear after the epilogue.
5924 There is no need, however, to be quite so anal about the existence
5925 of such a note. Also possibly move
5926 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5927 info generation. */
5928 for (insn = epilogue_end; insn; insn = next)
5930 next = NEXT_INSN (insn);
5931 if (NOTE_P (insn)
5932 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5933 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5936 #endif
5938 #ifdef HAVE_simple_return
5939 bitmap_clear (&bb_flags);
5940 #endif
5942 /* Threading the prologue and epilogue changes the artificial refs
5943 in the entry and exit blocks. */
5944 epilogue_completed = 1;
5945 df_update_entry_exit_and_calls ();
5948 /* Reposition the prologue-end and epilogue-begin notes after
5949 instruction scheduling. */
5951 void
5952 reposition_prologue_and_epilogue_notes (void)
5954 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5955 || defined (HAVE_sibcall_epilogue)
5956 /* Since the hash table is created on demand, the fact that it is
5957 non-null is a signal that it is non-empty. */
5958 if (prologue_insn_hash != NULL)
5960 size_t len = htab_elements (prologue_insn_hash);
5961 rtx_insn *insn, *last = NULL, *note = NULL;
5963 /* Scan from the beginning until we reach the last prologue insn. */
5964 /* ??? While we do have the CFG intact, there are two problems:
5965 (1) The prologue can contain loops (typically probing the stack),
5966 which means that the end of the prologue isn't in the first bb.
5967 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5968 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5970 if (NOTE_P (insn))
5972 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5973 note = insn;
5975 else if (contains (insn, prologue_insn_hash))
5977 last = insn;
5978 if (--len == 0)
5979 break;
5983 if (last)
5985 if (note == NULL)
5987 /* Scan forward looking for the PROLOGUE_END note. It should
5988 be right at the beginning of the block, possibly with other
5989 insn notes that got moved there. */
5990 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5992 if (NOTE_P (note)
5993 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5994 break;
5998 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5999 if (LABEL_P (last))
6000 last = NEXT_INSN (last);
6001 reorder_insns (note, note, last);
6005 if (epilogue_insn_hash != NULL)
6007 edge_iterator ei;
6008 edge e;
6010 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6012 rtx_insn *insn, *first = NULL, *note = NULL;
6013 basic_block bb = e->src;
6015 /* Scan from the beginning until we reach the first epilogue insn. */
6016 FOR_BB_INSNS (bb, insn)
6018 if (NOTE_P (insn))
6020 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6022 note = insn;
6023 if (first != NULL)
6024 break;
6027 else if (first == NULL && contains (insn, epilogue_insn_hash))
6029 first = insn;
6030 if (note != NULL)
6031 break;
6035 if (note)
6037 /* If the function has a single basic block, and no real
6038 epilogue insns (e.g. sibcall with no cleanup), the
6039 epilogue note can get scheduled before the prologue
6040 note. If we have frame related prologue insns, having
6041 them scanned during the epilogue will result in a crash.
6042 In this case re-order the epilogue note to just before
6043 the last insn in the block. */
6044 if (first == NULL)
6045 first = BB_END (bb);
6047 if (PREV_INSN (first) != note)
6048 reorder_insns (note, note, PREV_INSN (first));
6052 #endif /* HAVE_prologue or HAVE_epilogue */
6055 /* Returns the name of function declared by FNDECL. */
6056 const char *
6057 fndecl_name (tree fndecl)
6059 if (fndecl == NULL)
6060 return "(nofn)";
6061 return lang_hooks.decl_printable_name (fndecl, 2);
6064 /* Returns the name of function FN. */
6065 const char *
6066 function_name (struct function *fn)
6068 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6069 return fndecl_name (fndecl);
6072 /* Returns the name of the current function. */
6073 const char *
6074 current_function_name (void)
6076 return function_name (cfun);
6080 static unsigned int
6081 rest_of_handle_check_leaf_regs (void)
6083 #ifdef LEAF_REGISTERS
6084 crtl->uses_only_leaf_regs
6085 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6086 #endif
6087 return 0;
6090 /* Insert a TYPE into the used types hash table of CFUN. */
6092 static void
6093 used_types_insert_helper (tree type, struct function *func)
6095 if (type != NULL && func != NULL)
6097 void **slot;
6099 if (func->used_types_hash == NULL)
6100 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6101 htab_eq_pointer, NULL);
6102 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6103 if (*slot == NULL)
6104 *slot = type;
6108 /* Given a type, insert it into the used hash table in cfun. */
6109 void
6110 used_types_insert (tree t)
6112 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6113 if (TYPE_NAME (t))
6114 break;
6115 else
6116 t = TREE_TYPE (t);
6117 if (TREE_CODE (t) == ERROR_MARK)
6118 return;
6119 if (TYPE_NAME (t) == NULL_TREE
6120 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6121 t = TYPE_MAIN_VARIANT (t);
6122 if (debug_info_level > DINFO_LEVEL_NONE)
6124 if (cfun)
6125 used_types_insert_helper (t, cfun);
6126 else
6128 /* So this might be a type referenced by a global variable.
6129 Record that type so that we can later decide to emit its
6130 debug information. */
6131 vec_safe_push (types_used_by_cur_var_decl, t);
6136 /* Helper to Hash a struct types_used_by_vars_entry. */
6138 static hashval_t
6139 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6141 gcc_assert (entry && entry->var_decl && entry->type);
6143 return iterative_hash_object (entry->type,
6144 iterative_hash_object (entry->var_decl, 0));
6147 /* Hash function of the types_used_by_vars_entry hash table. */
6149 hashval_t
6150 types_used_by_vars_do_hash (const void *x)
6152 const struct types_used_by_vars_entry *entry =
6153 (const struct types_used_by_vars_entry *) x;
6155 return hash_types_used_by_vars_entry (entry);
6158 /*Equality function of the types_used_by_vars_entry hash table. */
6161 types_used_by_vars_eq (const void *x1, const void *x2)
6163 const struct types_used_by_vars_entry *e1 =
6164 (const struct types_used_by_vars_entry *) x1;
6165 const struct types_used_by_vars_entry *e2 =
6166 (const struct types_used_by_vars_entry *)x2;
6168 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6171 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6173 void
6174 types_used_by_var_decl_insert (tree type, tree var_decl)
6176 if (type != NULL && var_decl != NULL)
6178 void **slot;
6179 struct types_used_by_vars_entry e;
6180 e.var_decl = var_decl;
6181 e.type = type;
6182 if (types_used_by_vars_hash == NULL)
6183 types_used_by_vars_hash =
6184 htab_create_ggc (37, types_used_by_vars_do_hash,
6185 types_used_by_vars_eq, NULL);
6186 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6187 hash_types_used_by_vars_entry (&e), INSERT);
6188 if (*slot == NULL)
6190 struct types_used_by_vars_entry *entry;
6191 entry = ggc_alloc<types_used_by_vars_entry> ();
6192 entry->type = type;
6193 entry->var_decl = var_decl;
6194 *slot = entry;
6199 namespace {
6201 const pass_data pass_data_leaf_regs =
6203 RTL_PASS, /* type */
6204 "*leaf_regs", /* name */
6205 OPTGROUP_NONE, /* optinfo_flags */
6206 TV_NONE, /* tv_id */
6207 0, /* properties_required */
6208 0, /* properties_provided */
6209 0, /* properties_destroyed */
6210 0, /* todo_flags_start */
6211 0, /* todo_flags_finish */
6214 class pass_leaf_regs : public rtl_opt_pass
6216 public:
6217 pass_leaf_regs (gcc::context *ctxt)
6218 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6221 /* opt_pass methods: */
6222 virtual unsigned int execute (function *)
6224 return rest_of_handle_check_leaf_regs ();
6227 }; // class pass_leaf_regs
6229 } // anon namespace
6231 rtl_opt_pass *
6232 make_pass_leaf_regs (gcc::context *ctxt)
6234 return new pass_leaf_regs (ctxt);
6237 static unsigned int
6238 rest_of_handle_thread_prologue_and_epilogue (void)
6240 if (optimize)
6241 cleanup_cfg (CLEANUP_EXPENSIVE);
6243 /* On some machines, the prologue and epilogue code, or parts thereof,
6244 can be represented as RTL. Doing so lets us schedule insns between
6245 it and the rest of the code and also allows delayed branch
6246 scheduling to operate in the epilogue. */
6247 thread_prologue_and_epilogue_insns ();
6249 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6250 see PR57320. */
6251 cleanup_cfg (0);
6253 /* The stack usage info is finalized during prologue expansion. */
6254 if (flag_stack_usage_info)
6255 output_stack_usage ();
6257 return 0;
6260 namespace {
6262 const pass_data pass_data_thread_prologue_and_epilogue =
6264 RTL_PASS, /* type */
6265 "pro_and_epilogue", /* name */
6266 OPTGROUP_NONE, /* optinfo_flags */
6267 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6268 0, /* properties_required */
6269 0, /* properties_provided */
6270 0, /* properties_destroyed */
6271 0, /* todo_flags_start */
6272 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6275 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6277 public:
6278 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6279 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6282 /* opt_pass methods: */
6283 virtual unsigned int execute (function *)
6285 return rest_of_handle_thread_prologue_and_epilogue ();
6288 }; // class pass_thread_prologue_and_epilogue
6290 } // anon namespace
6292 rtl_opt_pass *
6293 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6295 return new pass_thread_prologue_and_epilogue (ctxt);
6299 /* This mini-pass fixes fall-out from SSA in asm statements that have
6300 in-out constraints. Say you start with
6302 orig = inout;
6303 asm ("": "+mr" (inout));
6304 use (orig);
6306 which is transformed very early to use explicit output and match operands:
6308 orig = inout;
6309 asm ("": "=mr" (inout) : "0" (inout));
6310 use (orig);
6312 Or, after SSA and copyprop,
6314 asm ("": "=mr" (inout_2) : "0" (inout_1));
6315 use (inout_1);
6317 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6318 they represent two separate values, so they will get different pseudo
6319 registers during expansion. Then, since the two operands need to match
6320 per the constraints, but use different pseudo registers, reload can
6321 only register a reload for these operands. But reloads can only be
6322 satisfied by hardregs, not by memory, so we need a register for this
6323 reload, just because we are presented with non-matching operands.
6324 So, even though we allow memory for this operand, no memory can be
6325 used for it, just because the two operands don't match. This can
6326 cause reload failures on register-starved targets.
6328 So it's a symptom of reload not being able to use memory for reloads
6329 or, alternatively it's also a symptom of both operands not coming into
6330 reload as matching (in which case the pseudo could go to memory just
6331 fine, as the alternative allows it, and no reload would be necessary).
6332 We fix the latter problem here, by transforming
6334 asm ("": "=mr" (inout_2) : "0" (inout_1));
6336 back to
6338 inout_2 = inout_1;
6339 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6341 static void
6342 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6344 int i;
6345 bool changed = false;
6346 rtx op = SET_SRC (p_sets[0]);
6347 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6348 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6349 bool *output_matched = XALLOCAVEC (bool, noutputs);
6351 memset (output_matched, 0, noutputs * sizeof (bool));
6352 for (i = 0; i < ninputs; i++)
6354 rtx input, output;
6355 rtx_insn *insns;
6356 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6357 char *end;
6358 int match, j;
6360 if (*constraint == '%')
6361 constraint++;
6363 match = strtoul (constraint, &end, 10);
6364 if (end == constraint)
6365 continue;
6367 gcc_assert (match < noutputs);
6368 output = SET_DEST (p_sets[match]);
6369 input = RTVEC_ELT (inputs, i);
6370 /* Only do the transformation for pseudos. */
6371 if (! REG_P (output)
6372 || rtx_equal_p (output, input)
6373 || (GET_MODE (input) != VOIDmode
6374 && GET_MODE (input) != GET_MODE (output)))
6375 continue;
6377 /* We can't do anything if the output is also used as input,
6378 as we're going to overwrite it. */
6379 for (j = 0; j < ninputs; j++)
6380 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6381 break;
6382 if (j != ninputs)
6383 continue;
6385 /* Avoid changing the same input several times. For
6386 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6387 only change in once (to out1), rather than changing it
6388 first to out1 and afterwards to out2. */
6389 if (i > 0)
6391 for (j = 0; j < noutputs; j++)
6392 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6393 break;
6394 if (j != noutputs)
6395 continue;
6397 output_matched[match] = true;
6399 start_sequence ();
6400 emit_move_insn (output, input);
6401 insns = get_insns ();
6402 end_sequence ();
6403 emit_insn_before (insns, insn);
6405 /* Now replace all mentions of the input with output. We can't
6406 just replace the occurrence in inputs[i], as the register might
6407 also be used in some other input (or even in an address of an
6408 output), which would mean possibly increasing the number of
6409 inputs by one (namely 'output' in addition), which might pose
6410 a too complicated problem for reload to solve. E.g. this situation:
6412 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6414 Here 'input' is used in two occurrences as input (once for the
6415 input operand, once for the address in the second output operand).
6416 If we would replace only the occurrence of the input operand (to
6417 make the matching) we would be left with this:
6419 output = input
6420 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6422 Now we suddenly have two different input values (containing the same
6423 value, but different pseudos) where we formerly had only one.
6424 With more complicated asms this might lead to reload failures
6425 which wouldn't have happen without this pass. So, iterate over
6426 all operands and replace all occurrences of the register used. */
6427 for (j = 0; j < noutputs; j++)
6428 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6429 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6430 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6431 input, output);
6432 for (j = 0; j < ninputs; j++)
6433 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6434 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6435 input, output);
6437 changed = true;
6440 if (changed)
6441 df_insn_rescan (insn);
6444 namespace {
6446 const pass_data pass_data_match_asm_constraints =
6448 RTL_PASS, /* type */
6449 "asmcons", /* name */
6450 OPTGROUP_NONE, /* optinfo_flags */
6451 TV_NONE, /* tv_id */
6452 0, /* properties_required */
6453 0, /* properties_provided */
6454 0, /* properties_destroyed */
6455 0, /* todo_flags_start */
6456 0, /* todo_flags_finish */
6459 class pass_match_asm_constraints : public rtl_opt_pass
6461 public:
6462 pass_match_asm_constraints (gcc::context *ctxt)
6463 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6466 /* opt_pass methods: */
6467 virtual unsigned int execute (function *);
6469 }; // class pass_match_asm_constraints
6471 unsigned
6472 pass_match_asm_constraints::execute (function *fun)
6474 basic_block bb;
6475 rtx_insn *insn;
6476 rtx pat, *p_sets;
6477 int noutputs;
6479 if (!crtl->has_asm_statement)
6480 return 0;
6482 df_set_flags (DF_DEFER_INSN_RESCAN);
6483 FOR_EACH_BB_FN (bb, fun)
6485 FOR_BB_INSNS (bb, insn)
6487 if (!INSN_P (insn))
6488 continue;
6490 pat = PATTERN (insn);
6491 if (GET_CODE (pat) == PARALLEL)
6492 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6493 else if (GET_CODE (pat) == SET)
6494 p_sets = &PATTERN (insn), noutputs = 1;
6495 else
6496 continue;
6498 if (GET_CODE (*p_sets) == SET
6499 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6500 match_asm_constraints_1 (insn, p_sets, noutputs);
6504 return TODO_df_finish;
6507 } // anon namespace
6509 rtl_opt_pass *
6510 make_pass_match_asm_constraints (gcc::context *ctxt)
6512 return new pass_match_asm_constraints (ctxt);
6516 #include "gt-function.h"