2017-07-20 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vect-loop.c
blob7bae41680afc3562d855876cb8fcb48d54ead163
1 /* Loop Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
54 /* Loop Vectorization Pass.
56 This pass tries to vectorize loops.
58 For example, the vectorizer transforms the following simple loop:
60 short a[N]; short b[N]; short c[N]; int i;
62 for (i=0; i<N; i++){
63 a[i] = b[i] + c[i];
66 as if it was manually vectorized by rewriting the source code into:
68 typedef int __attribute__((mode(V8HI))) v8hi;
69 short a[N]; short b[N]; short c[N]; int i;
70 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
71 v8hi va, vb, vc;
73 for (i=0; i<N/8; i++){
74 vb = pb[i];
75 vc = pc[i];
76 va = vb + vc;
77 pa[i] = va;
80 The main entry to this pass is vectorize_loops(), in which
81 the vectorizer applies a set of analyses on a given set of loops,
82 followed by the actual vectorization transformation for the loops that
83 had successfully passed the analysis phase.
84 Throughout this pass we make a distinction between two types of
85 data: scalars (which are represented by SSA_NAMES), and memory references
86 ("data-refs"). These two types of data require different handling both
87 during analysis and transformation. The types of data-refs that the
88 vectorizer currently supports are ARRAY_REFS which base is an array DECL
89 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
90 accesses are required to have a simple (consecutive) access pattern.
92 Analysis phase:
93 ===============
94 The driver for the analysis phase is vect_analyze_loop().
95 It applies a set of analyses, some of which rely on the scalar evolution
96 analyzer (scev) developed by Sebastian Pop.
98 During the analysis phase the vectorizer records some information
99 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
100 loop, as well as general information about the loop as a whole, which is
101 recorded in a "loop_vec_info" struct attached to each loop.
103 Transformation phase:
104 =====================
105 The loop transformation phase scans all the stmts in the loop, and
106 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
107 the loop that needs to be vectorized. It inserts the vector code sequence
108 just before the scalar stmt S, and records a pointer to the vector code
109 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
110 attached to S). This pointer will be used for the vectorization of following
111 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
112 otherwise, we rely on dead code elimination for removing it.
114 For example, say stmt S1 was vectorized into stmt VS1:
116 VS1: vb = px[i];
117 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
118 S2: a = b;
120 To vectorize stmt S2, the vectorizer first finds the stmt that defines
121 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
122 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
123 resulting sequence would be:
125 VS1: vb = px[i];
126 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
127 VS2: va = vb;
128 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
130 Operands that are not SSA_NAMEs, are data-refs that appear in
131 load/store operations (like 'x[i]' in S1), and are handled differently.
133 Target modeling:
134 =================
135 Currently the only target specific information that is used is the
136 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
137 Targets that can support different sizes of vectors, for now will need
138 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
139 flexibility will be added in the future.
141 Since we only vectorize operations which vector form can be
142 expressed using existing tree codes, to verify that an operation is
143 supported, the vectorizer checks the relevant optab at the relevant
144 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
145 the value found is CODE_FOR_nothing, then there's no target support, and
146 we can't vectorize the stmt.
148 For additional information on this project see:
149 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
152 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
154 /* Function vect_determine_vectorization_factor
156 Determine the vectorization factor (VF). VF is the number of data elements
157 that are operated upon in parallel in a single iteration of the vectorized
158 loop. For example, when vectorizing a loop that operates on 4byte elements,
159 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
160 elements can fit in a single vector register.
162 We currently support vectorization of loops in which all types operated upon
163 are of the same size. Therefore this function currently sets VF according to
164 the size of the types operated upon, and fails if there are multiple sizes
165 in the loop.
167 VF is also the factor by which the loop iterations are strip-mined, e.g.:
168 original loop:
169 for (i=0; i<N; i++){
170 a[i] = b[i] + c[i];
173 vectorized loop:
174 for (i=0; i<N; i+=VF){
175 a[i:VF] = b[i:VF] + c[i:VF];
179 static bool
180 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
182 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
183 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
184 unsigned nbbs = loop->num_nodes;
185 unsigned int vectorization_factor = 0;
186 tree scalar_type = NULL_TREE;
187 gphi *phi;
188 tree vectype;
189 unsigned int nunits;
190 stmt_vec_info stmt_info;
191 unsigned i;
192 HOST_WIDE_INT dummy;
193 gimple *stmt, *pattern_stmt = NULL;
194 gimple_seq pattern_def_seq = NULL;
195 gimple_stmt_iterator pattern_def_si = gsi_none ();
196 bool analyze_pattern_stmt = false;
197 bool bool_result;
198 auto_vec<stmt_vec_info> mask_producers;
200 if (dump_enabled_p ())
201 dump_printf_loc (MSG_NOTE, vect_location,
202 "=== vect_determine_vectorization_factor ===\n");
204 for (i = 0; i < nbbs; i++)
206 basic_block bb = bbs[i];
208 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
209 gsi_next (&si))
211 phi = si.phi ();
212 stmt_info = vinfo_for_stmt (phi);
213 if (dump_enabled_p ())
215 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
216 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
219 gcc_assert (stmt_info);
221 if (STMT_VINFO_RELEVANT_P (stmt_info)
222 || STMT_VINFO_LIVE_P (stmt_info))
224 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
225 scalar_type = TREE_TYPE (PHI_RESULT (phi));
227 if (dump_enabled_p ())
229 dump_printf_loc (MSG_NOTE, vect_location,
230 "get vectype for scalar type: ");
231 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
232 dump_printf (MSG_NOTE, "\n");
235 vectype = get_vectype_for_scalar_type (scalar_type);
236 if (!vectype)
238 if (dump_enabled_p ())
240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
241 "not vectorized: unsupported "
242 "data-type ");
243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
244 scalar_type);
245 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
247 return false;
249 STMT_VINFO_VECTYPE (stmt_info) = vectype;
251 if (dump_enabled_p ())
253 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
254 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
255 dump_printf (MSG_NOTE, "\n");
258 nunits = TYPE_VECTOR_SUBPARTS (vectype);
259 if (dump_enabled_p ())
260 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
261 nunits);
263 if (!vectorization_factor
264 || (nunits > vectorization_factor))
265 vectorization_factor = nunits;
269 for (gimple_stmt_iterator si = gsi_start_bb (bb);
270 !gsi_end_p (si) || analyze_pattern_stmt;)
272 tree vf_vectype;
274 if (analyze_pattern_stmt)
275 stmt = pattern_stmt;
276 else
277 stmt = gsi_stmt (si);
279 stmt_info = vinfo_for_stmt (stmt);
281 if (dump_enabled_p ())
283 dump_printf_loc (MSG_NOTE, vect_location,
284 "==> examining statement: ");
285 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 gcc_assert (stmt_info);
290 /* Skip stmts which do not need to be vectorized. */
291 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
292 && !STMT_VINFO_LIVE_P (stmt_info))
293 || gimple_clobber_p (stmt))
295 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
296 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
297 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
298 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
300 stmt = pattern_stmt;
301 stmt_info = vinfo_for_stmt (pattern_stmt);
302 if (dump_enabled_p ())
304 dump_printf_loc (MSG_NOTE, vect_location,
305 "==> examining pattern statement: ");
306 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
309 else
311 if (dump_enabled_p ())
312 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
313 gsi_next (&si);
314 continue;
317 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
318 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
319 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
320 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
321 analyze_pattern_stmt = true;
323 /* If a pattern statement has def stmts, analyze them too. */
324 if (is_pattern_stmt_p (stmt_info))
326 if (pattern_def_seq == NULL)
328 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
329 pattern_def_si = gsi_start (pattern_def_seq);
331 else if (!gsi_end_p (pattern_def_si))
332 gsi_next (&pattern_def_si);
333 if (pattern_def_seq != NULL)
335 gimple *pattern_def_stmt = NULL;
336 stmt_vec_info pattern_def_stmt_info = NULL;
338 while (!gsi_end_p (pattern_def_si))
340 pattern_def_stmt = gsi_stmt (pattern_def_si);
341 pattern_def_stmt_info
342 = vinfo_for_stmt (pattern_def_stmt);
343 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
344 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
345 break;
346 gsi_next (&pattern_def_si);
349 if (!gsi_end_p (pattern_def_si))
351 if (dump_enabled_p ())
353 dump_printf_loc (MSG_NOTE, vect_location,
354 "==> examining pattern def stmt: ");
355 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
356 pattern_def_stmt, 0);
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
398 return false;
401 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
403 if (dump_enabled_p ())
405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
406 "not vectorized: vector stmt in loop:");
407 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 return false;
412 bool_result = false;
414 if (STMT_VINFO_VECTYPE (stmt_info))
416 /* The only case when a vectype had been already set is for stmts
417 that contain a dataref, or for "pattern-stmts" (stmts
418 generated by the vectorizer to represent/replace a certain
419 idiom). */
420 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
421 || is_pattern_stmt_p (stmt_info)
422 || !gsi_end_p (pattern_def_si));
423 vectype = STMT_VINFO_VECTYPE (stmt_info);
425 else
427 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
428 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
429 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
430 else
431 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
433 /* Bool ops don't participate in vectorization factor
434 computation. For comparison use compared types to
435 compute a factor. */
436 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)
437 && is_gimple_assign (stmt)
438 && gimple_assign_rhs_code (stmt) != COND_EXPR)
440 if (STMT_VINFO_RELEVANT_P (stmt_info)
441 || STMT_VINFO_LIVE_P (stmt_info))
442 mask_producers.safe_push (stmt_info);
443 bool_result = true;
445 if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
446 == tcc_comparison
447 && !VECT_SCALAR_BOOLEAN_TYPE_P
448 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
449 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
450 else
452 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
454 pattern_def_seq = NULL;
455 gsi_next (&si);
457 continue;
461 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location,
464 "get vectype for scalar type: ");
465 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
466 dump_printf (MSG_NOTE, "\n");
468 vectype = get_vectype_for_scalar_type (scalar_type);
469 if (!vectype)
471 if (dump_enabled_p ())
473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
474 "not vectorized: unsupported "
475 "data-type ");
476 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
477 scalar_type);
478 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
480 return false;
483 if (!bool_result)
484 STMT_VINFO_VECTYPE (stmt_info) = vectype;
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
489 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
490 dump_printf (MSG_NOTE, "\n");
494 /* Don't try to compute VF out scalar types if we stmt
495 produces boolean vector. Use result vectype instead. */
496 if (VECTOR_BOOLEAN_TYPE_P (vectype))
497 vf_vectype = vectype;
498 else
500 /* The vectorization factor is according to the smallest
501 scalar type (or the largest vector size, but we only
502 support one vector size per loop). */
503 if (!bool_result)
504 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
505 &dummy);
506 if (dump_enabled_p ())
508 dump_printf_loc (MSG_NOTE, vect_location,
509 "get vectype for scalar type: ");
510 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
511 dump_printf (MSG_NOTE, "\n");
513 vf_vectype = get_vectype_for_scalar_type (scalar_type);
515 if (!vf_vectype)
517 if (dump_enabled_p ())
519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
520 "not vectorized: unsupported data-type ");
521 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
522 scalar_type);
523 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
525 return false;
528 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
529 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
531 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "not vectorized: different sized vector "
535 "types in statement, ");
536 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
537 vectype);
538 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
539 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
540 vf_vectype);
541 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
543 return false;
546 if (dump_enabled_p ())
548 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
549 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
550 dump_printf (MSG_NOTE, "\n");
553 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
554 if (dump_enabled_p ())
555 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
556 if (!vectorization_factor
557 || (nunits > vectorization_factor))
558 vectorization_factor = nunits;
560 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
562 pattern_def_seq = NULL;
563 gsi_next (&si);
568 /* TODO: Analyze cost. Decide if worth while to vectorize. */
569 if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
571 vectorization_factor);
572 if (vectorization_factor <= 1)
574 if (dump_enabled_p ())
575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
576 "not vectorized: unsupported data-type\n");
577 return false;
579 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
581 for (i = 0; i < mask_producers.length (); i++)
583 tree mask_type = NULL;
585 stmt = STMT_VINFO_STMT (mask_producers[i]);
587 if (is_gimple_assign (stmt)
588 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
589 && !VECT_SCALAR_BOOLEAN_TYPE_P
590 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
592 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
593 mask_type = get_mask_type_for_scalar_type (scalar_type);
595 if (!mask_type)
597 if (dump_enabled_p ())
598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
599 "not vectorized: unsupported mask\n");
600 return false;
603 else
605 tree rhs;
606 ssa_op_iter iter;
607 gimple *def_stmt;
608 enum vect_def_type dt;
610 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
612 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
613 &def_stmt, &dt, &vectype))
615 if (dump_enabled_p ())
617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
618 "not vectorized: can't compute mask type "
619 "for statement, ");
620 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
623 return false;
626 /* No vectype probably means external definition.
627 Allow it in case there is another operand which
628 allows to determine mask type. */
629 if (!vectype)
630 continue;
632 if (!mask_type)
633 mask_type = vectype;
634 else if (TYPE_VECTOR_SUBPARTS (mask_type)
635 != TYPE_VECTOR_SUBPARTS (vectype))
637 if (dump_enabled_p ())
639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
640 "not vectorized: different sized masks "
641 "types in statement, ");
642 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
643 mask_type);
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
646 vectype);
647 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
649 return false;
651 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
652 != VECTOR_BOOLEAN_TYPE_P (vectype))
654 if (dump_enabled_p ())
656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
657 "not vectorized: mixed mask and "
658 "nonmask vector types in statement, ");
659 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
660 mask_type);
661 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
662 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
663 vectype);
664 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
666 return false;
670 /* We may compare boolean value loaded as vector of integers.
671 Fix mask_type in such case. */
672 if (mask_type
673 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
674 && gimple_code (stmt) == GIMPLE_ASSIGN
675 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
676 mask_type = build_same_sized_truth_vector_type (mask_type);
679 /* No mask_type should mean loop invariant predicate.
680 This is probably a subject for optimization in
681 if-conversion. */
682 if (!mask_type)
684 if (dump_enabled_p ())
686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
687 "not vectorized: can't compute mask type "
688 "for statement, ");
689 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
692 return false;
695 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
698 return true;
702 /* Function vect_is_simple_iv_evolution.
704 FORNOW: A simple evolution of an induction variables in the loop is
705 considered a polynomial evolution. */
707 static bool
708 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
709 tree * step)
711 tree init_expr;
712 tree step_expr;
713 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
714 basic_block bb;
716 /* When there is no evolution in this loop, the evolution function
717 is not "simple". */
718 if (evolution_part == NULL_TREE)
719 return false;
721 /* When the evolution is a polynomial of degree >= 2
722 the evolution function is not "simple". */
723 if (tree_is_chrec (evolution_part))
724 return false;
726 step_expr = evolution_part;
727 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
732 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
733 dump_printf (MSG_NOTE, ", init: ");
734 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
735 dump_printf (MSG_NOTE, "\n");
738 *init = init_expr;
739 *step = step_expr;
741 if (TREE_CODE (step_expr) != INTEGER_CST
742 && (TREE_CODE (step_expr) != SSA_NAME
743 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
744 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
745 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
746 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
747 || !flag_associative_math)))
748 && (TREE_CODE (step_expr) != REAL_CST
749 || !flag_associative_math))
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "step unknown.\n");
754 return false;
757 return true;
760 /* Function vect_analyze_scalar_cycles_1.
762 Examine the cross iteration def-use cycles of scalar variables
763 in LOOP. LOOP_VINFO represents the loop that is now being
764 considered for vectorization (can be LOOP, or an outer-loop
765 enclosing LOOP). */
767 static void
768 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
770 basic_block bb = loop->header;
771 tree init, step;
772 auto_vec<gimple *, 64> worklist;
773 gphi_iterator gsi;
774 bool double_reduc;
776 if (dump_enabled_p ())
777 dump_printf_loc (MSG_NOTE, vect_location,
778 "=== vect_analyze_scalar_cycles ===\n");
780 /* First - identify all inductions. Reduction detection assumes that all the
781 inductions have been identified, therefore, this order must not be
782 changed. */
783 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 gphi *phi = gsi.phi ();
786 tree access_fn = NULL;
787 tree def = PHI_RESULT (phi);
788 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
790 if (dump_enabled_p ())
792 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
793 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
796 /* Skip virtual phi's. The data dependences that are associated with
797 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
798 if (virtual_operand_p (def))
799 continue;
801 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
803 /* Analyze the evolution function. */
804 access_fn = analyze_scalar_evolution (loop, def);
805 if (access_fn)
807 STRIP_NOPS (access_fn);
808 if (dump_enabled_p ())
810 dump_printf_loc (MSG_NOTE, vect_location,
811 "Access function of PHI: ");
812 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
813 dump_printf (MSG_NOTE, "\n");
815 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
816 = initial_condition_in_loop_num (access_fn, loop->num);
817 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
818 = evolution_part_in_loop_num (access_fn, loop->num);
821 if (!access_fn
822 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
823 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
824 && TREE_CODE (step) != INTEGER_CST))
826 worklist.safe_push (phi);
827 continue;
830 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
831 != NULL_TREE);
832 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
834 if (dump_enabled_p ())
835 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
836 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
840 /* Second - identify all reductions and nested cycles. */
841 while (worklist.length () > 0)
843 gimple *phi = worklist.pop ();
844 tree def = PHI_RESULT (phi);
845 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
846 gimple *reduc_stmt;
848 if (dump_enabled_p ())
850 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
851 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
854 gcc_assert (!virtual_operand_p (def)
855 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
857 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
858 &double_reduc, false);
859 if (reduc_stmt)
861 if (double_reduc)
863 if (dump_enabled_p ())
864 dump_printf_loc (MSG_NOTE, vect_location,
865 "Detected double reduction.\n");
867 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
868 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
869 vect_double_reduction_def;
871 else
873 if (loop != LOOP_VINFO_LOOP (loop_vinfo))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "Detected vectorizable nested cycle.\n");
879 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
880 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
881 vect_nested_cycle;
883 else
885 if (dump_enabled_p ())
886 dump_printf_loc (MSG_NOTE, vect_location,
887 "Detected reduction.\n");
889 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
890 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
891 vect_reduction_def;
892 /* Store the reduction cycles for possible vectorization in
893 loop-aware SLP if it was not detected as reduction
894 chain. */
895 if (! GROUP_FIRST_ELEMENT (vinfo_for_stmt (reduc_stmt)))
896 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
900 else
901 if (dump_enabled_p ())
902 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
903 "Unknown def-use cycle pattern.\n");
908 /* Function vect_analyze_scalar_cycles.
910 Examine the cross iteration def-use cycles of scalar variables, by
911 analyzing the loop-header PHIs of scalar variables. Classify each
912 cycle as one of the following: invariant, induction, reduction, unknown.
913 We do that for the loop represented by LOOP_VINFO, and also to its
914 inner-loop, if exists.
915 Examples for scalar cycles:
917 Example1: reduction:
919 loop1:
920 for (i=0; i<N; i++)
921 sum += a[i];
923 Example2: induction:
925 loop2:
926 for (i=0; i<N; i++)
927 a[i] = i; */
929 static void
930 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
932 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
934 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
936 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
937 Reductions in such inner-loop therefore have different properties than
938 the reductions in the nest that gets vectorized:
939 1. When vectorized, they are executed in the same order as in the original
940 scalar loop, so we can't change the order of computation when
941 vectorizing them.
942 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
943 current checks are too strict. */
945 if (loop->inner)
946 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
949 /* Transfer group and reduction information from STMT to its pattern stmt. */
951 static void
952 vect_fixup_reduc_chain (gimple *stmt)
954 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
955 gimple *stmtp;
956 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
957 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
958 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
961 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
962 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
963 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
964 if (stmt)
965 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
966 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
968 while (stmt);
969 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
972 /* Fixup scalar cycles that now have their stmts detected as patterns. */
974 static void
975 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
977 gimple *first;
978 unsigned i;
980 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
981 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
983 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
984 while (next)
986 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
987 break;
988 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
990 /* If not all stmt in the chain are patterns try to handle
991 the chain without patterns. */
992 if (! next)
994 vect_fixup_reduc_chain (first);
995 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
996 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
1001 /* Function vect_get_loop_niters.
1003 Determine how many iterations the loop is executed and place it
1004 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1005 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
1006 niter information holds in ASSUMPTIONS.
1008 Return the loop exit condition. */
1011 static gcond *
1012 vect_get_loop_niters (struct loop *loop, tree *assumptions,
1013 tree *number_of_iterations, tree *number_of_iterationsm1)
1015 edge exit = single_exit (loop);
1016 struct tree_niter_desc niter_desc;
1017 tree niter_assumptions, niter, may_be_zero;
1018 gcond *cond = get_loop_exit_condition (loop);
1020 *assumptions = boolean_true_node;
1021 *number_of_iterationsm1 = chrec_dont_know;
1022 *number_of_iterations = chrec_dont_know;
1023 if (dump_enabled_p ())
1024 dump_printf_loc (MSG_NOTE, vect_location,
1025 "=== get_loop_niters ===\n");
1027 if (!exit)
1028 return cond;
1030 niter = chrec_dont_know;
1031 may_be_zero = NULL_TREE;
1032 niter_assumptions = boolean_true_node;
1033 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
1034 || chrec_contains_undetermined (niter_desc.niter))
1035 return cond;
1037 niter_assumptions = niter_desc.assumptions;
1038 may_be_zero = niter_desc.may_be_zero;
1039 niter = niter_desc.niter;
1041 if (may_be_zero && integer_zerop (may_be_zero))
1042 may_be_zero = NULL_TREE;
1044 if (may_be_zero)
1046 if (COMPARISON_CLASS_P (may_be_zero))
1048 /* Try to combine may_be_zero with assumptions, this can simplify
1049 computation of niter expression. */
1050 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
1051 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1052 niter_assumptions,
1053 fold_build1 (TRUTH_NOT_EXPR,
1054 boolean_type_node,
1055 may_be_zero));
1056 else
1057 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
1058 build_int_cst (TREE_TYPE (niter), 0), niter);
1060 may_be_zero = NULL_TREE;
1062 else if (integer_nonzerop (may_be_zero))
1064 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
1065 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
1066 return cond;
1068 else
1069 return cond;
1072 *assumptions = niter_assumptions;
1073 *number_of_iterationsm1 = niter;
1075 /* We want the number of loop header executions which is the number
1076 of latch executions plus one.
1077 ??? For UINT_MAX latch executions this number overflows to zero
1078 for loops like do { n++; } while (n != 0); */
1079 if (niter && !chrec_contains_undetermined (niter))
1080 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
1081 build_int_cst (TREE_TYPE (niter), 1));
1082 *number_of_iterations = niter;
1084 return cond;
1087 /* Function bb_in_loop_p
1089 Used as predicate for dfs order traversal of the loop bbs. */
1091 static bool
1092 bb_in_loop_p (const_basic_block bb, const void *data)
1094 const struct loop *const loop = (const struct loop *)data;
1095 if (flow_bb_inside_loop_p (loop, bb))
1096 return true;
1097 return false;
1101 /* Function new_loop_vec_info.
1103 Create and initialize a new loop_vec_info struct for LOOP, as well as
1104 stmt_vec_info structs for all the stmts in LOOP. */
1106 static loop_vec_info
1107 new_loop_vec_info (struct loop *loop)
1109 loop_vec_info res;
1110 basic_block *bbs;
1111 gimple_stmt_iterator si;
1112 unsigned int i, nbbs;
1114 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1115 res->kind = vec_info::loop;
1116 LOOP_VINFO_LOOP (res) = loop;
1118 bbs = get_loop_body (loop);
1120 /* Create/Update stmt_info for all stmts in the loop. */
1121 for (i = 0; i < loop->num_nodes; i++)
1123 basic_block bb = bbs[i];
1125 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1127 gimple *phi = gsi_stmt (si);
1128 gimple_set_uid (phi, 0);
1129 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1132 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1134 gimple *stmt = gsi_stmt (si);
1135 gimple_set_uid (stmt, 0);
1136 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1140 /* CHECKME: We want to visit all BBs before their successors (except for
1141 latch blocks, for which this assertion wouldn't hold). In the simple
1142 case of the loop forms we allow, a dfs order of the BBs would the same
1143 as reversed postorder traversal, so we are safe. */
1145 free (bbs);
1146 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1147 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1148 bbs, loop->num_nodes, loop);
1149 gcc_assert (nbbs == loop->num_nodes);
1151 LOOP_VINFO_BBS (res) = bbs;
1152 LOOP_VINFO_NITERSM1 (res) = NULL;
1153 LOOP_VINFO_NITERS (res) = NULL;
1154 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1155 LOOP_VINFO_NITERS_ASSUMPTIONS (res) = NULL;
1156 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
1157 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1158 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
1159 LOOP_VINFO_VECT_FACTOR (res) = 0;
1160 LOOP_VINFO_LOOP_NEST (res) = vNULL;
1161 LOOP_VINFO_DATAREFS (res) = vNULL;
1162 LOOP_VINFO_DDRS (res) = vNULL;
1163 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1164 LOOP_VINFO_MAY_MISALIGN_STMTS (res) = vNULL;
1165 LOOP_VINFO_MAY_ALIAS_DDRS (res) = vNULL;
1166 LOOP_VINFO_GROUPED_STORES (res) = vNULL;
1167 LOOP_VINFO_REDUCTIONS (res) = vNULL;
1168 LOOP_VINFO_REDUCTION_CHAINS (res) = vNULL;
1169 LOOP_VINFO_SLP_INSTANCES (res) = vNULL;
1170 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1171 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
1172 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
1173 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
1174 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
1175 LOOP_VINFO_ORIG_LOOP_INFO (res) = NULL;
1177 return res;
1181 /* Function destroy_loop_vec_info.
1183 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1184 stmts in the loop. */
1186 void
1187 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1189 struct loop *loop;
1190 basic_block *bbs;
1191 int nbbs;
1192 gimple_stmt_iterator si;
1193 int j;
1194 vec<slp_instance> slp_instances;
1195 slp_instance instance;
1196 bool swapped;
1198 if (!loop_vinfo)
1199 return;
1201 loop = LOOP_VINFO_LOOP (loop_vinfo);
1203 bbs = LOOP_VINFO_BBS (loop_vinfo);
1204 nbbs = clean_stmts ? loop->num_nodes : 0;
1205 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1207 for (j = 0; j < nbbs; j++)
1209 basic_block bb = bbs[j];
1210 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1211 free_stmt_vec_info (gsi_stmt (si));
1213 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1215 gimple *stmt = gsi_stmt (si);
1217 /* We may have broken canonical form by moving a constant
1218 into RHS1 of a commutative op. Fix such occurrences. */
1219 if (swapped && is_gimple_assign (stmt))
1221 enum tree_code code = gimple_assign_rhs_code (stmt);
1223 if ((code == PLUS_EXPR
1224 || code == POINTER_PLUS_EXPR
1225 || code == MULT_EXPR)
1226 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1227 swap_ssa_operands (stmt,
1228 gimple_assign_rhs1_ptr (stmt),
1229 gimple_assign_rhs2_ptr (stmt));
1230 else if (code == COND_EXPR
1231 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
1233 tree cond_expr = gimple_assign_rhs1 (stmt);
1234 enum tree_code cond_code = TREE_CODE (cond_expr);
1236 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1238 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
1239 0));
1240 cond_code = invert_tree_comparison (cond_code,
1241 honor_nans);
1242 if (cond_code != ERROR_MARK)
1244 TREE_SET_CODE (cond_expr, cond_code);
1245 swap_ssa_operands (stmt,
1246 gimple_assign_rhs2_ptr (stmt),
1247 gimple_assign_rhs3_ptr (stmt));
1253 /* Free stmt_vec_info. */
1254 free_stmt_vec_info (stmt);
1255 gsi_next (&si);
1259 free (LOOP_VINFO_BBS (loop_vinfo));
1260 vect_destroy_datarefs (loop_vinfo);
1261 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1262 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1263 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1264 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
1265 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1266 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1267 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1268 vect_free_slp_instance (instance);
1270 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1271 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1272 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1273 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1275 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1276 loop_vinfo->scalar_cost_vec.release ();
1278 free (loop_vinfo);
1279 loop->aux = NULL;
1283 /* Calculate the cost of one scalar iteration of the loop. */
1284 static void
1285 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1287 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1288 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1289 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1290 int innerloop_iters, i;
1292 /* Count statements in scalar loop. Using this as scalar cost for a single
1293 iteration for now.
1295 TODO: Add outer loop support.
1297 TODO: Consider assigning different costs to different scalar
1298 statements. */
1300 /* FORNOW. */
1301 innerloop_iters = 1;
1302 if (loop->inner)
1303 innerloop_iters = 50; /* FIXME */
1305 for (i = 0; i < nbbs; i++)
1307 gimple_stmt_iterator si;
1308 basic_block bb = bbs[i];
1310 if (bb->loop_father == loop->inner)
1311 factor = innerloop_iters;
1312 else
1313 factor = 1;
1315 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1317 gimple *stmt = gsi_stmt (si);
1318 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1320 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1321 continue;
1323 /* Skip stmts that are not vectorized inside the loop. */
1324 if (stmt_info
1325 && !STMT_VINFO_RELEVANT_P (stmt_info)
1326 && (!STMT_VINFO_LIVE_P (stmt_info)
1327 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1328 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1329 continue;
1331 vect_cost_for_stmt kind;
1332 if (STMT_VINFO_DATA_REF (stmt_info))
1334 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1335 kind = scalar_load;
1336 else
1337 kind = scalar_store;
1339 else
1340 kind = scalar_stmt;
1342 scalar_single_iter_cost
1343 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1344 factor, kind, stmt_info, 0, vect_prologue);
1347 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1348 = scalar_single_iter_cost;
1352 /* Function vect_analyze_loop_form_1.
1354 Verify that certain CFG restrictions hold, including:
1355 - the loop has a pre-header
1356 - the loop has a single entry and exit
1357 - the loop exit condition is simple enough
1358 - the number of iterations can be analyzed, i.e, a countable loop. The
1359 niter could be analyzed under some assumptions. */
1361 bool
1362 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1363 tree *assumptions, tree *number_of_iterationsm1,
1364 tree *number_of_iterations, gcond **inner_loop_cond)
1366 if (dump_enabled_p ())
1367 dump_printf_loc (MSG_NOTE, vect_location,
1368 "=== vect_analyze_loop_form ===\n");
1370 /* Different restrictions apply when we are considering an inner-most loop,
1371 vs. an outer (nested) loop.
1372 (FORNOW. May want to relax some of these restrictions in the future). */
1374 if (!loop->inner)
1376 /* Inner-most loop. We currently require that the number of BBs is
1377 exactly 2 (the header and latch). Vectorizable inner-most loops
1378 look like this:
1380 (pre-header)
1382 header <--------+
1383 | | |
1384 | +--> latch --+
1386 (exit-bb) */
1388 if (loop->num_nodes != 2)
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "not vectorized: control flow in loop.\n");
1393 return false;
1396 if (empty_block_p (loop->header))
1398 if (dump_enabled_p ())
1399 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1400 "not vectorized: empty loop.\n");
1401 return false;
1404 else
1406 struct loop *innerloop = loop->inner;
1407 edge entryedge;
1409 /* Nested loop. We currently require that the loop is doubly-nested,
1410 contains a single inner loop, and the number of BBs is exactly 5.
1411 Vectorizable outer-loops look like this:
1413 (pre-header)
1415 header <---+
1417 inner-loop |
1419 tail ------+
1421 (exit-bb)
1423 The inner-loop has the properties expected of inner-most loops
1424 as described above. */
1426 if ((loop->inner)->inner || (loop->inner)->next)
1428 if (dump_enabled_p ())
1429 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1430 "not vectorized: multiple nested loops.\n");
1431 return false;
1434 if (loop->num_nodes != 5)
1436 if (dump_enabled_p ())
1437 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1438 "not vectorized: control flow in loop.\n");
1439 return false;
1442 entryedge = loop_preheader_edge (innerloop);
1443 if (entryedge->src != loop->header
1444 || !single_exit (innerloop)
1445 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1447 if (dump_enabled_p ())
1448 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1449 "not vectorized: unsupported outerloop form.\n");
1450 return false;
1453 /* Analyze the inner-loop. */
1454 tree inner_niterm1, inner_niter, inner_assumptions;
1455 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1456 &inner_assumptions, &inner_niterm1,
1457 &inner_niter, NULL)
1458 /* Don't support analyzing niter under assumptions for inner
1459 loop. */
1460 || !integer_onep (inner_assumptions))
1462 if (dump_enabled_p ())
1463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1464 "not vectorized: Bad inner loop.\n");
1465 return false;
1468 if (!expr_invariant_in_loop_p (loop, inner_niter))
1470 if (dump_enabled_p ())
1471 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1472 "not vectorized: inner-loop count not"
1473 " invariant.\n");
1474 return false;
1477 if (dump_enabled_p ())
1478 dump_printf_loc (MSG_NOTE, vect_location,
1479 "Considering outer-loop vectorization.\n");
1482 if (!single_exit (loop)
1483 || EDGE_COUNT (loop->header->preds) != 2)
1485 if (dump_enabled_p ())
1487 if (!single_exit (loop))
1488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1489 "not vectorized: multiple exits.\n");
1490 else if (EDGE_COUNT (loop->header->preds) != 2)
1491 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1492 "not vectorized: too many incoming edges.\n");
1494 return false;
1497 /* We assume that the loop exit condition is at the end of the loop. i.e,
1498 that the loop is represented as a do-while (with a proper if-guard
1499 before the loop if needed), where the loop header contains all the
1500 executable statements, and the latch is empty. */
1501 if (!empty_block_p (loop->latch)
1502 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1504 if (dump_enabled_p ())
1505 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1506 "not vectorized: latch block not empty.\n");
1507 return false;
1510 /* Make sure the exit is not abnormal. */
1511 edge e = single_exit (loop);
1512 if (e->flags & EDGE_ABNORMAL)
1514 if (dump_enabled_p ())
1515 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1516 "not vectorized: abnormal loop exit edge.\n");
1517 return false;
1520 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1521 number_of_iterationsm1);
1522 if (!*loop_cond)
1524 if (dump_enabled_p ())
1525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1526 "not vectorized: complicated exit condition.\n");
1527 return false;
1530 if (integer_zerop (*assumptions)
1531 || !*number_of_iterations
1532 || chrec_contains_undetermined (*number_of_iterations))
1534 if (dump_enabled_p ())
1535 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1536 "not vectorized: number of iterations cannot be "
1537 "computed.\n");
1538 return false;
1541 if (integer_zerop (*number_of_iterations))
1543 if (dump_enabled_p ())
1544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1545 "not vectorized: number of iterations = 0.\n");
1546 return false;
1549 return true;
1552 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1554 loop_vec_info
1555 vect_analyze_loop_form (struct loop *loop)
1557 tree assumptions, number_of_iterations, number_of_iterationsm1;
1558 gcond *loop_cond, *inner_loop_cond = NULL;
1560 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1561 &assumptions, &number_of_iterationsm1,
1562 &number_of_iterations, &inner_loop_cond))
1563 return NULL;
1565 loop_vec_info loop_vinfo = new_loop_vec_info (loop);
1566 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1567 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1568 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1569 if (!integer_onep (assumptions))
1571 /* We consider to vectorize this loop by versioning it under
1572 some assumptions. In order to do this, we need to clear
1573 existing information computed by scev and niter analyzer. */
1574 scev_reset_htab ();
1575 free_numbers_of_iterations_estimates (loop);
1576 /* Also set flag for this loop so that following scev and niter
1577 analysis are done under the assumptions. */
1578 loop_constraint_set (loop, LOOP_C_FINITE);
1579 /* Also record the assumptions for versioning. */
1580 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1583 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1585 if (dump_enabled_p ())
1587 dump_printf_loc (MSG_NOTE, vect_location,
1588 "Symbolic number of iterations is ");
1589 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1590 dump_printf (MSG_NOTE, "\n");
1594 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1595 if (inner_loop_cond)
1596 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1597 = loop_exit_ctrl_vec_info_type;
1599 gcc_assert (!loop->aux);
1600 loop->aux = loop_vinfo;
1601 return loop_vinfo;
1606 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1607 statements update the vectorization factor. */
1609 static void
1610 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1612 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1613 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1614 int nbbs = loop->num_nodes;
1615 unsigned int vectorization_factor;
1616 int i;
1618 if (dump_enabled_p ())
1619 dump_printf_loc (MSG_NOTE, vect_location,
1620 "=== vect_update_vf_for_slp ===\n");
1622 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1623 gcc_assert (vectorization_factor != 0);
1625 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1626 vectorization factor of the loop is the unrolling factor required by
1627 the SLP instances. If that unrolling factor is 1, we say, that we
1628 perform pure SLP on loop - cross iteration parallelism is not
1629 exploited. */
1630 bool only_slp_in_loop = true;
1631 for (i = 0; i < nbbs; i++)
1633 basic_block bb = bbs[i];
1634 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1635 gsi_next (&si))
1637 gimple *stmt = gsi_stmt (si);
1638 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1639 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1640 && STMT_VINFO_RELATED_STMT (stmt_info))
1642 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1643 stmt_info = vinfo_for_stmt (stmt);
1645 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1646 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1647 && !PURE_SLP_STMT (stmt_info))
1648 /* STMT needs both SLP and loop-based vectorization. */
1649 only_slp_in_loop = false;
1653 if (only_slp_in_loop)
1655 dump_printf_loc (MSG_NOTE, vect_location,
1656 "Loop contains only SLP stmts\n");
1657 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1659 else
1661 dump_printf_loc (MSG_NOTE, vect_location,
1662 "Loop contains SLP and non-SLP stmts\n");
1663 vectorization_factor
1664 = least_common_multiple (vectorization_factor,
1665 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1668 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1669 if (dump_enabled_p ())
1670 dump_printf_loc (MSG_NOTE, vect_location,
1671 "Updating vectorization factor to %d\n",
1672 vectorization_factor);
1675 /* Function vect_analyze_loop_operations.
1677 Scan the loop stmts and make sure they are all vectorizable. */
1679 static bool
1680 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1682 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1683 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1684 int nbbs = loop->num_nodes;
1685 int i;
1686 stmt_vec_info stmt_info;
1687 bool need_to_vectorize = false;
1688 bool ok;
1690 if (dump_enabled_p ())
1691 dump_printf_loc (MSG_NOTE, vect_location,
1692 "=== vect_analyze_loop_operations ===\n");
1694 for (i = 0; i < nbbs; i++)
1696 basic_block bb = bbs[i];
1698 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1699 gsi_next (&si))
1701 gphi *phi = si.phi ();
1702 ok = true;
1704 stmt_info = vinfo_for_stmt (phi);
1705 if (dump_enabled_p ())
1707 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1708 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1710 if (virtual_operand_p (gimple_phi_result (phi)))
1711 continue;
1713 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1714 (i.e., a phi in the tail of the outer-loop). */
1715 if (! is_loop_header_bb_p (bb))
1717 /* FORNOW: we currently don't support the case that these phis
1718 are not used in the outerloop (unless it is double reduction,
1719 i.e., this phi is vect_reduction_def), cause this case
1720 requires to actually do something here. */
1721 if (STMT_VINFO_LIVE_P (stmt_info)
1722 && STMT_VINFO_DEF_TYPE (stmt_info)
1723 != vect_double_reduction_def)
1725 if (dump_enabled_p ())
1726 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1727 "Unsupported loop-closed phi in "
1728 "outer-loop.\n");
1729 return false;
1732 /* If PHI is used in the outer loop, we check that its operand
1733 is defined in the inner loop. */
1734 if (STMT_VINFO_RELEVANT_P (stmt_info))
1736 tree phi_op;
1737 gimple *op_def_stmt;
1739 if (gimple_phi_num_args (phi) != 1)
1740 return false;
1742 phi_op = PHI_ARG_DEF (phi, 0);
1743 if (TREE_CODE (phi_op) != SSA_NAME)
1744 return false;
1746 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1747 if (gimple_nop_p (op_def_stmt)
1748 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1749 || !vinfo_for_stmt (op_def_stmt))
1750 return false;
1752 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1753 != vect_used_in_outer
1754 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1755 != vect_used_in_outer_by_reduction)
1756 return false;
1759 continue;
1762 gcc_assert (stmt_info);
1764 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1765 || STMT_VINFO_LIVE_P (stmt_info))
1766 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1768 /* A scalar-dependence cycle that we don't support. */
1769 if (dump_enabled_p ())
1770 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1771 "not vectorized: scalar dependence cycle.\n");
1772 return false;
1775 if (STMT_VINFO_RELEVANT_P (stmt_info))
1777 need_to_vectorize = true;
1778 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
1779 && ! PURE_SLP_STMT (stmt_info))
1780 ok = vectorizable_induction (phi, NULL, NULL, NULL);
1781 else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1782 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
1783 && ! PURE_SLP_STMT (stmt_info))
1784 ok = vectorizable_reduction (phi, NULL, NULL, NULL, NULL);
1787 if (ok && STMT_VINFO_LIVE_P (stmt_info))
1788 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL);
1790 if (!ok)
1792 if (dump_enabled_p ())
1794 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1795 "not vectorized: relevant phi not "
1796 "supported: ");
1797 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1799 return false;
1803 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1804 gsi_next (&si))
1806 gimple *stmt = gsi_stmt (si);
1807 if (!gimple_clobber_p (stmt)
1808 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL, NULL))
1809 return false;
1811 } /* bbs */
1813 /* All operations in the loop are either irrelevant (deal with loop
1814 control, or dead), or only used outside the loop and can be moved
1815 out of the loop (e.g. invariants, inductions). The loop can be
1816 optimized away by scalar optimizations. We're better off not
1817 touching this loop. */
1818 if (!need_to_vectorize)
1820 if (dump_enabled_p ())
1821 dump_printf_loc (MSG_NOTE, vect_location,
1822 "All the computation can be taken out of the loop.\n");
1823 if (dump_enabled_p ())
1824 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1825 "not vectorized: redundant loop. no profit to "
1826 "vectorize.\n");
1827 return false;
1830 return true;
1834 /* Function vect_analyze_loop_2.
1836 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1837 for it. The different analyses will record information in the
1838 loop_vec_info struct. */
1839 static bool
1840 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1842 bool ok;
1843 int max_vf = MAX_VECTORIZATION_FACTOR;
1844 int min_vf = 2;
1845 unsigned int n_stmts = 0;
1847 /* The first group of checks is independent of the vector size. */
1848 fatal = true;
1850 /* Find all data references in the loop (which correspond to vdefs/vuses)
1851 and analyze their evolution in the loop. */
1853 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1855 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1856 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1858 if (dump_enabled_p ())
1859 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1860 "not vectorized: loop nest containing two "
1861 "or more consecutive inner loops cannot be "
1862 "vectorized\n");
1863 return false;
1866 for (unsigned i = 0; i < loop->num_nodes; i++)
1867 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1868 !gsi_end_p (gsi); gsi_next (&gsi))
1870 gimple *stmt = gsi_stmt (gsi);
1871 if (is_gimple_debug (stmt))
1872 continue;
1873 ++n_stmts;
1874 if (!find_data_references_in_stmt (loop, stmt,
1875 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1877 if (is_gimple_call (stmt) && loop->safelen)
1879 tree fndecl = gimple_call_fndecl (stmt), op;
1880 if (fndecl != NULL_TREE)
1882 cgraph_node *node = cgraph_node::get (fndecl);
1883 if (node != NULL && node->simd_clones != NULL)
1885 unsigned int j, n = gimple_call_num_args (stmt);
1886 for (j = 0; j < n; j++)
1888 op = gimple_call_arg (stmt, j);
1889 if (DECL_P (op)
1890 || (REFERENCE_CLASS_P (op)
1891 && get_base_address (op)))
1892 break;
1894 op = gimple_call_lhs (stmt);
1895 /* Ignore #pragma omp declare simd functions
1896 if they don't have data references in the
1897 call stmt itself. */
1898 if (j == n
1899 && !(op
1900 && (DECL_P (op)
1901 || (REFERENCE_CLASS_P (op)
1902 && get_base_address (op)))))
1903 continue;
1907 if (dump_enabled_p ())
1908 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1909 "not vectorized: loop contains function "
1910 "calls or data references that cannot "
1911 "be analyzed\n");
1912 return false;
1916 /* Analyze the data references and also adjust the minimal
1917 vectorization factor according to the loads and stores. */
1919 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1920 if (!ok)
1922 if (dump_enabled_p ())
1923 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1924 "bad data references.\n");
1925 return false;
1928 /* Classify all cross-iteration scalar data-flow cycles.
1929 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1930 vect_analyze_scalar_cycles (loop_vinfo);
1932 vect_pattern_recog (loop_vinfo);
1934 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1936 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1937 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1939 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1940 if (!ok)
1942 if (dump_enabled_p ())
1943 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1944 "bad data access.\n");
1945 return false;
1948 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1950 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1951 if (!ok)
1953 if (dump_enabled_p ())
1954 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1955 "unexpected pattern.\n");
1956 return false;
1959 /* While the rest of the analysis below depends on it in some way. */
1960 fatal = false;
1962 /* Analyze data dependences between the data-refs in the loop
1963 and adjust the maximum vectorization factor according to
1964 the dependences.
1965 FORNOW: fail at the first data dependence that we encounter. */
1967 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1968 if (!ok
1969 || max_vf < min_vf)
1971 if (dump_enabled_p ())
1972 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1973 "bad data dependence.\n");
1974 return false;
1977 ok = vect_determine_vectorization_factor (loop_vinfo);
1978 if (!ok)
1980 if (dump_enabled_p ())
1981 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1982 "can't determine vectorization factor.\n");
1983 return false;
1985 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1987 if (dump_enabled_p ())
1988 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1989 "bad data dependence.\n");
1990 return false;
1993 /* Compute the scalar iteration cost. */
1994 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1996 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1997 HOST_WIDE_INT estimated_niter;
1998 unsigned th;
1999 int min_scalar_loop_bound;
2001 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
2002 ok = vect_analyze_slp (loop_vinfo, n_stmts);
2003 if (!ok)
2004 return false;
2006 /* If there are any SLP instances mark them as pure_slp. */
2007 bool slp = vect_make_slp_decision (loop_vinfo);
2008 if (slp)
2010 /* Find stmts that need to be both vectorized and SLPed. */
2011 vect_detect_hybrid_slp (loop_vinfo);
2013 /* Update the vectorization factor based on the SLP decision. */
2014 vect_update_vf_for_slp (loop_vinfo);
2017 /* This is the point where we can re-start analysis with SLP forced off. */
2018 start_over:
2020 /* Now the vectorization factor is final. */
2021 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2022 gcc_assert (vectorization_factor != 0);
2024 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
2025 dump_printf_loc (MSG_NOTE, vect_location,
2026 "vectorization_factor = %d, niters = "
2027 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
2028 LOOP_VINFO_INT_NITERS (loop_vinfo));
2030 HOST_WIDE_INT max_niter
2031 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2032 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2033 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
2034 || (max_niter != -1
2035 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
2037 if (dump_enabled_p ())
2038 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2039 "not vectorized: iteration count smaller than "
2040 "vectorization factor.\n");
2041 return false;
2044 /* Analyze the alignment of the data-refs in the loop.
2045 Fail if a data reference is found that cannot be vectorized. */
2047 ok = vect_analyze_data_refs_alignment (loop_vinfo);
2048 if (!ok)
2050 if (dump_enabled_p ())
2051 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2052 "bad data alignment.\n");
2053 return false;
2056 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2057 It is important to call pruning after vect_analyze_data_ref_accesses,
2058 since we use grouping information gathered by interleaving analysis. */
2059 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2060 if (!ok)
2061 return false;
2063 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2064 vectorization. */
2065 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2067 /* This pass will decide on using loop versioning and/or loop peeling in
2068 order to enhance the alignment of data references in the loop. */
2069 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2070 if (!ok)
2072 if (dump_enabled_p ())
2073 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2074 "bad data alignment.\n");
2075 return false;
2079 if (slp)
2081 /* Analyze operations in the SLP instances. Note this may
2082 remove unsupported SLP instances which makes the above
2083 SLP kind detection invalid. */
2084 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2085 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2086 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2087 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2088 goto again;
2091 /* Scan all the remaining operations in the loop that are not subject
2092 to SLP and make sure they are vectorizable. */
2093 ok = vect_analyze_loop_operations (loop_vinfo);
2094 if (!ok)
2096 if (dump_enabled_p ())
2097 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2098 "bad operation or unsupported loop bound.\n");
2099 return false;
2102 /* If epilog loop is required because of data accesses with gaps,
2103 one additional iteration needs to be peeled. Check if there is
2104 enough iterations for vectorization. */
2105 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2106 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2108 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2109 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2111 if (wi::to_widest (scalar_niters) < vf)
2113 if (dump_enabled_p ())
2114 dump_printf_loc (MSG_NOTE, vect_location,
2115 "loop has no enough iterations to support"
2116 " peeling for gaps.\n");
2117 return false;
2121 /* Analyze cost. Decide if worth while to vectorize. */
2122 int min_profitable_estimate, min_profitable_iters;
2123 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2124 &min_profitable_estimate);
2126 if (min_profitable_iters < 0)
2128 if (dump_enabled_p ())
2129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2130 "not vectorized: vectorization not profitable.\n");
2131 if (dump_enabled_p ())
2132 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2133 "not vectorized: vector version will never be "
2134 "profitable.\n");
2135 goto again;
2138 min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2139 * vectorization_factor);
2141 /* Use the cost model only if it is more conservative than user specified
2142 threshold. */
2143 th = (unsigned) MAX (min_scalar_loop_bound, min_profitable_iters);
2145 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2147 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2148 && LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
2150 if (dump_enabled_p ())
2151 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2152 "not vectorized: vectorization not profitable.\n");
2153 if (dump_enabled_p ())
2154 dump_printf_loc (MSG_NOTE, vect_location,
2155 "not vectorized: iteration count smaller than user "
2156 "specified loop bound parameter or minimum profitable "
2157 "iterations (whichever is more conservative).\n");
2158 goto again;
2161 estimated_niter
2162 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2163 if (estimated_niter == -1)
2164 estimated_niter = max_niter;
2165 if (estimated_niter != -1
2166 && ((unsigned HOST_WIDE_INT) estimated_niter
2167 < MAX (th, (unsigned) min_profitable_estimate)))
2169 if (dump_enabled_p ())
2170 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2171 "not vectorized: estimated iteration count too "
2172 "small.\n");
2173 if (dump_enabled_p ())
2174 dump_printf_loc (MSG_NOTE, vect_location,
2175 "not vectorized: estimated iteration count smaller "
2176 "than specified loop bound parameter or minimum "
2177 "profitable iterations (whichever is more "
2178 "conservative).\n");
2179 goto again;
2182 /* Decide whether we need to create an epilogue loop to handle
2183 remaining scalar iterations. */
2184 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo)
2185 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2186 * LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2188 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2189 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2191 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2192 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2193 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2194 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2196 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2197 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2198 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2199 /* In case of versioning, check if the maximum number of
2200 iterations is greater than th. If they are identical,
2201 the epilogue is unnecessary. */
2202 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2203 || (unsigned HOST_WIDE_INT) max_niter > th)))
2204 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2206 /* If an epilogue loop is required make sure we can create one. */
2207 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2208 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2210 if (dump_enabled_p ())
2211 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2212 if (!vect_can_advance_ivs_p (loop_vinfo)
2213 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2214 single_exit (LOOP_VINFO_LOOP
2215 (loop_vinfo))))
2217 if (dump_enabled_p ())
2218 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2219 "not vectorized: can't create required "
2220 "epilog loop\n");
2221 goto again;
2225 /* During peeling, we need to check if number of loop iterations is
2226 enough for both peeled prolog loop and vector loop. This check
2227 can be merged along with threshold check of loop versioning, so
2228 increase threshold for this case if necessary. */
2229 if (LOOP_REQUIRES_VERSIONING (loop_vinfo)
2230 && (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2231 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
2233 unsigned niters_th;
2235 /* Niters for peeled prolog loop. */
2236 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2238 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2239 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
2241 niters_th = TYPE_VECTOR_SUBPARTS (vectype) - 1;
2243 else
2244 niters_th = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2246 /* Niters for at least one iteration of vectorized loop. */
2247 niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2248 /* One additional iteration because of peeling for gap. */
2249 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2250 niters_th++;
2251 if (LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) < niters_th)
2252 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = niters_th;
2255 gcc_assert (vectorization_factor
2256 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2258 /* Ok to vectorize! */
2259 return true;
2261 again:
2262 /* Try again with SLP forced off but if we didn't do any SLP there is
2263 no point in re-trying. */
2264 if (!slp)
2265 return false;
2267 /* If there are reduction chains re-trying will fail anyway. */
2268 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2269 return false;
2271 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2272 via interleaving or lane instructions. */
2273 slp_instance instance;
2274 slp_tree node;
2275 unsigned i, j;
2276 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2278 stmt_vec_info vinfo;
2279 vinfo = vinfo_for_stmt
2280 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2281 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2282 continue;
2283 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2284 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2285 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2286 if (! vect_store_lanes_supported (vectype, size)
2287 && ! vect_grouped_store_supported (vectype, size))
2288 return false;
2289 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2291 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2292 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2293 bool single_element_p = !STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo);
2294 size = STMT_VINFO_GROUP_SIZE (vinfo);
2295 vectype = STMT_VINFO_VECTYPE (vinfo);
2296 if (! vect_load_lanes_supported (vectype, size)
2297 && ! vect_grouped_load_supported (vectype, single_element_p,
2298 size))
2299 return false;
2303 if (dump_enabled_p ())
2304 dump_printf_loc (MSG_NOTE, vect_location,
2305 "re-trying with SLP disabled\n");
2307 /* Roll back state appropriately. No SLP this time. */
2308 slp = false;
2309 /* Restore vectorization factor as it were without SLP. */
2310 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2311 /* Free the SLP instances. */
2312 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2313 vect_free_slp_instance (instance);
2314 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2315 /* Reset SLP type to loop_vect on all stmts. */
2316 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2318 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2319 for (gimple_stmt_iterator si = gsi_start_phis (bb);
2320 !gsi_end_p (si); gsi_next (&si))
2322 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2323 STMT_SLP_TYPE (stmt_info) = loop_vect;
2325 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2326 !gsi_end_p (si); gsi_next (&si))
2328 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2329 STMT_SLP_TYPE (stmt_info) = loop_vect;
2330 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2332 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2333 STMT_SLP_TYPE (stmt_info) = loop_vect;
2334 for (gimple_stmt_iterator pi
2335 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2336 !gsi_end_p (pi); gsi_next (&pi))
2338 gimple *pstmt = gsi_stmt (pi);
2339 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2344 /* Free optimized alias test DDRS. */
2345 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2346 /* Reset target cost data. */
2347 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2348 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2349 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2350 /* Reset assorted flags. */
2351 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2352 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2353 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2355 goto start_over;
2358 /* Function vect_analyze_loop.
2360 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2361 for it. The different analyses will record information in the
2362 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2363 be vectorized. */
2364 loop_vec_info
2365 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo)
2367 loop_vec_info loop_vinfo;
2368 unsigned int vector_sizes;
2370 /* Autodetect first vector size we try. */
2371 current_vector_size = 0;
2372 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2374 if (dump_enabled_p ())
2375 dump_printf_loc (MSG_NOTE, vect_location,
2376 "===== analyze_loop_nest =====\n");
2378 if (loop_outer (loop)
2379 && loop_vec_info_for_loop (loop_outer (loop))
2380 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2382 if (dump_enabled_p ())
2383 dump_printf_loc (MSG_NOTE, vect_location,
2384 "outer-loop already vectorized.\n");
2385 return NULL;
2388 while (1)
2390 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2391 loop_vinfo = vect_analyze_loop_form (loop);
2392 if (!loop_vinfo)
2394 if (dump_enabled_p ())
2395 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2396 "bad loop form.\n");
2397 return NULL;
2400 bool fatal = false;
2402 if (orig_loop_vinfo)
2403 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2405 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2407 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2409 return loop_vinfo;
2412 destroy_loop_vec_info (loop_vinfo, true);
2414 vector_sizes &= ~current_vector_size;
2415 if (fatal
2416 || vector_sizes == 0
2417 || current_vector_size == 0)
2418 return NULL;
2420 /* Try the next biggest vector size. */
2421 current_vector_size = 1 << floor_log2 (vector_sizes);
2422 if (dump_enabled_p ())
2423 dump_printf_loc (MSG_NOTE, vect_location,
2424 "***** Re-trying analysis with "
2425 "vector size %d\n", current_vector_size);
2430 /* Function reduction_code_for_scalar_code
2432 Input:
2433 CODE - tree_code of a reduction operations.
2435 Output:
2436 REDUC_CODE - the corresponding tree-code to be used to reduce the
2437 vector of partial results into a single scalar result, or ERROR_MARK
2438 if the operation is a supported reduction operation, but does not have
2439 such a tree-code.
2441 Return FALSE if CODE currently cannot be vectorized as reduction. */
2443 static bool
2444 reduction_code_for_scalar_code (enum tree_code code,
2445 enum tree_code *reduc_code)
2447 switch (code)
2449 case MAX_EXPR:
2450 *reduc_code = REDUC_MAX_EXPR;
2451 return true;
2453 case MIN_EXPR:
2454 *reduc_code = REDUC_MIN_EXPR;
2455 return true;
2457 case PLUS_EXPR:
2458 *reduc_code = REDUC_PLUS_EXPR;
2459 return true;
2461 case MULT_EXPR:
2462 case MINUS_EXPR:
2463 case BIT_IOR_EXPR:
2464 case BIT_XOR_EXPR:
2465 case BIT_AND_EXPR:
2466 *reduc_code = ERROR_MARK;
2467 return true;
2469 default:
2470 return false;
2475 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2476 STMT is printed with a message MSG. */
2478 static void
2479 report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
2481 dump_printf_loc (msg_type, vect_location, "%s", msg);
2482 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2486 /* Detect SLP reduction of the form:
2488 #a1 = phi <a5, a0>
2489 a2 = operation (a1)
2490 a3 = operation (a2)
2491 a4 = operation (a3)
2492 a5 = operation (a4)
2494 #a = phi <a5>
2496 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2497 FIRST_STMT is the first reduction stmt in the chain
2498 (a2 = operation (a1)).
2500 Return TRUE if a reduction chain was detected. */
2502 static bool
2503 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2504 gimple *first_stmt)
2506 struct loop *loop = (gimple_bb (phi))->loop_father;
2507 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2508 enum tree_code code;
2509 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2510 stmt_vec_info use_stmt_info, current_stmt_info;
2511 tree lhs;
2512 imm_use_iterator imm_iter;
2513 use_operand_p use_p;
2514 int nloop_uses, size = 0, n_out_of_loop_uses;
2515 bool found = false;
2517 if (loop != vect_loop)
2518 return false;
2520 lhs = PHI_RESULT (phi);
2521 code = gimple_assign_rhs_code (first_stmt);
2522 while (1)
2524 nloop_uses = 0;
2525 n_out_of_loop_uses = 0;
2526 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2528 gimple *use_stmt = USE_STMT (use_p);
2529 if (is_gimple_debug (use_stmt))
2530 continue;
2532 /* Check if we got back to the reduction phi. */
2533 if (use_stmt == phi)
2535 loop_use_stmt = use_stmt;
2536 found = true;
2537 break;
2540 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2542 loop_use_stmt = use_stmt;
2543 nloop_uses++;
2545 else
2546 n_out_of_loop_uses++;
2548 /* There are can be either a single use in the loop or two uses in
2549 phi nodes. */
2550 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2551 return false;
2554 if (found)
2555 break;
2557 /* We reached a statement with no loop uses. */
2558 if (nloop_uses == 0)
2559 return false;
2561 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2562 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2563 return false;
2565 if (!is_gimple_assign (loop_use_stmt)
2566 || code != gimple_assign_rhs_code (loop_use_stmt)
2567 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2568 return false;
2570 /* Insert USE_STMT into reduction chain. */
2571 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2572 if (current_stmt)
2574 current_stmt_info = vinfo_for_stmt (current_stmt);
2575 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2576 GROUP_FIRST_ELEMENT (use_stmt_info)
2577 = GROUP_FIRST_ELEMENT (current_stmt_info);
2579 else
2580 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2582 lhs = gimple_assign_lhs (loop_use_stmt);
2583 current_stmt = loop_use_stmt;
2584 size++;
2587 if (!found || loop_use_stmt != phi || size < 2)
2588 return false;
2590 /* Swap the operands, if needed, to make the reduction operand be the second
2591 operand. */
2592 lhs = PHI_RESULT (phi);
2593 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2594 while (next_stmt)
2596 if (gimple_assign_rhs2 (next_stmt) == lhs)
2598 tree op = gimple_assign_rhs1 (next_stmt);
2599 gimple *def_stmt = NULL;
2601 if (TREE_CODE (op) == SSA_NAME)
2602 def_stmt = SSA_NAME_DEF_STMT (op);
2604 /* Check that the other def is either defined in the loop
2605 ("vect_internal_def"), or it's an induction (defined by a
2606 loop-header phi-node). */
2607 if (def_stmt
2608 && gimple_bb (def_stmt)
2609 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2610 && (is_gimple_assign (def_stmt)
2611 || is_gimple_call (def_stmt)
2612 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2613 == vect_induction_def
2614 || (gimple_code (def_stmt) == GIMPLE_PHI
2615 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2616 == vect_internal_def
2617 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2619 lhs = gimple_assign_lhs (next_stmt);
2620 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2621 continue;
2624 return false;
2626 else
2628 tree op = gimple_assign_rhs2 (next_stmt);
2629 gimple *def_stmt = NULL;
2631 if (TREE_CODE (op) == SSA_NAME)
2632 def_stmt = SSA_NAME_DEF_STMT (op);
2634 /* Check that the other def is either defined in the loop
2635 ("vect_internal_def"), or it's an induction (defined by a
2636 loop-header phi-node). */
2637 if (def_stmt
2638 && gimple_bb (def_stmt)
2639 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2640 && (is_gimple_assign (def_stmt)
2641 || is_gimple_call (def_stmt)
2642 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2643 == vect_induction_def
2644 || (gimple_code (def_stmt) == GIMPLE_PHI
2645 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2646 == vect_internal_def
2647 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2649 if (dump_enabled_p ())
2651 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2652 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2655 swap_ssa_operands (next_stmt,
2656 gimple_assign_rhs1_ptr (next_stmt),
2657 gimple_assign_rhs2_ptr (next_stmt));
2658 update_stmt (next_stmt);
2660 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2661 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2663 else
2664 return false;
2667 lhs = gimple_assign_lhs (next_stmt);
2668 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2671 /* Save the chain for further analysis in SLP detection. */
2672 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2673 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2674 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2676 return true;
2680 /* Function vect_is_simple_reduction
2682 (1) Detect a cross-iteration def-use cycle that represents a simple
2683 reduction computation. We look for the following pattern:
2685 loop_header:
2686 a1 = phi < a0, a2 >
2687 a3 = ...
2688 a2 = operation (a3, a1)
2692 a3 = ...
2693 loop_header:
2694 a1 = phi < a0, a2 >
2695 a2 = operation (a3, a1)
2697 such that:
2698 1. operation is commutative and associative and it is safe to
2699 change the order of the computation
2700 2. no uses for a2 in the loop (a2 is used out of the loop)
2701 3. no uses of a1 in the loop besides the reduction operation
2702 4. no uses of a1 outside the loop.
2704 Conditions 1,4 are tested here.
2705 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2707 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2708 nested cycles.
2710 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2711 reductions:
2713 a1 = phi < a0, a2 >
2714 inner loop (def of a3)
2715 a2 = phi < a3 >
2717 (4) Detect condition expressions, ie:
2718 for (int i = 0; i < N; i++)
2719 if (a[i] < val)
2720 ret_val = a[i];
2724 static gimple *
2725 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2726 bool *double_reduc,
2727 bool need_wrapping_integral_overflow,
2728 enum vect_reduction_type *v_reduc_type)
2730 struct loop *loop = (gimple_bb (phi))->loop_father;
2731 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2732 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2733 enum tree_code orig_code, code;
2734 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2735 tree type;
2736 int nloop_uses;
2737 tree name;
2738 imm_use_iterator imm_iter;
2739 use_operand_p use_p;
2740 bool phi_def;
2742 *double_reduc = false;
2743 *v_reduc_type = TREE_CODE_REDUCTION;
2745 name = PHI_RESULT (phi);
2746 /* ??? If there are no uses of the PHI result the inner loop reduction
2747 won't be detected as possibly double-reduction by vectorizable_reduction
2748 because that tries to walk the PHI arg from the preheader edge which
2749 can be constant. See PR60382. */
2750 if (has_zero_uses (name))
2751 return NULL;
2752 nloop_uses = 0;
2753 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2755 gimple *use_stmt = USE_STMT (use_p);
2756 if (is_gimple_debug (use_stmt))
2757 continue;
2759 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2761 if (dump_enabled_p ())
2762 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2763 "intermediate value used outside loop.\n");
2765 return NULL;
2768 nloop_uses++;
2769 if (nloop_uses > 1)
2771 if (dump_enabled_p ())
2772 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2773 "reduction value used in loop.\n");
2774 return NULL;
2777 phi_use_stmt = use_stmt;
2780 edge latch_e = loop_latch_edge (loop);
2781 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2782 if (TREE_CODE (loop_arg) != SSA_NAME)
2784 if (dump_enabled_p ())
2786 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2787 "reduction: not ssa_name: ");
2788 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2789 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2791 return NULL;
2794 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2795 if (is_gimple_assign (def_stmt))
2797 name = gimple_assign_lhs (def_stmt);
2798 phi_def = false;
2800 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2802 name = PHI_RESULT (def_stmt);
2803 phi_def = true;
2805 else
2807 if (dump_enabled_p ())
2809 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2810 "reduction: unhandled reduction operation: ");
2811 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def_stmt, 0);
2813 return NULL;
2816 nloop_uses = 0;
2817 auto_vec<gphi *, 3> lcphis;
2818 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
2819 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2821 gimple *use_stmt = USE_STMT (use_p);
2822 if (is_gimple_debug (use_stmt))
2823 continue;
2824 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2825 nloop_uses++;
2826 else
2827 /* We can have more than one loop-closed PHI. */
2828 lcphis.safe_push (as_a <gphi *> (use_stmt));
2829 if (nloop_uses > 1)
2831 if (dump_enabled_p ())
2832 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2833 "reduction used in loop.\n");
2834 return NULL;
2838 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2839 defined in the inner loop. */
2840 if (phi_def)
2842 op1 = PHI_ARG_DEF (def_stmt, 0);
2844 if (gimple_phi_num_args (def_stmt) != 1
2845 || TREE_CODE (op1) != SSA_NAME)
2847 if (dump_enabled_p ())
2848 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2849 "unsupported phi node definition.\n");
2851 return NULL;
2854 def1 = SSA_NAME_DEF_STMT (op1);
2855 if (gimple_bb (def1)
2856 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2857 && loop->inner
2858 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2859 && is_gimple_assign (def1)
2860 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2862 if (dump_enabled_p ())
2863 report_vect_op (MSG_NOTE, def_stmt,
2864 "detected double reduction: ");
2866 *double_reduc = true;
2867 return def_stmt;
2870 return NULL;
2873 /* If we are vectorizing an inner reduction we are executing that
2874 in the original order only in case we are not dealing with a
2875 double reduction. */
2876 bool check_reduction = true;
2877 if (flow_loop_nested_p (vect_loop, loop))
2879 gphi *lcphi;
2880 unsigned i;
2881 check_reduction = false;
2882 FOR_EACH_VEC_ELT (lcphis, i, lcphi)
2883 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
2885 gimple *use_stmt = USE_STMT (use_p);
2886 if (is_gimple_debug (use_stmt))
2887 continue;
2888 if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
2889 check_reduction = true;
2893 bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
2894 code = orig_code = gimple_assign_rhs_code (def_stmt);
2896 /* We can handle "res -= x[i]", which is non-associative by
2897 simply rewriting this into "res += -x[i]". Avoid changing
2898 gimple instruction for the first simple tests and only do this
2899 if we're allowed to change code at all. */
2900 if (code == MINUS_EXPR
2901 && ! ((op1 = gimple_assign_rhs2 (def_stmt))
2902 && TREE_CODE (op1) == SSA_NAME
2903 && SSA_NAME_DEF_STMT (op1) == phi))
2904 code = PLUS_EXPR;
2906 if (code == COND_EXPR)
2908 if (! nested_in_vect_loop)
2909 *v_reduc_type = COND_REDUCTION;
2911 op3 = gimple_assign_rhs1 (def_stmt);
2912 if (COMPARISON_CLASS_P (op3))
2914 op4 = TREE_OPERAND (op3, 1);
2915 op3 = TREE_OPERAND (op3, 0);
2918 op1 = gimple_assign_rhs2 (def_stmt);
2919 op2 = gimple_assign_rhs3 (def_stmt);
2921 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2923 if (dump_enabled_p ())
2924 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2925 "reduction: not commutative/associative: ");
2926 return NULL;
2928 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2930 op1 = gimple_assign_rhs1 (def_stmt);
2931 op2 = gimple_assign_rhs2 (def_stmt);
2933 else
2935 if (dump_enabled_p ())
2936 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2937 "reduction: not handled operation: ");
2938 return NULL;
2941 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2943 if (dump_enabled_p ())
2944 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2945 "reduction: both uses not ssa_names: ");
2947 return NULL;
2950 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2951 if ((TREE_CODE (op1) == SSA_NAME
2952 && !types_compatible_p (type,TREE_TYPE (op1)))
2953 || (TREE_CODE (op2) == SSA_NAME
2954 && !types_compatible_p (type, TREE_TYPE (op2)))
2955 || (op3 && TREE_CODE (op3) == SSA_NAME
2956 && !types_compatible_p (type, TREE_TYPE (op3)))
2957 || (op4 && TREE_CODE (op4) == SSA_NAME
2958 && !types_compatible_p (type, TREE_TYPE (op4))))
2960 if (dump_enabled_p ())
2962 dump_printf_loc (MSG_NOTE, vect_location,
2963 "reduction: multiple types: operation type: ");
2964 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2965 dump_printf (MSG_NOTE, ", operands types: ");
2966 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2967 TREE_TYPE (op1));
2968 dump_printf (MSG_NOTE, ",");
2969 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2970 TREE_TYPE (op2));
2971 if (op3)
2973 dump_printf (MSG_NOTE, ",");
2974 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2975 TREE_TYPE (op3));
2978 if (op4)
2980 dump_printf (MSG_NOTE, ",");
2981 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2982 TREE_TYPE (op4));
2984 dump_printf (MSG_NOTE, "\n");
2987 return NULL;
2990 /* Check that it's ok to change the order of the computation.
2991 Generally, when vectorizing a reduction we change the order of the
2992 computation. This may change the behavior of the program in some
2993 cases, so we need to check that this is ok. One exception is when
2994 vectorizing an outer-loop: the inner-loop is executed sequentially,
2995 and therefore vectorizing reductions in the inner-loop during
2996 outer-loop vectorization is safe. */
2998 if (*v_reduc_type != COND_REDUCTION
2999 && check_reduction)
3001 /* CHECKME: check for !flag_finite_math_only too? */
3002 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
3004 /* Changing the order of operations changes the semantics. */
3005 if (dump_enabled_p ())
3006 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3007 "reduction: unsafe fp math optimization: ");
3008 return NULL;
3010 else if (INTEGRAL_TYPE_P (type))
3012 if (!operation_no_trapping_overflow (type, code))
3014 /* Changing the order of operations changes the semantics. */
3015 if (dump_enabled_p ())
3016 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3017 "reduction: unsafe int math optimization"
3018 " (overflow traps): ");
3019 return NULL;
3021 if (need_wrapping_integral_overflow
3022 && !TYPE_OVERFLOW_WRAPS (type)
3023 && operation_can_overflow (code))
3025 /* Changing the order of operations changes the semantics. */
3026 if (dump_enabled_p ())
3027 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3028 "reduction: unsafe int math optimization"
3029 " (overflow doesn't wrap): ");
3030 return NULL;
3033 else if (SAT_FIXED_POINT_TYPE_P (type))
3035 /* Changing the order of operations changes the semantics. */
3036 if (dump_enabled_p ())
3037 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3038 "reduction: unsafe fixed-point math optimization: ");
3039 return NULL;
3043 /* Reduction is safe. We're dealing with one of the following:
3044 1) integer arithmetic and no trapv
3045 2) floating point arithmetic, and special flags permit this optimization
3046 3) nested cycle (i.e., outer loop vectorization). */
3047 if (TREE_CODE (op1) == SSA_NAME)
3048 def1 = SSA_NAME_DEF_STMT (op1);
3050 if (TREE_CODE (op2) == SSA_NAME)
3051 def2 = SSA_NAME_DEF_STMT (op2);
3053 if (code != COND_EXPR
3054 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
3056 if (dump_enabled_p ())
3057 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3058 return NULL;
3061 /* Check that one def is the reduction def, defined by PHI,
3062 the other def is either defined in the loop ("vect_internal_def"),
3063 or it's an induction (defined by a loop-header phi-node). */
3065 if (def2 && def2 == phi
3066 && (code == COND_EXPR
3067 || !def1 || gimple_nop_p (def1)
3068 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
3069 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
3070 && (is_gimple_assign (def1)
3071 || is_gimple_call (def1)
3072 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3073 == vect_induction_def
3074 || (gimple_code (def1) == GIMPLE_PHI
3075 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3076 == vect_internal_def
3077 && !is_loop_header_bb_p (gimple_bb (def1)))))))
3079 if (dump_enabled_p ())
3080 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3081 return def_stmt;
3084 if (def1 && def1 == phi
3085 && (code == COND_EXPR
3086 || !def2 || gimple_nop_p (def2)
3087 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
3088 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
3089 && (is_gimple_assign (def2)
3090 || is_gimple_call (def2)
3091 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3092 == vect_induction_def
3093 || (gimple_code (def2) == GIMPLE_PHI
3094 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3095 == vect_internal_def
3096 && !is_loop_header_bb_p (gimple_bb (def2)))))))
3098 if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
3100 /* Check if we can swap operands (just for simplicity - so that
3101 the rest of the code can assume that the reduction variable
3102 is always the last (second) argument). */
3103 if (code == COND_EXPR)
3105 /* Swap cond_expr by inverting the condition. */
3106 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3107 enum tree_code invert_code = ERROR_MARK;
3108 enum tree_code cond_code = TREE_CODE (cond_expr);
3110 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3112 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3113 invert_code = invert_tree_comparison (cond_code, honor_nans);
3115 if (invert_code != ERROR_MARK)
3117 TREE_SET_CODE (cond_expr, invert_code);
3118 swap_ssa_operands (def_stmt,
3119 gimple_assign_rhs2_ptr (def_stmt),
3120 gimple_assign_rhs3_ptr (def_stmt));
3122 else
3124 if (dump_enabled_p ())
3125 report_vect_op (MSG_NOTE, def_stmt,
3126 "detected reduction: cannot swap operands "
3127 "for cond_expr");
3128 return NULL;
3131 else
3132 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3133 gimple_assign_rhs2_ptr (def_stmt));
3135 if (dump_enabled_p ())
3136 report_vect_op (MSG_NOTE, def_stmt,
3137 "detected reduction: need to swap operands: ");
3139 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3140 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3142 else
3144 if (dump_enabled_p ())
3145 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3148 return def_stmt;
3151 /* Try to find SLP reduction chain. */
3152 if (! nested_in_vect_loop
3153 && code != COND_EXPR
3154 && orig_code != MINUS_EXPR
3155 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3157 if (dump_enabled_p ())
3158 report_vect_op (MSG_NOTE, def_stmt,
3159 "reduction: detected reduction chain: ");
3161 return def_stmt;
3164 /* Dissolve group eventually half-built by vect_is_slp_reduction. */
3165 gimple *first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (def_stmt));
3166 while (first)
3168 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
3169 GROUP_FIRST_ELEMENT (vinfo_for_stmt (first)) = NULL;
3170 GROUP_NEXT_ELEMENT (vinfo_for_stmt (first)) = NULL;
3171 first = next;
3174 /* Look for the expression computing loop_arg from loop PHI result. */
3175 auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
3176 auto_bitmap visited;
3177 tree lookfor = PHI_RESULT (phi);
3178 ssa_op_iter curri;
3179 use_operand_p curr = op_iter_init_phiuse (&curri, as_a <gphi *>(phi),
3180 SSA_OP_USE);
3181 while (USE_FROM_PTR (curr) != loop_arg)
3182 curr = op_iter_next_use (&curri);
3183 curri.i = curri.numops;
3186 path.safe_push (std::make_pair (curri, curr));
3187 tree use = USE_FROM_PTR (curr);
3188 if (use == lookfor)
3189 break;
3190 gimple *def = SSA_NAME_DEF_STMT (use);
3191 if (gimple_nop_p (def)
3192 || ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
3194 pop:
3197 std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
3198 curri = x.first;
3199 curr = x.second;
3201 curr = op_iter_next_use (&curri);
3202 /* Skip already visited or non-SSA operands (from iterating
3203 over PHI args). */
3204 while (curr != NULL_USE_OPERAND_P
3205 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
3206 || ! bitmap_set_bit (visited,
3207 SSA_NAME_VERSION
3208 (USE_FROM_PTR (curr)))));
3210 while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
3211 if (curr == NULL_USE_OPERAND_P)
3212 break;
3214 else
3216 if (gimple_code (def) == GIMPLE_PHI)
3217 curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
3218 else
3219 curr = op_iter_init_use (&curri, def, SSA_OP_USE);
3220 while (curr != NULL_USE_OPERAND_P
3221 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
3222 || ! bitmap_set_bit (visited,
3223 SSA_NAME_VERSION
3224 (USE_FROM_PTR (curr)))))
3225 curr = op_iter_next_use (&curri);
3226 if (curr == NULL_USE_OPERAND_P)
3227 goto pop;
3230 while (1);
3231 if (dump_file && (dump_flags & TDF_DETAILS))
3233 dump_printf_loc (MSG_NOTE, vect_location,
3234 "reduction path: ");
3235 unsigned i;
3236 std::pair<ssa_op_iter, use_operand_p> *x;
3237 FOR_EACH_VEC_ELT (path, i, x)
3239 dump_generic_expr (MSG_NOTE, TDF_SLIM, USE_FROM_PTR (x->second));
3240 dump_printf (MSG_NOTE, " ");
3242 dump_printf (MSG_NOTE, "\n");
3245 /* Check whether the reduction path detected is valid. */
3246 bool fail = false;
3247 bool neg = false;
3248 for (unsigned i = 1; i < path.length (); ++i)
3250 gimple *use_stmt = USE_STMT (path[i].second);
3251 tree op = USE_FROM_PTR (path[i].second);
3252 if (! has_single_use (op)
3253 || ! is_gimple_assign (use_stmt))
3255 fail = true;
3256 break;
3258 if (gimple_assign_rhs_code (use_stmt) != code)
3260 if (code == PLUS_EXPR
3261 && gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3263 /* Track whether we negate the reduction value each iteration. */
3264 if (gimple_assign_rhs2 (use_stmt) == op)
3265 neg = ! neg;
3267 else
3269 fail = true;
3270 break;
3274 if (! fail && ! neg)
3275 return def_stmt;
3277 if (dump_enabled_p ())
3279 report_vect_op (MSG_MISSED_OPTIMIZATION,
3280 SSA_NAME_DEF_STMT
3281 (USE_FROM_PTR (path[path.length ()-1].second)),
3282 "reduction: unknown pattern: ");
3285 return NULL;
3288 /* Wrapper around vect_is_simple_reduction, which will modify code
3289 in-place if it enables detection of more reductions. Arguments
3290 as there. */
3292 gimple *
3293 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3294 bool *double_reduc,
3295 bool need_wrapping_integral_overflow)
3297 enum vect_reduction_type v_reduc_type;
3298 gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
3299 need_wrapping_integral_overflow,
3300 &v_reduc_type);
3301 if (def)
3303 stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
3304 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3305 STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
3306 reduc_def_info = vinfo_for_stmt (def);
3307 STMT_VINFO_REDUC_DEF (reduc_def_info) = phi;
3309 return def;
3312 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3314 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3315 int *peel_iters_epilogue,
3316 stmt_vector_for_cost *scalar_cost_vec,
3317 stmt_vector_for_cost *prologue_cost_vec,
3318 stmt_vector_for_cost *epilogue_cost_vec)
3320 int retval = 0;
3321 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3323 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3325 *peel_iters_epilogue = vf/2;
3326 if (dump_enabled_p ())
3327 dump_printf_loc (MSG_NOTE, vect_location,
3328 "cost model: epilogue peel iters set to vf/2 "
3329 "because loop iterations are unknown .\n");
3331 /* If peeled iterations are known but number of scalar loop
3332 iterations are unknown, count a taken branch per peeled loop. */
3333 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3334 NULL, 0, vect_prologue);
3335 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3336 NULL, 0, vect_epilogue);
3338 else
3340 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3341 peel_iters_prologue = niters < peel_iters_prologue ?
3342 niters : peel_iters_prologue;
3343 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3344 /* If we need to peel for gaps, but no peeling is required, we have to
3345 peel VF iterations. */
3346 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3347 *peel_iters_epilogue = vf;
3350 stmt_info_for_cost *si;
3351 int j;
3352 if (peel_iters_prologue)
3353 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3355 stmt_vec_info stmt_info
3356 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3357 retval += record_stmt_cost (prologue_cost_vec,
3358 si->count * peel_iters_prologue,
3359 si->kind, stmt_info, si->misalign,
3360 vect_prologue);
3362 if (*peel_iters_epilogue)
3363 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3365 stmt_vec_info stmt_info
3366 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3367 retval += record_stmt_cost (epilogue_cost_vec,
3368 si->count * *peel_iters_epilogue,
3369 si->kind, stmt_info, si->misalign,
3370 vect_epilogue);
3373 return retval;
3376 /* Function vect_estimate_min_profitable_iters
3378 Return the number of iterations required for the vector version of the
3379 loop to be profitable relative to the cost of the scalar version of the
3380 loop.
3382 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3383 of iterations for vectorization. -1 value means loop vectorization
3384 is not profitable. This returned value may be used for dynamic
3385 profitability check.
3387 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3388 for static check against estimated number of iterations. */
3390 static void
3391 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3392 int *ret_min_profitable_niters,
3393 int *ret_min_profitable_estimate)
3395 int min_profitable_iters;
3396 int min_profitable_estimate;
3397 int peel_iters_prologue;
3398 int peel_iters_epilogue;
3399 unsigned vec_inside_cost = 0;
3400 int vec_outside_cost = 0;
3401 unsigned vec_prologue_cost = 0;
3402 unsigned vec_epilogue_cost = 0;
3403 int scalar_single_iter_cost = 0;
3404 int scalar_outside_cost = 0;
3405 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3406 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3407 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3409 /* Cost model disabled. */
3410 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3412 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3413 *ret_min_profitable_niters = 0;
3414 *ret_min_profitable_estimate = 0;
3415 return;
3418 /* Requires loop versioning tests to handle misalignment. */
3419 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3421 /* FIXME: Make cost depend on complexity of individual check. */
3422 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3423 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3424 vect_prologue);
3425 dump_printf (MSG_NOTE,
3426 "cost model: Adding cost of checks for loop "
3427 "versioning to treat misalignment.\n");
3430 /* Requires loop versioning with alias checks. */
3431 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3433 /* FIXME: Make cost depend on complexity of individual check. */
3434 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3435 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3436 vect_prologue);
3437 dump_printf (MSG_NOTE,
3438 "cost model: Adding cost of checks for loop "
3439 "versioning aliasing.\n");
3442 /* Requires loop versioning with niter checks. */
3443 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3445 /* FIXME: Make cost depend on complexity of individual check. */
3446 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3447 vect_prologue);
3448 dump_printf (MSG_NOTE,
3449 "cost model: Adding cost of checks for loop "
3450 "versioning niters.\n");
3453 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3454 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3455 vect_prologue);
3457 /* Count statements in scalar loop. Using this as scalar cost for a single
3458 iteration for now.
3460 TODO: Add outer loop support.
3462 TODO: Consider assigning different costs to different scalar
3463 statements. */
3465 scalar_single_iter_cost
3466 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3468 /* Add additional cost for the peeled instructions in prologue and epilogue
3469 loop.
3471 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3472 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3474 TODO: Build an expression that represents peel_iters for prologue and
3475 epilogue to be used in a run-time test. */
3477 if (npeel < 0)
3479 peel_iters_prologue = vf/2;
3480 dump_printf (MSG_NOTE, "cost model: "
3481 "prologue peel iters set to vf/2.\n");
3483 /* If peeling for alignment is unknown, loop bound of main loop becomes
3484 unknown. */
3485 peel_iters_epilogue = vf/2;
3486 dump_printf (MSG_NOTE, "cost model: "
3487 "epilogue peel iters set to vf/2 because "
3488 "peeling for alignment is unknown.\n");
3490 /* If peeled iterations are unknown, count a taken branch and a not taken
3491 branch per peeled loop. Even if scalar loop iterations are known,
3492 vector iterations are not known since peeled prologue iterations are
3493 not known. Hence guards remain the same. */
3494 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3495 NULL, 0, vect_prologue);
3496 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3497 NULL, 0, vect_prologue);
3498 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3499 NULL, 0, vect_epilogue);
3500 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3501 NULL, 0, vect_epilogue);
3502 stmt_info_for_cost *si;
3503 int j;
3504 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3506 struct _stmt_vec_info *stmt_info
3507 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3508 (void) add_stmt_cost (target_cost_data,
3509 si->count * peel_iters_prologue,
3510 si->kind, stmt_info, si->misalign,
3511 vect_prologue);
3512 (void) add_stmt_cost (target_cost_data,
3513 si->count * peel_iters_epilogue,
3514 si->kind, stmt_info, si->misalign,
3515 vect_epilogue);
3518 else
3520 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3521 stmt_info_for_cost *si;
3522 int j;
3523 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3525 prologue_cost_vec.create (2);
3526 epilogue_cost_vec.create (2);
3527 peel_iters_prologue = npeel;
3529 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3530 &peel_iters_epilogue,
3531 &LOOP_VINFO_SCALAR_ITERATION_COST
3532 (loop_vinfo),
3533 &prologue_cost_vec,
3534 &epilogue_cost_vec);
3536 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3538 struct _stmt_vec_info *stmt_info
3539 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3540 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3541 si->misalign, vect_prologue);
3544 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3546 struct _stmt_vec_info *stmt_info
3547 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3548 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3549 si->misalign, vect_epilogue);
3552 prologue_cost_vec.release ();
3553 epilogue_cost_vec.release ();
3556 /* FORNOW: The scalar outside cost is incremented in one of the
3557 following ways:
3559 1. The vectorizer checks for alignment and aliasing and generates
3560 a condition that allows dynamic vectorization. A cost model
3561 check is ANDED with the versioning condition. Hence scalar code
3562 path now has the added cost of the versioning check.
3564 if (cost > th & versioning_check)
3565 jmp to vector code
3567 Hence run-time scalar is incremented by not-taken branch cost.
3569 2. The vectorizer then checks if a prologue is required. If the
3570 cost model check was not done before during versioning, it has to
3571 be done before the prologue check.
3573 if (cost <= th)
3574 prologue = scalar_iters
3575 if (prologue == 0)
3576 jmp to vector code
3577 else
3578 execute prologue
3579 if (prologue == num_iters)
3580 go to exit
3582 Hence the run-time scalar cost is incremented by a taken branch,
3583 plus a not-taken branch, plus a taken branch cost.
3585 3. The vectorizer then checks if an epilogue is required. If the
3586 cost model check was not done before during prologue check, it
3587 has to be done with the epilogue check.
3589 if (prologue == 0)
3590 jmp to vector code
3591 else
3592 execute prologue
3593 if (prologue == num_iters)
3594 go to exit
3595 vector code:
3596 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3597 jmp to epilogue
3599 Hence the run-time scalar cost should be incremented by 2 taken
3600 branches.
3602 TODO: The back end may reorder the BBS's differently and reverse
3603 conditions/branch directions. Change the estimates below to
3604 something more reasonable. */
3606 /* If the number of iterations is known and we do not do versioning, we can
3607 decide whether to vectorize at compile time. Hence the scalar version
3608 do not carry cost model guard costs. */
3609 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3610 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3612 /* Cost model check occurs at versioning. */
3613 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3614 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3615 else
3617 /* Cost model check occurs at prologue generation. */
3618 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3619 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3620 + vect_get_stmt_cost (cond_branch_not_taken);
3621 /* Cost model check occurs at epilogue generation. */
3622 else
3623 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3627 /* Complete the target-specific cost calculations. */
3628 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3629 &vec_inside_cost, &vec_epilogue_cost);
3631 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3633 if (dump_enabled_p ())
3635 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3636 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3637 vec_inside_cost);
3638 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3639 vec_prologue_cost);
3640 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3641 vec_epilogue_cost);
3642 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3643 scalar_single_iter_cost);
3644 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3645 scalar_outside_cost);
3646 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3647 vec_outside_cost);
3648 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3649 peel_iters_prologue);
3650 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3651 peel_iters_epilogue);
3654 /* Calculate number of iterations required to make the vector version
3655 profitable, relative to the loop bodies only. The following condition
3656 must hold true:
3657 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3658 where
3659 SIC = scalar iteration cost, VIC = vector iteration cost,
3660 VOC = vector outside cost, VF = vectorization factor,
3661 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3662 SOC = scalar outside cost for run time cost model check. */
3664 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3666 if (vec_outside_cost <= 0)
3667 min_profitable_iters = 0;
3668 else
3670 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3671 - vec_inside_cost * peel_iters_prologue
3672 - vec_inside_cost * peel_iters_epilogue)
3673 / ((scalar_single_iter_cost * vf)
3674 - vec_inside_cost);
3676 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3677 <= (((int) vec_inside_cost * min_profitable_iters)
3678 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3679 min_profitable_iters++;
3682 /* vector version will never be profitable. */
3683 else
3685 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3686 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3687 "did not happen for a simd loop");
3689 if (dump_enabled_p ())
3690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3691 "cost model: the vector iteration cost = %d "
3692 "divided by the scalar iteration cost = %d "
3693 "is greater or equal to the vectorization factor = %d"
3694 ".\n",
3695 vec_inside_cost, scalar_single_iter_cost, vf);
3696 *ret_min_profitable_niters = -1;
3697 *ret_min_profitable_estimate = -1;
3698 return;
3701 dump_printf (MSG_NOTE,
3702 " Calculated minimum iters for profitability: %d\n",
3703 min_profitable_iters);
3705 min_profitable_iters =
3706 min_profitable_iters < vf ? vf : min_profitable_iters;
3708 if (dump_enabled_p ())
3709 dump_printf_loc (MSG_NOTE, vect_location,
3710 " Runtime profitability threshold = %d\n",
3711 min_profitable_iters);
3713 *ret_min_profitable_niters = min_profitable_iters;
3715 /* Calculate number of iterations required to make the vector version
3716 profitable, relative to the loop bodies only.
3718 Non-vectorized variant is SIC * niters and it must win over vector
3719 variant on the expected loop trip count. The following condition must hold true:
3720 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3722 if (vec_outside_cost <= 0)
3723 min_profitable_estimate = 0;
3724 else
3726 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3727 - vec_inside_cost * peel_iters_prologue
3728 - vec_inside_cost * peel_iters_epilogue)
3729 / ((scalar_single_iter_cost * vf)
3730 - vec_inside_cost);
3732 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3733 if (dump_enabled_p ())
3734 dump_printf_loc (MSG_NOTE, vect_location,
3735 " Static estimate profitability threshold = %d\n",
3736 min_profitable_estimate);
3738 *ret_min_profitable_estimate = min_profitable_estimate;
3741 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3742 vector elements (not bits) for a vector of mode MODE. */
3743 static void
3744 calc_vec_perm_mask_for_shift (machine_mode mode, unsigned int offset,
3745 unsigned char *sel)
3747 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3749 for (i = 0; i < nelt; i++)
3750 sel[i] = (i + offset) & (2*nelt - 1);
3753 /* Checks whether the target supports whole-vector shifts for vectors of mode
3754 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3755 it supports vec_perm_const with masks for all necessary shift amounts. */
3756 static bool
3757 have_whole_vector_shift (machine_mode mode)
3759 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3760 return true;
3762 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3763 return false;
3765 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3766 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3768 for (i = nelt/2; i >= 1; i/=2)
3770 calc_vec_perm_mask_for_shift (mode, i, sel);
3771 if (!can_vec_perm_p (mode, false, sel))
3772 return false;
3774 return true;
3777 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3778 functions. Design better to avoid maintenance issues. */
3780 /* Function vect_model_reduction_cost.
3782 Models cost for a reduction operation, including the vector ops
3783 generated within the strip-mine loop, the initial definition before
3784 the loop, and the epilogue code that must be generated. */
3786 static void
3787 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3788 int ncopies)
3790 int prologue_cost = 0, epilogue_cost = 0;
3791 enum tree_code code;
3792 optab optab;
3793 tree vectype;
3794 gimple *orig_stmt;
3795 machine_mode mode;
3796 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3797 struct loop *loop = NULL;
3798 void *target_cost_data;
3800 if (loop_vinfo)
3802 loop = LOOP_VINFO_LOOP (loop_vinfo);
3803 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3805 else
3806 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3808 /* Condition reductions generate two reductions in the loop. */
3809 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3810 ncopies *= 2;
3812 /* Cost of reduction op inside loop. */
3813 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3814 stmt_info, 0, vect_body);
3816 vectype = STMT_VINFO_VECTYPE (stmt_info);
3817 mode = TYPE_MODE (vectype);
3818 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3820 if (!orig_stmt)
3821 orig_stmt = STMT_VINFO_STMT (stmt_info);
3823 code = gimple_assign_rhs_code (orig_stmt);
3825 /* Add in cost for initial definition.
3826 For cond reduction we have four vectors: initial index, step, initial
3827 result of the data reduction, initial value of the index reduction. */
3828 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3829 == COND_REDUCTION ? 4 : 1;
3830 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3831 scalar_to_vec, stmt_info, 0,
3832 vect_prologue);
3834 /* Determine cost of epilogue code.
3836 We have a reduction operator that will reduce the vector in one statement.
3837 Also requires scalar extract. */
3839 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3841 if (reduc_code != ERROR_MARK)
3843 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3845 /* An EQ stmt and an COND_EXPR stmt. */
3846 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3847 vector_stmt, stmt_info, 0,
3848 vect_epilogue);
3849 /* Reduction of the max index and a reduction of the found
3850 values. */
3851 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3852 vec_to_scalar, stmt_info, 0,
3853 vect_epilogue);
3854 /* A broadcast of the max value. */
3855 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3856 scalar_to_vec, stmt_info, 0,
3857 vect_epilogue);
3859 else
3861 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3862 stmt_info, 0, vect_epilogue);
3863 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3864 vec_to_scalar, stmt_info, 0,
3865 vect_epilogue);
3868 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3870 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
3871 /* Extraction of scalar elements. */
3872 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits,
3873 vec_to_scalar, stmt_info, 0,
3874 vect_epilogue);
3875 /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
3876 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits - 3,
3877 scalar_stmt, stmt_info, 0,
3878 vect_epilogue);
3880 else
3882 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3883 tree bitsize =
3884 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3885 int element_bitsize = tree_to_uhwi (bitsize);
3886 int nelements = vec_size_in_bits / element_bitsize;
3888 if (code == COND_EXPR)
3889 code = MAX_EXPR;
3891 optab = optab_for_tree_code (code, vectype, optab_default);
3893 /* We have a whole vector shift available. */
3894 if (optab != unknown_optab
3895 && VECTOR_MODE_P (mode)
3896 && optab_handler (optab, mode) != CODE_FOR_nothing
3897 && have_whole_vector_shift (mode))
3899 /* Final reduction via vector shifts and the reduction operator.
3900 Also requires scalar extract. */
3901 epilogue_cost += add_stmt_cost (target_cost_data,
3902 exact_log2 (nelements) * 2,
3903 vector_stmt, stmt_info, 0,
3904 vect_epilogue);
3905 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3906 vec_to_scalar, stmt_info, 0,
3907 vect_epilogue);
3909 else
3910 /* Use extracts and reduction op for final reduction. For N
3911 elements, we have N extracts and N-1 reduction ops. */
3912 epilogue_cost += add_stmt_cost (target_cost_data,
3913 nelements + nelements - 1,
3914 vector_stmt, stmt_info, 0,
3915 vect_epilogue);
3919 if (dump_enabled_p ())
3920 dump_printf (MSG_NOTE,
3921 "vect_model_reduction_cost: inside_cost = %d, "
3922 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3923 prologue_cost, epilogue_cost);
3927 /* Function vect_model_induction_cost.
3929 Models cost for induction operations. */
3931 static void
3932 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3934 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3935 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3936 unsigned inside_cost, prologue_cost;
3938 if (PURE_SLP_STMT (stmt_info))
3939 return;
3941 /* loop cost for vec_loop. */
3942 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3943 stmt_info, 0, vect_body);
3945 /* prologue cost for vec_init and vec_step. */
3946 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3947 stmt_info, 0, vect_prologue);
3949 if (dump_enabled_p ())
3950 dump_printf_loc (MSG_NOTE, vect_location,
3951 "vect_model_induction_cost: inside_cost = %d, "
3952 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3957 /* Function get_initial_def_for_reduction
3959 Input:
3960 STMT - a stmt that performs a reduction operation in the loop.
3961 INIT_VAL - the initial value of the reduction variable
3963 Output:
3964 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3965 of the reduction (used for adjusting the epilog - see below).
3966 Return a vector variable, initialized according to the operation that STMT
3967 performs. This vector will be used as the initial value of the
3968 vector of partial results.
3970 Option1 (adjust in epilog): Initialize the vector as follows:
3971 add/bit or/xor: [0,0,...,0,0]
3972 mult/bit and: [1,1,...,1,1]
3973 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3974 and when necessary (e.g. add/mult case) let the caller know
3975 that it needs to adjust the result by init_val.
3977 Option2: Initialize the vector as follows:
3978 add/bit or/xor: [init_val,0,0,...,0]
3979 mult/bit and: [init_val,1,1,...,1]
3980 min/max/cond_expr: [init_val,init_val,...,init_val]
3981 and no adjustments are needed.
3983 For example, for the following code:
3985 s = init_val;
3986 for (i=0;i<n;i++)
3987 s = s + a[i];
3989 STMT is 's = s + a[i]', and the reduction variable is 's'.
3990 For a vector of 4 units, we want to return either [0,0,0,init_val],
3991 or [0,0,0,0] and let the caller know that it needs to adjust
3992 the result at the end by 'init_val'.
3994 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3995 initialization vector is simpler (same element in all entries), if
3996 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3998 A cost model should help decide between these two schemes. */
4000 tree
4001 get_initial_def_for_reduction (gimple *stmt, tree init_val,
4002 tree *adjustment_def)
4004 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4005 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
4006 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4007 tree scalar_type = TREE_TYPE (init_val);
4008 tree vectype = get_vectype_for_scalar_type (scalar_type);
4009 int nunits;
4010 enum tree_code code = gimple_assign_rhs_code (stmt);
4011 tree def_for_init;
4012 tree init_def;
4013 tree *elts;
4014 int i;
4015 bool nested_in_vect_loop = false;
4016 REAL_VALUE_TYPE real_init_val = dconst0;
4017 int int_init_val = 0;
4018 gimple *def_stmt = NULL;
4019 gimple_seq stmts = NULL;
4021 gcc_assert (vectype);
4022 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4024 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
4025 || SCALAR_FLOAT_TYPE_P (scalar_type));
4027 if (nested_in_vect_loop_p (loop, stmt))
4028 nested_in_vect_loop = true;
4029 else
4030 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
4032 /* In case of double reduction we only create a vector variable to be put
4033 in the reduction phi node. The actual statement creation is done in
4034 vect_create_epilog_for_reduction. */
4035 if (adjustment_def && nested_in_vect_loop
4036 && TREE_CODE (init_val) == SSA_NAME
4037 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
4038 && gimple_code (def_stmt) == GIMPLE_PHI
4039 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
4040 && vinfo_for_stmt (def_stmt)
4041 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
4042 == vect_double_reduction_def)
4044 *adjustment_def = NULL;
4045 return vect_create_destination_var (init_val, vectype);
4048 /* In case of a nested reduction do not use an adjustment def as
4049 that case is not supported by the epilogue generation correctly
4050 if ncopies is not one. */
4051 if (adjustment_def && nested_in_vect_loop)
4053 *adjustment_def = NULL;
4054 return vect_get_vec_def_for_operand (init_val, stmt);
4057 switch (code)
4059 case WIDEN_SUM_EXPR:
4060 case DOT_PROD_EXPR:
4061 case SAD_EXPR:
4062 case PLUS_EXPR:
4063 case MINUS_EXPR:
4064 case BIT_IOR_EXPR:
4065 case BIT_XOR_EXPR:
4066 case MULT_EXPR:
4067 case BIT_AND_EXPR:
4068 /* ADJUSMENT_DEF is NULL when called from
4069 vect_create_epilog_for_reduction to vectorize double reduction. */
4070 if (adjustment_def)
4071 *adjustment_def = init_val;
4073 if (code == MULT_EXPR)
4075 real_init_val = dconst1;
4076 int_init_val = 1;
4079 if (code == BIT_AND_EXPR)
4080 int_init_val = -1;
4082 if (SCALAR_FLOAT_TYPE_P (scalar_type))
4083 def_for_init = build_real (scalar_type, real_init_val);
4084 else
4085 def_for_init = build_int_cst (scalar_type, int_init_val);
4087 /* Create a vector of '0' or '1' except the first element. */
4088 elts = XALLOCAVEC (tree, nunits);
4089 for (i = nunits - 2; i >= 0; --i)
4090 elts[i + 1] = def_for_init;
4092 /* Option1: the first element is '0' or '1' as well. */
4093 if (adjustment_def)
4095 elts[0] = def_for_init;
4096 init_def = build_vector (vectype, elts);
4097 break;
4100 /* Option2: the first element is INIT_VAL. */
4101 elts[0] = init_val;
4102 if (TREE_CONSTANT (init_val))
4103 init_def = build_vector (vectype, elts);
4104 else
4106 vec<constructor_elt, va_gc> *v;
4107 vec_alloc (v, nunits);
4108 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4109 for (i = 1; i < nunits; ++i)
4110 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4111 init_def = build_constructor (vectype, v);
4114 break;
4116 case MIN_EXPR:
4117 case MAX_EXPR:
4118 case COND_EXPR:
4119 if (adjustment_def)
4121 *adjustment_def = NULL_TREE;
4122 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4124 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4125 break;
4128 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4129 if (! gimple_seq_empty_p (stmts))
4130 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4131 init_def = build_vector_from_val (vectype, init_val);
4132 break;
4134 default:
4135 gcc_unreachable ();
4138 return init_def;
4141 /* Get at the initial defs for the reduction PHIs in SLP_NODE.
4142 NUMBER_OF_VECTORS is the number of vector defs to create. */
4144 static void
4145 get_initial_defs_for_reduction (slp_tree slp_node,
4146 vec<tree> *vec_oprnds,
4147 unsigned int number_of_vectors,
4148 enum tree_code code, bool reduc_chain)
4150 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4151 gimple *stmt = stmts[0];
4152 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4153 unsigned nunits;
4154 tree vec_cst;
4155 tree *elts;
4156 unsigned j, number_of_places_left_in_vector;
4157 tree vector_type, scalar_type;
4158 tree vop;
4159 int group_size = stmts.length ();
4160 unsigned int vec_num, i;
4161 unsigned number_of_copies = 1;
4162 vec<tree> voprnds;
4163 voprnds.create (number_of_vectors);
4164 bool constant_p;
4165 tree neutral_op = NULL;
4166 struct loop *loop;
4167 gimple_seq ctor_seq = NULL;
4169 vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
4170 scalar_type = TREE_TYPE (vector_type);
4171 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
4173 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def);
4175 loop = (gimple_bb (stmt))->loop_father;
4176 gcc_assert (loop);
4178 /* op is the reduction operand of the first stmt already. */
4179 /* For additional copies (see the explanation of NUMBER_OF_COPIES below)
4180 we need either neutral operands or the original operands. See
4181 get_initial_def_for_reduction() for details. */
4182 switch (code)
4184 case WIDEN_SUM_EXPR:
4185 case DOT_PROD_EXPR:
4186 case SAD_EXPR:
4187 case PLUS_EXPR:
4188 case MINUS_EXPR:
4189 case BIT_IOR_EXPR:
4190 case BIT_XOR_EXPR:
4191 neutral_op = build_zero_cst (scalar_type);
4192 break;
4194 case MULT_EXPR:
4195 neutral_op = build_one_cst (scalar_type);
4196 break;
4198 case BIT_AND_EXPR:
4199 neutral_op = build_all_ones_cst (scalar_type);
4200 break;
4202 /* For MIN/MAX we don't have an easy neutral operand but
4203 the initial values can be used fine here. Only for
4204 a reduction chain we have to force a neutral element. */
4205 case MAX_EXPR:
4206 case MIN_EXPR:
4207 if (! reduc_chain)
4208 neutral_op = NULL;
4209 else
4210 neutral_op = PHI_ARG_DEF_FROM_EDGE (stmt,
4211 loop_preheader_edge (loop));
4212 break;
4214 default:
4215 gcc_assert (! reduc_chain);
4216 neutral_op = NULL;
4219 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
4220 created vectors. It is greater than 1 if unrolling is performed.
4222 For example, we have two scalar operands, s1 and s2 (e.g., group of
4223 strided accesses of size two), while NUNITS is four (i.e., four scalars
4224 of this type can be packed in a vector). The output vector will contain
4225 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
4226 will be 2).
4228 If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
4229 containing the operands.
4231 For example, NUNITS is four as before, and the group size is 8
4232 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
4233 {s5, s6, s7, s8}. */
4235 number_of_copies = nunits * number_of_vectors / group_size;
4237 number_of_places_left_in_vector = nunits;
4238 constant_p = true;
4239 elts = XALLOCAVEC (tree, nunits);
4240 for (j = 0; j < number_of_copies; j++)
4242 for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
4244 tree op;
4245 /* Get the def before the loop. In reduction chain we have only
4246 one initial value. */
4247 if ((j != (number_of_copies - 1)
4248 || (reduc_chain && i != 0))
4249 && neutral_op)
4250 op = neutral_op;
4251 else
4252 op = PHI_ARG_DEF_FROM_EDGE (stmt,
4253 loop_preheader_edge (loop));
4255 /* Create 'vect_ = {op0,op1,...,opn}'. */
4256 number_of_places_left_in_vector--;
4257 elts[number_of_places_left_in_vector] = op;
4258 if (!CONSTANT_CLASS_P (op))
4259 constant_p = false;
4261 if (number_of_places_left_in_vector == 0)
4263 if (constant_p)
4264 vec_cst = build_vector (vector_type, elts);
4265 else
4267 vec<constructor_elt, va_gc> *v;
4268 unsigned k;
4269 vec_alloc (v, nunits);
4270 for (k = 0; k < nunits; ++k)
4271 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[k]);
4272 vec_cst = build_constructor (vector_type, v);
4274 tree init;
4275 gimple_stmt_iterator gsi;
4276 init = vect_init_vector (stmt, vec_cst, vector_type, NULL);
4277 if (ctor_seq != NULL)
4279 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (init));
4280 gsi_insert_seq_before_without_update (&gsi, ctor_seq,
4281 GSI_SAME_STMT);
4282 ctor_seq = NULL;
4284 voprnds.quick_push (init);
4286 number_of_places_left_in_vector = nunits;
4287 constant_p = true;
4292 /* Since the vectors are created in the reverse order, we should invert
4293 them. */
4294 vec_num = voprnds.length ();
4295 for (j = vec_num; j != 0; j--)
4297 vop = voprnds[j - 1];
4298 vec_oprnds->quick_push (vop);
4301 voprnds.release ();
4303 /* In case that VF is greater than the unrolling factor needed for the SLP
4304 group of stmts, NUMBER_OF_VECTORS to be created is greater than
4305 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
4306 to replicate the vectors. */
4307 while (number_of_vectors > vec_oprnds->length ())
4309 tree neutral_vec = NULL;
4311 if (neutral_op)
4313 if (!neutral_vec)
4314 neutral_vec = build_vector_from_val (vector_type, neutral_op);
4316 vec_oprnds->quick_push (neutral_vec);
4318 else
4320 for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
4321 vec_oprnds->quick_push (vop);
4327 /* Function vect_create_epilog_for_reduction
4329 Create code at the loop-epilog to finalize the result of a reduction
4330 computation.
4332 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4333 reduction statements.
4334 STMT is the scalar reduction stmt that is being vectorized.
4335 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4336 number of elements that we can fit in a vectype (nunits). In this case
4337 we have to generate more than one vector stmt - i.e - we need to "unroll"
4338 the vector stmt by a factor VF/nunits. For more details see documentation
4339 in vectorizable_operation.
4340 REDUC_CODE is the tree-code for the epilog reduction.
4341 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4342 computation.
4343 REDUC_INDEX is the index of the operand in the right hand side of the
4344 statement that is defined by REDUCTION_PHI.
4345 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4346 SLP_NODE is an SLP node containing a group of reduction statements. The
4347 first one in this group is STMT.
4349 This function:
4350 1. Creates the reduction def-use cycles: sets the arguments for
4351 REDUCTION_PHIS:
4352 The loop-entry argument is the vectorized initial-value of the reduction.
4353 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4354 sums.
4355 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4356 by applying the operation specified by REDUC_CODE if available, or by
4357 other means (whole-vector shifts or a scalar loop).
4358 The function also creates a new phi node at the loop exit to preserve
4359 loop-closed form, as illustrated below.
4361 The flow at the entry to this function:
4363 loop:
4364 vec_def = phi <null, null> # REDUCTION_PHI
4365 VECT_DEF = vector_stmt # vectorized form of STMT
4366 s_loop = scalar_stmt # (scalar) STMT
4367 loop_exit:
4368 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4369 use <s_out0>
4370 use <s_out0>
4372 The above is transformed by this function into:
4374 loop:
4375 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4376 VECT_DEF = vector_stmt # vectorized form of STMT
4377 s_loop = scalar_stmt # (scalar) STMT
4378 loop_exit:
4379 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4380 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4381 v_out2 = reduce <v_out1>
4382 s_out3 = extract_field <v_out2, 0>
4383 s_out4 = adjust_result <s_out3>
4384 use <s_out4>
4385 use <s_out4>
4388 static void
4389 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4390 gimple *reduc_def_stmt,
4391 int ncopies, enum tree_code reduc_code,
4392 vec<gimple *> reduction_phis,
4393 bool double_reduc,
4394 slp_tree slp_node,
4395 slp_instance slp_node_instance)
4397 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4398 stmt_vec_info prev_phi_info;
4399 tree vectype;
4400 machine_mode mode;
4401 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4402 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4403 basic_block exit_bb;
4404 tree scalar_dest;
4405 tree scalar_type;
4406 gimple *new_phi = NULL, *phi;
4407 gimple_stmt_iterator exit_gsi;
4408 tree vec_dest;
4409 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4410 gimple *epilog_stmt = NULL;
4411 enum tree_code code = gimple_assign_rhs_code (stmt);
4412 gimple *exit_phi;
4413 tree bitsize;
4414 tree adjustment_def = NULL;
4415 tree vec_initial_def = NULL;
4416 tree expr, def, initial_def = NULL;
4417 tree orig_name, scalar_result;
4418 imm_use_iterator imm_iter, phi_imm_iter;
4419 use_operand_p use_p, phi_use_p;
4420 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4421 bool nested_in_vect_loop = false;
4422 auto_vec<gimple *> new_phis;
4423 auto_vec<gimple *> inner_phis;
4424 enum vect_def_type dt = vect_unknown_def_type;
4425 int j, i;
4426 auto_vec<tree> scalar_results;
4427 unsigned int group_size = 1, k, ratio;
4428 auto_vec<tree> vec_initial_defs;
4429 auto_vec<gimple *> phis;
4430 bool slp_reduc = false;
4431 tree new_phi_result;
4432 gimple *inner_phi = NULL;
4433 tree induction_index = NULL_TREE;
4435 if (slp_node)
4436 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4438 if (nested_in_vect_loop_p (loop, stmt))
4440 outer_loop = loop;
4441 loop = loop->inner;
4442 nested_in_vect_loop = true;
4443 gcc_assert (!slp_node);
4446 vectype = STMT_VINFO_VECTYPE (stmt_info);
4447 gcc_assert (vectype);
4448 mode = TYPE_MODE (vectype);
4450 /* 1. Create the reduction def-use cycle:
4451 Set the arguments of REDUCTION_PHIS, i.e., transform
4453 loop:
4454 vec_def = phi <null, null> # REDUCTION_PHI
4455 VECT_DEF = vector_stmt # vectorized form of STMT
4458 into:
4460 loop:
4461 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4462 VECT_DEF = vector_stmt # vectorized form of STMT
4465 (in case of SLP, do it for all the phis). */
4467 /* Get the loop-entry arguments. */
4468 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4469 if (slp_node)
4471 unsigned vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4472 vec_initial_defs.reserve (vec_num);
4473 get_initial_defs_for_reduction (slp_node_instance->reduc_phis,
4474 &vec_initial_defs, vec_num, code,
4475 GROUP_FIRST_ELEMENT (stmt_info));
4477 else
4479 /* Get at the scalar def before the loop, that defines the initial value
4480 of the reduction variable. */
4481 gimple *def_stmt;
4482 initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4483 loop_preheader_edge (loop));
4484 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4485 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4486 &adjustment_def);
4487 vec_initial_defs.create (1);
4488 vec_initial_defs.quick_push (vec_initial_def);
4491 /* Set phi nodes arguments. */
4492 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4494 tree vec_init_def, def;
4495 gimple_seq stmts;
4496 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4497 true, NULL_TREE);
4498 if (stmts)
4499 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4501 def = vect_defs[i];
4502 for (j = 0; j < ncopies; j++)
4504 if (j != 0)
4506 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4507 if (nested_in_vect_loop)
4508 vec_init_def
4509 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4510 vec_init_def);
4513 /* Set the loop-entry arg of the reduction-phi. */
4515 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4516 == INTEGER_INDUC_COND_REDUCTION)
4518 /* Initialise the reduction phi to zero. This prevents initial
4519 values of non-zero interferring with the reduction op. */
4520 gcc_assert (ncopies == 1);
4521 gcc_assert (i == 0);
4523 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4524 tree zero_vec = build_zero_cst (vec_init_def_type);
4526 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4527 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4529 else
4530 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4531 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4533 /* Set the loop-latch arg for the reduction-phi. */
4534 if (j > 0)
4535 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4537 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4538 UNKNOWN_LOCATION);
4540 if (dump_enabled_p ())
4542 dump_printf_loc (MSG_NOTE, vect_location,
4543 "transform reduction: created def-use cycle: ");
4544 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4545 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4550 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
4551 which is updated with the current index of the loop for every match of
4552 the original loop's cond_expr (VEC_STMT). This results in a vector
4553 containing the last time the condition passed for that vector lane.
4554 The first match will be a 1 to allow 0 to be used for non-matching
4555 indexes. If there are no matches at all then the vector will be all
4556 zeroes. */
4557 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4559 tree indx_before_incr, indx_after_incr;
4560 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
4561 int k;
4563 gimple *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4564 gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
4566 int scalar_precision
4567 = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (vectype)));
4568 tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
4569 tree cr_index_vector_type = build_vector_type
4570 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype));
4572 /* First we create a simple vector induction variable which starts
4573 with the values {1,2,3,...} (SERIES_VECT) and increments by the
4574 vector size (STEP). */
4576 /* Create a {1,2,3,...} vector. */
4577 tree *vtemp = XALLOCAVEC (tree, nunits_out);
4578 for (k = 0; k < nunits_out; ++k)
4579 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
4580 tree series_vect = build_vector (cr_index_vector_type, vtemp);
4582 /* Create a vector of the step value. */
4583 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
4584 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
4586 /* Create an induction variable. */
4587 gimple_stmt_iterator incr_gsi;
4588 bool insert_after;
4589 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4590 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
4591 insert_after, &indx_before_incr, &indx_after_incr);
4593 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
4594 filled with zeros (VEC_ZERO). */
4596 /* Create a vector of 0s. */
4597 tree zero = build_zero_cst (cr_index_scalar_type);
4598 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
4600 /* Create a vector phi node. */
4601 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
4602 new_phi = create_phi_node (new_phi_tree, loop->header);
4603 set_vinfo_for_stmt (new_phi,
4604 new_stmt_vec_info (new_phi, loop_vinfo));
4605 add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
4606 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4608 /* Now take the condition from the loops original cond_expr
4609 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
4610 every match uses values from the induction variable
4611 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
4612 (NEW_PHI_TREE).
4613 Finally, we update the phi (NEW_PHI_TREE) to take the value of
4614 the new cond_expr (INDEX_COND_EXPR). */
4616 /* Duplicate the condition from vec_stmt. */
4617 tree ccompare = unshare_expr (gimple_assign_rhs1 (vec_stmt));
4619 /* Create a conditional, where the condition is taken from vec_stmt
4620 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
4621 else is the phi (NEW_PHI_TREE). */
4622 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
4623 ccompare, indx_before_incr,
4624 new_phi_tree);
4625 induction_index = make_ssa_name (cr_index_vector_type);
4626 gimple *index_condition = gimple_build_assign (induction_index,
4627 index_cond_expr);
4628 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
4629 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
4630 loop_vinfo);
4631 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
4632 set_vinfo_for_stmt (index_condition, index_vec_info);
4634 /* Update the phi with the vec cond. */
4635 add_phi_arg (as_a <gphi *> (new_phi), induction_index,
4636 loop_latch_edge (loop), UNKNOWN_LOCATION);
4639 /* 2. Create epilog code.
4640 The reduction epilog code operates across the elements of the vector
4641 of partial results computed by the vectorized loop.
4642 The reduction epilog code consists of:
4644 step 1: compute the scalar result in a vector (v_out2)
4645 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4646 step 3: adjust the scalar result (s_out3) if needed.
4648 Step 1 can be accomplished using one the following three schemes:
4649 (scheme 1) using reduc_code, if available.
4650 (scheme 2) using whole-vector shifts, if available.
4651 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4652 combined.
4654 The overall epilog code looks like this:
4656 s_out0 = phi <s_loop> # original EXIT_PHI
4657 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4658 v_out2 = reduce <v_out1> # step 1
4659 s_out3 = extract_field <v_out2, 0> # step 2
4660 s_out4 = adjust_result <s_out3> # step 3
4662 (step 3 is optional, and steps 1 and 2 may be combined).
4663 Lastly, the uses of s_out0 are replaced by s_out4. */
4666 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4667 v_out1 = phi <VECT_DEF>
4668 Store them in NEW_PHIS. */
4670 exit_bb = single_exit (loop)->dest;
4671 prev_phi_info = NULL;
4672 new_phis.create (vect_defs.length ());
4673 FOR_EACH_VEC_ELT (vect_defs, i, def)
4675 for (j = 0; j < ncopies; j++)
4677 tree new_def = copy_ssa_name (def);
4678 phi = create_phi_node (new_def, exit_bb);
4679 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4680 if (j == 0)
4681 new_phis.quick_push (phi);
4682 else
4684 def = vect_get_vec_def_for_stmt_copy (dt, def);
4685 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4688 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4689 prev_phi_info = vinfo_for_stmt (phi);
4693 /* The epilogue is created for the outer-loop, i.e., for the loop being
4694 vectorized. Create exit phis for the outer loop. */
4695 if (double_reduc)
4697 loop = outer_loop;
4698 exit_bb = single_exit (loop)->dest;
4699 inner_phis.create (vect_defs.length ());
4700 FOR_EACH_VEC_ELT (new_phis, i, phi)
4702 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4703 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4704 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4705 PHI_RESULT (phi));
4706 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4707 loop_vinfo));
4708 inner_phis.quick_push (phi);
4709 new_phis[i] = outer_phi;
4710 prev_phi_info = vinfo_for_stmt (outer_phi);
4711 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4713 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4714 new_result = copy_ssa_name (PHI_RESULT (phi));
4715 outer_phi = create_phi_node (new_result, exit_bb);
4716 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4717 PHI_RESULT (phi));
4718 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4719 loop_vinfo));
4720 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4721 prev_phi_info = vinfo_for_stmt (outer_phi);
4726 exit_gsi = gsi_after_labels (exit_bb);
4728 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4729 (i.e. when reduc_code is not available) and in the final adjustment
4730 code (if needed). Also get the original scalar reduction variable as
4731 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4732 represents a reduction pattern), the tree-code and scalar-def are
4733 taken from the original stmt that the pattern-stmt (STMT) replaces.
4734 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4735 are taken from STMT. */
4737 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4738 if (!orig_stmt)
4740 /* Regular reduction */
4741 orig_stmt = stmt;
4743 else
4745 /* Reduction pattern */
4746 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4747 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4748 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4751 code = gimple_assign_rhs_code (orig_stmt);
4752 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4753 partial results are added and not subtracted. */
4754 if (code == MINUS_EXPR)
4755 code = PLUS_EXPR;
4757 scalar_dest = gimple_assign_lhs (orig_stmt);
4758 scalar_type = TREE_TYPE (scalar_dest);
4759 scalar_results.create (group_size);
4760 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4761 bitsize = TYPE_SIZE (scalar_type);
4763 /* In case this is a reduction in an inner-loop while vectorizing an outer
4764 loop - we don't need to extract a single scalar result at the end of the
4765 inner-loop (unless it is double reduction, i.e., the use of reduction is
4766 outside the outer-loop). The final vector of partial results will be used
4767 in the vectorized outer-loop, or reduced to a scalar result at the end of
4768 the outer-loop. */
4769 if (nested_in_vect_loop && !double_reduc)
4770 goto vect_finalize_reduction;
4772 /* SLP reduction without reduction chain, e.g.,
4773 # a1 = phi <a2, a0>
4774 # b1 = phi <b2, b0>
4775 a2 = operation (a1)
4776 b2 = operation (b1) */
4777 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4779 /* In case of reduction chain, e.g.,
4780 # a1 = phi <a3, a0>
4781 a2 = operation (a1)
4782 a3 = operation (a2),
4784 we may end up with more than one vector result. Here we reduce them to
4785 one vector. */
4786 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4788 tree first_vect = PHI_RESULT (new_phis[0]);
4789 tree tmp;
4790 gassign *new_vec_stmt = NULL;
4792 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4793 for (k = 1; k < new_phis.length (); k++)
4795 gimple *next_phi = new_phis[k];
4796 tree second_vect = PHI_RESULT (next_phi);
4798 tmp = build2 (code, vectype, first_vect, second_vect);
4799 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4800 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4801 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4802 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4805 new_phi_result = first_vect;
4806 if (new_vec_stmt)
4808 new_phis.truncate (0);
4809 new_phis.safe_push (new_vec_stmt);
4812 else
4813 new_phi_result = PHI_RESULT (new_phis[0]);
4815 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4816 && reduc_code != ERROR_MARK)
4818 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4819 various data values where the condition matched and another vector
4820 (INDUCTION_INDEX) containing all the indexes of those matches. We
4821 need to extract the last matching index (which will be the index with
4822 highest value) and use this to index into the data vector.
4823 For the case where there were no matches, the data vector will contain
4824 all default values and the index vector will be all zeros. */
4826 /* Get various versions of the type of the vector of indexes. */
4827 tree index_vec_type = TREE_TYPE (induction_index);
4828 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4829 tree index_scalar_type = TREE_TYPE (index_vec_type);
4830 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4831 (index_vec_type);
4833 /* Get an unsigned integer version of the type of the data vector. */
4834 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
4835 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4836 tree vectype_unsigned = build_vector_type
4837 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4839 /* First we need to create a vector (ZERO_VEC) of zeros and another
4840 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4841 can create using a MAX reduction and then expanding.
4842 In the case where the loop never made any matches, the max index will
4843 be zero. */
4845 /* Vector of {0, 0, 0,...}. */
4846 tree zero_vec = make_ssa_name (vectype);
4847 tree zero_vec_rhs = build_zero_cst (vectype);
4848 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4849 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4851 /* Find maximum value from the vector of found indexes. */
4852 tree max_index = make_ssa_name (index_scalar_type);
4853 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4854 induction_index);
4855 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4857 /* Vector of {max_index, max_index, max_index,...}. */
4858 tree max_index_vec = make_ssa_name (index_vec_type);
4859 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4860 max_index);
4861 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4862 max_index_vec_rhs);
4863 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4865 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4866 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4867 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4868 otherwise. Only one value should match, resulting in a vector
4869 (VEC_COND) with one data value and the rest zeros.
4870 In the case where the loop never made any matches, every index will
4871 match, resulting in a vector with all data values (which will all be
4872 the default value). */
4874 /* Compare the max index vector to the vector of found indexes to find
4875 the position of the max value. */
4876 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4877 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4878 induction_index,
4879 max_index_vec);
4880 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4882 /* Use the compare to choose either values from the data vector or
4883 zero. */
4884 tree vec_cond = make_ssa_name (vectype);
4885 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4886 vec_compare, new_phi_result,
4887 zero_vec);
4888 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4890 /* Finally we need to extract the data value from the vector (VEC_COND)
4891 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4892 reduction, but because this doesn't exist, we can use a MAX reduction
4893 instead. The data value might be signed or a float so we need to cast
4894 it first.
4895 In the case where the loop never made any matches, the data values are
4896 all identical, and so will reduce down correctly. */
4898 /* Make the matched data values unsigned. */
4899 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4900 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4901 vec_cond);
4902 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4903 VIEW_CONVERT_EXPR,
4904 vec_cond_cast_rhs);
4905 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4907 /* Reduce down to a scalar value. */
4908 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4909 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4910 optab_default);
4911 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4912 != CODE_FOR_nothing);
4913 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4914 REDUC_MAX_EXPR,
4915 vec_cond_cast);
4916 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4918 /* Convert the reduced value back to the result type and set as the
4919 result. */
4920 gimple_seq stmts = NULL;
4921 new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
4922 data_reduc);
4923 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4924 scalar_results.safe_push (new_temp);
4926 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4927 && reduc_code == ERROR_MARK)
4929 /* Condition redution without supported REDUC_MAX_EXPR. Generate
4930 idx = 0;
4931 idx_val = induction_index[0];
4932 val = data_reduc[0];
4933 for (idx = 0, val = init, i = 0; i < nelts; ++i)
4934 if (induction_index[i] > idx_val)
4935 val = data_reduc[i], idx_val = induction_index[i];
4936 return val; */
4938 tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
4939 tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
4940 unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
4941 unsigned HOST_WIDE_INT v_size
4942 = el_size * TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
4943 tree idx_val = NULL_TREE, val = NULL_TREE;
4944 for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
4946 tree old_idx_val = idx_val;
4947 tree old_val = val;
4948 idx_val = make_ssa_name (idx_eltype);
4949 epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
4950 build3 (BIT_FIELD_REF, idx_eltype,
4951 induction_index,
4952 bitsize_int (el_size),
4953 bitsize_int (off)));
4954 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4955 val = make_ssa_name (data_eltype);
4956 epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
4957 build3 (BIT_FIELD_REF,
4958 data_eltype,
4959 new_phi_result,
4960 bitsize_int (el_size),
4961 bitsize_int (off)));
4962 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4963 if (off != 0)
4965 tree new_idx_val = idx_val;
4966 tree new_val = val;
4967 if (off != v_size - el_size)
4969 new_idx_val = make_ssa_name (idx_eltype);
4970 epilog_stmt = gimple_build_assign (new_idx_val,
4971 MAX_EXPR, idx_val,
4972 old_idx_val);
4973 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4975 new_val = make_ssa_name (data_eltype);
4976 epilog_stmt = gimple_build_assign (new_val,
4977 COND_EXPR,
4978 build2 (GT_EXPR,
4979 boolean_type_node,
4980 idx_val,
4981 old_idx_val),
4982 val, old_val);
4983 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4984 idx_val = new_idx_val;
4985 val = new_val;
4988 /* Convert the reduced value back to the result type and set as the
4989 result. */
4990 gimple_seq stmts = NULL;
4991 val = gimple_convert (&stmts, scalar_type, val);
4992 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4993 scalar_results.safe_push (val);
4996 /* 2.3 Create the reduction code, using one of the three schemes described
4997 above. In SLP we simply need to extract all the elements from the
4998 vector (without reducing them), so we use scalar shifts. */
4999 else if (reduc_code != ERROR_MARK && !slp_reduc)
5001 tree tmp;
5002 tree vec_elem_type;
5004 /* Case 1: Create:
5005 v_out2 = reduc_expr <v_out1> */
5007 if (dump_enabled_p ())
5008 dump_printf_loc (MSG_NOTE, vect_location,
5009 "Reduce using direct vector reduction.\n");
5011 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
5012 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
5014 tree tmp_dest =
5015 vect_create_destination_var (scalar_dest, vec_elem_type);
5016 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
5017 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
5018 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
5019 gimple_assign_set_lhs (epilog_stmt, new_temp);
5020 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5022 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
5024 else
5025 tmp = build1 (reduc_code, scalar_type, new_phi_result);
5027 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
5028 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5029 gimple_assign_set_lhs (epilog_stmt, new_temp);
5030 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5032 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5033 == INTEGER_INDUC_COND_REDUCTION)
5035 /* Earlier we set the initial value to be zero. Check the result
5036 and if it is zero then replace with the original initial
5037 value. */
5038 tree zero = build_zero_cst (scalar_type);
5039 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
5041 tmp = make_ssa_name (new_scalar_dest);
5042 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5043 initial_def, new_temp);
5044 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5045 new_temp = tmp;
5048 scalar_results.safe_push (new_temp);
5050 else
5052 bool reduce_with_shift = have_whole_vector_shift (mode);
5053 int element_bitsize = tree_to_uhwi (bitsize);
5054 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5055 tree vec_temp;
5057 /* COND reductions all do the final reduction with MAX_EXPR. */
5058 if (code == COND_EXPR)
5059 code = MAX_EXPR;
5061 /* Regardless of whether we have a whole vector shift, if we're
5062 emulating the operation via tree-vect-generic, we don't want
5063 to use it. Only the first round of the reduction is likely
5064 to still be profitable via emulation. */
5065 /* ??? It might be better to emit a reduction tree code here, so that
5066 tree-vect-generic can expand the first round via bit tricks. */
5067 if (!VECTOR_MODE_P (mode))
5068 reduce_with_shift = false;
5069 else
5071 optab optab = optab_for_tree_code (code, vectype, optab_default);
5072 if (optab_handler (optab, mode) == CODE_FOR_nothing)
5073 reduce_with_shift = false;
5076 if (reduce_with_shift && !slp_reduc)
5078 int nelements = vec_size_in_bits / element_bitsize;
5079 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
5081 int elt_offset;
5083 tree zero_vec = build_zero_cst (vectype);
5084 /* Case 2: Create:
5085 for (offset = nelements/2; offset >= 1; offset/=2)
5087 Create: va' = vec_shift <va, offset>
5088 Create: va = vop <va, va'>
5089 } */
5091 tree rhs;
5093 if (dump_enabled_p ())
5094 dump_printf_loc (MSG_NOTE, vect_location,
5095 "Reduce using vector shifts\n");
5097 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5098 new_temp = new_phi_result;
5099 for (elt_offset = nelements / 2;
5100 elt_offset >= 1;
5101 elt_offset /= 2)
5103 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
5104 tree mask = vect_gen_perm_mask_any (vectype, sel);
5105 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
5106 new_temp, zero_vec, mask);
5107 new_name = make_ssa_name (vec_dest, epilog_stmt);
5108 gimple_assign_set_lhs (epilog_stmt, new_name);
5109 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5111 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
5112 new_temp);
5113 new_temp = make_ssa_name (vec_dest, epilog_stmt);
5114 gimple_assign_set_lhs (epilog_stmt, new_temp);
5115 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5118 /* 2.4 Extract the final scalar result. Create:
5119 s_out3 = extract_field <v_out2, bitpos> */
5121 if (dump_enabled_p ())
5122 dump_printf_loc (MSG_NOTE, vect_location,
5123 "extract scalar result\n");
5125 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
5126 bitsize, bitsize_zero_node);
5127 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5128 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5129 gimple_assign_set_lhs (epilog_stmt, new_temp);
5130 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5131 scalar_results.safe_push (new_temp);
5133 else
5135 /* Case 3: Create:
5136 s = extract_field <v_out2, 0>
5137 for (offset = element_size;
5138 offset < vector_size;
5139 offset += element_size;)
5141 Create: s' = extract_field <v_out2, offset>
5142 Create: s = op <s, s'> // For non SLP cases
5143 } */
5145 if (dump_enabled_p ())
5146 dump_printf_loc (MSG_NOTE, vect_location,
5147 "Reduce using scalar code.\n");
5149 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5150 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
5152 int bit_offset;
5153 if (gimple_code (new_phi) == GIMPLE_PHI)
5154 vec_temp = PHI_RESULT (new_phi);
5155 else
5156 vec_temp = gimple_assign_lhs (new_phi);
5157 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
5158 bitsize_zero_node);
5159 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5160 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5161 gimple_assign_set_lhs (epilog_stmt, new_temp);
5162 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5164 /* In SLP we don't need to apply reduction operation, so we just
5165 collect s' values in SCALAR_RESULTS. */
5166 if (slp_reduc)
5167 scalar_results.safe_push (new_temp);
5169 for (bit_offset = element_bitsize;
5170 bit_offset < vec_size_in_bits;
5171 bit_offset += element_bitsize)
5173 tree bitpos = bitsize_int (bit_offset);
5174 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
5175 bitsize, bitpos);
5177 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5178 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
5179 gimple_assign_set_lhs (epilog_stmt, new_name);
5180 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5182 if (slp_reduc)
5184 /* In SLP we don't need to apply reduction operation, so
5185 we just collect s' values in SCALAR_RESULTS. */
5186 new_temp = new_name;
5187 scalar_results.safe_push (new_name);
5189 else
5191 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
5192 new_name, new_temp);
5193 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5194 gimple_assign_set_lhs (epilog_stmt, new_temp);
5195 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5200 /* The only case where we need to reduce scalar results in SLP, is
5201 unrolling. If the size of SCALAR_RESULTS is greater than
5202 GROUP_SIZE, we reduce them combining elements modulo
5203 GROUP_SIZE. */
5204 if (slp_reduc)
5206 tree res, first_res, new_res;
5207 gimple *new_stmt;
5209 /* Reduce multiple scalar results in case of SLP unrolling. */
5210 for (j = group_size; scalar_results.iterate (j, &res);
5211 j++)
5213 first_res = scalar_results[j % group_size];
5214 new_stmt = gimple_build_assign (new_scalar_dest, code,
5215 first_res, res);
5216 new_res = make_ssa_name (new_scalar_dest, new_stmt);
5217 gimple_assign_set_lhs (new_stmt, new_res);
5218 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
5219 scalar_results[j % group_size] = new_res;
5222 else
5223 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
5224 scalar_results.safe_push (new_temp);
5227 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5228 == INTEGER_INDUC_COND_REDUCTION)
5230 /* Earlier we set the initial value to be zero. Check the result
5231 and if it is zero then replace with the original initial
5232 value. */
5233 tree zero = build_zero_cst (scalar_type);
5234 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
5236 tree tmp = make_ssa_name (new_scalar_dest);
5237 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5238 initial_def, new_temp);
5239 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5240 scalar_results[0] = tmp;
5244 vect_finalize_reduction:
5246 if (double_reduc)
5247 loop = loop->inner;
5249 /* 2.5 Adjust the final result by the initial value of the reduction
5250 variable. (When such adjustment is not needed, then
5251 'adjustment_def' is zero). For example, if code is PLUS we create:
5252 new_temp = loop_exit_def + adjustment_def */
5254 if (adjustment_def)
5256 gcc_assert (!slp_reduc);
5257 if (nested_in_vect_loop)
5259 new_phi = new_phis[0];
5260 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
5261 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
5262 new_dest = vect_create_destination_var (scalar_dest, vectype);
5264 else
5266 new_temp = scalar_results[0];
5267 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
5268 expr = build2 (code, scalar_type, new_temp, adjustment_def);
5269 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
5272 epilog_stmt = gimple_build_assign (new_dest, expr);
5273 new_temp = make_ssa_name (new_dest, epilog_stmt);
5274 gimple_assign_set_lhs (epilog_stmt, new_temp);
5275 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5276 if (nested_in_vect_loop)
5278 set_vinfo_for_stmt (epilog_stmt,
5279 new_stmt_vec_info (epilog_stmt, loop_vinfo));
5280 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
5281 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
5283 if (!double_reduc)
5284 scalar_results.quick_push (new_temp);
5285 else
5286 scalar_results[0] = new_temp;
5288 else
5289 scalar_results[0] = new_temp;
5291 new_phis[0] = epilog_stmt;
5294 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
5295 phis with new adjusted scalar results, i.e., replace use <s_out0>
5296 with use <s_out4>.
5298 Transform:
5299 loop_exit:
5300 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5301 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5302 v_out2 = reduce <v_out1>
5303 s_out3 = extract_field <v_out2, 0>
5304 s_out4 = adjust_result <s_out3>
5305 use <s_out0>
5306 use <s_out0>
5308 into:
5310 loop_exit:
5311 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5312 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5313 v_out2 = reduce <v_out1>
5314 s_out3 = extract_field <v_out2, 0>
5315 s_out4 = adjust_result <s_out3>
5316 use <s_out4>
5317 use <s_out4> */
5320 /* In SLP reduction chain we reduce vector results into one vector if
5321 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
5322 the last stmt in the reduction chain, since we are looking for the loop
5323 exit phi node. */
5324 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5326 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5327 /* Handle reduction patterns. */
5328 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5329 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5331 scalar_dest = gimple_assign_lhs (dest_stmt);
5332 group_size = 1;
5335 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5336 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
5337 need to match SCALAR_RESULTS with corresponding statements. The first
5338 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
5339 the first vector stmt, etc.
5340 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
5341 if (group_size > new_phis.length ())
5343 ratio = group_size / new_phis.length ();
5344 gcc_assert (!(group_size % new_phis.length ()));
5346 else
5347 ratio = 1;
5349 for (k = 0; k < group_size; k++)
5351 if (k % ratio == 0)
5353 epilog_stmt = new_phis[k / ratio];
5354 reduction_phi = reduction_phis[k / ratio];
5355 if (double_reduc)
5356 inner_phi = inner_phis[k / ratio];
5359 if (slp_reduc)
5361 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5363 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5364 /* SLP statements can't participate in patterns. */
5365 gcc_assert (!orig_stmt);
5366 scalar_dest = gimple_assign_lhs (current_stmt);
5369 phis.create (3);
5370 /* Find the loop-closed-use at the loop exit of the original scalar
5371 result. (The reduction result is expected to have two immediate uses -
5372 one at the latch block, and one at the loop exit). */
5373 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5374 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5375 && !is_gimple_debug (USE_STMT (use_p)))
5376 phis.safe_push (USE_STMT (use_p));
5378 /* While we expect to have found an exit_phi because of loop-closed-ssa
5379 form we can end up without one if the scalar cycle is dead. */
5381 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5383 if (outer_loop)
5385 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5386 gphi *vect_phi;
5388 /* FORNOW. Currently not supporting the case that an inner-loop
5389 reduction is not used in the outer-loop (but only outside the
5390 outer-loop), unless it is double reduction. */
5391 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5392 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5393 || double_reduc);
5395 if (double_reduc)
5396 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5397 else
5398 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5399 if (!double_reduc
5400 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5401 != vect_double_reduction_def)
5402 continue;
5404 /* Handle double reduction:
5406 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5407 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5408 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5409 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5411 At that point the regular reduction (stmt2 and stmt3) is
5412 already vectorized, as well as the exit phi node, stmt4.
5413 Here we vectorize the phi node of double reduction, stmt1, and
5414 update all relevant statements. */
5416 /* Go through all the uses of s2 to find double reduction phi
5417 node, i.e., stmt1 above. */
5418 orig_name = PHI_RESULT (exit_phi);
5419 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5421 stmt_vec_info use_stmt_vinfo;
5422 stmt_vec_info new_phi_vinfo;
5423 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
5424 basic_block bb = gimple_bb (use_stmt);
5425 gimple *use;
5427 /* Check that USE_STMT is really double reduction phi
5428 node. */
5429 if (gimple_code (use_stmt) != GIMPLE_PHI
5430 || gimple_phi_num_args (use_stmt) != 2
5431 || bb->loop_father != outer_loop)
5432 continue;
5433 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5434 if (!use_stmt_vinfo
5435 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5436 != vect_double_reduction_def)
5437 continue;
5439 /* Create vector phi node for double reduction:
5440 vs1 = phi <vs0, vs2>
5441 vs1 was created previously in this function by a call to
5442 vect_get_vec_def_for_operand and is stored in
5443 vec_initial_def;
5444 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5445 vs0 is created here. */
5447 /* Create vector phi node. */
5448 vect_phi = create_phi_node (vec_initial_def, bb);
5449 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5450 loop_vec_info_for_loop (outer_loop));
5451 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5453 /* Create vs0 - initial def of the double reduction phi. */
5454 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5455 loop_preheader_edge (outer_loop));
5456 init_def = get_initial_def_for_reduction (stmt,
5457 preheader_arg, NULL);
5458 vect_phi_init = vect_init_vector (use_stmt, init_def,
5459 vectype, NULL);
5461 /* Update phi node arguments with vs0 and vs2. */
5462 add_phi_arg (vect_phi, vect_phi_init,
5463 loop_preheader_edge (outer_loop),
5464 UNKNOWN_LOCATION);
5465 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5466 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5467 if (dump_enabled_p ())
5469 dump_printf_loc (MSG_NOTE, vect_location,
5470 "created double reduction phi node: ");
5471 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5474 vect_phi_res = PHI_RESULT (vect_phi);
5476 /* Replace the use, i.e., set the correct vs1 in the regular
5477 reduction phi node. FORNOW, NCOPIES is always 1, so the
5478 loop is redundant. */
5479 use = reduction_phi;
5480 for (j = 0; j < ncopies; j++)
5482 edge pr_edge = loop_preheader_edge (loop);
5483 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5484 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5490 phis.release ();
5491 if (nested_in_vect_loop)
5493 if (double_reduc)
5494 loop = outer_loop;
5495 else
5496 continue;
5499 phis.create (3);
5500 /* Find the loop-closed-use at the loop exit of the original scalar
5501 result. (The reduction result is expected to have two immediate uses,
5502 one at the latch block, and one at the loop exit). For double
5503 reductions we are looking for exit phis of the outer loop. */
5504 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5506 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5508 if (!is_gimple_debug (USE_STMT (use_p)))
5509 phis.safe_push (USE_STMT (use_p));
5511 else
5513 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5515 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5517 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5519 if (!flow_bb_inside_loop_p (loop,
5520 gimple_bb (USE_STMT (phi_use_p)))
5521 && !is_gimple_debug (USE_STMT (phi_use_p)))
5522 phis.safe_push (USE_STMT (phi_use_p));
5528 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5530 /* Replace the uses: */
5531 orig_name = PHI_RESULT (exit_phi);
5532 scalar_result = scalar_results[k];
5533 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5534 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5535 SET_USE (use_p, scalar_result);
5538 phis.release ();
5543 /* Function is_nonwrapping_integer_induction.
5545 Check if STMT (which is part of loop LOOP) both increments and
5546 does not cause overflow. */
5548 static bool
5549 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5551 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5552 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5553 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5554 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5555 widest_int ni, max_loop_value, lhs_max;
5556 bool overflow = false;
5558 /* Make sure the loop is integer based. */
5559 if (TREE_CODE (base) != INTEGER_CST
5560 || TREE_CODE (step) != INTEGER_CST)
5561 return false;
5563 /* Check that the induction increments. */
5564 if (tree_int_cst_sgn (step) == -1)
5565 return false;
5567 /* Check that the max size of the loop will not wrap. */
5569 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5570 return true;
5572 if (! max_stmt_executions (loop, &ni))
5573 return false;
5575 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5576 &overflow);
5577 if (overflow)
5578 return false;
5580 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5581 TYPE_SIGN (lhs_type), &overflow);
5582 if (overflow)
5583 return false;
5585 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5586 <= TYPE_PRECISION (lhs_type));
5589 /* Function vectorizable_reduction.
5591 Check if STMT performs a reduction operation that can be vectorized.
5592 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5593 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5594 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5596 This function also handles reduction idioms (patterns) that have been
5597 recognized in advance during vect_pattern_recog. In this case, STMT may be
5598 of this form:
5599 X = pattern_expr (arg0, arg1, ..., X)
5600 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5601 sequence that had been detected and replaced by the pattern-stmt (STMT).
5603 This function also handles reduction of condition expressions, for example:
5604 for (int i = 0; i < N; i++)
5605 if (a[i] < value)
5606 last = a[i];
5607 This is handled by vectorising the loop and creating an additional vector
5608 containing the loop indexes for which "a[i] < value" was true. In the
5609 function epilogue this is reduced to a single max value and then used to
5610 index into the vector of results.
5612 In some cases of reduction patterns, the type of the reduction variable X is
5613 different than the type of the other arguments of STMT.
5614 In such cases, the vectype that is used when transforming STMT into a vector
5615 stmt is different than the vectype that is used to determine the
5616 vectorization factor, because it consists of a different number of elements
5617 than the actual number of elements that are being operated upon in parallel.
5619 For example, consider an accumulation of shorts into an int accumulator.
5620 On some targets it's possible to vectorize this pattern operating on 8
5621 shorts at a time (hence, the vectype for purposes of determining the
5622 vectorization factor should be V8HI); on the other hand, the vectype that
5623 is used to create the vector form is actually V4SI (the type of the result).
5625 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5626 indicates what is the actual level of parallelism (V8HI in the example), so
5627 that the right vectorization factor would be derived. This vectype
5628 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5629 be used to create the vectorized stmt. The right vectype for the vectorized
5630 stmt is obtained from the type of the result X:
5631 get_vectype_for_scalar_type (TREE_TYPE (X))
5633 This means that, contrary to "regular" reductions (or "regular" stmts in
5634 general), the following equation:
5635 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5636 does *NOT* necessarily hold for reduction patterns. */
5638 bool
5639 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5640 gimple **vec_stmt, slp_tree slp_node,
5641 slp_instance slp_node_instance)
5643 tree vec_dest;
5644 tree scalar_dest;
5645 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5646 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5647 tree vectype_in = NULL_TREE;
5648 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5649 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5650 enum tree_code code, orig_code, epilog_reduc_code;
5651 machine_mode vec_mode;
5652 int op_type;
5653 optab optab, reduc_optab;
5654 tree new_temp = NULL_TREE;
5655 gimple *def_stmt;
5656 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
5657 tree scalar_type;
5658 bool is_simple_use;
5659 gimple *orig_stmt;
5660 stmt_vec_info orig_stmt_info = NULL;
5661 int i;
5662 int ncopies;
5663 int epilog_copies;
5664 stmt_vec_info prev_stmt_info, prev_phi_info;
5665 bool single_defuse_cycle = false;
5666 gimple *new_stmt = NULL;
5667 int j;
5668 tree ops[3];
5669 enum vect_def_type dts[3];
5670 bool nested_cycle = false, found_nested_cycle_def = false;
5671 bool double_reduc = false;
5672 basic_block def_bb;
5673 struct loop * def_stmt_loop, *outer_loop = NULL;
5674 tree def_arg;
5675 gimple *def_arg_stmt;
5676 auto_vec<tree> vec_oprnds0;
5677 auto_vec<tree> vec_oprnds1;
5678 auto_vec<tree> vec_oprnds2;
5679 auto_vec<tree> vect_defs;
5680 auto_vec<gimple *> phis;
5681 int vec_num;
5682 tree def0, tem;
5683 bool first_p = true;
5684 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5685 tree cond_reduc_val = NULL_TREE;
5687 /* Make sure it was already recognized as a reduction computation. */
5688 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5689 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5690 return false;
5692 if (nested_in_vect_loop_p (loop, stmt))
5694 outer_loop = loop;
5695 loop = loop->inner;
5696 nested_cycle = true;
5699 /* In case of reduction chain we switch to the first stmt in the chain, but
5700 we don't update STMT_INFO, since only the last stmt is marked as reduction
5701 and has reduction properties. */
5702 if (GROUP_FIRST_ELEMENT (stmt_info)
5703 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5705 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5706 first_p = false;
5709 if (gimple_code (stmt) == GIMPLE_PHI)
5711 /* Analysis is fully done on the reduction stmt invocation. */
5712 if (! vec_stmt)
5714 if (slp_node)
5715 slp_node_instance->reduc_phis = slp_node;
5717 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5718 return true;
5721 gimple *reduc_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5722 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (reduc_stmt)))
5723 reduc_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (reduc_stmt));
5725 gcc_assert (is_gimple_assign (reduc_stmt));
5726 for (unsigned k = 1; k < gimple_num_ops (reduc_stmt); ++k)
5728 tree op = gimple_op (reduc_stmt, k);
5729 if (op == gimple_phi_result (stmt))
5730 continue;
5731 if (k == 1
5732 && gimple_assign_rhs_code (reduc_stmt) == COND_EXPR)
5733 continue;
5734 tem = get_vectype_for_scalar_type (TREE_TYPE (op));
5735 if (! vectype_in
5736 || TYPE_VECTOR_SUBPARTS (tem) < TYPE_VECTOR_SUBPARTS (vectype_in))
5737 vectype_in = tem;
5738 break;
5740 gcc_assert (vectype_in);
5742 if (slp_node)
5743 ncopies = 1;
5744 else
5745 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5746 / TYPE_VECTOR_SUBPARTS (vectype_in));
5748 use_operand_p use_p;
5749 gimple *use_stmt;
5750 if (ncopies > 1
5751 && (STMT_VINFO_RELEVANT (vinfo_for_stmt (reduc_stmt))
5752 <= vect_used_only_live)
5753 && single_imm_use (gimple_phi_result (stmt), &use_p, &use_stmt)
5754 && (use_stmt == reduc_stmt
5755 || (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt))
5756 == reduc_stmt)))
5757 single_defuse_cycle = true;
5759 /* Create the destination vector */
5760 scalar_dest = gimple_assign_lhs (reduc_stmt);
5761 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5763 if (slp_node)
5764 /* The size vect_schedule_slp_instance computes is off for us. */
5765 vec_num = ((LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5766 * SLP_TREE_SCALAR_STMTS (slp_node).length ())
5767 / TYPE_VECTOR_SUBPARTS (vectype_in));
5768 else
5769 vec_num = 1;
5771 /* Generate the reduction PHIs upfront. */
5772 prev_phi_info = NULL;
5773 for (j = 0; j < ncopies; j++)
5775 if (j == 0 || !single_defuse_cycle)
5777 for (i = 0; i < vec_num; i++)
5779 /* Create the reduction-phi that defines the reduction
5780 operand. */
5781 gimple *new_phi = create_phi_node (vec_dest, loop->header);
5782 set_vinfo_for_stmt (new_phi,
5783 new_stmt_vec_info (new_phi, loop_vinfo));
5785 if (slp_node)
5786 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
5787 else
5789 if (j == 0)
5790 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_phi;
5791 else
5792 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5793 prev_phi_info = vinfo_for_stmt (new_phi);
5799 return true;
5802 /* 1. Is vectorizable reduction? */
5803 /* Not supportable if the reduction variable is used in the loop, unless
5804 it's a reduction chain. */
5805 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5806 && !GROUP_FIRST_ELEMENT (stmt_info))
5807 return false;
5809 /* Reductions that are not used even in an enclosing outer-loop,
5810 are expected to be "live" (used out of the loop). */
5811 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5812 && !STMT_VINFO_LIVE_P (stmt_info))
5813 return false;
5815 /* 2. Has this been recognized as a reduction pattern?
5817 Check if STMT represents a pattern that has been recognized
5818 in earlier analysis stages. For stmts that represent a pattern,
5819 the STMT_VINFO_RELATED_STMT field records the last stmt in
5820 the original sequence that constitutes the pattern. */
5822 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5823 if (orig_stmt)
5825 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5826 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5827 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5830 /* 3. Check the operands of the operation. The first operands are defined
5831 inside the loop body. The last operand is the reduction variable,
5832 which is defined by the loop-header-phi. */
5834 gcc_assert (is_gimple_assign (stmt));
5836 /* Flatten RHS. */
5837 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5839 case GIMPLE_BINARY_RHS:
5840 code = gimple_assign_rhs_code (stmt);
5841 op_type = TREE_CODE_LENGTH (code);
5842 gcc_assert (op_type == binary_op);
5843 ops[0] = gimple_assign_rhs1 (stmt);
5844 ops[1] = gimple_assign_rhs2 (stmt);
5845 break;
5847 case GIMPLE_TERNARY_RHS:
5848 code = gimple_assign_rhs_code (stmt);
5849 op_type = TREE_CODE_LENGTH (code);
5850 gcc_assert (op_type == ternary_op);
5851 ops[0] = gimple_assign_rhs1 (stmt);
5852 ops[1] = gimple_assign_rhs2 (stmt);
5853 ops[2] = gimple_assign_rhs3 (stmt);
5854 break;
5856 case GIMPLE_UNARY_RHS:
5857 return false;
5859 default:
5860 gcc_unreachable ();
5863 if (code == COND_EXPR && slp_node)
5864 return false;
5866 scalar_dest = gimple_assign_lhs (stmt);
5867 scalar_type = TREE_TYPE (scalar_dest);
5868 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5869 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5870 return false;
5872 /* Do not try to vectorize bit-precision reductions. */
5873 if ((TYPE_PRECISION (scalar_type)
5874 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
5875 return false;
5877 /* All uses but the last are expected to be defined in the loop.
5878 The last use is the reduction variable. In case of nested cycle this
5879 assumption is not true: we use reduc_index to record the index of the
5880 reduction variable. */
5881 gimple *reduc_def_stmt = NULL;
5882 int reduc_index = -1;
5883 for (i = 0; i < op_type; i++)
5885 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5886 if (i == 0 && code == COND_EXPR)
5887 continue;
5889 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5890 &def_stmt, &dts[i], &tem);
5891 dt = dts[i];
5892 gcc_assert (is_simple_use);
5893 if (dt == vect_reduction_def)
5895 reduc_def_stmt = def_stmt;
5896 reduc_index = i;
5897 continue;
5899 else
5901 if (!vectype_in)
5902 vectype_in = tem;
5905 if (dt != vect_internal_def
5906 && dt != vect_external_def
5907 && dt != vect_constant_def
5908 && dt != vect_induction_def
5909 && !(dt == vect_nested_cycle && nested_cycle))
5910 return false;
5912 if (dt == vect_nested_cycle)
5914 found_nested_cycle_def = true;
5915 reduc_def_stmt = def_stmt;
5916 reduc_index = i;
5919 if (i == 1 && code == COND_EXPR)
5921 /* Record how value of COND_EXPR is defined. */
5922 if (dt == vect_constant_def)
5924 cond_reduc_dt = dt;
5925 cond_reduc_val = ops[i];
5927 if (dt == vect_induction_def && def_stmt != NULL
5928 && is_nonwrapping_integer_induction (def_stmt, loop))
5929 cond_reduc_dt = dt;
5933 if (!vectype_in)
5934 vectype_in = vectype_out;
5936 /* When vectorizing a reduction chain w/o SLP the reduction PHI is not
5937 directy used in stmt. */
5938 if (reduc_index == -1)
5940 if (orig_stmt)
5941 reduc_def_stmt = STMT_VINFO_REDUC_DEF (orig_stmt_info);
5942 else
5943 reduc_def_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5946 if (! reduc_def_stmt || gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5947 return false;
5949 if (!(reduc_index == -1
5950 || dts[reduc_index] == vect_reduction_def
5951 || dts[reduc_index] == vect_nested_cycle
5952 || ((dts[reduc_index] == vect_internal_def
5953 || dts[reduc_index] == vect_external_def
5954 || dts[reduc_index] == vect_constant_def
5955 || dts[reduc_index] == vect_induction_def)
5956 && nested_cycle && found_nested_cycle_def)))
5958 /* For pattern recognized stmts, orig_stmt might be a reduction,
5959 but some helper statements for the pattern might not, or
5960 might be COND_EXPRs with reduction uses in the condition. */
5961 gcc_assert (orig_stmt);
5962 return false;
5965 stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
5966 enum vect_reduction_type v_reduc_type
5967 = STMT_VINFO_REDUC_TYPE (reduc_def_info);
5968 gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
5970 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5971 /* If we have a condition reduction, see if we can simplify it further. */
5972 if (v_reduc_type == COND_REDUCTION)
5974 if (cond_reduc_dt == vect_induction_def)
5976 if (dump_enabled_p ())
5977 dump_printf_loc (MSG_NOTE, vect_location,
5978 "condition expression based on "
5979 "integer induction.\n");
5980 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5981 = INTEGER_INDUC_COND_REDUCTION;
5984 /* Loop peeling modifies initial value of reduction PHI, which
5985 makes the reduction stmt to be transformed different to the
5986 original stmt analyzed. We need to record reduction code for
5987 CONST_COND_REDUCTION type reduction at analyzing stage, thus
5988 it can be used directly at transform stage. */
5989 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
5990 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
5992 /* Also set the reduction type to CONST_COND_REDUCTION. */
5993 gcc_assert (cond_reduc_dt == vect_constant_def);
5994 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
5996 else if (cond_reduc_dt == vect_constant_def)
5998 enum vect_def_type cond_initial_dt;
5999 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
6000 tree cond_initial_val
6001 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
6003 gcc_assert (cond_reduc_val != NULL_TREE);
6004 vect_is_simple_use (cond_initial_val, loop_vinfo,
6005 &def_stmt, &cond_initial_dt);
6006 if (cond_initial_dt == vect_constant_def
6007 && types_compatible_p (TREE_TYPE (cond_initial_val),
6008 TREE_TYPE (cond_reduc_val)))
6010 tree e = fold_binary (LE_EXPR, boolean_type_node,
6011 cond_initial_val, cond_reduc_val);
6012 if (e && (integer_onep (e) || integer_zerop (e)))
6014 if (dump_enabled_p ())
6015 dump_printf_loc (MSG_NOTE, vect_location,
6016 "condition expression based on "
6017 "compile time constant.\n");
6018 /* Record reduction code at analysis stage. */
6019 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
6020 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
6021 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6022 = CONST_COND_REDUCTION;
6028 if (orig_stmt)
6029 gcc_assert (tmp == orig_stmt
6030 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
6031 else
6032 /* We changed STMT to be the first stmt in reduction chain, hence we
6033 check that in this case the first element in the chain is STMT. */
6034 gcc_assert (stmt == tmp
6035 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
6037 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
6038 return false;
6040 if (slp_node)
6041 ncopies = 1;
6042 else
6043 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6044 / TYPE_VECTOR_SUBPARTS (vectype_in));
6046 gcc_assert (ncopies >= 1);
6048 vec_mode = TYPE_MODE (vectype_in);
6050 if (code == COND_EXPR)
6052 /* Only call during the analysis stage, otherwise we'll lose
6053 STMT_VINFO_TYPE. */
6054 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
6055 ops[reduc_index], 0, NULL))
6057 if (dump_enabled_p ())
6058 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6059 "unsupported condition in reduction\n");
6060 return false;
6063 else
6065 /* 4. Supportable by target? */
6067 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
6068 || code == LROTATE_EXPR || code == RROTATE_EXPR)
6070 /* Shifts and rotates are only supported by vectorizable_shifts,
6071 not vectorizable_reduction. */
6072 if (dump_enabled_p ())
6073 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6074 "unsupported shift or rotation.\n");
6075 return false;
6078 /* 4.1. check support for the operation in the loop */
6079 optab = optab_for_tree_code (code, vectype_in, optab_default);
6080 if (!optab)
6082 if (dump_enabled_p ())
6083 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6084 "no optab.\n");
6086 return false;
6089 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
6091 if (dump_enabled_p ())
6092 dump_printf (MSG_NOTE, "op not supported by target.\n");
6094 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
6095 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6096 < vect_min_worthwhile_factor (code))
6097 return false;
6099 if (dump_enabled_p ())
6100 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
6103 /* Worthwhile without SIMD support? */
6104 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
6105 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6106 < vect_min_worthwhile_factor (code))
6108 if (dump_enabled_p ())
6109 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6110 "not worthwhile without SIMD support.\n");
6112 return false;
6116 /* 4.2. Check support for the epilog operation.
6118 If STMT represents a reduction pattern, then the type of the
6119 reduction variable may be different than the type of the rest
6120 of the arguments. For example, consider the case of accumulation
6121 of shorts into an int accumulator; The original code:
6122 S1: int_a = (int) short_a;
6123 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
6125 was replaced with:
6126 STMT: int_acc = widen_sum <short_a, int_acc>
6128 This means that:
6129 1. The tree-code that is used to create the vector operation in the
6130 epilog code (that reduces the partial results) is not the
6131 tree-code of STMT, but is rather the tree-code of the original
6132 stmt from the pattern that STMT is replacing. I.e, in the example
6133 above we want to use 'widen_sum' in the loop, but 'plus' in the
6134 epilog.
6135 2. The type (mode) we use to check available target support
6136 for the vector operation to be created in the *epilog*, is
6137 determined by the type of the reduction variable (in the example
6138 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
6139 However the type (mode) we use to check available target support
6140 for the vector operation to be created *inside the loop*, is
6141 determined by the type of the other arguments to STMT (in the
6142 example we'd check this: optab_handler (widen_sum_optab,
6143 vect_short_mode)).
6145 This is contrary to "regular" reductions, in which the types of all
6146 the arguments are the same as the type of the reduction variable.
6147 For "regular" reductions we can therefore use the same vector type
6148 (and also the same tree-code) when generating the epilog code and
6149 when generating the code inside the loop. */
6151 if (orig_stmt)
6153 /* This is a reduction pattern: get the vectype from the type of the
6154 reduction variable, and get the tree-code from orig_stmt. */
6155 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6156 == TREE_CODE_REDUCTION);
6157 orig_code = gimple_assign_rhs_code (orig_stmt);
6158 gcc_assert (vectype_out);
6159 vec_mode = TYPE_MODE (vectype_out);
6161 else
6163 /* Regular reduction: use the same vectype and tree-code as used for
6164 the vector code inside the loop can be used for the epilog code. */
6165 orig_code = code;
6167 if (code == MINUS_EXPR)
6168 orig_code = PLUS_EXPR;
6170 /* For simple condition reductions, replace with the actual expression
6171 we want to base our reduction around. */
6172 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == CONST_COND_REDUCTION)
6174 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
6175 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
6177 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6178 == INTEGER_INDUC_COND_REDUCTION)
6179 orig_code = MAX_EXPR;
6182 if (nested_cycle)
6184 def_bb = gimple_bb (reduc_def_stmt);
6185 def_stmt_loop = def_bb->loop_father;
6186 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
6187 loop_preheader_edge (def_stmt_loop));
6188 if (TREE_CODE (def_arg) == SSA_NAME
6189 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
6190 && gimple_code (def_arg_stmt) == GIMPLE_PHI
6191 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
6192 && vinfo_for_stmt (def_arg_stmt)
6193 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
6194 == vect_double_reduction_def)
6195 double_reduc = true;
6198 epilog_reduc_code = ERROR_MARK;
6200 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != COND_REDUCTION)
6202 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
6204 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
6205 optab_default);
6206 if (!reduc_optab)
6208 if (dump_enabled_p ())
6209 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6210 "no optab for reduction.\n");
6212 epilog_reduc_code = ERROR_MARK;
6214 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
6216 if (dump_enabled_p ())
6217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6218 "reduc op not supported by target.\n");
6220 epilog_reduc_code = ERROR_MARK;
6223 else
6225 if (!nested_cycle || double_reduc)
6227 if (dump_enabled_p ())
6228 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6229 "no reduc code for scalar code.\n");
6231 return false;
6235 else
6237 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
6238 cr_index_scalar_type = make_unsigned_type (scalar_precision);
6239 cr_index_vector_type = build_vector_type
6240 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
6242 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
6243 optab_default);
6244 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
6245 != CODE_FOR_nothing)
6246 epilog_reduc_code = REDUC_MAX_EXPR;
6249 if ((double_reduc
6250 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != TREE_CODE_REDUCTION)
6251 && ncopies > 1)
6253 if (dump_enabled_p ())
6254 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6255 "multiple types in double reduction or condition "
6256 "reduction.\n");
6257 return false;
6260 /* In case of widenning multiplication by a constant, we update the type
6261 of the constant to be the type of the other operand. We check that the
6262 constant fits the type in the pattern recognition pass. */
6263 if (code == DOT_PROD_EXPR
6264 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
6266 if (TREE_CODE (ops[0]) == INTEGER_CST)
6267 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
6268 else if (TREE_CODE (ops[1]) == INTEGER_CST)
6269 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
6270 else
6272 if (dump_enabled_p ())
6273 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6274 "invalid types in dot-prod\n");
6276 return false;
6280 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6282 widest_int ni;
6284 if (! max_loop_iterations (loop, &ni))
6286 if (dump_enabled_p ())
6287 dump_printf_loc (MSG_NOTE, vect_location,
6288 "loop count not known, cannot create cond "
6289 "reduction.\n");
6290 return false;
6292 /* Convert backedges to iterations. */
6293 ni += 1;
6295 /* The additional index will be the same type as the condition. Check
6296 that the loop can fit into this less one (because we'll use up the
6297 zero slot for when there are no matches). */
6298 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
6299 if (wi::geu_p (ni, wi::to_widest (max_index)))
6301 if (dump_enabled_p ())
6302 dump_printf_loc (MSG_NOTE, vect_location,
6303 "loop size is greater than data size.\n");
6304 return false;
6308 /* In case the vectorization factor (VF) is bigger than the number
6309 of elements that we can fit in a vectype (nunits), we have to generate
6310 more than one vector stmt - i.e - we need to "unroll" the
6311 vector stmt by a factor VF/nunits. For more details see documentation
6312 in vectorizable_operation. */
6314 /* If the reduction is used in an outer loop we need to generate
6315 VF intermediate results, like so (e.g. for ncopies=2):
6316 r0 = phi (init, r0)
6317 r1 = phi (init, r1)
6318 r0 = x0 + r0;
6319 r1 = x1 + r1;
6320 (i.e. we generate VF results in 2 registers).
6321 In this case we have a separate def-use cycle for each copy, and therefore
6322 for each copy we get the vector def for the reduction variable from the
6323 respective phi node created for this copy.
6325 Otherwise (the reduction is unused in the loop nest), we can combine
6326 together intermediate results, like so (e.g. for ncopies=2):
6327 r = phi (init, r)
6328 r = x0 + r;
6329 r = x1 + r;
6330 (i.e. we generate VF/2 results in a single register).
6331 In this case for each copy we get the vector def for the reduction variable
6332 from the vectorized reduction operation generated in the previous iteration.
6334 This only works when we see both the reduction PHI and its only consumer
6335 in vectorizable_reduction and there are no intermediate stmts
6336 participating. */
6337 use_operand_p use_p;
6338 gimple *use_stmt;
6339 if (ncopies > 1
6340 && (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
6341 && single_imm_use (gimple_phi_result (reduc_def_stmt), &use_p, &use_stmt)
6342 && (use_stmt == stmt
6343 || STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) == stmt))
6345 single_defuse_cycle = true;
6346 epilog_copies = 1;
6348 else
6349 epilog_copies = ncopies;
6351 /* If the reduction stmt is one of the patterns that have lane
6352 reduction embedded we cannot handle the case of ! single_defuse_cycle. */
6353 if ((ncopies > 1
6354 && ! single_defuse_cycle)
6355 && (code == DOT_PROD_EXPR
6356 || code == WIDEN_SUM_EXPR
6357 || code == SAD_EXPR))
6359 if (dump_enabled_p ())
6360 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6361 "multi def-use cycle not possible for lane-reducing "
6362 "reduction operation\n");
6363 return false;
6366 if (!vec_stmt) /* transformation not required. */
6368 if (first_p)
6369 vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies);
6370 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
6371 return true;
6374 /* Transform. */
6376 if (dump_enabled_p ())
6377 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
6379 /* FORNOW: Multiple types are not supported for condition. */
6380 if (code == COND_EXPR)
6381 gcc_assert (ncopies == 1);
6383 /* Create the destination vector */
6384 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
6386 prev_stmt_info = NULL;
6387 prev_phi_info = NULL;
6388 if (slp_node)
6389 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6390 else
6392 vec_num = 1;
6393 vec_oprnds0.create (1);
6394 vec_oprnds1.create (1);
6395 if (op_type == ternary_op)
6396 vec_oprnds2.create (1);
6399 phis.create (vec_num);
6400 vect_defs.create (vec_num);
6401 if (!slp_node)
6402 vect_defs.quick_push (NULL_TREE);
6404 if (slp_node)
6405 phis.splice (SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis));
6406 else
6407 phis.quick_push (STMT_VINFO_VEC_STMT (vinfo_for_stmt (reduc_def_stmt)));
6409 for (j = 0; j < ncopies; j++)
6411 if (code == COND_EXPR)
6413 gcc_assert (!slp_node);
6414 vectorizable_condition (stmt, gsi, vec_stmt,
6415 PHI_RESULT (phis[0]),
6416 reduc_index, NULL);
6417 /* Multiple types are not supported for condition. */
6418 break;
6421 /* Handle uses. */
6422 if (j == 0)
6424 if (slp_node)
6426 /* Get vec defs for all the operands except the reduction index,
6427 ensuring the ordering of the ops in the vector is kept. */
6428 auto_vec<tree, 3> slp_ops;
6429 auto_vec<vec<tree>, 3> vec_defs;
6431 slp_ops.quick_push (ops[0]);
6432 slp_ops.quick_push (ops[1]);
6433 if (op_type == ternary_op)
6434 slp_ops.quick_push (ops[2]);
6436 vect_get_slp_defs (slp_ops, slp_node, &vec_defs);
6438 vec_oprnds0.safe_splice (vec_defs[0]);
6439 vec_defs[0].release ();
6440 vec_oprnds1.safe_splice (vec_defs[1]);
6441 vec_defs[1].release ();
6442 if (op_type == ternary_op)
6444 vec_oprnds2.safe_splice (vec_defs[2]);
6445 vec_defs[2].release ();
6448 else
6450 vec_oprnds0.quick_push
6451 (vect_get_vec_def_for_operand (ops[0], stmt));
6452 vec_oprnds1.quick_push
6453 (vect_get_vec_def_for_operand (ops[1], stmt));
6454 if (op_type == ternary_op)
6455 vec_oprnds2.quick_push
6456 (vect_get_vec_def_for_operand (ops[2], stmt));
6459 else
6461 if (!slp_node)
6463 gcc_assert (reduc_index != -1 || ! single_defuse_cycle);
6465 if (single_defuse_cycle && reduc_index == 0)
6466 vec_oprnds0[0] = gimple_assign_lhs (new_stmt);
6467 else
6468 vec_oprnds0[0]
6469 = vect_get_vec_def_for_stmt_copy (dts[0], vec_oprnds0[0]);
6470 if (single_defuse_cycle && reduc_index == 1)
6471 vec_oprnds1[0] = gimple_assign_lhs (new_stmt);
6472 else
6473 vec_oprnds1[0]
6474 = vect_get_vec_def_for_stmt_copy (dts[1], vec_oprnds1[0]);
6475 if (op_type == ternary_op)
6477 if (single_defuse_cycle && reduc_index == 2)
6478 vec_oprnds2[0] = gimple_assign_lhs (new_stmt);
6479 else
6480 vec_oprnds2[0]
6481 = vect_get_vec_def_for_stmt_copy (dts[2], vec_oprnds2[0]);
6486 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
6488 tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
6489 if (op_type == ternary_op)
6490 vop[2] = vec_oprnds2[i];
6492 new_temp = make_ssa_name (vec_dest, new_stmt);
6493 new_stmt = gimple_build_assign (new_temp, code,
6494 vop[0], vop[1], vop[2]);
6495 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6497 if (slp_node)
6499 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6500 vect_defs.quick_push (new_temp);
6502 else
6503 vect_defs[0] = new_temp;
6506 if (slp_node)
6507 continue;
6509 if (j == 0)
6510 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6511 else
6512 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6514 prev_stmt_info = vinfo_for_stmt (new_stmt);
6517 /* Finalize the reduction-phi (set its arguments) and create the
6518 epilog reduction code. */
6519 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6520 vect_defs[0] = gimple_assign_lhs (*vec_stmt);
6522 vect_create_epilog_for_reduction (vect_defs, stmt, reduc_def_stmt,
6523 epilog_copies,
6524 epilog_reduc_code, phis,
6525 double_reduc, slp_node, slp_node_instance);
6527 return true;
6530 /* Function vect_min_worthwhile_factor.
6532 For a loop where we could vectorize the operation indicated by CODE,
6533 return the minimum vectorization factor that makes it worthwhile
6534 to use generic vectors. */
6536 vect_min_worthwhile_factor (enum tree_code code)
6538 switch (code)
6540 case PLUS_EXPR:
6541 case MINUS_EXPR:
6542 case NEGATE_EXPR:
6543 return 4;
6545 case BIT_AND_EXPR:
6546 case BIT_IOR_EXPR:
6547 case BIT_XOR_EXPR:
6548 case BIT_NOT_EXPR:
6549 return 2;
6551 default:
6552 return INT_MAX;
6557 /* Function vectorizable_induction
6559 Check if PHI performs an induction computation that can be vectorized.
6560 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6561 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6562 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6564 bool
6565 vectorizable_induction (gimple *phi,
6566 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6567 gimple **vec_stmt, slp_tree slp_node)
6569 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6570 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6571 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6572 unsigned ncopies;
6573 bool nested_in_vect_loop = false;
6574 struct loop *iv_loop;
6575 tree vec_def;
6576 edge pe = loop_preheader_edge (loop);
6577 basic_block new_bb;
6578 tree new_vec, vec_init, vec_step, t;
6579 tree new_name;
6580 gimple *new_stmt;
6581 gphi *induction_phi;
6582 tree induc_def, vec_dest;
6583 tree init_expr, step_expr;
6584 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6585 unsigned i;
6586 tree expr;
6587 gimple_seq stmts;
6588 imm_use_iterator imm_iter;
6589 use_operand_p use_p;
6590 gimple *exit_phi;
6591 edge latch_e;
6592 tree loop_arg;
6593 gimple_stmt_iterator si;
6594 basic_block bb = gimple_bb (phi);
6596 if (gimple_code (phi) != GIMPLE_PHI)
6597 return false;
6599 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6600 return false;
6602 /* Make sure it was recognized as induction computation. */
6603 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
6604 return false;
6606 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6607 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
6609 if (slp_node)
6610 ncopies = 1;
6611 else
6612 ncopies = vf / nunits;
6613 gcc_assert (ncopies >= 1);
6615 /* FORNOW. These restrictions should be relaxed. */
6616 if (nested_in_vect_loop_p (loop, phi))
6618 imm_use_iterator imm_iter;
6619 use_operand_p use_p;
6620 gimple *exit_phi;
6621 edge latch_e;
6622 tree loop_arg;
6624 if (ncopies > 1)
6626 if (dump_enabled_p ())
6627 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6628 "multiple types in nested loop.\n");
6629 return false;
6632 /* FORNOW: outer loop induction with SLP not supported. */
6633 if (STMT_SLP_TYPE (stmt_info))
6634 return false;
6636 exit_phi = NULL;
6637 latch_e = loop_latch_edge (loop->inner);
6638 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6639 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6641 gimple *use_stmt = USE_STMT (use_p);
6642 if (is_gimple_debug (use_stmt))
6643 continue;
6645 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6647 exit_phi = use_stmt;
6648 break;
6651 if (exit_phi)
6653 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6654 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6655 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6657 if (dump_enabled_p ())
6658 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6659 "inner-loop induction only used outside "
6660 "of the outer vectorized loop.\n");
6661 return false;
6665 nested_in_vect_loop = true;
6666 iv_loop = loop->inner;
6668 else
6669 iv_loop = loop;
6670 gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
6672 if (!vec_stmt) /* transformation not required. */
6674 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6675 if (dump_enabled_p ())
6676 dump_printf_loc (MSG_NOTE, vect_location,
6677 "=== vectorizable_induction ===\n");
6678 vect_model_induction_cost (stmt_info, ncopies);
6679 return true;
6682 /* Transform. */
6684 /* Compute a vector variable, initialized with the first VF values of
6685 the induction variable. E.g., for an iv with IV_PHI='X' and
6686 evolution S, for a vector of 4 units, we want to compute:
6687 [X, X + S, X + 2*S, X + 3*S]. */
6689 if (dump_enabled_p ())
6690 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6692 latch_e = loop_latch_edge (iv_loop);
6693 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6695 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
6696 gcc_assert (step_expr != NULL_TREE);
6698 pe = loop_preheader_edge (iv_loop);
6699 init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
6700 loop_preheader_edge (iv_loop));
6702 /* Convert the step to the desired type. */
6703 stmts = NULL;
6704 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
6705 if (stmts)
6707 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6708 gcc_assert (!new_bb);
6711 /* Find the first insertion point in the BB. */
6712 si = gsi_after_labels (bb);
6714 /* For SLP induction we have to generate several IVs as for example
6715 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
6716 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
6717 [VF*S, VF*S, VF*S, VF*S] for all. */
6718 if (slp_node)
6720 /* Convert the init to the desired type. */
6721 stmts = NULL;
6722 init_expr = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6723 if (stmts)
6725 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6726 gcc_assert (!new_bb);
6729 /* Generate [VF*S, VF*S, ... ]. */
6730 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6732 expr = build_int_cst (integer_type_node, vf);
6733 expr = fold_convert (TREE_TYPE (step_expr), expr);
6735 else
6736 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6737 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6738 expr, step_expr);
6739 if (! CONSTANT_CLASS_P (new_name))
6740 new_name = vect_init_vector (phi, new_name,
6741 TREE_TYPE (step_expr), NULL);
6742 new_vec = build_vector_from_val (vectype, new_name);
6743 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6745 /* Now generate the IVs. */
6746 unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6747 unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6748 unsigned elts = nunits * nvects;
6749 unsigned nivs = least_common_multiple (group_size, nunits) / nunits;
6750 gcc_assert (elts % group_size == 0);
6751 tree elt = init_expr;
6752 unsigned ivn;
6753 for (ivn = 0; ivn < nivs; ++ivn)
6755 tree *elts = XALLOCAVEC (tree, nunits);
6756 bool constant_p = true;
6757 for (unsigned eltn = 0; eltn < nunits; ++eltn)
6759 if (ivn*nunits + eltn >= group_size
6760 && (ivn*nunits + eltn) % group_size == 0)
6762 stmts = NULL;
6763 elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
6764 elt, step_expr);
6765 if (stmts)
6767 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6768 gcc_assert (!new_bb);
6771 if (! CONSTANT_CLASS_P (elt))
6772 constant_p = false;
6773 elts[eltn] = elt;
6775 if (constant_p)
6776 new_vec = build_vector (vectype, elts);
6777 else
6779 vec<constructor_elt, va_gc> *v;
6780 vec_alloc (v, nunits);
6781 for (i = 0; i < nunits; ++i)
6782 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
6783 new_vec = build_constructor (vectype, v);
6785 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6787 /* Create the induction-phi that defines the induction-operand. */
6788 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6789 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6790 set_vinfo_for_stmt (induction_phi,
6791 new_stmt_vec_info (induction_phi, loop_vinfo));
6792 induc_def = PHI_RESULT (induction_phi);
6794 /* Create the iv update inside the loop */
6795 vec_def = make_ssa_name (vec_dest);
6796 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6797 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6798 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6800 /* Set the arguments of the phi node: */
6801 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6802 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6803 UNKNOWN_LOCATION);
6805 SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
6808 /* Re-use IVs when we can. */
6809 if (ivn < nvects)
6811 unsigned vfp
6812 = least_common_multiple (group_size, nunits) / group_size;
6813 /* Generate [VF'*S, VF'*S, ... ]. */
6814 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6816 expr = build_int_cst (integer_type_node, vfp);
6817 expr = fold_convert (TREE_TYPE (step_expr), expr);
6819 else
6820 expr = build_int_cst (TREE_TYPE (step_expr), vfp);
6821 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6822 expr, step_expr);
6823 if (! CONSTANT_CLASS_P (new_name))
6824 new_name = vect_init_vector (phi, new_name,
6825 TREE_TYPE (step_expr), NULL);
6826 new_vec = build_vector_from_val (vectype, new_name);
6827 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6828 for (; ivn < nvects; ++ivn)
6830 gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
6831 tree def;
6832 if (gimple_code (iv) == GIMPLE_PHI)
6833 def = gimple_phi_result (iv);
6834 else
6835 def = gimple_assign_lhs (iv);
6836 new_stmt = gimple_build_assign (make_ssa_name (vectype),
6837 PLUS_EXPR,
6838 def, vec_step);
6839 if (gimple_code (iv) == GIMPLE_PHI)
6840 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6841 else
6843 gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
6844 gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
6846 set_vinfo_for_stmt (new_stmt,
6847 new_stmt_vec_info (new_stmt, loop_vinfo));
6848 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6852 return true;
6855 /* Create the vector that holds the initial_value of the induction. */
6856 if (nested_in_vect_loop)
6858 /* iv_loop is nested in the loop to be vectorized. init_expr had already
6859 been created during vectorization of previous stmts. We obtain it
6860 from the STMT_VINFO_VEC_STMT of the defining stmt. */
6861 vec_init = vect_get_vec_def_for_operand (init_expr, phi);
6862 /* If the initial value is not of proper type, convert it. */
6863 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
6865 new_stmt
6866 = gimple_build_assign (vect_get_new_ssa_name (vectype,
6867 vect_simple_var,
6868 "vec_iv_"),
6869 VIEW_CONVERT_EXPR,
6870 build1 (VIEW_CONVERT_EXPR, vectype,
6871 vec_init));
6872 vec_init = gimple_assign_lhs (new_stmt);
6873 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
6874 new_stmt);
6875 gcc_assert (!new_bb);
6876 set_vinfo_for_stmt (new_stmt,
6877 new_stmt_vec_info (new_stmt, loop_vinfo));
6880 else
6882 vec<constructor_elt, va_gc> *v;
6884 /* iv_loop is the loop to be vectorized. Create:
6885 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
6886 stmts = NULL;
6887 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6889 vec_alloc (v, nunits);
6890 bool constant_p = is_gimple_min_invariant (new_name);
6891 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6892 for (i = 1; i < nunits; i++)
6894 /* Create: new_name_i = new_name + step_expr */
6895 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
6896 new_name, step_expr);
6897 if (!is_gimple_min_invariant (new_name))
6898 constant_p = false;
6899 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6901 if (stmts)
6903 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6904 gcc_assert (!new_bb);
6907 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
6908 if (constant_p)
6909 new_vec = build_vector_from_ctor (vectype, v);
6910 else
6911 new_vec = build_constructor (vectype, v);
6912 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6916 /* Create the vector that holds the step of the induction. */
6917 if (nested_in_vect_loop)
6918 /* iv_loop is nested in the loop to be vectorized. Generate:
6919 vec_step = [S, S, S, S] */
6920 new_name = step_expr;
6921 else
6923 /* iv_loop is the loop to be vectorized. Generate:
6924 vec_step = [VF*S, VF*S, VF*S, VF*S] */
6925 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6927 expr = build_int_cst (integer_type_node, vf);
6928 expr = fold_convert (TREE_TYPE (step_expr), expr);
6930 else
6931 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6932 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6933 expr, step_expr);
6934 if (TREE_CODE (step_expr) == SSA_NAME)
6935 new_name = vect_init_vector (phi, new_name,
6936 TREE_TYPE (step_expr), NULL);
6939 t = unshare_expr (new_name);
6940 gcc_assert (CONSTANT_CLASS_P (new_name)
6941 || TREE_CODE (new_name) == SSA_NAME);
6942 new_vec = build_vector_from_val (vectype, t);
6943 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6946 /* Create the following def-use cycle:
6947 loop prolog:
6948 vec_init = ...
6949 vec_step = ...
6950 loop:
6951 vec_iv = PHI <vec_init, vec_loop>
6953 STMT
6955 vec_loop = vec_iv + vec_step; */
6957 /* Create the induction-phi that defines the induction-operand. */
6958 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6959 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6960 set_vinfo_for_stmt (induction_phi,
6961 new_stmt_vec_info (induction_phi, loop_vinfo));
6962 induc_def = PHI_RESULT (induction_phi);
6964 /* Create the iv update inside the loop */
6965 vec_def = make_ssa_name (vec_dest);
6966 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6967 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6968 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6970 /* Set the arguments of the phi node: */
6971 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6972 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6973 UNKNOWN_LOCATION);
6975 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
6977 /* In case that vectorization factor (VF) is bigger than the number
6978 of elements that we can fit in a vectype (nunits), we have to generate
6979 more than one vector stmt - i.e - we need to "unroll" the
6980 vector stmt by a factor VF/nunits. For more details see documentation
6981 in vectorizable_operation. */
6983 if (ncopies > 1)
6985 stmt_vec_info prev_stmt_vinfo;
6986 /* FORNOW. This restriction should be relaxed. */
6987 gcc_assert (!nested_in_vect_loop);
6989 /* Create the vector that holds the step of the induction. */
6990 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6992 expr = build_int_cst (integer_type_node, nunits);
6993 expr = fold_convert (TREE_TYPE (step_expr), expr);
6995 else
6996 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
6997 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6998 expr, step_expr);
6999 if (TREE_CODE (step_expr) == SSA_NAME)
7000 new_name = vect_init_vector (phi, new_name,
7001 TREE_TYPE (step_expr), NULL);
7002 t = unshare_expr (new_name);
7003 gcc_assert (CONSTANT_CLASS_P (new_name)
7004 || TREE_CODE (new_name) == SSA_NAME);
7005 new_vec = build_vector_from_val (vectype, t);
7006 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
7008 vec_def = induc_def;
7009 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
7010 for (i = 1; i < ncopies; i++)
7012 /* vec_i = vec_prev + vec_step */
7013 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
7014 vec_def, vec_step);
7015 vec_def = make_ssa_name (vec_dest, new_stmt);
7016 gimple_assign_set_lhs (new_stmt, vec_def);
7018 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
7019 set_vinfo_for_stmt (new_stmt,
7020 new_stmt_vec_info (new_stmt, loop_vinfo));
7021 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
7022 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
7026 if (nested_in_vect_loop)
7028 /* Find the loop-closed exit-phi of the induction, and record
7029 the final vector of induction results: */
7030 exit_phi = NULL;
7031 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
7033 gimple *use_stmt = USE_STMT (use_p);
7034 if (is_gimple_debug (use_stmt))
7035 continue;
7037 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
7039 exit_phi = use_stmt;
7040 break;
7043 if (exit_phi)
7045 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
7046 /* FORNOW. Currently not supporting the case that an inner-loop induction
7047 is not used in the outer-loop (i.e. only outside the outer-loop). */
7048 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
7049 && !STMT_VINFO_LIVE_P (stmt_vinfo));
7051 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
7052 if (dump_enabled_p ())
7054 dump_printf_loc (MSG_NOTE, vect_location,
7055 "vector of inductions after inner-loop:");
7056 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
7062 if (dump_enabled_p ())
7064 dump_printf_loc (MSG_NOTE, vect_location,
7065 "transform induction: created def-use cycle: ");
7066 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
7067 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7068 SSA_NAME_DEF_STMT (vec_def), 0);
7071 return true;
7074 /* Function vectorizable_live_operation.
7076 STMT computes a value that is used outside the loop. Check if
7077 it can be supported. */
7079 bool
7080 vectorizable_live_operation (gimple *stmt,
7081 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
7082 slp_tree slp_node, int slp_index,
7083 gimple **vec_stmt)
7085 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7086 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7087 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7088 imm_use_iterator imm_iter;
7089 tree lhs, lhs_type, bitsize, vec_bitsize;
7090 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7091 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
7092 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
7093 gimple *use_stmt;
7094 auto_vec<tree> vec_oprnds;
7096 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
7098 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
7099 return false;
7101 /* FORNOW. CHECKME. */
7102 if (nested_in_vect_loop_p (loop, stmt))
7103 return false;
7105 /* If STMT is not relevant and it is a simple assignment and its inputs are
7106 invariant then it can remain in place, unvectorized. The original last
7107 scalar value that it computes will be used. */
7108 if (!STMT_VINFO_RELEVANT_P (stmt_info))
7110 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
7111 if (dump_enabled_p ())
7112 dump_printf_loc (MSG_NOTE, vect_location,
7113 "statement is simple and uses invariant. Leaving in "
7114 "place.\n");
7115 return true;
7118 if (!vec_stmt)
7119 /* No transformation required. */
7120 return true;
7122 /* If stmt has a related stmt, then use that for getting the lhs. */
7123 if (is_pattern_stmt_p (stmt_info))
7124 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
7126 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
7127 : gimple_get_lhs (stmt);
7128 lhs_type = TREE_TYPE (lhs);
7130 bitsize = TYPE_SIZE (TREE_TYPE (vectype));
7131 vec_bitsize = TYPE_SIZE (vectype);
7133 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
7134 tree vec_lhs, bitstart;
7135 if (slp_node)
7137 gcc_assert (slp_index >= 0);
7139 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
7140 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7142 /* Get the last occurrence of the scalar index from the concatenation of
7143 all the slp vectors. Calculate which slp vector it is and the index
7144 within. */
7145 int pos = (num_vec * nunits) - num_scalar + slp_index;
7146 int vec_entry = pos / nunits;
7147 int vec_index = pos % nunits;
7149 /* Get the correct slp vectorized stmt. */
7150 vec_lhs = gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[vec_entry]);
7152 /* Get entry to use. */
7153 bitstart = build_int_cst (unsigned_type_node, vec_index);
7154 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
7156 else
7158 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
7159 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
7161 /* For multiple copies, get the last copy. */
7162 for (int i = 1; i < ncopies; ++i)
7163 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
7164 vec_lhs);
7166 /* Get the last lane in the vector. */
7167 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
7170 /* Create a new vectorized stmt for the uses of STMT and insert outside the
7171 loop. */
7172 gimple_seq stmts = NULL;
7173 tree bftype = TREE_TYPE (vectype);
7174 if (VECTOR_BOOLEAN_TYPE_P (vectype))
7175 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
7176 tree new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
7177 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree), &stmts,
7178 true, NULL_TREE);
7179 if (stmts)
7180 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
7182 /* Replace use of lhs with newly computed result. If the use stmt is a
7183 single arg PHI, just replace all uses of PHI result. It's necessary
7184 because lcssa PHI defining lhs may be before newly inserted stmt. */
7185 use_operand_p use_p;
7186 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
7187 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
7188 && !is_gimple_debug (use_stmt))
7190 if (gimple_code (use_stmt) == GIMPLE_PHI
7191 && gimple_phi_num_args (use_stmt) == 1)
7193 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
7195 else
7197 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
7198 SET_USE (use_p, new_tree);
7200 update_stmt (use_stmt);
7203 return true;
7206 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
7208 static void
7209 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
7211 ssa_op_iter op_iter;
7212 imm_use_iterator imm_iter;
7213 def_operand_p def_p;
7214 gimple *ustmt;
7216 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
7218 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
7220 basic_block bb;
7222 if (!is_gimple_debug (ustmt))
7223 continue;
7225 bb = gimple_bb (ustmt);
7227 if (!flow_bb_inside_loop_p (loop, bb))
7229 if (gimple_debug_bind_p (ustmt))
7231 if (dump_enabled_p ())
7232 dump_printf_loc (MSG_NOTE, vect_location,
7233 "killing debug use\n");
7235 gimple_debug_bind_reset_value (ustmt);
7236 update_stmt (ustmt);
7238 else
7239 gcc_unreachable ();
7245 /* Given loop represented by LOOP_VINFO, return true if computation of
7246 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
7247 otherwise. */
7249 static bool
7250 loop_niters_no_overflow (loop_vec_info loop_vinfo)
7252 /* Constant case. */
7253 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7255 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
7256 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
7258 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
7259 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
7260 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
7261 return true;
7264 widest_int max;
7265 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7266 /* Check the upper bound of loop niters. */
7267 if (get_max_loop_iterations (loop, &max))
7269 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
7270 signop sgn = TYPE_SIGN (type);
7271 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
7272 if (max < type_max)
7273 return true;
7275 return false;
7278 /* Scale profiling counters by estimation for LOOP which is vectorized
7279 by factor VF. */
7281 static void
7282 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
7284 edge preheader = loop_preheader_edge (loop);
7285 /* Reduce loop iterations by the vectorization factor. */
7286 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
7287 profile_count freq_h = loop->header->count, freq_e = preheader->count;
7289 /* Use frequency only if counts are zero. */
7290 if (!(freq_h > 0) && !(freq_e > 0))
7292 freq_h = profile_count::from_gcov_type (loop->header->frequency);
7293 freq_e = profile_count::from_gcov_type (EDGE_FREQUENCY (preheader));
7295 if (freq_h > 0)
7297 profile_probability p;
7299 /* Avoid dropping loop body profile counter to 0 because of zero count
7300 in loop's preheader. */
7301 if (!(freq_e > profile_count::from_gcov_type (1)))
7302 freq_e = profile_count::from_gcov_type (1);
7303 p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
7304 scale_loop_frequencies (loop, p);
7307 basic_block exit_bb = single_pred (loop->latch);
7308 edge exit_e = single_exit (loop);
7309 exit_e->count = loop_preheader_edge (loop)->count;
7310 exit_e->probability = profile_probability::always ()
7311 .apply_scale (1, new_est_niter + 1);
7313 edge exit_l = single_pred_edge (loop->latch);
7314 profile_probability prob = exit_l->probability;
7315 exit_l->probability = exit_e->probability.invert ();
7316 exit_l->count = exit_bb->count - exit_e->count;
7317 if (prob.initialized_p () && exit_l->probability.initialized_p ())
7318 scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
7321 /* Function vect_transform_loop.
7323 The analysis phase has determined that the loop is vectorizable.
7324 Vectorize the loop - created vectorized stmts to replace the scalar
7325 stmts in the loop, and update the loop exit condition.
7326 Returns scalar epilogue loop if any. */
7328 struct loop *
7329 vect_transform_loop (loop_vec_info loop_vinfo)
7331 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7332 struct loop *epilogue = NULL;
7333 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
7334 int nbbs = loop->num_nodes;
7335 int i;
7336 tree niters_vector = NULL;
7337 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
7338 bool grouped_store;
7339 bool slp_scheduled = false;
7340 gimple *stmt, *pattern_stmt;
7341 gimple_seq pattern_def_seq = NULL;
7342 gimple_stmt_iterator pattern_def_si = gsi_none ();
7343 bool transform_pattern_stmt = false;
7344 bool check_profitability = false;
7345 int th;
7347 if (dump_enabled_p ())
7348 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
7350 /* Use the more conservative vectorization threshold. If the number
7351 of iterations is constant assume the cost check has been performed
7352 by our caller. If the threshold makes all loops profitable that
7353 run at least the vectorization factor number of times checking
7354 is pointless, too. */
7355 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
7356 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo)
7357 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7359 if (dump_enabled_p ())
7360 dump_printf_loc (MSG_NOTE, vect_location,
7361 "Profitability threshold is %d loop iterations.\n",
7362 th);
7363 check_profitability = true;
7366 /* Make sure there exists a single-predecessor exit bb. Do this before
7367 versioning. */
7368 edge e = single_exit (loop);
7369 if (! single_pred_p (e->dest))
7371 split_loop_exit_edge (e);
7372 if (dump_enabled_p ())
7373 dump_printf (MSG_NOTE, "split exit edge\n");
7376 /* Version the loop first, if required, so the profitability check
7377 comes first. */
7379 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
7381 vect_loop_versioning (loop_vinfo, th, check_profitability);
7382 check_profitability = false;
7385 /* Make sure there exists a single-predecessor exit bb also on the
7386 scalar loop copy. Do this after versioning but before peeling
7387 so CFG structure is fine for both scalar and if-converted loop
7388 to make slpeel_duplicate_current_defs_from_edges face matched
7389 loop closed PHI nodes on the exit. */
7390 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7392 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
7393 if (! single_pred_p (e->dest))
7395 split_loop_exit_edge (e);
7396 if (dump_enabled_p ())
7397 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
7401 tree niters = vect_build_loop_niters (loop_vinfo);
7402 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
7403 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
7404 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
7405 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector, th,
7406 check_profitability, niters_no_overflow);
7407 if (niters_vector == NULL_TREE)
7409 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7410 niters_vector
7411 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
7412 LOOP_VINFO_INT_NITERS (loop_vinfo) / vf);
7413 else
7414 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
7415 niters_no_overflow);
7418 /* 1) Make sure the loop header has exactly two entries
7419 2) Make sure we have a preheader basic block. */
7421 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
7423 split_edge (loop_preheader_edge (loop));
7425 /* FORNOW: the vectorizer supports only loops which body consist
7426 of one basic block (header + empty latch). When the vectorizer will
7427 support more involved loop forms, the order by which the BBs are
7428 traversed need to be reconsidered. */
7430 for (i = 0; i < nbbs; i++)
7432 basic_block bb = bbs[i];
7433 stmt_vec_info stmt_info;
7435 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7436 gsi_next (&si))
7438 gphi *phi = si.phi ();
7439 if (dump_enabled_p ())
7441 dump_printf_loc (MSG_NOTE, vect_location,
7442 "------>vectorizing phi: ");
7443 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
7445 stmt_info = vinfo_for_stmt (phi);
7446 if (!stmt_info)
7447 continue;
7449 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7450 vect_loop_kill_debug_uses (loop, phi);
7452 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7453 && !STMT_VINFO_LIVE_P (stmt_info))
7454 continue;
7456 if (STMT_VINFO_VECTYPE (stmt_info)
7457 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
7458 != (unsigned HOST_WIDE_INT) vf)
7459 && dump_enabled_p ())
7460 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7462 if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
7463 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
7464 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
7465 && ! PURE_SLP_STMT (stmt_info))
7467 if (dump_enabled_p ())
7468 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
7469 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
7473 pattern_stmt = NULL;
7474 for (gimple_stmt_iterator si = gsi_start_bb (bb);
7475 !gsi_end_p (si) || transform_pattern_stmt;)
7477 bool is_store;
7479 if (transform_pattern_stmt)
7480 stmt = pattern_stmt;
7481 else
7483 stmt = gsi_stmt (si);
7484 /* During vectorization remove existing clobber stmts. */
7485 if (gimple_clobber_p (stmt))
7487 unlink_stmt_vdef (stmt);
7488 gsi_remove (&si, true);
7489 release_defs (stmt);
7490 continue;
7494 if (dump_enabled_p ())
7496 dump_printf_loc (MSG_NOTE, vect_location,
7497 "------>vectorizing statement: ");
7498 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7501 stmt_info = vinfo_for_stmt (stmt);
7503 /* vector stmts created in the outer-loop during vectorization of
7504 stmts in an inner-loop may not have a stmt_info, and do not
7505 need to be vectorized. */
7506 if (!stmt_info)
7508 gsi_next (&si);
7509 continue;
7512 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7513 vect_loop_kill_debug_uses (loop, stmt);
7515 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7516 && !STMT_VINFO_LIVE_P (stmt_info))
7518 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7519 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7520 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7521 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7523 stmt = pattern_stmt;
7524 stmt_info = vinfo_for_stmt (stmt);
7526 else
7528 gsi_next (&si);
7529 continue;
7532 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7533 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7534 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7535 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7536 transform_pattern_stmt = true;
7538 /* If pattern statement has def stmts, vectorize them too. */
7539 if (is_pattern_stmt_p (stmt_info))
7541 if (pattern_def_seq == NULL)
7543 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
7544 pattern_def_si = gsi_start (pattern_def_seq);
7546 else if (!gsi_end_p (pattern_def_si))
7547 gsi_next (&pattern_def_si);
7548 if (pattern_def_seq != NULL)
7550 gimple *pattern_def_stmt = NULL;
7551 stmt_vec_info pattern_def_stmt_info = NULL;
7553 while (!gsi_end_p (pattern_def_si))
7555 pattern_def_stmt = gsi_stmt (pattern_def_si);
7556 pattern_def_stmt_info
7557 = vinfo_for_stmt (pattern_def_stmt);
7558 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
7559 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
7560 break;
7561 gsi_next (&pattern_def_si);
7564 if (!gsi_end_p (pattern_def_si))
7566 if (dump_enabled_p ())
7568 dump_printf_loc (MSG_NOTE, vect_location,
7569 "==> vectorizing pattern def "
7570 "stmt: ");
7571 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7572 pattern_def_stmt, 0);
7575 stmt = pattern_def_stmt;
7576 stmt_info = pattern_def_stmt_info;
7578 else
7580 pattern_def_si = gsi_none ();
7581 transform_pattern_stmt = false;
7584 else
7585 transform_pattern_stmt = false;
7588 if (STMT_VINFO_VECTYPE (stmt_info))
7590 unsigned int nunits
7591 = (unsigned int)
7592 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
7593 if (!STMT_SLP_TYPE (stmt_info)
7594 && nunits != (unsigned int) vf
7595 && dump_enabled_p ())
7596 /* For SLP VF is set according to unrolling factor, and not
7597 to vector size, hence for SLP this print is not valid. */
7598 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7601 /* SLP. Schedule all the SLP instances when the first SLP stmt is
7602 reached. */
7603 if (STMT_SLP_TYPE (stmt_info))
7605 if (!slp_scheduled)
7607 slp_scheduled = true;
7609 if (dump_enabled_p ())
7610 dump_printf_loc (MSG_NOTE, vect_location,
7611 "=== scheduling SLP instances ===\n");
7613 vect_schedule_slp (loop_vinfo);
7616 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
7617 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
7619 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7621 pattern_def_seq = NULL;
7622 gsi_next (&si);
7624 continue;
7628 /* -------- vectorize statement ------------ */
7629 if (dump_enabled_p ())
7630 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
7632 grouped_store = false;
7633 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
7634 if (is_store)
7636 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
7638 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
7639 interleaving chain was completed - free all the stores in
7640 the chain. */
7641 gsi_next (&si);
7642 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
7644 else
7646 /* Free the attached stmt_vec_info and remove the stmt. */
7647 gimple *store = gsi_stmt (si);
7648 free_stmt_vec_info (store);
7649 unlink_stmt_vdef (store);
7650 gsi_remove (&si, true);
7651 release_defs (store);
7654 /* Stores can only appear at the end of pattern statements. */
7655 gcc_assert (!transform_pattern_stmt);
7656 pattern_def_seq = NULL;
7658 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7660 pattern_def_seq = NULL;
7661 gsi_next (&si);
7663 } /* stmts in BB */
7664 } /* BBs in loop */
7666 slpeel_make_loop_iterate_ntimes (loop, niters_vector);
7668 scale_profile_for_vect_loop (loop, vf);
7670 /* The minimum number of iterations performed by the epilogue. This
7671 is 1 when peeling for gaps because we always need a final scalar
7672 iteration. */
7673 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
7674 /* +1 to convert latch counts to loop iteration counts,
7675 -min_epilogue_iters to remove iterations that cannot be performed
7676 by the vector code. */
7677 int bias = 1 - min_epilogue_iters;
7678 /* In these calculations the "- 1" converts loop iteration counts
7679 back to latch counts. */
7680 if (loop->any_upper_bound)
7681 loop->nb_iterations_upper_bound
7682 = wi::udiv_floor (loop->nb_iterations_upper_bound + bias, vf) - 1;
7683 if (loop->any_likely_upper_bound)
7684 loop->nb_iterations_likely_upper_bound
7685 = wi::udiv_floor (loop->nb_iterations_likely_upper_bound + bias, vf) - 1;
7686 if (loop->any_estimate)
7687 loop->nb_iterations_estimate
7688 = wi::udiv_floor (loop->nb_iterations_estimate + bias, vf) - 1;
7690 if (dump_enabled_p ())
7692 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7694 dump_printf_loc (MSG_NOTE, vect_location,
7695 "LOOP VECTORIZED\n");
7696 if (loop->inner)
7697 dump_printf_loc (MSG_NOTE, vect_location,
7698 "OUTER LOOP VECTORIZED\n");
7699 dump_printf (MSG_NOTE, "\n");
7701 else
7702 dump_printf_loc (MSG_NOTE, vect_location,
7703 "LOOP EPILOGUE VECTORIZED (VS=%d)\n",
7704 current_vector_size);
7707 /* Free SLP instances here because otherwise stmt reference counting
7708 won't work. */
7709 slp_instance instance;
7710 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
7711 vect_free_slp_instance (instance);
7712 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
7713 /* Clear-up safelen field since its value is invalid after vectorization
7714 since vectorized loop can have loop-carried dependencies. */
7715 loop->safelen = 0;
7717 /* Don't vectorize epilogue for epilogue. */
7718 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7719 epilogue = NULL;
7721 if (epilogue)
7723 unsigned int vector_sizes
7724 = targetm.vectorize.autovectorize_vector_sizes ();
7725 vector_sizes &= current_vector_size - 1;
7727 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
7728 epilogue = NULL;
7729 else if (!vector_sizes)
7730 epilogue = NULL;
7731 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
7732 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
7734 int smallest_vec_size = 1 << ctz_hwi (vector_sizes);
7735 int ratio = current_vector_size / smallest_vec_size;
7736 int eiters = LOOP_VINFO_INT_NITERS (loop_vinfo)
7737 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
7738 eiters = eiters % vf;
7740 epilogue->nb_iterations_upper_bound = eiters - 1;
7742 if (eiters < vf / ratio)
7743 epilogue = NULL;
7747 if (epilogue)
7749 epilogue->force_vectorize = loop->force_vectorize;
7750 epilogue->safelen = loop->safelen;
7751 epilogue->dont_vectorize = false;
7753 /* We may need to if-convert epilogue to vectorize it. */
7754 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7755 tree_if_conversion (epilogue);
7758 return epilogue;
7761 /* The code below is trying to perform simple optimization - revert
7762 if-conversion for masked stores, i.e. if the mask of a store is zero
7763 do not perform it and all stored value producers also if possible.
7764 For example,
7765 for (i=0; i<n; i++)
7766 if (c[i])
7768 p1[i] += 1;
7769 p2[i] = p3[i] +2;
7771 this transformation will produce the following semi-hammock:
7773 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
7775 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
7776 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
7777 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
7778 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
7779 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
7780 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
7784 void
7785 optimize_mask_stores (struct loop *loop)
7787 basic_block *bbs = get_loop_body (loop);
7788 unsigned nbbs = loop->num_nodes;
7789 unsigned i;
7790 basic_block bb;
7791 struct loop *bb_loop;
7792 gimple_stmt_iterator gsi;
7793 gimple *stmt;
7794 auto_vec<gimple *> worklist;
7796 vect_location = find_loop_location (loop);
7797 /* Pick up all masked stores in loop if any. */
7798 for (i = 0; i < nbbs; i++)
7800 bb = bbs[i];
7801 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7802 gsi_next (&gsi))
7804 stmt = gsi_stmt (gsi);
7805 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
7806 worklist.safe_push (stmt);
7810 free (bbs);
7811 if (worklist.is_empty ())
7812 return;
7814 /* Loop has masked stores. */
7815 while (!worklist.is_empty ())
7817 gimple *last, *last_store;
7818 edge e, efalse;
7819 tree mask;
7820 basic_block store_bb, join_bb;
7821 gimple_stmt_iterator gsi_to;
7822 tree vdef, new_vdef;
7823 gphi *phi;
7824 tree vectype;
7825 tree zero;
7827 last = worklist.pop ();
7828 mask = gimple_call_arg (last, 2);
7829 bb = gimple_bb (last);
7830 /* Create then_bb and if-then structure in CFG, then_bb belongs to
7831 the same loop as if_bb. It could be different to LOOP when two
7832 level loop-nest is vectorized and mask_store belongs to the inner
7833 one. */
7834 e = split_block (bb, last);
7835 bb_loop = bb->loop_father;
7836 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
7837 join_bb = e->dest;
7838 store_bb = create_empty_bb (bb);
7839 add_bb_to_loop (store_bb, bb_loop);
7840 e->flags = EDGE_TRUE_VALUE;
7841 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7842 /* Put STORE_BB to likely part. */
7843 efalse->probability = profile_probability::unlikely ();
7844 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7845 make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
7846 if (dom_info_available_p (CDI_DOMINATORS))
7847 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7848 if (dump_enabled_p ())
7849 dump_printf_loc (MSG_NOTE, vect_location,
7850 "Create new block %d to sink mask stores.",
7851 store_bb->index);
7852 /* Create vector comparison with boolean result. */
7853 vectype = TREE_TYPE (mask);
7854 zero = build_zero_cst (vectype);
7855 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7856 gsi = gsi_last_bb (bb);
7857 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7858 /* Create new PHI node for vdef of the last masked store:
7859 .MEM_2 = VDEF <.MEM_1>
7860 will be converted to
7861 .MEM.3 = VDEF <.MEM_1>
7862 and new PHI node will be created in join bb
7863 .MEM_2 = PHI <.MEM_1, .MEM_3>
7865 vdef = gimple_vdef (last);
7866 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7867 gimple_set_vdef (last, new_vdef);
7868 phi = create_phi_node (vdef, join_bb);
7869 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7871 /* Put all masked stores with the same mask to STORE_BB if possible. */
7872 while (true)
7874 gimple_stmt_iterator gsi_from;
7875 gimple *stmt1 = NULL;
7877 /* Move masked store to STORE_BB. */
7878 last_store = last;
7879 gsi = gsi_for_stmt (last);
7880 gsi_from = gsi;
7881 /* Shift GSI to the previous stmt for further traversal. */
7882 gsi_prev (&gsi);
7883 gsi_to = gsi_start_bb (store_bb);
7884 gsi_move_before (&gsi_from, &gsi_to);
7885 /* Setup GSI_TO to the non-empty block start. */
7886 gsi_to = gsi_start_bb (store_bb);
7887 if (dump_enabled_p ())
7889 dump_printf_loc (MSG_NOTE, vect_location,
7890 "Move stmt to created bb\n");
7891 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7893 /* Move all stored value producers if possible. */
7894 while (!gsi_end_p (gsi))
7896 tree lhs;
7897 imm_use_iterator imm_iter;
7898 use_operand_p use_p;
7899 bool res;
7901 /* Skip debug statements. */
7902 if (is_gimple_debug (gsi_stmt (gsi)))
7904 gsi_prev (&gsi);
7905 continue;
7907 stmt1 = gsi_stmt (gsi);
7908 /* Do not consider statements writing to memory or having
7909 volatile operand. */
7910 if (gimple_vdef (stmt1)
7911 || gimple_has_volatile_ops (stmt1))
7912 break;
7913 gsi_from = gsi;
7914 gsi_prev (&gsi);
7915 lhs = gimple_get_lhs (stmt1);
7916 if (!lhs)
7917 break;
7919 /* LHS of vectorized stmt must be SSA_NAME. */
7920 if (TREE_CODE (lhs) != SSA_NAME)
7921 break;
7923 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7925 /* Remove dead scalar statement. */
7926 if (has_zero_uses (lhs))
7928 gsi_remove (&gsi_from, true);
7929 continue;
7933 /* Check that LHS does not have uses outside of STORE_BB. */
7934 res = true;
7935 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7937 gimple *use_stmt;
7938 use_stmt = USE_STMT (use_p);
7939 if (is_gimple_debug (use_stmt))
7940 continue;
7941 if (gimple_bb (use_stmt) != store_bb)
7943 res = false;
7944 break;
7947 if (!res)
7948 break;
7950 if (gimple_vuse (stmt1)
7951 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7952 break;
7954 /* Can move STMT1 to STORE_BB. */
7955 if (dump_enabled_p ())
7957 dump_printf_loc (MSG_NOTE, vect_location,
7958 "Move stmt to created bb\n");
7959 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7961 gsi_move_before (&gsi_from, &gsi_to);
7962 /* Shift GSI_TO for further insertion. */
7963 gsi_prev (&gsi_to);
7965 /* Put other masked stores with the same mask to STORE_BB. */
7966 if (worklist.is_empty ()
7967 || gimple_call_arg (worklist.last (), 2) != mask
7968 || worklist.last () != stmt1)
7969 break;
7970 last = worklist.pop ();
7972 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);