* config.gcc (cygwin tm_file): Add cygwin-stdint.h.
[official-gcc.git] / gcc / tree-ssa-structalias.c
blob7ac27c06ad6ae4a1383abc3955a9f26f484c621a
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "obstack.h"
27 #include "bitmap.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "tree.h"
35 #include "c-common.h"
36 #include "tree-flow.h"
37 #include "tree-inline.h"
38 #include "varray.h"
39 #include "c-tree.h"
40 #include "diagnostic.h"
41 #include "toplev.h"
42 #include "gimple.h"
43 #include "hashtab.h"
44 #include "function.h"
45 #include "cgraph.h"
46 #include "tree-pass.h"
47 #include "timevar.h"
48 #include "alloc-pool.h"
49 #include "splay-tree.h"
50 #include "params.h"
51 #include "cgraph.h"
52 #include "alias.h"
53 #include "pointer-set.h"
55 /* The idea behind this analyzer is to generate set constraints from the
56 program, then solve the resulting constraints in order to generate the
57 points-to sets.
59 Set constraints are a way of modeling program analysis problems that
60 involve sets. They consist of an inclusion constraint language,
61 describing the variables (each variable is a set) and operations that
62 are involved on the variables, and a set of rules that derive facts
63 from these operations. To solve a system of set constraints, you derive
64 all possible facts under the rules, which gives you the correct sets
65 as a consequence.
67 See "Efficient Field-sensitive pointer analysis for C" by "David
68 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
69 http://citeseer.ist.psu.edu/pearce04efficient.html
71 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
72 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
73 http://citeseer.ist.psu.edu/heintze01ultrafast.html
75 There are three types of real constraint expressions, DEREF,
76 ADDRESSOF, and SCALAR. Each constraint expression consists
77 of a constraint type, a variable, and an offset.
79 SCALAR is a constraint expression type used to represent x, whether
80 it appears on the LHS or the RHS of a statement.
81 DEREF is a constraint expression type used to represent *x, whether
82 it appears on the LHS or the RHS of a statement.
83 ADDRESSOF is a constraint expression used to represent &x, whether
84 it appears on the LHS or the RHS of a statement.
86 Each pointer variable in the program is assigned an integer id, and
87 each field of a structure variable is assigned an integer id as well.
89 Structure variables are linked to their list of fields through a "next
90 field" in each variable that points to the next field in offset
91 order.
92 Each variable for a structure field has
94 1. "size", that tells the size in bits of that field.
95 2. "fullsize, that tells the size in bits of the entire structure.
96 3. "offset", that tells the offset in bits from the beginning of the
97 structure to this field.
99 Thus,
100 struct f
102 int a;
103 int b;
104 } foo;
105 int *bar;
107 looks like
109 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
110 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
111 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
114 In order to solve the system of set constraints, the following is
115 done:
117 1. Each constraint variable x has a solution set associated with it,
118 Sol(x).
120 2. Constraints are separated into direct, copy, and complex.
121 Direct constraints are ADDRESSOF constraints that require no extra
122 processing, such as P = &Q
123 Copy constraints are those of the form P = Q.
124 Complex constraints are all the constraints involving dereferences
125 and offsets (including offsetted copies).
127 3. All direct constraints of the form P = &Q are processed, such
128 that Q is added to Sol(P)
130 4. All complex constraints for a given constraint variable are stored in a
131 linked list attached to that variable's node.
133 5. A directed graph is built out of the copy constraints. Each
134 constraint variable is a node in the graph, and an edge from
135 Q to P is added for each copy constraint of the form P = Q
137 6. The graph is then walked, and solution sets are
138 propagated along the copy edges, such that an edge from Q to P
139 causes Sol(P) <- Sol(P) union Sol(Q).
141 7. As we visit each node, all complex constraints associated with
142 that node are processed by adding appropriate copy edges to the graph, or the
143 appropriate variables to the solution set.
145 8. The process of walking the graph is iterated until no solution
146 sets change.
148 Prior to walking the graph in steps 6 and 7, We perform static
149 cycle elimination on the constraint graph, as well
150 as off-line variable substitution.
152 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
153 on and turned into anything), but isn't. You can just see what offset
154 inside the pointed-to struct it's going to access.
156 TODO: Constant bounded arrays can be handled as if they were structs of the
157 same number of elements.
159 TODO: Modeling heap and incoming pointers becomes much better if we
160 add fields to them as we discover them, which we could do.
162 TODO: We could handle unions, but to be honest, it's probably not
163 worth the pain or slowdown. */
165 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
166 htab_t heapvar_for_stmt;
168 static bool use_field_sensitive = true;
169 static int in_ipa_mode = 0;
171 /* Used for predecessor bitmaps. */
172 static bitmap_obstack predbitmap_obstack;
174 /* Used for points-to sets. */
175 static bitmap_obstack pta_obstack;
177 /* Used for oldsolution members of variables. */
178 static bitmap_obstack oldpta_obstack;
180 /* Used for per-solver-iteration bitmaps. */
181 static bitmap_obstack iteration_obstack;
183 static unsigned int create_variable_info_for (tree, const char *);
184 typedef struct constraint_graph *constraint_graph_t;
185 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
187 struct constraint;
188 typedef struct constraint *constraint_t;
190 DEF_VEC_P(constraint_t);
191 DEF_VEC_ALLOC_P(constraint_t,heap);
193 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
194 if (a) \
195 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
197 static struct constraint_stats
199 unsigned int total_vars;
200 unsigned int nonpointer_vars;
201 unsigned int unified_vars_static;
202 unsigned int unified_vars_dynamic;
203 unsigned int iterations;
204 unsigned int num_edges;
205 unsigned int num_implicit_edges;
206 unsigned int points_to_sets_created;
207 } stats;
209 struct variable_info
211 /* ID of this variable */
212 unsigned int id;
214 /* True if this is a variable created by the constraint analysis, such as
215 heap variables and constraints we had to break up. */
216 unsigned int is_artificial_var:1;
218 /* True if this is a special variable whose solution set should not be
219 changed. */
220 unsigned int is_special_var:1;
222 /* True for variables whose size is not known or variable. */
223 unsigned int is_unknown_size_var:1;
225 /* True for (sub-)fields that represent a whole variable. */
226 unsigned int is_full_var : 1;
228 /* True if this is a heap variable. */
229 unsigned int is_heap_var:1;
231 /* True if we may not use TBAA to prune references to this
232 variable. This is used for C++ placement new. */
233 unsigned int no_tbaa_pruning : 1;
235 /* True if this field may contain pointers. */
236 unsigned int may_have_pointers : 1;
238 /* A link to the variable for the next field in this structure. */
239 struct variable_info *next;
241 /* Offset of this variable, in bits, from the base variable */
242 unsigned HOST_WIDE_INT offset;
244 /* Size of the variable, in bits. */
245 unsigned HOST_WIDE_INT size;
247 /* Full size of the base variable, in bits. */
248 unsigned HOST_WIDE_INT fullsize;
250 /* Name of this variable */
251 const char *name;
253 /* Tree that this variable is associated with. */
254 tree decl;
256 /* Points-to set for this variable. */
257 bitmap solution;
259 /* Old points-to set for this variable. */
260 bitmap oldsolution;
262 typedef struct variable_info *varinfo_t;
264 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
265 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
266 unsigned HOST_WIDE_INT);
267 static varinfo_t lookup_vi_for_tree (tree);
269 /* Pool of variable info structures. */
270 static alloc_pool variable_info_pool;
272 DEF_VEC_P(varinfo_t);
274 DEF_VEC_ALLOC_P(varinfo_t, heap);
276 /* Table of variable info structures for constraint variables.
277 Indexed directly by variable info id. */
278 static VEC(varinfo_t,heap) *varmap;
280 /* Return the varmap element N */
282 static inline varinfo_t
283 get_varinfo (unsigned int n)
285 return VEC_index (varinfo_t, varmap, n);
288 /* Static IDs for the special variables. */
289 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
290 escaped_id = 3, nonlocal_id = 4, callused_id = 5,
291 storedanything_id = 6, integer_id = 7 };
293 /* Variable that represents the unknown pointer. */
294 static varinfo_t var_anything;
295 static tree anything_tree;
297 /* Variable that represents the NULL pointer. */
298 static varinfo_t var_nothing;
299 static tree nothing_tree;
301 /* Variable that represents read only memory. */
302 static varinfo_t var_readonly;
303 static tree readonly_tree;
305 /* Variable that represents escaped memory. */
306 static varinfo_t var_escaped;
307 static tree escaped_tree;
309 /* Variable that represents nonlocal memory. */
310 static varinfo_t var_nonlocal;
311 static tree nonlocal_tree;
313 /* Variable that represents call-used memory. */
314 static varinfo_t var_callused;
315 static tree callused_tree;
317 /* Variable that represents variables that are stored to anything. */
318 static varinfo_t var_storedanything;
319 static tree storedanything_tree;
321 /* Variable that represents integers. This is used for when people do things
322 like &0->a.b. */
323 static varinfo_t var_integer;
324 static tree integer_tree;
326 /* Lookup a heap var for FROM, and return it if we find one. */
328 static tree
329 heapvar_lookup (tree from)
331 struct tree_map *h, in;
332 in.base.from = from;
334 h = (struct tree_map *) htab_find_with_hash (heapvar_for_stmt, &in,
335 htab_hash_pointer (from));
336 if (h)
337 return h->to;
338 return NULL_TREE;
341 /* Insert a mapping FROM->TO in the heap var for statement
342 hashtable. */
344 static void
345 heapvar_insert (tree from, tree to)
347 struct tree_map *h;
348 void **loc;
350 h = GGC_NEW (struct tree_map);
351 h->hash = htab_hash_pointer (from);
352 h->base.from = from;
353 h->to = to;
354 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
355 *(struct tree_map **) loc = h;
358 /* Return a new variable info structure consisting for a variable
359 named NAME, and using constraint graph node NODE. */
361 static varinfo_t
362 new_var_info (tree t, unsigned int id, const char *name)
364 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
365 tree var;
367 ret->id = id;
368 ret->name = name;
369 ret->decl = t;
370 ret->is_artificial_var = false;
371 ret->is_heap_var = false;
372 ret->is_special_var = false;
373 ret->is_unknown_size_var = false;
374 ret->is_full_var = false;
375 ret->may_have_pointers = true;
376 var = t;
377 if (TREE_CODE (var) == SSA_NAME)
378 var = SSA_NAME_VAR (var);
379 ret->no_tbaa_pruning = (DECL_P (var)
380 && POINTER_TYPE_P (TREE_TYPE (var))
381 && DECL_NO_TBAA_P (var));
382 ret->solution = BITMAP_ALLOC (&pta_obstack);
383 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
384 ret->next = NULL;
385 return ret;
388 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
390 /* An expression that appears in a constraint. */
392 struct constraint_expr
394 /* Constraint type. */
395 constraint_expr_type type;
397 /* Variable we are referring to in the constraint. */
398 unsigned int var;
400 /* Offset, in bits, of this constraint from the beginning of
401 variables it ends up referring to.
403 IOW, in a deref constraint, we would deref, get the result set,
404 then add OFFSET to each member. */
405 HOST_WIDE_INT offset;
408 /* Use 0x8000... as special unknown offset. */
409 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
411 typedef struct constraint_expr ce_s;
412 DEF_VEC_O(ce_s);
413 DEF_VEC_ALLOC_O(ce_s, heap);
414 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
415 static void get_constraint_for (tree, VEC(ce_s, heap) **);
416 static void do_deref (VEC (ce_s, heap) **);
418 /* Our set constraints are made up of two constraint expressions, one
419 LHS, and one RHS.
421 As described in the introduction, our set constraints each represent an
422 operation between set valued variables.
424 struct constraint
426 struct constraint_expr lhs;
427 struct constraint_expr rhs;
430 /* List of constraints that we use to build the constraint graph from. */
432 static VEC(constraint_t,heap) *constraints;
433 static alloc_pool constraint_pool;
436 DEF_VEC_I(int);
437 DEF_VEC_ALLOC_I(int, heap);
439 /* The constraint graph is represented as an array of bitmaps
440 containing successor nodes. */
442 struct constraint_graph
444 /* Size of this graph, which may be different than the number of
445 nodes in the variable map. */
446 unsigned int size;
448 /* Explicit successors of each node. */
449 bitmap *succs;
451 /* Implicit predecessors of each node (Used for variable
452 substitution). */
453 bitmap *implicit_preds;
455 /* Explicit predecessors of each node (Used for variable substitution). */
456 bitmap *preds;
458 /* Indirect cycle representatives, or -1 if the node has no indirect
459 cycles. */
460 int *indirect_cycles;
462 /* Representative node for a node. rep[a] == a unless the node has
463 been unified. */
464 unsigned int *rep;
466 /* Equivalence class representative for a label. This is used for
467 variable substitution. */
468 int *eq_rep;
470 /* Pointer equivalence label for a node. All nodes with the same
471 pointer equivalence label can be unified together at some point
472 (either during constraint optimization or after the constraint
473 graph is built). */
474 unsigned int *pe;
476 /* Pointer equivalence representative for a label. This is used to
477 handle nodes that are pointer equivalent but not location
478 equivalent. We can unite these once the addressof constraints
479 are transformed into initial points-to sets. */
480 int *pe_rep;
482 /* Pointer equivalence label for each node, used during variable
483 substitution. */
484 unsigned int *pointer_label;
486 /* Location equivalence label for each node, used during location
487 equivalence finding. */
488 unsigned int *loc_label;
490 /* Pointed-by set for each node, used during location equivalence
491 finding. This is pointed-by rather than pointed-to, because it
492 is constructed using the predecessor graph. */
493 bitmap *pointed_by;
495 /* Points to sets for pointer equivalence. This is *not* the actual
496 points-to sets for nodes. */
497 bitmap *points_to;
499 /* Bitmap of nodes where the bit is set if the node is a direct
500 node. Used for variable substitution. */
501 sbitmap direct_nodes;
503 /* Bitmap of nodes where the bit is set if the node is address
504 taken. Used for variable substitution. */
505 bitmap address_taken;
507 /* Vector of complex constraints for each graph node. Complex
508 constraints are those involving dereferences or offsets that are
509 not 0. */
510 VEC(constraint_t,heap) **complex;
513 static constraint_graph_t graph;
515 /* During variable substitution and the offline version of indirect
516 cycle finding, we create nodes to represent dereferences and
517 address taken constraints. These represent where these start and
518 end. */
519 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
520 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
522 /* Return the representative node for NODE, if NODE has been unioned
523 with another NODE.
524 This function performs path compression along the way to finding
525 the representative. */
527 static unsigned int
528 find (unsigned int node)
530 gcc_assert (node < graph->size);
531 if (graph->rep[node] != node)
532 return graph->rep[node] = find (graph->rep[node]);
533 return node;
536 /* Union the TO and FROM nodes to the TO nodes.
537 Note that at some point in the future, we may want to do
538 union-by-rank, in which case we are going to have to return the
539 node we unified to. */
541 static bool
542 unite (unsigned int to, unsigned int from)
544 gcc_assert (to < graph->size && from < graph->size);
545 if (to != from && graph->rep[from] != to)
547 graph->rep[from] = to;
548 return true;
550 return false;
553 /* Create a new constraint consisting of LHS and RHS expressions. */
555 static constraint_t
556 new_constraint (const struct constraint_expr lhs,
557 const struct constraint_expr rhs)
559 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
560 ret->lhs = lhs;
561 ret->rhs = rhs;
562 return ret;
565 /* Print out constraint C to FILE. */
567 static void
568 dump_constraint (FILE *file, constraint_t c)
570 if (c->lhs.type == ADDRESSOF)
571 fprintf (file, "&");
572 else if (c->lhs.type == DEREF)
573 fprintf (file, "*");
574 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
575 if (c->lhs.offset == UNKNOWN_OFFSET)
576 fprintf (file, " + UNKNOWN");
577 else if (c->lhs.offset != 0)
578 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
579 fprintf (file, " = ");
580 if (c->rhs.type == ADDRESSOF)
581 fprintf (file, "&");
582 else if (c->rhs.type == DEREF)
583 fprintf (file, "*");
584 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
585 if (c->rhs.offset == UNKNOWN_OFFSET)
586 fprintf (file, " + UNKNOWN");
587 else if (c->rhs.offset != 0)
588 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
589 fprintf (file, "\n");
593 void debug_constraint (constraint_t);
594 void debug_constraints (void);
595 void debug_constraint_graph (void);
596 void debug_solution_for_var (unsigned int);
597 void debug_sa_points_to_info (void);
599 /* Print out constraint C to stderr. */
601 void
602 debug_constraint (constraint_t c)
604 dump_constraint (stderr, c);
607 /* Print out all constraints to FILE */
609 static void
610 dump_constraints (FILE *file)
612 int i;
613 constraint_t c;
614 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
615 dump_constraint (file, c);
618 /* Print out all constraints to stderr. */
620 void
621 debug_constraints (void)
623 dump_constraints (stderr);
626 /* Print out to FILE the edge in the constraint graph that is created by
627 constraint c. The edge may have a label, depending on the type of
628 constraint that it represents. If complex1, e.g: a = *b, then the label
629 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
630 complex with an offset, e.g: a = b + 8, then the label is "+".
631 Otherwise the edge has no label. */
633 static void
634 dump_constraint_edge (FILE *file, constraint_t c)
636 if (c->rhs.type != ADDRESSOF)
638 const char *src = get_varinfo (c->rhs.var)->name;
639 const char *dst = get_varinfo (c->lhs.var)->name;
640 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
641 /* Due to preprocessing of constraints, instructions like *a = *b are
642 illegal; thus, we do not have to handle such cases. */
643 if (c->lhs.type == DEREF)
644 fprintf (file, " [ label=\"*=\" ] ;\n");
645 else if (c->rhs.type == DEREF)
646 fprintf (file, " [ label=\"=*\" ] ;\n");
647 else
649 /* We must check the case where the constraint is an offset.
650 In this case, it is treated as a complex constraint. */
651 if (c->rhs.offset != c->lhs.offset)
652 fprintf (file, " [ label=\"+\" ] ;\n");
653 else
654 fprintf (file, " ;\n");
659 /* Print the constraint graph in dot format. */
661 static void
662 dump_constraint_graph (FILE *file)
664 unsigned int i=0, size;
665 constraint_t c;
667 /* Only print the graph if it has already been initialized: */
668 if (!graph)
669 return;
671 /* Print the constraints used to produce the constraint graph. The
672 constraints will be printed as comments in the dot file: */
673 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
674 dump_constraints (file);
675 fprintf (file, "*/\n");
677 /* Prints the header of the dot file: */
678 fprintf (file, "\n\n// The constraint graph in dot format:\n");
679 fprintf (file, "strict digraph {\n");
680 fprintf (file, " node [\n shape = box\n ]\n");
681 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
682 fprintf (file, "\n // List of nodes in the constraint graph:\n");
684 /* The next lines print the nodes in the graph. In order to get the
685 number of nodes in the graph, we must choose the minimum between the
686 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
687 yet been initialized, then graph->size == 0, otherwise we must only
688 read nodes that have an entry in VEC (varinfo_t, varmap). */
689 size = VEC_length (varinfo_t, varmap);
690 size = size < graph->size ? size : graph->size;
691 for (i = 0; i < size; i++)
693 const char *name = get_varinfo (graph->rep[i])->name;
694 fprintf (file, " \"%s\" ;\n", name);
697 /* Go over the list of constraints printing the edges in the constraint
698 graph. */
699 fprintf (file, "\n // The constraint edges:\n");
700 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
701 if (c)
702 dump_constraint_edge (file, c);
704 /* Prints the tail of the dot file. By now, only the closing bracket. */
705 fprintf (file, "}\n\n\n");
708 /* Print out the constraint graph to stderr. */
710 void
711 debug_constraint_graph (void)
713 dump_constraint_graph (stderr);
716 /* SOLVER FUNCTIONS
718 The solver is a simple worklist solver, that works on the following
719 algorithm:
721 sbitmap changed_nodes = all zeroes;
722 changed_count = 0;
723 For each node that is not already collapsed:
724 changed_count++;
725 set bit in changed nodes
727 while (changed_count > 0)
729 compute topological ordering for constraint graph
731 find and collapse cycles in the constraint graph (updating
732 changed if necessary)
734 for each node (n) in the graph in topological order:
735 changed_count--;
737 Process each complex constraint associated with the node,
738 updating changed if necessary.
740 For each outgoing edge from n, propagate the solution from n to
741 the destination of the edge, updating changed as necessary.
743 } */
745 /* Return true if two constraint expressions A and B are equal. */
747 static bool
748 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
750 return a.type == b.type && a.var == b.var && a.offset == b.offset;
753 /* Return true if constraint expression A is less than constraint expression
754 B. This is just arbitrary, but consistent, in order to give them an
755 ordering. */
757 static bool
758 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
760 if (a.type == b.type)
762 if (a.var == b.var)
763 return a.offset < b.offset;
764 else
765 return a.var < b.var;
767 else
768 return a.type < b.type;
771 /* Return true if constraint A is less than constraint B. This is just
772 arbitrary, but consistent, in order to give them an ordering. */
774 static bool
775 constraint_less (const constraint_t a, const constraint_t b)
777 if (constraint_expr_less (a->lhs, b->lhs))
778 return true;
779 else if (constraint_expr_less (b->lhs, a->lhs))
780 return false;
781 else
782 return constraint_expr_less (a->rhs, b->rhs);
785 /* Return true if two constraints A and B are equal. */
787 static bool
788 constraint_equal (struct constraint a, struct constraint b)
790 return constraint_expr_equal (a.lhs, b.lhs)
791 && constraint_expr_equal (a.rhs, b.rhs);
795 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
797 static constraint_t
798 constraint_vec_find (VEC(constraint_t,heap) *vec,
799 struct constraint lookfor)
801 unsigned int place;
802 constraint_t found;
804 if (vec == NULL)
805 return NULL;
807 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
808 if (place >= VEC_length (constraint_t, vec))
809 return NULL;
810 found = VEC_index (constraint_t, vec, place);
811 if (!constraint_equal (*found, lookfor))
812 return NULL;
813 return found;
816 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
818 static void
819 constraint_set_union (VEC(constraint_t,heap) **to,
820 VEC(constraint_t,heap) **from)
822 int i;
823 constraint_t c;
825 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
827 if (constraint_vec_find (*to, *c) == NULL)
829 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
830 constraint_less);
831 VEC_safe_insert (constraint_t, heap, *to, place, c);
836 /* Expands the solution in SET to all sub-fields of variables included.
837 Union the expanded result into RESULT. */
839 static void
840 solution_set_expand (bitmap result, bitmap set)
842 bitmap_iterator bi;
843 bitmap vars = NULL;
844 unsigned j;
846 /* In a first pass record all variables we need to add all
847 sub-fields off. This avoids quadratic behavior. */
848 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
850 varinfo_t v = get_varinfo (j);
851 if (v->is_artificial_var
852 || v->is_full_var)
853 continue;
854 v = lookup_vi_for_tree (v->decl);
855 if (vars == NULL)
856 vars = BITMAP_ALLOC (NULL);
857 bitmap_set_bit (vars, v->id);
860 /* In the second pass now do the addition to the solution and
861 to speed up solving add it to the delta as well. */
862 if (vars != NULL)
864 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
866 varinfo_t v = get_varinfo (j);
867 for (; v != NULL; v = v->next)
868 bitmap_set_bit (result, v->id);
870 BITMAP_FREE (vars);
874 /* Take a solution set SET, add OFFSET to each member of the set, and
875 overwrite SET with the result when done. */
877 static void
878 solution_set_add (bitmap set, HOST_WIDE_INT offset)
880 bitmap result = BITMAP_ALLOC (&iteration_obstack);
881 unsigned int i;
882 bitmap_iterator bi;
884 /* If the offset is unknown we have to expand the solution to
885 all subfields. */
886 if (offset == UNKNOWN_OFFSET)
888 solution_set_expand (set, set);
889 return;
892 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
894 varinfo_t vi = get_varinfo (i);
896 /* If this is a variable with just one field just set its bit
897 in the result. */
898 if (vi->is_artificial_var
899 || vi->is_unknown_size_var
900 || vi->is_full_var)
901 bitmap_set_bit (result, i);
902 else
904 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
906 /* If the offset makes the pointer point to before the
907 variable use offset zero for the field lookup. */
908 if (offset < 0
909 && fieldoffset > vi->offset)
910 fieldoffset = 0;
912 if (offset != 0)
913 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
915 bitmap_set_bit (result, vi->id);
916 /* If the result is not exactly at fieldoffset include the next
917 field as well. See get_constraint_for_ptr_offset for more
918 rationale. */
919 if (vi->offset != fieldoffset
920 && vi->next != NULL)
921 bitmap_set_bit (result, vi->next->id);
925 bitmap_copy (set, result);
926 BITMAP_FREE (result);
929 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
930 process. */
932 static bool
933 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
935 if (inc == 0)
936 return bitmap_ior_into (to, from);
937 else
939 bitmap tmp;
940 bool res;
942 tmp = BITMAP_ALLOC (&iteration_obstack);
943 bitmap_copy (tmp, from);
944 solution_set_add (tmp, inc);
945 res = bitmap_ior_into (to, tmp);
946 BITMAP_FREE (tmp);
947 return res;
951 /* Insert constraint C into the list of complex constraints for graph
952 node VAR. */
954 static void
955 insert_into_complex (constraint_graph_t graph,
956 unsigned int var, constraint_t c)
958 VEC (constraint_t, heap) *complex = graph->complex[var];
959 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
960 constraint_less);
962 /* Only insert constraints that do not already exist. */
963 if (place >= VEC_length (constraint_t, complex)
964 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
965 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
969 /* Condense two variable nodes into a single variable node, by moving
970 all associated info from SRC to TO. */
972 static void
973 merge_node_constraints (constraint_graph_t graph, unsigned int to,
974 unsigned int from)
976 unsigned int i;
977 constraint_t c;
979 gcc_assert (find (from) == to);
981 /* Move all complex constraints from src node into to node */
982 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
984 /* In complex constraints for node src, we may have either
985 a = *src, and *src = a, or an offseted constraint which are
986 always added to the rhs node's constraints. */
988 if (c->rhs.type == DEREF)
989 c->rhs.var = to;
990 else if (c->lhs.type == DEREF)
991 c->lhs.var = to;
992 else
993 c->rhs.var = to;
995 constraint_set_union (&graph->complex[to], &graph->complex[from]);
996 VEC_free (constraint_t, heap, graph->complex[from]);
997 graph->complex[from] = NULL;
1001 /* Remove edges involving NODE from GRAPH. */
1003 static void
1004 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1006 if (graph->succs[node])
1007 BITMAP_FREE (graph->succs[node]);
1010 /* Merge GRAPH nodes FROM and TO into node TO. */
1012 static void
1013 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1014 unsigned int from)
1016 if (graph->indirect_cycles[from] != -1)
1018 /* If we have indirect cycles with the from node, and we have
1019 none on the to node, the to node has indirect cycles from the
1020 from node now that they are unified.
1021 If indirect cycles exist on both, unify the nodes that they
1022 are in a cycle with, since we know they are in a cycle with
1023 each other. */
1024 if (graph->indirect_cycles[to] == -1)
1025 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1028 /* Merge all the successor edges. */
1029 if (graph->succs[from])
1031 if (!graph->succs[to])
1032 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1033 bitmap_ior_into (graph->succs[to],
1034 graph->succs[from]);
1037 clear_edges_for_node (graph, from);
1041 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1042 it doesn't exist in the graph already. */
1044 static void
1045 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1046 unsigned int from)
1048 if (to == from)
1049 return;
1051 if (!graph->implicit_preds[to])
1052 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1054 if (bitmap_set_bit (graph->implicit_preds[to], from))
1055 stats.num_implicit_edges++;
1058 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1059 it doesn't exist in the graph already.
1060 Return false if the edge already existed, true otherwise. */
1062 static void
1063 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1064 unsigned int from)
1066 if (!graph->preds[to])
1067 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1068 bitmap_set_bit (graph->preds[to], from);
1071 /* Add a graph edge to GRAPH, going from FROM to TO if
1072 it doesn't exist in the graph already.
1073 Return false if the edge already existed, true otherwise. */
1075 static bool
1076 add_graph_edge (constraint_graph_t graph, unsigned int to,
1077 unsigned int from)
1079 if (to == from)
1081 return false;
1083 else
1085 bool r = false;
1087 if (!graph->succs[from])
1088 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1089 if (bitmap_set_bit (graph->succs[from], to))
1091 r = true;
1092 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1093 stats.num_edges++;
1095 return r;
1100 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1102 static bool
1103 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1104 unsigned int dest)
1106 return (graph->succs[dest]
1107 && bitmap_bit_p (graph->succs[dest], src));
1110 /* Initialize the constraint graph structure to contain SIZE nodes. */
1112 static void
1113 init_graph (unsigned int size)
1115 unsigned int j;
1117 graph = XCNEW (struct constraint_graph);
1118 graph->size = size;
1119 graph->succs = XCNEWVEC (bitmap, graph->size);
1120 graph->indirect_cycles = XNEWVEC (int, graph->size);
1121 graph->rep = XNEWVEC (unsigned int, graph->size);
1122 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1123 graph->pe = XCNEWVEC (unsigned int, graph->size);
1124 graph->pe_rep = XNEWVEC (int, graph->size);
1126 for (j = 0; j < graph->size; j++)
1128 graph->rep[j] = j;
1129 graph->pe_rep[j] = -1;
1130 graph->indirect_cycles[j] = -1;
1134 /* Build the constraint graph, adding only predecessor edges right now. */
1136 static void
1137 build_pred_graph (void)
1139 int i;
1140 constraint_t c;
1141 unsigned int j;
1143 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1144 graph->preds = XCNEWVEC (bitmap, graph->size);
1145 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1146 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1147 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1148 graph->points_to = XCNEWVEC (bitmap, graph->size);
1149 graph->eq_rep = XNEWVEC (int, graph->size);
1150 graph->direct_nodes = sbitmap_alloc (graph->size);
1151 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1152 sbitmap_zero (graph->direct_nodes);
1154 for (j = 0; j < FIRST_REF_NODE; j++)
1156 if (!get_varinfo (j)->is_special_var)
1157 SET_BIT (graph->direct_nodes, j);
1160 for (j = 0; j < graph->size; j++)
1161 graph->eq_rep[j] = -1;
1163 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1164 graph->indirect_cycles[j] = -1;
1166 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1168 struct constraint_expr lhs = c->lhs;
1169 struct constraint_expr rhs = c->rhs;
1170 unsigned int lhsvar = lhs.var;
1171 unsigned int rhsvar = rhs.var;
1173 if (lhs.type == DEREF)
1175 /* *x = y. */
1176 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1177 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1179 else if (rhs.type == DEREF)
1181 /* x = *y */
1182 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1183 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1184 else
1185 RESET_BIT (graph->direct_nodes, lhsvar);
1187 else if (rhs.type == ADDRESSOF)
1189 varinfo_t v;
1191 /* x = &y */
1192 if (graph->points_to[lhsvar] == NULL)
1193 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1194 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1196 if (graph->pointed_by[rhsvar] == NULL)
1197 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1198 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1200 /* Implicitly, *x = y */
1201 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1203 /* All related variables are no longer direct nodes. */
1204 RESET_BIT (graph->direct_nodes, rhsvar);
1205 v = get_varinfo (rhsvar);
1206 if (!v->is_full_var)
1208 v = lookup_vi_for_tree (v->decl);
1211 RESET_BIT (graph->direct_nodes, v->id);
1212 v = v->next;
1214 while (v != NULL);
1216 bitmap_set_bit (graph->address_taken, rhsvar);
1218 else if (lhsvar > anything_id
1219 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1221 /* x = y */
1222 add_pred_graph_edge (graph, lhsvar, rhsvar);
1223 /* Implicitly, *x = *y */
1224 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1225 FIRST_REF_NODE + rhsvar);
1227 else if (lhs.offset != 0 || rhs.offset != 0)
1229 if (rhs.offset != 0)
1230 RESET_BIT (graph->direct_nodes, lhs.var);
1231 else if (lhs.offset != 0)
1232 RESET_BIT (graph->direct_nodes, rhs.var);
1237 /* Build the constraint graph, adding successor edges. */
1239 static void
1240 build_succ_graph (void)
1242 unsigned i, t;
1243 constraint_t c;
1245 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1247 struct constraint_expr lhs;
1248 struct constraint_expr rhs;
1249 unsigned int lhsvar;
1250 unsigned int rhsvar;
1252 if (!c)
1253 continue;
1255 lhs = c->lhs;
1256 rhs = c->rhs;
1257 lhsvar = find (lhs.var);
1258 rhsvar = find (rhs.var);
1260 if (lhs.type == DEREF)
1262 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1263 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1265 else if (rhs.type == DEREF)
1267 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1268 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1270 else if (rhs.type == ADDRESSOF)
1272 /* x = &y */
1273 gcc_assert (find (rhs.var) == rhs.var);
1274 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1276 else if (lhsvar > anything_id
1277 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1279 add_graph_edge (graph, lhsvar, rhsvar);
1283 /* Add edges from STOREDANYTHING to all non-direct nodes. */
1284 t = find (storedanything_id);
1285 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1287 if (!TEST_BIT (graph->direct_nodes, i))
1288 add_graph_edge (graph, find (i), t);
1293 /* Changed variables on the last iteration. */
1294 static unsigned int changed_count;
1295 static sbitmap changed;
1297 DEF_VEC_I(unsigned);
1298 DEF_VEC_ALLOC_I(unsigned,heap);
1301 /* Strongly Connected Component visitation info. */
1303 struct scc_info
1305 sbitmap visited;
1306 sbitmap deleted;
1307 unsigned int *dfs;
1308 unsigned int *node_mapping;
1309 int current_index;
1310 VEC(unsigned,heap) *scc_stack;
1314 /* Recursive routine to find strongly connected components in GRAPH.
1315 SI is the SCC info to store the information in, and N is the id of current
1316 graph node we are processing.
1318 This is Tarjan's strongly connected component finding algorithm, as
1319 modified by Nuutila to keep only non-root nodes on the stack.
1320 The algorithm can be found in "On finding the strongly connected
1321 connected components in a directed graph" by Esko Nuutila and Eljas
1322 Soisalon-Soininen, in Information Processing Letters volume 49,
1323 number 1, pages 9-14. */
1325 static void
1326 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1328 unsigned int i;
1329 bitmap_iterator bi;
1330 unsigned int my_dfs;
1332 SET_BIT (si->visited, n);
1333 si->dfs[n] = si->current_index ++;
1334 my_dfs = si->dfs[n];
1336 /* Visit all the successors. */
1337 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1339 unsigned int w;
1341 if (i > LAST_REF_NODE)
1342 break;
1344 w = find (i);
1345 if (TEST_BIT (si->deleted, w))
1346 continue;
1348 if (!TEST_BIT (si->visited, w))
1349 scc_visit (graph, si, w);
1351 unsigned int t = find (w);
1352 unsigned int nnode = find (n);
1353 gcc_assert (nnode == n);
1355 if (si->dfs[t] < si->dfs[nnode])
1356 si->dfs[n] = si->dfs[t];
1360 /* See if any components have been identified. */
1361 if (si->dfs[n] == my_dfs)
1363 if (VEC_length (unsigned, si->scc_stack) > 0
1364 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1366 bitmap scc = BITMAP_ALLOC (NULL);
1367 bool have_ref_node = n >= FIRST_REF_NODE;
1368 unsigned int lowest_node;
1369 bitmap_iterator bi;
1371 bitmap_set_bit (scc, n);
1373 while (VEC_length (unsigned, si->scc_stack) != 0
1374 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1376 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1378 bitmap_set_bit (scc, w);
1379 if (w >= FIRST_REF_NODE)
1380 have_ref_node = true;
1383 lowest_node = bitmap_first_set_bit (scc);
1384 gcc_assert (lowest_node < FIRST_REF_NODE);
1386 /* Collapse the SCC nodes into a single node, and mark the
1387 indirect cycles. */
1388 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1390 if (i < FIRST_REF_NODE)
1392 if (unite (lowest_node, i))
1393 unify_nodes (graph, lowest_node, i, false);
1395 else
1397 unite (lowest_node, i);
1398 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1402 SET_BIT (si->deleted, n);
1404 else
1405 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1408 /* Unify node FROM into node TO, updating the changed count if
1409 necessary when UPDATE_CHANGED is true. */
1411 static void
1412 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1413 bool update_changed)
1416 gcc_assert (to != from && find (to) == to);
1417 if (dump_file && (dump_flags & TDF_DETAILS))
1418 fprintf (dump_file, "Unifying %s to %s\n",
1419 get_varinfo (from)->name,
1420 get_varinfo (to)->name);
1422 if (update_changed)
1423 stats.unified_vars_dynamic++;
1424 else
1425 stats.unified_vars_static++;
1427 merge_graph_nodes (graph, to, from);
1428 merge_node_constraints (graph, to, from);
1430 if (get_varinfo (from)->no_tbaa_pruning)
1431 get_varinfo (to)->no_tbaa_pruning = true;
1433 /* Mark TO as changed if FROM was changed. If TO was already marked
1434 as changed, decrease the changed count. */
1436 if (update_changed && TEST_BIT (changed, from))
1438 RESET_BIT (changed, from);
1439 if (!TEST_BIT (changed, to))
1440 SET_BIT (changed, to);
1441 else
1443 gcc_assert (changed_count > 0);
1444 changed_count--;
1447 if (get_varinfo (from)->solution)
1449 /* If the solution changes because of the merging, we need to mark
1450 the variable as changed. */
1451 if (bitmap_ior_into (get_varinfo (to)->solution,
1452 get_varinfo (from)->solution))
1454 if (update_changed && !TEST_BIT (changed, to))
1456 SET_BIT (changed, to);
1457 changed_count++;
1461 BITMAP_FREE (get_varinfo (from)->solution);
1462 BITMAP_FREE (get_varinfo (from)->oldsolution);
1464 if (stats.iterations > 0)
1466 BITMAP_FREE (get_varinfo (to)->oldsolution);
1467 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1470 if (valid_graph_edge (graph, to, to))
1472 if (graph->succs[to])
1473 bitmap_clear_bit (graph->succs[to], to);
1477 /* Information needed to compute the topological ordering of a graph. */
1479 struct topo_info
1481 /* sbitmap of visited nodes. */
1482 sbitmap visited;
1483 /* Array that stores the topological order of the graph, *in
1484 reverse*. */
1485 VEC(unsigned,heap) *topo_order;
1489 /* Initialize and return a topological info structure. */
1491 static struct topo_info *
1492 init_topo_info (void)
1494 size_t size = graph->size;
1495 struct topo_info *ti = XNEW (struct topo_info);
1496 ti->visited = sbitmap_alloc (size);
1497 sbitmap_zero (ti->visited);
1498 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1499 return ti;
1503 /* Free the topological sort info pointed to by TI. */
1505 static void
1506 free_topo_info (struct topo_info *ti)
1508 sbitmap_free (ti->visited);
1509 VEC_free (unsigned, heap, ti->topo_order);
1510 free (ti);
1513 /* Visit the graph in topological order, and store the order in the
1514 topo_info structure. */
1516 static void
1517 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1518 unsigned int n)
1520 bitmap_iterator bi;
1521 unsigned int j;
1523 SET_BIT (ti->visited, n);
1525 if (graph->succs[n])
1526 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1528 if (!TEST_BIT (ti->visited, j))
1529 topo_visit (graph, ti, j);
1532 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1535 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1536 starting solution for y. */
1538 static void
1539 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1540 bitmap delta)
1542 unsigned int lhs = c->lhs.var;
1543 bool flag = false;
1544 bitmap sol = get_varinfo (lhs)->solution;
1545 unsigned int j;
1546 bitmap_iterator bi;
1547 HOST_WIDE_INT roffset = c->rhs.offset;
1549 /* Our IL does not allow this. */
1550 gcc_assert (c->lhs.offset == 0);
1552 /* If the solution of Y contains anything it is good enough to transfer
1553 this to the LHS. */
1554 if (bitmap_bit_p (delta, anything_id))
1556 flag |= bitmap_set_bit (sol, anything_id);
1557 goto done;
1560 /* If we do not know at with offset the rhs is dereferenced compute
1561 the reachability set of DELTA, conservatively assuming it is
1562 dereferenced at all valid offsets. */
1563 if (roffset == UNKNOWN_OFFSET)
1565 solution_set_expand (delta, delta);
1566 /* No further offset processing is necessary. */
1567 roffset = 0;
1570 /* For each variable j in delta (Sol(y)), add
1571 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1572 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1574 varinfo_t v = get_varinfo (j);
1575 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1576 unsigned int t;
1578 if (v->is_full_var)
1579 fieldoffset = v->offset;
1580 else if (roffset != 0)
1581 v = first_vi_for_offset (v, fieldoffset);
1582 /* If the access is outside of the variable we can ignore it. */
1583 if (!v)
1584 continue;
1588 t = find (v->id);
1590 /* Adding edges from the special vars is pointless.
1591 They don't have sets that can change. */
1592 if (get_varinfo (t)->is_special_var)
1593 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1594 /* Merging the solution from ESCAPED needlessly increases
1595 the set. Use ESCAPED as representative instead. */
1596 else if (v->id == escaped_id)
1597 flag |= bitmap_set_bit (sol, escaped_id);
1598 else if (add_graph_edge (graph, lhs, t))
1599 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1601 /* If the variable is not exactly at the requested offset
1602 we have to include the next one. */
1603 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1604 || v->next == NULL)
1605 break;
1607 v = v->next;
1608 fieldoffset = v->offset;
1610 while (1);
1613 done:
1614 /* If the LHS solution changed, mark the var as changed. */
1615 if (flag)
1617 get_varinfo (lhs)->solution = sol;
1618 if (!TEST_BIT (changed, lhs))
1620 SET_BIT (changed, lhs);
1621 changed_count++;
1626 /* Process a constraint C that represents *(x + off) = y using DELTA
1627 as the starting solution for x. */
1629 static void
1630 do_ds_constraint (constraint_t c, bitmap delta)
1632 unsigned int rhs = c->rhs.var;
1633 bitmap sol = get_varinfo (rhs)->solution;
1634 unsigned int j;
1635 bitmap_iterator bi;
1636 HOST_WIDE_INT loff = c->lhs.offset;
1638 /* Our IL does not allow this. */
1639 gcc_assert (c->rhs.offset == 0);
1641 /* If the solution of y contains ANYTHING simply use the ANYTHING
1642 solution. This avoids needlessly increasing the points-to sets. */
1643 if (bitmap_bit_p (sol, anything_id))
1644 sol = get_varinfo (find (anything_id))->solution;
1646 /* If the solution for x contains ANYTHING we have to merge the
1647 solution of y into all pointer variables which we do via
1648 STOREDANYTHING. */
1649 if (bitmap_bit_p (delta, anything_id))
1651 unsigned t = find (storedanything_id);
1652 if (add_graph_edge (graph, t, rhs))
1654 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1656 if (!TEST_BIT (changed, t))
1658 SET_BIT (changed, t);
1659 changed_count++;
1663 return;
1666 /* If we do not know at with offset the rhs is dereferenced compute
1667 the reachability set of DELTA, conservatively assuming it is
1668 dereferenced at all valid offsets. */
1669 if (loff == UNKNOWN_OFFSET)
1671 solution_set_expand (delta, delta);
1672 loff = 0;
1675 /* For each member j of delta (Sol(x)), add an edge from y to j and
1676 union Sol(y) into Sol(j) */
1677 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1679 varinfo_t v = get_varinfo (j);
1680 unsigned int t;
1681 HOST_WIDE_INT fieldoffset = v->offset + loff;
1683 if (v->is_special_var)
1684 continue;
1686 if (v->is_full_var)
1687 fieldoffset = v->offset;
1688 else if (loff != 0)
1689 v = first_vi_for_offset (v, fieldoffset);
1690 /* If the access is outside of the variable we can ignore it. */
1691 if (!v)
1692 continue;
1696 if (v->may_have_pointers)
1698 t = find (v->id);
1699 if (add_graph_edge (graph, t, rhs))
1701 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1703 if (t == rhs)
1704 sol = get_varinfo (rhs)->solution;
1705 if (!TEST_BIT (changed, t))
1707 SET_BIT (changed, t);
1708 changed_count++;
1714 /* If the variable is not exactly at the requested offset
1715 we have to include the next one. */
1716 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1717 || v->next == NULL)
1718 break;
1720 v = v->next;
1721 fieldoffset = v->offset;
1723 while (1);
1727 /* Handle a non-simple (simple meaning requires no iteration),
1728 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1730 static void
1731 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1733 if (c->lhs.type == DEREF)
1735 if (c->rhs.type == ADDRESSOF)
1737 gcc_unreachable();
1739 else
1741 /* *x = y */
1742 do_ds_constraint (c, delta);
1745 else if (c->rhs.type == DEREF)
1747 /* x = *y */
1748 if (!(get_varinfo (c->lhs.var)->is_special_var))
1749 do_sd_constraint (graph, c, delta);
1751 else
1753 bitmap tmp;
1754 bitmap solution;
1755 bool flag = false;
1757 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1758 solution = get_varinfo (c->rhs.var)->solution;
1759 tmp = get_varinfo (c->lhs.var)->solution;
1761 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1763 if (flag)
1765 get_varinfo (c->lhs.var)->solution = tmp;
1766 if (!TEST_BIT (changed, c->lhs.var))
1768 SET_BIT (changed, c->lhs.var);
1769 changed_count++;
1775 /* Initialize and return a new SCC info structure. */
1777 static struct scc_info *
1778 init_scc_info (size_t size)
1780 struct scc_info *si = XNEW (struct scc_info);
1781 size_t i;
1783 si->current_index = 0;
1784 si->visited = sbitmap_alloc (size);
1785 sbitmap_zero (si->visited);
1786 si->deleted = sbitmap_alloc (size);
1787 sbitmap_zero (si->deleted);
1788 si->node_mapping = XNEWVEC (unsigned int, size);
1789 si->dfs = XCNEWVEC (unsigned int, size);
1791 for (i = 0; i < size; i++)
1792 si->node_mapping[i] = i;
1794 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1795 return si;
1798 /* Free an SCC info structure pointed to by SI */
1800 static void
1801 free_scc_info (struct scc_info *si)
1803 sbitmap_free (si->visited);
1804 sbitmap_free (si->deleted);
1805 free (si->node_mapping);
1806 free (si->dfs);
1807 VEC_free (unsigned, heap, si->scc_stack);
1808 free (si);
1812 /* Find indirect cycles in GRAPH that occur, using strongly connected
1813 components, and note them in the indirect cycles map.
1815 This technique comes from Ben Hardekopf and Calvin Lin,
1816 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1817 Lines of Code", submitted to PLDI 2007. */
1819 static void
1820 find_indirect_cycles (constraint_graph_t graph)
1822 unsigned int i;
1823 unsigned int size = graph->size;
1824 struct scc_info *si = init_scc_info (size);
1826 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1827 if (!TEST_BIT (si->visited, i) && find (i) == i)
1828 scc_visit (graph, si, i);
1830 free_scc_info (si);
1833 /* Compute a topological ordering for GRAPH, and store the result in the
1834 topo_info structure TI. */
1836 static void
1837 compute_topo_order (constraint_graph_t graph,
1838 struct topo_info *ti)
1840 unsigned int i;
1841 unsigned int size = graph->size;
1843 for (i = 0; i != size; ++i)
1844 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1845 topo_visit (graph, ti, i);
1848 /* Structure used to for hash value numbering of pointer equivalence
1849 classes. */
1851 typedef struct equiv_class_label
1853 hashval_t hashcode;
1854 unsigned int equivalence_class;
1855 bitmap labels;
1856 } *equiv_class_label_t;
1857 typedef const struct equiv_class_label *const_equiv_class_label_t;
1859 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1860 classes. */
1861 static htab_t pointer_equiv_class_table;
1863 /* A hashtable for mapping a bitmap of labels->location equivalence
1864 classes. */
1865 static htab_t location_equiv_class_table;
1867 /* Hash function for a equiv_class_label_t */
1869 static hashval_t
1870 equiv_class_label_hash (const void *p)
1872 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1873 return ecl->hashcode;
1876 /* Equality function for two equiv_class_label_t's. */
1878 static int
1879 equiv_class_label_eq (const void *p1, const void *p2)
1881 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
1882 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
1883 return bitmap_equal_p (eql1->labels, eql2->labels);
1886 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
1887 contains. */
1889 static unsigned int
1890 equiv_class_lookup (htab_t table, bitmap labels)
1892 void **slot;
1893 struct equiv_class_label ecl;
1895 ecl.labels = labels;
1896 ecl.hashcode = bitmap_hash (labels);
1898 slot = htab_find_slot_with_hash (table, &ecl,
1899 ecl.hashcode, NO_INSERT);
1900 if (!slot)
1901 return 0;
1902 else
1903 return ((equiv_class_label_t) *slot)->equivalence_class;
1907 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
1908 to TABLE. */
1910 static void
1911 equiv_class_add (htab_t table, unsigned int equivalence_class,
1912 bitmap labels)
1914 void **slot;
1915 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
1917 ecl->labels = labels;
1918 ecl->equivalence_class = equivalence_class;
1919 ecl->hashcode = bitmap_hash (labels);
1921 slot = htab_find_slot_with_hash (table, ecl,
1922 ecl->hashcode, INSERT);
1923 gcc_assert (!*slot);
1924 *slot = (void *) ecl;
1927 /* Perform offline variable substitution.
1929 This is a worst case quadratic time way of identifying variables
1930 that must have equivalent points-to sets, including those caused by
1931 static cycles, and single entry subgraphs, in the constraint graph.
1933 The technique is described in "Exploiting Pointer and Location
1934 Equivalence to Optimize Pointer Analysis. In the 14th International
1935 Static Analysis Symposium (SAS), August 2007." It is known as the
1936 "HU" algorithm, and is equivalent to value numbering the collapsed
1937 constraint graph including evaluating unions.
1939 The general method of finding equivalence classes is as follows:
1940 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1941 Initialize all non-REF nodes to be direct nodes.
1942 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1943 variable}
1944 For each constraint containing the dereference, we also do the same
1945 thing.
1947 We then compute SCC's in the graph and unify nodes in the same SCC,
1948 including pts sets.
1950 For each non-collapsed node x:
1951 Visit all unvisited explicit incoming edges.
1952 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1953 where y->x.
1954 Lookup the equivalence class for pts(x).
1955 If we found one, equivalence_class(x) = found class.
1956 Otherwise, equivalence_class(x) = new class, and new_class is
1957 added to the lookup table.
1959 All direct nodes with the same equivalence class can be replaced
1960 with a single representative node.
1961 All unlabeled nodes (label == 0) are not pointers and all edges
1962 involving them can be eliminated.
1963 We perform these optimizations during rewrite_constraints
1965 In addition to pointer equivalence class finding, we also perform
1966 location equivalence class finding. This is the set of variables
1967 that always appear together in points-to sets. We use this to
1968 compress the size of the points-to sets. */
1970 /* Current maximum pointer equivalence class id. */
1971 static int pointer_equiv_class;
1973 /* Current maximum location equivalence class id. */
1974 static int location_equiv_class;
1976 /* Recursive routine to find strongly connected components in GRAPH,
1977 and label it's nodes with DFS numbers. */
1979 static void
1980 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1982 unsigned int i;
1983 bitmap_iterator bi;
1984 unsigned int my_dfs;
1986 gcc_assert (si->node_mapping[n] == n);
1987 SET_BIT (si->visited, n);
1988 si->dfs[n] = si->current_index ++;
1989 my_dfs = si->dfs[n];
1991 /* Visit all the successors. */
1992 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
1994 unsigned int w = si->node_mapping[i];
1996 if (TEST_BIT (si->deleted, w))
1997 continue;
1999 if (!TEST_BIT (si->visited, w))
2000 condense_visit (graph, si, w);
2002 unsigned int t = si->node_mapping[w];
2003 unsigned int nnode = si->node_mapping[n];
2004 gcc_assert (nnode == n);
2006 if (si->dfs[t] < si->dfs[nnode])
2007 si->dfs[n] = si->dfs[t];
2011 /* Visit all the implicit predecessors. */
2012 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2014 unsigned int w = si->node_mapping[i];
2016 if (TEST_BIT (si->deleted, w))
2017 continue;
2019 if (!TEST_BIT (si->visited, w))
2020 condense_visit (graph, si, w);
2022 unsigned int t = si->node_mapping[w];
2023 unsigned int nnode = si->node_mapping[n];
2024 gcc_assert (nnode == n);
2026 if (si->dfs[t] < si->dfs[nnode])
2027 si->dfs[n] = si->dfs[t];
2031 /* See if any components have been identified. */
2032 if (si->dfs[n] == my_dfs)
2034 while (VEC_length (unsigned, si->scc_stack) != 0
2035 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2037 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2038 si->node_mapping[w] = n;
2040 if (!TEST_BIT (graph->direct_nodes, w))
2041 RESET_BIT (graph->direct_nodes, n);
2043 /* Unify our nodes. */
2044 if (graph->preds[w])
2046 if (!graph->preds[n])
2047 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2048 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2050 if (graph->implicit_preds[w])
2052 if (!graph->implicit_preds[n])
2053 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2054 bitmap_ior_into (graph->implicit_preds[n],
2055 graph->implicit_preds[w]);
2057 if (graph->points_to[w])
2059 if (!graph->points_to[n])
2060 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2061 bitmap_ior_into (graph->points_to[n],
2062 graph->points_to[w]);
2065 SET_BIT (si->deleted, n);
2067 else
2068 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2071 /* Label pointer equivalences. */
2073 static void
2074 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2076 unsigned int i;
2077 bitmap_iterator bi;
2078 SET_BIT (si->visited, n);
2080 if (!graph->points_to[n])
2081 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2083 /* Label and union our incoming edges's points to sets. */
2084 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2086 unsigned int w = si->node_mapping[i];
2087 if (!TEST_BIT (si->visited, w))
2088 label_visit (graph, si, w);
2090 /* Skip unused edges */
2091 if (w == n || graph->pointer_label[w] == 0)
2092 continue;
2094 if (graph->points_to[w])
2095 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2097 /* Indirect nodes get fresh variables. */
2098 if (!TEST_BIT (graph->direct_nodes, n))
2099 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2101 if (!bitmap_empty_p (graph->points_to[n]))
2103 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2104 graph->points_to[n]);
2105 if (!label)
2107 label = pointer_equiv_class++;
2108 equiv_class_add (pointer_equiv_class_table,
2109 label, graph->points_to[n]);
2111 graph->pointer_label[n] = label;
2115 /* Perform offline variable substitution, discovering equivalence
2116 classes, and eliminating non-pointer variables. */
2118 static struct scc_info *
2119 perform_var_substitution (constraint_graph_t graph)
2121 unsigned int i;
2122 unsigned int size = graph->size;
2123 struct scc_info *si = init_scc_info (size);
2125 bitmap_obstack_initialize (&iteration_obstack);
2126 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2127 equiv_class_label_eq, free);
2128 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2129 equiv_class_label_eq, free);
2130 pointer_equiv_class = 1;
2131 location_equiv_class = 1;
2133 /* Condense the nodes, which means to find SCC's, count incoming
2134 predecessors, and unite nodes in SCC's. */
2135 for (i = 0; i < FIRST_REF_NODE; i++)
2136 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2137 condense_visit (graph, si, si->node_mapping[i]);
2139 sbitmap_zero (si->visited);
2140 /* Actually the label the nodes for pointer equivalences */
2141 for (i = 0; i < FIRST_REF_NODE; i++)
2142 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2143 label_visit (graph, si, si->node_mapping[i]);
2145 /* Calculate location equivalence labels. */
2146 for (i = 0; i < FIRST_REF_NODE; i++)
2148 bitmap pointed_by;
2149 bitmap_iterator bi;
2150 unsigned int j;
2151 unsigned int label;
2153 if (!graph->pointed_by[i])
2154 continue;
2155 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2157 /* Translate the pointed-by mapping for pointer equivalence
2158 labels. */
2159 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2161 bitmap_set_bit (pointed_by,
2162 graph->pointer_label[si->node_mapping[j]]);
2164 /* The original pointed_by is now dead. */
2165 BITMAP_FREE (graph->pointed_by[i]);
2167 /* Look up the location equivalence label if one exists, or make
2168 one otherwise. */
2169 label = equiv_class_lookup (location_equiv_class_table,
2170 pointed_by);
2171 if (label == 0)
2173 label = location_equiv_class++;
2174 equiv_class_add (location_equiv_class_table,
2175 label, pointed_by);
2177 else
2179 if (dump_file && (dump_flags & TDF_DETAILS))
2180 fprintf (dump_file, "Found location equivalence for node %s\n",
2181 get_varinfo (i)->name);
2182 BITMAP_FREE (pointed_by);
2184 graph->loc_label[i] = label;
2188 if (dump_file && (dump_flags & TDF_DETAILS))
2189 for (i = 0; i < FIRST_REF_NODE; i++)
2191 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2192 fprintf (dump_file,
2193 "Equivalence classes for %s node id %d:%s are pointer: %d"
2194 ", location:%d\n",
2195 direct_node ? "Direct node" : "Indirect node", i,
2196 get_varinfo (i)->name,
2197 graph->pointer_label[si->node_mapping[i]],
2198 graph->loc_label[si->node_mapping[i]]);
2201 /* Quickly eliminate our non-pointer variables. */
2203 for (i = 0; i < FIRST_REF_NODE; i++)
2205 unsigned int node = si->node_mapping[i];
2207 if (graph->pointer_label[node] == 0)
2209 if (dump_file && (dump_flags & TDF_DETAILS))
2210 fprintf (dump_file,
2211 "%s is a non-pointer variable, eliminating edges.\n",
2212 get_varinfo (node)->name);
2213 stats.nonpointer_vars++;
2214 clear_edges_for_node (graph, node);
2218 return si;
2221 /* Free information that was only necessary for variable
2222 substitution. */
2224 static void
2225 free_var_substitution_info (struct scc_info *si)
2227 free_scc_info (si);
2228 free (graph->pointer_label);
2229 free (graph->loc_label);
2230 free (graph->pointed_by);
2231 free (graph->points_to);
2232 free (graph->eq_rep);
2233 sbitmap_free (graph->direct_nodes);
2234 htab_delete (pointer_equiv_class_table);
2235 htab_delete (location_equiv_class_table);
2236 bitmap_obstack_release (&iteration_obstack);
2239 /* Return an existing node that is equivalent to NODE, which has
2240 equivalence class LABEL, if one exists. Return NODE otherwise. */
2242 static unsigned int
2243 find_equivalent_node (constraint_graph_t graph,
2244 unsigned int node, unsigned int label)
2246 /* If the address version of this variable is unused, we can
2247 substitute it for anything else with the same label.
2248 Otherwise, we know the pointers are equivalent, but not the
2249 locations, and we can unite them later. */
2251 if (!bitmap_bit_p (graph->address_taken, node))
2253 gcc_assert (label < graph->size);
2255 if (graph->eq_rep[label] != -1)
2257 /* Unify the two variables since we know they are equivalent. */
2258 if (unite (graph->eq_rep[label], node))
2259 unify_nodes (graph, graph->eq_rep[label], node, false);
2260 return graph->eq_rep[label];
2262 else
2264 graph->eq_rep[label] = node;
2265 graph->pe_rep[label] = node;
2268 else
2270 gcc_assert (label < graph->size);
2271 graph->pe[node] = label;
2272 if (graph->pe_rep[label] == -1)
2273 graph->pe_rep[label] = node;
2276 return node;
2279 /* Unite pointer equivalent but not location equivalent nodes in
2280 GRAPH. This may only be performed once variable substitution is
2281 finished. */
2283 static void
2284 unite_pointer_equivalences (constraint_graph_t graph)
2286 unsigned int i;
2288 /* Go through the pointer equivalences and unite them to their
2289 representative, if they aren't already. */
2290 for (i = 0; i < FIRST_REF_NODE; i++)
2292 unsigned int label = graph->pe[i];
2293 if (label)
2295 int label_rep = graph->pe_rep[label];
2297 if (label_rep == -1)
2298 continue;
2300 label_rep = find (label_rep);
2301 if (label_rep >= 0 && unite (label_rep, find (i)))
2302 unify_nodes (graph, label_rep, i, false);
2307 /* Move complex constraints to the GRAPH nodes they belong to. */
2309 static void
2310 move_complex_constraints (constraint_graph_t graph)
2312 int i;
2313 constraint_t c;
2315 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2317 if (c)
2319 struct constraint_expr lhs = c->lhs;
2320 struct constraint_expr rhs = c->rhs;
2322 if (lhs.type == DEREF)
2324 insert_into_complex (graph, lhs.var, c);
2326 else if (rhs.type == DEREF)
2328 if (!(get_varinfo (lhs.var)->is_special_var))
2329 insert_into_complex (graph, rhs.var, c);
2331 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2332 && (lhs.offset != 0 || rhs.offset != 0))
2334 insert_into_complex (graph, rhs.var, c);
2341 /* Optimize and rewrite complex constraints while performing
2342 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2343 result of perform_variable_substitution. */
2345 static void
2346 rewrite_constraints (constraint_graph_t graph,
2347 struct scc_info *si)
2349 int i;
2350 unsigned int j;
2351 constraint_t c;
2353 for (j = 0; j < graph->size; j++)
2354 gcc_assert (find (j) == j);
2356 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2358 struct constraint_expr lhs = c->lhs;
2359 struct constraint_expr rhs = c->rhs;
2360 unsigned int lhsvar = find (lhs.var);
2361 unsigned int rhsvar = find (rhs.var);
2362 unsigned int lhsnode, rhsnode;
2363 unsigned int lhslabel, rhslabel;
2365 lhsnode = si->node_mapping[lhsvar];
2366 rhsnode = si->node_mapping[rhsvar];
2367 lhslabel = graph->pointer_label[lhsnode];
2368 rhslabel = graph->pointer_label[rhsnode];
2370 /* See if it is really a non-pointer variable, and if so, ignore
2371 the constraint. */
2372 if (lhslabel == 0)
2374 if (dump_file && (dump_flags & TDF_DETAILS))
2377 fprintf (dump_file, "%s is a non-pointer variable,"
2378 "ignoring constraint:",
2379 get_varinfo (lhs.var)->name);
2380 dump_constraint (dump_file, c);
2382 VEC_replace (constraint_t, constraints, i, NULL);
2383 continue;
2386 if (rhslabel == 0)
2388 if (dump_file && (dump_flags & TDF_DETAILS))
2391 fprintf (dump_file, "%s is a non-pointer variable,"
2392 "ignoring constraint:",
2393 get_varinfo (rhs.var)->name);
2394 dump_constraint (dump_file, c);
2396 VEC_replace (constraint_t, constraints, i, NULL);
2397 continue;
2400 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2401 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2402 c->lhs.var = lhsvar;
2403 c->rhs.var = rhsvar;
2408 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2409 part of an SCC, false otherwise. */
2411 static bool
2412 eliminate_indirect_cycles (unsigned int node)
2414 if (graph->indirect_cycles[node] != -1
2415 && !bitmap_empty_p (get_varinfo (node)->solution))
2417 unsigned int i;
2418 VEC(unsigned,heap) *queue = NULL;
2419 int queuepos;
2420 unsigned int to = find (graph->indirect_cycles[node]);
2421 bitmap_iterator bi;
2423 /* We can't touch the solution set and call unify_nodes
2424 at the same time, because unify_nodes is going to do
2425 bitmap unions into it. */
2427 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2429 if (find (i) == i && i != to)
2431 if (unite (to, i))
2432 VEC_safe_push (unsigned, heap, queue, i);
2436 for (queuepos = 0;
2437 VEC_iterate (unsigned, queue, queuepos, i);
2438 queuepos++)
2440 unify_nodes (graph, to, i, true);
2442 VEC_free (unsigned, heap, queue);
2443 return true;
2445 return false;
2448 /* Solve the constraint graph GRAPH using our worklist solver.
2449 This is based on the PW* family of solvers from the "Efficient Field
2450 Sensitive Pointer Analysis for C" paper.
2451 It works by iterating over all the graph nodes, processing the complex
2452 constraints and propagating the copy constraints, until everything stops
2453 changed. This corresponds to steps 6-8 in the solving list given above. */
2455 static void
2456 solve_graph (constraint_graph_t graph)
2458 unsigned int size = graph->size;
2459 unsigned int i;
2460 bitmap pts;
2462 changed_count = 0;
2463 changed = sbitmap_alloc (size);
2464 sbitmap_zero (changed);
2466 /* Mark all initial non-collapsed nodes as changed. */
2467 for (i = 0; i < size; i++)
2469 varinfo_t ivi = get_varinfo (i);
2470 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2471 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2472 || VEC_length (constraint_t, graph->complex[i]) > 0))
2474 SET_BIT (changed, i);
2475 changed_count++;
2479 /* Allocate a bitmap to be used to store the changed bits. */
2480 pts = BITMAP_ALLOC (&pta_obstack);
2482 while (changed_count > 0)
2484 unsigned int i;
2485 struct topo_info *ti = init_topo_info ();
2486 stats.iterations++;
2488 bitmap_obstack_initialize (&iteration_obstack);
2490 compute_topo_order (graph, ti);
2492 while (VEC_length (unsigned, ti->topo_order) != 0)
2495 i = VEC_pop (unsigned, ti->topo_order);
2497 /* If this variable is not a representative, skip it. */
2498 if (find (i) != i)
2499 continue;
2501 /* In certain indirect cycle cases, we may merge this
2502 variable to another. */
2503 if (eliminate_indirect_cycles (i) && find (i) != i)
2504 continue;
2506 /* If the node has changed, we need to process the
2507 complex constraints and outgoing edges again. */
2508 if (TEST_BIT (changed, i))
2510 unsigned int j;
2511 constraint_t c;
2512 bitmap solution;
2513 VEC(constraint_t,heap) *complex = graph->complex[i];
2514 bool solution_empty;
2516 RESET_BIT (changed, i);
2517 changed_count--;
2519 /* Compute the changed set of solution bits. */
2520 bitmap_and_compl (pts, get_varinfo (i)->solution,
2521 get_varinfo (i)->oldsolution);
2523 if (bitmap_empty_p (pts))
2524 continue;
2526 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2528 solution = get_varinfo (i)->solution;
2529 solution_empty = bitmap_empty_p (solution);
2531 /* Process the complex constraints */
2532 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2534 /* XXX: This is going to unsort the constraints in
2535 some cases, which will occasionally add duplicate
2536 constraints during unification. This does not
2537 affect correctness. */
2538 c->lhs.var = find (c->lhs.var);
2539 c->rhs.var = find (c->rhs.var);
2541 /* The only complex constraint that can change our
2542 solution to non-empty, given an empty solution,
2543 is a constraint where the lhs side is receiving
2544 some set from elsewhere. */
2545 if (!solution_empty || c->lhs.type != DEREF)
2546 do_complex_constraint (graph, c, pts);
2549 solution_empty = bitmap_empty_p (solution);
2551 if (!solution_empty)
2553 bitmap_iterator bi;
2554 unsigned eff_escaped_id = find (escaped_id);
2556 /* Propagate solution to all successors. */
2557 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2558 0, j, bi)
2560 bitmap tmp;
2561 bool flag;
2563 unsigned int to = find (j);
2564 tmp = get_varinfo (to)->solution;
2565 flag = false;
2567 /* Don't try to propagate to ourselves. */
2568 if (to == i)
2569 continue;
2571 /* If we propagate from ESCAPED use ESCAPED as
2572 placeholder. */
2573 if (i == eff_escaped_id)
2574 flag = bitmap_set_bit (tmp, escaped_id);
2575 else
2576 flag = set_union_with_increment (tmp, pts, 0);
2578 if (flag)
2580 get_varinfo (to)->solution = tmp;
2581 if (!TEST_BIT (changed, to))
2583 SET_BIT (changed, to);
2584 changed_count++;
2591 free_topo_info (ti);
2592 bitmap_obstack_release (&iteration_obstack);
2595 BITMAP_FREE (pts);
2596 sbitmap_free (changed);
2597 bitmap_obstack_release (&oldpta_obstack);
2600 /* Map from trees to variable infos. */
2601 static struct pointer_map_t *vi_for_tree;
2604 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2606 static void
2607 insert_vi_for_tree (tree t, varinfo_t vi)
2609 void **slot = pointer_map_insert (vi_for_tree, t);
2610 gcc_assert (vi);
2611 gcc_assert (*slot == NULL);
2612 *slot = vi;
2615 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2616 exist in the map, return NULL, otherwise, return the varinfo we found. */
2618 static varinfo_t
2619 lookup_vi_for_tree (tree t)
2621 void **slot = pointer_map_contains (vi_for_tree, t);
2622 if (slot == NULL)
2623 return NULL;
2625 return (varinfo_t) *slot;
2628 /* Return a printable name for DECL */
2630 static const char *
2631 alias_get_name (tree decl)
2633 const char *res = get_name (decl);
2634 char *temp;
2635 int num_printed = 0;
2637 if (res != NULL)
2638 return res;
2640 res = "NULL";
2641 if (!dump_file)
2642 return res;
2644 if (TREE_CODE (decl) == SSA_NAME)
2646 num_printed = asprintf (&temp, "%s_%u",
2647 alias_get_name (SSA_NAME_VAR (decl)),
2648 SSA_NAME_VERSION (decl));
2650 else if (DECL_P (decl))
2652 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2654 if (num_printed > 0)
2656 res = ggc_strdup (temp);
2657 free (temp);
2659 return res;
2662 /* Find the variable id for tree T in the map.
2663 If T doesn't exist in the map, create an entry for it and return it. */
2665 static varinfo_t
2666 get_vi_for_tree (tree t)
2668 void **slot = pointer_map_contains (vi_for_tree, t);
2669 if (slot == NULL)
2670 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2672 return (varinfo_t) *slot;
2675 /* Get a constraint expression for a new temporary variable. */
2677 static struct constraint_expr
2678 get_constraint_exp_for_temp (tree t)
2680 struct constraint_expr cexpr;
2682 gcc_assert (SSA_VAR_P (t));
2684 cexpr.type = SCALAR;
2685 cexpr.var = get_vi_for_tree (t)->id;
2686 cexpr.offset = 0;
2688 return cexpr;
2691 /* Get a constraint expression vector from an SSA_VAR_P node.
2692 If address_p is true, the result will be taken its address of. */
2694 static void
2695 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2697 struct constraint_expr cexpr;
2698 varinfo_t vi;
2700 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2701 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2703 /* For parameters, get at the points-to set for the actual parm
2704 decl. */
2705 if (TREE_CODE (t) == SSA_NAME
2706 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2707 && SSA_NAME_IS_DEFAULT_DEF (t))
2709 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2710 return;
2713 vi = get_vi_for_tree (t);
2714 cexpr.var = vi->id;
2715 cexpr.type = SCALAR;
2716 cexpr.offset = 0;
2717 /* If we determine the result is "anything", and we know this is readonly,
2718 say it points to readonly memory instead. */
2719 if (cexpr.var == anything_id && TREE_READONLY (t))
2721 gcc_unreachable ();
2722 cexpr.type = ADDRESSOF;
2723 cexpr.var = readonly_id;
2726 /* If we are not taking the address of the constraint expr, add all
2727 sub-fiels of the variable as well. */
2728 if (!address_p)
2730 for (; vi; vi = vi->next)
2732 cexpr.var = vi->id;
2733 VEC_safe_push (ce_s, heap, *results, &cexpr);
2735 return;
2738 VEC_safe_push (ce_s, heap, *results, &cexpr);
2741 /* Process constraint T, performing various simplifications and then
2742 adding it to our list of overall constraints. */
2744 static void
2745 process_constraint (constraint_t t)
2747 struct constraint_expr rhs = t->rhs;
2748 struct constraint_expr lhs = t->lhs;
2750 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2751 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2753 /* If we didn't get any useful constraint from the lhs we get
2754 &ANYTHING as fallback from get_constraint_for. Deal with
2755 it here by turning it into *ANYTHING. */
2756 if (lhs.type == ADDRESSOF
2757 && lhs.var == anything_id)
2758 lhs.type = DEREF;
2760 /* ADDRESSOF on the lhs is invalid. */
2761 gcc_assert (lhs.type != ADDRESSOF);
2763 /* This can happen in our IR with things like n->a = *p */
2764 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2766 /* Split into tmp = *rhs, *lhs = tmp */
2767 tree rhsdecl = get_varinfo (rhs.var)->decl;
2768 tree pointertype = TREE_TYPE (rhsdecl);
2769 tree pointedtotype = TREE_TYPE (pointertype);
2770 tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
2771 struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);
2773 process_constraint (new_constraint (tmplhs, rhs));
2774 process_constraint (new_constraint (lhs, tmplhs));
2776 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2778 /* Split into tmp = &rhs, *lhs = tmp */
2779 tree rhsdecl = get_varinfo (rhs.var)->decl;
2780 tree pointertype = TREE_TYPE (rhsdecl);
2781 tree tmpvar = create_tmp_var_raw (pointertype, "derefaddrtmp");
2782 struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);
2784 process_constraint (new_constraint (tmplhs, rhs));
2785 process_constraint (new_constraint (lhs, tmplhs));
2787 else
2789 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2790 VEC_safe_push (constraint_t, heap, constraints, t);
2794 /* Return true if T is a type that could contain pointers. */
2796 static bool
2797 type_could_have_pointers (tree type)
2799 if (POINTER_TYPE_P (type))
2800 return true;
2802 if (TREE_CODE (type) == ARRAY_TYPE)
2803 return type_could_have_pointers (TREE_TYPE (type));
2805 return AGGREGATE_TYPE_P (type);
2808 /* Return true if T is a variable of a type that could contain
2809 pointers. */
2811 static bool
2812 could_have_pointers (tree t)
2814 return type_could_have_pointers (TREE_TYPE (t));
2817 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2818 structure. */
2820 static HOST_WIDE_INT
2821 bitpos_of_field (const tree fdecl)
2824 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2825 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2826 return -1;
2828 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2829 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2833 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2834 resulting constraint expressions in *RESULTS. */
2836 static void
2837 get_constraint_for_ptr_offset (tree ptr, tree offset,
2838 VEC (ce_s, heap) **results)
2840 struct constraint_expr *c;
2841 unsigned int j, n;
2842 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2844 /* If we do not do field-sensitive PTA adding offsets to pointers
2845 does not change the points-to solution. */
2846 if (!use_field_sensitive)
2848 get_constraint_for (ptr, results);
2849 return;
2852 /* If the offset is not a non-negative integer constant that fits
2853 in a HOST_WIDE_INT, we have to fall back to a conservative
2854 solution which includes all sub-fields of all pointed-to
2855 variables of ptr. */
2856 if (!host_integerp (offset, 0))
2857 rhsoffset = UNKNOWN_OFFSET;
2858 else
2860 /* Make sure the bit-offset also fits. */
2861 rhsunitoffset = TREE_INT_CST_LOW (offset);
2862 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2863 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2864 rhsoffset = UNKNOWN_OFFSET;
2867 get_constraint_for (ptr, results);
2868 if (rhsoffset == 0)
2869 return;
2871 /* As we are eventually appending to the solution do not use
2872 VEC_iterate here. */
2873 n = VEC_length (ce_s, *results);
2874 for (j = 0; j < n; j++)
2876 varinfo_t curr;
2877 c = VEC_index (ce_s, *results, j);
2878 curr = get_varinfo (c->var);
2880 if (c->type == ADDRESSOF
2881 /* If this varinfo represents a full variable just use it. */
2882 && curr->is_full_var)
2883 c->offset = 0;
2884 else if (c->type == ADDRESSOF
2885 /* If we do not know the offset add all subfields. */
2886 && rhsoffset == UNKNOWN_OFFSET)
2888 varinfo_t temp = lookup_vi_for_tree (curr->decl);
2891 struct constraint_expr c2;
2892 c2.var = temp->id;
2893 c2.type = ADDRESSOF;
2894 c2.offset = 0;
2895 VEC_safe_push (ce_s, heap, *results, &c2);
2896 temp = temp->next;
2898 while (temp);
2900 else if (c->type == ADDRESSOF)
2902 varinfo_t temp;
2903 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
2905 /* Search the sub-field which overlaps with the
2906 pointed-to offset. If the result is outside of the variable
2907 we have to provide a conservative result, as the variable is
2908 still reachable from the resulting pointer (even though it
2909 technically cannot point to anything). The last and first
2910 sub-fields are such conservative results.
2911 ??? If we always had a sub-field for &object + 1 then
2912 we could represent this in a more precise way. */
2913 if (rhsoffset < 0
2914 && curr->offset < offset)
2915 offset = 0;
2916 temp = first_or_preceding_vi_for_offset (curr, offset);
2918 /* If the found variable is not exactly at the pointed to
2919 result, we have to include the next variable in the
2920 solution as well. Otherwise two increments by offset / 2
2921 do not result in the same or a conservative superset
2922 solution. */
2923 if (temp->offset != offset
2924 && temp->next != NULL)
2926 struct constraint_expr c2;
2927 c2.var = temp->next->id;
2928 c2.type = ADDRESSOF;
2929 c2.offset = 0;
2930 VEC_safe_push (ce_s, heap, *results, &c2);
2932 c->var = temp->id;
2933 c->offset = 0;
2935 else
2936 c->offset = rhsoffset;
2941 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
2942 If address_p is true the result will be taken its address of. */
2944 static void
2945 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
2946 bool address_p)
2948 tree orig_t = t;
2949 HOST_WIDE_INT bitsize = -1;
2950 HOST_WIDE_INT bitmaxsize = -1;
2951 HOST_WIDE_INT bitpos;
2952 tree forzero;
2953 struct constraint_expr *result;
2955 /* Some people like to do cute things like take the address of
2956 &0->a.b */
2957 forzero = t;
2958 while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
2959 forzero = TREE_OPERAND (forzero, 0);
2961 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
2963 struct constraint_expr temp;
2965 temp.offset = 0;
2966 temp.var = integer_id;
2967 temp.type = SCALAR;
2968 VEC_safe_push (ce_s, heap, *results, &temp);
2969 return;
2972 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
2974 /* Pretend to take the address of the base, we'll take care of
2975 adding the required subset of sub-fields below. */
2976 get_constraint_for_1 (t, results, true);
2977 gcc_assert (VEC_length (ce_s, *results) == 1);
2978 result = VEC_last (ce_s, *results);
2980 if (result->type == SCALAR
2981 && get_varinfo (result->var)->is_full_var)
2982 /* For single-field vars do not bother about the offset. */
2983 result->offset = 0;
2984 else if (result->type == SCALAR)
2986 /* In languages like C, you can access one past the end of an
2987 array. You aren't allowed to dereference it, so we can
2988 ignore this constraint. When we handle pointer subtraction,
2989 we may have to do something cute here. */
2991 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
2992 && bitmaxsize != 0)
2994 /* It's also not true that the constraint will actually start at the
2995 right offset, it may start in some padding. We only care about
2996 setting the constraint to the first actual field it touches, so
2997 walk to find it. */
2998 struct constraint_expr cexpr = *result;
2999 varinfo_t curr;
3000 VEC_pop (ce_s, *results);
3001 cexpr.offset = 0;
3002 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3004 if (ranges_overlap_p (curr->offset, curr->size,
3005 bitpos, bitmaxsize))
3007 cexpr.var = curr->id;
3008 VEC_safe_push (ce_s, heap, *results, &cexpr);
3009 if (address_p)
3010 break;
3013 /* If we are going to take the address of this field then
3014 to be able to compute reachability correctly add at least
3015 the last field of the variable. */
3016 if (address_p
3017 && VEC_length (ce_s, *results) == 0)
3019 curr = get_varinfo (cexpr.var);
3020 while (curr->next != NULL)
3021 curr = curr->next;
3022 cexpr.var = curr->id;
3023 VEC_safe_push (ce_s, heap, *results, &cexpr);
3025 else
3026 /* Assert that we found *some* field there. The user couldn't be
3027 accessing *only* padding. */
3028 /* Still the user could access one past the end of an array
3029 embedded in a struct resulting in accessing *only* padding. */
3030 gcc_assert (VEC_length (ce_s, *results) >= 1
3031 || ref_contains_array_ref (orig_t));
3033 else if (bitmaxsize == 0)
3035 if (dump_file && (dump_flags & TDF_DETAILS))
3036 fprintf (dump_file, "Access to zero-sized part of variable,"
3037 "ignoring\n");
3039 else
3040 if (dump_file && (dump_flags & TDF_DETAILS))
3041 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3043 else if (result->type == DEREF)
3045 /* If we do not know exactly where the access goes say so. Note
3046 that only for non-structure accesses we know that we access
3047 at most one subfiled of any variable. */
3048 if (bitpos == -1
3049 || bitsize != bitmaxsize
3050 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
3051 result->offset = UNKNOWN_OFFSET;
3052 else
3053 result->offset = bitpos;
3055 else
3056 gcc_unreachable ();
3060 /* Dereference the constraint expression CONS, and return the result.
3061 DEREF (ADDRESSOF) = SCALAR
3062 DEREF (SCALAR) = DEREF
3063 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3064 This is needed so that we can handle dereferencing DEREF constraints. */
3066 static void
3067 do_deref (VEC (ce_s, heap) **constraints)
3069 struct constraint_expr *c;
3070 unsigned int i = 0;
3072 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
3074 if (c->type == SCALAR)
3075 c->type = DEREF;
3076 else if (c->type == ADDRESSOF)
3077 c->type = SCALAR;
3078 else if (c->type == DEREF)
3080 tree tmpvar = create_tmp_var_raw (ptr_type_node, "dereftmp");
3081 struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);
3082 process_constraint (new_constraint (tmplhs, *c));
3083 c->var = tmplhs.var;
3085 else
3086 gcc_unreachable ();
3090 /* Given a tree T, return the constraint expression for it. */
3092 static void
3093 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
3095 struct constraint_expr temp;
3097 /* x = integer is all glommed to a single variable, which doesn't
3098 point to anything by itself. That is, of course, unless it is an
3099 integer constant being treated as a pointer, in which case, we
3100 will return that this is really the addressof anything. This
3101 happens below, since it will fall into the default case. The only
3102 case we know something about an integer treated like a pointer is
3103 when it is the NULL pointer, and then we just say it points to
3104 NULL.
3106 Do not do that if -fno-delete-null-pointer-checks though, because
3107 in that case *NULL does not fail, so it _should_ alias *anything.
3108 It is not worth adding a new option or renaming the existing one,
3109 since this case is relatively obscure. */
3110 if (flag_delete_null_pointer_checks
3111 && ((TREE_CODE (t) == INTEGER_CST
3112 && integer_zerop (t))
3113 /* The only valid CONSTRUCTORs in gimple with pointer typed
3114 elements are zero-initializer. */
3115 || TREE_CODE (t) == CONSTRUCTOR))
3117 temp.var = nothing_id;
3118 temp.type = ADDRESSOF;
3119 temp.offset = 0;
3120 VEC_safe_push (ce_s, heap, *results, &temp);
3121 return;
3124 /* String constants are read-only. */
3125 if (TREE_CODE (t) == STRING_CST)
3127 temp.var = readonly_id;
3128 temp.type = SCALAR;
3129 temp.offset = 0;
3130 VEC_safe_push (ce_s, heap, *results, &temp);
3131 return;
3134 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3136 case tcc_expression:
3138 switch (TREE_CODE (t))
3140 case ADDR_EXPR:
3142 struct constraint_expr *c;
3143 unsigned int i;
3144 tree exp = TREE_OPERAND (t, 0);
3146 get_constraint_for_1 (exp, results, true);
3148 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
3150 if (c->type == DEREF)
3151 c->type = SCALAR;
3152 else
3153 c->type = ADDRESSOF;
3155 return;
3157 break;
3158 default:;
3160 break;
3162 case tcc_reference:
3164 switch (TREE_CODE (t))
3166 case INDIRECT_REF:
3168 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3169 do_deref (results);
3170 return;
3172 case ARRAY_REF:
3173 case ARRAY_RANGE_REF:
3174 case COMPONENT_REF:
3175 get_constraint_for_component_ref (t, results, address_p);
3176 return;
3177 case VIEW_CONVERT_EXPR:
3178 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3179 return;
3180 /* We are missing handling for TARGET_MEM_REF here. */
3181 default:;
3183 break;
3185 case tcc_exceptional:
3187 switch (TREE_CODE (t))
3189 case SSA_NAME:
3191 get_constraint_for_ssa_var (t, results, address_p);
3192 return;
3194 default:;
3196 break;
3198 case tcc_declaration:
3200 get_constraint_for_ssa_var (t, results, address_p);
3201 return;
3203 default:;
3206 /* The default fallback is a constraint from anything. */
3207 temp.type = ADDRESSOF;
3208 temp.var = anything_id;
3209 temp.offset = 0;
3210 VEC_safe_push (ce_s, heap, *results, &temp);
3213 /* Given a gimple tree T, return the constraint expression vector for it. */
3215 static void
3216 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3218 gcc_assert (VEC_length (ce_s, *results) == 0);
3220 get_constraint_for_1 (t, results, false);
3223 /* Handle aggregate copies by expanding into copies of the respective
3224 fields of the structures. */
3226 static void
3227 do_structure_copy (tree lhsop, tree rhsop)
3229 struct constraint_expr *lhsp, *rhsp;
3230 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3231 unsigned j;
3233 get_constraint_for (lhsop, &lhsc);
3234 get_constraint_for (rhsop, &rhsc);
3235 lhsp = VEC_index (ce_s, lhsc, 0);
3236 rhsp = VEC_index (ce_s, rhsc, 0);
3237 if (lhsp->type == DEREF
3238 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3239 || rhsp->type == DEREF)
3241 struct constraint_expr tmp;
3242 tree tmpvar = create_tmp_var_raw (ptr_type_node,
3243 "structcopydereftmp");
3244 tmp.var = get_vi_for_tree (tmpvar)->id;
3245 tmp.type = SCALAR;
3246 tmp.offset = 0;
3247 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
3248 process_constraint (new_constraint (tmp, *rhsp));
3249 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); ++j)
3250 process_constraint (new_constraint (*lhsp, tmp));
3252 else if (lhsp->type == SCALAR
3253 && (rhsp->type == SCALAR
3254 || rhsp->type == ADDRESSOF))
3256 tree lhsbase, rhsbase;
3257 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3258 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3259 unsigned k = 0;
3260 lhsbase = get_ref_base_and_extent (lhsop, &lhsoffset,
3261 &lhssize, &lhsmaxsize);
3262 rhsbase = get_ref_base_and_extent (rhsop, &rhsoffset,
3263 &rhssize, &rhsmaxsize);
3264 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3266 varinfo_t lhsv, rhsv;
3267 rhsp = VEC_index (ce_s, rhsc, k);
3268 lhsv = get_varinfo (lhsp->var);
3269 rhsv = get_varinfo (rhsp->var);
3270 if (lhsv->may_have_pointers
3271 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3272 rhsv->offset + lhsoffset, rhsv->size))
3273 process_constraint (new_constraint (*lhsp, *rhsp));
3274 if (lhsv->offset + rhsoffset + lhsv->size
3275 > rhsv->offset + lhsoffset + rhsv->size)
3277 ++k;
3278 if (k >= VEC_length (ce_s, rhsc))
3279 break;
3281 else
3282 ++j;
3285 else
3286 gcc_unreachable ();
3288 VEC_free (ce_s, heap, lhsc);
3289 VEC_free (ce_s, heap, rhsc);
3292 /* Create a constraint ID = OP. */
3294 static void
3295 make_constraint_to (unsigned id, tree op)
3297 VEC(ce_s, heap) *rhsc = NULL;
3298 struct constraint_expr *c;
3299 struct constraint_expr includes;
3300 unsigned int j;
3302 includes.var = id;
3303 includes.offset = 0;
3304 includes.type = SCALAR;
3306 get_constraint_for (op, &rhsc);
3307 for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
3308 process_constraint (new_constraint (includes, *c));
3309 VEC_free (ce_s, heap, rhsc);
3312 /* Make constraints necessary to make OP escape. */
3314 static void
3315 make_escape_constraint (tree op)
3317 make_constraint_to (escaped_id, op);
3320 /* For non-IPA mode, generate constraints necessary for a call on the
3321 RHS. */
3323 static void
3324 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3326 struct constraint_expr rhsc;
3327 unsigned i;
3329 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3331 tree arg = gimple_call_arg (stmt, i);
3333 /* Find those pointers being passed, and make sure they end up
3334 pointing to anything. */
3335 if (could_have_pointers (arg))
3336 make_escape_constraint (arg);
3339 /* The static chain escapes as well. */
3340 if (gimple_call_chain (stmt))
3341 make_escape_constraint (gimple_call_chain (stmt));
3343 /* Regular functions return nonlocal memory. */
3344 rhsc.var = nonlocal_id;
3345 rhsc.offset = 0;
3346 rhsc.type = SCALAR;
3347 VEC_safe_push (ce_s, heap, *results, &rhsc);
3350 /* For non-IPA mode, generate constraints necessary for a call
3351 that returns a pointer and assigns it to LHS. This simply makes
3352 the LHS point to global and escaped variables. */
3354 static void
3355 handle_lhs_call (tree lhs, int flags, VEC(ce_s, heap) *rhsc)
3357 VEC(ce_s, heap) *lhsc = NULL;
3358 unsigned int j;
3359 struct constraint_expr *lhsp;
3361 get_constraint_for (lhs, &lhsc);
3363 if (flags & ECF_MALLOC)
3365 struct constraint_expr rhsc;
3366 tree heapvar = heapvar_lookup (lhs);
3367 varinfo_t vi;
3369 if (heapvar == NULL)
3371 heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
3372 DECL_EXTERNAL (heapvar) = 1;
3373 get_var_ann (heapvar)->is_heapvar = 1;
3374 if (gimple_referenced_vars (cfun))
3375 add_referenced_var (heapvar);
3376 heapvar_insert (lhs, heapvar);
3379 rhsc.var = create_variable_info_for (heapvar,
3380 alias_get_name (heapvar));
3381 vi = get_varinfo (rhsc.var);
3382 vi->is_artificial_var = 1;
3383 vi->is_heap_var = 1;
3384 vi->is_unknown_size_var = true;
3385 vi->fullsize = ~0;
3386 vi->size = ~0;
3387 rhsc.type = ADDRESSOF;
3388 rhsc.offset = 0;
3389 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3390 process_constraint (new_constraint (*lhsp, rhsc));
3392 else if (VEC_length (ce_s, rhsc) > 0)
3394 struct constraint_expr *lhsp, *rhsp;
3395 unsigned int i, j;
3396 /* If the store is to a global decl make sure to
3397 add proper escape constraints. */
3398 lhs = get_base_address (lhs);
3399 if (lhs
3400 && DECL_P (lhs)
3401 && is_global_var (lhs))
3403 struct constraint_expr tmpc;
3404 tmpc.var = escaped_id;
3405 tmpc.offset = 0;
3406 tmpc.type = SCALAR;
3407 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3409 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3410 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
3411 process_constraint (new_constraint (*lhsp, *rhsp));
3413 VEC_free (ce_s, heap, lhsc);
3416 /* For non-IPA mode, generate constraints necessary for a call of a
3417 const function that returns a pointer in the statement STMT. */
3419 static void
3420 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3422 struct constraint_expr rhsc, tmpc;
3423 tree tmpvar = NULL_TREE;
3424 unsigned int k;
3426 /* Treat nested const functions the same as pure functions as far
3427 as the static chain is concerned. */
3428 if (gimple_call_chain (stmt))
3430 make_constraint_to (callused_id, gimple_call_chain (stmt));
3431 rhsc.var = callused_id;
3432 rhsc.offset = 0;
3433 rhsc.type = SCALAR;
3434 VEC_safe_push (ce_s, heap, *results, &rhsc);
3437 /* May return arguments. */
3438 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3440 tree arg = gimple_call_arg (stmt, k);
3442 if (could_have_pointers (arg))
3444 VEC(ce_s, heap) *argc = NULL;
3445 struct constraint_expr *argp;
3446 int i;
3448 /* We always use a temporary here, otherwise we end up with
3449 a quadratic amount of constraints for
3450 large_struct = const_call (large_struct);
3451 with field-sensitive PTA. */
3452 if (tmpvar == NULL_TREE)
3454 tmpvar = create_tmp_var_raw (ptr_type_node, "consttmp");
3455 tmpc = get_constraint_exp_for_temp (tmpvar);
3458 get_constraint_for (arg, &argc);
3459 for (i = 0; VEC_iterate (ce_s, argc, i, argp); i++)
3460 process_constraint (new_constraint (tmpc, *argp));
3461 VEC_free (ce_s, heap, argc);
3464 if (tmpvar != NULL_TREE)
3465 VEC_safe_push (ce_s, heap, *results, &tmpc);
3467 /* May return addresses of globals. */
3468 rhsc.var = nonlocal_id;
3469 rhsc.offset = 0;
3470 rhsc.type = ADDRESSOF;
3471 VEC_safe_push (ce_s, heap, *results, &rhsc);
3474 /* For non-IPA mode, generate constraints necessary for a call to a
3475 pure function in statement STMT. */
3477 static void
3478 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3480 struct constraint_expr rhsc;
3481 unsigned i;
3482 bool need_callused = false;
3484 /* Memory reached from pointer arguments is call-used. */
3485 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3487 tree arg = gimple_call_arg (stmt, i);
3489 if (could_have_pointers (arg))
3491 make_constraint_to (callused_id, arg);
3492 need_callused = true;
3496 /* The static chain is used as well. */
3497 if (gimple_call_chain (stmt))
3499 make_constraint_to (callused_id, gimple_call_chain (stmt));
3500 need_callused = true;
3503 /* Pure functions may return callused and nonlocal memory. */
3504 if (need_callused)
3506 rhsc.var = callused_id;
3507 rhsc.offset = 0;
3508 rhsc.type = SCALAR;
3509 VEC_safe_push (ce_s, heap, *results, &rhsc);
3511 rhsc.var = nonlocal_id;
3512 rhsc.offset = 0;
3513 rhsc.type = SCALAR;
3514 VEC_safe_push (ce_s, heap, *results, &rhsc);
3517 /* Walk statement T setting up aliasing constraints according to the
3518 references found in T. This function is the main part of the
3519 constraint builder. AI points to auxiliary alias information used
3520 when building alias sets and computing alias grouping heuristics. */
3522 static void
3523 find_func_aliases (gimple origt)
3525 gimple t = origt;
3526 VEC(ce_s, heap) *lhsc = NULL;
3527 VEC(ce_s, heap) *rhsc = NULL;
3528 struct constraint_expr *c;
3529 enum escape_type stmt_escape_type;
3531 /* Now build constraints expressions. */
3532 if (gimple_code (t) == GIMPLE_PHI)
3534 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
3536 /* Only care about pointers and structures containing
3537 pointers. */
3538 if (could_have_pointers (gimple_phi_result (t)))
3540 size_t i;
3541 unsigned int j;
3543 /* For a phi node, assign all the arguments to
3544 the result. */
3545 get_constraint_for (gimple_phi_result (t), &lhsc);
3546 for (i = 0; i < gimple_phi_num_args (t); i++)
3548 tree rhstype;
3549 tree strippedrhs = PHI_ARG_DEF (t, i);
3551 STRIP_NOPS (strippedrhs);
3552 rhstype = TREE_TYPE (strippedrhs);
3553 get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
3555 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3557 struct constraint_expr *c2;
3558 while (VEC_length (ce_s, rhsc) > 0)
3560 c2 = VEC_last (ce_s, rhsc);
3561 process_constraint (new_constraint (*c, *c2));
3562 VEC_pop (ce_s, rhsc);
3568 /* In IPA mode, we need to generate constraints to pass call
3569 arguments through their calls. There are two cases,
3570 either a GIMPLE_CALL returning a value, or just a plain
3571 GIMPLE_CALL when we are not.
3573 In non-ipa mode, we need to generate constraints for each
3574 pointer passed by address. */
3575 else if (is_gimple_call (t))
3577 if (!in_ipa_mode)
3579 VEC(ce_s, heap) *rhsc = NULL;
3580 int flags = gimple_call_flags (t);
3582 /* Const functions can return their arguments and addresses
3583 of global memory but not of escaped memory. */
3584 if (flags & (ECF_CONST|ECF_NOVOPS))
3586 if (gimple_call_lhs (t)
3587 && could_have_pointers (gimple_call_lhs (t)))
3588 handle_const_call (t, &rhsc);
3590 /* Pure functions can return addresses in and of memory
3591 reachable from their arguments, but they are not an escape
3592 point for reachable memory of their arguments. */
3593 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
3594 handle_pure_call (t, &rhsc);
3595 else
3596 handle_rhs_call (t, &rhsc);
3597 if (gimple_call_lhs (t)
3598 && could_have_pointers (gimple_call_lhs (t)))
3599 handle_lhs_call (gimple_call_lhs (t), flags, rhsc);
3600 VEC_free (ce_s, heap, rhsc);
3602 else
3604 tree lhsop;
3605 varinfo_t fi;
3606 int i = 1;
3607 size_t j;
3608 tree decl;
3610 lhsop = gimple_call_lhs (t);
3611 decl = gimple_call_fndecl (t);
3613 /* If we can directly resolve the function being called, do so.
3614 Otherwise, it must be some sort of indirect expression that
3615 we should still be able to handle. */
3616 if (decl)
3617 fi = get_vi_for_tree (decl);
3618 else
3620 decl = gimple_call_fn (t);
3621 fi = get_vi_for_tree (decl);
3624 /* Assign all the passed arguments to the appropriate incoming
3625 parameters of the function. */
3626 for (j = 0; j < gimple_call_num_args (t); j++)
3628 struct constraint_expr lhs ;
3629 struct constraint_expr *rhsp;
3630 tree arg = gimple_call_arg (t, j);
3632 get_constraint_for (arg, &rhsc);
3633 if (TREE_CODE (decl) != FUNCTION_DECL)
3635 lhs.type = DEREF;
3636 lhs.var = fi->id;
3637 lhs.offset = i;
3639 else
3641 lhs.type = SCALAR;
3642 lhs.var = first_vi_for_offset (fi, i)->id;
3643 lhs.offset = 0;
3645 while (VEC_length (ce_s, rhsc) != 0)
3647 rhsp = VEC_last (ce_s, rhsc);
3648 process_constraint (new_constraint (lhs, *rhsp));
3649 VEC_pop (ce_s, rhsc);
3651 i++;
3654 /* If we are returning a value, assign it to the result. */
3655 if (lhsop)
3657 struct constraint_expr rhs;
3658 struct constraint_expr *lhsp;
3659 unsigned int j = 0;
3661 get_constraint_for (lhsop, &lhsc);
3662 if (TREE_CODE (decl) != FUNCTION_DECL)
3664 rhs.type = DEREF;
3665 rhs.var = fi->id;
3666 rhs.offset = i;
3668 else
3670 rhs.type = SCALAR;
3671 rhs.var = first_vi_for_offset (fi, i)->id;
3672 rhs.offset = 0;
3674 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3675 process_constraint (new_constraint (*lhsp, rhs));
3679 /* Otherwise, just a regular assignment statement. Only care about
3680 operations with pointer result, others are dealt with as escape
3681 points if they have pointer operands. */
3682 else if (is_gimple_assign (t)
3683 && could_have_pointers (gimple_assign_lhs (t)))
3685 /* Otherwise, just a regular assignment statement. */
3686 tree lhsop = gimple_assign_lhs (t);
3687 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
3689 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
3690 do_structure_copy (lhsop, rhsop);
3691 else
3693 unsigned int j;
3694 struct constraint_expr temp;
3695 get_constraint_for (lhsop, &lhsc);
3697 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
3698 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
3699 gimple_assign_rhs2 (t), &rhsc);
3700 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
3701 && !(POINTER_TYPE_P (gimple_expr_type (t))
3702 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
3703 || gimple_assign_single_p (t))
3704 get_constraint_for (rhsop, &rhsc);
3705 else
3707 temp.type = ADDRESSOF;
3708 temp.var = anything_id;
3709 temp.offset = 0;
3710 VEC_safe_push (ce_s, heap, rhsc, &temp);
3712 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3714 struct constraint_expr *c2;
3715 unsigned int k;
3717 for (k = 0; VEC_iterate (ce_s, rhsc, k, c2); k++)
3718 process_constraint (new_constraint (*c, *c2));
3722 else if (gimple_code (t) == GIMPLE_CHANGE_DYNAMIC_TYPE)
3724 unsigned int j;
3726 get_constraint_for (gimple_cdt_location (t), &lhsc);
3727 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); ++j)
3728 get_varinfo (c->var)->no_tbaa_pruning = true;
3731 stmt_escape_type = is_escape_site (t);
3732 if (stmt_escape_type == ESCAPE_STORED_IN_GLOBAL)
3734 gcc_assert (is_gimple_assign (t));
3735 if (gimple_assign_rhs_code (t) == ADDR_EXPR)
3737 tree rhs = gimple_assign_rhs1 (t);
3738 tree base = get_base_address (TREE_OPERAND (rhs, 0));
3739 if (base
3740 && (!DECL_P (base)
3741 || !is_global_var (base)))
3742 make_escape_constraint (rhs);
3744 else if (get_gimple_rhs_class (gimple_assign_rhs_code (t))
3745 == GIMPLE_SINGLE_RHS)
3747 if (could_have_pointers (gimple_assign_rhs1 (t)))
3748 make_escape_constraint (gimple_assign_rhs1 (t));
3750 else
3751 gcc_unreachable ();
3753 else if (stmt_escape_type == ESCAPE_BAD_CAST)
3755 gcc_assert (is_gimple_assign (t));
3756 gcc_assert (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
3757 || gimple_assign_rhs_code (t) == VIEW_CONVERT_EXPR);
3758 make_escape_constraint (gimple_assign_rhs1 (t));
3760 else if (stmt_escape_type == ESCAPE_TO_ASM)
3762 unsigned i, noutputs;
3763 const char **oconstraints;
3764 const char *constraint;
3765 bool allows_mem, allows_reg, is_inout;
3767 noutputs = gimple_asm_noutputs (t);
3768 oconstraints = XALLOCAVEC (const char *, noutputs);
3770 for (i = 0; i < noutputs; ++i)
3772 tree link = gimple_asm_output_op (t, i);
3773 tree op = TREE_VALUE (link);
3775 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
3776 oconstraints[i] = constraint;
3777 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
3778 &allows_reg, &is_inout);
3780 /* A memory constraint makes the address of the operand escape. */
3781 if (!allows_reg && allows_mem)
3782 make_escape_constraint (build_fold_addr_expr (op));
3784 /* The asm may read global memory, so outputs may point to
3785 any global memory. */
3786 if (op && could_have_pointers (op))
3788 VEC(ce_s, heap) *lhsc = NULL;
3789 struct constraint_expr rhsc, *lhsp;
3790 unsigned j;
3791 get_constraint_for (op, &lhsc);
3792 rhsc.var = nonlocal_id;
3793 rhsc.offset = 0;
3794 rhsc.type = SCALAR;
3795 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3796 process_constraint (new_constraint (*lhsp, rhsc));
3797 VEC_free (ce_s, heap, lhsc);
3800 for (i = 0; i < gimple_asm_ninputs (t); ++i)
3802 tree link = gimple_asm_input_op (t, i);
3803 tree op = TREE_VALUE (link);
3805 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
3807 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
3808 &allows_mem, &allows_reg);
3810 /* A memory constraint makes the address of the operand escape. */
3811 if (!allows_reg && allows_mem)
3812 make_escape_constraint (build_fold_addr_expr (op));
3813 /* Strictly we'd only need the constraint to ESCAPED if
3814 the asm clobbers memory, otherwise using CALLUSED
3815 would be enough. */
3816 else if (op && could_have_pointers (op))
3817 make_escape_constraint (op);
3821 VEC_free (ce_s, heap, rhsc);
3822 VEC_free (ce_s, heap, lhsc);
3826 /* Find the first varinfo in the same variable as START that overlaps with
3827 OFFSET. Return NULL if we can't find one. */
3829 static varinfo_t
3830 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
3832 /* If the offset is outside of the variable, bail out. */
3833 if (offset >= start->fullsize)
3834 return NULL;
3836 /* If we cannot reach offset from start, lookup the first field
3837 and start from there. */
3838 if (start->offset > offset)
3839 start = lookup_vi_for_tree (start->decl);
3841 while (start)
3843 /* We may not find a variable in the field list with the actual
3844 offset when when we have glommed a structure to a variable.
3845 In that case, however, offset should still be within the size
3846 of the variable. */
3847 if (offset >= start->offset
3848 && offset < (start->offset + start->size))
3849 return start;
3851 start= start->next;
3854 return NULL;
3857 /* Find the first varinfo in the same variable as START that overlaps with
3858 OFFSET. If there is no such varinfo the varinfo directly preceding
3859 OFFSET is returned. */
3861 static varinfo_t
3862 first_or_preceding_vi_for_offset (varinfo_t start,
3863 unsigned HOST_WIDE_INT offset)
3865 /* If we cannot reach offset from start, lookup the first field
3866 and start from there. */
3867 if (start->offset > offset)
3868 start = lookup_vi_for_tree (start->decl);
3870 /* We may not find a variable in the field list with the actual
3871 offset when when we have glommed a structure to a variable.
3872 In that case, however, offset should still be within the size
3873 of the variable.
3874 If we got beyond the offset we look for return the field
3875 directly preceding offset which may be the last field. */
3876 while (start->next
3877 && offset >= start->offset
3878 && !(offset < (start->offset + start->size)))
3879 start = start->next;
3881 return start;
3885 /* Insert the varinfo FIELD into the field list for BASE, at the front
3886 of the list. */
3888 static void
3889 insert_into_field_list (varinfo_t base, varinfo_t field)
3891 varinfo_t prev = base;
3892 varinfo_t curr = base->next;
3894 field->next = curr;
3895 prev->next = field;
3898 /* Insert the varinfo FIELD into the field list for BASE, ordered by
3899 offset. */
3901 static void
3902 insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
3904 varinfo_t prev = base;
3905 varinfo_t curr = base->next;
3907 if (curr == NULL)
3909 prev->next = field;
3910 field->next = NULL;
3912 else
3914 while (curr)
3916 if (field->offset <= curr->offset)
3917 break;
3918 prev = curr;
3919 curr = curr->next;
3921 field->next = prev->next;
3922 prev->next = field;
3926 /* This structure is used during pushing fields onto the fieldstack
3927 to track the offset of the field, since bitpos_of_field gives it
3928 relative to its immediate containing type, and we want it relative
3929 to the ultimate containing object. */
3931 struct fieldoff
3933 /* Offset from the base of the base containing object to this field. */
3934 HOST_WIDE_INT offset;
3936 /* Size, in bits, of the field. */
3937 unsigned HOST_WIDE_INT size;
3939 unsigned has_unknown_size : 1;
3941 unsigned may_have_pointers : 1;
3943 typedef struct fieldoff fieldoff_s;
3945 DEF_VEC_O(fieldoff_s);
3946 DEF_VEC_ALLOC_O(fieldoff_s,heap);
3948 /* qsort comparison function for two fieldoff's PA and PB */
3950 static int
3951 fieldoff_compare (const void *pa, const void *pb)
3953 const fieldoff_s *foa = (const fieldoff_s *)pa;
3954 const fieldoff_s *fob = (const fieldoff_s *)pb;
3955 unsigned HOST_WIDE_INT foasize, fobsize;
3957 if (foa->offset < fob->offset)
3958 return -1;
3959 else if (foa->offset > fob->offset)
3960 return 1;
3962 foasize = foa->size;
3963 fobsize = fob->size;
3964 if (foasize < fobsize)
3965 return -1;
3966 else if (foasize > fobsize)
3967 return 1;
3968 return 0;
3971 /* Sort a fieldstack according to the field offset and sizes. */
3972 static void
3973 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
3975 qsort (VEC_address (fieldoff_s, fieldstack),
3976 VEC_length (fieldoff_s, fieldstack),
3977 sizeof (fieldoff_s),
3978 fieldoff_compare);
3981 /* Return true if V is a tree that we can have subvars for.
3982 Normally, this is any aggregate type. Also complex
3983 types which are not gimple registers can have subvars. */
3985 static inline bool
3986 var_can_have_subvars (const_tree v)
3988 /* Volatile variables should never have subvars. */
3989 if (TREE_THIS_VOLATILE (v))
3990 return false;
3992 /* Non decls or memory tags can never have subvars. */
3993 if (!DECL_P (v))
3994 return false;
3996 /* Aggregates without overlapping fields can have subvars. */
3997 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
3998 return true;
4000 return false;
4003 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4004 the fields of TYPE onto fieldstack, recording their offsets along
4005 the way.
4007 OFFSET is used to keep track of the offset in this entire
4008 structure, rather than just the immediately containing structure.
4009 Returns the number of fields pushed. */
4011 static int
4012 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
4013 HOST_WIDE_INT offset)
4015 tree field;
4016 int count = 0;
4018 if (TREE_CODE (type) != RECORD_TYPE)
4019 return 0;
4021 /* If the vector of fields is growing too big, bail out early.
4022 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4023 sure this fails. */
4024 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
4025 return 0;
4027 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4028 if (TREE_CODE (field) == FIELD_DECL)
4030 bool push = false;
4031 int pushed = 0;
4032 HOST_WIDE_INT foff = bitpos_of_field (field);
4034 if (!var_can_have_subvars (field)
4035 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
4036 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
4037 push = true;
4038 else if (!(pushed = push_fields_onto_fieldstack
4039 (TREE_TYPE (field), fieldstack, offset + foff))
4040 && (DECL_SIZE (field)
4041 && !integer_zerop (DECL_SIZE (field))))
4042 /* Empty structures may have actual size, like in C++. So
4043 see if we didn't push any subfields and the size is
4044 nonzero, push the field onto the stack. */
4045 push = true;
4047 if (push)
4049 fieldoff_s *pair = NULL;
4050 bool has_unknown_size = false;
4052 if (!VEC_empty (fieldoff_s, *fieldstack))
4053 pair = VEC_last (fieldoff_s, *fieldstack);
4055 if (!DECL_SIZE (field)
4056 || !host_integerp (DECL_SIZE (field), 1))
4057 has_unknown_size = true;
4059 /* If adjacent fields do not contain pointers merge them. */
4060 if (pair
4061 && !pair->may_have_pointers
4062 && !could_have_pointers (field)
4063 && !pair->has_unknown_size
4064 && !has_unknown_size
4065 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
4067 pair = VEC_last (fieldoff_s, *fieldstack);
4068 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
4070 else
4072 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
4073 pair->offset = offset + foff;
4074 pair->has_unknown_size = has_unknown_size;
4075 if (!has_unknown_size)
4076 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
4077 else
4078 pair->size = -1;
4079 pair->may_have_pointers = could_have_pointers (field);
4080 count++;
4083 else
4084 count += pushed;
4087 return count;
4090 /* Create a constraint ID = &FROM. */
4092 static void
4093 make_constraint_from (varinfo_t vi, int from)
4095 struct constraint_expr lhs, rhs;
4097 lhs.var = vi->id;
4098 lhs.offset = 0;
4099 lhs.type = SCALAR;
4101 rhs.var = from;
4102 rhs.offset = 0;
4103 rhs.type = ADDRESSOF;
4104 process_constraint (new_constraint (lhs, rhs));
4107 /* Create a constraint ID = FROM. */
4109 static void
4110 make_copy_constraint (varinfo_t vi, int from)
4112 struct constraint_expr lhs, rhs;
4114 lhs.var = vi->id;
4115 lhs.offset = 0;
4116 lhs.type = SCALAR;
4118 rhs.var = from;
4119 rhs.offset = 0;
4120 rhs.type = SCALAR;
4121 process_constraint (new_constraint (lhs, rhs));
4124 /* Count the number of arguments DECL has, and set IS_VARARGS to true
4125 if it is a varargs function. */
4127 static unsigned int
4128 count_num_arguments (tree decl, bool *is_varargs)
4130 unsigned int i = 0;
4131 tree t;
4133 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl));
4135 t = TREE_CHAIN (t))
4137 if (TREE_VALUE (t) == void_type_node)
4138 break;
4139 i++;
4142 if (!t)
4143 *is_varargs = true;
4144 return i;
4147 /* Creation function node for DECL, using NAME, and return the index
4148 of the variable we've created for the function. */
4150 static unsigned int
4151 create_function_info_for (tree decl, const char *name)
4153 unsigned int index = VEC_length (varinfo_t, varmap);
4154 varinfo_t vi;
4155 tree arg;
4156 unsigned int i;
4157 bool is_varargs = false;
4159 /* Create the variable info. */
4161 vi = new_var_info (decl, index, name);
4162 vi->decl = decl;
4163 vi->offset = 0;
4164 vi->size = 1;
4165 vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
4166 insert_vi_for_tree (vi->decl, vi);
4167 VEC_safe_push (varinfo_t, heap, varmap, vi);
4169 stats.total_vars++;
4171 /* If it's varargs, we don't know how many arguments it has, so we
4172 can't do much. */
4173 if (is_varargs)
4175 vi->fullsize = ~0;
4176 vi->size = ~0;
4177 vi->is_unknown_size_var = true;
4178 return index;
4182 arg = DECL_ARGUMENTS (decl);
4184 /* Set up variables for each argument. */
4185 for (i = 1; i < vi->fullsize; i++)
4187 varinfo_t argvi;
4188 const char *newname;
4189 char *tempname;
4190 unsigned int newindex;
4191 tree argdecl = decl;
4193 if (arg)
4194 argdecl = arg;
4196 newindex = VEC_length (varinfo_t, varmap);
4197 asprintf (&tempname, "%s.arg%d", name, i-1);
4198 newname = ggc_strdup (tempname);
4199 free (tempname);
4201 argvi = new_var_info (argdecl, newindex, newname);
4202 argvi->decl = argdecl;
4203 VEC_safe_push (varinfo_t, heap, varmap, argvi);
4204 argvi->offset = i;
4205 argvi->size = 1;
4206 argvi->is_full_var = true;
4207 argvi->fullsize = vi->fullsize;
4208 insert_into_field_list_sorted (vi, argvi);
4209 stats.total_vars ++;
4210 if (arg)
4212 insert_vi_for_tree (arg, argvi);
4213 arg = TREE_CHAIN (arg);
4217 /* Create a variable for the return var. */
4218 if (DECL_RESULT (decl) != NULL
4219 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
4221 varinfo_t resultvi;
4222 const char *newname;
4223 char *tempname;
4224 unsigned int newindex;
4225 tree resultdecl = decl;
4227 vi->fullsize ++;
4229 if (DECL_RESULT (decl))
4230 resultdecl = DECL_RESULT (decl);
4232 newindex = VEC_length (varinfo_t, varmap);
4233 asprintf (&tempname, "%s.result", name);
4234 newname = ggc_strdup (tempname);
4235 free (tempname);
4237 resultvi = new_var_info (resultdecl, newindex, newname);
4238 resultvi->decl = resultdecl;
4239 VEC_safe_push (varinfo_t, heap, varmap, resultvi);
4240 resultvi->offset = i;
4241 resultvi->size = 1;
4242 resultvi->fullsize = vi->fullsize;
4243 resultvi->is_full_var = true;
4244 insert_into_field_list_sorted (vi, resultvi);
4245 stats.total_vars ++;
4246 if (DECL_RESULT (decl))
4247 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
4249 return index;
4253 /* Return true if FIELDSTACK contains fields that overlap.
4254 FIELDSTACK is assumed to be sorted by offset. */
4256 static bool
4257 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
4259 fieldoff_s *fo = NULL;
4260 unsigned int i;
4261 HOST_WIDE_INT lastoffset = -1;
4263 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4265 if (fo->offset == lastoffset)
4266 return true;
4267 lastoffset = fo->offset;
4269 return false;
4272 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
4273 This will also create any varinfo structures necessary for fields
4274 of DECL. */
4276 static unsigned int
4277 create_variable_info_for (tree decl, const char *name)
4279 unsigned int index = VEC_length (varinfo_t, varmap);
4280 varinfo_t vi;
4281 tree decl_type = TREE_TYPE (decl);
4282 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
4283 bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
4284 VEC (fieldoff_s,heap) *fieldstack = NULL;
4286 if (TREE_CODE (decl) == FUNCTION_DECL && in_ipa_mode)
4287 return create_function_info_for (decl, name);
4289 if (var_can_have_subvars (decl) && use_field_sensitive
4290 && (!var_ann (decl)
4291 || var_ann (decl)->noalias_state == 0)
4292 && (!var_ann (decl)
4293 || !var_ann (decl)->is_heapvar))
4294 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
4296 /* If the variable doesn't have subvars, we may end up needing to
4297 sort the field list and create fake variables for all the
4298 fields. */
4299 vi = new_var_info (decl, index, name);
4300 vi->decl = decl;
4301 vi->offset = 0;
4302 vi->may_have_pointers = could_have_pointers (decl);
4303 if (!declsize
4304 || !host_integerp (declsize, 1))
4306 vi->is_unknown_size_var = true;
4307 vi->fullsize = ~0;
4308 vi->size = ~0;
4310 else
4312 vi->fullsize = TREE_INT_CST_LOW (declsize);
4313 vi->size = vi->fullsize;
4316 insert_vi_for_tree (vi->decl, vi);
4317 VEC_safe_push (varinfo_t, heap, varmap, vi);
4318 if (is_global && (!flag_whole_program || !in_ipa_mode)
4319 && vi->may_have_pointers)
4321 if (var_ann (decl)
4322 && var_ann (decl)->noalias_state == NO_ALIAS_ANYTHING)
4323 make_constraint_from (vi, vi->id);
4324 else
4325 make_copy_constraint (vi, nonlocal_id);
4328 stats.total_vars++;
4329 if (use_field_sensitive
4330 && !vi->is_unknown_size_var
4331 && var_can_have_subvars (decl)
4332 && VEC_length (fieldoff_s, fieldstack) > 1
4333 && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
4335 unsigned int newindex = VEC_length (varinfo_t, varmap);
4336 fieldoff_s *fo = NULL;
4337 bool notokay = false;
4338 unsigned int i;
4340 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4342 if (fo->has_unknown_size
4343 || fo->offset < 0)
4345 notokay = true;
4346 break;
4350 /* We can't sort them if we have a field with a variable sized type,
4351 which will make notokay = true. In that case, we are going to return
4352 without creating varinfos for the fields anyway, so sorting them is a
4353 waste to boot. */
4354 if (!notokay)
4356 sort_fieldstack (fieldstack);
4357 /* Due to some C++ FE issues, like PR 22488, we might end up
4358 what appear to be overlapping fields even though they,
4359 in reality, do not overlap. Until the C++ FE is fixed,
4360 we will simply disable field-sensitivity for these cases. */
4361 notokay = check_for_overlaps (fieldstack);
4365 if (VEC_length (fieldoff_s, fieldstack) != 0)
4366 fo = VEC_index (fieldoff_s, fieldstack, 0);
4368 if (fo == NULL || notokay)
4370 vi->is_unknown_size_var = 1;
4371 vi->fullsize = ~0;
4372 vi->size = ~0;
4373 vi->is_full_var = true;
4374 VEC_free (fieldoff_s, heap, fieldstack);
4375 return index;
4378 vi->size = fo->size;
4379 vi->offset = fo->offset;
4380 vi->may_have_pointers = fo->may_have_pointers;
4381 for (i = VEC_length (fieldoff_s, fieldstack) - 1;
4382 i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
4383 i--)
4385 varinfo_t newvi;
4386 const char *newname = "NULL";
4387 char *tempname;
4389 newindex = VEC_length (varinfo_t, varmap);
4390 if (dump_file)
4392 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
4393 "+" HOST_WIDE_INT_PRINT_DEC,
4394 vi->name, fo->offset, fo->size);
4395 newname = ggc_strdup (tempname);
4396 free (tempname);
4398 newvi = new_var_info (decl, newindex, newname);
4399 newvi->offset = fo->offset;
4400 newvi->size = fo->size;
4401 newvi->fullsize = vi->fullsize;
4402 newvi->may_have_pointers = fo->may_have_pointers;
4403 insert_into_field_list (vi, newvi);
4404 VEC_safe_push (varinfo_t, heap, varmap, newvi);
4405 if (is_global && (!flag_whole_program || !in_ipa_mode)
4406 && newvi->may_have_pointers)
4407 make_copy_constraint (newvi, nonlocal_id);
4409 stats.total_vars++;
4412 else
4413 vi->is_full_var = true;
4415 VEC_free (fieldoff_s, heap, fieldstack);
4417 return index;
4420 /* Print out the points-to solution for VAR to FILE. */
4422 static void
4423 dump_solution_for_var (FILE *file, unsigned int var)
4425 varinfo_t vi = get_varinfo (var);
4426 unsigned int i;
4427 bitmap_iterator bi;
4429 if (find (var) != var)
4431 varinfo_t vipt = get_varinfo (find (var));
4432 fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
4434 else
4436 fprintf (file, "%s = { ", vi->name);
4437 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4439 fprintf (file, "%s ", get_varinfo (i)->name);
4441 fprintf (file, "}");
4442 if (vi->no_tbaa_pruning)
4443 fprintf (file, " no-tbaa-pruning");
4444 fprintf (file, "\n");
4448 /* Print the points-to solution for VAR to stdout. */
4450 void
4451 debug_solution_for_var (unsigned int var)
4453 dump_solution_for_var (stdout, var);
4456 /* Create varinfo structures for all of the variables in the
4457 function for intraprocedural mode. */
4459 static void
4460 intra_create_variable_infos (void)
4462 tree t;
4463 struct constraint_expr lhs, rhs;
4465 /* For each incoming pointer argument arg, create the constraint ARG
4466 = NONLOCAL or a dummy variable if flag_argument_noalias is set. */
4467 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
4469 varinfo_t p;
4471 if (!could_have_pointers (t))
4472 continue;
4474 /* If flag_argument_noalias is set, then function pointer
4475 arguments are guaranteed not to point to each other. In that
4476 case, create an artificial variable PARM_NOALIAS and the
4477 constraint ARG = &PARM_NOALIAS. */
4478 if (POINTER_TYPE_P (TREE_TYPE (t)) && flag_argument_noalias > 0)
4480 varinfo_t vi;
4481 tree heapvar = heapvar_lookup (t);
4483 lhs.offset = 0;
4484 lhs.type = SCALAR;
4485 lhs.var = get_vi_for_tree (t)->id;
4487 if (heapvar == NULL_TREE)
4489 var_ann_t ann;
4490 heapvar = create_tmp_var_raw (ptr_type_node,
4491 "PARM_NOALIAS");
4492 DECL_EXTERNAL (heapvar) = 1;
4493 if (gimple_referenced_vars (cfun))
4494 add_referenced_var (heapvar);
4496 heapvar_insert (t, heapvar);
4498 ann = get_var_ann (heapvar);
4499 ann->is_heapvar = 1;
4500 if (flag_argument_noalias == 1)
4501 ann->noalias_state = NO_ALIAS;
4502 else if (flag_argument_noalias == 2)
4503 ann->noalias_state = NO_ALIAS_GLOBAL;
4504 else if (flag_argument_noalias == 3)
4505 ann->noalias_state = NO_ALIAS_ANYTHING;
4506 else
4507 gcc_unreachable ();
4510 vi = get_vi_for_tree (heapvar);
4511 vi->is_artificial_var = 1;
4512 vi->is_heap_var = 1;
4513 vi->is_unknown_size_var = true;
4514 vi->fullsize = ~0;
4515 vi->size = ~0;
4516 rhs.var = vi->id;
4517 rhs.type = ADDRESSOF;
4518 rhs.offset = 0;
4519 for (p = get_varinfo (lhs.var); p; p = p->next)
4521 struct constraint_expr temp = lhs;
4522 temp.var = p->id;
4523 process_constraint (new_constraint (temp, rhs));
4526 else
4528 varinfo_t arg_vi = get_vi_for_tree (t);
4530 for (p = arg_vi; p; p = p->next)
4531 make_constraint_from (p, nonlocal_id);
4535 /* Add a constraint for a result decl that is passed by reference. */
4536 if (DECL_RESULT (cfun->decl)
4537 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
4539 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
4541 for (p = result_vi; p; p = p->next)
4542 make_constraint_from (p, nonlocal_id);
4545 /* Add a constraint for the incoming static chain parameter. */
4546 if (cfun->static_chain_decl != NULL_TREE)
4548 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
4550 for (p = chain_vi; p; p = p->next)
4551 make_constraint_from (p, nonlocal_id);
4555 /* Structure used to put solution bitmaps in a hashtable so they can
4556 be shared among variables with the same points-to set. */
4558 typedef struct shared_bitmap_info
4560 bitmap pt_vars;
4561 hashval_t hashcode;
4562 } *shared_bitmap_info_t;
4563 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
4565 static htab_t shared_bitmap_table;
4567 /* Hash function for a shared_bitmap_info_t */
4569 static hashval_t
4570 shared_bitmap_hash (const void *p)
4572 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
4573 return bi->hashcode;
4576 /* Equality function for two shared_bitmap_info_t's. */
4578 static int
4579 shared_bitmap_eq (const void *p1, const void *p2)
4581 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
4582 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
4583 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
4586 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
4587 existing instance if there is one, NULL otherwise. */
4589 static bitmap
4590 shared_bitmap_lookup (bitmap pt_vars)
4592 void **slot;
4593 struct shared_bitmap_info sbi;
4595 sbi.pt_vars = pt_vars;
4596 sbi.hashcode = bitmap_hash (pt_vars);
4598 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
4599 sbi.hashcode, NO_INSERT);
4600 if (!slot)
4601 return NULL;
4602 else
4603 return ((shared_bitmap_info_t) *slot)->pt_vars;
4607 /* Add a bitmap to the shared bitmap hashtable. */
4609 static void
4610 shared_bitmap_add (bitmap pt_vars)
4612 void **slot;
4613 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
4615 sbi->pt_vars = pt_vars;
4616 sbi->hashcode = bitmap_hash (pt_vars);
4618 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
4619 sbi->hashcode, INSERT);
4620 gcc_assert (!*slot);
4621 *slot = (void *) sbi;
4625 /* Set bits in INTO corresponding to the variable uids in solution set FROM.
4626 If MEM_ALIAS_SET is not zero, we also use type based alias analysis to
4627 prune the points-to sets with this alias-set.
4628 Returns the number of pruned variables and updates the vars_contains_global
4629 member of *PT . */
4631 static unsigned
4632 set_uids_in_ptset (bitmap into, bitmap from,
4633 alias_set_type mem_alias_set, struct pt_solution *pt)
4635 unsigned int i;
4636 bitmap_iterator bi;
4637 unsigned pruned = 0;
4639 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4641 varinfo_t vi = get_varinfo (i);
4643 /* The only artificial variables that are allowed in a may-alias
4644 set are heap variables. */
4645 if (vi->is_artificial_var && !vi->is_heap_var)
4646 continue;
4648 if (TREE_CODE (vi->decl) == VAR_DECL
4649 || TREE_CODE (vi->decl) == PARM_DECL
4650 || TREE_CODE (vi->decl) == RESULT_DECL)
4652 /* Don't type prune artificial vars or points-to sets
4653 for pointers that have not been dereferenced or with
4654 type-based pruning disabled. */
4655 if (!vi->is_artificial_var
4656 && !vi->no_tbaa_pruning
4657 && mem_alias_set != 0)
4659 alias_set_type var_alias_set = get_alias_set (vi->decl);
4660 if (mem_alias_set != var_alias_set
4661 && !alias_set_subset_of (mem_alias_set, var_alias_set))
4663 ++pruned;
4664 continue;
4668 /* Add the decl to the points-to set. Note that the points-to
4669 set contains global variables. */
4670 bitmap_set_bit (into, DECL_UID (vi->decl));
4671 if (is_global_var (vi->decl))
4672 pt->vars_contains_global = true;
4676 return pruned;
4680 static bool have_alias_info = false;
4682 /* Emit a note for the pointer initialization point DEF. */
4684 static void
4685 emit_pointer_definition (tree ptr, bitmap visited)
4687 gimple def = SSA_NAME_DEF_STMT (ptr);
4688 if (gimple_code (def) == GIMPLE_PHI)
4690 use_operand_p argp;
4691 ssa_op_iter oi;
4693 FOR_EACH_PHI_ARG (argp, def, oi, SSA_OP_USE)
4695 tree arg = USE_FROM_PTR (argp);
4696 if (TREE_CODE (arg) == SSA_NAME)
4698 if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
4699 emit_pointer_definition (arg, visited);
4701 else
4702 inform (0, "initialized from %qE", arg);
4705 else if (!gimple_nop_p (def))
4706 inform (gimple_location (def), "initialized from here");
4709 /* Emit a strict aliasing warning for dereferencing the pointer PTR. */
4711 static void
4712 emit_alias_warning (tree ptr)
4714 gimple use;
4715 imm_use_iterator ui;
4716 bool warned = false;
4718 FOR_EACH_IMM_USE_STMT (use, ui, ptr)
4720 tree deref = NULL_TREE;
4722 if (gimple_has_lhs (use))
4724 tree lhs = get_base_address (gimple_get_lhs (use));
4725 if (lhs
4726 && INDIRECT_REF_P (lhs)
4727 && TREE_OPERAND (lhs, 0) == ptr)
4728 deref = lhs;
4730 if (gimple_assign_single_p (use))
4732 tree rhs = get_base_address (gimple_assign_rhs1 (use));
4733 if (rhs
4734 && INDIRECT_REF_P (rhs)
4735 && TREE_OPERAND (rhs, 0) == ptr)
4736 deref = rhs;
4738 else if (is_gimple_call (use))
4740 unsigned i;
4741 for (i = 0; i < gimple_call_num_args (use); ++i)
4743 tree op = get_base_address (gimple_call_arg (use, i));
4744 if (op
4745 && INDIRECT_REF_P (op)
4746 && TREE_OPERAND (op, 0) == ptr)
4747 deref = op;
4750 if (deref
4751 && !TREE_NO_WARNING (deref))
4753 TREE_NO_WARNING (deref) = 1;
4754 warned |= warning_at (gimple_location (use), OPT_Wstrict_aliasing,
4755 "dereferencing pointer %qD does break "
4756 "strict-aliasing rules", SSA_NAME_VAR (ptr));
4759 if (warned)
4761 bitmap visited = BITMAP_ALLOC (NULL);
4762 emit_pointer_definition (ptr, visited);
4763 BITMAP_FREE (visited);
4767 /* Compute the points-to solution *PT for the variable VI.
4768 Prunes the points-to set based on TBAA rules if DO_TBAA_PRUNING
4769 is true. Returns the number of TBAA pruned variables from the
4770 points-to set. */
4772 static unsigned int
4773 find_what_var_points_to (varinfo_t vi, struct pt_solution *pt,
4774 bool do_tbaa_pruning)
4776 unsigned int i, pruned;
4777 bitmap_iterator bi;
4778 bitmap finished_solution;
4779 bitmap result;
4780 tree ptr = vi->decl;
4781 alias_set_type mem_alias_set;
4783 memset (pt, 0, sizeof (struct pt_solution));
4785 /* This variable may have been collapsed, let's get the real
4786 variable. */
4787 vi = get_varinfo (find (vi->id));
4789 /* Translate artificial variables into SSA_NAME_PTR_INFO
4790 attributes. */
4791 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4793 varinfo_t vi = get_varinfo (i);
4795 if (vi->is_artificial_var)
4797 if (vi->id == nothing_id)
4798 pt->null = 1;
4799 else if (vi->id == escaped_id)
4800 pt->escaped = 1;
4801 else if (vi->id == callused_id)
4802 gcc_unreachable ();
4803 else if (vi->id == nonlocal_id)
4804 pt->nonlocal = 1;
4805 else if (vi->is_heap_var)
4806 /* We represent heapvars in the points-to set properly. */
4808 else if (vi->id == anything_id
4809 || vi->id == readonly_id
4810 || vi->id == integer_id)
4811 pt->anything = 1;
4815 /* Instead of doing extra work, simply do not create
4816 elaborate points-to information for pt_anything pointers. */
4817 if (pt->anything)
4818 return 0;
4820 /* Share the final set of variables when possible. */
4821 finished_solution = BITMAP_GGC_ALLOC ();
4822 stats.points_to_sets_created++;
4824 if (TREE_CODE (ptr) == SSA_NAME)
4825 ptr = SSA_NAME_VAR (ptr);
4827 /* If the pointer decl is marked that no TBAA is to be applied,
4828 do not do tbaa pruning. */
4829 if (!do_tbaa_pruning
4830 || DECL_NO_TBAA_P (ptr))
4831 mem_alias_set = 0;
4832 else
4833 mem_alias_set = get_deref_alias_set (ptr);
4834 pruned = set_uids_in_ptset (finished_solution, vi->solution,
4835 mem_alias_set, pt);
4836 result = shared_bitmap_lookup (finished_solution);
4837 if (!result)
4839 shared_bitmap_add (finished_solution);
4840 pt->vars = finished_solution;
4842 else
4844 pt->vars = result;
4845 bitmap_clear (finished_solution);
4848 return pruned;
4851 /* Given a pointer variable P, fill in its points-to set. Apply
4852 type-based pruning if IS_DEREFERENCED is true. */
4854 static void
4855 find_what_p_points_to (tree p, bool is_dereferenced)
4857 struct ptr_info_def *pi;
4858 unsigned int pruned;
4859 tree lookup_p = p;
4860 varinfo_t vi;
4862 /* For parameters, get at the points-to set for the actual parm
4863 decl. */
4864 if (TREE_CODE (p) == SSA_NAME
4865 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
4866 && SSA_NAME_IS_DEFAULT_DEF (p))
4867 lookup_p = SSA_NAME_VAR (p);
4869 vi = lookup_vi_for_tree (lookup_p);
4870 if (!vi)
4871 return;
4873 pi = get_ptr_info (p);
4874 pruned = find_what_var_points_to (vi, &pi->pt, is_dereferenced);
4876 if (!(pi->pt.anything || pi->pt.nonlocal || pi->pt.escaped)
4877 && bitmap_empty_p (pi->pt.vars)
4878 && pruned > 0
4879 && is_dereferenced
4880 && warn_strict_aliasing > 0
4881 && !SSA_NAME_IS_DEFAULT_DEF (p))
4883 if (dump_file && dump_flags & TDF_DETAILS)
4885 fprintf (dump_file, "alias warning for ");
4886 print_generic_expr (dump_file, p, 0);
4887 fprintf (dump_file, "\n");
4889 emit_alias_warning (p);
4894 /* Query statistics for points-to solutions. */
4896 static struct {
4897 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
4898 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
4899 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
4900 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
4901 } pta_stats;
4903 void
4904 dump_pta_stats (FILE *s)
4906 fprintf (s, "\nPTA query stats:\n");
4907 fprintf (s, " pt_solution_includes: "
4908 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
4909 HOST_WIDE_INT_PRINT_DEC" queries\n",
4910 pta_stats.pt_solution_includes_no_alias,
4911 pta_stats.pt_solution_includes_no_alias
4912 + pta_stats.pt_solution_includes_may_alias);
4913 fprintf (s, " pt_solutions_intersect: "
4914 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
4915 HOST_WIDE_INT_PRINT_DEC" queries\n",
4916 pta_stats.pt_solutions_intersect_no_alias,
4917 pta_stats.pt_solutions_intersect_no_alias
4918 + pta_stats.pt_solutions_intersect_may_alias);
4922 /* Reset the points-to solution *PT to a conservative default
4923 (point to anything). */
4925 void
4926 pt_solution_reset (struct pt_solution *pt)
4928 memset (pt, 0, sizeof (struct pt_solution));
4929 pt->anything = true;
4932 /* Return true if the points-to solution *PT is empty. */
4934 static bool
4935 pt_solution_empty_p (struct pt_solution *pt)
4937 if (pt->anything
4938 || pt->nonlocal)
4939 return false;
4941 if (pt->vars
4942 && !bitmap_empty_p (pt->vars))
4943 return false;
4945 /* If the solution includes ESCAPED, check if that is empty. */
4946 if (pt->escaped
4947 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
4948 return false;
4950 return true;
4953 /* Return true if the points-to solution *PT includes global memory. */
4955 bool
4956 pt_solution_includes_global (struct pt_solution *pt)
4958 if (pt->anything
4959 || pt->nonlocal
4960 || pt->vars_contains_global)
4961 return true;
4963 if (pt->escaped)
4964 return pt_solution_includes_global (&cfun->gimple_df->escaped);
4966 return false;
4969 /* Return true if the points-to solution *PT includes the variable
4970 declaration DECL. */
4972 static bool
4973 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
4975 if (pt->anything)
4976 return true;
4978 if (pt->nonlocal
4979 && is_global_var (decl))
4980 return true;
4982 if (pt->vars
4983 && bitmap_bit_p (pt->vars, DECL_UID (decl)))
4984 return true;
4986 /* If the solution includes ESCAPED, check it. */
4987 if (pt->escaped
4988 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
4989 return true;
4991 return false;
4994 bool
4995 pt_solution_includes (struct pt_solution *pt, const_tree decl)
4997 bool res = pt_solution_includes_1 (pt, decl);
4998 if (res)
4999 ++pta_stats.pt_solution_includes_may_alias;
5000 else
5001 ++pta_stats.pt_solution_includes_no_alias;
5002 return res;
5005 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
5006 intersection. */
5008 static bool
5009 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
5011 if (pt1->anything || pt2->anything)
5012 return true;
5014 /* If either points to unknown global memory and the other points to
5015 any global memory they alias. */
5016 if ((pt1->nonlocal
5017 && (pt2->nonlocal
5018 || pt2->vars_contains_global))
5019 || (pt2->nonlocal
5020 && pt1->vars_contains_global))
5021 return true;
5023 /* Check the escaped solution if required. */
5024 if ((pt1->escaped || pt2->escaped)
5025 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5027 /* If both point to escaped memory and that solution
5028 is not empty they alias. */
5029 if (pt1->escaped && pt2->escaped)
5030 return true;
5032 /* If either points to escaped memory see if the escaped solution
5033 intersects with the other. */
5034 if ((pt1->escaped
5035 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
5036 || (pt2->escaped
5037 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
5038 return true;
5041 /* Now both pointers alias if their points-to solution intersects. */
5042 return (pt1->vars
5043 && pt2->vars
5044 && bitmap_intersect_p (pt1->vars, pt2->vars));
5047 bool
5048 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
5050 bool res = pt_solutions_intersect_1 (pt1, pt2);
5051 if (res)
5052 ++pta_stats.pt_solutions_intersect_may_alias;
5053 else
5054 ++pta_stats.pt_solutions_intersect_no_alias;
5055 return res;
5059 /* Dump points-to information to OUTFILE. */
5061 static void
5062 dump_sa_points_to_info (FILE *outfile)
5064 unsigned int i;
5066 fprintf (outfile, "\nPoints-to sets\n\n");
5068 if (dump_flags & TDF_STATS)
5070 fprintf (outfile, "Stats:\n");
5071 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
5072 fprintf (outfile, "Non-pointer vars: %d\n",
5073 stats.nonpointer_vars);
5074 fprintf (outfile, "Statically unified vars: %d\n",
5075 stats.unified_vars_static);
5076 fprintf (outfile, "Dynamically unified vars: %d\n",
5077 stats.unified_vars_dynamic);
5078 fprintf (outfile, "Iterations: %d\n", stats.iterations);
5079 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
5080 fprintf (outfile, "Number of implicit edges: %d\n",
5081 stats.num_implicit_edges);
5084 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
5085 dump_solution_for_var (outfile, i);
5089 /* Debug points-to information to stderr. */
5091 void
5092 debug_sa_points_to_info (void)
5094 dump_sa_points_to_info (stderr);
5098 /* Initialize the always-existing constraint variables for NULL
5099 ANYTHING, READONLY, and INTEGER */
5101 static void
5102 init_base_vars (void)
5104 struct constraint_expr lhs, rhs;
5106 /* Create the NULL variable, used to represent that a variable points
5107 to NULL. */
5108 nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
5109 var_nothing = new_var_info (nothing_tree, nothing_id, "NULL");
5110 insert_vi_for_tree (nothing_tree, var_nothing);
5111 var_nothing->is_artificial_var = 1;
5112 var_nothing->offset = 0;
5113 var_nothing->size = ~0;
5114 var_nothing->fullsize = ~0;
5115 var_nothing->is_special_var = 1;
5116 VEC_safe_push (varinfo_t, heap, varmap, var_nothing);
5118 /* Create the ANYTHING variable, used to represent that a variable
5119 points to some unknown piece of memory. */
5120 anything_tree = create_tmp_var_raw (ptr_type_node, "ANYTHING");
5121 var_anything = new_var_info (anything_tree, anything_id, "ANYTHING");
5122 insert_vi_for_tree (anything_tree, var_anything);
5123 var_anything->is_artificial_var = 1;
5124 var_anything->size = ~0;
5125 var_anything->offset = 0;
5126 var_anything->next = NULL;
5127 var_anything->fullsize = ~0;
5128 var_anything->is_special_var = 1;
5130 /* Anything points to anything. This makes deref constraints just
5131 work in the presence of linked list and other p = *p type loops,
5132 by saying that *ANYTHING = ANYTHING. */
5133 VEC_safe_push (varinfo_t, heap, varmap, var_anything);
5134 lhs.type = SCALAR;
5135 lhs.var = anything_id;
5136 lhs.offset = 0;
5137 rhs.type = ADDRESSOF;
5138 rhs.var = anything_id;
5139 rhs.offset = 0;
5141 /* This specifically does not use process_constraint because
5142 process_constraint ignores all anything = anything constraints, since all
5143 but this one are redundant. */
5144 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
5146 /* Create the READONLY variable, used to represent that a variable
5147 points to readonly memory. */
5148 readonly_tree = create_tmp_var_raw (ptr_type_node, "READONLY");
5149 var_readonly = new_var_info (readonly_tree, readonly_id, "READONLY");
5150 var_readonly->is_artificial_var = 1;
5151 var_readonly->offset = 0;
5152 var_readonly->size = ~0;
5153 var_readonly->fullsize = ~0;
5154 var_readonly->next = NULL;
5155 var_readonly->is_special_var = 1;
5156 insert_vi_for_tree (readonly_tree, var_readonly);
5157 VEC_safe_push (varinfo_t, heap, varmap, var_readonly);
5159 /* readonly memory points to anything, in order to make deref
5160 easier. In reality, it points to anything the particular
5161 readonly variable can point to, but we don't track this
5162 separately. */
5163 lhs.type = SCALAR;
5164 lhs.var = readonly_id;
5165 lhs.offset = 0;
5166 rhs.type = ADDRESSOF;
5167 rhs.var = readonly_id; /* FIXME */
5168 rhs.offset = 0;
5169 process_constraint (new_constraint (lhs, rhs));
5171 /* Create the ESCAPED variable, used to represent the set of escaped
5172 memory. */
5173 escaped_tree = create_tmp_var_raw (ptr_type_node, "ESCAPED");
5174 var_escaped = new_var_info (escaped_tree, escaped_id, "ESCAPED");
5175 insert_vi_for_tree (escaped_tree, var_escaped);
5176 var_escaped->is_artificial_var = 1;
5177 var_escaped->offset = 0;
5178 var_escaped->size = ~0;
5179 var_escaped->fullsize = ~0;
5180 var_escaped->is_special_var = 0;
5181 VEC_safe_push (varinfo_t, heap, varmap, var_escaped);
5182 gcc_assert (VEC_index (varinfo_t, varmap, 3) == var_escaped);
5184 /* Create the NONLOCAL variable, used to represent the set of nonlocal
5185 memory. */
5186 nonlocal_tree = create_tmp_var_raw (ptr_type_node, "NONLOCAL");
5187 var_nonlocal = new_var_info (nonlocal_tree, nonlocal_id, "NONLOCAL");
5188 insert_vi_for_tree (nonlocal_tree, var_nonlocal);
5189 var_nonlocal->is_artificial_var = 1;
5190 var_nonlocal->offset = 0;
5191 var_nonlocal->size = ~0;
5192 var_nonlocal->fullsize = ~0;
5193 var_nonlocal->is_special_var = 1;
5194 VEC_safe_push (varinfo_t, heap, varmap, var_nonlocal);
5196 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
5197 lhs.type = SCALAR;
5198 lhs.var = escaped_id;
5199 lhs.offset = 0;
5200 rhs.type = DEREF;
5201 rhs.var = escaped_id;
5202 rhs.offset = 0;
5203 process_constraint (new_constraint (lhs, rhs));
5205 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
5206 whole variable escapes. */
5207 lhs.type = SCALAR;
5208 lhs.var = escaped_id;
5209 lhs.offset = 0;
5210 rhs.type = SCALAR;
5211 rhs.var = escaped_id;
5212 rhs.offset = UNKNOWN_OFFSET;
5213 process_constraint (new_constraint (lhs, rhs));
5215 /* *ESCAPED = NONLOCAL. This is true because we have to assume
5216 everything pointed to by escaped points to what global memory can
5217 point to. */
5218 lhs.type = DEREF;
5219 lhs.var = escaped_id;
5220 lhs.offset = 0;
5221 rhs.type = SCALAR;
5222 rhs.var = nonlocal_id;
5223 rhs.offset = 0;
5224 process_constraint (new_constraint (lhs, rhs));
5226 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
5227 global memory may point to global memory and escaped memory. */
5228 lhs.type = SCALAR;
5229 lhs.var = nonlocal_id;
5230 lhs.offset = 0;
5231 rhs.type = ADDRESSOF;
5232 rhs.var = nonlocal_id;
5233 rhs.offset = 0;
5234 process_constraint (new_constraint (lhs, rhs));
5235 rhs.type = ADDRESSOF;
5236 rhs.var = escaped_id;
5237 rhs.offset = 0;
5238 process_constraint (new_constraint (lhs, rhs));
5240 /* Create the CALLUSED variable, used to represent the set of call-used
5241 memory. */
5242 callused_tree = create_tmp_var_raw (ptr_type_node, "CALLUSED");
5243 var_callused = new_var_info (callused_tree, callused_id, "CALLUSED");
5244 insert_vi_for_tree (callused_tree, var_callused);
5245 var_callused->is_artificial_var = 1;
5246 var_callused->offset = 0;
5247 var_callused->size = ~0;
5248 var_callused->fullsize = ~0;
5249 var_callused->is_special_var = 0;
5250 VEC_safe_push (varinfo_t, heap, varmap, var_callused);
5252 /* CALLUSED = *CALLUSED, because call-used is may-deref'd at calls, etc. */
5253 lhs.type = SCALAR;
5254 lhs.var = callused_id;
5255 lhs.offset = 0;
5256 rhs.type = DEREF;
5257 rhs.var = callused_id;
5258 rhs.offset = 0;
5259 process_constraint (new_constraint (lhs, rhs));
5261 /* CALLUSED = CALLUSED + UNKNOWN, because if a sub-field is call-used the
5262 whole variable is call-used. */
5263 lhs.type = SCALAR;
5264 lhs.var = callused_id;
5265 lhs.offset = 0;
5266 rhs.type = SCALAR;
5267 rhs.var = callused_id;
5268 rhs.offset = UNKNOWN_OFFSET;
5269 process_constraint (new_constraint (lhs, rhs));
5271 /* Create the STOREDANYTHING variable, used to represent the set of
5272 variables stored to *ANYTHING. */
5273 storedanything_tree = create_tmp_var_raw (ptr_type_node, "STOREDANYTHING");
5274 var_storedanything = new_var_info (storedanything_tree, storedanything_id,
5275 "STOREDANYTHING");
5276 insert_vi_for_tree (storedanything_tree, var_storedanything);
5277 var_storedanything->is_artificial_var = 1;
5278 var_storedanything->offset = 0;
5279 var_storedanything->size = ~0;
5280 var_storedanything->fullsize = ~0;
5281 var_storedanything->is_special_var = 0;
5282 VEC_safe_push (varinfo_t, heap, varmap, var_storedanything);
5284 /* Create the INTEGER variable, used to represent that a variable points
5285 to what an INTEGER "points to". */
5286 integer_tree = create_tmp_var_raw (ptr_type_node, "INTEGER");
5287 var_integer = new_var_info (integer_tree, integer_id, "INTEGER");
5288 insert_vi_for_tree (integer_tree, var_integer);
5289 var_integer->is_artificial_var = 1;
5290 var_integer->size = ~0;
5291 var_integer->fullsize = ~0;
5292 var_integer->offset = 0;
5293 var_integer->next = NULL;
5294 var_integer->is_special_var = 1;
5295 VEC_safe_push (varinfo_t, heap, varmap, var_integer);
5297 /* INTEGER = ANYTHING, because we don't know where a dereference of
5298 a random integer will point to. */
5299 lhs.type = SCALAR;
5300 lhs.var = integer_id;
5301 lhs.offset = 0;
5302 rhs.type = ADDRESSOF;
5303 rhs.var = anything_id;
5304 rhs.offset = 0;
5305 process_constraint (new_constraint (lhs, rhs));
5308 /* Initialize things necessary to perform PTA */
5310 static void
5311 init_alias_vars (void)
5313 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
5315 bitmap_obstack_initialize (&pta_obstack);
5316 bitmap_obstack_initialize (&oldpta_obstack);
5317 bitmap_obstack_initialize (&predbitmap_obstack);
5319 constraint_pool = create_alloc_pool ("Constraint pool",
5320 sizeof (struct constraint), 30);
5321 variable_info_pool = create_alloc_pool ("Variable info pool",
5322 sizeof (struct variable_info), 30);
5323 constraints = VEC_alloc (constraint_t, heap, 8);
5324 varmap = VEC_alloc (varinfo_t, heap, 8);
5325 vi_for_tree = pointer_map_create ();
5327 memset (&stats, 0, sizeof (stats));
5328 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
5329 shared_bitmap_eq, free);
5330 init_base_vars ();
5333 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
5334 predecessor edges. */
5336 static void
5337 remove_preds_and_fake_succs (constraint_graph_t graph)
5339 unsigned int i;
5341 /* Clear the implicit ref and address nodes from the successor
5342 lists. */
5343 for (i = 0; i < FIRST_REF_NODE; i++)
5345 if (graph->succs[i])
5346 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
5347 FIRST_REF_NODE * 2);
5350 /* Free the successor list for the non-ref nodes. */
5351 for (i = FIRST_REF_NODE; i < graph->size; i++)
5353 if (graph->succs[i])
5354 BITMAP_FREE (graph->succs[i]);
5357 /* Now reallocate the size of the successor list as, and blow away
5358 the predecessor bitmaps. */
5359 graph->size = VEC_length (varinfo_t, varmap);
5360 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
5362 free (graph->implicit_preds);
5363 graph->implicit_preds = NULL;
5364 free (graph->preds);
5365 graph->preds = NULL;
5366 bitmap_obstack_release (&predbitmap_obstack);
5369 /* Compute the set of variables we can't TBAA prune. */
5371 static void
5372 compute_tbaa_pruning (void)
5374 unsigned int size = VEC_length (varinfo_t, varmap);
5375 unsigned int i;
5376 bool any;
5378 changed_count = 0;
5379 changed = sbitmap_alloc (size);
5380 sbitmap_zero (changed);
5382 /* Mark all initial no_tbaa_pruning nodes as changed. */
5383 any = false;
5384 for (i = 0; i < size; ++i)
5386 varinfo_t ivi = get_varinfo (i);
5388 if (find (i) == i && ivi->no_tbaa_pruning)
5390 any = true;
5391 if ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
5392 || VEC_length (constraint_t, graph->complex[i]) > 0)
5394 SET_BIT (changed, i);
5395 ++changed_count;
5400 while (changed_count > 0)
5402 struct topo_info *ti = init_topo_info ();
5403 ++stats.iterations;
5405 compute_topo_order (graph, ti);
5407 while (VEC_length (unsigned, ti->topo_order) != 0)
5409 bitmap_iterator bi;
5411 i = VEC_pop (unsigned, ti->topo_order);
5413 /* If this variable is not a representative, skip it. */
5414 if (find (i) != i)
5415 continue;
5417 /* If the node has changed, we need to process the complex
5418 constraints and outgoing edges again. */
5419 if (TEST_BIT (changed, i))
5421 unsigned int j;
5422 constraint_t c;
5423 VEC(constraint_t,heap) *complex = graph->complex[i];
5425 RESET_BIT (changed, i);
5426 --changed_count;
5428 /* Process the complex copy constraints. */
5429 for (j = 0; VEC_iterate (constraint_t, complex, j, c); ++j)
5431 if (c->lhs.type == SCALAR && c->rhs.type == SCALAR)
5433 varinfo_t lhsvi = get_varinfo (find (c->lhs.var));
5435 if (!lhsvi->no_tbaa_pruning)
5437 lhsvi->no_tbaa_pruning = true;
5438 if (!TEST_BIT (changed, lhsvi->id))
5440 SET_BIT (changed, lhsvi->id);
5441 ++changed_count;
5447 /* Propagate to all successors. */
5448 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
5450 unsigned int to = find (j);
5451 varinfo_t tovi = get_varinfo (to);
5453 /* Don't propagate to ourselves. */
5454 if (to == i)
5455 continue;
5457 if (!tovi->no_tbaa_pruning)
5459 tovi->no_tbaa_pruning = true;
5460 if (!TEST_BIT (changed, to))
5462 SET_BIT (changed, to);
5463 ++changed_count;
5470 free_topo_info (ti);
5473 sbitmap_free (changed);
5475 if (any)
5477 for (i = 0; i < size; ++i)
5479 varinfo_t ivi = get_varinfo (i);
5480 varinfo_t ivip = get_varinfo (find (i));
5482 if (ivip->no_tbaa_pruning)
5484 tree var = ivi->decl;
5486 if (TREE_CODE (var) == SSA_NAME)
5487 var = SSA_NAME_VAR (var);
5489 if (POINTER_TYPE_P (TREE_TYPE (var)))
5491 DECL_NO_TBAA_P (var) = 1;
5493 /* Tell the RTL layer that this pointer can alias
5494 anything. */
5495 DECL_POINTER_ALIAS_SET (var) = 0;
5502 /* Initialize the heapvar for statement mapping. */
5504 static void
5505 init_alias_heapvars (void)
5507 if (!heapvar_for_stmt)
5508 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, tree_map_eq,
5509 NULL);
5512 /* Delete the heapvar for statement mapping. */
5514 void
5515 delete_alias_heapvars (void)
5517 if (heapvar_for_stmt)
5518 htab_delete (heapvar_for_stmt);
5519 heapvar_for_stmt = NULL;
5522 /* Create points-to sets for the current function. See the comments
5523 at the start of the file for an algorithmic overview. */
5525 static void
5526 compute_points_to_sets (void)
5528 struct scc_info *si;
5529 basic_block bb;
5530 unsigned i;
5531 sbitmap dereferenced_ptrs;
5533 timevar_push (TV_TREE_PTA);
5535 init_alias_vars ();
5536 init_alias_heapvars ();
5538 intra_create_variable_infos ();
5540 /* A bitmap of SSA_NAME pointers that are dereferenced. This is
5541 used to track which points-to sets may be TBAA pruned. */
5542 dereferenced_ptrs = sbitmap_alloc (num_ssa_names);
5543 sbitmap_zero (dereferenced_ptrs);
5545 /* Now walk all statements and derive aliases. */
5546 FOR_EACH_BB (bb)
5548 gimple_stmt_iterator gsi;
5550 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5552 gimple phi = gsi_stmt (gsi);
5554 if (is_gimple_reg (gimple_phi_result (phi)))
5555 find_func_aliases (phi);
5558 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5560 gimple stmt = gsi_stmt (gsi);
5561 use_operand_p use_p;
5562 ssa_op_iter iter;
5564 /* Mark dereferenced pointers. This is used by TBAA pruning
5565 of the points-to sets and the alias warning machinery. */
5566 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
5568 unsigned num_uses, num_loads, num_stores;
5569 tree op = USE_FROM_PTR (use_p);
5571 if (!POINTER_TYPE_P (TREE_TYPE (op)))
5572 continue;
5574 /* Determine whether OP is a dereferenced pointer. */
5575 count_uses_and_derefs (op, stmt,
5576 &num_uses, &num_loads, &num_stores);
5577 if (num_loads + num_stores > 0)
5578 SET_BIT (dereferenced_ptrs, SSA_NAME_VERSION (op));
5581 find_func_aliases (stmt);
5586 if (dump_file)
5588 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
5589 dump_constraints (dump_file);
5592 if (dump_file)
5593 fprintf (dump_file,
5594 "\nCollapsing static cycles and doing variable "
5595 "substitution\n");
5597 init_graph (VEC_length (varinfo_t, varmap) * 2);
5599 if (dump_file)
5600 fprintf (dump_file, "Building predecessor graph\n");
5601 build_pred_graph ();
5603 if (dump_file)
5604 fprintf (dump_file, "Detecting pointer and location "
5605 "equivalences\n");
5606 si = perform_var_substitution (graph);
5608 if (dump_file)
5609 fprintf (dump_file, "Rewriting constraints and unifying "
5610 "variables\n");
5611 rewrite_constraints (graph, si);
5613 build_succ_graph ();
5614 free_var_substitution_info (si);
5616 if (dump_file && (dump_flags & TDF_GRAPH))
5617 dump_constraint_graph (dump_file);
5619 move_complex_constraints (graph);
5621 if (dump_file)
5622 fprintf (dump_file, "Uniting pointer but not location equivalent "
5623 "variables\n");
5624 unite_pointer_equivalences (graph);
5626 if (dump_file)
5627 fprintf (dump_file, "Finding indirect cycles\n");
5628 find_indirect_cycles (graph);
5630 /* Implicit nodes and predecessors are no longer necessary at this
5631 point. */
5632 remove_preds_and_fake_succs (graph);
5634 if (dump_file)
5635 fprintf (dump_file, "Solving graph\n");
5637 solve_graph (graph);
5639 compute_tbaa_pruning ();
5641 if (dump_file)
5642 dump_sa_points_to_info (dump_file);
5644 /* Compute the points-to sets for ESCAPED and CALLUSED used for
5645 call-clobber analysis. */
5646 find_what_var_points_to (var_escaped, &cfun->gimple_df->escaped, false);
5647 find_what_var_points_to (var_callused, &cfun->gimple_df->callused, false);
5649 /* Make sure the ESCAPED solution (which is used as placeholder in
5650 other solutions) does not reference itself. This simplifies
5651 points-to solution queries. */
5652 cfun->gimple_df->escaped.escaped = 0;
5654 /* Compute the points-to sets for pointer SSA_NAMEs. */
5655 for (i = 0; i < num_ssa_names; ++i)
5657 tree ptr = ssa_name (i);
5658 if (ptr
5659 && POINTER_TYPE_P (TREE_TYPE (ptr)))
5660 find_what_p_points_to (ptr, TEST_BIT (dereferenced_ptrs, i));
5662 sbitmap_free (dereferenced_ptrs);
5664 timevar_pop (TV_TREE_PTA);
5666 have_alias_info = true;
5670 /* Delete created points-to sets. */
5672 static void
5673 delete_points_to_sets (void)
5675 unsigned int i;
5677 htab_delete (shared_bitmap_table);
5678 if (dump_file && (dump_flags & TDF_STATS))
5679 fprintf (dump_file, "Points to sets created:%d\n",
5680 stats.points_to_sets_created);
5682 pointer_map_destroy (vi_for_tree);
5683 bitmap_obstack_release (&pta_obstack);
5684 VEC_free (constraint_t, heap, constraints);
5686 for (i = 0; i < graph->size; i++)
5687 VEC_free (constraint_t, heap, graph->complex[i]);
5688 free (graph->complex);
5690 free (graph->rep);
5691 free (graph->succs);
5692 free (graph->pe);
5693 free (graph->pe_rep);
5694 free (graph->indirect_cycles);
5695 free (graph);
5697 VEC_free (varinfo_t, heap, varmap);
5698 free_alloc_pool (variable_info_pool);
5699 free_alloc_pool (constraint_pool);
5700 have_alias_info = false;
5704 /* Compute points-to information for every SSA_NAME pointer in the
5705 current function and compute the transitive closure of escaped
5706 variables to re-initialize the call-clobber states of local variables. */
5708 unsigned int
5709 compute_may_aliases (void)
5711 /* For each pointer P_i, determine the sets of variables that P_i may
5712 point-to. Compute the reachability set of escaped and call-used
5713 variables. */
5714 compute_points_to_sets ();
5716 /* Debugging dumps. */
5717 if (dump_file)
5719 dump_alias_info (dump_file);
5721 if (dump_flags & TDF_DETAILS)
5722 dump_referenced_vars (dump_file);
5725 /* Deallocate memory used by aliasing data structures and the internal
5726 points-to solution. */
5727 delete_points_to_sets ();
5729 gcc_assert (!need_ssa_update_p (cfun));
5731 return 0;
5735 /* A dummy pass to cause points-to information to be computed via
5736 TODO_rebuild_alias. */
5738 struct gimple_opt_pass pass_build_alias =
5741 GIMPLE_PASS,
5742 "alias", /* name */
5743 NULL, /* gate */
5744 NULL, /* execute */
5745 NULL, /* sub */
5746 NULL, /* next */
5747 0, /* static_pass_number */
5748 0, /* tv_id */
5749 PROP_cfg | PROP_ssa, /* properties_required */
5750 PROP_alias, /* properties_provided */
5751 0, /* properties_destroyed */
5752 0, /* todo_flags_start */
5753 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
5758 /* Return true if we should execute IPA PTA. */
5759 static bool
5760 gate_ipa_pta (void)
5762 return (flag_ipa_pta
5763 /* Don't bother doing anything if the program has errors. */
5764 && !(errorcount || sorrycount));
5767 /* Execute the driver for IPA PTA. */
5768 static unsigned int
5769 ipa_pta_execute (void)
5771 struct cgraph_node *node;
5772 struct scc_info *si;
5774 in_ipa_mode = 1;
5775 init_alias_heapvars ();
5776 init_alias_vars ();
5778 for (node = cgraph_nodes; node; node = node->next)
5780 unsigned int varid;
5782 varid = create_function_info_for (node->decl,
5783 cgraph_node_name (node));
5784 if (node->local.externally_visible)
5786 varinfo_t fi = get_varinfo (varid);
5787 for (; fi; fi = fi->next)
5788 make_constraint_from (fi, anything_id);
5791 for (node = cgraph_nodes; node; node = node->next)
5793 if (node->analyzed)
5795 struct function *func = DECL_STRUCT_FUNCTION (node->decl);
5796 basic_block bb;
5797 tree old_func_decl = current_function_decl;
5798 if (dump_file)
5799 fprintf (dump_file,
5800 "Generating constraints for %s\n",
5801 cgraph_node_name (node));
5802 push_cfun (func);
5803 current_function_decl = node->decl;
5805 FOR_EACH_BB_FN (bb, func)
5807 gimple_stmt_iterator gsi;
5809 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
5810 gsi_next (&gsi))
5812 gimple phi = gsi_stmt (gsi);
5814 if (is_gimple_reg (gimple_phi_result (phi)))
5815 find_func_aliases (phi);
5818 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5819 find_func_aliases (gsi_stmt (gsi));
5821 current_function_decl = old_func_decl;
5822 pop_cfun ();
5824 else
5826 /* Make point to anything. */
5830 if (dump_file)
5832 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
5833 dump_constraints (dump_file);
5836 if (dump_file)
5837 fprintf (dump_file,
5838 "\nCollapsing static cycles and doing variable "
5839 "substitution:\n");
5841 init_graph (VEC_length (varinfo_t, varmap) * 2);
5842 build_pred_graph ();
5843 si = perform_var_substitution (graph);
5844 rewrite_constraints (graph, si);
5846 build_succ_graph ();
5847 free_var_substitution_info (si);
5848 move_complex_constraints (graph);
5849 unite_pointer_equivalences (graph);
5850 find_indirect_cycles (graph);
5852 /* Implicit nodes and predecessors are no longer necessary at this
5853 point. */
5854 remove_preds_and_fake_succs (graph);
5856 if (dump_file)
5857 fprintf (dump_file, "\nSolving graph\n");
5859 solve_graph (graph);
5861 if (dump_file)
5862 dump_sa_points_to_info (dump_file);
5864 in_ipa_mode = 0;
5865 delete_alias_heapvars ();
5866 delete_points_to_sets ();
5867 return 0;
5870 struct simple_ipa_opt_pass pass_ipa_pta =
5873 SIMPLE_IPA_PASS,
5874 "pta", /* name */
5875 gate_ipa_pta, /* gate */
5876 ipa_pta_execute, /* execute */
5877 NULL, /* sub */
5878 NULL, /* next */
5879 0, /* static_pass_number */
5880 TV_IPA_PTA, /* tv_id */
5881 0, /* properties_required */
5882 0, /* properties_provided */
5883 0, /* properties_destroyed */
5884 0, /* todo_flags_start */
5885 TODO_update_ssa /* todo_flags_finish */
5890 #include "gt-tree-ssa-structalias.h"