* config.gcc (cygwin tm_file): Add cygwin-stdint.h.
[official-gcc.git] / gcc / tree-complex.c
blobac7748ed5132cf5d22d8cb29834d5371dfc719a5
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "real.h"
27 #include "flags.h"
28 #include "tree-flow.h"
29 #include "gimple.h"
30 #include "tree-iterator.h"
31 #include "tree-pass.h"
32 #include "tree-ssa-propagate.h"
33 #include "diagnostic.h"
36 /* For each complex ssa name, a lattice value. We're interested in finding
37 out whether a complex number is degenerate in some way, having only real
38 or only complex parts. */
40 typedef enum
42 UNINITIALIZED = 0,
43 ONLY_REAL = 1,
44 ONLY_IMAG = 2,
45 VARYING = 3
46 } complex_lattice_t;
48 #define PAIR(a, b) ((a) << 2 | (b))
50 DEF_VEC_I(complex_lattice_t);
51 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
53 static VEC(complex_lattice_t, heap) *complex_lattice_values;
55 /* For each complex variable, a pair of variables for the components exists in
56 the hashtable. */
57 static htab_t complex_variable_components;
59 /* For each complex SSA_NAME, a pair of ssa names for the components. */
60 static VEC(tree, heap) *complex_ssa_name_components;
62 /* Lookup UID in the complex_variable_components hashtable and return the
63 associated tree. */
64 static tree
65 cvc_lookup (unsigned int uid)
67 struct int_tree_map *h, in;
68 in.uid = uid;
69 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
70 return h ? h->to : NULL;
73 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
75 static void
76 cvc_insert (unsigned int uid, tree to)
78 struct int_tree_map *h;
79 void **loc;
81 h = XNEW (struct int_tree_map);
82 h->uid = uid;
83 h->to = to;
84 loc = htab_find_slot_with_hash (complex_variable_components, h,
85 uid, INSERT);
86 *(struct int_tree_map **) loc = h;
89 /* Return true if T is not a zero constant. In the case of real values,
90 we're only interested in +0.0. */
92 static int
93 some_nonzerop (tree t)
95 int zerop = false;
97 if (TREE_CODE (t) == REAL_CST)
98 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
99 else if (TREE_CODE (t) == FIXED_CST)
100 zerop = fixed_zerop (t);
101 else if (TREE_CODE (t) == INTEGER_CST)
102 zerop = integer_zerop (t);
104 return !zerop;
108 /* Compute a lattice value from the components of a complex type REAL
109 and IMAG. */
111 static complex_lattice_t
112 find_lattice_value_parts (tree real, tree imag)
114 int r, i;
115 complex_lattice_t ret;
117 r = some_nonzerop (real);
118 i = some_nonzerop (imag);
119 ret = r * ONLY_REAL + i * ONLY_IMAG;
121 /* ??? On occasion we could do better than mapping 0+0i to real, but we
122 certainly don't want to leave it UNINITIALIZED, which eventually gets
123 mapped to VARYING. */
124 if (ret == UNINITIALIZED)
125 ret = ONLY_REAL;
127 return ret;
131 /* Compute a lattice value from gimple_val T. */
133 static complex_lattice_t
134 find_lattice_value (tree t)
136 tree real, imag;
138 switch (TREE_CODE (t))
140 case SSA_NAME:
141 return VEC_index (complex_lattice_t, complex_lattice_values,
142 SSA_NAME_VERSION (t));
144 case COMPLEX_CST:
145 real = TREE_REALPART (t);
146 imag = TREE_IMAGPART (t);
147 break;
149 default:
150 gcc_unreachable ();
153 return find_lattice_value_parts (real, imag);
156 /* Determine if LHS is something for which we're interested in seeing
157 simulation results. */
159 static bool
160 is_complex_reg (tree lhs)
162 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
165 /* Mark the incoming parameters to the function as VARYING. */
167 static void
168 init_parameter_lattice_values (void)
170 tree parm, ssa_name;
172 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
173 if (is_complex_reg (parm)
174 && var_ann (parm) != NULL
175 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
176 VEC_replace (complex_lattice_t, complex_lattice_values,
177 SSA_NAME_VERSION (ssa_name), VARYING);
180 /* Initialize simulation state for each statement. Return false if we
181 found no statements we want to simulate, and thus there's nothing
182 for the entire pass to do. */
184 static bool
185 init_dont_simulate_again (void)
187 basic_block bb;
188 gimple_stmt_iterator gsi;
189 gimple phi;
190 bool saw_a_complex_op = false;
192 FOR_EACH_BB (bb)
194 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
196 phi = gsi_stmt (gsi);
197 prop_set_simulate_again (phi,
198 is_complex_reg (gimple_phi_result (phi)));
201 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
203 gimple stmt;
204 tree op0, op1;
205 bool sim_again_p;
207 stmt = gsi_stmt (gsi);
208 op0 = op1 = NULL_TREE;
210 /* Most control-altering statements must be initially
211 simulated, else we won't cover the entire cfg. */
212 sim_again_p = stmt_ends_bb_p (stmt);
214 switch (gimple_code (stmt))
216 case GIMPLE_CALL:
217 if (gimple_call_lhs (stmt))
218 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
219 break;
221 case GIMPLE_ASSIGN:
222 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
223 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
224 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
225 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
226 else
227 op0 = gimple_assign_rhs1 (stmt);
228 if (gimple_num_ops (stmt) > 2)
229 op1 = gimple_assign_rhs2 (stmt);
230 break;
232 case GIMPLE_COND:
233 op0 = gimple_cond_lhs (stmt);
234 op1 = gimple_cond_rhs (stmt);
235 break;
237 default:
238 break;
241 if (op0 || op1)
242 switch (gimple_expr_code (stmt))
244 case EQ_EXPR:
245 case NE_EXPR:
246 case PLUS_EXPR:
247 case MINUS_EXPR:
248 case MULT_EXPR:
249 case TRUNC_DIV_EXPR:
250 case CEIL_DIV_EXPR:
251 case FLOOR_DIV_EXPR:
252 case ROUND_DIV_EXPR:
253 case RDIV_EXPR:
254 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
255 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
256 saw_a_complex_op = true;
257 break;
259 case NEGATE_EXPR:
260 case CONJ_EXPR:
261 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
262 saw_a_complex_op = true;
263 break;
265 case REALPART_EXPR:
266 case IMAGPART_EXPR:
267 /* The total store transformation performed during
268 gimplification creates such uninitialized loads
269 and we need to lower the statement to be able
270 to fix things up. */
271 if (TREE_CODE (op0) == SSA_NAME
272 && ssa_undefined_value_p (op0))
273 saw_a_complex_op = true;
274 break;
276 default:
277 break;
280 prop_set_simulate_again (stmt, sim_again_p);
284 return saw_a_complex_op;
288 /* Evaluate statement STMT against the complex lattice defined above. */
290 static enum ssa_prop_result
291 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
292 tree *result_p)
294 complex_lattice_t new_l, old_l, op1_l, op2_l;
295 unsigned int ver;
296 tree lhs;
298 lhs = gimple_get_lhs (stmt);
299 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
300 if (!lhs)
301 return SSA_PROP_VARYING;
303 /* These conditions should be satisfied due to the initial filter
304 set up in init_dont_simulate_again. */
305 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
306 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
308 *result_p = lhs;
309 ver = SSA_NAME_VERSION (lhs);
310 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
312 switch (gimple_expr_code (stmt))
314 case SSA_NAME:
315 case COMPLEX_CST:
316 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
317 break;
319 case COMPLEX_EXPR:
320 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
321 gimple_assign_rhs2 (stmt));
322 break;
324 case PLUS_EXPR:
325 case MINUS_EXPR:
326 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
327 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
329 /* We've set up the lattice values such that IOR neatly
330 models addition. */
331 new_l = op1_l | op2_l;
332 break;
334 case MULT_EXPR:
335 case RDIV_EXPR:
336 case TRUNC_DIV_EXPR:
337 case CEIL_DIV_EXPR:
338 case FLOOR_DIV_EXPR:
339 case ROUND_DIV_EXPR:
340 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
341 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
343 /* Obviously, if either varies, so does the result. */
344 if (op1_l == VARYING || op2_l == VARYING)
345 new_l = VARYING;
346 /* Don't prematurely promote variables if we've not yet seen
347 their inputs. */
348 else if (op1_l == UNINITIALIZED)
349 new_l = op2_l;
350 else if (op2_l == UNINITIALIZED)
351 new_l = op1_l;
352 else
354 /* At this point both numbers have only one component. If the
355 numbers are of opposite kind, the result is imaginary,
356 otherwise the result is real. The add/subtract translates
357 the real/imag from/to 0/1; the ^ performs the comparison. */
358 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
360 /* Don't allow the lattice value to flip-flop indefinitely. */
361 new_l |= old_l;
363 break;
365 case NEGATE_EXPR:
366 case CONJ_EXPR:
367 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
368 break;
370 default:
371 new_l = VARYING;
372 break;
375 /* If nothing changed this round, let the propagator know. */
376 if (new_l == old_l)
377 return SSA_PROP_NOT_INTERESTING;
379 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
380 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
383 /* Evaluate a PHI node against the complex lattice defined above. */
385 static enum ssa_prop_result
386 complex_visit_phi (gimple phi)
388 complex_lattice_t new_l, old_l;
389 unsigned int ver;
390 tree lhs;
391 int i;
393 lhs = gimple_phi_result (phi);
395 /* This condition should be satisfied due to the initial filter
396 set up in init_dont_simulate_again. */
397 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
399 /* We've set up the lattice values such that IOR neatly models PHI meet. */
400 new_l = UNINITIALIZED;
401 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
402 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
404 ver = SSA_NAME_VERSION (lhs);
405 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
407 if (new_l == old_l)
408 return SSA_PROP_NOT_INTERESTING;
410 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
411 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
414 /* Create one backing variable for a complex component of ORIG. */
416 static tree
417 create_one_component_var (tree type, tree orig, const char *prefix,
418 const char *suffix, enum tree_code code)
420 tree r = create_tmp_var (type, prefix);
421 add_referenced_var (r);
423 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
424 DECL_ARTIFICIAL (r) = 1;
426 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
428 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
429 tree inner_type;
431 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
433 inner_type = TREE_TYPE (TREE_TYPE (orig));
434 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
435 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
436 DECL_IGNORED_P (r) = 0;
437 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
439 else
441 DECL_IGNORED_P (r) = 1;
442 TREE_NO_WARNING (r) = 1;
445 return r;
448 /* Retrieve a value for a complex component of VAR. */
450 static tree
451 get_component_var (tree var, bool imag_p)
453 size_t decl_index = DECL_UID (var) * 2 + imag_p;
454 tree ret = cvc_lookup (decl_index);
456 if (ret == NULL)
458 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
459 imag_p ? "CI" : "CR",
460 imag_p ? "$imag" : "$real",
461 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
462 cvc_insert (decl_index, ret);
465 return ret;
468 /* Retrieve a value for a complex component of SSA_NAME. */
470 static tree
471 get_component_ssa_name (tree ssa_name, bool imag_p)
473 complex_lattice_t lattice = find_lattice_value (ssa_name);
474 size_t ssa_name_index;
475 tree ret;
477 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
479 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
480 if (SCALAR_FLOAT_TYPE_P (inner_type))
481 return build_real (inner_type, dconst0);
482 else
483 return build_int_cst (inner_type, 0);
486 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
487 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
488 if (ret == NULL)
490 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
491 ret = make_ssa_name (ret, NULL);
493 /* Copy some properties from the original. In particular, whether it
494 is used in an abnormal phi, and whether it's uninitialized. */
495 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
496 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
497 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
498 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
500 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
501 set_default_def (SSA_NAME_VAR (ret), ret);
504 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
507 return ret;
510 /* Set a value for a complex component of SSA_NAME, return a
511 gimple_seq of stuff that needs doing. */
513 static gimple_seq
514 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
516 complex_lattice_t lattice = find_lattice_value (ssa_name);
517 size_t ssa_name_index;
518 tree comp;
519 gimple last;
520 gimple_seq list;
522 /* We know the value must be zero, else there's a bug in our lattice
523 analysis. But the value may well be a variable known to contain
524 zero. We should be safe ignoring it. */
525 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
526 return NULL;
528 /* If we've already assigned an SSA_NAME to this component, then this
529 means that our walk of the basic blocks found a use before the set.
530 This is fine. Now we should create an initialization for the value
531 we created earlier. */
532 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
533 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
534 if (comp)
537 /* If we've nothing assigned, and the value we're given is already stable,
538 then install that as the value for this SSA_NAME. This preemptively
539 copy-propagates the value, which avoids unnecessary memory allocation. */
540 else if (is_gimple_min_invariant (value)
541 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
543 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
544 return NULL;
546 else if (TREE_CODE (value) == SSA_NAME
547 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
549 /* Replace an anonymous base value with the variable from cvc_lookup.
550 This should result in better debug info. */
551 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
552 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
554 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
555 replace_ssa_name_symbol (value, comp);
558 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
559 return NULL;
562 /* Finally, we need to stabilize the result by installing the value into
563 a new ssa name. */
564 else
565 comp = get_component_ssa_name (ssa_name, imag_p);
567 /* Do all the work to assign VALUE to COMP. */
568 list = NULL;
569 value = force_gimple_operand (value, &list, false, NULL);
570 last = gimple_build_assign (comp, value);
571 gimple_seq_add_stmt (&list, last);
572 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
574 return list;
577 /* Extract the real or imaginary part of a complex variable or constant.
578 Make sure that it's a proper gimple_val and gimplify it if not.
579 Emit any new code before gsi. */
581 static tree
582 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
583 bool gimple_p)
585 switch (TREE_CODE (t))
587 case COMPLEX_CST:
588 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
590 case COMPLEX_EXPR:
591 gcc_unreachable ();
593 case VAR_DECL:
594 case RESULT_DECL:
595 case PARM_DECL:
596 case INDIRECT_REF:
597 case COMPONENT_REF:
598 case ARRAY_REF:
600 tree inner_type = TREE_TYPE (TREE_TYPE (t));
602 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
603 inner_type, unshare_expr (t));
605 if (gimple_p)
606 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
607 GSI_SAME_STMT);
609 return t;
612 case SSA_NAME:
613 return get_component_ssa_name (t, imagpart_p);
615 default:
616 gcc_unreachable ();
620 /* Update the complex components of the ssa name on the lhs of STMT. */
622 static void
623 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
624 tree i)
626 tree lhs;
627 gimple_seq list;
629 lhs = gimple_get_lhs (stmt);
631 list = set_component_ssa_name (lhs, false, r);
632 if (list)
633 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
635 list = set_component_ssa_name (lhs, true, i);
636 if (list)
637 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
640 static void
641 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
643 gimple_seq list;
645 list = set_component_ssa_name (lhs, false, r);
646 if (list)
647 gsi_insert_seq_on_edge (e, list);
649 list = set_component_ssa_name (lhs, true, i);
650 if (list)
651 gsi_insert_seq_on_edge (e, list);
655 /* Update an assignment to a complex variable in place. */
657 static void
658 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
660 gimple_stmt_iterator orig_si = *gsi;
662 if (gimple_in_ssa_p (cfun))
663 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
665 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
666 update_stmt (gsi_stmt (orig_si));
670 /* Generate code at the entry point of the function to initialize the
671 component variables for a complex parameter. */
673 static void
674 update_parameter_components (void)
676 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
677 tree parm;
679 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
681 tree type = TREE_TYPE (parm);
682 tree ssa_name, r, i;
684 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
685 continue;
687 type = TREE_TYPE (type);
688 ssa_name = gimple_default_def (cfun, parm);
689 if (!ssa_name)
690 continue;
692 r = build1 (REALPART_EXPR, type, ssa_name);
693 i = build1 (IMAGPART_EXPR, type, ssa_name);
694 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
698 /* Generate code to set the component variables of a complex variable
699 to match the PHI statements in block BB. */
701 static void
702 update_phi_components (basic_block bb)
704 gimple_stmt_iterator gsi;
706 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
708 gimple phi = gsi_stmt (gsi);
710 if (is_complex_reg (gimple_phi_result (phi)))
712 tree lr, li;
713 gimple pr = NULL, pi = NULL;
714 unsigned int i, n;
716 lr = get_component_ssa_name (gimple_phi_result (phi), false);
717 if (TREE_CODE (lr) == SSA_NAME)
719 pr = create_phi_node (lr, bb);
720 SSA_NAME_DEF_STMT (lr) = pr;
723 li = get_component_ssa_name (gimple_phi_result (phi), true);
724 if (TREE_CODE (li) == SSA_NAME)
726 pi = create_phi_node (li, bb);
727 SSA_NAME_DEF_STMT (li) = pi;
730 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
732 tree comp, arg = gimple_phi_arg_def (phi, i);
733 if (pr)
735 comp = extract_component (NULL, arg, false, false);
736 SET_PHI_ARG_DEF (pr, i, comp);
738 if (pi)
740 comp = extract_component (NULL, arg, true, false);
741 SET_PHI_ARG_DEF (pi, i, comp);
748 /* Expand a complex move to scalars. */
750 static void
751 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
753 tree inner_type = TREE_TYPE (type);
754 tree r, i, lhs, rhs;
755 gimple stmt = gsi_stmt (*gsi);
757 if (is_gimple_assign (stmt))
759 lhs = gimple_assign_lhs (stmt);
760 if (gimple_num_ops (stmt) == 2)
761 rhs = gimple_assign_rhs1 (stmt);
762 else
763 rhs = NULL_TREE;
765 else if (is_gimple_call (stmt))
767 lhs = gimple_call_lhs (stmt);
768 rhs = NULL_TREE;
770 else
771 gcc_unreachable ();
773 if (TREE_CODE (lhs) == SSA_NAME)
775 if (is_ctrl_altering_stmt (stmt))
777 edge_iterator ei;
778 edge e;
780 /* The value is not assigned on the exception edges, so we need not
781 concern ourselves there. We do need to update on the fallthru
782 edge. Find it. */
783 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
784 if (e->flags & EDGE_FALLTHRU)
785 goto found_fallthru;
786 gcc_unreachable ();
787 found_fallthru:
789 r = build1 (REALPART_EXPR, inner_type, lhs);
790 i = build1 (IMAGPART_EXPR, inner_type, lhs);
791 update_complex_components_on_edge (e, lhs, r, i);
793 else if (is_gimple_call (stmt)
794 || gimple_has_side_effects (stmt)
795 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
797 r = build1 (REALPART_EXPR, inner_type, lhs);
798 i = build1 (IMAGPART_EXPR, inner_type, lhs);
799 update_complex_components (gsi, stmt, r, i);
801 else
803 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
805 r = extract_component (gsi, rhs, 0, true);
806 i = extract_component (gsi, rhs, 1, true);
808 else
810 r = gimple_assign_rhs1 (stmt);
811 i = gimple_assign_rhs2 (stmt);
813 update_complex_assignment (gsi, r, i);
816 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
818 tree x;
819 gimple t;
821 r = extract_component (gsi, rhs, 0, false);
822 i = extract_component (gsi, rhs, 1, false);
824 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
825 t = gimple_build_assign (x, r);
826 gsi_insert_before (gsi, t, GSI_SAME_STMT);
828 if (stmt == gsi_stmt (*gsi))
830 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
831 gimple_assign_set_lhs (stmt, x);
832 gimple_assign_set_rhs1 (stmt, i);
834 else
836 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
837 t = gimple_build_assign (x, i);
838 gsi_insert_before (gsi, t, GSI_SAME_STMT);
840 stmt = gsi_stmt (*gsi);
841 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
842 gimple_return_set_retval (stmt, lhs);
845 update_stmt (stmt);
849 /* Expand complex addition to scalars:
850 a + b = (ar + br) + i(ai + bi)
851 a - b = (ar - br) + i(ai + bi)
854 static void
855 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
856 tree ar, tree ai, tree br, tree bi,
857 enum tree_code code,
858 complex_lattice_t al, complex_lattice_t bl)
860 tree rr, ri;
862 switch (PAIR (al, bl))
864 case PAIR (ONLY_REAL, ONLY_REAL):
865 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
866 ri = ai;
867 break;
869 case PAIR (ONLY_REAL, ONLY_IMAG):
870 rr = ar;
871 if (code == MINUS_EXPR)
872 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
873 else
874 ri = bi;
875 break;
877 case PAIR (ONLY_IMAG, ONLY_REAL):
878 if (code == MINUS_EXPR)
879 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
880 else
881 rr = br;
882 ri = ai;
883 break;
885 case PAIR (ONLY_IMAG, ONLY_IMAG):
886 rr = ar;
887 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
888 break;
890 case PAIR (VARYING, ONLY_REAL):
891 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
892 ri = ai;
893 break;
895 case PAIR (VARYING, ONLY_IMAG):
896 rr = ar;
897 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
898 break;
900 case PAIR (ONLY_REAL, VARYING):
901 if (code == MINUS_EXPR)
902 goto general;
903 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
904 ri = bi;
905 break;
907 case PAIR (ONLY_IMAG, VARYING):
908 if (code == MINUS_EXPR)
909 goto general;
910 rr = br;
911 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
912 break;
914 case PAIR (VARYING, VARYING):
915 general:
916 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
917 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
918 break;
920 default:
921 gcc_unreachable ();
924 update_complex_assignment (gsi, rr, ri);
927 /* Expand a complex multiplication or division to a libcall to the c99
928 compliant routines. */
930 static void
931 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
932 tree br, tree bi, enum tree_code code)
934 enum machine_mode mode;
935 enum built_in_function bcode;
936 tree fn, type, lhs;
937 gimple old_stmt, stmt;
939 old_stmt = gsi_stmt (*gsi);
940 lhs = gimple_assign_lhs (old_stmt);
941 type = TREE_TYPE (lhs);
943 mode = TYPE_MODE (type);
944 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
946 if (code == MULT_EXPR)
947 bcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
948 else if (code == RDIV_EXPR)
949 bcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
950 else
951 gcc_unreachable ();
952 fn = built_in_decls[bcode];
954 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
955 gimple_call_set_lhs (stmt, lhs);
956 update_stmt (stmt);
957 gsi_replace (gsi, stmt, false);
959 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
960 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
962 if (gimple_in_ssa_p (cfun))
964 type = TREE_TYPE (type);
965 update_complex_components (gsi, stmt,
966 build1 (REALPART_EXPR, type, lhs),
967 build1 (IMAGPART_EXPR, type, lhs));
968 SSA_NAME_DEF_STMT (lhs) = stmt;
972 /* Expand complex multiplication to scalars:
973 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
976 static void
977 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
978 tree ar, tree ai, tree br, tree bi,
979 complex_lattice_t al, complex_lattice_t bl)
981 tree rr, ri;
983 if (al < bl)
985 complex_lattice_t tl;
986 rr = ar, ar = br, br = rr;
987 ri = ai, ai = bi, bi = ri;
988 tl = al, al = bl, bl = tl;
991 switch (PAIR (al, bl))
993 case PAIR (ONLY_REAL, ONLY_REAL):
994 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
995 ri = ai;
996 break;
998 case PAIR (ONLY_IMAG, ONLY_REAL):
999 rr = ar;
1000 if (TREE_CODE (ai) == REAL_CST
1001 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1002 ri = br;
1003 else
1004 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1005 break;
1007 case PAIR (ONLY_IMAG, ONLY_IMAG):
1008 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1009 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1010 ri = ar;
1011 break;
1013 case PAIR (VARYING, ONLY_REAL):
1014 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1015 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1016 break;
1018 case PAIR (VARYING, ONLY_IMAG):
1019 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1020 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1021 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1022 break;
1024 case PAIR (VARYING, VARYING):
1025 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1027 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1028 return;
1030 else
1032 tree t1, t2, t3, t4;
1034 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1035 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1036 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1038 /* Avoid expanding redundant multiplication for the common
1039 case of squaring a complex number. */
1040 if (ar == br && ai == bi)
1041 t4 = t3;
1042 else
1043 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1045 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1046 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1048 break;
1050 default:
1051 gcc_unreachable ();
1054 update_complex_assignment (gsi, rr, ri);
1057 /* Expand complex division to scalars, straightforward algorithm.
1058 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1059 t = br*br + bi*bi
1062 static void
1063 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1064 tree ar, tree ai, tree br, tree bi,
1065 enum tree_code code)
1067 tree rr, ri, div, t1, t2, t3;
1069 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1070 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1071 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1073 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1074 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1075 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1076 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1078 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1079 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1080 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1081 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1083 update_complex_assignment (gsi, rr, ri);
1086 /* Expand complex division to scalars, modified algorithm to minimize
1087 overflow with wide input ranges. */
1089 static void
1090 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1091 tree ar, tree ai, tree br, tree bi,
1092 enum tree_code code)
1094 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1095 basic_block bb_cond, bb_true, bb_false, bb_join;
1096 gimple stmt;
1098 /* Examine |br| < |bi|, and branch. */
1099 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1100 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1101 compare = fold_build2 (LT_EXPR, boolean_type_node, t1, t2);
1102 STRIP_NOPS (compare);
1104 bb_cond = bb_true = bb_false = bb_join = NULL;
1105 rr = ri = tr = ti = NULL;
1106 if (!TREE_CONSTANT (compare))
1108 edge e;
1109 gimple stmt;
1110 tree cond, tmp;
1112 tmp = create_tmp_var (boolean_type_node, NULL);
1113 stmt = gimple_build_assign (tmp, compare);
1114 if (gimple_in_ssa_p (cfun))
1116 tmp = make_ssa_name (tmp, stmt);
1117 gimple_assign_set_lhs (stmt, tmp);
1120 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1122 cond = fold_build2 (EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1123 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1124 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1126 /* Split the original block, and create the TRUE and FALSE blocks. */
1127 e = split_block (gsi_bb (*gsi), stmt);
1128 bb_cond = e->src;
1129 bb_join = e->dest;
1130 bb_true = create_empty_bb (bb_cond);
1131 bb_false = create_empty_bb (bb_true);
1133 /* Wire the blocks together. */
1134 e->flags = EDGE_TRUE_VALUE;
1135 redirect_edge_succ (e, bb_true);
1136 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1137 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1138 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1140 /* Update dominance info. Note that bb_join's data was
1141 updated by split_block. */
1142 if (dom_info_available_p (CDI_DOMINATORS))
1144 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1145 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1148 rr = make_rename_temp (inner_type, NULL);
1149 ri = make_rename_temp (inner_type, NULL);
1152 /* In the TRUE branch, we compute
1153 ratio = br/bi;
1154 div = (br * ratio) + bi;
1155 tr = (ar * ratio) + ai;
1156 ti = (ai * ratio) - ar;
1157 tr = tr / div;
1158 ti = ti / div; */
1159 if (bb_true || integer_nonzerop (compare))
1161 if (bb_true)
1163 *gsi = gsi_last_bb (bb_true);
1164 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1167 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1169 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1170 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1172 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1173 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1175 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1176 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1178 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1179 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1181 if (bb_true)
1183 stmt = gimple_build_assign (rr, tr);
1184 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1185 stmt = gimple_build_assign (ri, ti);
1186 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1187 gsi_remove (gsi, true);
1191 /* In the FALSE branch, we compute
1192 ratio = d/c;
1193 divisor = (d * ratio) + c;
1194 tr = (b * ratio) + a;
1195 ti = b - (a * ratio);
1196 tr = tr / div;
1197 ti = ti / div; */
1198 if (bb_false || integer_zerop (compare))
1200 if (bb_false)
1202 *gsi = gsi_last_bb (bb_false);
1203 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1206 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1208 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1209 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1211 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1212 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1214 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1215 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1217 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1218 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1220 if (bb_false)
1222 stmt = gimple_build_assign (rr, tr);
1223 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1224 stmt = gimple_build_assign (ri, ti);
1225 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1226 gsi_remove (gsi, true);
1230 if (bb_join)
1231 *gsi = gsi_start_bb (bb_join);
1232 else
1233 rr = tr, ri = ti;
1235 update_complex_assignment (gsi, rr, ri);
1238 /* Expand complex division to scalars. */
1240 static void
1241 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1242 tree ar, tree ai, tree br, tree bi,
1243 enum tree_code code,
1244 complex_lattice_t al, complex_lattice_t bl)
1246 tree rr, ri;
1248 switch (PAIR (al, bl))
1250 case PAIR (ONLY_REAL, ONLY_REAL):
1251 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1252 ri = ai;
1253 break;
1255 case PAIR (ONLY_REAL, ONLY_IMAG):
1256 rr = ai;
1257 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1258 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1259 break;
1261 case PAIR (ONLY_IMAG, ONLY_REAL):
1262 rr = ar;
1263 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1264 break;
1266 case PAIR (ONLY_IMAG, ONLY_IMAG):
1267 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1268 ri = ar;
1269 break;
1271 case PAIR (VARYING, ONLY_REAL):
1272 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1273 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1274 break;
1276 case PAIR (VARYING, ONLY_IMAG):
1277 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1278 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1279 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1281 case PAIR (ONLY_REAL, VARYING):
1282 case PAIR (ONLY_IMAG, VARYING):
1283 case PAIR (VARYING, VARYING):
1284 switch (flag_complex_method)
1286 case 0:
1287 /* straightforward implementation of complex divide acceptable. */
1288 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1289 break;
1291 case 2:
1292 if (SCALAR_FLOAT_TYPE_P (inner_type))
1294 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1295 break;
1297 /* FALLTHRU */
1299 case 1:
1300 /* wide ranges of inputs must work for complex divide. */
1301 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1302 break;
1304 default:
1305 gcc_unreachable ();
1307 return;
1309 default:
1310 gcc_unreachable ();
1313 update_complex_assignment (gsi, rr, ri);
1316 /* Expand complex negation to scalars:
1317 -a = (-ar) + i(-ai)
1320 static void
1321 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1322 tree ar, tree ai)
1324 tree rr, ri;
1326 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1327 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1329 update_complex_assignment (gsi, rr, ri);
1332 /* Expand complex conjugate to scalars:
1333 ~a = (ar) + i(-ai)
1336 static void
1337 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1338 tree ar, tree ai)
1340 tree ri;
1342 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1344 update_complex_assignment (gsi, ar, ri);
1347 /* Expand complex comparison (EQ or NE only). */
1349 static void
1350 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1351 tree br, tree bi, enum tree_code code)
1353 tree cr, ci, cc, type;
1354 gimple stmt;
1356 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1357 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1358 cc = gimplify_build2 (gsi,
1359 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1360 boolean_type_node, cr, ci);
1362 stmt = gsi_stmt (*gsi);
1364 switch (gimple_code (stmt))
1366 case GIMPLE_RETURN:
1367 type = TREE_TYPE (gimple_return_retval (stmt));
1368 gimple_return_set_retval (stmt, fold_convert (type, cc));
1369 break;
1371 case GIMPLE_ASSIGN:
1372 type = TREE_TYPE (gimple_assign_lhs (stmt));
1373 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1374 stmt = gsi_stmt (*gsi);
1375 break;
1377 case GIMPLE_COND:
1378 gimple_cond_set_code (stmt, EQ_EXPR);
1379 gimple_cond_set_lhs (stmt, cc);
1380 gimple_cond_set_rhs (stmt, boolean_true_node);
1381 break;
1383 default:
1384 gcc_unreachable ();
1387 update_stmt (stmt);
1391 /* Process one statement. If we identify a complex operation, expand it. */
1393 static void
1394 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1396 gimple stmt = gsi_stmt (*gsi);
1397 tree type, inner_type, lhs;
1398 tree ac, ar, ai, bc, br, bi;
1399 complex_lattice_t al, bl;
1400 enum tree_code code;
1402 lhs = gimple_get_lhs (stmt);
1403 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1404 return;
1406 type = TREE_TYPE (gimple_op (stmt, 0));
1407 code = gimple_expr_code (stmt);
1409 /* Initial filter for operations we handle. */
1410 switch (code)
1412 case PLUS_EXPR:
1413 case MINUS_EXPR:
1414 case MULT_EXPR:
1415 case TRUNC_DIV_EXPR:
1416 case CEIL_DIV_EXPR:
1417 case FLOOR_DIV_EXPR:
1418 case ROUND_DIV_EXPR:
1419 case RDIV_EXPR:
1420 case NEGATE_EXPR:
1421 case CONJ_EXPR:
1422 if (TREE_CODE (type) != COMPLEX_TYPE)
1423 return;
1424 inner_type = TREE_TYPE (type);
1425 break;
1427 case EQ_EXPR:
1428 case NE_EXPR:
1429 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1430 subocde, so we need to access the operands using gimple_op. */
1431 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1432 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1433 return;
1434 break;
1436 default:
1438 tree rhs;
1440 /* GIMPLE_COND may also fallthru here, but we do not need to
1441 do anything with it. */
1442 if (gimple_code (stmt) == GIMPLE_COND)
1443 return;
1445 if (TREE_CODE (type) == COMPLEX_TYPE)
1446 expand_complex_move (gsi, type);
1447 else if (is_gimple_assign (stmt)
1448 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1449 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1450 && TREE_CODE (lhs) == SSA_NAME)
1452 rhs = gimple_assign_rhs1 (stmt);
1453 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1454 gimple_assign_rhs_code (stmt)
1455 == IMAGPART_EXPR,
1456 false);
1457 gimple_assign_set_rhs_from_tree (gsi, rhs);
1458 stmt = gsi_stmt (*gsi);
1459 update_stmt (stmt);
1462 return;
1465 /* Extract the components of the two complex values. Make sure and
1466 handle the common case of the same value used twice specially. */
1467 if (is_gimple_assign (stmt))
1469 ac = gimple_assign_rhs1 (stmt);
1470 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1472 /* GIMPLE_CALL can not get here. */
1473 else
1475 ac = gimple_cond_lhs (stmt);
1476 bc = gimple_cond_rhs (stmt);
1479 ar = extract_component (gsi, ac, false, true);
1480 ai = extract_component (gsi, ac, true, true);
1482 if (ac == bc)
1483 br = ar, bi = ai;
1484 else if (bc)
1486 br = extract_component (gsi, bc, 0, true);
1487 bi = extract_component (gsi, bc, 1, true);
1489 else
1490 br = bi = NULL_TREE;
1492 if (gimple_in_ssa_p (cfun))
1494 al = find_lattice_value (ac);
1495 if (al == UNINITIALIZED)
1496 al = VARYING;
1498 if (TREE_CODE_CLASS (code) == tcc_unary)
1499 bl = UNINITIALIZED;
1500 else if (ac == bc)
1501 bl = al;
1502 else
1504 bl = find_lattice_value (bc);
1505 if (bl == UNINITIALIZED)
1506 bl = VARYING;
1509 else
1510 al = bl = VARYING;
1512 switch (code)
1514 case PLUS_EXPR:
1515 case MINUS_EXPR:
1516 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1517 break;
1519 case MULT_EXPR:
1520 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1521 break;
1523 case TRUNC_DIV_EXPR:
1524 case CEIL_DIV_EXPR:
1525 case FLOOR_DIV_EXPR:
1526 case ROUND_DIV_EXPR:
1527 case RDIV_EXPR:
1528 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1529 break;
1531 case NEGATE_EXPR:
1532 expand_complex_negation (gsi, inner_type, ar, ai);
1533 break;
1535 case CONJ_EXPR:
1536 expand_complex_conjugate (gsi, inner_type, ar, ai);
1537 break;
1539 case EQ_EXPR:
1540 case NE_EXPR:
1541 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1542 break;
1544 default:
1545 gcc_unreachable ();
1550 /* Entry point for complex operation lowering during optimization. */
1552 static unsigned int
1553 tree_lower_complex (void)
1555 int old_last_basic_block;
1556 gimple_stmt_iterator gsi;
1557 basic_block bb;
1559 if (!init_dont_simulate_again ())
1560 return 0;
1562 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1563 VEC_safe_grow_cleared (complex_lattice_t, heap,
1564 complex_lattice_values, num_ssa_names);
1566 init_parameter_lattice_values ();
1567 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1569 complex_variable_components = htab_create (10, int_tree_map_hash,
1570 int_tree_map_eq, free);
1572 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1573 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1574 2 * num_ssa_names);
1576 update_parameter_components ();
1578 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1579 old_last_basic_block = last_basic_block;
1580 FOR_EACH_BB (bb)
1582 if (bb->index >= old_last_basic_block)
1583 continue;
1585 update_phi_components (bb);
1586 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1587 expand_complex_operations_1 (&gsi);
1590 gsi_commit_edge_inserts ();
1592 htab_delete (complex_variable_components);
1593 VEC_free (tree, heap, complex_ssa_name_components);
1594 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1595 return 0;
1598 struct gimple_opt_pass pass_lower_complex =
1601 GIMPLE_PASS,
1602 "cplxlower", /* name */
1603 0, /* gate */
1604 tree_lower_complex, /* execute */
1605 NULL, /* sub */
1606 NULL, /* next */
1607 0, /* static_pass_number */
1608 0, /* tv_id */
1609 PROP_ssa, /* properties_required */
1610 0, /* properties_provided */
1611 0, /* properties_destroyed */
1612 0, /* todo_flags_start */
1613 TODO_dump_func
1614 | TODO_ggc_collect
1615 | TODO_update_ssa
1616 | TODO_verify_stmts /* todo_flags_finish */
1621 /* Entry point for complex operation lowering without optimization. */
1623 static unsigned int
1624 tree_lower_complex_O0 (void)
1626 int old_last_basic_block = last_basic_block;
1627 gimple_stmt_iterator gsi;
1628 basic_block bb;
1630 FOR_EACH_BB (bb)
1632 if (bb->index >= old_last_basic_block)
1633 continue;
1635 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1636 expand_complex_operations_1 (&gsi);
1638 return 0;
1641 static bool
1642 gate_no_optimization (void)
1644 /* With errors, normal optimization passes are not run. If we don't
1645 lower complex operations at all, rtl expansion will abort. */
1646 return optimize == 0 || sorrycount || errorcount;
1649 struct gimple_opt_pass pass_lower_complex_O0 =
1652 GIMPLE_PASS,
1653 "cplxlower0", /* name */
1654 gate_no_optimization, /* gate */
1655 tree_lower_complex_O0, /* execute */
1656 NULL, /* sub */
1657 NULL, /* next */
1658 0, /* static_pass_number */
1659 0, /* tv_id */
1660 PROP_cfg, /* properties_required */
1661 0, /* properties_provided */
1662 0, /* properties_destroyed */
1663 0, /* todo_flags_start */
1664 TODO_dump_func | TODO_ggc_collect
1665 | TODO_verify_stmts, /* todo_flags_finish */