* config.gcc (cygwin tm_file): Add cygwin-stdint.h.
[official-gcc.git] / gcc / tree-cfg.c
blob07a46df08ded3fc8b8f92284f0765fada7673b3a
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t *edge_to_cases;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Basic blocks and flowgraphs. */
86 static void make_blocks (gimple_seq);
87 static void factor_computed_gotos (void);
89 /* Edges. */
90 static void make_edges (void);
91 static void make_cond_expr_edges (basic_block);
92 static void make_gimple_switch_edges (basic_block);
93 static void make_goto_expr_edges (basic_block);
94 static edge gimple_redirect_edge_and_branch (edge, basic_block);
95 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
96 static unsigned int split_critical_edges (void);
98 /* Various helpers. */
99 static inline bool stmt_starts_bb_p (gimple, gimple);
100 static int gimple_verify_flow_info (void);
101 static void gimple_make_forwarder_block (edge);
102 static void gimple_cfg2vcg (FILE *);
104 /* Flowgraph optimization and cleanup. */
105 static void gimple_merge_blocks (basic_block, basic_block);
106 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
107 static void remove_bb (basic_block);
108 static edge find_taken_edge_computed_goto (basic_block, tree);
109 static edge find_taken_edge_cond_expr (basic_block, tree);
110 static edge find_taken_edge_switch_expr (basic_block, tree);
111 static tree find_case_label_for_value (gimple, tree);
113 void
114 init_empty_tree_cfg_for_function (struct function *fn)
116 /* Initialize the basic block array. */
117 init_flow (fn);
118 profile_status_for_function (fn) = PROFILE_ABSENT;
119 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
120 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
121 basic_block_info_for_function (fn)
122 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
123 VEC_safe_grow_cleared (basic_block, gc,
124 basic_block_info_for_function (fn),
125 initial_cfg_capacity);
127 /* Build a mapping of labels to their associated blocks. */
128 label_to_block_map_for_function (fn)
129 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
130 VEC_safe_grow_cleared (basic_block, gc,
131 label_to_block_map_for_function (fn),
132 initial_cfg_capacity);
134 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
135 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
136 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
137 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
139 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
140 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
141 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
142 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
145 void
146 init_empty_tree_cfg (void)
148 init_empty_tree_cfg_for_function (cfun);
151 /*---------------------------------------------------------------------------
152 Create basic blocks
153 ---------------------------------------------------------------------------*/
155 /* Entry point to the CFG builder for trees. SEQ is the sequence of
156 statements to be added to the flowgraph. */
158 static void
159 build_gimple_cfg (gimple_seq seq)
161 /* Register specific gimple functions. */
162 gimple_register_cfg_hooks ();
164 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
166 init_empty_tree_cfg ();
168 found_computed_goto = 0;
169 make_blocks (seq);
171 /* Computed gotos are hell to deal with, especially if there are
172 lots of them with a large number of destinations. So we factor
173 them to a common computed goto location before we build the
174 edge list. After we convert back to normal form, we will un-factor
175 the computed gotos since factoring introduces an unwanted jump. */
176 if (found_computed_goto)
177 factor_computed_gotos ();
179 /* Make sure there is always at least one block, even if it's empty. */
180 if (n_basic_blocks == NUM_FIXED_BLOCKS)
181 create_empty_bb (ENTRY_BLOCK_PTR);
183 /* Adjust the size of the array. */
184 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
185 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
187 /* To speed up statement iterator walks, we first purge dead labels. */
188 cleanup_dead_labels ();
190 /* Group case nodes to reduce the number of edges.
191 We do this after cleaning up dead labels because otherwise we miss
192 a lot of obvious case merging opportunities. */
193 group_case_labels ();
195 /* Create the edges of the flowgraph. */
196 make_edges ();
197 cleanup_dead_labels ();
199 /* Debugging dumps. */
201 /* Write the flowgraph to a VCG file. */
203 int local_dump_flags;
204 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
205 if (vcg_file)
207 gimple_cfg2vcg (vcg_file);
208 dump_end (TDI_vcg, vcg_file);
212 #ifdef ENABLE_CHECKING
213 verify_stmts ();
214 #endif
217 static unsigned int
218 execute_build_cfg (void)
220 gimple_seq body = gimple_body (current_function_decl);
222 build_gimple_cfg (body);
223 gimple_set_body (current_function_decl, NULL);
224 if (dump_file && (dump_flags & TDF_DETAILS))
226 fprintf (dump_file, "Scope blocks:\n");
227 dump_scope_blocks (dump_file, dump_flags);
229 return 0;
232 struct gimple_opt_pass pass_build_cfg =
235 GIMPLE_PASS,
236 "cfg", /* name */
237 NULL, /* gate */
238 execute_build_cfg, /* execute */
239 NULL, /* sub */
240 NULL, /* next */
241 0, /* static_pass_number */
242 TV_TREE_CFG, /* tv_id */
243 PROP_gimple_leh, /* properties_required */
244 PROP_cfg, /* properties_provided */
245 0, /* properties_destroyed */
246 0, /* todo_flags_start */
247 TODO_verify_stmts | TODO_cleanup_cfg
248 | TODO_dump_func /* todo_flags_finish */
253 /* Return true if T is a computed goto. */
255 static bool
256 computed_goto_p (gimple t)
258 return (gimple_code (t) == GIMPLE_GOTO
259 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
263 /* Search the CFG for any computed gotos. If found, factor them to a
264 common computed goto site. Also record the location of that site so
265 that we can un-factor the gotos after we have converted back to
266 normal form. */
268 static void
269 factor_computed_gotos (void)
271 basic_block bb;
272 tree factored_label_decl = NULL;
273 tree var = NULL;
274 gimple factored_computed_goto_label = NULL;
275 gimple factored_computed_goto = NULL;
277 /* We know there are one or more computed gotos in this function.
278 Examine the last statement in each basic block to see if the block
279 ends with a computed goto. */
281 FOR_EACH_BB (bb)
283 gimple_stmt_iterator gsi = gsi_last_bb (bb);
284 gimple last;
286 if (gsi_end_p (gsi))
287 continue;
289 last = gsi_stmt (gsi);
291 /* Ignore the computed goto we create when we factor the original
292 computed gotos. */
293 if (last == factored_computed_goto)
294 continue;
296 /* If the last statement is a computed goto, factor it. */
297 if (computed_goto_p (last))
299 gimple assignment;
301 /* The first time we find a computed goto we need to create
302 the factored goto block and the variable each original
303 computed goto will use for their goto destination. */
304 if (!factored_computed_goto)
306 basic_block new_bb = create_empty_bb (bb);
307 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
309 /* Create the destination of the factored goto. Each original
310 computed goto will put its desired destination into this
311 variable and jump to the label we create immediately
312 below. */
313 var = create_tmp_var (ptr_type_node, "gotovar");
315 /* Build a label for the new block which will contain the
316 factored computed goto. */
317 factored_label_decl = create_artificial_label ();
318 factored_computed_goto_label
319 = gimple_build_label (factored_label_decl);
320 gsi_insert_after (&new_gsi, factored_computed_goto_label,
321 GSI_NEW_STMT);
323 /* Build our new computed goto. */
324 factored_computed_goto = gimple_build_goto (var);
325 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
328 /* Copy the original computed goto's destination into VAR. */
329 assignment = gimple_build_assign (var, gimple_goto_dest (last));
330 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
332 /* And re-vector the computed goto to the new destination. */
333 gimple_goto_set_dest (last, factored_label_decl);
339 /* Build a flowgraph for the sequence of stmts SEQ. */
341 static void
342 make_blocks (gimple_seq seq)
344 gimple_stmt_iterator i = gsi_start (seq);
345 gimple stmt = NULL;
346 bool start_new_block = true;
347 bool first_stmt_of_seq = true;
348 basic_block bb = ENTRY_BLOCK_PTR;
350 while (!gsi_end_p (i))
352 gimple prev_stmt;
354 prev_stmt = stmt;
355 stmt = gsi_stmt (i);
357 /* If the statement starts a new basic block or if we have determined
358 in a previous pass that we need to create a new block for STMT, do
359 so now. */
360 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
362 if (!first_stmt_of_seq)
363 seq = gsi_split_seq_before (&i);
364 bb = create_basic_block (seq, NULL, bb);
365 start_new_block = false;
368 /* Now add STMT to BB and create the subgraphs for special statement
369 codes. */
370 gimple_set_bb (stmt, bb);
372 if (computed_goto_p (stmt))
373 found_computed_goto = true;
375 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
376 next iteration. */
377 if (stmt_ends_bb_p (stmt))
378 start_new_block = true;
380 gsi_next (&i);
381 first_stmt_of_seq = false;
386 /* Create and return a new empty basic block after bb AFTER. */
388 static basic_block
389 create_bb (void *h, void *e, basic_block after)
391 basic_block bb;
393 gcc_assert (!e);
395 /* Create and initialize a new basic block. Since alloc_block uses
396 ggc_alloc_cleared to allocate a basic block, we do not have to
397 clear the newly allocated basic block here. */
398 bb = alloc_block ();
400 bb->index = last_basic_block;
401 bb->flags = BB_NEW;
402 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
403 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
405 /* Add the new block to the linked list of blocks. */
406 link_block (bb, after);
408 /* Grow the basic block array if needed. */
409 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
411 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
412 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
415 /* Add the newly created block to the array. */
416 SET_BASIC_BLOCK (last_basic_block, bb);
418 n_basic_blocks++;
419 last_basic_block++;
421 return bb;
425 /*---------------------------------------------------------------------------
426 Edge creation
427 ---------------------------------------------------------------------------*/
429 /* Fold COND_EXPR_COND of each COND_EXPR. */
431 void
432 fold_cond_expr_cond (void)
434 basic_block bb;
436 FOR_EACH_BB (bb)
438 gimple stmt = last_stmt (bb);
440 if (stmt && gimple_code (stmt) == GIMPLE_COND)
442 tree cond;
443 bool zerop, onep;
445 fold_defer_overflow_warnings ();
446 cond = fold_binary (gimple_cond_code (stmt), boolean_type_node,
447 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
448 if (cond)
450 zerop = integer_zerop (cond);
451 onep = integer_onep (cond);
453 else
454 zerop = onep = false;
456 fold_undefer_overflow_warnings (zerop || onep,
457 stmt,
458 WARN_STRICT_OVERFLOW_CONDITIONAL);
459 if (zerop)
460 gimple_cond_make_false (stmt);
461 else if (onep)
462 gimple_cond_make_true (stmt);
467 /* Join all the blocks in the flowgraph. */
469 static void
470 make_edges (void)
472 basic_block bb;
473 struct omp_region *cur_region = NULL;
475 /* Create an edge from entry to the first block with executable
476 statements in it. */
477 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
479 /* Traverse the basic block array placing edges. */
480 FOR_EACH_BB (bb)
482 gimple last = last_stmt (bb);
483 bool fallthru;
485 if (last)
487 enum gimple_code code = gimple_code (last);
488 switch (code)
490 case GIMPLE_GOTO:
491 make_goto_expr_edges (bb);
492 fallthru = false;
493 break;
494 case GIMPLE_RETURN:
495 make_edge (bb, EXIT_BLOCK_PTR, 0);
496 fallthru = false;
497 break;
498 case GIMPLE_COND:
499 make_cond_expr_edges (bb);
500 fallthru = false;
501 break;
502 case GIMPLE_SWITCH:
503 make_gimple_switch_edges (bb);
504 fallthru = false;
505 break;
506 case GIMPLE_RESX:
507 make_eh_edges (last);
508 fallthru = false;
509 break;
511 case GIMPLE_CALL:
512 /* If this function receives a nonlocal goto, then we need to
513 make edges from this call site to all the nonlocal goto
514 handlers. */
515 if (stmt_can_make_abnormal_goto (last))
516 make_abnormal_goto_edges (bb, true);
518 /* If this statement has reachable exception handlers, then
519 create abnormal edges to them. */
520 make_eh_edges (last);
522 /* Some calls are known not to return. */
523 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
524 break;
526 case GIMPLE_ASSIGN:
527 /* A GIMPLE_ASSIGN may throw internally and thus be considered
528 control-altering. */
529 if (is_ctrl_altering_stmt (last))
531 make_eh_edges (last);
533 fallthru = true;
534 break;
536 case GIMPLE_OMP_PARALLEL:
537 case GIMPLE_OMP_TASK:
538 case GIMPLE_OMP_FOR:
539 case GIMPLE_OMP_SINGLE:
540 case GIMPLE_OMP_MASTER:
541 case GIMPLE_OMP_ORDERED:
542 case GIMPLE_OMP_CRITICAL:
543 case GIMPLE_OMP_SECTION:
544 cur_region = new_omp_region (bb, code, cur_region);
545 fallthru = true;
546 break;
548 case GIMPLE_OMP_SECTIONS:
549 cur_region = new_omp_region (bb, code, cur_region);
550 fallthru = true;
551 break;
553 case GIMPLE_OMP_SECTIONS_SWITCH:
554 fallthru = false;
555 break;
558 case GIMPLE_OMP_ATOMIC_LOAD:
559 case GIMPLE_OMP_ATOMIC_STORE:
560 fallthru = true;
561 break;
564 case GIMPLE_OMP_RETURN:
565 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
566 somewhere other than the next block. This will be
567 created later. */
568 cur_region->exit = bb;
569 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
570 cur_region = cur_region->outer;
571 break;
573 case GIMPLE_OMP_CONTINUE:
574 cur_region->cont = bb;
575 switch (cur_region->type)
577 case GIMPLE_OMP_FOR:
578 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
579 succs edges as abnormal to prevent splitting
580 them. */
581 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
582 /* Make the loopback edge. */
583 make_edge (bb, single_succ (cur_region->entry),
584 EDGE_ABNORMAL);
586 /* Create an edge from GIMPLE_OMP_FOR to exit, which
587 corresponds to the case that the body of the loop
588 is not executed at all. */
589 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
590 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
591 fallthru = false;
592 break;
594 case GIMPLE_OMP_SECTIONS:
595 /* Wire up the edges into and out of the nested sections. */
597 basic_block switch_bb = single_succ (cur_region->entry);
599 struct omp_region *i;
600 for (i = cur_region->inner; i ; i = i->next)
602 gcc_assert (i->type == GIMPLE_OMP_SECTION);
603 make_edge (switch_bb, i->entry, 0);
604 make_edge (i->exit, bb, EDGE_FALLTHRU);
607 /* Make the loopback edge to the block with
608 GIMPLE_OMP_SECTIONS_SWITCH. */
609 make_edge (bb, switch_bb, 0);
611 /* Make the edge from the switch to exit. */
612 make_edge (switch_bb, bb->next_bb, 0);
613 fallthru = false;
615 break;
617 default:
618 gcc_unreachable ();
620 break;
622 default:
623 gcc_assert (!stmt_ends_bb_p (last));
624 fallthru = true;
627 else
628 fallthru = true;
630 if (fallthru)
631 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
634 if (root_omp_region)
635 free_omp_regions ();
637 /* Fold COND_EXPR_COND of each COND_EXPR. */
638 fold_cond_expr_cond ();
642 /* Create the edges for a GIMPLE_COND starting at block BB. */
644 static void
645 make_cond_expr_edges (basic_block bb)
647 gimple entry = last_stmt (bb);
648 gimple then_stmt, else_stmt;
649 basic_block then_bb, else_bb;
650 tree then_label, else_label;
651 edge e;
653 gcc_assert (entry);
654 gcc_assert (gimple_code (entry) == GIMPLE_COND);
656 /* Entry basic blocks for each component. */
657 then_label = gimple_cond_true_label (entry);
658 else_label = gimple_cond_false_label (entry);
659 then_bb = label_to_block (then_label);
660 else_bb = label_to_block (else_label);
661 then_stmt = first_stmt (then_bb);
662 else_stmt = first_stmt (else_bb);
664 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
665 e->goto_locus = gimple_location (then_stmt);
666 if (e->goto_locus)
667 e->goto_block = gimple_block (then_stmt);
668 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
669 if (e)
671 e->goto_locus = gimple_location (else_stmt);
672 if (e->goto_locus)
673 e->goto_block = gimple_block (else_stmt);
676 /* We do not need the labels anymore. */
677 gimple_cond_set_true_label (entry, NULL_TREE);
678 gimple_cond_set_false_label (entry, NULL_TREE);
682 /* Called for each element in the hash table (P) as we delete the
683 edge to cases hash table.
685 Clear all the TREE_CHAINs to prevent problems with copying of
686 SWITCH_EXPRs and structure sharing rules, then free the hash table
687 element. */
689 static bool
690 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
691 void *data ATTRIBUTE_UNUSED)
693 tree t, next;
695 for (t = (tree) *value; t; t = next)
697 next = TREE_CHAIN (t);
698 TREE_CHAIN (t) = NULL;
701 *value = NULL;
702 return false;
705 /* Start recording information mapping edges to case labels. */
707 void
708 start_recording_case_labels (void)
710 gcc_assert (edge_to_cases == NULL);
711 edge_to_cases = pointer_map_create ();
714 /* Return nonzero if we are recording information for case labels. */
716 static bool
717 recording_case_labels_p (void)
719 return (edge_to_cases != NULL);
722 /* Stop recording information mapping edges to case labels and
723 remove any information we have recorded. */
724 void
725 end_recording_case_labels (void)
727 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
728 pointer_map_destroy (edge_to_cases);
729 edge_to_cases = NULL;
732 /* If we are inside a {start,end}_recording_cases block, then return
733 a chain of CASE_LABEL_EXPRs from T which reference E.
735 Otherwise return NULL. */
737 static tree
738 get_cases_for_edge (edge e, gimple t)
740 void **slot;
741 size_t i, n;
743 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
744 chains available. Return NULL so the caller can detect this case. */
745 if (!recording_case_labels_p ())
746 return NULL;
748 slot = pointer_map_contains (edge_to_cases, e);
749 if (slot)
750 return (tree) *slot;
752 /* If we did not find E in the hash table, then this must be the first
753 time we have been queried for information about E & T. Add all the
754 elements from T to the hash table then perform the query again. */
756 n = gimple_switch_num_labels (t);
757 for (i = 0; i < n; i++)
759 tree elt = gimple_switch_label (t, i);
760 tree lab = CASE_LABEL (elt);
761 basic_block label_bb = label_to_block (lab);
762 edge this_edge = find_edge (e->src, label_bb);
764 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
765 a new chain. */
766 slot = pointer_map_insert (edge_to_cases, this_edge);
767 TREE_CHAIN (elt) = (tree) *slot;
768 *slot = elt;
771 return (tree) *pointer_map_contains (edge_to_cases, e);
774 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
776 static void
777 make_gimple_switch_edges (basic_block bb)
779 gimple entry = last_stmt (bb);
780 size_t i, n;
782 n = gimple_switch_num_labels (entry);
784 for (i = 0; i < n; ++i)
786 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
787 basic_block label_bb = label_to_block (lab);
788 make_edge (bb, label_bb, 0);
793 /* Return the basic block holding label DEST. */
795 basic_block
796 label_to_block_fn (struct function *ifun, tree dest)
798 int uid = LABEL_DECL_UID (dest);
800 /* We would die hard when faced by an undefined label. Emit a label to
801 the very first basic block. This will hopefully make even the dataflow
802 and undefined variable warnings quite right. */
803 if ((errorcount || sorrycount) && uid < 0)
805 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
806 gimple stmt;
808 stmt = gimple_build_label (dest);
809 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
810 uid = LABEL_DECL_UID (dest);
812 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
813 <= (unsigned int) uid)
814 return NULL;
815 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
818 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
819 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
821 void
822 make_abnormal_goto_edges (basic_block bb, bool for_call)
824 basic_block target_bb;
825 gimple_stmt_iterator gsi;
827 FOR_EACH_BB (target_bb)
828 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
830 gimple label_stmt = gsi_stmt (gsi);
831 tree target;
833 if (gimple_code (label_stmt) != GIMPLE_LABEL)
834 break;
836 target = gimple_label_label (label_stmt);
838 /* Make an edge to every label block that has been marked as a
839 potential target for a computed goto or a non-local goto. */
840 if ((FORCED_LABEL (target) && !for_call)
841 || (DECL_NONLOCAL (target) && for_call))
843 make_edge (bb, target_bb, EDGE_ABNORMAL);
844 break;
849 /* Create edges for a goto statement at block BB. */
851 static void
852 make_goto_expr_edges (basic_block bb)
854 gimple_stmt_iterator last = gsi_last_bb (bb);
855 gimple goto_t = gsi_stmt (last);
857 /* A simple GOTO creates normal edges. */
858 if (simple_goto_p (goto_t))
860 tree dest = gimple_goto_dest (goto_t);
861 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
862 e->goto_locus = gimple_location (goto_t);
863 if (e->goto_locus)
864 e->goto_block = gimple_block (goto_t);
865 gsi_remove (&last, true);
866 return;
869 /* A computed GOTO creates abnormal edges. */
870 make_abnormal_goto_edges (bb, false);
874 /*---------------------------------------------------------------------------
875 Flowgraph analysis
876 ---------------------------------------------------------------------------*/
878 /* Cleanup useless labels in basic blocks. This is something we wish
879 to do early because it allows us to group case labels before creating
880 the edges for the CFG, and it speeds up block statement iterators in
881 all passes later on.
882 We rerun this pass after CFG is created, to get rid of the labels that
883 are no longer referenced. After then we do not run it any more, since
884 (almost) no new labels should be created. */
886 /* A map from basic block index to the leading label of that block. */
887 static struct label_record
889 /* The label. */
890 tree label;
892 /* True if the label is referenced from somewhere. */
893 bool used;
894 } *label_for_bb;
896 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
897 static void
898 update_eh_label (struct eh_region *region)
900 tree old_label = get_eh_region_tree_label (region);
901 if (old_label)
903 tree new_label;
904 basic_block bb = label_to_block (old_label);
906 /* ??? After optimizing, there may be EH regions with labels
907 that have already been removed from the function body, so
908 there is no basic block for them. */
909 if (! bb)
910 return;
912 new_label = label_for_bb[bb->index].label;
913 label_for_bb[bb->index].used = true;
914 set_eh_region_tree_label (region, new_label);
919 /* Given LABEL return the first label in the same basic block. */
921 static tree
922 main_block_label (tree label)
924 basic_block bb = label_to_block (label);
925 tree main_label = label_for_bb[bb->index].label;
927 /* label_to_block possibly inserted undefined label into the chain. */
928 if (!main_label)
930 label_for_bb[bb->index].label = label;
931 main_label = label;
934 label_for_bb[bb->index].used = true;
935 return main_label;
938 /* Cleanup redundant labels. This is a three-step process:
939 1) Find the leading label for each block.
940 2) Redirect all references to labels to the leading labels.
941 3) Cleanup all useless labels. */
943 void
944 cleanup_dead_labels (void)
946 basic_block bb;
947 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
949 /* Find a suitable label for each block. We use the first user-defined
950 label if there is one, or otherwise just the first label we see. */
951 FOR_EACH_BB (bb)
953 gimple_stmt_iterator i;
955 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
957 tree label;
958 gimple stmt = gsi_stmt (i);
960 if (gimple_code (stmt) != GIMPLE_LABEL)
961 break;
963 label = gimple_label_label (stmt);
965 /* If we have not yet seen a label for the current block,
966 remember this one and see if there are more labels. */
967 if (!label_for_bb[bb->index].label)
969 label_for_bb[bb->index].label = label;
970 continue;
973 /* If we did see a label for the current block already, but it
974 is an artificially created label, replace it if the current
975 label is a user defined label. */
976 if (!DECL_ARTIFICIAL (label)
977 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
979 label_for_bb[bb->index].label = label;
980 break;
985 /* Now redirect all jumps/branches to the selected label.
986 First do so for each block ending in a control statement. */
987 FOR_EACH_BB (bb)
989 gimple stmt = last_stmt (bb);
990 if (!stmt)
991 continue;
993 switch (gimple_code (stmt))
995 case GIMPLE_COND:
997 tree true_label = gimple_cond_true_label (stmt);
998 tree false_label = gimple_cond_false_label (stmt);
1000 if (true_label)
1001 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1002 if (false_label)
1003 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1004 break;
1007 case GIMPLE_SWITCH:
1009 size_t i, n = gimple_switch_num_labels (stmt);
1011 /* Replace all destination labels. */
1012 for (i = 0; i < n; ++i)
1014 tree case_label = gimple_switch_label (stmt, i);
1015 tree label = main_block_label (CASE_LABEL (case_label));
1016 CASE_LABEL (case_label) = label;
1018 break;
1021 /* We have to handle gotos until they're removed, and we don't
1022 remove them until after we've created the CFG edges. */
1023 case GIMPLE_GOTO:
1024 if (!computed_goto_p (stmt))
1026 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1027 gimple_goto_set_dest (stmt, new_dest);
1028 break;
1031 default:
1032 break;
1036 for_each_eh_region (update_eh_label);
1038 /* Finally, purge dead labels. All user-defined labels and labels that
1039 can be the target of non-local gotos and labels which have their
1040 address taken are preserved. */
1041 FOR_EACH_BB (bb)
1043 gimple_stmt_iterator i;
1044 tree label_for_this_bb = label_for_bb[bb->index].label;
1046 if (!label_for_this_bb)
1047 continue;
1049 /* If the main label of the block is unused, we may still remove it. */
1050 if (!label_for_bb[bb->index].used)
1051 label_for_this_bb = NULL;
1053 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1055 tree label;
1056 gimple stmt = gsi_stmt (i);
1058 if (gimple_code (stmt) != GIMPLE_LABEL)
1059 break;
1061 label = gimple_label_label (stmt);
1063 if (label == label_for_this_bb
1064 || !DECL_ARTIFICIAL (label)
1065 || DECL_NONLOCAL (label)
1066 || FORCED_LABEL (label))
1067 gsi_next (&i);
1068 else
1069 gsi_remove (&i, true);
1073 free (label_for_bb);
1076 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1077 and scan the sorted vector of cases. Combine the ones jumping to the
1078 same label.
1079 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1081 void
1082 group_case_labels (void)
1084 basic_block bb;
1086 FOR_EACH_BB (bb)
1088 gimple stmt = last_stmt (bb);
1089 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1091 int old_size = gimple_switch_num_labels (stmt);
1092 int i, j, new_size = old_size;
1093 tree default_case = NULL_TREE;
1094 tree default_label = NULL_TREE;
1095 bool has_default;
1097 /* The default label is always the first case in a switch
1098 statement after gimplification if it was not optimized
1099 away */
1100 if (!CASE_LOW (gimple_switch_default_label (stmt))
1101 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1103 default_case = gimple_switch_default_label (stmt);
1104 default_label = CASE_LABEL (default_case);
1105 has_default = true;
1107 else
1108 has_default = false;
1110 /* Look for possible opportunities to merge cases. */
1111 if (has_default)
1112 i = 1;
1113 else
1114 i = 0;
1115 while (i < old_size)
1117 tree base_case, base_label, base_high;
1118 base_case = gimple_switch_label (stmt, i);
1120 gcc_assert (base_case);
1121 base_label = CASE_LABEL (base_case);
1123 /* Discard cases that have the same destination as the
1124 default case. */
1125 if (base_label == default_label)
1127 gimple_switch_set_label (stmt, i, NULL_TREE);
1128 i++;
1129 new_size--;
1130 continue;
1133 base_high = CASE_HIGH (base_case)
1134 ? CASE_HIGH (base_case)
1135 : CASE_LOW (base_case);
1136 i++;
1138 /* Try to merge case labels. Break out when we reach the end
1139 of the label vector or when we cannot merge the next case
1140 label with the current one. */
1141 while (i < old_size)
1143 tree merge_case = gimple_switch_label (stmt, i);
1144 tree merge_label = CASE_LABEL (merge_case);
1145 tree t = int_const_binop (PLUS_EXPR, base_high,
1146 integer_one_node, 1);
1148 /* Merge the cases if they jump to the same place,
1149 and their ranges are consecutive. */
1150 if (merge_label == base_label
1151 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1153 base_high = CASE_HIGH (merge_case) ?
1154 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1155 CASE_HIGH (base_case) = base_high;
1156 gimple_switch_set_label (stmt, i, NULL_TREE);
1157 new_size--;
1158 i++;
1160 else
1161 break;
1165 /* Compress the case labels in the label vector, and adjust the
1166 length of the vector. */
1167 for (i = 0, j = 0; i < new_size; i++)
1169 while (! gimple_switch_label (stmt, j))
1170 j++;
1171 gimple_switch_set_label (stmt, i,
1172 gimple_switch_label (stmt, j++));
1175 gcc_assert (new_size <= old_size);
1176 gimple_switch_set_num_labels (stmt, new_size);
1181 /* Checks whether we can merge block B into block A. */
1183 static bool
1184 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1186 gimple stmt;
1187 gimple_stmt_iterator gsi;
1188 gimple_seq phis;
1190 if (!single_succ_p (a))
1191 return false;
1193 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1194 return false;
1196 if (single_succ (a) != b)
1197 return false;
1199 if (!single_pred_p (b))
1200 return false;
1202 if (b == EXIT_BLOCK_PTR)
1203 return false;
1205 /* If A ends by a statement causing exceptions or something similar, we
1206 cannot merge the blocks. */
1207 stmt = last_stmt (a);
1208 if (stmt && stmt_ends_bb_p (stmt))
1209 return false;
1211 /* Do not allow a block with only a non-local label to be merged. */
1212 if (stmt
1213 && gimple_code (stmt) == GIMPLE_LABEL
1214 && DECL_NONLOCAL (gimple_label_label (stmt)))
1215 return false;
1217 /* It must be possible to eliminate all phi nodes in B. If ssa form
1218 is not up-to-date, we cannot eliminate any phis; however, if only
1219 some symbols as whole are marked for renaming, this is not a problem,
1220 as phi nodes for those symbols are irrelevant in updating anyway. */
1221 phis = phi_nodes (b);
1222 if (!gimple_seq_empty_p (phis))
1224 gimple_stmt_iterator i;
1226 if (name_mappings_registered_p ())
1227 return false;
1229 for (i = gsi_start (phis); !gsi_end_p (i); gsi_next (&i))
1231 gimple phi = gsi_stmt (i);
1233 if (!is_gimple_reg (gimple_phi_result (phi))
1234 && !may_propagate_copy (gimple_phi_result (phi),
1235 gimple_phi_arg_def (phi, 0)))
1236 return false;
1240 /* Do not remove user labels. */
1241 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1243 stmt = gsi_stmt (gsi);
1244 if (gimple_code (stmt) != GIMPLE_LABEL)
1245 break;
1246 if (!DECL_ARTIFICIAL (gimple_label_label (stmt)))
1247 return false;
1250 /* Protect the loop latches. */
1251 if (current_loops
1252 && b->loop_father->latch == b)
1253 return false;
1255 return true;
1258 /* Replaces all uses of NAME by VAL. */
1260 void
1261 replace_uses_by (tree name, tree val)
1263 imm_use_iterator imm_iter;
1264 use_operand_p use;
1265 gimple stmt;
1266 edge e;
1268 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1270 if (gimple_code (stmt) != GIMPLE_PHI)
1271 push_stmt_changes (&stmt);
1273 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1275 replace_exp (use, val);
1277 if (gimple_code (stmt) == GIMPLE_PHI)
1279 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1280 if (e->flags & EDGE_ABNORMAL)
1282 /* This can only occur for virtual operands, since
1283 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1284 would prevent replacement. */
1285 gcc_assert (!is_gimple_reg (name));
1286 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1291 if (gimple_code (stmt) != GIMPLE_PHI)
1293 size_t i;
1295 fold_stmt_inplace (stmt);
1296 if (cfgcleanup_altered_bbs)
1297 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1299 /* FIXME. This should go in pop_stmt_changes. */
1300 for (i = 0; i < gimple_num_ops (stmt); i++)
1302 tree op = gimple_op (stmt, i);
1303 /* Operands may be empty here. For example, the labels
1304 of a GIMPLE_COND are nulled out following the creation
1305 of the corresponding CFG edges. */
1306 if (op && TREE_CODE (op) == ADDR_EXPR)
1307 recompute_tree_invariant_for_addr_expr (op);
1310 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1312 pop_stmt_changes (&stmt);
1316 gcc_assert (has_zero_uses (name));
1318 /* Also update the trees stored in loop structures. */
1319 if (current_loops)
1321 struct loop *loop;
1322 loop_iterator li;
1324 FOR_EACH_LOOP (li, loop, 0)
1326 substitute_in_loop_info (loop, name, val);
1331 /* Merge block B into block A. */
1333 static void
1334 gimple_merge_blocks (basic_block a, basic_block b)
1336 gimple_stmt_iterator last, gsi, psi;
1337 gimple_seq phis = phi_nodes (b);
1339 if (dump_file)
1340 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1342 /* Remove all single-valued PHI nodes from block B of the form
1343 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1344 gsi = gsi_last_bb (a);
1345 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1347 gimple phi = gsi_stmt (psi);
1348 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1349 gimple copy;
1350 bool may_replace_uses = !is_gimple_reg (def)
1351 || may_propagate_copy (def, use);
1353 /* In case we maintain loop closed ssa form, do not propagate arguments
1354 of loop exit phi nodes. */
1355 if (current_loops
1356 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1357 && is_gimple_reg (def)
1358 && TREE_CODE (use) == SSA_NAME
1359 && a->loop_father != b->loop_father)
1360 may_replace_uses = false;
1362 if (!may_replace_uses)
1364 gcc_assert (is_gimple_reg (def));
1366 /* Note that just emitting the copies is fine -- there is no problem
1367 with ordering of phi nodes. This is because A is the single
1368 predecessor of B, therefore results of the phi nodes cannot
1369 appear as arguments of the phi nodes. */
1370 copy = gimple_build_assign (def, use);
1371 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1372 remove_phi_node (&psi, false);
1374 else
1376 /* If we deal with a PHI for virtual operands, we can simply
1377 propagate these without fussing with folding or updating
1378 the stmt. */
1379 if (!is_gimple_reg (def))
1381 imm_use_iterator iter;
1382 use_operand_p use_p;
1383 gimple stmt;
1385 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1386 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1387 SET_USE (use_p, use);
1389 else
1390 replace_uses_by (def, use);
1392 remove_phi_node (&psi, true);
1396 /* Ensure that B follows A. */
1397 move_block_after (b, a);
1399 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1400 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1402 /* Remove labels from B and set gimple_bb to A for other statements. */
1403 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1405 if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
1407 gimple label = gsi_stmt (gsi);
1409 gsi_remove (&gsi, false);
1411 /* Now that we can thread computed gotos, we might have
1412 a situation where we have a forced label in block B
1413 However, the label at the start of block B might still be
1414 used in other ways (think about the runtime checking for
1415 Fortran assigned gotos). So we can not just delete the
1416 label. Instead we move the label to the start of block A. */
1417 if (FORCED_LABEL (gimple_label_label (label)))
1419 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1420 gsi_insert_before (&dest_gsi, label, GSI_NEW_STMT);
1423 else
1425 gimple_set_bb (gsi_stmt (gsi), a);
1426 gsi_next (&gsi);
1430 /* Merge the sequences. */
1431 last = gsi_last_bb (a);
1432 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1433 set_bb_seq (b, NULL);
1435 if (cfgcleanup_altered_bbs)
1436 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1440 /* Return the one of two successors of BB that is not reachable by a
1441 reached by a complex edge, if there is one. Else, return BB. We use
1442 this in optimizations that use post-dominators for their heuristics,
1443 to catch the cases in C++ where function calls are involved. */
1445 basic_block
1446 single_noncomplex_succ (basic_block bb)
1448 edge e0, e1;
1449 if (EDGE_COUNT (bb->succs) != 2)
1450 return bb;
1452 e0 = EDGE_SUCC (bb, 0);
1453 e1 = EDGE_SUCC (bb, 1);
1454 if (e0->flags & EDGE_COMPLEX)
1455 return e1->dest;
1456 if (e1->flags & EDGE_COMPLEX)
1457 return e0->dest;
1459 return bb;
1463 /* Walk the function tree removing unnecessary statements.
1465 * Empty statement nodes are removed
1467 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1469 * Unnecessary COND_EXPRs are removed
1471 * Some unnecessary BIND_EXPRs are removed
1473 * GOTO_EXPRs immediately preceding destination are removed.
1475 Clearly more work could be done. The trick is doing the analysis
1476 and removal fast enough to be a net improvement in compile times.
1478 Note that when we remove a control structure such as a COND_EXPR
1479 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1480 to ensure we eliminate all the useless code. */
1482 struct rus_data
1484 bool repeat;
1485 bool may_throw;
1486 bool may_branch;
1487 bool has_label;
1488 bool last_was_goto;
1489 gimple_stmt_iterator last_goto_gsi;
1493 static void remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *);
1495 /* Given a statement sequence, find the first executable statement with
1496 location information, and warn that it is unreachable. When searching,
1497 descend into containers in execution order. */
1499 static bool
1500 remove_useless_stmts_warn_notreached (gimple_seq stmts)
1502 gimple_stmt_iterator gsi;
1504 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
1506 gimple stmt = gsi_stmt (gsi);
1508 if (gimple_has_location (stmt))
1510 location_t loc = gimple_location (stmt);
1511 if (LOCATION_LINE (loc) > 0)
1513 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
1514 return true;
1518 switch (gimple_code (stmt))
1520 /* Unfortunately, we need the CFG now to detect unreachable
1521 branches in a conditional, so conditionals are not handled here. */
1523 case GIMPLE_TRY:
1524 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt)))
1525 return true;
1526 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt)))
1527 return true;
1528 break;
1530 case GIMPLE_CATCH:
1531 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt));
1533 case GIMPLE_EH_FILTER:
1534 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt));
1536 case GIMPLE_BIND:
1537 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt));
1539 default:
1540 break;
1544 return false;
1547 /* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1549 static void
1550 remove_useless_stmts_cond (gimple_stmt_iterator *gsi, struct rus_data *data)
1552 gimple stmt = gsi_stmt (*gsi);
1554 /* The folded result must still be a conditional statement. */
1555 fold_stmt_inplace (stmt);
1557 data->may_branch = true;
1559 /* Replace trivial conditionals with gotos. */
1560 if (gimple_cond_true_p (stmt))
1562 /* Goto THEN label. */
1563 tree then_label = gimple_cond_true_label (stmt);
1565 gsi_replace (gsi, gimple_build_goto (then_label), false);
1566 data->last_goto_gsi = *gsi;
1567 data->last_was_goto = true;
1568 data->repeat = true;
1570 else if (gimple_cond_false_p (stmt))
1572 /* Goto ELSE label. */
1573 tree else_label = gimple_cond_false_label (stmt);
1575 gsi_replace (gsi, gimple_build_goto (else_label), false);
1576 data->last_goto_gsi = *gsi;
1577 data->last_was_goto = true;
1578 data->repeat = true;
1580 else
1582 tree then_label = gimple_cond_true_label (stmt);
1583 tree else_label = gimple_cond_false_label (stmt);
1585 if (then_label == else_label)
1587 /* Goto common destination. */
1588 gsi_replace (gsi, gimple_build_goto (then_label), false);
1589 data->last_goto_gsi = *gsi;
1590 data->last_was_goto = true;
1591 data->repeat = true;
1595 gsi_next (gsi);
1597 data->last_was_goto = false;
1600 /* Helper for remove_useless_stmts_1.
1601 Handle the try-finally case for GIMPLE_TRY statements. */
1603 static void
1604 remove_useless_stmts_tf (gimple_stmt_iterator *gsi, struct rus_data *data)
1606 bool save_may_branch, save_may_throw;
1607 bool this_may_branch, this_may_throw;
1609 gimple_seq eval_seq, cleanup_seq;
1610 gimple_stmt_iterator eval_gsi, cleanup_gsi;
1612 gimple stmt = gsi_stmt (*gsi);
1614 /* Collect may_branch and may_throw information for the body only. */
1615 save_may_branch = data->may_branch;
1616 save_may_throw = data->may_throw;
1617 data->may_branch = false;
1618 data->may_throw = false;
1619 data->last_was_goto = false;
1621 eval_seq = gimple_try_eval (stmt);
1622 eval_gsi = gsi_start (eval_seq);
1623 remove_useless_stmts_1 (&eval_gsi, data);
1625 this_may_branch = data->may_branch;
1626 this_may_throw = data->may_throw;
1627 data->may_branch |= save_may_branch;
1628 data->may_throw |= save_may_throw;
1629 data->last_was_goto = false;
1631 cleanup_seq = gimple_try_cleanup (stmt);
1632 cleanup_gsi = gsi_start (cleanup_seq);
1633 remove_useless_stmts_1 (&cleanup_gsi, data);
1635 /* If the body is empty, then we can emit the FINALLY block without
1636 the enclosing TRY_FINALLY_EXPR. */
1637 if (gimple_seq_empty_p (eval_seq))
1639 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1640 gsi_remove (gsi, false);
1641 data->repeat = true;
1644 /* If the handler is empty, then we can emit the TRY block without
1645 the enclosing TRY_FINALLY_EXPR. */
1646 else if (gimple_seq_empty_p (cleanup_seq))
1648 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1649 gsi_remove (gsi, false);
1650 data->repeat = true;
1653 /* If the body neither throws, nor branches, then we can safely
1654 string the TRY and FINALLY blocks together. */
1655 else if (!this_may_branch && !this_may_throw)
1657 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1658 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1659 gsi_remove (gsi, false);
1660 data->repeat = true;
1662 else
1663 gsi_next (gsi);
1666 /* Helper for remove_useless_stmts_1.
1667 Handle the try-catch case for GIMPLE_TRY statements. */
1669 static void
1670 remove_useless_stmts_tc (gimple_stmt_iterator *gsi, struct rus_data *data)
1672 bool save_may_throw, this_may_throw;
1674 gimple_seq eval_seq, cleanup_seq, handler_seq, failure_seq;
1675 gimple_stmt_iterator eval_gsi, cleanup_gsi, handler_gsi, failure_gsi;
1677 gimple stmt = gsi_stmt (*gsi);
1679 /* Collect may_throw information for the body only. */
1680 save_may_throw = data->may_throw;
1681 data->may_throw = false;
1682 data->last_was_goto = false;
1684 eval_seq = gimple_try_eval (stmt);
1685 eval_gsi = gsi_start (eval_seq);
1686 remove_useless_stmts_1 (&eval_gsi, data);
1688 this_may_throw = data->may_throw;
1689 data->may_throw = save_may_throw;
1691 cleanup_seq = gimple_try_cleanup (stmt);
1693 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1694 if (!this_may_throw)
1696 if (warn_notreached)
1698 remove_useless_stmts_warn_notreached (cleanup_seq);
1700 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1701 gsi_remove (gsi, false);
1702 data->repeat = true;
1703 return;
1706 /* Process the catch clause specially. We may be able to tell that
1707 no exceptions propagate past this point. */
1709 this_may_throw = true;
1710 cleanup_gsi = gsi_start (cleanup_seq);
1711 stmt = gsi_stmt (cleanup_gsi);
1712 data->last_was_goto = false;
1714 switch (gimple_code (stmt))
1716 case GIMPLE_CATCH:
1717 /* If the first element is a catch, they all must be. */
1718 while (!gsi_end_p (cleanup_gsi))
1720 stmt = gsi_stmt (cleanup_gsi);
1721 /* If we catch all exceptions, then the body does not
1722 propagate exceptions past this point. */
1723 if (gimple_catch_types (stmt) == NULL)
1724 this_may_throw = false;
1725 data->last_was_goto = false;
1726 handler_seq = gimple_catch_handler (stmt);
1727 handler_gsi = gsi_start (handler_seq);
1728 remove_useless_stmts_1 (&handler_gsi, data);
1729 gsi_next (&cleanup_gsi);
1731 gsi_next (gsi);
1732 break;
1734 case GIMPLE_EH_FILTER:
1735 /* If the first element is an eh_filter, it should stand alone. */
1736 if (gimple_eh_filter_must_not_throw (stmt))
1737 this_may_throw = false;
1738 else if (gimple_eh_filter_types (stmt) == NULL)
1739 this_may_throw = false;
1740 failure_seq = gimple_eh_filter_failure (stmt);
1741 failure_gsi = gsi_start (failure_seq);
1742 remove_useless_stmts_1 (&failure_gsi, data);
1743 gsi_next (gsi);
1744 break;
1746 default:
1747 /* Otherwise this is a list of cleanup statements. */
1748 remove_useless_stmts_1 (&cleanup_gsi, data);
1750 /* If the cleanup is empty, then we can emit the TRY block without
1751 the enclosing TRY_CATCH_EXPR. */
1752 if (gimple_seq_empty_p (cleanup_seq))
1754 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1755 gsi_remove(gsi, false);
1756 data->repeat = true;
1758 else
1759 gsi_next (gsi);
1760 break;
1763 data->may_throw |= this_may_throw;
1766 /* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
1768 static void
1769 remove_useless_stmts_bind (gimple_stmt_iterator *gsi, struct rus_data *data ATTRIBUTE_UNUSED)
1771 tree block;
1772 gimple_seq body_seq, fn_body_seq;
1773 gimple_stmt_iterator body_gsi;
1775 gimple stmt = gsi_stmt (*gsi);
1777 /* First remove anything underneath the BIND_EXPR. */
1779 body_seq = gimple_bind_body (stmt);
1780 body_gsi = gsi_start (body_seq);
1781 remove_useless_stmts_1 (&body_gsi, data);
1783 /* If the GIMPLE_BIND has no variables, then we can pull everything
1784 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1785 GIMPLE_BIND for the current function or an inlined function.
1787 When this situation occurs we will want to apply this
1788 optimization again. */
1789 block = gimple_bind_block (stmt);
1790 fn_body_seq = gimple_body (current_function_decl);
1791 if (gimple_bind_vars (stmt) == NULL_TREE
1792 && (gimple_seq_empty_p (fn_body_seq)
1793 || stmt != gimple_seq_first_stmt (fn_body_seq))
1794 && (! block
1795 || ! BLOCK_ABSTRACT_ORIGIN (block)
1796 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1797 != FUNCTION_DECL)))
1799 tree var = NULL_TREE;
1800 /* Even if there are no gimple_bind_vars, there might be other
1801 decls in BLOCK_VARS rendering the GIMPLE_BIND not useless. */
1802 if (block && !BLOCK_NUM_NONLOCALIZED_VARS (block))
1803 for (var = BLOCK_VARS (block); var; var = TREE_CHAIN (var))
1804 if (TREE_CODE (var) == IMPORTED_DECL)
1805 break;
1806 if (var || (block && BLOCK_NUM_NONLOCALIZED_VARS (block)))
1807 gsi_next (gsi);
1808 else
1810 gsi_insert_seq_before (gsi, body_seq, GSI_SAME_STMT);
1811 gsi_remove (gsi, false);
1812 data->repeat = true;
1815 else
1816 gsi_next (gsi);
1819 /* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
1821 static void
1822 remove_useless_stmts_goto (gimple_stmt_iterator *gsi, struct rus_data *data)
1824 gimple stmt = gsi_stmt (*gsi);
1826 tree dest = gimple_goto_dest (stmt);
1828 data->may_branch = true;
1829 data->last_was_goto = false;
1831 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
1832 if (TREE_CODE (dest) == LABEL_DECL)
1834 data->last_goto_gsi = *gsi;
1835 data->last_was_goto = true;
1838 gsi_next(gsi);
1841 /* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
1843 static void
1844 remove_useless_stmts_label (gimple_stmt_iterator *gsi, struct rus_data *data)
1846 gimple stmt = gsi_stmt (*gsi);
1848 tree label = gimple_label_label (stmt);
1850 data->has_label = true;
1852 /* We do want to jump across non-local label receiver code. */
1853 if (DECL_NONLOCAL (label))
1854 data->last_was_goto = false;
1856 else if (data->last_was_goto
1857 && gimple_goto_dest (gsi_stmt (data->last_goto_gsi)) == label)
1859 /* Replace the preceding GIMPLE_GOTO statement with
1860 a GIMPLE_NOP, which will be subsequently removed.
1861 In this way, we avoid invalidating other iterators
1862 active on the statement sequence. */
1863 gsi_replace(&data->last_goto_gsi, gimple_build_nop(), false);
1864 data->last_was_goto = false;
1865 data->repeat = true;
1868 /* ??? Add something here to delete unused labels. */
1870 gsi_next (gsi);
1874 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1876 void
1877 notice_special_calls (gimple call)
1879 int flags = gimple_call_flags (call);
1881 if (flags & ECF_MAY_BE_ALLOCA)
1882 cfun->calls_alloca = true;
1883 if (flags & ECF_RETURNS_TWICE)
1884 cfun->calls_setjmp = true;
1888 /* Clear flags set by notice_special_calls. Used by dead code removal
1889 to update the flags. */
1891 void
1892 clear_special_calls (void)
1894 cfun->calls_alloca = false;
1895 cfun->calls_setjmp = false;
1898 /* Remove useless statements from a statement sequence, and perform
1899 some preliminary simplifications. */
1901 static void
1902 remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *data)
1904 while (!gsi_end_p (*gsi))
1906 gimple stmt = gsi_stmt (*gsi);
1908 switch (gimple_code (stmt))
1910 case GIMPLE_COND:
1911 remove_useless_stmts_cond (gsi, data);
1912 break;
1914 case GIMPLE_GOTO:
1915 remove_useless_stmts_goto (gsi, data);
1916 break;
1918 case GIMPLE_LABEL:
1919 remove_useless_stmts_label (gsi, data);
1920 break;
1922 case GIMPLE_ASSIGN:
1923 fold_stmt (gsi);
1924 stmt = gsi_stmt (*gsi);
1925 data->last_was_goto = false;
1926 if (stmt_could_throw_p (stmt))
1927 data->may_throw = true;
1928 gsi_next (gsi);
1929 break;
1931 case GIMPLE_ASM:
1932 fold_stmt (gsi);
1933 data->last_was_goto = false;
1934 gsi_next (gsi);
1935 break;
1937 case GIMPLE_CALL:
1938 fold_stmt (gsi);
1939 stmt = gsi_stmt (*gsi);
1940 data->last_was_goto = false;
1941 if (is_gimple_call (stmt))
1942 notice_special_calls (stmt);
1944 /* We used to call update_gimple_call_flags here,
1945 which copied side-effects and nothrows status
1946 from the function decl to the call. In the new
1947 tuplified GIMPLE, the accessors for this information
1948 always consult the function decl, so this copying
1949 is no longer necessary. */
1950 if (stmt_could_throw_p (stmt))
1951 data->may_throw = true;
1952 gsi_next (gsi);
1953 break;
1955 case GIMPLE_RETURN:
1956 fold_stmt (gsi);
1957 data->last_was_goto = false;
1958 data->may_branch = true;
1959 gsi_next (gsi);
1960 break;
1962 case GIMPLE_BIND:
1963 remove_useless_stmts_bind (gsi, data);
1964 break;
1966 case GIMPLE_TRY:
1967 if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
1968 remove_useless_stmts_tc (gsi, data);
1969 else if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1970 remove_useless_stmts_tf (gsi, data);
1971 else
1972 gcc_unreachable ();
1973 break;
1975 case GIMPLE_CATCH:
1976 gcc_unreachable ();
1977 break;
1979 case GIMPLE_NOP:
1980 gsi_remove (gsi, false);
1981 break;
1983 case GIMPLE_OMP_FOR:
1985 gimple_seq pre_body_seq = gimple_omp_for_pre_body (stmt);
1986 gimple_stmt_iterator pre_body_gsi = gsi_start (pre_body_seq);
1988 remove_useless_stmts_1 (&pre_body_gsi, data);
1989 data->last_was_goto = false;
1991 /* FALLTHROUGH */
1992 case GIMPLE_OMP_CRITICAL:
1993 case GIMPLE_OMP_CONTINUE:
1994 case GIMPLE_OMP_MASTER:
1995 case GIMPLE_OMP_ORDERED:
1996 case GIMPLE_OMP_SECTION:
1997 case GIMPLE_OMP_SECTIONS:
1998 case GIMPLE_OMP_SINGLE:
2000 gimple_seq body_seq = gimple_omp_body (stmt);
2001 gimple_stmt_iterator body_gsi = gsi_start (body_seq);
2003 remove_useless_stmts_1 (&body_gsi, data);
2004 data->last_was_goto = false;
2005 gsi_next (gsi);
2007 break;
2009 case GIMPLE_OMP_PARALLEL:
2010 case GIMPLE_OMP_TASK:
2012 /* Make sure the outermost GIMPLE_BIND isn't removed
2013 as useless. */
2014 gimple_seq body_seq = gimple_omp_body (stmt);
2015 gimple bind = gimple_seq_first_stmt (body_seq);
2016 gimple_seq bind_seq = gimple_bind_body (bind);
2017 gimple_stmt_iterator bind_gsi = gsi_start (bind_seq);
2019 remove_useless_stmts_1 (&bind_gsi, data);
2020 data->last_was_goto = false;
2021 gsi_next (gsi);
2023 break;
2025 case GIMPLE_CHANGE_DYNAMIC_TYPE:
2026 /* If we do not optimize remove GIMPLE_CHANGE_DYNAMIC_TYPE as
2027 expansion is confused about them and we only remove them
2028 during alias computation otherwise. */
2029 if (!optimize)
2031 data->last_was_goto = false;
2032 gsi_remove (gsi, false);
2033 break;
2035 /* Fallthru. */
2037 default:
2038 data->last_was_goto = false;
2039 gsi_next (gsi);
2040 break;
2045 /* Walk the function tree, removing useless statements and performing
2046 some preliminary simplifications. */
2048 static unsigned int
2049 remove_useless_stmts (void)
2051 struct rus_data data;
2053 clear_special_calls ();
2057 gimple_stmt_iterator gsi;
2059 gsi = gsi_start (gimple_body (current_function_decl));
2060 memset (&data, 0, sizeof (data));
2061 remove_useless_stmts_1 (&gsi, &data);
2063 while (data.repeat);
2064 return 0;
2068 struct gimple_opt_pass pass_remove_useless_stmts =
2071 GIMPLE_PASS,
2072 "useless", /* name */
2073 NULL, /* gate */
2074 remove_useless_stmts, /* execute */
2075 NULL, /* sub */
2076 NULL, /* next */
2077 0, /* static_pass_number */
2078 0, /* tv_id */
2079 PROP_gimple_any, /* properties_required */
2080 0, /* properties_provided */
2081 0, /* properties_destroyed */
2082 0, /* todo_flags_start */
2083 TODO_dump_func /* todo_flags_finish */
2087 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2089 static void
2090 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2092 /* Since this block is no longer reachable, we can just delete all
2093 of its PHI nodes. */
2094 remove_phi_nodes (bb);
2096 /* Remove edges to BB's successors. */
2097 while (EDGE_COUNT (bb->succs) > 0)
2098 remove_edge (EDGE_SUCC (bb, 0));
2102 /* Remove statements of basic block BB. */
2104 static void
2105 remove_bb (basic_block bb)
2107 gimple_stmt_iterator i;
2108 source_location loc = UNKNOWN_LOCATION;
2110 if (dump_file)
2112 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2113 if (dump_flags & TDF_DETAILS)
2115 dump_bb (bb, dump_file, 0);
2116 fprintf (dump_file, "\n");
2120 if (current_loops)
2122 struct loop *loop = bb->loop_father;
2124 /* If a loop gets removed, clean up the information associated
2125 with it. */
2126 if (loop->latch == bb
2127 || loop->header == bb)
2128 free_numbers_of_iterations_estimates_loop (loop);
2131 /* Remove all the instructions in the block. */
2132 if (bb_seq (bb) != NULL)
2134 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2136 gimple stmt = gsi_stmt (i);
2137 if (gimple_code (stmt) == GIMPLE_LABEL
2138 && (FORCED_LABEL (gimple_label_label (stmt))
2139 || DECL_NONLOCAL (gimple_label_label (stmt))))
2141 basic_block new_bb;
2142 gimple_stmt_iterator new_gsi;
2144 /* A non-reachable non-local label may still be referenced.
2145 But it no longer needs to carry the extra semantics of
2146 non-locality. */
2147 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2149 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2150 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2153 new_bb = bb->prev_bb;
2154 new_gsi = gsi_start_bb (new_bb);
2155 gsi_remove (&i, false);
2156 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2158 else
2160 /* Release SSA definitions if we are in SSA. Note that we
2161 may be called when not in SSA. For example,
2162 final_cleanup calls this function via
2163 cleanup_tree_cfg. */
2164 if (gimple_in_ssa_p (cfun))
2165 release_defs (stmt);
2167 gsi_remove (&i, true);
2170 /* Don't warn for removed gotos. Gotos are often removed due to
2171 jump threading, thus resulting in bogus warnings. Not great,
2172 since this way we lose warnings for gotos in the original
2173 program that are indeed unreachable. */
2174 if (gimple_code (stmt) != GIMPLE_GOTO
2175 && gimple_has_location (stmt)
2176 && !loc)
2177 loc = gimple_location (stmt);
2181 /* If requested, give a warning that the first statement in the
2182 block is unreachable. We walk statements backwards in the
2183 loop above, so the last statement we process is the first statement
2184 in the block. */
2185 if (loc > BUILTINS_LOCATION && LOCATION_LINE (loc) > 0)
2186 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2188 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2189 bb->il.gimple = NULL;
2193 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2194 predicate VAL, return the edge that will be taken out of the block.
2195 If VAL does not match a unique edge, NULL is returned. */
2197 edge
2198 find_taken_edge (basic_block bb, tree val)
2200 gimple stmt;
2202 stmt = last_stmt (bb);
2204 gcc_assert (stmt);
2205 gcc_assert (is_ctrl_stmt (stmt));
2207 if (val == NULL)
2208 return NULL;
2210 if (!is_gimple_min_invariant (val))
2211 return NULL;
2213 if (gimple_code (stmt) == GIMPLE_COND)
2214 return find_taken_edge_cond_expr (bb, val);
2216 if (gimple_code (stmt) == GIMPLE_SWITCH)
2217 return find_taken_edge_switch_expr (bb, val);
2219 if (computed_goto_p (stmt))
2221 /* Only optimize if the argument is a label, if the argument is
2222 not a label then we can not construct a proper CFG.
2224 It may be the case that we only need to allow the LABEL_REF to
2225 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2226 appear inside a LABEL_EXPR just to be safe. */
2227 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2228 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2229 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2230 return NULL;
2233 gcc_unreachable ();
2236 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2237 statement, determine which of the outgoing edges will be taken out of the
2238 block. Return NULL if either edge may be taken. */
2240 static edge
2241 find_taken_edge_computed_goto (basic_block bb, tree val)
2243 basic_block dest;
2244 edge e = NULL;
2246 dest = label_to_block (val);
2247 if (dest)
2249 e = find_edge (bb, dest);
2250 gcc_assert (e != NULL);
2253 return e;
2256 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2257 statement, determine which of the two edges will be taken out of the
2258 block. Return NULL if either edge may be taken. */
2260 static edge
2261 find_taken_edge_cond_expr (basic_block bb, tree val)
2263 edge true_edge, false_edge;
2265 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2267 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2268 return (integer_zerop (val) ? false_edge : true_edge);
2271 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2272 statement, determine which edge will be taken out of the block. Return
2273 NULL if any edge may be taken. */
2275 static edge
2276 find_taken_edge_switch_expr (basic_block bb, tree val)
2278 basic_block dest_bb;
2279 edge e;
2280 gimple switch_stmt;
2281 tree taken_case;
2283 switch_stmt = last_stmt (bb);
2284 taken_case = find_case_label_for_value (switch_stmt, val);
2285 dest_bb = label_to_block (CASE_LABEL (taken_case));
2287 e = find_edge (bb, dest_bb);
2288 gcc_assert (e);
2289 return e;
2293 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2294 We can make optimal use here of the fact that the case labels are
2295 sorted: We can do a binary search for a case matching VAL. */
2297 static tree
2298 find_case_label_for_value (gimple switch_stmt, tree val)
2300 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2301 tree default_case = gimple_switch_default_label (switch_stmt);
2303 for (low = 0, high = n; high - low > 1; )
2305 size_t i = (high + low) / 2;
2306 tree t = gimple_switch_label (switch_stmt, i);
2307 int cmp;
2309 /* Cache the result of comparing CASE_LOW and val. */
2310 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2312 if (cmp > 0)
2313 high = i;
2314 else
2315 low = i;
2317 if (CASE_HIGH (t) == NULL)
2319 /* A singe-valued case label. */
2320 if (cmp == 0)
2321 return t;
2323 else
2325 /* A case range. We can only handle integer ranges. */
2326 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2327 return t;
2331 return default_case;
2335 /* Dump a basic block on stderr. */
2337 void
2338 gimple_debug_bb (basic_block bb)
2340 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2344 /* Dump basic block with index N on stderr. */
2346 basic_block
2347 gimple_debug_bb_n (int n)
2349 gimple_debug_bb (BASIC_BLOCK (n));
2350 return BASIC_BLOCK (n);
2354 /* Dump the CFG on stderr.
2356 FLAGS are the same used by the tree dumping functions
2357 (see TDF_* in tree-pass.h). */
2359 void
2360 gimple_debug_cfg (int flags)
2362 gimple_dump_cfg (stderr, flags);
2366 /* Dump the program showing basic block boundaries on the given FILE.
2368 FLAGS are the same used by the tree dumping functions (see TDF_* in
2369 tree.h). */
2371 void
2372 gimple_dump_cfg (FILE *file, int flags)
2374 if (flags & TDF_DETAILS)
2376 const char *funcname
2377 = lang_hooks.decl_printable_name (current_function_decl, 2);
2379 fputc ('\n', file);
2380 fprintf (file, ";; Function %s\n\n", funcname);
2381 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2382 n_basic_blocks, n_edges, last_basic_block);
2384 brief_dump_cfg (file);
2385 fprintf (file, "\n");
2388 if (flags & TDF_STATS)
2389 dump_cfg_stats (file);
2391 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2395 /* Dump CFG statistics on FILE. */
2397 void
2398 dump_cfg_stats (FILE *file)
2400 static long max_num_merged_labels = 0;
2401 unsigned long size, total = 0;
2402 long num_edges;
2403 basic_block bb;
2404 const char * const fmt_str = "%-30s%-13s%12s\n";
2405 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2406 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2407 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2408 const char *funcname
2409 = lang_hooks.decl_printable_name (current_function_decl, 2);
2412 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2414 fprintf (file, "---------------------------------------------------------\n");
2415 fprintf (file, fmt_str, "", " Number of ", "Memory");
2416 fprintf (file, fmt_str, "", " instances ", "used ");
2417 fprintf (file, "---------------------------------------------------------\n");
2419 size = n_basic_blocks * sizeof (struct basic_block_def);
2420 total += size;
2421 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2422 SCALE (size), LABEL (size));
2424 num_edges = 0;
2425 FOR_EACH_BB (bb)
2426 num_edges += EDGE_COUNT (bb->succs);
2427 size = num_edges * sizeof (struct edge_def);
2428 total += size;
2429 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2431 fprintf (file, "---------------------------------------------------------\n");
2432 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2433 LABEL (total));
2434 fprintf (file, "---------------------------------------------------------\n");
2435 fprintf (file, "\n");
2437 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2438 max_num_merged_labels = cfg_stats.num_merged_labels;
2440 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2441 cfg_stats.num_merged_labels, max_num_merged_labels);
2443 fprintf (file, "\n");
2447 /* Dump CFG statistics on stderr. Keep extern so that it's always
2448 linked in the final executable. */
2450 void
2451 debug_cfg_stats (void)
2453 dump_cfg_stats (stderr);
2457 /* Dump the flowgraph to a .vcg FILE. */
2459 static void
2460 gimple_cfg2vcg (FILE *file)
2462 edge e;
2463 edge_iterator ei;
2464 basic_block bb;
2465 const char *funcname
2466 = lang_hooks.decl_printable_name (current_function_decl, 2);
2468 /* Write the file header. */
2469 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2470 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2471 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2473 /* Write blocks and edges. */
2474 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2476 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2477 e->dest->index);
2479 if (e->flags & EDGE_FAKE)
2480 fprintf (file, " linestyle: dotted priority: 10");
2481 else
2482 fprintf (file, " linestyle: solid priority: 100");
2484 fprintf (file, " }\n");
2486 fputc ('\n', file);
2488 FOR_EACH_BB (bb)
2490 enum gimple_code head_code, end_code;
2491 const char *head_name, *end_name;
2492 int head_line = 0;
2493 int end_line = 0;
2494 gimple first = first_stmt (bb);
2495 gimple last = last_stmt (bb);
2497 if (first)
2499 head_code = gimple_code (first);
2500 head_name = gimple_code_name[head_code];
2501 head_line = get_lineno (first);
2503 else
2504 head_name = "no-statement";
2506 if (last)
2508 end_code = gimple_code (last);
2509 end_name = gimple_code_name[end_code];
2510 end_line = get_lineno (last);
2512 else
2513 end_name = "no-statement";
2515 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2516 bb->index, bb->index, head_name, head_line, end_name,
2517 end_line);
2519 FOR_EACH_EDGE (e, ei, bb->succs)
2521 if (e->dest == EXIT_BLOCK_PTR)
2522 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2523 else
2524 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2526 if (e->flags & EDGE_FAKE)
2527 fprintf (file, " priority: 10 linestyle: dotted");
2528 else
2529 fprintf (file, " priority: 100 linestyle: solid");
2531 fprintf (file, " }\n");
2534 if (bb->next_bb != EXIT_BLOCK_PTR)
2535 fputc ('\n', file);
2538 fputs ("}\n\n", file);
2543 /*---------------------------------------------------------------------------
2544 Miscellaneous helpers
2545 ---------------------------------------------------------------------------*/
2547 /* Return true if T represents a stmt that always transfers control. */
2549 bool
2550 is_ctrl_stmt (gimple t)
2552 return gimple_code (t) == GIMPLE_COND
2553 || gimple_code (t) == GIMPLE_SWITCH
2554 || gimple_code (t) == GIMPLE_GOTO
2555 || gimple_code (t) == GIMPLE_RETURN
2556 || gimple_code (t) == GIMPLE_RESX;
2560 /* Return true if T is a statement that may alter the flow of control
2561 (e.g., a call to a non-returning function). */
2563 bool
2564 is_ctrl_altering_stmt (gimple t)
2566 gcc_assert (t);
2568 if (is_gimple_call (t))
2570 int flags = gimple_call_flags (t);
2572 /* A non-pure/const call alters flow control if the current
2573 function has nonlocal labels. */
2574 if (!(flags & (ECF_CONST | ECF_PURE))
2575 && cfun->has_nonlocal_label)
2576 return true;
2578 /* A call also alters control flow if it does not return. */
2579 if (gimple_call_flags (t) & ECF_NORETURN)
2580 return true;
2583 /* OpenMP directives alter control flow. */
2584 if (is_gimple_omp (t))
2585 return true;
2587 /* If a statement can throw, it alters control flow. */
2588 return stmt_can_throw_internal (t);
2592 /* Return true if T is a simple local goto. */
2594 bool
2595 simple_goto_p (gimple t)
2597 return (gimple_code (t) == GIMPLE_GOTO
2598 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2602 /* Return true if T can make an abnormal transfer of control flow.
2603 Transfers of control flow associated with EH are excluded. */
2605 bool
2606 stmt_can_make_abnormal_goto (gimple t)
2608 if (computed_goto_p (t))
2609 return true;
2610 if (is_gimple_call (t))
2611 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2612 return false;
2616 /* Return true if STMT should start a new basic block. PREV_STMT is
2617 the statement preceding STMT. It is used when STMT is a label or a
2618 case label. Labels should only start a new basic block if their
2619 previous statement wasn't a label. Otherwise, sequence of labels
2620 would generate unnecessary basic blocks that only contain a single
2621 label. */
2623 static inline bool
2624 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2626 if (stmt == NULL)
2627 return false;
2629 /* Labels start a new basic block only if the preceding statement
2630 wasn't a label of the same type. This prevents the creation of
2631 consecutive blocks that have nothing but a single label. */
2632 if (gimple_code (stmt) == GIMPLE_LABEL)
2634 /* Nonlocal and computed GOTO targets always start a new block. */
2635 if (DECL_NONLOCAL (gimple_label_label (stmt))
2636 || FORCED_LABEL (gimple_label_label (stmt)))
2637 return true;
2639 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2641 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2642 return true;
2644 cfg_stats.num_merged_labels++;
2645 return false;
2647 else
2648 return true;
2651 return false;
2655 /* Return true if T should end a basic block. */
2657 bool
2658 stmt_ends_bb_p (gimple t)
2660 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2663 /* Remove block annotations and other data structures. */
2665 void
2666 delete_tree_cfg_annotations (void)
2668 label_to_block_map = NULL;
2672 /* Return the first statement in basic block BB. */
2674 gimple
2675 first_stmt (basic_block bb)
2677 gimple_stmt_iterator i = gsi_start_bb (bb);
2678 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2681 /* Return the last statement in basic block BB. */
2683 gimple
2684 last_stmt (basic_block bb)
2686 gimple_stmt_iterator b = gsi_last_bb (bb);
2687 return !gsi_end_p (b) ? gsi_stmt (b) : NULL;
2690 /* Return the last statement of an otherwise empty block. Return NULL
2691 if the block is totally empty, or if it contains more than one
2692 statement. */
2694 gimple
2695 last_and_only_stmt (basic_block bb)
2697 gimple_stmt_iterator i = gsi_last_bb (bb);
2698 gimple last, prev;
2700 if (gsi_end_p (i))
2701 return NULL;
2703 last = gsi_stmt (i);
2704 gsi_prev (&i);
2705 if (gsi_end_p (i))
2706 return last;
2708 /* Empty statements should no longer appear in the instruction stream.
2709 Everything that might have appeared before should be deleted by
2710 remove_useless_stmts, and the optimizers should just gsi_remove
2711 instead of smashing with build_empty_stmt.
2713 Thus the only thing that should appear here in a block containing
2714 one executable statement is a label. */
2715 prev = gsi_stmt (i);
2716 if (gimple_code (prev) == GIMPLE_LABEL)
2717 return last;
2718 else
2719 return NULL;
2722 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2724 static void
2725 reinstall_phi_args (edge new_edge, edge old_edge)
2727 edge_var_map_vector v;
2728 edge_var_map *vm;
2729 int i;
2730 gimple_stmt_iterator phis;
2732 v = redirect_edge_var_map_vector (old_edge);
2733 if (!v)
2734 return;
2736 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2737 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2738 i++, gsi_next (&phis))
2740 gimple phi = gsi_stmt (phis);
2741 tree result = redirect_edge_var_map_result (vm);
2742 tree arg = redirect_edge_var_map_def (vm);
2744 gcc_assert (result == gimple_phi_result (phi));
2746 add_phi_arg (phi, arg, new_edge);
2749 redirect_edge_var_map_clear (old_edge);
2752 /* Returns the basic block after which the new basic block created
2753 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2754 near its "logical" location. This is of most help to humans looking
2755 at debugging dumps. */
2757 static basic_block
2758 split_edge_bb_loc (edge edge_in)
2760 basic_block dest = edge_in->dest;
2762 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
2763 return edge_in->src;
2764 else
2765 return dest->prev_bb;
2768 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2769 Abort on abnormal edges. */
2771 static basic_block
2772 gimple_split_edge (edge edge_in)
2774 basic_block new_bb, after_bb, dest;
2775 edge new_edge, e;
2777 /* Abnormal edges cannot be split. */
2778 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2780 dest = edge_in->dest;
2782 after_bb = split_edge_bb_loc (edge_in);
2784 new_bb = create_empty_bb (after_bb);
2785 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2786 new_bb->count = edge_in->count;
2787 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2788 new_edge->probability = REG_BR_PROB_BASE;
2789 new_edge->count = edge_in->count;
2791 e = redirect_edge_and_branch (edge_in, new_bb);
2792 gcc_assert (e == edge_in);
2793 reinstall_phi_args (new_edge, e);
2795 return new_bb;
2798 /* Callback for walk_tree, check that all elements with address taken are
2799 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2800 inside a PHI node. */
2802 static tree
2803 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2805 tree t = *tp, x;
2807 if (TYPE_P (t))
2808 *walk_subtrees = 0;
2810 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2811 #define CHECK_OP(N, MSG) \
2812 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2813 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2815 switch (TREE_CODE (t))
2817 case SSA_NAME:
2818 if (SSA_NAME_IN_FREE_LIST (t))
2820 error ("SSA name in freelist but still referenced");
2821 return *tp;
2823 break;
2825 case INDIRECT_REF:
2826 x = TREE_OPERAND (t, 0);
2827 if (!is_gimple_reg (x) && !is_gimple_min_invariant (x))
2829 error ("Indirect reference's operand is not a register or a constant.");
2830 return x;
2832 break;
2834 case ASSERT_EXPR:
2835 x = fold (ASSERT_EXPR_COND (t));
2836 if (x == boolean_false_node)
2838 error ("ASSERT_EXPR with an always-false condition");
2839 return *tp;
2841 break;
2843 case MODIFY_EXPR:
2844 error ("MODIFY_EXPR not expected while having tuples.");
2845 return *tp;
2847 case ADDR_EXPR:
2849 bool old_constant;
2850 bool old_side_effects;
2851 bool new_constant;
2852 bool new_side_effects;
2854 gcc_assert (is_gimple_address (t));
2856 old_constant = TREE_CONSTANT (t);
2857 old_side_effects = TREE_SIDE_EFFECTS (t);
2859 recompute_tree_invariant_for_addr_expr (t);
2860 new_side_effects = TREE_SIDE_EFFECTS (t);
2861 new_constant = TREE_CONSTANT (t);
2863 if (old_constant != new_constant)
2865 error ("constant not recomputed when ADDR_EXPR changed");
2866 return t;
2868 if (old_side_effects != new_side_effects)
2870 error ("side effects not recomputed when ADDR_EXPR changed");
2871 return t;
2874 /* Skip any references (they will be checked when we recurse down the
2875 tree) and ensure that any variable used as a prefix is marked
2876 addressable. */
2877 for (x = TREE_OPERAND (t, 0);
2878 handled_component_p (x);
2879 x = TREE_OPERAND (x, 0))
2882 if (!(TREE_CODE (x) == VAR_DECL
2883 || TREE_CODE (x) == PARM_DECL
2884 || TREE_CODE (x) == RESULT_DECL))
2885 return NULL;
2886 if (!TREE_ADDRESSABLE (x))
2888 error ("address taken, but ADDRESSABLE bit not set");
2889 return x;
2891 if (DECL_GIMPLE_REG_P (x))
2893 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2894 return x;
2897 break;
2900 case COND_EXPR:
2901 x = COND_EXPR_COND (t);
2902 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2904 error ("non-integral used in condition");
2905 return x;
2907 if (!is_gimple_condexpr (x))
2909 error ("invalid conditional operand");
2910 return x;
2912 break;
2914 case NON_LVALUE_EXPR:
2915 gcc_unreachable ();
2917 CASE_CONVERT:
2918 case FIX_TRUNC_EXPR:
2919 case FLOAT_EXPR:
2920 case NEGATE_EXPR:
2921 case ABS_EXPR:
2922 case BIT_NOT_EXPR:
2923 case TRUTH_NOT_EXPR:
2924 CHECK_OP (0, "invalid operand to unary operator");
2925 break;
2927 case REALPART_EXPR:
2928 case IMAGPART_EXPR:
2929 case COMPONENT_REF:
2930 case ARRAY_REF:
2931 case ARRAY_RANGE_REF:
2932 case BIT_FIELD_REF:
2933 case VIEW_CONVERT_EXPR:
2934 /* We have a nest of references. Verify that each of the operands
2935 that determine where to reference is either a constant or a variable,
2936 verify that the base is valid, and then show we've already checked
2937 the subtrees. */
2938 while (handled_component_p (t))
2940 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2941 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2942 else if (TREE_CODE (t) == ARRAY_REF
2943 || TREE_CODE (t) == ARRAY_RANGE_REF)
2945 CHECK_OP (1, "invalid array index");
2946 if (TREE_OPERAND (t, 2))
2947 CHECK_OP (2, "invalid array lower bound");
2948 if (TREE_OPERAND (t, 3))
2949 CHECK_OP (3, "invalid array stride");
2951 else if (TREE_CODE (t) == BIT_FIELD_REF)
2953 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2954 || !host_integerp (TREE_OPERAND (t, 2), 1))
2956 error ("invalid position or size operand to BIT_FIELD_REF");
2957 return t;
2959 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2960 && (TYPE_PRECISION (TREE_TYPE (t))
2961 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2963 error ("integral result type precision does not match "
2964 "field size of BIT_FIELD_REF");
2965 return t;
2967 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2968 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2969 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2971 error ("mode precision of non-integral result does not "
2972 "match field size of BIT_FIELD_REF");
2973 return t;
2977 t = TREE_OPERAND (t, 0);
2980 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2982 error ("invalid reference prefix");
2983 return t;
2985 *walk_subtrees = 0;
2986 break;
2987 case PLUS_EXPR:
2988 case MINUS_EXPR:
2989 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2990 POINTER_PLUS_EXPR. */
2991 if (POINTER_TYPE_P (TREE_TYPE (t)))
2993 error ("invalid operand to plus/minus, type is a pointer");
2994 return t;
2996 CHECK_OP (0, "invalid operand to binary operator");
2997 CHECK_OP (1, "invalid operand to binary operator");
2998 break;
3000 case POINTER_PLUS_EXPR:
3001 /* Check to make sure the first operand is a pointer or reference type. */
3002 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3004 error ("invalid operand to pointer plus, first operand is not a pointer");
3005 return t;
3007 /* Check to make sure the second operand is an integer with type of
3008 sizetype. */
3009 if (!useless_type_conversion_p (sizetype,
3010 TREE_TYPE (TREE_OPERAND (t, 1))))
3012 error ("invalid operand to pointer plus, second operand is not an "
3013 "integer with type of sizetype.");
3014 return t;
3016 /* FALLTHROUGH */
3017 case LT_EXPR:
3018 case LE_EXPR:
3019 case GT_EXPR:
3020 case GE_EXPR:
3021 case EQ_EXPR:
3022 case NE_EXPR:
3023 case UNORDERED_EXPR:
3024 case ORDERED_EXPR:
3025 case UNLT_EXPR:
3026 case UNLE_EXPR:
3027 case UNGT_EXPR:
3028 case UNGE_EXPR:
3029 case UNEQ_EXPR:
3030 case LTGT_EXPR:
3031 case MULT_EXPR:
3032 case TRUNC_DIV_EXPR:
3033 case CEIL_DIV_EXPR:
3034 case FLOOR_DIV_EXPR:
3035 case ROUND_DIV_EXPR:
3036 case TRUNC_MOD_EXPR:
3037 case CEIL_MOD_EXPR:
3038 case FLOOR_MOD_EXPR:
3039 case ROUND_MOD_EXPR:
3040 case RDIV_EXPR:
3041 case EXACT_DIV_EXPR:
3042 case MIN_EXPR:
3043 case MAX_EXPR:
3044 case LSHIFT_EXPR:
3045 case RSHIFT_EXPR:
3046 case LROTATE_EXPR:
3047 case RROTATE_EXPR:
3048 case BIT_IOR_EXPR:
3049 case BIT_XOR_EXPR:
3050 case BIT_AND_EXPR:
3051 CHECK_OP (0, "invalid operand to binary operator");
3052 CHECK_OP (1, "invalid operand to binary operator");
3053 break;
3055 case CONSTRUCTOR:
3056 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3057 *walk_subtrees = 0;
3058 break;
3060 default:
3061 break;
3063 return NULL;
3065 #undef CHECK_OP
3069 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3070 Returns true if there is an error, otherwise false. */
3072 static bool
3073 verify_types_in_gimple_min_lval (tree expr)
3075 tree op;
3077 if (is_gimple_id (expr))
3078 return false;
3080 if (!INDIRECT_REF_P (expr)
3081 && TREE_CODE (expr) != TARGET_MEM_REF)
3083 error ("invalid expression for min lvalue");
3084 return true;
3087 /* TARGET_MEM_REFs are strange beasts. */
3088 if (TREE_CODE (expr) == TARGET_MEM_REF)
3089 return false;
3091 op = TREE_OPERAND (expr, 0);
3092 if (!is_gimple_val (op))
3094 error ("invalid operand in indirect reference");
3095 debug_generic_stmt (op);
3096 return true;
3098 if (!useless_type_conversion_p (TREE_TYPE (expr),
3099 TREE_TYPE (TREE_TYPE (op))))
3101 error ("type mismatch in indirect reference");
3102 debug_generic_stmt (TREE_TYPE (expr));
3103 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3104 return true;
3107 return false;
3110 /* Verify if EXPR is a valid GIMPLE reference expression. Returns true
3111 if there is an error, otherwise false. */
3113 static bool
3114 verify_types_in_gimple_reference (tree expr)
3116 while (handled_component_p (expr))
3118 tree op = TREE_OPERAND (expr, 0);
3120 if (TREE_CODE (expr) == ARRAY_REF
3121 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3123 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3124 || (TREE_OPERAND (expr, 2)
3125 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3126 || (TREE_OPERAND (expr, 3)
3127 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3129 error ("invalid operands to array reference");
3130 debug_generic_stmt (expr);
3131 return true;
3135 /* Verify if the reference array element types are compatible. */
3136 if (TREE_CODE (expr) == ARRAY_REF
3137 && !useless_type_conversion_p (TREE_TYPE (expr),
3138 TREE_TYPE (TREE_TYPE (op))))
3140 error ("type mismatch in array reference");
3141 debug_generic_stmt (TREE_TYPE (expr));
3142 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3143 return true;
3145 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3146 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3147 TREE_TYPE (TREE_TYPE (op))))
3149 error ("type mismatch in array range reference");
3150 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3151 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3152 return true;
3155 if ((TREE_CODE (expr) == REALPART_EXPR
3156 || TREE_CODE (expr) == IMAGPART_EXPR)
3157 && !useless_type_conversion_p (TREE_TYPE (expr),
3158 TREE_TYPE (TREE_TYPE (op))))
3160 error ("type mismatch in real/imagpart reference");
3161 debug_generic_stmt (TREE_TYPE (expr));
3162 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3163 return true;
3166 if (TREE_CODE (expr) == COMPONENT_REF
3167 && !useless_type_conversion_p (TREE_TYPE (expr),
3168 TREE_TYPE (TREE_OPERAND (expr, 1))))
3170 error ("type mismatch in component reference");
3171 debug_generic_stmt (TREE_TYPE (expr));
3172 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3173 return true;
3176 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3177 is nothing to verify. Gross mismatches at most invoke
3178 undefined behavior. */
3179 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
3180 && !handled_component_p (op))
3181 return false;
3183 expr = op;
3186 return verify_types_in_gimple_min_lval (expr);
3189 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3190 list of pointer-to types that is trivially convertible to DEST. */
3192 static bool
3193 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3195 tree src;
3197 if (!TYPE_POINTER_TO (src_obj))
3198 return true;
3200 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3201 if (useless_type_conversion_p (dest, src))
3202 return true;
3204 return false;
3207 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3208 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3210 static bool
3211 valid_fixed_convert_types_p (tree type1, tree type2)
3213 return (FIXED_POINT_TYPE_P (type1)
3214 && (INTEGRAL_TYPE_P (type2)
3215 || SCALAR_FLOAT_TYPE_P (type2)
3216 || FIXED_POINT_TYPE_P (type2)));
3219 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3220 is a problem, otherwise false. */
3222 static bool
3223 verify_gimple_call (gimple stmt)
3225 tree fn = gimple_call_fn (stmt);
3226 tree fntype;
3228 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3229 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3230 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3232 error ("non-function in gimple call");
3233 return true;
3236 if (gimple_call_lhs (stmt)
3237 && !is_gimple_lvalue (gimple_call_lhs (stmt)))
3239 error ("invalid LHS in gimple call");
3240 return true;
3243 fntype = TREE_TYPE (TREE_TYPE (fn));
3244 if (gimple_call_lhs (stmt)
3245 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3246 TREE_TYPE (fntype))
3247 /* ??? At least C++ misses conversions at assignments from
3248 void * call results.
3249 ??? Java is completely off. Especially with functions
3250 returning java.lang.Object.
3251 For now simply allow arbitrary pointer type conversions. */
3252 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3253 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3255 error ("invalid conversion in gimple call");
3256 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3257 debug_generic_stmt (TREE_TYPE (fntype));
3258 return true;
3261 /* ??? The C frontend passes unpromoted arguments in case it
3262 didn't see a function declaration before the call. So for now
3263 leave the call arguments unverified. Once we gimplify
3264 unit-at-a-time we have a chance to fix this. */
3266 return false;
3269 /* Verifies the gimple comparison with the result type TYPE and
3270 the operands OP0 and OP1. */
3272 static bool
3273 verify_gimple_comparison (tree type, tree op0, tree op1)
3275 tree op0_type = TREE_TYPE (op0);
3276 tree op1_type = TREE_TYPE (op1);
3278 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3280 error ("invalid operands in gimple comparison");
3281 return true;
3284 /* For comparisons we do not have the operations type as the
3285 effective type the comparison is carried out in. Instead
3286 we require that either the first operand is trivially
3287 convertible into the second, or the other way around.
3288 The resulting type of a comparison may be any integral type.
3289 Because we special-case pointers to void we allow
3290 comparisons of pointers with the same mode as well. */
3291 if ((!useless_type_conversion_p (op0_type, op1_type)
3292 && !useless_type_conversion_p (op1_type, op0_type)
3293 && (!POINTER_TYPE_P (op0_type)
3294 || !POINTER_TYPE_P (op1_type)
3295 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3296 || !INTEGRAL_TYPE_P (type))
3298 error ("type mismatch in comparison expression");
3299 debug_generic_expr (type);
3300 debug_generic_expr (op0_type);
3301 debug_generic_expr (op1_type);
3302 return true;
3305 return false;
3308 /* Verify a gimple assignment statement STMT with an unary rhs.
3309 Returns true if anything is wrong. */
3311 static bool
3312 verify_gimple_assign_unary (gimple stmt)
3314 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3315 tree lhs = gimple_assign_lhs (stmt);
3316 tree lhs_type = TREE_TYPE (lhs);
3317 tree rhs1 = gimple_assign_rhs1 (stmt);
3318 tree rhs1_type = TREE_TYPE (rhs1);
3320 if (!is_gimple_reg (lhs)
3321 && !(optimize == 0
3322 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3324 error ("non-register as LHS of unary operation");
3325 return true;
3328 if (!is_gimple_val (rhs1))
3330 error ("invalid operand in unary operation");
3331 return true;
3334 /* First handle conversions. */
3335 switch (rhs_code)
3337 CASE_CONVERT:
3339 /* Allow conversions between integral types and pointers only if
3340 there is no sign or zero extension involved.
3341 For targets were the precision of sizetype doesn't match that
3342 of pointers we need to allow arbitrary conversions from and
3343 to sizetype. */
3344 if ((POINTER_TYPE_P (lhs_type)
3345 && INTEGRAL_TYPE_P (rhs1_type)
3346 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3347 || rhs1_type == sizetype))
3348 || (POINTER_TYPE_P (rhs1_type)
3349 && INTEGRAL_TYPE_P (lhs_type)
3350 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3351 || lhs_type == sizetype)))
3352 return false;
3354 /* Allow conversion from integer to offset type and vice versa. */
3355 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3356 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3357 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3358 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3359 return false;
3361 /* Otherwise assert we are converting between types of the
3362 same kind. */
3363 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3365 error ("invalid types in nop conversion");
3366 debug_generic_expr (lhs_type);
3367 debug_generic_expr (rhs1_type);
3368 return true;
3371 return false;
3374 case FIXED_CONVERT_EXPR:
3376 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3377 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3379 error ("invalid types in fixed-point conversion");
3380 debug_generic_expr (lhs_type);
3381 debug_generic_expr (rhs1_type);
3382 return true;
3385 return false;
3388 case FLOAT_EXPR:
3390 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3392 error ("invalid types in conversion to floating point");
3393 debug_generic_expr (lhs_type);
3394 debug_generic_expr (rhs1_type);
3395 return true;
3398 return false;
3401 case FIX_TRUNC_EXPR:
3403 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3405 error ("invalid types in conversion to integer");
3406 debug_generic_expr (lhs_type);
3407 debug_generic_expr (rhs1_type);
3408 return true;
3411 return false;
3414 case TRUTH_NOT_EXPR:
3418 case NEGATE_EXPR:
3419 case ABS_EXPR:
3420 case BIT_NOT_EXPR:
3421 case PAREN_EXPR:
3422 case NON_LVALUE_EXPR:
3423 case CONJ_EXPR:
3424 case REDUC_MAX_EXPR:
3425 case REDUC_MIN_EXPR:
3426 case REDUC_PLUS_EXPR:
3427 case VEC_UNPACK_HI_EXPR:
3428 case VEC_UNPACK_LO_EXPR:
3429 case VEC_UNPACK_FLOAT_HI_EXPR:
3430 case VEC_UNPACK_FLOAT_LO_EXPR:
3431 break;
3433 default:
3434 gcc_unreachable ();
3437 /* For the remaining codes assert there is no conversion involved. */
3438 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3440 error ("non-trivial conversion in unary operation");
3441 debug_generic_expr (lhs_type);
3442 debug_generic_expr (rhs1_type);
3443 return true;
3446 return false;
3449 /* Verify a gimple assignment statement STMT with a binary rhs.
3450 Returns true if anything is wrong. */
3452 static bool
3453 verify_gimple_assign_binary (gimple stmt)
3455 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3456 tree lhs = gimple_assign_lhs (stmt);
3457 tree lhs_type = TREE_TYPE (lhs);
3458 tree rhs1 = gimple_assign_rhs1 (stmt);
3459 tree rhs1_type = TREE_TYPE (rhs1);
3460 tree rhs2 = gimple_assign_rhs2 (stmt);
3461 tree rhs2_type = TREE_TYPE (rhs2);
3463 if (!is_gimple_reg (lhs)
3464 && !(optimize == 0
3465 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3467 error ("non-register as LHS of binary operation");
3468 return true;
3471 if (!is_gimple_val (rhs1)
3472 || !is_gimple_val (rhs2))
3474 error ("invalid operands in binary operation");
3475 return true;
3478 /* First handle operations that involve different types. */
3479 switch (rhs_code)
3481 case COMPLEX_EXPR:
3483 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3484 || !(INTEGRAL_TYPE_P (rhs1_type)
3485 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3486 || !(INTEGRAL_TYPE_P (rhs2_type)
3487 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3489 error ("type mismatch in complex expression");
3490 debug_generic_expr (lhs_type);
3491 debug_generic_expr (rhs1_type);
3492 debug_generic_expr (rhs2_type);
3493 return true;
3496 return false;
3499 case LSHIFT_EXPR:
3500 case RSHIFT_EXPR:
3501 if (FIXED_POINT_TYPE_P (rhs1_type)
3502 && INTEGRAL_TYPE_P (rhs2_type)
3503 && useless_type_conversion_p (lhs_type, rhs1_type))
3504 return false;
3505 /* Fall through. */
3507 case LROTATE_EXPR:
3508 case RROTATE_EXPR:
3510 if (!INTEGRAL_TYPE_P (rhs1_type)
3511 || !INTEGRAL_TYPE_P (rhs2_type)
3512 || !useless_type_conversion_p (lhs_type, rhs1_type))
3514 error ("type mismatch in shift expression");
3515 debug_generic_expr (lhs_type);
3516 debug_generic_expr (rhs1_type);
3517 debug_generic_expr (rhs2_type);
3518 return true;
3521 return false;
3524 case VEC_LSHIFT_EXPR:
3525 case VEC_RSHIFT_EXPR:
3527 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3528 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3529 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type)))
3530 || (!INTEGRAL_TYPE_P (rhs2_type)
3531 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3532 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3533 || !useless_type_conversion_p (lhs_type, rhs1_type))
3535 error ("type mismatch in vector shift expression");
3536 debug_generic_expr (lhs_type);
3537 debug_generic_expr (rhs1_type);
3538 debug_generic_expr (rhs2_type);
3539 return true;
3542 return false;
3545 case POINTER_PLUS_EXPR:
3547 if (!POINTER_TYPE_P (rhs1_type)
3548 || !useless_type_conversion_p (lhs_type, rhs1_type)
3549 || !useless_type_conversion_p (sizetype, rhs2_type))
3551 error ("type mismatch in pointer plus expression");
3552 debug_generic_stmt (lhs_type);
3553 debug_generic_stmt (rhs1_type);
3554 debug_generic_stmt (rhs2_type);
3555 return true;
3558 return false;
3561 case TRUTH_ANDIF_EXPR:
3562 case TRUTH_ORIF_EXPR:
3563 gcc_unreachable ();
3565 case TRUTH_AND_EXPR:
3566 case TRUTH_OR_EXPR:
3567 case TRUTH_XOR_EXPR:
3569 /* We allow any kind of integral typed argument and result. */
3570 if (!INTEGRAL_TYPE_P (rhs1_type)
3571 || !INTEGRAL_TYPE_P (rhs2_type)
3572 || !INTEGRAL_TYPE_P (lhs_type))
3574 error ("type mismatch in binary truth expression");
3575 debug_generic_expr (lhs_type);
3576 debug_generic_expr (rhs1_type);
3577 debug_generic_expr (rhs2_type);
3578 return true;
3581 return false;
3584 case LT_EXPR:
3585 case LE_EXPR:
3586 case GT_EXPR:
3587 case GE_EXPR:
3588 case EQ_EXPR:
3589 case NE_EXPR:
3590 case UNORDERED_EXPR:
3591 case ORDERED_EXPR:
3592 case UNLT_EXPR:
3593 case UNLE_EXPR:
3594 case UNGT_EXPR:
3595 case UNGE_EXPR:
3596 case UNEQ_EXPR:
3597 case LTGT_EXPR:
3598 /* Comparisons are also binary, but the result type is not
3599 connected to the operand types. */
3600 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3602 case PLUS_EXPR:
3603 case MINUS_EXPR:
3605 if (POINTER_TYPE_P (lhs_type)
3606 || POINTER_TYPE_P (rhs1_type)
3607 || POINTER_TYPE_P (rhs2_type))
3609 error ("invalid (pointer) operands to plus/minus");
3610 return true;
3613 /* Continue with generic binary expression handling. */
3614 break;
3617 case MULT_EXPR:
3618 case TRUNC_DIV_EXPR:
3619 case CEIL_DIV_EXPR:
3620 case FLOOR_DIV_EXPR:
3621 case ROUND_DIV_EXPR:
3622 case TRUNC_MOD_EXPR:
3623 case CEIL_MOD_EXPR:
3624 case FLOOR_MOD_EXPR:
3625 case ROUND_MOD_EXPR:
3626 case RDIV_EXPR:
3627 case EXACT_DIV_EXPR:
3628 case MIN_EXPR:
3629 case MAX_EXPR:
3630 case BIT_IOR_EXPR:
3631 case BIT_XOR_EXPR:
3632 case BIT_AND_EXPR:
3633 case WIDEN_SUM_EXPR:
3634 case WIDEN_MULT_EXPR:
3635 case VEC_WIDEN_MULT_HI_EXPR:
3636 case VEC_WIDEN_MULT_LO_EXPR:
3637 case VEC_PACK_TRUNC_EXPR:
3638 case VEC_PACK_SAT_EXPR:
3639 case VEC_PACK_FIX_TRUNC_EXPR:
3640 case VEC_EXTRACT_EVEN_EXPR:
3641 case VEC_EXTRACT_ODD_EXPR:
3642 case VEC_INTERLEAVE_HIGH_EXPR:
3643 case VEC_INTERLEAVE_LOW_EXPR:
3644 /* Continue with generic binary expression handling. */
3645 break;
3647 default:
3648 gcc_unreachable ();
3651 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3652 || !useless_type_conversion_p (lhs_type, rhs2_type))
3654 error ("type mismatch in binary expression");
3655 debug_generic_stmt (lhs_type);
3656 debug_generic_stmt (rhs1_type);
3657 debug_generic_stmt (rhs2_type);
3658 return true;
3661 return false;
3664 /* Verify a gimple assignment statement STMT with a single rhs.
3665 Returns true if anything is wrong. */
3667 static bool
3668 verify_gimple_assign_single (gimple stmt)
3670 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3671 tree lhs = gimple_assign_lhs (stmt);
3672 tree lhs_type = TREE_TYPE (lhs);
3673 tree rhs1 = gimple_assign_rhs1 (stmt);
3674 tree rhs1_type = TREE_TYPE (rhs1);
3675 bool res = false;
3677 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3679 error ("non-trivial conversion at assignment");
3680 debug_generic_expr (lhs_type);
3681 debug_generic_expr (rhs1_type);
3682 return true;
3685 if (handled_component_p (lhs))
3686 res |= verify_types_in_gimple_reference (lhs);
3688 /* Special codes we cannot handle via their class. */
3689 switch (rhs_code)
3691 case ADDR_EXPR:
3693 tree op = TREE_OPERAND (rhs1, 0);
3694 if (!is_gimple_addressable (op))
3696 error ("invalid operand in unary expression");
3697 return true;
3700 if (!one_pointer_to_useless_type_conversion_p (lhs_type, TREE_TYPE (op))
3701 /* FIXME: a longstanding wart, &a == &a[0]. */
3702 && (TREE_CODE (TREE_TYPE (op)) != ARRAY_TYPE
3703 || !one_pointer_to_useless_type_conversion_p (lhs_type,
3704 TREE_TYPE (TREE_TYPE (op)))))
3706 error ("type mismatch in address expression");
3707 debug_generic_stmt (lhs_type);
3708 debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op)));
3709 return true;
3712 return verify_types_in_gimple_reference (op);
3715 /* tcc_reference */
3716 case COMPONENT_REF:
3717 case BIT_FIELD_REF:
3718 case INDIRECT_REF:
3719 case ALIGN_INDIRECT_REF:
3720 case MISALIGNED_INDIRECT_REF:
3721 case ARRAY_REF:
3722 case ARRAY_RANGE_REF:
3723 case VIEW_CONVERT_EXPR:
3724 case REALPART_EXPR:
3725 case IMAGPART_EXPR:
3726 case TARGET_MEM_REF:
3727 if (!is_gimple_reg (lhs)
3728 && is_gimple_reg_type (TREE_TYPE (lhs)))
3730 error ("invalid rhs for gimple memory store");
3731 debug_generic_stmt (lhs);
3732 debug_generic_stmt (rhs1);
3733 return true;
3735 return res || verify_types_in_gimple_reference (rhs1);
3737 /* tcc_constant */
3738 case SSA_NAME:
3739 case INTEGER_CST:
3740 case REAL_CST:
3741 case FIXED_CST:
3742 case COMPLEX_CST:
3743 case VECTOR_CST:
3744 case STRING_CST:
3745 return res;
3747 /* tcc_declaration */
3748 case CONST_DECL:
3749 return res;
3750 case VAR_DECL:
3751 case PARM_DECL:
3752 if (!is_gimple_reg (lhs)
3753 && !is_gimple_reg (rhs1)
3754 && is_gimple_reg_type (TREE_TYPE (lhs)))
3756 error ("invalid rhs for gimple memory store");
3757 debug_generic_stmt (lhs);
3758 debug_generic_stmt (rhs1);
3759 return true;
3761 return res;
3763 case COND_EXPR:
3764 case CONSTRUCTOR:
3765 case OBJ_TYPE_REF:
3766 case ASSERT_EXPR:
3767 case WITH_SIZE_EXPR:
3768 case EXC_PTR_EXPR:
3769 case FILTER_EXPR:
3770 case POLYNOMIAL_CHREC:
3771 case DOT_PROD_EXPR:
3772 case VEC_COND_EXPR:
3773 case REALIGN_LOAD_EXPR:
3774 /* FIXME. */
3775 return res;
3777 default:;
3780 return res;
3783 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3784 is a problem, otherwise false. */
3786 static bool
3787 verify_gimple_assign (gimple stmt)
3789 switch (gimple_assign_rhs_class (stmt))
3791 case GIMPLE_SINGLE_RHS:
3792 return verify_gimple_assign_single (stmt);
3794 case GIMPLE_UNARY_RHS:
3795 return verify_gimple_assign_unary (stmt);
3797 case GIMPLE_BINARY_RHS:
3798 return verify_gimple_assign_binary (stmt);
3800 default:
3801 gcc_unreachable ();
3805 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3806 is a problem, otherwise false. */
3808 static bool
3809 verify_gimple_return (gimple stmt)
3811 tree op = gimple_return_retval (stmt);
3812 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3814 /* We cannot test for present return values as we do not fix up missing
3815 return values from the original source. */
3816 if (op == NULL)
3817 return false;
3819 if (!is_gimple_val (op)
3820 && TREE_CODE (op) != RESULT_DECL)
3822 error ("invalid operand in return statement");
3823 debug_generic_stmt (op);
3824 return true;
3827 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
3828 /* ??? With C++ we can have the situation that the result
3829 decl is a reference type while the return type is an aggregate. */
3830 && !(TREE_CODE (op) == RESULT_DECL
3831 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
3832 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
3834 error ("invalid conversion in return statement");
3835 debug_generic_stmt (restype);
3836 debug_generic_stmt (TREE_TYPE (op));
3837 return true;
3840 return false;
3844 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3845 is a problem, otherwise false. */
3847 static bool
3848 verify_gimple_goto (gimple stmt)
3850 tree dest = gimple_goto_dest (stmt);
3852 /* ??? We have two canonical forms of direct goto destinations, a
3853 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3854 if (TREE_CODE (dest) != LABEL_DECL
3855 && (!is_gimple_val (dest)
3856 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3858 error ("goto destination is neither a label nor a pointer");
3859 return true;
3862 return false;
3865 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3866 is a problem, otherwise false. */
3868 static bool
3869 verify_gimple_switch (gimple stmt)
3871 if (!is_gimple_val (gimple_switch_index (stmt)))
3873 error ("invalid operand to switch statement");
3874 debug_generic_stmt (gimple_switch_index (stmt));
3875 return true;
3878 return false;
3882 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3883 and false otherwise. */
3885 static bool
3886 verify_gimple_phi (gimple stmt)
3888 tree type = TREE_TYPE (gimple_phi_result (stmt));
3889 unsigned i;
3891 if (!is_gimple_variable (gimple_phi_result (stmt)))
3893 error ("Invalid PHI result");
3894 return true;
3897 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3899 tree arg = gimple_phi_arg_def (stmt, i);
3900 if ((is_gimple_reg (gimple_phi_result (stmt))
3901 && !is_gimple_val (arg))
3902 || (!is_gimple_reg (gimple_phi_result (stmt))
3903 && !is_gimple_addressable (arg)))
3905 error ("Invalid PHI argument");
3906 debug_generic_stmt (arg);
3907 return true;
3909 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3911 error ("Incompatible types in PHI argument");
3912 debug_generic_stmt (type);
3913 debug_generic_stmt (TREE_TYPE (arg));
3914 return true;
3918 return false;
3922 /* Verify the GIMPLE statement STMT. Returns true if there is an
3923 error, otherwise false. */
3925 static bool
3926 verify_types_in_gimple_stmt (gimple stmt)
3928 if (is_gimple_omp (stmt))
3930 /* OpenMP directives are validated by the FE and never operated
3931 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3932 non-gimple expressions when the main index variable has had
3933 its address taken. This does not affect the loop itself
3934 because the header of an GIMPLE_OMP_FOR is merely used to determine
3935 how to setup the parallel iteration. */
3936 return false;
3939 switch (gimple_code (stmt))
3941 case GIMPLE_ASSIGN:
3942 return verify_gimple_assign (stmt);
3944 case GIMPLE_LABEL:
3945 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3947 case GIMPLE_CALL:
3948 return verify_gimple_call (stmt);
3950 case GIMPLE_COND:
3951 return verify_gimple_comparison (boolean_type_node,
3952 gimple_cond_lhs (stmt),
3953 gimple_cond_rhs (stmt));
3955 case GIMPLE_GOTO:
3956 return verify_gimple_goto (stmt);
3958 case GIMPLE_SWITCH:
3959 return verify_gimple_switch (stmt);
3961 case GIMPLE_RETURN:
3962 return verify_gimple_return (stmt);
3964 case GIMPLE_ASM:
3965 return false;
3967 case GIMPLE_CHANGE_DYNAMIC_TYPE:
3968 return (!is_gimple_val (gimple_cdt_location (stmt))
3969 || !POINTER_TYPE_P (TREE_TYPE (gimple_cdt_location (stmt))));
3971 case GIMPLE_PHI:
3972 return verify_gimple_phi (stmt);
3974 /* Tuples that do not have tree operands. */
3975 case GIMPLE_NOP:
3976 case GIMPLE_RESX:
3977 case GIMPLE_PREDICT:
3978 return false;
3980 default:
3981 gcc_unreachable ();
3985 /* Verify the GIMPLE statements inside the sequence STMTS. */
3987 static bool
3988 verify_types_in_gimple_seq_2 (gimple_seq stmts)
3990 gimple_stmt_iterator ittr;
3991 bool err = false;
3993 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
3995 gimple stmt = gsi_stmt (ittr);
3997 switch (gimple_code (stmt))
3999 case GIMPLE_BIND:
4000 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4001 break;
4003 case GIMPLE_TRY:
4004 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4005 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4006 break;
4008 case GIMPLE_EH_FILTER:
4009 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4010 break;
4012 case GIMPLE_CATCH:
4013 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4014 break;
4016 default:
4018 bool err2 = verify_types_in_gimple_stmt (stmt);
4019 if (err2)
4020 debug_gimple_stmt (stmt);
4021 err |= err2;
4026 return err;
4030 /* Verify the GIMPLE statements inside the statement list STMTS. */
4032 void
4033 verify_types_in_gimple_seq (gimple_seq stmts)
4035 if (verify_types_in_gimple_seq_2 (stmts))
4036 internal_error ("verify_gimple failed");
4040 /* Verify STMT, return true if STMT is not in GIMPLE form.
4041 TODO: Implement type checking. */
4043 static bool
4044 verify_stmt (gimple_stmt_iterator *gsi)
4046 tree addr;
4047 struct walk_stmt_info wi;
4048 bool last_in_block = gsi_one_before_end_p (*gsi);
4049 gimple stmt = gsi_stmt (*gsi);
4051 if (is_gimple_omp (stmt))
4053 /* OpenMP directives are validated by the FE and never operated
4054 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4055 non-gimple expressions when the main index variable has had
4056 its address taken. This does not affect the loop itself
4057 because the header of an GIMPLE_OMP_FOR is merely used to determine
4058 how to setup the parallel iteration. */
4059 return false;
4062 /* FIXME. The C frontend passes unpromoted arguments in case it
4063 didn't see a function declaration before the call. */
4064 if (is_gimple_call (stmt))
4066 tree decl;
4068 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4070 error ("invalid function in call statement");
4071 return true;
4074 decl = gimple_call_fndecl (stmt);
4075 if (decl
4076 && TREE_CODE (decl) == FUNCTION_DECL
4077 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4078 && (!DECL_PURE_P (decl))
4079 && (!TREE_READONLY (decl)))
4081 error ("invalid pure const state for function");
4082 return true;
4086 memset (&wi, 0, sizeof (wi));
4087 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4088 if (addr)
4090 debug_generic_expr (addr);
4091 inform (input_location, "in statement");
4092 debug_gimple_stmt (stmt);
4093 return true;
4096 /* If the statement is marked as part of an EH region, then it is
4097 expected that the statement could throw. Verify that when we
4098 have optimizations that simplify statements such that we prove
4099 that they cannot throw, that we update other data structures
4100 to match. */
4101 if (lookup_stmt_eh_region (stmt) >= 0)
4103 if (!stmt_could_throw_p (stmt))
4105 error ("statement marked for throw, but doesn%'t");
4106 goto fail;
4108 if (!last_in_block && stmt_can_throw_internal (stmt))
4110 error ("statement marked for throw in middle of block");
4111 goto fail;
4115 return false;
4117 fail:
4118 debug_gimple_stmt (stmt);
4119 return true;
4123 /* Return true when the T can be shared. */
4125 static bool
4126 tree_node_can_be_shared (tree t)
4128 if (IS_TYPE_OR_DECL_P (t)
4129 || is_gimple_min_invariant (t)
4130 || TREE_CODE (t) == SSA_NAME
4131 || t == error_mark_node
4132 || TREE_CODE (t) == IDENTIFIER_NODE)
4133 return true;
4135 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4136 return true;
4138 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4139 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4140 || TREE_CODE (t) == COMPONENT_REF
4141 || TREE_CODE (t) == REALPART_EXPR
4142 || TREE_CODE (t) == IMAGPART_EXPR)
4143 t = TREE_OPERAND (t, 0);
4145 if (DECL_P (t))
4146 return true;
4148 return false;
4152 /* Called via walk_gimple_stmt. Verify tree sharing. */
4154 static tree
4155 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4157 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4158 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4160 if (tree_node_can_be_shared (*tp))
4162 *walk_subtrees = false;
4163 return NULL;
4166 if (pointer_set_insert (visited, *tp))
4167 return *tp;
4169 return NULL;
4173 static bool eh_error_found;
4174 static int
4175 verify_eh_throw_stmt_node (void **slot, void *data)
4177 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4178 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4180 if (!pointer_set_contains (visited, node->stmt))
4182 error ("Dead STMT in EH table");
4183 debug_gimple_stmt (node->stmt);
4184 eh_error_found = true;
4186 return 1;
4190 /* Verify the GIMPLE statements in every basic block. */
4192 void
4193 verify_stmts (void)
4195 basic_block bb;
4196 gimple_stmt_iterator gsi;
4197 bool err = false;
4198 struct pointer_set_t *visited, *visited_stmts;
4199 tree addr;
4200 struct walk_stmt_info wi;
4202 timevar_push (TV_TREE_STMT_VERIFY);
4203 visited = pointer_set_create ();
4204 visited_stmts = pointer_set_create ();
4206 memset (&wi, 0, sizeof (wi));
4207 wi.info = (void *) visited;
4209 FOR_EACH_BB (bb)
4211 gimple phi;
4212 size_t i;
4214 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4216 phi = gsi_stmt (gsi);
4217 pointer_set_insert (visited_stmts, phi);
4218 if (gimple_bb (phi) != bb)
4220 error ("gimple_bb (phi) is set to a wrong basic block");
4221 err |= true;
4224 for (i = 0; i < gimple_phi_num_args (phi); i++)
4226 tree t = gimple_phi_arg_def (phi, i);
4227 tree addr;
4229 if (!t)
4231 error ("missing PHI def");
4232 debug_gimple_stmt (phi);
4233 err |= true;
4234 continue;
4236 /* Addressable variables do have SSA_NAMEs but they
4237 are not considered gimple values. */
4238 else if (TREE_CODE (t) != SSA_NAME
4239 && TREE_CODE (t) != FUNCTION_DECL
4240 && !is_gimple_min_invariant (t))
4242 error ("PHI argument is not a GIMPLE value");
4243 debug_gimple_stmt (phi);
4244 debug_generic_expr (t);
4245 err |= true;
4248 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4249 if (addr)
4251 error ("incorrect sharing of tree nodes");
4252 debug_gimple_stmt (phi);
4253 debug_generic_expr (addr);
4254 err |= true;
4259 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4261 gimple stmt = gsi_stmt (gsi);
4263 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4264 || gimple_code (stmt) == GIMPLE_BIND)
4266 error ("invalid GIMPLE statement");
4267 debug_gimple_stmt (stmt);
4268 err |= true;
4271 pointer_set_insert (visited_stmts, stmt);
4273 if (gimple_bb (stmt) != bb)
4275 error ("gimple_bb (stmt) is set to a wrong basic block");
4276 err |= true;
4279 if (gimple_code (stmt) == GIMPLE_LABEL)
4281 tree decl = gimple_label_label (stmt);
4282 int uid = LABEL_DECL_UID (decl);
4284 if (uid == -1
4285 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4287 error ("incorrect entry in label_to_block_map.\n");
4288 err |= true;
4292 err |= verify_stmt (&gsi);
4293 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4294 if (addr)
4296 error ("incorrect sharing of tree nodes");
4297 debug_gimple_stmt (stmt);
4298 debug_generic_expr (addr);
4299 err |= true;
4301 gsi_next (&gsi);
4305 eh_error_found = false;
4306 if (get_eh_throw_stmt_table (cfun))
4307 htab_traverse (get_eh_throw_stmt_table (cfun),
4308 verify_eh_throw_stmt_node,
4309 visited_stmts);
4311 if (err | eh_error_found)
4312 internal_error ("verify_stmts failed");
4314 pointer_set_destroy (visited);
4315 pointer_set_destroy (visited_stmts);
4316 verify_histograms ();
4317 timevar_pop (TV_TREE_STMT_VERIFY);
4321 /* Verifies that the flow information is OK. */
4323 static int
4324 gimple_verify_flow_info (void)
4326 int err = 0;
4327 basic_block bb;
4328 gimple_stmt_iterator gsi;
4329 gimple stmt;
4330 edge e;
4331 edge_iterator ei;
4333 if (ENTRY_BLOCK_PTR->il.gimple)
4335 error ("ENTRY_BLOCK has IL associated with it");
4336 err = 1;
4339 if (EXIT_BLOCK_PTR->il.gimple)
4341 error ("EXIT_BLOCK has IL associated with it");
4342 err = 1;
4345 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4346 if (e->flags & EDGE_FALLTHRU)
4348 error ("fallthru to exit from bb %d", e->src->index);
4349 err = 1;
4352 FOR_EACH_BB (bb)
4354 bool found_ctrl_stmt = false;
4356 stmt = NULL;
4358 /* Skip labels on the start of basic block. */
4359 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4361 tree label;
4362 gimple prev_stmt = stmt;
4364 stmt = gsi_stmt (gsi);
4366 if (gimple_code (stmt) != GIMPLE_LABEL)
4367 break;
4369 label = gimple_label_label (stmt);
4370 if (prev_stmt && DECL_NONLOCAL (label))
4372 error ("nonlocal label ");
4373 print_generic_expr (stderr, label, 0);
4374 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4375 bb->index);
4376 err = 1;
4379 if (label_to_block (label) != bb)
4381 error ("label ");
4382 print_generic_expr (stderr, label, 0);
4383 fprintf (stderr, " to block does not match in bb %d",
4384 bb->index);
4385 err = 1;
4388 if (decl_function_context (label) != current_function_decl)
4390 error ("label ");
4391 print_generic_expr (stderr, label, 0);
4392 fprintf (stderr, " has incorrect context in bb %d",
4393 bb->index);
4394 err = 1;
4398 /* Verify that body of basic block BB is free of control flow. */
4399 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4401 gimple stmt = gsi_stmt (gsi);
4403 if (found_ctrl_stmt)
4405 error ("control flow in the middle of basic block %d",
4406 bb->index);
4407 err = 1;
4410 if (stmt_ends_bb_p (stmt))
4411 found_ctrl_stmt = true;
4413 if (gimple_code (stmt) == GIMPLE_LABEL)
4415 error ("label ");
4416 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4417 fprintf (stderr, " in the middle of basic block %d", bb->index);
4418 err = 1;
4422 gsi = gsi_last_bb (bb);
4423 if (gsi_end_p (gsi))
4424 continue;
4426 stmt = gsi_stmt (gsi);
4428 err |= verify_eh_edges (stmt);
4430 if (is_ctrl_stmt (stmt))
4432 FOR_EACH_EDGE (e, ei, bb->succs)
4433 if (e->flags & EDGE_FALLTHRU)
4435 error ("fallthru edge after a control statement in bb %d",
4436 bb->index);
4437 err = 1;
4441 if (gimple_code (stmt) != GIMPLE_COND)
4443 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4444 after anything else but if statement. */
4445 FOR_EACH_EDGE (e, ei, bb->succs)
4446 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4448 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4449 bb->index);
4450 err = 1;
4454 switch (gimple_code (stmt))
4456 case GIMPLE_COND:
4458 edge true_edge;
4459 edge false_edge;
4461 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4463 if (!true_edge
4464 || !false_edge
4465 || !(true_edge->flags & EDGE_TRUE_VALUE)
4466 || !(false_edge->flags & EDGE_FALSE_VALUE)
4467 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4468 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4469 || EDGE_COUNT (bb->succs) >= 3)
4471 error ("wrong outgoing edge flags at end of bb %d",
4472 bb->index);
4473 err = 1;
4476 break;
4478 case GIMPLE_GOTO:
4479 if (simple_goto_p (stmt))
4481 error ("explicit goto at end of bb %d", bb->index);
4482 err = 1;
4484 else
4486 /* FIXME. We should double check that the labels in the
4487 destination blocks have their address taken. */
4488 FOR_EACH_EDGE (e, ei, bb->succs)
4489 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4490 | EDGE_FALSE_VALUE))
4491 || !(e->flags & EDGE_ABNORMAL))
4493 error ("wrong outgoing edge flags at end of bb %d",
4494 bb->index);
4495 err = 1;
4498 break;
4500 case GIMPLE_RETURN:
4501 if (!single_succ_p (bb)
4502 || (single_succ_edge (bb)->flags
4503 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4504 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4506 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4507 err = 1;
4509 if (single_succ (bb) != EXIT_BLOCK_PTR)
4511 error ("return edge does not point to exit in bb %d",
4512 bb->index);
4513 err = 1;
4515 break;
4517 case GIMPLE_SWITCH:
4519 tree prev;
4520 edge e;
4521 size_t i, n;
4523 n = gimple_switch_num_labels (stmt);
4525 /* Mark all the destination basic blocks. */
4526 for (i = 0; i < n; ++i)
4528 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4529 basic_block label_bb = label_to_block (lab);
4530 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4531 label_bb->aux = (void *)1;
4534 /* Verify that the case labels are sorted. */
4535 prev = gimple_switch_label (stmt, 0);
4536 for (i = 1; i < n; ++i)
4538 tree c = gimple_switch_label (stmt, i);
4539 if (!CASE_LOW (c))
4541 error ("found default case not at the start of "
4542 "case vector");
4543 err = 1;
4544 continue;
4546 if (CASE_LOW (prev)
4547 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4549 error ("case labels not sorted: ");
4550 print_generic_expr (stderr, prev, 0);
4551 fprintf (stderr," is greater than ");
4552 print_generic_expr (stderr, c, 0);
4553 fprintf (stderr," but comes before it.\n");
4554 err = 1;
4556 prev = c;
4558 /* VRP will remove the default case if it can prove it will
4559 never be executed. So do not verify there always exists
4560 a default case here. */
4562 FOR_EACH_EDGE (e, ei, bb->succs)
4564 if (!e->dest->aux)
4566 error ("extra outgoing edge %d->%d",
4567 bb->index, e->dest->index);
4568 err = 1;
4571 e->dest->aux = (void *)2;
4572 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4573 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4575 error ("wrong outgoing edge flags at end of bb %d",
4576 bb->index);
4577 err = 1;
4581 /* Check that we have all of them. */
4582 for (i = 0; i < n; ++i)
4584 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4585 basic_block label_bb = label_to_block (lab);
4587 if (label_bb->aux != (void *)2)
4589 error ("missing edge %i->%i", bb->index, label_bb->index);
4590 err = 1;
4594 FOR_EACH_EDGE (e, ei, bb->succs)
4595 e->dest->aux = (void *)0;
4598 default: ;
4602 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4603 verify_dominators (CDI_DOMINATORS);
4605 return err;
4609 /* Updates phi nodes after creating a forwarder block joined
4610 by edge FALLTHRU. */
4612 static void
4613 gimple_make_forwarder_block (edge fallthru)
4615 edge e;
4616 edge_iterator ei;
4617 basic_block dummy, bb;
4618 tree var;
4619 gimple_stmt_iterator gsi;
4621 dummy = fallthru->src;
4622 bb = fallthru->dest;
4624 if (single_pred_p (bb))
4625 return;
4627 /* If we redirected a branch we must create new PHI nodes at the
4628 start of BB. */
4629 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4631 gimple phi, new_phi;
4633 phi = gsi_stmt (gsi);
4634 var = gimple_phi_result (phi);
4635 new_phi = create_phi_node (var, bb);
4636 SSA_NAME_DEF_STMT (var) = new_phi;
4637 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4638 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru);
4641 /* Add the arguments we have stored on edges. */
4642 FOR_EACH_EDGE (e, ei, bb->preds)
4644 if (e == fallthru)
4645 continue;
4647 flush_pending_stmts (e);
4652 /* Return a non-special label in the head of basic block BLOCK.
4653 Create one if it doesn't exist. */
4655 tree
4656 gimple_block_label (basic_block bb)
4658 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4659 bool first = true;
4660 tree label;
4661 gimple stmt;
4663 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4665 stmt = gsi_stmt (i);
4666 if (gimple_code (stmt) != GIMPLE_LABEL)
4667 break;
4668 label = gimple_label_label (stmt);
4669 if (!DECL_NONLOCAL (label))
4671 if (!first)
4672 gsi_move_before (&i, &s);
4673 return label;
4677 label = create_artificial_label ();
4678 stmt = gimple_build_label (label);
4679 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4680 return label;
4684 /* Attempt to perform edge redirection by replacing a possibly complex
4685 jump instruction by a goto or by removing the jump completely.
4686 This can apply only if all edges now point to the same block. The
4687 parameters and return values are equivalent to
4688 redirect_edge_and_branch. */
4690 static edge
4691 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4693 basic_block src = e->src;
4694 gimple_stmt_iterator i;
4695 gimple stmt;
4697 /* We can replace or remove a complex jump only when we have exactly
4698 two edges. */
4699 if (EDGE_COUNT (src->succs) != 2
4700 /* Verify that all targets will be TARGET. Specifically, the
4701 edge that is not E must also go to TARGET. */
4702 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4703 return NULL;
4705 i = gsi_last_bb (src);
4706 if (gsi_end_p (i))
4707 return NULL;
4709 stmt = gsi_stmt (i);
4711 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4713 gsi_remove (&i, true);
4714 e = ssa_redirect_edge (e, target);
4715 e->flags = EDGE_FALLTHRU;
4716 return e;
4719 return NULL;
4723 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4724 edge representing the redirected branch. */
4726 static edge
4727 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4729 basic_block bb = e->src;
4730 gimple_stmt_iterator gsi;
4731 edge ret;
4732 gimple stmt;
4734 if (e->flags & EDGE_ABNORMAL)
4735 return NULL;
4737 if (e->src != ENTRY_BLOCK_PTR
4738 && (ret = gimple_try_redirect_by_replacing_jump (e, dest)))
4739 return ret;
4741 if (e->dest == dest)
4742 return NULL;
4744 gsi = gsi_last_bb (bb);
4745 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4747 switch (stmt ? gimple_code (stmt) : ERROR_MARK)
4749 case GIMPLE_COND:
4750 /* For COND_EXPR, we only need to redirect the edge. */
4751 break;
4753 case GIMPLE_GOTO:
4754 /* No non-abnormal edges should lead from a non-simple goto, and
4755 simple ones should be represented implicitly. */
4756 gcc_unreachable ();
4758 case GIMPLE_SWITCH:
4760 tree label = gimple_block_label (dest);
4761 tree cases = get_cases_for_edge (e, stmt);
4763 /* If we have a list of cases associated with E, then use it
4764 as it's a lot faster than walking the entire case vector. */
4765 if (cases)
4767 edge e2 = find_edge (e->src, dest);
4768 tree last, first;
4770 first = cases;
4771 while (cases)
4773 last = cases;
4774 CASE_LABEL (cases) = label;
4775 cases = TREE_CHAIN (cases);
4778 /* If there was already an edge in the CFG, then we need
4779 to move all the cases associated with E to E2. */
4780 if (e2)
4782 tree cases2 = get_cases_for_edge (e2, stmt);
4784 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4785 TREE_CHAIN (cases2) = first;
4788 else
4790 size_t i, n = gimple_switch_num_labels (stmt);
4792 for (i = 0; i < n; i++)
4794 tree elt = gimple_switch_label (stmt, i);
4795 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4796 CASE_LABEL (elt) = label;
4800 break;
4803 case GIMPLE_RETURN:
4804 gsi_remove (&gsi, true);
4805 e->flags |= EDGE_FALLTHRU;
4806 break;
4808 case GIMPLE_OMP_RETURN:
4809 case GIMPLE_OMP_CONTINUE:
4810 case GIMPLE_OMP_SECTIONS_SWITCH:
4811 case GIMPLE_OMP_FOR:
4812 /* The edges from OMP constructs can be simply redirected. */
4813 break;
4815 default:
4816 /* Otherwise it must be a fallthru edge, and we don't need to
4817 do anything besides redirecting it. */
4818 gcc_assert (e->flags & EDGE_FALLTHRU);
4819 break;
4822 /* Update/insert PHI nodes as necessary. */
4824 /* Now update the edges in the CFG. */
4825 e = ssa_redirect_edge (e, dest);
4827 return e;
4830 /* Returns true if it is possible to remove edge E by redirecting
4831 it to the destination of the other edge from E->src. */
4833 static bool
4834 gimple_can_remove_branch_p (const_edge e)
4836 if (e->flags & EDGE_ABNORMAL)
4837 return false;
4839 return true;
4842 /* Simple wrapper, as we can always redirect fallthru edges. */
4844 static basic_block
4845 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4847 e = gimple_redirect_edge_and_branch (e, dest);
4848 gcc_assert (e);
4850 return NULL;
4854 /* Splits basic block BB after statement STMT (but at least after the
4855 labels). If STMT is NULL, BB is split just after the labels. */
4857 static basic_block
4858 gimple_split_block (basic_block bb, void *stmt)
4860 gimple_stmt_iterator gsi;
4861 gimple_stmt_iterator gsi_tgt;
4862 gimple act;
4863 gimple_seq list;
4864 basic_block new_bb;
4865 edge e;
4866 edge_iterator ei;
4868 new_bb = create_empty_bb (bb);
4870 /* Redirect the outgoing edges. */
4871 new_bb->succs = bb->succs;
4872 bb->succs = NULL;
4873 FOR_EACH_EDGE (e, ei, new_bb->succs)
4874 e->src = new_bb;
4876 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4877 stmt = NULL;
4879 /* Move everything from GSI to the new basic block. */
4880 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4882 act = gsi_stmt (gsi);
4883 if (gimple_code (act) == GIMPLE_LABEL)
4884 continue;
4886 if (!stmt)
4887 break;
4889 if (stmt == act)
4891 gsi_next (&gsi);
4892 break;
4896 if (gsi_end_p (gsi))
4897 return new_bb;
4899 /* Split the statement list - avoid re-creating new containers as this
4900 brings ugly quadratic memory consumption in the inliner.
4901 (We are still quadratic since we need to update stmt BB pointers,
4902 sadly.) */
4903 list = gsi_split_seq_before (&gsi);
4904 set_bb_seq (new_bb, list);
4905 for (gsi_tgt = gsi_start (list);
4906 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
4907 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
4909 return new_bb;
4913 /* Moves basic block BB after block AFTER. */
4915 static bool
4916 gimple_move_block_after (basic_block bb, basic_block after)
4918 if (bb->prev_bb == after)
4919 return true;
4921 unlink_block (bb);
4922 link_block (bb, after);
4924 return true;
4928 /* Return true if basic_block can be duplicated. */
4930 static bool
4931 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
4933 return true;
4936 /* Create a duplicate of the basic block BB. NOTE: This does not
4937 preserve SSA form. */
4939 static basic_block
4940 gimple_duplicate_bb (basic_block bb)
4942 basic_block new_bb;
4943 gimple_stmt_iterator gsi, gsi_tgt;
4944 gimple_seq phis = phi_nodes (bb);
4945 gimple phi, stmt, copy;
4947 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4949 /* Copy the PHI nodes. We ignore PHI node arguments here because
4950 the incoming edges have not been setup yet. */
4951 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
4953 phi = gsi_stmt (gsi);
4954 copy = create_phi_node (gimple_phi_result (phi), new_bb);
4955 create_new_def_for (gimple_phi_result (copy), copy,
4956 gimple_phi_result_ptr (copy));
4959 gsi_tgt = gsi_start_bb (new_bb);
4960 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4962 def_operand_p def_p;
4963 ssa_op_iter op_iter;
4964 int region;
4966 stmt = gsi_stmt (gsi);
4967 if (gimple_code (stmt) == GIMPLE_LABEL)
4968 continue;
4970 /* Create a new copy of STMT and duplicate STMT's virtual
4971 operands. */
4972 copy = gimple_copy (stmt);
4973 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
4974 region = lookup_stmt_eh_region (stmt);
4975 if (region >= 0)
4976 add_stmt_to_eh_region (copy, region);
4977 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4979 /* Create new names for all the definitions created by COPY and
4980 add replacement mappings for each new name. */
4981 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4982 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4985 return new_bb;
4988 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
4990 static void
4991 add_phi_args_after_copy_edge (edge e_copy)
4993 basic_block bb, bb_copy = e_copy->src, dest;
4994 edge e;
4995 edge_iterator ei;
4996 gimple phi, phi_copy;
4997 tree def;
4998 gimple_stmt_iterator psi, psi_copy;
5000 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5001 return;
5003 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5005 if (e_copy->dest->flags & BB_DUPLICATED)
5006 dest = get_bb_original (e_copy->dest);
5007 else
5008 dest = e_copy->dest;
5010 e = find_edge (bb, dest);
5011 if (!e)
5013 /* During loop unrolling the target of the latch edge is copied.
5014 In this case we are not looking for edge to dest, but to
5015 duplicated block whose original was dest. */
5016 FOR_EACH_EDGE (e, ei, bb->succs)
5018 if ((e->dest->flags & BB_DUPLICATED)
5019 && get_bb_original (e->dest) == dest)
5020 break;
5023 gcc_assert (e != NULL);
5026 for (psi = gsi_start_phis (e->dest),
5027 psi_copy = gsi_start_phis (e_copy->dest);
5028 !gsi_end_p (psi);
5029 gsi_next (&psi), gsi_next (&psi_copy))
5031 phi = gsi_stmt (psi);
5032 phi_copy = gsi_stmt (psi_copy);
5033 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5034 add_phi_arg (phi_copy, def, e_copy);
5039 /* Basic block BB_COPY was created by code duplication. Add phi node
5040 arguments for edges going out of BB_COPY. The blocks that were
5041 duplicated have BB_DUPLICATED set. */
5043 void
5044 add_phi_args_after_copy_bb (basic_block bb_copy)
5046 edge e_copy;
5047 edge_iterator ei;
5049 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5051 add_phi_args_after_copy_edge (e_copy);
5055 /* Blocks in REGION_COPY array of length N_REGION were created by
5056 duplication of basic blocks. Add phi node arguments for edges
5057 going from these blocks. If E_COPY is not NULL, also add
5058 phi node arguments for its destination.*/
5060 void
5061 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5062 edge e_copy)
5064 unsigned i;
5066 for (i = 0; i < n_region; i++)
5067 region_copy[i]->flags |= BB_DUPLICATED;
5069 for (i = 0; i < n_region; i++)
5070 add_phi_args_after_copy_bb (region_copy[i]);
5071 if (e_copy)
5072 add_phi_args_after_copy_edge (e_copy);
5074 for (i = 0; i < n_region; i++)
5075 region_copy[i]->flags &= ~BB_DUPLICATED;
5078 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5079 important exit edge EXIT. By important we mean that no SSA name defined
5080 inside region is live over the other exit edges of the region. All entry
5081 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5082 to the duplicate of the region. SSA form, dominance and loop information
5083 is updated. The new basic blocks are stored to REGION_COPY in the same
5084 order as they had in REGION, provided that REGION_COPY is not NULL.
5085 The function returns false if it is unable to copy the region,
5086 true otherwise. */
5088 bool
5089 gimple_duplicate_sese_region (edge entry, edge exit,
5090 basic_block *region, unsigned n_region,
5091 basic_block *region_copy)
5093 unsigned i;
5094 bool free_region_copy = false, copying_header = false;
5095 struct loop *loop = entry->dest->loop_father;
5096 edge exit_copy;
5097 VEC (basic_block, heap) *doms;
5098 edge redirected;
5099 int total_freq = 0, entry_freq = 0;
5100 gcov_type total_count = 0, entry_count = 0;
5102 if (!can_copy_bbs_p (region, n_region))
5103 return false;
5105 /* Some sanity checking. Note that we do not check for all possible
5106 missuses of the functions. I.e. if you ask to copy something weird,
5107 it will work, but the state of structures probably will not be
5108 correct. */
5109 for (i = 0; i < n_region; i++)
5111 /* We do not handle subloops, i.e. all the blocks must belong to the
5112 same loop. */
5113 if (region[i]->loop_father != loop)
5114 return false;
5116 if (region[i] != entry->dest
5117 && region[i] == loop->header)
5118 return false;
5121 set_loop_copy (loop, loop);
5123 /* In case the function is used for loop header copying (which is the primary
5124 use), ensure that EXIT and its copy will be new latch and entry edges. */
5125 if (loop->header == entry->dest)
5127 copying_header = true;
5128 set_loop_copy (loop, loop_outer (loop));
5130 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5131 return false;
5133 for (i = 0; i < n_region; i++)
5134 if (region[i] != exit->src
5135 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5136 return false;
5139 if (!region_copy)
5141 region_copy = XNEWVEC (basic_block, n_region);
5142 free_region_copy = true;
5145 gcc_assert (!need_ssa_update_p (cfun));
5147 /* Record blocks outside the region that are dominated by something
5148 inside. */
5149 doms = NULL;
5150 initialize_original_copy_tables ();
5152 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5154 if (entry->dest->count)
5156 total_count = entry->dest->count;
5157 entry_count = entry->count;
5158 /* Fix up corner cases, to avoid division by zero or creation of negative
5159 frequencies. */
5160 if (entry_count > total_count)
5161 entry_count = total_count;
5163 else
5165 total_freq = entry->dest->frequency;
5166 entry_freq = EDGE_FREQUENCY (entry);
5167 /* Fix up corner cases, to avoid division by zero or creation of negative
5168 frequencies. */
5169 if (total_freq == 0)
5170 total_freq = 1;
5171 else if (entry_freq > total_freq)
5172 entry_freq = total_freq;
5175 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5176 split_edge_bb_loc (entry));
5177 if (total_count)
5179 scale_bbs_frequencies_gcov_type (region, n_region,
5180 total_count - entry_count,
5181 total_count);
5182 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5183 total_count);
5185 else
5187 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5188 total_freq);
5189 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5192 if (copying_header)
5194 loop->header = exit->dest;
5195 loop->latch = exit->src;
5198 /* Redirect the entry and add the phi node arguments. */
5199 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5200 gcc_assert (redirected != NULL);
5201 flush_pending_stmts (entry);
5203 /* Concerning updating of dominators: We must recount dominators
5204 for entry block and its copy. Anything that is outside of the
5205 region, but was dominated by something inside needs recounting as
5206 well. */
5207 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5208 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5209 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5210 VEC_free (basic_block, heap, doms);
5212 /* Add the other PHI node arguments. */
5213 add_phi_args_after_copy (region_copy, n_region, NULL);
5215 /* Update the SSA web. */
5216 update_ssa (TODO_update_ssa);
5218 if (free_region_copy)
5219 free (region_copy);
5221 free_original_copy_tables ();
5222 return true;
5225 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5226 are stored to REGION_COPY in the same order in that they appear
5227 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5228 the region, EXIT an exit from it. The condition guarding EXIT
5229 is moved to ENTRY. Returns true if duplication succeeds, false
5230 otherwise.
5232 For example,
5234 some_code;
5235 if (cond)
5237 else
5240 is transformed to
5242 if (cond)
5244 some_code;
5247 else
5249 some_code;
5254 bool
5255 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5256 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5257 basic_block *region_copy ATTRIBUTE_UNUSED)
5259 unsigned i;
5260 bool free_region_copy = false;
5261 struct loop *loop = exit->dest->loop_father;
5262 struct loop *orig_loop = entry->dest->loop_father;
5263 basic_block switch_bb, entry_bb, nentry_bb;
5264 VEC (basic_block, heap) *doms;
5265 int total_freq = 0, exit_freq = 0;
5266 gcov_type total_count = 0, exit_count = 0;
5267 edge exits[2], nexits[2], e;
5268 gimple_stmt_iterator gsi;
5269 gimple cond_stmt;
5270 edge sorig, snew;
5272 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5273 exits[0] = exit;
5274 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5276 if (!can_copy_bbs_p (region, n_region))
5277 return false;
5279 /* Some sanity checking. Note that we do not check for all possible
5280 missuses of the functions. I.e. if you ask to copy something weird
5281 (e.g., in the example, if there is a jump from inside to the middle
5282 of some_code, or come_code defines some of the values used in cond)
5283 it will work, but the resulting code will not be correct. */
5284 for (i = 0; i < n_region; i++)
5286 /* We do not handle subloops, i.e. all the blocks must belong to the
5287 same loop. */
5288 if (region[i]->loop_father != orig_loop)
5289 return false;
5291 if (region[i] == orig_loop->latch)
5292 return false;
5295 initialize_original_copy_tables ();
5296 set_loop_copy (orig_loop, loop);
5298 if (!region_copy)
5300 region_copy = XNEWVEC (basic_block, n_region);
5301 free_region_copy = true;
5304 gcc_assert (!need_ssa_update_p (cfun));
5306 /* Record blocks outside the region that are dominated by something
5307 inside. */
5308 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5310 if (exit->src->count)
5312 total_count = exit->src->count;
5313 exit_count = exit->count;
5314 /* Fix up corner cases, to avoid division by zero or creation of negative
5315 frequencies. */
5316 if (exit_count > total_count)
5317 exit_count = total_count;
5319 else
5321 total_freq = exit->src->frequency;
5322 exit_freq = EDGE_FREQUENCY (exit);
5323 /* Fix up corner cases, to avoid division by zero or creation of negative
5324 frequencies. */
5325 if (total_freq == 0)
5326 total_freq = 1;
5327 if (exit_freq > total_freq)
5328 exit_freq = total_freq;
5331 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5332 split_edge_bb_loc (exit));
5333 if (total_count)
5335 scale_bbs_frequencies_gcov_type (region, n_region,
5336 total_count - exit_count,
5337 total_count);
5338 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5339 total_count);
5341 else
5343 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5344 total_freq);
5345 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5348 /* Create the switch block, and put the exit condition to it. */
5349 entry_bb = entry->dest;
5350 nentry_bb = get_bb_copy (entry_bb);
5351 if (!last_stmt (entry->src)
5352 || !stmt_ends_bb_p (last_stmt (entry->src)))
5353 switch_bb = entry->src;
5354 else
5355 switch_bb = split_edge (entry);
5356 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5358 gsi = gsi_last_bb (switch_bb);
5359 cond_stmt = last_stmt (exit->src);
5360 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5361 cond_stmt = gimple_copy (cond_stmt);
5362 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5363 gimple_cond_set_rhs (cond_stmt, unshare_expr (gimple_cond_rhs (cond_stmt)));
5364 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5366 sorig = single_succ_edge (switch_bb);
5367 sorig->flags = exits[1]->flags;
5368 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5370 /* Register the new edge from SWITCH_BB in loop exit lists. */
5371 rescan_loop_exit (snew, true, false);
5373 /* Add the PHI node arguments. */
5374 add_phi_args_after_copy (region_copy, n_region, snew);
5376 /* Get rid of now superfluous conditions and associated edges (and phi node
5377 arguments). */
5378 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5379 PENDING_STMT (e) = NULL;
5380 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5381 PENDING_STMT (e) = NULL;
5383 /* Anything that is outside of the region, but was dominated by something
5384 inside needs to update dominance info. */
5385 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5386 VEC_free (basic_block, heap, doms);
5388 /* Update the SSA web. */
5389 update_ssa (TODO_update_ssa);
5391 if (free_region_copy)
5392 free (region_copy);
5394 free_original_copy_tables ();
5395 return true;
5398 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5399 adding blocks when the dominator traversal reaches EXIT. This
5400 function silently assumes that ENTRY strictly dominates EXIT. */
5402 void
5403 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5404 VEC(basic_block,heap) **bbs_p)
5406 basic_block son;
5408 for (son = first_dom_son (CDI_DOMINATORS, entry);
5409 son;
5410 son = next_dom_son (CDI_DOMINATORS, son))
5412 VEC_safe_push (basic_block, heap, *bbs_p, son);
5413 if (son != exit)
5414 gather_blocks_in_sese_region (son, exit, bbs_p);
5418 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5419 The duplicates are recorded in VARS_MAP. */
5421 static void
5422 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5423 tree to_context)
5425 tree t = *tp, new_t;
5426 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5427 void **loc;
5429 if (DECL_CONTEXT (t) == to_context)
5430 return;
5432 loc = pointer_map_contains (vars_map, t);
5434 if (!loc)
5436 loc = pointer_map_insert (vars_map, t);
5438 if (SSA_VAR_P (t))
5440 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5441 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5443 else
5445 gcc_assert (TREE_CODE (t) == CONST_DECL);
5446 new_t = copy_node (t);
5448 DECL_CONTEXT (new_t) = to_context;
5450 *loc = new_t;
5452 else
5453 new_t = (tree) *loc;
5455 *tp = new_t;
5459 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5460 VARS_MAP maps old ssa names and var_decls to the new ones. */
5462 static tree
5463 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5464 tree to_context)
5466 void **loc;
5467 tree new_name, decl = SSA_NAME_VAR (name);
5469 gcc_assert (is_gimple_reg (name));
5471 loc = pointer_map_contains (vars_map, name);
5473 if (!loc)
5475 replace_by_duplicate_decl (&decl, vars_map, to_context);
5477 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5478 if (gimple_in_ssa_p (cfun))
5479 add_referenced_var (decl);
5481 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5482 if (SSA_NAME_IS_DEFAULT_DEF (name))
5483 set_default_def (decl, new_name);
5484 pop_cfun ();
5486 loc = pointer_map_insert (vars_map, name);
5487 *loc = new_name;
5489 else
5490 new_name = (tree) *loc;
5492 return new_name;
5495 struct move_stmt_d
5497 tree orig_block;
5498 tree new_block;
5499 tree from_context;
5500 tree to_context;
5501 struct pointer_map_t *vars_map;
5502 htab_t new_label_map;
5503 bool remap_decls_p;
5506 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5507 contained in *TP if it has been ORIG_BLOCK previously and change the
5508 DECL_CONTEXT of every local variable referenced in *TP. */
5510 static tree
5511 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5513 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5514 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5515 tree t = *tp;
5517 if (EXPR_P (t))
5518 /* We should never have TREE_BLOCK set on non-statements. */
5519 gcc_assert (!TREE_BLOCK (t));
5521 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5523 if (TREE_CODE (t) == SSA_NAME)
5524 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5525 else if (TREE_CODE (t) == LABEL_DECL)
5527 if (p->new_label_map)
5529 struct tree_map in, *out;
5530 in.base.from = t;
5531 out = (struct tree_map *)
5532 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5533 if (out)
5534 *tp = t = out->to;
5537 DECL_CONTEXT (t) = p->to_context;
5539 else if (p->remap_decls_p)
5541 /* Replace T with its duplicate. T should no longer appear in the
5542 parent function, so this looks wasteful; however, it may appear
5543 in referenced_vars, and more importantly, as virtual operands of
5544 statements, and in alias lists of other variables. It would be
5545 quite difficult to expunge it from all those places. ??? It might
5546 suffice to do this for addressable variables. */
5547 if ((TREE_CODE (t) == VAR_DECL
5548 && !is_global_var (t))
5549 || TREE_CODE (t) == CONST_DECL)
5550 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5552 if (SSA_VAR_P (t)
5553 && gimple_in_ssa_p (cfun))
5555 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5556 add_referenced_var (*tp);
5557 pop_cfun ();
5560 *walk_subtrees = 0;
5562 else if (TYPE_P (t))
5563 *walk_subtrees = 0;
5565 return NULL_TREE;
5568 /* Like move_stmt_op, but for gimple statements.
5570 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5571 contained in the current statement in *GSI_P and change the
5572 DECL_CONTEXT of every local variable referenced in the current
5573 statement. */
5575 static tree
5576 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5577 struct walk_stmt_info *wi)
5579 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5580 gimple stmt = gsi_stmt (*gsi_p);
5581 tree block = gimple_block (stmt);
5583 if (p->orig_block == NULL_TREE
5584 || block == p->orig_block
5585 || block == NULL_TREE)
5586 gimple_set_block (stmt, p->new_block);
5587 #ifdef ENABLE_CHECKING
5588 else if (block != p->new_block)
5590 while (block && block != p->orig_block)
5591 block = BLOCK_SUPERCONTEXT (block);
5592 gcc_assert (block);
5594 #endif
5596 if (is_gimple_omp (stmt)
5597 && gimple_code (stmt) != GIMPLE_OMP_RETURN
5598 && gimple_code (stmt) != GIMPLE_OMP_CONTINUE)
5600 /* Do not remap variables inside OMP directives. Variables
5601 referenced in clauses and directive header belong to the
5602 parent function and should not be moved into the child
5603 function. */
5604 bool save_remap_decls_p = p->remap_decls_p;
5605 p->remap_decls_p = false;
5606 *handled_ops_p = true;
5608 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r, move_stmt_op, wi);
5610 p->remap_decls_p = save_remap_decls_p;
5613 return NULL_TREE;
5616 /* Marks virtual operands of all statements in basic blocks BBS for
5617 renaming. */
5619 void
5620 mark_virtual_ops_in_bb (basic_block bb)
5622 gimple_stmt_iterator gsi;
5624 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5625 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5627 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5628 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5631 /* Move basic block BB from function CFUN to function DEST_FN. The
5632 block is moved out of the original linked list and placed after
5633 block AFTER in the new list. Also, the block is removed from the
5634 original array of blocks and placed in DEST_FN's array of blocks.
5635 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5636 updated to reflect the moved edges.
5638 The local variables are remapped to new instances, VARS_MAP is used
5639 to record the mapping. */
5641 static void
5642 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5643 basic_block after, bool update_edge_count_p,
5644 struct move_stmt_d *d, int eh_offset)
5646 struct control_flow_graph *cfg;
5647 edge_iterator ei;
5648 edge e;
5649 gimple_stmt_iterator si;
5650 unsigned old_len, new_len;
5652 /* Remove BB from dominance structures. */
5653 delete_from_dominance_info (CDI_DOMINATORS, bb);
5654 if (current_loops)
5655 remove_bb_from_loops (bb);
5657 /* Link BB to the new linked list. */
5658 move_block_after (bb, after);
5660 /* Update the edge count in the corresponding flowgraphs. */
5661 if (update_edge_count_p)
5662 FOR_EACH_EDGE (e, ei, bb->succs)
5664 cfun->cfg->x_n_edges--;
5665 dest_cfun->cfg->x_n_edges++;
5668 /* Remove BB from the original basic block array. */
5669 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5670 cfun->cfg->x_n_basic_blocks--;
5672 /* Grow DEST_CFUN's basic block array if needed. */
5673 cfg = dest_cfun->cfg;
5674 cfg->x_n_basic_blocks++;
5675 if (bb->index >= cfg->x_last_basic_block)
5676 cfg->x_last_basic_block = bb->index + 1;
5678 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5679 if ((unsigned) cfg->x_last_basic_block >= old_len)
5681 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5682 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5683 new_len);
5686 VEC_replace (basic_block, cfg->x_basic_block_info,
5687 bb->index, bb);
5689 /* Remap the variables in phi nodes. */
5690 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5692 gimple phi = gsi_stmt (si);
5693 use_operand_p use;
5694 tree op = PHI_RESULT (phi);
5695 ssa_op_iter oi;
5697 if (!is_gimple_reg (op))
5699 /* Remove the phi nodes for virtual operands (alias analysis will be
5700 run for the new function, anyway). */
5701 remove_phi_node (&si, true);
5702 continue;
5705 SET_PHI_RESULT (phi,
5706 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5707 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5709 op = USE_FROM_PTR (use);
5710 if (TREE_CODE (op) == SSA_NAME)
5711 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5714 gsi_next (&si);
5717 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5719 gimple stmt = gsi_stmt (si);
5720 int region;
5721 struct walk_stmt_info wi;
5723 memset (&wi, 0, sizeof (wi));
5724 wi.info = d;
5725 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5727 if (gimple_code (stmt) == GIMPLE_LABEL)
5729 tree label = gimple_label_label (stmt);
5730 int uid = LABEL_DECL_UID (label);
5732 gcc_assert (uid > -1);
5734 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5735 if (old_len <= (unsigned) uid)
5737 new_len = 3 * uid / 2 + 1;
5738 VEC_safe_grow_cleared (basic_block, gc,
5739 cfg->x_label_to_block_map, new_len);
5742 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5743 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5745 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5747 if (uid >= dest_cfun->cfg->last_label_uid)
5748 dest_cfun->cfg->last_label_uid = uid + 1;
5750 else if (gimple_code (stmt) == GIMPLE_RESX && eh_offset != 0)
5751 gimple_resx_set_region (stmt, gimple_resx_region (stmt) + eh_offset);
5753 region = lookup_stmt_eh_region (stmt);
5754 if (region >= 0)
5756 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
5757 remove_stmt_from_eh_region (stmt);
5758 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5759 gimple_remove_stmt_histograms (cfun, stmt);
5762 /* We cannot leave any operands allocated from the operand caches of
5763 the current function. */
5764 free_stmt_operands (stmt);
5765 push_cfun (dest_cfun);
5766 update_stmt (stmt);
5767 pop_cfun ();
5770 FOR_EACH_EDGE (e, ei, bb->succs)
5771 if (e->goto_locus)
5773 tree block = e->goto_block;
5774 if (d->orig_block == NULL_TREE
5775 || block == d->orig_block)
5776 e->goto_block = d->new_block;
5777 #ifdef ENABLE_CHECKING
5778 else if (block != d->new_block)
5780 while (block && block != d->orig_block)
5781 block = BLOCK_SUPERCONTEXT (block);
5782 gcc_assert (block);
5784 #endif
5788 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5789 the outermost EH region. Use REGION as the incoming base EH region. */
5791 static int
5792 find_outermost_region_in_block (struct function *src_cfun,
5793 basic_block bb, int region)
5795 gimple_stmt_iterator si;
5797 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5799 gimple stmt = gsi_stmt (si);
5800 int stmt_region;
5802 if (gimple_code (stmt) == GIMPLE_RESX)
5803 stmt_region = gimple_resx_region (stmt);
5804 else
5805 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
5806 if (stmt_region > 0)
5808 if (region < 0)
5809 region = stmt_region;
5810 else if (stmt_region != region)
5812 region = eh_region_outermost (src_cfun, stmt_region, region);
5813 gcc_assert (region != -1);
5818 return region;
5821 static tree
5822 new_label_mapper (tree decl, void *data)
5824 htab_t hash = (htab_t) data;
5825 struct tree_map *m;
5826 void **slot;
5828 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
5830 m = XNEW (struct tree_map);
5831 m->hash = DECL_UID (decl);
5832 m->base.from = decl;
5833 m->to = create_artificial_label ();
5834 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
5835 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
5836 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
5838 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
5839 gcc_assert (*slot == NULL);
5841 *slot = m;
5843 return m->to;
5846 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
5847 subblocks. */
5849 static void
5850 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
5851 tree to_context)
5853 tree *tp, t;
5855 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
5857 t = *tp;
5858 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
5859 continue;
5860 replace_by_duplicate_decl (&t, vars_map, to_context);
5861 if (t != *tp)
5863 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
5865 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
5866 DECL_HAS_VALUE_EXPR_P (t) = 1;
5868 TREE_CHAIN (t) = TREE_CHAIN (*tp);
5869 *tp = t;
5873 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
5874 replace_block_vars_by_duplicates (block, vars_map, to_context);
5877 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
5878 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
5879 single basic block in the original CFG and the new basic block is
5880 returned. DEST_CFUN must not have a CFG yet.
5882 Note that the region need not be a pure SESE region. Blocks inside
5883 the region may contain calls to abort/exit. The only restriction
5884 is that ENTRY_BB should be the only entry point and it must
5885 dominate EXIT_BB.
5887 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
5888 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
5889 to the new function.
5891 All local variables referenced in the region are assumed to be in
5892 the corresponding BLOCK_VARS and unexpanded variable lists
5893 associated with DEST_CFUN. */
5895 basic_block
5896 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
5897 basic_block exit_bb, tree orig_block)
5899 VEC(basic_block,heap) *bbs, *dom_bbs;
5900 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
5901 basic_block after, bb, *entry_pred, *exit_succ, abb;
5902 struct function *saved_cfun = cfun;
5903 int *entry_flag, *exit_flag, eh_offset;
5904 unsigned *entry_prob, *exit_prob;
5905 unsigned i, num_entry_edges, num_exit_edges;
5906 edge e;
5907 edge_iterator ei;
5908 htab_t new_label_map;
5909 struct pointer_map_t *vars_map;
5910 struct loop *loop = entry_bb->loop_father;
5911 struct move_stmt_d d;
5913 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
5914 region. */
5915 gcc_assert (entry_bb != exit_bb
5916 && (!exit_bb
5917 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
5919 /* Collect all the blocks in the region. Manually add ENTRY_BB
5920 because it won't be added by dfs_enumerate_from. */
5921 bbs = NULL;
5922 VEC_safe_push (basic_block, heap, bbs, entry_bb);
5923 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
5925 /* The blocks that used to be dominated by something in BBS will now be
5926 dominated by the new block. */
5927 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
5928 VEC_address (basic_block, bbs),
5929 VEC_length (basic_block, bbs));
5931 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
5932 the predecessor edges to ENTRY_BB and the successor edges to
5933 EXIT_BB so that we can re-attach them to the new basic block that
5934 will replace the region. */
5935 num_entry_edges = EDGE_COUNT (entry_bb->preds);
5936 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
5937 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
5938 entry_prob = XNEWVEC (unsigned, num_entry_edges);
5939 i = 0;
5940 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
5942 entry_prob[i] = e->probability;
5943 entry_flag[i] = e->flags;
5944 entry_pred[i++] = e->src;
5945 remove_edge (e);
5948 if (exit_bb)
5950 num_exit_edges = EDGE_COUNT (exit_bb->succs);
5951 exit_succ = (basic_block *) xcalloc (num_exit_edges,
5952 sizeof (basic_block));
5953 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
5954 exit_prob = XNEWVEC (unsigned, num_exit_edges);
5955 i = 0;
5956 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
5958 exit_prob[i] = e->probability;
5959 exit_flag[i] = e->flags;
5960 exit_succ[i++] = e->dest;
5961 remove_edge (e);
5964 else
5966 num_exit_edges = 0;
5967 exit_succ = NULL;
5968 exit_flag = NULL;
5969 exit_prob = NULL;
5972 /* Switch context to the child function to initialize DEST_FN's CFG. */
5973 gcc_assert (dest_cfun->cfg == NULL);
5974 push_cfun (dest_cfun);
5976 init_empty_tree_cfg ();
5978 /* Initialize EH information for the new function. */
5979 eh_offset = 0;
5980 new_label_map = NULL;
5981 if (saved_cfun->eh)
5983 int region = -1;
5985 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5986 region = find_outermost_region_in_block (saved_cfun, bb, region);
5988 init_eh_for_function ();
5989 if (region != -1)
5991 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
5992 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
5993 new_label_map, region, 0);
5997 pop_cfun ();
5999 /* Move blocks from BBS into DEST_CFUN. */
6000 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6001 after = dest_cfun->cfg->x_entry_block_ptr;
6002 vars_map = pointer_map_create ();
6004 memset (&d, 0, sizeof (d));
6005 d.vars_map = vars_map;
6006 d.from_context = cfun->decl;
6007 d.to_context = dest_cfun->decl;
6008 d.new_label_map = new_label_map;
6009 d.remap_decls_p = true;
6010 d.orig_block = orig_block;
6011 d.new_block = DECL_INITIAL (dest_cfun->decl);
6013 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6015 /* No need to update edge counts on the last block. It has
6016 already been updated earlier when we detached the region from
6017 the original CFG. */
6018 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d, eh_offset);
6019 after = bb;
6022 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6023 if (orig_block)
6025 tree block;
6026 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6027 == NULL_TREE);
6028 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6029 = BLOCK_SUBBLOCKS (orig_block);
6030 for (block = BLOCK_SUBBLOCKS (orig_block);
6031 block; block = BLOCK_CHAIN (block))
6032 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6033 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6036 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6037 vars_map, dest_cfun->decl);
6039 if (new_label_map)
6040 htab_delete (new_label_map);
6041 pointer_map_destroy (vars_map);
6043 /* Rewire the entry and exit blocks. The successor to the entry
6044 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6045 the child function. Similarly, the predecessor of DEST_FN's
6046 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6047 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6048 various CFG manipulation function get to the right CFG.
6050 FIXME, this is silly. The CFG ought to become a parameter to
6051 these helpers. */
6052 push_cfun (dest_cfun);
6053 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6054 if (exit_bb)
6055 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6056 pop_cfun ();
6058 /* Back in the original function, the SESE region has disappeared,
6059 create a new basic block in its place. */
6060 bb = create_empty_bb (entry_pred[0]);
6061 if (current_loops)
6062 add_bb_to_loop (bb, loop);
6063 for (i = 0; i < num_entry_edges; i++)
6065 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6066 e->probability = entry_prob[i];
6069 for (i = 0; i < num_exit_edges; i++)
6071 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6072 e->probability = exit_prob[i];
6075 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6076 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6077 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6078 VEC_free (basic_block, heap, dom_bbs);
6080 if (exit_bb)
6082 free (exit_prob);
6083 free (exit_flag);
6084 free (exit_succ);
6086 free (entry_prob);
6087 free (entry_flag);
6088 free (entry_pred);
6089 VEC_free (basic_block, heap, bbs);
6091 return bb;
6095 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6098 void
6099 dump_function_to_file (tree fn, FILE *file, int flags)
6101 tree arg, vars, var;
6102 struct function *dsf;
6103 bool ignore_topmost_bind = false, any_var = false;
6104 basic_block bb;
6105 tree chain;
6107 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6109 arg = DECL_ARGUMENTS (fn);
6110 while (arg)
6112 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6113 fprintf (file, " ");
6114 print_generic_expr (file, arg, dump_flags);
6115 if (flags & TDF_VERBOSE)
6116 print_node (file, "", arg, 4);
6117 if (TREE_CHAIN (arg))
6118 fprintf (file, ", ");
6119 arg = TREE_CHAIN (arg);
6121 fprintf (file, ")\n");
6123 if (flags & TDF_VERBOSE)
6124 print_node (file, "", fn, 2);
6126 dsf = DECL_STRUCT_FUNCTION (fn);
6127 if (dsf && (flags & TDF_DETAILS))
6128 dump_eh_tree (file, dsf);
6130 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6132 dump_node (fn, TDF_SLIM | flags, file);
6133 return;
6136 /* Switch CFUN to point to FN. */
6137 push_cfun (DECL_STRUCT_FUNCTION (fn));
6139 /* When GIMPLE is lowered, the variables are no longer available in
6140 BIND_EXPRs, so display them separately. */
6141 if (cfun && cfun->decl == fn && cfun->local_decls)
6143 ignore_topmost_bind = true;
6145 fprintf (file, "{\n");
6146 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6148 var = TREE_VALUE (vars);
6150 print_generic_decl (file, var, flags);
6151 if (flags & TDF_VERBOSE)
6152 print_node (file, "", var, 4);
6153 fprintf (file, "\n");
6155 any_var = true;
6159 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6161 /* If the CFG has been built, emit a CFG-based dump. */
6162 check_bb_profile (ENTRY_BLOCK_PTR, file);
6163 if (!ignore_topmost_bind)
6164 fprintf (file, "{\n");
6166 if (any_var && n_basic_blocks)
6167 fprintf (file, "\n");
6169 FOR_EACH_BB (bb)
6170 gimple_dump_bb (bb, file, 2, flags);
6172 fprintf (file, "}\n");
6173 check_bb_profile (EXIT_BLOCK_PTR, file);
6175 else if (DECL_SAVED_TREE (fn) == NULL)
6177 /* The function is now in GIMPLE form but the CFG has not been
6178 built yet. Emit the single sequence of GIMPLE statements
6179 that make up its body. */
6180 gimple_seq body = gimple_body (fn);
6182 if (gimple_seq_first_stmt (body)
6183 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6184 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6185 print_gimple_seq (file, body, 0, flags);
6186 else
6188 if (!ignore_topmost_bind)
6189 fprintf (file, "{\n");
6191 if (any_var)
6192 fprintf (file, "\n");
6194 print_gimple_seq (file, body, 2, flags);
6195 fprintf (file, "}\n");
6198 else
6200 int indent;
6202 /* Make a tree based dump. */
6203 chain = DECL_SAVED_TREE (fn);
6205 if (chain && TREE_CODE (chain) == BIND_EXPR)
6207 if (ignore_topmost_bind)
6209 chain = BIND_EXPR_BODY (chain);
6210 indent = 2;
6212 else
6213 indent = 0;
6215 else
6217 if (!ignore_topmost_bind)
6218 fprintf (file, "{\n");
6219 indent = 2;
6222 if (any_var)
6223 fprintf (file, "\n");
6225 print_generic_stmt_indented (file, chain, flags, indent);
6226 if (ignore_topmost_bind)
6227 fprintf (file, "}\n");
6230 fprintf (file, "\n\n");
6232 /* Restore CFUN. */
6233 pop_cfun ();
6237 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6239 void
6240 debug_function (tree fn, int flags)
6242 dump_function_to_file (fn, stderr, flags);
6246 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6248 static void
6249 print_pred_bbs (FILE *file, basic_block bb)
6251 edge e;
6252 edge_iterator ei;
6254 FOR_EACH_EDGE (e, ei, bb->preds)
6255 fprintf (file, "bb_%d ", e->src->index);
6259 /* Print on FILE the indexes for the successors of basic_block BB. */
6261 static void
6262 print_succ_bbs (FILE *file, basic_block bb)
6264 edge e;
6265 edge_iterator ei;
6267 FOR_EACH_EDGE (e, ei, bb->succs)
6268 fprintf (file, "bb_%d ", e->dest->index);
6271 /* Print to FILE the basic block BB following the VERBOSITY level. */
6273 void
6274 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6276 char *s_indent = (char *) alloca ((size_t) indent + 1);
6277 memset ((void *) s_indent, ' ', (size_t) indent);
6278 s_indent[indent] = '\0';
6280 /* Print basic_block's header. */
6281 if (verbosity >= 2)
6283 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6284 print_pred_bbs (file, bb);
6285 fprintf (file, "}, succs = {");
6286 print_succ_bbs (file, bb);
6287 fprintf (file, "})\n");
6290 /* Print basic_block's body. */
6291 if (verbosity >= 3)
6293 fprintf (file, "%s {\n", s_indent);
6294 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6295 fprintf (file, "%s }\n", s_indent);
6299 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6301 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6302 VERBOSITY level this outputs the contents of the loop, or just its
6303 structure. */
6305 static void
6306 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6308 char *s_indent;
6309 basic_block bb;
6311 if (loop == NULL)
6312 return;
6314 s_indent = (char *) alloca ((size_t) indent + 1);
6315 memset ((void *) s_indent, ' ', (size_t) indent);
6316 s_indent[indent] = '\0';
6318 /* Print loop's header. */
6319 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6320 loop->num, loop->header->index, loop->latch->index);
6321 fprintf (file, ", niter = ");
6322 print_generic_expr (file, loop->nb_iterations, 0);
6324 if (loop->any_upper_bound)
6326 fprintf (file, ", upper_bound = ");
6327 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6330 if (loop->any_estimate)
6332 fprintf (file, ", estimate = ");
6333 dump_double_int (file, loop->nb_iterations_estimate, true);
6335 fprintf (file, ")\n");
6337 /* Print loop's body. */
6338 if (verbosity >= 1)
6340 fprintf (file, "%s{\n", s_indent);
6341 FOR_EACH_BB (bb)
6342 if (bb->loop_father == loop)
6343 print_loops_bb (file, bb, indent, verbosity);
6345 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6346 fprintf (file, "%s}\n", s_indent);
6350 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6351 spaces. Following VERBOSITY level this outputs the contents of the
6352 loop, or just its structure. */
6354 static void
6355 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6357 if (loop == NULL)
6358 return;
6360 print_loop (file, loop, indent, verbosity);
6361 print_loop_and_siblings (file, loop->next, indent, verbosity);
6364 /* Follow a CFG edge from the entry point of the program, and on entry
6365 of a loop, pretty print the loop structure on FILE. */
6367 void
6368 print_loops (FILE *file, int verbosity)
6370 basic_block bb;
6372 bb = ENTRY_BLOCK_PTR;
6373 if (bb && bb->loop_father)
6374 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6378 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6380 void
6381 debug_loops (int verbosity)
6383 print_loops (stderr, verbosity);
6386 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6388 void
6389 debug_loop (struct loop *loop, int verbosity)
6391 print_loop (stderr, loop, 0, verbosity);
6394 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6395 level. */
6397 void
6398 debug_loop_num (unsigned num, int verbosity)
6400 debug_loop (get_loop (num), verbosity);
6403 /* Return true if BB ends with a call, possibly followed by some
6404 instructions that must stay with the call. Return false,
6405 otherwise. */
6407 static bool
6408 gimple_block_ends_with_call_p (basic_block bb)
6410 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6411 return is_gimple_call (gsi_stmt (gsi));
6415 /* Return true if BB ends with a conditional branch. Return false,
6416 otherwise. */
6418 static bool
6419 gimple_block_ends_with_condjump_p (const_basic_block bb)
6421 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6422 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6426 /* Return true if we need to add fake edge to exit at statement T.
6427 Helper function for gimple_flow_call_edges_add. */
6429 static bool
6430 need_fake_edge_p (gimple t)
6432 tree fndecl = NULL_TREE;
6433 int call_flags = 0;
6435 /* NORETURN and LONGJMP calls already have an edge to exit.
6436 CONST and PURE calls do not need one.
6437 We don't currently check for CONST and PURE here, although
6438 it would be a good idea, because those attributes are
6439 figured out from the RTL in mark_constant_function, and
6440 the counter incrementation code from -fprofile-arcs
6441 leads to different results from -fbranch-probabilities. */
6442 if (is_gimple_call (t))
6444 fndecl = gimple_call_fndecl (t);
6445 call_flags = gimple_call_flags (t);
6448 if (is_gimple_call (t)
6449 && fndecl
6450 && DECL_BUILT_IN (fndecl)
6451 && (call_flags & ECF_NOTHROW)
6452 && !(call_flags & ECF_RETURNS_TWICE)
6453 /* fork() doesn't really return twice, but the effect of
6454 wrapping it in __gcov_fork() which calls __gcov_flush()
6455 and clears the counters before forking has the same
6456 effect as returning twice. Force a fake edge. */
6457 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6458 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6459 return false;
6461 if (is_gimple_call (t)
6462 && !(call_flags & ECF_NORETURN))
6463 return true;
6465 if (gimple_code (t) == GIMPLE_ASM
6466 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6467 return true;
6469 return false;
6473 /* Add fake edges to the function exit for any non constant and non
6474 noreturn calls, volatile inline assembly in the bitmap of blocks
6475 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6476 the number of blocks that were split.
6478 The goal is to expose cases in which entering a basic block does
6479 not imply that all subsequent instructions must be executed. */
6481 static int
6482 gimple_flow_call_edges_add (sbitmap blocks)
6484 int i;
6485 int blocks_split = 0;
6486 int last_bb = last_basic_block;
6487 bool check_last_block = false;
6489 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6490 return 0;
6492 if (! blocks)
6493 check_last_block = true;
6494 else
6495 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6497 /* In the last basic block, before epilogue generation, there will be
6498 a fallthru edge to EXIT. Special care is required if the last insn
6499 of the last basic block is a call because make_edge folds duplicate
6500 edges, which would result in the fallthru edge also being marked
6501 fake, which would result in the fallthru edge being removed by
6502 remove_fake_edges, which would result in an invalid CFG.
6504 Moreover, we can't elide the outgoing fake edge, since the block
6505 profiler needs to take this into account in order to solve the minimal
6506 spanning tree in the case that the call doesn't return.
6508 Handle this by adding a dummy instruction in a new last basic block. */
6509 if (check_last_block)
6511 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6512 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6513 gimple t = NULL;
6515 if (!gsi_end_p (gsi))
6516 t = gsi_stmt (gsi);
6518 if (t && need_fake_edge_p (t))
6520 edge e;
6522 e = find_edge (bb, EXIT_BLOCK_PTR);
6523 if (e)
6525 gsi_insert_on_edge (e, gimple_build_nop ());
6526 gsi_commit_edge_inserts ();
6531 /* Now add fake edges to the function exit for any non constant
6532 calls since there is no way that we can determine if they will
6533 return or not... */
6534 for (i = 0; i < last_bb; i++)
6536 basic_block bb = BASIC_BLOCK (i);
6537 gimple_stmt_iterator gsi;
6538 gimple stmt, last_stmt;
6540 if (!bb)
6541 continue;
6543 if (blocks && !TEST_BIT (blocks, i))
6544 continue;
6546 gsi = gsi_last_bb (bb);
6547 if (!gsi_end_p (gsi))
6549 last_stmt = gsi_stmt (gsi);
6552 stmt = gsi_stmt (gsi);
6553 if (need_fake_edge_p (stmt))
6555 edge e;
6557 /* The handling above of the final block before the
6558 epilogue should be enough to verify that there is
6559 no edge to the exit block in CFG already.
6560 Calling make_edge in such case would cause us to
6561 mark that edge as fake and remove it later. */
6562 #ifdef ENABLE_CHECKING
6563 if (stmt == last_stmt)
6565 e = find_edge (bb, EXIT_BLOCK_PTR);
6566 gcc_assert (e == NULL);
6568 #endif
6570 /* Note that the following may create a new basic block
6571 and renumber the existing basic blocks. */
6572 if (stmt != last_stmt)
6574 e = split_block (bb, stmt);
6575 if (e)
6576 blocks_split++;
6578 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6580 gsi_prev (&gsi);
6582 while (!gsi_end_p (gsi));
6586 if (blocks_split)
6587 verify_flow_info ();
6589 return blocks_split;
6592 /* Purge dead abnormal call edges from basic block BB. */
6594 bool
6595 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6597 bool changed = gimple_purge_dead_eh_edges (bb);
6599 if (cfun->has_nonlocal_label)
6601 gimple stmt = last_stmt (bb);
6602 edge_iterator ei;
6603 edge e;
6605 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6606 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6608 if (e->flags & EDGE_ABNORMAL)
6610 remove_edge (e);
6611 changed = true;
6613 else
6614 ei_next (&ei);
6617 /* See gimple_purge_dead_eh_edges below. */
6618 if (changed)
6619 free_dominance_info (CDI_DOMINATORS);
6622 return changed;
6625 /* Stores all basic blocks dominated by BB to DOM_BBS. */
6627 static void
6628 get_all_dominated_blocks (basic_block bb, VEC (basic_block, heap) **dom_bbs)
6630 basic_block son;
6632 VEC_safe_push (basic_block, heap, *dom_bbs, bb);
6633 for (son = first_dom_son (CDI_DOMINATORS, bb);
6634 son;
6635 son = next_dom_son (CDI_DOMINATORS, son))
6636 get_all_dominated_blocks (son, dom_bbs);
6639 /* Removes edge E and all the blocks dominated by it, and updates dominance
6640 information. The IL in E->src needs to be updated separately.
6641 If dominance info is not available, only the edge E is removed.*/
6643 void
6644 remove_edge_and_dominated_blocks (edge e)
6646 VEC (basic_block, heap) *bbs_to_remove = NULL;
6647 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6648 bitmap df, df_idom;
6649 edge f;
6650 edge_iterator ei;
6651 bool none_removed = false;
6652 unsigned i;
6653 basic_block bb, dbb;
6654 bitmap_iterator bi;
6656 if (!dom_info_available_p (CDI_DOMINATORS))
6658 remove_edge (e);
6659 return;
6662 /* No updating is needed for edges to exit. */
6663 if (e->dest == EXIT_BLOCK_PTR)
6665 if (cfgcleanup_altered_bbs)
6666 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6667 remove_edge (e);
6668 return;
6671 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6672 that is not dominated by E->dest, then this set is empty. Otherwise,
6673 all the basic blocks dominated by E->dest are removed.
6675 Also, to DF_IDOM we store the immediate dominators of the blocks in
6676 the dominance frontier of E (i.e., of the successors of the
6677 removed blocks, if there are any, and of E->dest otherwise). */
6678 FOR_EACH_EDGE (f, ei, e->dest->preds)
6680 if (f == e)
6681 continue;
6683 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6685 none_removed = true;
6686 break;
6690 df = BITMAP_ALLOC (NULL);
6691 df_idom = BITMAP_ALLOC (NULL);
6693 if (none_removed)
6694 bitmap_set_bit (df_idom,
6695 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6696 else
6698 get_all_dominated_blocks (e->dest, &bbs_to_remove);
6699 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6701 FOR_EACH_EDGE (f, ei, bb->succs)
6703 if (f->dest != EXIT_BLOCK_PTR)
6704 bitmap_set_bit (df, f->dest->index);
6707 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6708 bitmap_clear_bit (df, bb->index);
6710 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6712 bb = BASIC_BLOCK (i);
6713 bitmap_set_bit (df_idom,
6714 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6718 if (cfgcleanup_altered_bbs)
6720 /* Record the set of the altered basic blocks. */
6721 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6722 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6725 /* Remove E and the cancelled blocks. */
6726 if (none_removed)
6727 remove_edge (e);
6728 else
6730 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6731 delete_basic_block (bb);
6734 /* Update the dominance information. The immediate dominator may change only
6735 for blocks whose immediate dominator belongs to DF_IDOM:
6737 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6738 removal. Let Z the arbitrary block such that idom(Z) = Y and
6739 Z dominates X after the removal. Before removal, there exists a path P
6740 from Y to X that avoids Z. Let F be the last edge on P that is
6741 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6742 dominates W, and because of P, Z does not dominate W), and W belongs to
6743 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6744 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6746 bb = BASIC_BLOCK (i);
6747 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6748 dbb;
6749 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6750 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6753 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6755 BITMAP_FREE (df);
6756 BITMAP_FREE (df_idom);
6757 VEC_free (basic_block, heap, bbs_to_remove);
6758 VEC_free (basic_block, heap, bbs_to_fix_dom);
6761 /* Purge dead EH edges from basic block BB. */
6763 bool
6764 gimple_purge_dead_eh_edges (basic_block bb)
6766 bool changed = false;
6767 edge e;
6768 edge_iterator ei;
6769 gimple stmt = last_stmt (bb);
6771 if (stmt && stmt_can_throw_internal (stmt))
6772 return false;
6774 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6776 if (e->flags & EDGE_EH)
6778 remove_edge_and_dominated_blocks (e);
6779 changed = true;
6781 else
6782 ei_next (&ei);
6785 return changed;
6788 bool
6789 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6791 bool changed = false;
6792 unsigned i;
6793 bitmap_iterator bi;
6795 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6797 basic_block bb = BASIC_BLOCK (i);
6799 /* Earlier gimple_purge_dead_eh_edges could have removed
6800 this basic block already. */
6801 gcc_assert (bb || changed);
6802 if (bb != NULL)
6803 changed |= gimple_purge_dead_eh_edges (bb);
6806 return changed;
6809 /* This function is called whenever a new edge is created or
6810 redirected. */
6812 static void
6813 gimple_execute_on_growing_pred (edge e)
6815 basic_block bb = e->dest;
6817 if (phi_nodes (bb))
6818 reserve_phi_args_for_new_edge (bb);
6821 /* This function is called immediately before edge E is removed from
6822 the edge vector E->dest->preds. */
6824 static void
6825 gimple_execute_on_shrinking_pred (edge e)
6827 if (phi_nodes (e->dest))
6828 remove_phi_args (e);
6831 /*---------------------------------------------------------------------------
6832 Helper functions for Loop versioning
6833 ---------------------------------------------------------------------------*/
6835 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
6836 of 'first'. Both of them are dominated by 'new_head' basic block. When
6837 'new_head' was created by 'second's incoming edge it received phi arguments
6838 on the edge by split_edge(). Later, additional edge 'e' was created to
6839 connect 'new_head' and 'first'. Now this routine adds phi args on this
6840 additional edge 'e' that new_head to second edge received as part of edge
6841 splitting. */
6843 static void
6844 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
6845 basic_block new_head, edge e)
6847 gimple phi1, phi2;
6848 gimple_stmt_iterator psi1, psi2;
6849 tree def;
6850 edge e2 = find_edge (new_head, second);
6852 /* Because NEW_HEAD has been created by splitting SECOND's incoming
6853 edge, we should always have an edge from NEW_HEAD to SECOND. */
6854 gcc_assert (e2 != NULL);
6856 /* Browse all 'second' basic block phi nodes and add phi args to
6857 edge 'e' for 'first' head. PHI args are always in correct order. */
6859 for (psi2 = gsi_start_phis (second),
6860 psi1 = gsi_start_phis (first);
6861 !gsi_end_p (psi2) && !gsi_end_p (psi1);
6862 gsi_next (&psi2), gsi_next (&psi1))
6864 phi1 = gsi_stmt (psi1);
6865 phi2 = gsi_stmt (psi2);
6866 def = PHI_ARG_DEF (phi2, e2->dest_idx);
6867 add_phi_arg (phi1, def, e);
6872 /* Adds a if else statement to COND_BB with condition COND_EXPR.
6873 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
6874 the destination of the ELSE part. */
6876 static void
6877 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
6878 basic_block second_head ATTRIBUTE_UNUSED,
6879 basic_block cond_bb, void *cond_e)
6881 gimple_stmt_iterator gsi;
6882 gimple new_cond_expr;
6883 tree cond_expr = (tree) cond_e;
6884 edge e0;
6886 /* Build new conditional expr */
6887 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
6888 NULL_TREE, NULL_TREE);
6890 /* Add new cond in cond_bb. */
6891 gsi = gsi_last_bb (cond_bb);
6892 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
6894 /* Adjust edges appropriately to connect new head with first head
6895 as well as second head. */
6896 e0 = single_succ_edge (cond_bb);
6897 e0->flags &= ~EDGE_FALLTHRU;
6898 e0->flags |= EDGE_FALSE_VALUE;
6901 struct cfg_hooks gimple_cfg_hooks = {
6902 "gimple",
6903 gimple_verify_flow_info,
6904 gimple_dump_bb, /* dump_bb */
6905 create_bb, /* create_basic_block */
6906 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
6907 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
6908 gimple_can_remove_branch_p, /* can_remove_branch_p */
6909 remove_bb, /* delete_basic_block */
6910 gimple_split_block, /* split_block */
6911 gimple_move_block_after, /* move_block_after */
6912 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
6913 gimple_merge_blocks, /* merge_blocks */
6914 gimple_predict_edge, /* predict_edge */
6915 gimple_predicted_by_p, /* predicted_by_p */
6916 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
6917 gimple_duplicate_bb, /* duplicate_block */
6918 gimple_split_edge, /* split_edge */
6919 gimple_make_forwarder_block, /* make_forward_block */
6920 NULL, /* tidy_fallthru_edge */
6921 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
6922 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
6923 gimple_flow_call_edges_add, /* flow_call_edges_add */
6924 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
6925 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
6926 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
6927 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
6928 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
6929 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
6930 flush_pending_stmts /* flush_pending_stmts */
6934 /* Split all critical edges. */
6936 static unsigned int
6937 split_critical_edges (void)
6939 basic_block bb;
6940 edge e;
6941 edge_iterator ei;
6943 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
6944 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
6945 mappings around the calls to split_edge. */
6946 start_recording_case_labels ();
6947 FOR_ALL_BB (bb)
6949 FOR_EACH_EDGE (e, ei, bb->succs)
6950 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
6952 split_edge (e);
6955 end_recording_case_labels ();
6956 return 0;
6959 struct gimple_opt_pass pass_split_crit_edges =
6962 GIMPLE_PASS,
6963 "crited", /* name */
6964 NULL, /* gate */
6965 split_critical_edges, /* execute */
6966 NULL, /* sub */
6967 NULL, /* next */
6968 0, /* static_pass_number */
6969 TV_TREE_SPLIT_EDGES, /* tv_id */
6970 PROP_cfg, /* properties required */
6971 PROP_no_crit_edges, /* properties_provided */
6972 0, /* properties_destroyed */
6973 0, /* todo_flags_start */
6974 TODO_dump_func /* todo_flags_finish */
6979 /* Build a ternary operation and gimplify it. Emit code before GSI.
6980 Return the gimple_val holding the result. */
6982 tree
6983 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
6984 tree type, tree a, tree b, tree c)
6986 tree ret;
6988 ret = fold_build3 (code, type, a, b, c);
6989 STRIP_NOPS (ret);
6991 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6992 GSI_SAME_STMT);
6995 /* Build a binary operation and gimplify it. Emit code before GSI.
6996 Return the gimple_val holding the result. */
6998 tree
6999 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7000 tree type, tree a, tree b)
7002 tree ret;
7004 ret = fold_build2 (code, type, a, b);
7005 STRIP_NOPS (ret);
7007 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7008 GSI_SAME_STMT);
7011 /* Build a unary operation and gimplify it. Emit code before GSI.
7012 Return the gimple_val holding the result. */
7014 tree
7015 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7016 tree a)
7018 tree ret;
7020 ret = fold_build1 (code, type, a);
7021 STRIP_NOPS (ret);
7023 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7024 GSI_SAME_STMT);
7029 /* Emit return warnings. */
7031 static unsigned int
7032 execute_warn_function_return (void)
7034 source_location location;
7035 gimple last;
7036 edge e;
7037 edge_iterator ei;
7039 /* If we have a path to EXIT, then we do return. */
7040 if (TREE_THIS_VOLATILE (cfun->decl)
7041 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7043 location = UNKNOWN_LOCATION;
7044 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7046 last = last_stmt (e->src);
7047 if (gimple_code (last) == GIMPLE_RETURN
7048 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7049 break;
7051 if (location == UNKNOWN_LOCATION)
7052 location = cfun->function_end_locus;
7053 warning (0, "%H%<noreturn%> function does return", &location);
7056 /* If we see "return;" in some basic block, then we do reach the end
7057 without returning a value. */
7058 else if (warn_return_type
7059 && !TREE_NO_WARNING (cfun->decl)
7060 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7061 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7063 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7065 gimple last = last_stmt (e->src);
7066 if (gimple_code (last) == GIMPLE_RETURN
7067 && gimple_return_retval (last) == NULL
7068 && !gimple_no_warning_p (last))
7070 location = gimple_location (last);
7071 if (location == UNKNOWN_LOCATION)
7072 location = cfun->function_end_locus;
7073 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7074 TREE_NO_WARNING (cfun->decl) = 1;
7075 break;
7079 return 0;
7083 /* Given a basic block B which ends with a conditional and has
7084 precisely two successors, determine which of the edges is taken if
7085 the conditional is true and which is taken if the conditional is
7086 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7088 void
7089 extract_true_false_edges_from_block (basic_block b,
7090 edge *true_edge,
7091 edge *false_edge)
7093 edge e = EDGE_SUCC (b, 0);
7095 if (e->flags & EDGE_TRUE_VALUE)
7097 *true_edge = e;
7098 *false_edge = EDGE_SUCC (b, 1);
7100 else
7102 *false_edge = e;
7103 *true_edge = EDGE_SUCC (b, 1);
7107 struct gimple_opt_pass pass_warn_function_return =
7110 GIMPLE_PASS,
7111 NULL, /* name */
7112 NULL, /* gate */
7113 execute_warn_function_return, /* execute */
7114 NULL, /* sub */
7115 NULL, /* next */
7116 0, /* static_pass_number */
7117 0, /* tv_id */
7118 PROP_cfg, /* properties_required */
7119 0, /* properties_provided */
7120 0, /* properties_destroyed */
7121 0, /* todo_flags_start */
7122 0 /* todo_flags_finish */
7126 /* Emit noreturn warnings. */
7128 static unsigned int
7129 execute_warn_function_noreturn (void)
7131 if (warn_missing_noreturn
7132 && !TREE_THIS_VOLATILE (cfun->decl)
7133 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
7134 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
7135 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
7136 "for attribute %<noreturn%>",
7137 cfun->decl);
7138 return 0;
7141 struct gimple_opt_pass pass_warn_function_noreturn =
7144 GIMPLE_PASS,
7145 NULL, /* name */
7146 NULL, /* gate */
7147 execute_warn_function_noreturn, /* execute */
7148 NULL, /* sub */
7149 NULL, /* next */
7150 0, /* static_pass_number */
7151 0, /* tv_id */
7152 PROP_cfg, /* properties_required */
7153 0, /* properties_provided */
7154 0, /* properties_destroyed */
7155 0, /* todo_flags_start */
7156 0 /* todo_flags_finish */