1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 #include "diagnostic.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
78 #define STACK_PUSH_CODE PRE_INC
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
91 /* This structure is used by move_by_pieces to describe the move to
102 int explicit_inc_from
;
103 unsigned HOST_WIDE_INT len
;
104 HOST_WIDE_INT offset
;
108 /* This structure is used by store_by_pieces to describe the clear to
111 struct store_by_pieces
117 unsigned HOST_WIDE_INT len
;
118 HOST_WIDE_INT offset
;
119 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
124 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
127 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
128 struct move_by_pieces
*);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
131 static tree
emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
133 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
134 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
137 struct store_by_pieces
*);
138 static tree
clear_storage_libcall_fn (int);
139 static rtx
compress_float_constant (rtx
, rtx
);
140 static rtx
get_subtarget (rtx
);
141 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
142 HOST_WIDE_INT
, enum machine_mode
,
143 tree
, tree
, int, alias_set_type
);
144 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
145 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
146 tree
, tree
, alias_set_type
, bool);
148 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
150 static int is_aligning_offset (const_tree
, const_tree
);
151 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
152 enum expand_modifier
);
153 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
154 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
156 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
158 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
159 static rtx
const_vector_from_tree (tree
);
160 static void write_complex_part (rtx
, rtx
, bool);
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
166 static char direct_load
[NUM_MACHINE_MODES
];
167 static char direct_store
[NUM_MACHINE_MODES
];
169 /* Record for each mode whether we can float-extend from memory. */
171 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero. */
191 #ifndef SET_BY_PIECES_P
192 #define SET_BY_PIECES_P(SIZE, ALIGN) \
193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
194 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
197 /* This macro is used to determine whether store_by_pieces should be
198 called to "memcpy" storage when the source is a constant string. */
199 #ifndef STORE_BY_PIECES_P
200 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
201 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
202 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
205 /* This array records the insn_code of insns to perform block moves. */
206 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
208 /* This array records the insn_code of insns to perform block sets. */
209 enum insn_code setmem_optab
[NUM_MACHINE_MODES
];
211 /* These arrays record the insn_code of three different kinds of insns
212 to perform block compares. */
213 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
214 enum insn_code cmpstrn_optab
[NUM_MACHINE_MODES
];
215 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
217 /* Synchronization primitives. */
218 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
219 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
229 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
230 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
231 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
232 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
233 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
234 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
235 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
236 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
237 enum insn_code sync_compare_and_swap_cc
[NUM_MACHINE_MODES
];
238 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
239 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
252 init_expr_target (void)
255 enum machine_mode mode
;
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
264 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg
= gen_rtx_REG (VOIDmode
, -1);
270 insn
= rtx_alloc (INSN
);
271 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
272 PATTERN (insn
) = pat
;
274 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
275 mode
= (enum machine_mode
) ((int) mode
+ 1))
279 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
280 PUT_MODE (mem
, mode
);
281 PUT_MODE (mem1
, mode
);
282 PUT_MODE (reg
, mode
);
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
287 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
288 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
289 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
292 if (! HARD_REGNO_MODE_OK (regno
, mode
))
295 SET_REGNO (reg
, regno
);
298 SET_DEST (pat
) = reg
;
299 if (recog (pat
, insn
, &num_clobbers
) >= 0)
300 direct_load
[(int) mode
] = 1;
302 SET_SRC (pat
) = mem1
;
303 SET_DEST (pat
) = reg
;
304 if (recog (pat
, insn
, &num_clobbers
) >= 0)
305 direct_load
[(int) mode
] = 1;
308 SET_DEST (pat
) = mem
;
309 if (recog (pat
, insn
, &num_clobbers
) >= 0)
310 direct_store
[(int) mode
] = 1;
313 SET_DEST (pat
) = mem1
;
314 if (recog (pat
, insn
, &num_clobbers
) >= 0)
315 direct_store
[(int) mode
] = 1;
319 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
321 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
322 mode
= GET_MODE_WIDER_MODE (mode
))
324 enum machine_mode srcmode
;
325 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
326 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
330 ic
= can_extend_p (mode
, srcmode
, 0);
331 if (ic
== CODE_FOR_nothing
)
334 PUT_MODE (mem
, srcmode
);
336 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
337 float_extend_from_mem
[mode
][srcmode
] = true;
342 /* This is run at the start of compiling a function. */
347 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
357 convert_move (rtx to
, rtx from
, int unsignedp
)
359 enum machine_mode to_mode
= GET_MODE (to
);
360 enum machine_mode from_mode
= GET_MODE (from
);
361 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
362 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
368 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
371 gcc_assert (to_real
== from_real
);
372 gcc_assert (to_mode
!= BLKmode
);
373 gcc_assert (from_mode
!= BLKmode
);
375 /* If the source and destination are already the same, then there's
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
384 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
386 >= GET_MODE_SIZE (to_mode
))
387 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
388 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
390 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
392 if (to_mode
== from_mode
393 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
395 emit_move_insn (to
, from
);
399 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
401 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
403 if (VECTOR_MODE_P (to_mode
))
404 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
406 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
408 emit_move_insn (to
, from
);
412 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
414 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
415 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
424 gcc_assert ((GET_MODE_PRECISION (from_mode
)
425 != GET_MODE_PRECISION (to_mode
))
426 || (DECIMAL_FLOAT_MODE_P (from_mode
)
427 != DECIMAL_FLOAT_MODE_P (to_mode
)));
429 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
430 /* Conversion between decimal float and binary float, same size. */
431 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
432 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
437 /* Try converting directly if the insn is supported. */
439 code
= convert_optab_handler (tab
, to_mode
, from_mode
)->insn_code
;
440 if (code
!= CODE_FOR_nothing
)
442 emit_unop_insn (code
, to
, from
,
443 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
447 /* Otherwise use a libcall. */
448 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall
);
454 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
456 insns
= get_insns ();
458 emit_libcall_block (insns
, to
, value
,
459 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
461 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
473 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)->insn_code
474 != CODE_FOR_nothing
);
476 if (full_mode
!= from_mode
)
477 from
= convert_to_mode (full_mode
, from
, unsignedp
);
478 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)->insn_code
,
482 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
488 gcc_assert (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
489 != CODE_FOR_nothing
);
491 if (to_mode
== full_mode
)
493 emit_unop_insn (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
,
498 new_from
= gen_reg_rtx (full_mode
);
499 emit_unop_insn (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
,
500 new_from
, from
, UNKNOWN
);
502 /* else proceed to integer conversions below. */
503 from_mode
= full_mode
;
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
516 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
517 expand_fixed_convert (to
, from
, 0, 0);
519 expand_fixed_convert (to
, from
, 0, 1);
523 /* Now both modes are integers. */
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
527 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
534 enum machine_mode lowpart_mode
;
535 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
537 /* Try converting directly if the insn is supported. */
538 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
546 from
= force_reg (from_mode
, from
);
547 emit_unop_insn (code
, to
, from
, equiv_code
);
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
552 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
553 != CODE_FOR_nothing
))
555 rtx word_to
= gen_reg_rtx (word_mode
);
558 if (reg_overlap_mentioned_p (to
, from
))
559 from
= force_reg (from_mode
, from
);
562 convert_move (word_to
, from
, unsignedp
);
563 emit_unop_insn (code
, to
, word_to
, equiv_code
);
567 /* No special multiword conversion insn; do it by hand. */
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
573 if (reg_overlap_mentioned_p (to
, from
))
574 from
= force_reg (from_mode
, from
);
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
578 lowpart_mode
= word_mode
;
580 lowpart_mode
= from_mode
;
582 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
584 lowpart
= gen_lowpart (lowpart_mode
, to
);
585 emit_move_insn (lowpart
, lowfrom
);
587 /* Compute the value to put in each remaining word. */
589 fill_value
= const0_rtx
;
594 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
595 && STORE_FLAG_VALUE
== -1)
597 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
599 fill_value
= gen_reg_rtx (word_mode
);
600 emit_insn (gen_slt (fill_value
));
606 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
607 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
609 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
613 /* Fill the remaining words. */
614 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
616 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
617 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
619 gcc_assert (subword
);
621 if (fill_value
!= subword
)
622 emit_move_insn (subword
, fill_value
);
625 insns
= get_insns ();
632 /* Truncating multi-word to a word or less. */
633 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
634 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
637 && ! MEM_VOLATILE_P (from
)
638 && direct_load
[(int) to_mode
]
639 && ! mode_dependent_address_p (XEXP (from
, 0)))
641 || GET_CODE (from
) == SUBREG
))
642 from
= force_reg (from_mode
, from
);
643 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
647 /* Now follow all the conversions between integers
648 no more than a word long. */
650 /* For truncation, usually we can just refer to FROM in a narrower mode. */
651 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
652 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
653 GET_MODE_BITSIZE (from_mode
)))
656 && ! MEM_VOLATILE_P (from
)
657 && direct_load
[(int) to_mode
]
658 && ! mode_dependent_address_p (XEXP (from
, 0)))
660 || GET_CODE (from
) == SUBREG
))
661 from
= force_reg (from_mode
, from
);
662 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
663 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
664 from
= copy_to_reg (from
);
665 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
669 /* Handle extension. */
670 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
672 /* Convert directly if that works. */
673 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
676 emit_unop_insn (code
, to
, from
, equiv_code
);
681 enum machine_mode intermediate
;
685 /* Search for a mode to convert via. */
686 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
687 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
688 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
690 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
691 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
692 GET_MODE_BITSIZE (intermediate
))))
693 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
694 != CODE_FOR_nothing
))
696 convert_move (to
, convert_to_mode (intermediate
, from
,
697 unsignedp
), unsignedp
);
701 /* No suitable intermediate mode.
702 Generate what we need with shifts. */
703 shift_amount
= build_int_cst (NULL_TREE
,
704 GET_MODE_BITSIZE (to_mode
)
705 - GET_MODE_BITSIZE (from_mode
));
706 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
707 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
709 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
712 emit_move_insn (to
, tmp
);
717 /* Support special truncate insns for certain modes. */
718 if (convert_optab_handler (trunc_optab
, to_mode
, from_mode
)->insn_code
!= CODE_FOR_nothing
)
720 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
)->insn_code
,
725 /* Handle truncation of volatile memrefs, and so on;
726 the things that couldn't be truncated directly,
727 and for which there was no special instruction.
729 ??? Code above formerly short-circuited this, for most integer
730 mode pairs, with a force_reg in from_mode followed by a recursive
731 call to this routine. Appears always to have been wrong. */
732 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
734 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
735 emit_move_insn (to
, temp
);
739 /* Mode combination is not recognized. */
743 /* Return an rtx for a value that would result
744 from converting X to mode MODE.
745 Both X and MODE may be floating, or both integer.
746 UNSIGNEDP is nonzero if X is an unsigned value.
747 This can be done by referring to a part of X in place
748 or by copying to a new temporary with conversion. */
751 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
753 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
756 /* Return an rtx for a value that would result
757 from converting X from mode OLDMODE to mode MODE.
758 Both modes may be floating, or both integer.
759 UNSIGNEDP is nonzero if X is an unsigned value.
761 This can be done by referring to a part of X in place
762 or by copying to a new temporary with conversion.
764 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
767 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
771 /* If FROM is a SUBREG that indicates that we have already done at least
772 the required extension, strip it. */
774 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
775 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
776 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
777 x
= gen_lowpart (mode
, x
);
779 if (GET_MODE (x
) != VOIDmode
)
780 oldmode
= GET_MODE (x
);
785 /* There is one case that we must handle specially: If we are converting
786 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
787 we are to interpret the constant as unsigned, gen_lowpart will do
788 the wrong if the constant appears negative. What we want to do is
789 make the high-order word of the constant zero, not all ones. */
791 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
792 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
793 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
795 HOST_WIDE_INT val
= INTVAL (x
);
797 if (oldmode
!= VOIDmode
798 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
800 int width
= GET_MODE_BITSIZE (oldmode
);
802 /* We need to zero extend VAL. */
803 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
806 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
809 /* We can do this with a gen_lowpart if both desired and current modes
810 are integer, and this is either a constant integer, a register, or a
811 non-volatile MEM. Except for the constant case where MODE is no
812 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
814 if ((GET_CODE (x
) == CONST_INT
815 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
816 || (GET_MODE_CLASS (mode
) == MODE_INT
817 && GET_MODE_CLASS (oldmode
) == MODE_INT
818 && (GET_CODE (x
) == CONST_DOUBLE
819 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
820 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
821 && direct_load
[(int) mode
])
823 && (! HARD_REGISTER_P (x
)
824 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
825 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
826 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
828 /* ?? If we don't know OLDMODE, we have to assume here that
829 X does not need sign- or zero-extension. This may not be
830 the case, but it's the best we can do. */
831 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
832 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
834 HOST_WIDE_INT val
= INTVAL (x
);
835 int width
= GET_MODE_BITSIZE (oldmode
);
837 /* We must sign or zero-extend in this case. Start by
838 zero-extending, then sign extend if we need to. */
839 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
841 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
842 val
|= (HOST_WIDE_INT
) (-1) << width
;
844 return gen_int_mode (val
, mode
);
847 return gen_lowpart (mode
, x
);
850 /* Converting from integer constant into mode is always equivalent to an
852 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
854 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
855 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
858 temp
= gen_reg_rtx (mode
);
859 convert_move (temp
, x
, unsignedp
);
863 /* STORE_MAX_PIECES is the number of bytes at a time that we can
864 store efficiently. Due to internal GCC limitations, this is
865 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
866 for an immediate constant. */
868 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
870 /* Determine whether the LEN bytes can be moved by using several move
871 instructions. Return nonzero if a call to move_by_pieces should
875 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
876 unsigned int align ATTRIBUTE_UNUSED
)
878 return MOVE_BY_PIECES_P (len
, align
);
881 /* Generate several move instructions to copy LEN bytes from block FROM to
882 block TO. (These are MEM rtx's with BLKmode).
884 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
885 used to push FROM to the stack.
887 ALIGN is maximum stack alignment we can assume.
889 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
890 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
894 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
895 unsigned int align
, int endp
)
897 struct move_by_pieces data
;
898 rtx to_addr
, from_addr
= XEXP (from
, 0);
899 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
900 enum machine_mode mode
= VOIDmode
, tmode
;
901 enum insn_code icode
;
903 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
906 data
.from_addr
= from_addr
;
909 to_addr
= XEXP (to
, 0);
912 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
913 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
915 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
922 #ifdef STACK_GROWS_DOWNWARD
928 data
.to_addr
= to_addr
;
931 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
932 || GET_CODE (from_addr
) == POST_INC
933 || GET_CODE (from_addr
) == POST_DEC
);
935 data
.explicit_inc_from
= 0;
936 data
.explicit_inc_to
= 0;
937 if (data
.reverse
) data
.offset
= len
;
940 /* If copying requires more than two move insns,
941 copy addresses to registers (to make displacements shorter)
942 and use post-increment if available. */
943 if (!(data
.autinc_from
&& data
.autinc_to
)
944 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
946 /* Find the mode of the largest move... */
947 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
948 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
949 if (GET_MODE_SIZE (tmode
) < max_size
)
952 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
954 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
955 data
.autinc_from
= 1;
956 data
.explicit_inc_from
= -1;
958 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
960 data
.from_addr
= copy_addr_to_reg (from_addr
);
961 data
.autinc_from
= 1;
962 data
.explicit_inc_from
= 1;
964 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
965 data
.from_addr
= copy_addr_to_reg (from_addr
);
966 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
968 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
970 data
.explicit_inc_to
= -1;
972 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
974 data
.to_addr
= copy_addr_to_reg (to_addr
);
976 data
.explicit_inc_to
= 1;
978 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
979 data
.to_addr
= copy_addr_to_reg (to_addr
);
982 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
983 if (align
>= GET_MODE_ALIGNMENT (tmode
))
984 align
= GET_MODE_ALIGNMENT (tmode
);
987 enum machine_mode xmode
;
989 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
991 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
992 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
993 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
996 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
999 /* First move what we can in the largest integer mode, then go to
1000 successively smaller modes. */
1002 while (max_size
> 1)
1004 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1005 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1006 if (GET_MODE_SIZE (tmode
) < max_size
)
1009 if (mode
== VOIDmode
)
1012 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
1013 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1014 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
1016 max_size
= GET_MODE_SIZE (mode
);
1019 /* The code above should have handled everything. */
1020 gcc_assert (!data
.len
);
1026 gcc_assert (!data
.reverse
);
1031 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1032 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1034 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1037 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1044 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1052 /* Return number of insns required to move L bytes by pieces.
1053 ALIGN (in bits) is maximum alignment we can assume. */
1055 static unsigned HOST_WIDE_INT
1056 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1057 unsigned int max_size
)
1059 unsigned HOST_WIDE_INT n_insns
= 0;
1060 enum machine_mode tmode
;
1062 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1063 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1064 align
= GET_MODE_ALIGNMENT (tmode
);
1067 enum machine_mode tmode
, xmode
;
1069 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1071 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1072 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1073 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1076 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1079 while (max_size
> 1)
1081 enum machine_mode mode
= VOIDmode
;
1082 enum insn_code icode
;
1084 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1085 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1086 if (GET_MODE_SIZE (tmode
) < max_size
)
1089 if (mode
== VOIDmode
)
1092 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
1093 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1094 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1096 max_size
= GET_MODE_SIZE (mode
);
1103 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1104 with move instructions for mode MODE. GENFUN is the gen_... function
1105 to make a move insn for that mode. DATA has all the other info. */
1108 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1109 struct move_by_pieces
*data
)
1111 unsigned int size
= GET_MODE_SIZE (mode
);
1112 rtx to1
= NULL_RTX
, from1
;
1114 while (data
->len
>= size
)
1117 data
->offset
-= size
;
1121 if (data
->autinc_to
)
1122 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1125 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1128 if (data
->autinc_from
)
1129 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1132 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1134 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1135 emit_insn (gen_add2_insn (data
->to_addr
,
1136 GEN_INT (-(HOST_WIDE_INT
)size
)));
1137 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1138 emit_insn (gen_add2_insn (data
->from_addr
,
1139 GEN_INT (-(HOST_WIDE_INT
)size
)));
1142 emit_insn ((*genfun
) (to1
, from1
));
1145 #ifdef PUSH_ROUNDING
1146 emit_single_push_insn (mode
, from1
, NULL
);
1152 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1153 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1154 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1155 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1157 if (! data
->reverse
)
1158 data
->offset
+= size
;
1164 /* Emit code to move a block Y to a block X. This may be done with
1165 string-move instructions, with multiple scalar move instructions,
1166 or with a library call.
1168 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1169 SIZE is an rtx that says how long they are.
1170 ALIGN is the maximum alignment we can assume they have.
1171 METHOD describes what kind of copy this is, and what mechanisms may be used.
1173 Return the address of the new block, if memcpy is called and returns it,
1177 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1178 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1186 case BLOCK_OP_NORMAL
:
1187 case BLOCK_OP_TAILCALL
:
1188 may_use_call
= true;
1191 case BLOCK_OP_CALL_PARM
:
1192 may_use_call
= block_move_libcall_safe_for_call_parm ();
1194 /* Make inhibit_defer_pop nonzero around the library call
1195 to force it to pop the arguments right away. */
1199 case BLOCK_OP_NO_LIBCALL
:
1200 may_use_call
= false;
1207 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1209 gcc_assert (MEM_P (x
));
1210 gcc_assert (MEM_P (y
));
1213 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1214 block copy is more efficient for other large modes, e.g. DCmode. */
1215 x
= adjust_address (x
, BLKmode
, 0);
1216 y
= adjust_address (y
, BLKmode
, 0);
1218 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1219 can be incorrect is coming from __builtin_memcpy. */
1220 if (GET_CODE (size
) == CONST_INT
)
1222 if (INTVAL (size
) == 0)
1225 x
= shallow_copy_rtx (x
);
1226 y
= shallow_copy_rtx (y
);
1227 set_mem_size (x
, size
);
1228 set_mem_size (y
, size
);
1231 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1232 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1233 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1234 expected_align
, expected_size
))
1236 else if (may_use_call
)
1237 retval
= emit_block_move_via_libcall (x
, y
, size
,
1238 method
== BLOCK_OP_TAILCALL
);
1240 emit_block_move_via_loop (x
, y
, size
, align
);
1242 if (method
== BLOCK_OP_CALL_PARM
)
1249 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1251 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1254 /* A subroutine of emit_block_move. Returns true if calling the
1255 block move libcall will not clobber any parameters which may have
1256 already been placed on the stack. */
1259 block_move_libcall_safe_for_call_parm (void)
1261 #if defined (REG_PARM_STACK_SPACE)
1265 /* If arguments are pushed on the stack, then they're safe. */
1269 /* If registers go on the stack anyway, any argument is sure to clobber
1270 an outgoing argument. */
1271 #if defined (REG_PARM_STACK_SPACE)
1272 fn
= emit_block_move_libcall_fn (false);
1273 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1274 && REG_PARM_STACK_SPACE (fn
) != 0)
1278 /* If any argument goes in memory, then it might clobber an outgoing
1281 CUMULATIVE_ARGS args_so_far
;
1284 fn
= emit_block_move_libcall_fn (false);
1285 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1287 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1288 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1290 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1291 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1292 if (!tmp
|| !REG_P (tmp
))
1294 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1296 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1302 /* A subroutine of emit_block_move. Expand a movmem pattern;
1303 return true if successful. */
1306 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1307 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1309 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1310 int save_volatile_ok
= volatile_ok
;
1311 enum machine_mode mode
;
1313 if (expected_align
< align
)
1314 expected_align
= align
;
1316 /* Since this is a move insn, we don't care about volatility. */
1319 /* Try the most limited insn first, because there's no point
1320 including more than one in the machine description unless
1321 the more limited one has some advantage. */
1323 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1324 mode
= GET_MODE_WIDER_MODE (mode
))
1326 enum insn_code code
= movmem_optab
[(int) mode
];
1327 insn_operand_predicate_fn pred
;
1329 if (code
!= CODE_FOR_nothing
1330 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1331 here because if SIZE is less than the mode mask, as it is
1332 returned by the macro, it will definitely be less than the
1333 actual mode mask. */
1334 && ((GET_CODE (size
) == CONST_INT
1335 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1336 <= (GET_MODE_MASK (mode
) >> 1)))
1337 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1338 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1339 || (*pred
) (x
, BLKmode
))
1340 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1341 || (*pred
) (y
, BLKmode
))
1342 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1343 || (*pred
) (opalign
, VOIDmode
)))
1346 rtx last
= get_last_insn ();
1349 op2
= convert_to_mode (mode
, size
, 1);
1350 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1351 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1352 op2
= copy_to_mode_reg (mode
, op2
);
1354 /* ??? When called via emit_block_move_for_call, it'd be
1355 nice if there were some way to inform the backend, so
1356 that it doesn't fail the expansion because it thinks
1357 emitting the libcall would be more efficient. */
1359 if (insn_data
[(int) code
].n_operands
== 4)
1360 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1362 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
,
1363 GEN_INT (expected_align
1365 GEN_INT (expected_size
));
1369 volatile_ok
= save_volatile_ok
;
1373 delete_insns_since (last
);
1377 volatile_ok
= save_volatile_ok
;
1381 /* A subroutine of emit_block_move. Expand a call to memcpy.
1382 Return the return value from memcpy, 0 otherwise. */
1385 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1387 rtx dst_addr
, src_addr
;
1388 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1389 enum machine_mode size_mode
;
1392 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1393 pseudos. We can then place those new pseudos into a VAR_DECL and
1396 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1397 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1399 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1400 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1402 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1403 src_tree
= make_tree (ptr_type_node
, src_addr
);
1405 size_mode
= TYPE_MODE (sizetype
);
1407 size
= convert_to_mode (size_mode
, size
, 1);
1408 size
= copy_to_mode_reg (size_mode
, size
);
1410 /* It is incorrect to use the libcall calling conventions to call
1411 memcpy in this context. This could be a user call to memcpy and
1412 the user may wish to examine the return value from memcpy. For
1413 targets where libcalls and normal calls have different conventions
1414 for returning pointers, we could end up generating incorrect code. */
1416 size_tree
= make_tree (sizetype
, size
);
1418 fn
= emit_block_move_libcall_fn (true);
1419 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1420 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1422 retval
= expand_normal (call_expr
);
1427 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1428 for the function we use for block copies. The first time FOR_CALL
1429 is true, we call assemble_external. */
1431 static GTY(()) tree block_move_fn
;
1434 init_block_move_fn (const char *asmspec
)
1440 fn
= get_identifier ("memcpy");
1441 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1442 const_ptr_type_node
, sizetype
,
1445 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1446 DECL_EXTERNAL (fn
) = 1;
1447 TREE_PUBLIC (fn
) = 1;
1448 DECL_ARTIFICIAL (fn
) = 1;
1449 TREE_NOTHROW (fn
) = 1;
1450 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1451 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1457 set_user_assembler_name (block_move_fn
, asmspec
);
1461 emit_block_move_libcall_fn (int for_call
)
1463 static bool emitted_extern
;
1466 init_block_move_fn (NULL
);
1468 if (for_call
&& !emitted_extern
)
1470 emitted_extern
= true;
1471 make_decl_rtl (block_move_fn
);
1472 assemble_external (block_move_fn
);
1475 return block_move_fn
;
1478 /* A subroutine of emit_block_move. Copy the data via an explicit
1479 loop. This is used only when libcalls are forbidden. */
1480 /* ??? It'd be nice to copy in hunks larger than QImode. */
1483 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1484 unsigned int align ATTRIBUTE_UNUSED
)
1486 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1487 enum machine_mode iter_mode
;
1489 iter_mode
= GET_MODE (size
);
1490 if (iter_mode
== VOIDmode
)
1491 iter_mode
= word_mode
;
1493 top_label
= gen_label_rtx ();
1494 cmp_label
= gen_label_rtx ();
1495 iter
= gen_reg_rtx (iter_mode
);
1497 emit_move_insn (iter
, const0_rtx
);
1499 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1500 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1501 do_pending_stack_adjust ();
1503 emit_jump (cmp_label
);
1504 emit_label (top_label
);
1506 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1507 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1508 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1509 x
= change_address (x
, QImode
, x_addr
);
1510 y
= change_address (y
, QImode
, y_addr
);
1512 emit_move_insn (x
, y
);
1514 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1515 true, OPTAB_LIB_WIDEN
);
1517 emit_move_insn (iter
, tmp
);
1519 emit_label (cmp_label
);
1521 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1525 /* Copy all or part of a value X into registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1529 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1532 #ifdef HAVE_load_multiple
1540 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1541 x
= validize_mem (force_const_mem (mode
, x
));
1543 /* See if the machine can do this with a load multiple insn. */
1544 #ifdef HAVE_load_multiple
1545 if (HAVE_load_multiple
)
1547 last
= get_last_insn ();
1548 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1556 delete_insns_since (last
);
1560 for (i
= 0; i
< nregs
; i
++)
1561 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1562 operand_subword_force (x
, i
, mode
));
1565 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1566 The number of registers to be filled is NREGS. */
1569 move_block_from_reg (int regno
, rtx x
, int nregs
)
1576 /* See if the machine can do this with a store multiple insn. */
1577 #ifdef HAVE_store_multiple
1578 if (HAVE_store_multiple
)
1580 rtx last
= get_last_insn ();
1581 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1589 delete_insns_since (last
);
1593 for (i
= 0; i
< nregs
; i
++)
1595 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1599 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1603 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1604 ORIG, where ORIG is a non-consecutive group of registers represented by
1605 a PARALLEL. The clone is identical to the original except in that the
1606 original set of registers is replaced by a new set of pseudo registers.
1607 The new set has the same modes as the original set. */
1610 gen_group_rtx (rtx orig
)
1615 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1617 length
= XVECLEN (orig
, 0);
1618 tmps
= XALLOCAVEC (rtx
, length
);
1620 /* Skip a NULL entry in first slot. */
1621 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1626 for (; i
< length
; i
++)
1628 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1629 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1631 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1634 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1637 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1638 except that values are placed in TMPS[i], and must later be moved
1639 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1642 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1646 enum machine_mode m
= GET_MODE (orig_src
);
1648 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1651 && !SCALAR_INT_MODE_P (m
)
1652 && !MEM_P (orig_src
)
1653 && GET_CODE (orig_src
) != CONCAT
)
1655 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1656 if (imode
== BLKmode
)
1657 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1659 src
= gen_reg_rtx (imode
);
1660 if (imode
!= BLKmode
)
1661 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1662 emit_move_insn (src
, orig_src
);
1663 /* ...and back again. */
1664 if (imode
!= BLKmode
)
1665 src
= gen_lowpart (imode
, src
);
1666 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1670 /* Check for a NULL entry, used to indicate that the parameter goes
1671 both on the stack and in registers. */
1672 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1677 /* Process the pieces. */
1678 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1680 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1681 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1682 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1685 /* Handle trailing fragments that run over the size of the struct. */
1686 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1688 /* Arrange to shift the fragment to where it belongs.
1689 extract_bit_field loads to the lsb of the reg. */
1691 #ifdef BLOCK_REG_PADDING
1692 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1693 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1698 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1699 bytelen
= ssize
- bytepos
;
1700 gcc_assert (bytelen
> 0);
1703 /* If we won't be loading directly from memory, protect the real source
1704 from strange tricks we might play; but make sure that the source can
1705 be loaded directly into the destination. */
1707 if (!MEM_P (orig_src
)
1708 && (!CONSTANT_P (orig_src
)
1709 || (GET_MODE (orig_src
) != mode
1710 && GET_MODE (orig_src
) != VOIDmode
)))
1712 if (GET_MODE (orig_src
) == VOIDmode
)
1713 src
= gen_reg_rtx (mode
);
1715 src
= gen_reg_rtx (GET_MODE (orig_src
));
1717 emit_move_insn (src
, orig_src
);
1720 /* Optimize the access just a bit. */
1722 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1723 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1724 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1725 && bytelen
== GET_MODE_SIZE (mode
))
1727 tmps
[i
] = gen_reg_rtx (mode
);
1728 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1730 else if (COMPLEX_MODE_P (mode
)
1731 && GET_MODE (src
) == mode
1732 && bytelen
== GET_MODE_SIZE (mode
))
1733 /* Let emit_move_complex do the bulk of the work. */
1735 else if (GET_CODE (src
) == CONCAT
)
1737 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1738 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1740 if ((bytepos
== 0 && bytelen
== slen0
)
1741 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1743 /* The following assumes that the concatenated objects all
1744 have the same size. In this case, a simple calculation
1745 can be used to determine the object and the bit field
1747 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1748 if (! CONSTANT_P (tmps
[i
])
1749 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1750 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1751 (bytepos
% slen0
) * BITS_PER_UNIT
,
1752 1, NULL_RTX
, mode
, mode
);
1758 gcc_assert (!bytepos
);
1759 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1760 emit_move_insn (mem
, src
);
1761 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1762 0, 1, NULL_RTX
, mode
, mode
);
1765 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1766 SIMD register, which is currently broken. While we get GCC
1767 to emit proper RTL for these cases, let's dump to memory. */
1768 else if (VECTOR_MODE_P (GET_MODE (dst
))
1771 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1774 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1775 emit_move_insn (mem
, src
);
1776 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1778 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1779 && XVECLEN (dst
, 0) > 1)
1780 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1781 else if (CONSTANT_P (src
))
1783 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1791 gcc_assert (2 * len
== ssize
);
1792 split_double (src
, &first
, &second
);
1799 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1802 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1803 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1807 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1808 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1812 /* Emit code to move a block SRC of type TYPE to a block DST,
1813 where DST is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1818 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1823 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1824 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1826 /* Copy the extracted pieces into the proper (probable) hard regs. */
1827 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1829 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1832 emit_move_insn (d
, tmps
[i
]);
1836 /* Similar, but load SRC into new pseudos in a format that looks like
1837 PARALLEL. This can later be fed to emit_group_move to get things
1838 in the right place. */
1841 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1846 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1847 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1849 /* Convert the vector to look just like the original PARALLEL, except
1850 with the computed values. */
1851 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1853 rtx e
= XVECEXP (parallel
, 0, i
);
1854 rtx d
= XEXP (e
, 0);
1858 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1859 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1861 RTVEC_ELT (vec
, i
) = e
;
1864 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1867 /* Emit code to move a block SRC to block DST, where SRC and DST are
1868 non-consecutive groups of registers, each represented by a PARALLEL. */
1871 emit_group_move (rtx dst
, rtx src
)
1875 gcc_assert (GET_CODE (src
) == PARALLEL
1876 && GET_CODE (dst
) == PARALLEL
1877 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1879 /* Skip first entry if NULL. */
1880 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1881 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1882 XEXP (XVECEXP (src
, 0, i
), 0));
1885 /* Move a group of registers represented by a PARALLEL into pseudos. */
1888 emit_group_move_into_temps (rtx src
)
1890 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1893 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1895 rtx e
= XVECEXP (src
, 0, i
);
1896 rtx d
= XEXP (e
, 0);
1899 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1900 RTVEC_ELT (vec
, i
) = e
;
1903 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1906 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1907 where SRC is non-consecutive registers represented by a PARALLEL.
1908 SSIZE represents the total size of block ORIG_DST, or -1 if not
1912 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1915 int start
, finish
, i
;
1916 enum machine_mode m
= GET_MODE (orig_dst
);
1918 gcc_assert (GET_CODE (src
) == PARALLEL
);
1920 if (!SCALAR_INT_MODE_P (m
)
1921 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1923 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1924 if (imode
== BLKmode
)
1925 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1927 dst
= gen_reg_rtx (imode
);
1928 emit_group_store (dst
, src
, type
, ssize
);
1929 if (imode
!= BLKmode
)
1930 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1931 emit_move_insn (orig_dst
, dst
);
1935 /* Check for a NULL entry, used to indicate that the parameter goes
1936 both on the stack and in registers. */
1937 if (XEXP (XVECEXP (src
, 0, 0), 0))
1941 finish
= XVECLEN (src
, 0);
1943 tmps
= XALLOCAVEC (rtx
, finish
);
1945 /* Copy the (probable) hard regs into pseudos. */
1946 for (i
= start
; i
< finish
; i
++)
1948 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1949 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1951 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1952 emit_move_insn (tmps
[i
], reg
);
1958 /* If we won't be storing directly into memory, protect the real destination
1959 from strange tricks we might play. */
1961 if (GET_CODE (dst
) == PARALLEL
)
1965 /* We can get a PARALLEL dst if there is a conditional expression in
1966 a return statement. In that case, the dst and src are the same,
1967 so no action is necessary. */
1968 if (rtx_equal_p (dst
, src
))
1971 /* It is unclear if we can ever reach here, but we may as well handle
1972 it. Allocate a temporary, and split this into a store/load to/from
1975 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1976 emit_group_store (temp
, src
, type
, ssize
);
1977 emit_group_load (dst
, temp
, type
, ssize
);
1980 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1982 enum machine_mode outer
= GET_MODE (dst
);
1983 enum machine_mode inner
;
1984 HOST_WIDE_INT bytepos
;
1988 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1989 dst
= gen_reg_rtx (outer
);
1991 /* Make life a bit easier for combine. */
1992 /* If the first element of the vector is the low part
1993 of the destination mode, use a paradoxical subreg to
1994 initialize the destination. */
1997 inner
= GET_MODE (tmps
[start
]);
1998 bytepos
= subreg_lowpart_offset (inner
, outer
);
1999 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
2001 temp
= simplify_gen_subreg (outer
, tmps
[start
],
2005 emit_move_insn (dst
, temp
);
2012 /* If the first element wasn't the low part, try the last. */
2014 && start
< finish
- 1)
2016 inner
= GET_MODE (tmps
[finish
- 1]);
2017 bytepos
= subreg_lowpart_offset (inner
, outer
);
2018 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
2020 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2024 emit_move_insn (dst
, temp
);
2031 /* Otherwise, simply initialize the result to zero. */
2033 emit_move_insn (dst
, CONST0_RTX (outer
));
2036 /* Process the pieces. */
2037 for (i
= start
; i
< finish
; i
++)
2039 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2040 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2041 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2042 unsigned int adj_bytelen
= bytelen
;
2045 /* Handle trailing fragments that run over the size of the struct. */
2046 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2047 adj_bytelen
= ssize
- bytepos
;
2049 if (GET_CODE (dst
) == CONCAT
)
2051 if (bytepos
+ adj_bytelen
2052 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2053 dest
= XEXP (dst
, 0);
2054 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2056 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2057 dest
= XEXP (dst
, 1);
2061 enum machine_mode dest_mode
= GET_MODE (dest
);
2062 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2064 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2066 if (GET_MODE_ALIGNMENT (dest_mode
)
2067 >= GET_MODE_ALIGNMENT (tmp_mode
))
2069 dest
= assign_stack_temp (dest_mode
,
2070 GET_MODE_SIZE (dest_mode
),
2072 emit_move_insn (adjust_address (dest
,
2080 dest
= assign_stack_temp (tmp_mode
,
2081 GET_MODE_SIZE (tmp_mode
),
2083 emit_move_insn (dest
, tmps
[i
]);
2084 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2090 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2092 /* store_bit_field always takes its value from the lsb.
2093 Move the fragment to the lsb if it's not already there. */
2095 #ifdef BLOCK_REG_PADDING
2096 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2097 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2103 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2104 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2105 build_int_cst (NULL_TREE
, shift
),
2108 bytelen
= adj_bytelen
;
2111 /* Optimize the access just a bit. */
2113 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2114 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2115 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2116 && bytelen
== GET_MODE_SIZE (mode
))
2117 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2119 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2123 /* Copy from the pseudo into the (probable) hard reg. */
2124 if (orig_dst
!= dst
)
2125 emit_move_insn (orig_dst
, dst
);
2128 /* Generate code to copy a BLKmode object of TYPE out of a
2129 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2130 is null, a stack temporary is created. TGTBLK is returned.
2132 The purpose of this routine is to handle functions that return
2133 BLKmode structures in registers. Some machines (the PA for example)
2134 want to return all small structures in registers regardless of the
2135 structure's alignment. */
2138 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
2140 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2141 rtx src
= NULL
, dst
= NULL
;
2142 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2143 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2144 enum machine_mode copy_mode
;
2148 tgtblk
= assign_temp (build_qualified_type (type
,
2150 | TYPE_QUAL_CONST
)),
2152 preserve_temp_slots (tgtblk
);
2155 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2156 into a new pseudo which is a full word. */
2158 if (GET_MODE (srcreg
) != BLKmode
2159 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2160 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2162 /* If the structure doesn't take up a whole number of words, see whether
2163 SRCREG is padded on the left or on the right. If it's on the left,
2164 set PADDING_CORRECTION to the number of bits to skip.
2166 In most ABIs, the structure will be returned at the least end of
2167 the register, which translates to right padding on little-endian
2168 targets and left padding on big-endian targets. The opposite
2169 holds if the structure is returned at the most significant
2170 end of the register. */
2171 if (bytes
% UNITS_PER_WORD
!= 0
2172 && (targetm
.calls
.return_in_msb (type
)
2174 : BYTES_BIG_ENDIAN
))
2176 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2178 /* Copy the structure BITSIZE bits at a time. If the target lives in
2179 memory, take care of not reading/writing past its end by selecting
2180 a copy mode suited to BITSIZE. This should always be possible given
2183 We could probably emit more efficient code for machines which do not use
2184 strict alignment, but it doesn't seem worth the effort at the current
2187 copy_mode
= word_mode
;
2190 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2191 if (mem_mode
!= BLKmode
)
2192 copy_mode
= mem_mode
;
2195 for (bitpos
= 0, xbitpos
= padding_correction
;
2196 bitpos
< bytes
* BITS_PER_UNIT
;
2197 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2199 /* We need a new source operand each time xbitpos is on a
2200 word boundary and when xbitpos == padding_correction
2201 (the first time through). */
2202 if (xbitpos
% BITS_PER_WORD
== 0
2203 || xbitpos
== padding_correction
)
2204 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2207 /* We need a new destination operand each time bitpos is on
2209 if (bitpos
% BITS_PER_WORD
== 0)
2210 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2212 /* Use xbitpos for the source extraction (right justified) and
2213 bitpos for the destination store (left justified). */
2214 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, copy_mode
,
2215 extract_bit_field (src
, bitsize
,
2216 xbitpos
% BITS_PER_WORD
, 1,
2217 NULL_RTX
, copy_mode
, copy_mode
));
2223 /* Add a USE expression for REG to the (possibly empty) list pointed
2224 to by CALL_FUSAGE. REG must denote a hard register. */
2227 use_reg (rtx
*call_fusage
, rtx reg
)
2229 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2232 = gen_rtx_EXPR_LIST (VOIDmode
,
2233 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2236 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2237 starting at REGNO. All of these registers must be hard registers. */
2240 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2244 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2246 for (i
= 0; i
< nregs
; i
++)
2247 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2250 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2251 PARALLEL REGS. This is for calls that pass values in multiple
2252 non-contiguous locations. The Irix 6 ABI has examples of this. */
2255 use_group_regs (rtx
*call_fusage
, rtx regs
)
2259 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2261 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2263 /* A NULL entry means the parameter goes both on the stack and in
2264 registers. This can also be a MEM for targets that pass values
2265 partially on the stack and partially in registers. */
2266 if (reg
!= 0 && REG_P (reg
))
2267 use_reg (call_fusage
, reg
);
2272 /* Determine whether the LEN bytes generated by CONSTFUN can be
2273 stored to memory using several move instructions. CONSTFUNDATA is
2274 a pointer which will be passed as argument in every CONSTFUN call.
2275 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2276 a memset operation and false if it's a copy of a constant string.
2277 Return nonzero if a call to store_by_pieces should succeed. */
2280 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2281 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2282 void *constfundata
, unsigned int align
, bool memsetp
)
2284 unsigned HOST_WIDE_INT l
;
2285 unsigned int max_size
;
2286 HOST_WIDE_INT offset
= 0;
2287 enum machine_mode mode
, tmode
;
2288 enum insn_code icode
;
2296 ? SET_BY_PIECES_P (len
, align
)
2297 : STORE_BY_PIECES_P (len
, align
)))
2300 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2301 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2302 align
= GET_MODE_ALIGNMENT (tmode
);
2305 enum machine_mode xmode
;
2307 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2309 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2310 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2311 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2314 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2317 /* We would first store what we can in the largest integer mode, then go to
2318 successively smaller modes. */
2321 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2326 max_size
= STORE_MAX_PIECES
+ 1;
2327 while (max_size
> 1)
2329 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2330 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2331 if (GET_MODE_SIZE (tmode
) < max_size
)
2334 if (mode
== VOIDmode
)
2337 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
2338 if (icode
!= CODE_FOR_nothing
2339 && align
>= GET_MODE_ALIGNMENT (mode
))
2341 unsigned int size
= GET_MODE_SIZE (mode
);
2348 cst
= (*constfun
) (constfundata
, offset
, mode
);
2349 if (!LEGITIMATE_CONSTANT_P (cst
))
2359 max_size
= GET_MODE_SIZE (mode
);
2362 /* The code above should have handled everything. */
2369 /* Generate several move instructions to store LEN bytes generated by
2370 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2371 pointer which will be passed as argument in every CONSTFUN call.
2372 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2373 a memset operation and false if it's a copy of a constant string.
2374 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2375 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2379 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2380 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2381 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2383 struct store_by_pieces data
;
2387 gcc_assert (endp
!= 2);
2392 ? SET_BY_PIECES_P (len
, align
)
2393 : STORE_BY_PIECES_P (len
, align
));
2394 data
.constfun
= constfun
;
2395 data
.constfundata
= constfundata
;
2398 store_by_pieces_1 (&data
, align
);
2403 gcc_assert (!data
.reverse
);
2408 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2409 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2411 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2414 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2421 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2429 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2430 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2433 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2435 struct store_by_pieces data
;
2440 data
.constfun
= clear_by_pieces_1
;
2441 data
.constfundata
= NULL
;
2444 store_by_pieces_1 (&data
, align
);
2447 /* Callback routine for clear_by_pieces.
2448 Return const0_rtx unconditionally. */
2451 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2452 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2453 enum machine_mode mode ATTRIBUTE_UNUSED
)
2458 /* Subroutine of clear_by_pieces and store_by_pieces.
2459 Generate several move instructions to store LEN bytes of block TO. (A MEM
2460 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2463 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2464 unsigned int align ATTRIBUTE_UNUSED
)
2466 rtx to_addr
= XEXP (data
->to
, 0);
2467 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2468 enum machine_mode mode
= VOIDmode
, tmode
;
2469 enum insn_code icode
;
2472 data
->to_addr
= to_addr
;
2474 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2475 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2477 data
->explicit_inc_to
= 0;
2479 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2481 data
->offset
= data
->len
;
2483 /* If storing requires more than two move insns,
2484 copy addresses to registers (to make displacements shorter)
2485 and use post-increment if available. */
2486 if (!data
->autinc_to
2487 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2489 /* Determine the main mode we'll be using. */
2490 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2491 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2492 if (GET_MODE_SIZE (tmode
) < max_size
)
2495 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2497 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2498 data
->autinc_to
= 1;
2499 data
->explicit_inc_to
= -1;
2502 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2503 && ! data
->autinc_to
)
2505 data
->to_addr
= copy_addr_to_reg (to_addr
);
2506 data
->autinc_to
= 1;
2507 data
->explicit_inc_to
= 1;
2510 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2511 data
->to_addr
= copy_addr_to_reg (to_addr
);
2514 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2515 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2516 align
= GET_MODE_ALIGNMENT (tmode
);
2519 enum machine_mode xmode
;
2521 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2523 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2524 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2525 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2528 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2531 /* First store what we can in the largest integer mode, then go to
2532 successively smaller modes. */
2534 while (max_size
> 1)
2536 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2537 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2538 if (GET_MODE_SIZE (tmode
) < max_size
)
2541 if (mode
== VOIDmode
)
2544 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
2545 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2546 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2548 max_size
= GET_MODE_SIZE (mode
);
2551 /* The code above should have handled everything. */
2552 gcc_assert (!data
->len
);
2555 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2556 with move instructions for mode MODE. GENFUN is the gen_... function
2557 to make a move insn for that mode. DATA has all the other info. */
2560 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2561 struct store_by_pieces
*data
)
2563 unsigned int size
= GET_MODE_SIZE (mode
);
2566 while (data
->len
>= size
)
2569 data
->offset
-= size
;
2571 if (data
->autinc_to
)
2572 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2575 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2577 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2578 emit_insn (gen_add2_insn (data
->to_addr
,
2579 GEN_INT (-(HOST_WIDE_INT
) size
)));
2581 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2582 emit_insn ((*genfun
) (to1
, cst
));
2584 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2585 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2587 if (! data
->reverse
)
2588 data
->offset
+= size
;
2594 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2595 its length in bytes. */
2598 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2599 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2601 enum machine_mode mode
= GET_MODE (object
);
2604 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2606 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2607 just move a zero. Otherwise, do this a piece at a time. */
2609 && GET_CODE (size
) == CONST_INT
2610 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2612 rtx zero
= CONST0_RTX (mode
);
2615 emit_move_insn (object
, zero
);
2619 if (COMPLEX_MODE_P (mode
))
2621 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2624 write_complex_part (object
, zero
, 0);
2625 write_complex_part (object
, zero
, 1);
2631 if (size
== const0_rtx
)
2634 align
= MEM_ALIGN (object
);
2636 if (GET_CODE (size
) == CONST_INT
2637 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2638 clear_by_pieces (object
, INTVAL (size
), align
);
2639 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2640 expected_align
, expected_size
))
2643 return set_storage_via_libcall (object
, size
, const0_rtx
,
2644 method
== BLOCK_OP_TAILCALL
);
2650 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2652 return clear_storage_hints (object
, size
, method
, 0, -1);
2656 /* A subroutine of clear_storage. Expand a call to memset.
2657 Return the return value of memset, 0 otherwise. */
2660 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2662 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2663 enum machine_mode size_mode
;
2666 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2667 place those into new pseudos into a VAR_DECL and use them later. */
2669 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2671 size_mode
= TYPE_MODE (sizetype
);
2672 size
= convert_to_mode (size_mode
, size
, 1);
2673 size
= copy_to_mode_reg (size_mode
, size
);
2675 /* It is incorrect to use the libcall calling conventions to call
2676 memset in this context. This could be a user call to memset and
2677 the user may wish to examine the return value from memset. For
2678 targets where libcalls and normal calls have different conventions
2679 for returning pointers, we could end up generating incorrect code. */
2681 object_tree
= make_tree (ptr_type_node
, object
);
2682 if (GET_CODE (val
) != CONST_INT
)
2683 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2684 size_tree
= make_tree (sizetype
, size
);
2685 val_tree
= make_tree (integer_type_node
, val
);
2687 fn
= clear_storage_libcall_fn (true);
2688 call_expr
= build_call_expr (fn
, 3,
2689 object_tree
, integer_zero_node
, size_tree
);
2690 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2692 retval
= expand_normal (call_expr
);
2697 /* A subroutine of set_storage_via_libcall. Create the tree node
2698 for the function we use for block clears. The first time FOR_CALL
2699 is true, we call assemble_external. */
2701 tree block_clear_fn
;
2704 init_block_clear_fn (const char *asmspec
)
2706 if (!block_clear_fn
)
2710 fn
= get_identifier ("memset");
2711 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2712 integer_type_node
, sizetype
,
2715 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2716 DECL_EXTERNAL (fn
) = 1;
2717 TREE_PUBLIC (fn
) = 1;
2718 DECL_ARTIFICIAL (fn
) = 1;
2719 TREE_NOTHROW (fn
) = 1;
2720 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2721 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2723 block_clear_fn
= fn
;
2727 set_user_assembler_name (block_clear_fn
, asmspec
);
2731 clear_storage_libcall_fn (int for_call
)
2733 static bool emitted_extern
;
2735 if (!block_clear_fn
)
2736 init_block_clear_fn (NULL
);
2738 if (for_call
&& !emitted_extern
)
2740 emitted_extern
= true;
2741 make_decl_rtl (block_clear_fn
);
2742 assemble_external (block_clear_fn
);
2745 return block_clear_fn
;
2748 /* Expand a setmem pattern; return true if successful. */
2751 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2752 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2754 /* Try the most limited insn first, because there's no point
2755 including more than one in the machine description unless
2756 the more limited one has some advantage. */
2758 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2759 enum machine_mode mode
;
2761 if (expected_align
< align
)
2762 expected_align
= align
;
2764 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2765 mode
= GET_MODE_WIDER_MODE (mode
))
2767 enum insn_code code
= setmem_optab
[(int) mode
];
2768 insn_operand_predicate_fn pred
;
2770 if (code
!= CODE_FOR_nothing
2771 /* We don't need MODE to be narrower than
2772 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2773 the mode mask, as it is returned by the macro, it will
2774 definitely be less than the actual mode mask. */
2775 && ((GET_CODE (size
) == CONST_INT
2776 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2777 <= (GET_MODE_MASK (mode
) >> 1)))
2778 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2779 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2780 || (*pred
) (object
, BLKmode
))
2781 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
2782 || (*pred
) (opalign
, VOIDmode
)))
2785 enum machine_mode char_mode
;
2786 rtx last
= get_last_insn ();
2789 opsize
= convert_to_mode (mode
, size
, 1);
2790 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2791 if (pred
!= 0 && ! (*pred
) (opsize
, mode
))
2792 opsize
= copy_to_mode_reg (mode
, opsize
);
2795 char_mode
= insn_data
[(int) code
].operand
[2].mode
;
2796 if (char_mode
!= VOIDmode
)
2798 opchar
= convert_to_mode (char_mode
, opchar
, 1);
2799 pred
= insn_data
[(int) code
].operand
[2].predicate
;
2800 if (pred
!= 0 && ! (*pred
) (opchar
, char_mode
))
2801 opchar
= copy_to_mode_reg (char_mode
, opchar
);
2804 if (insn_data
[(int) code
].n_operands
== 4)
2805 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
);
2807 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
,
2808 GEN_INT (expected_align
2810 GEN_INT (expected_size
));
2817 delete_insns_since (last
);
2825 /* Write to one of the components of the complex value CPLX. Write VAL to
2826 the real part if IMAG_P is false, and the imaginary part if its true. */
2829 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2831 enum machine_mode cmode
;
2832 enum machine_mode imode
;
2835 if (GET_CODE (cplx
) == CONCAT
)
2837 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2841 cmode
= GET_MODE (cplx
);
2842 imode
= GET_MODE_INNER (cmode
);
2843 ibitsize
= GET_MODE_BITSIZE (imode
);
2845 /* For MEMs simplify_gen_subreg may generate an invalid new address
2846 because, e.g., the original address is considered mode-dependent
2847 by the target, which restricts simplify_subreg from invoking
2848 adjust_address_nv. Instead of preparing fallback support for an
2849 invalid address, we call adjust_address_nv directly. */
2852 emit_move_insn (adjust_address_nv (cplx
, imode
,
2853 imag_p
? GET_MODE_SIZE (imode
) : 0),
2858 /* If the sub-object is at least word sized, then we know that subregging
2859 will work. This special case is important, since store_bit_field
2860 wants to operate on integer modes, and there's rarely an OImode to
2861 correspond to TCmode. */
2862 if (ibitsize
>= BITS_PER_WORD
2863 /* For hard regs we have exact predicates. Assume we can split
2864 the original object if it spans an even number of hard regs.
2865 This special case is important for SCmode on 64-bit platforms
2866 where the natural size of floating-point regs is 32-bit. */
2868 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2869 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2871 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2872 imag_p
? GET_MODE_SIZE (imode
) : 0);
2875 emit_move_insn (part
, val
);
2879 /* simplify_gen_subreg may fail for sub-word MEMs. */
2880 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2883 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2886 /* Extract one of the components of the complex value CPLX. Extract the
2887 real part if IMAG_P is false, and the imaginary part if it's true. */
2890 read_complex_part (rtx cplx
, bool imag_p
)
2892 enum machine_mode cmode
, imode
;
2895 if (GET_CODE (cplx
) == CONCAT
)
2896 return XEXP (cplx
, imag_p
);
2898 cmode
= GET_MODE (cplx
);
2899 imode
= GET_MODE_INNER (cmode
);
2900 ibitsize
= GET_MODE_BITSIZE (imode
);
2902 /* Special case reads from complex constants that got spilled to memory. */
2903 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2905 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2906 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2908 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2909 if (CONSTANT_CLASS_P (part
))
2910 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2914 /* For MEMs simplify_gen_subreg may generate an invalid new address
2915 because, e.g., the original address is considered mode-dependent
2916 by the target, which restricts simplify_subreg from invoking
2917 adjust_address_nv. Instead of preparing fallback support for an
2918 invalid address, we call adjust_address_nv directly. */
2920 return adjust_address_nv (cplx
, imode
,
2921 imag_p
? GET_MODE_SIZE (imode
) : 0);
2923 /* If the sub-object is at least word sized, then we know that subregging
2924 will work. This special case is important, since extract_bit_field
2925 wants to operate on integer modes, and there's rarely an OImode to
2926 correspond to TCmode. */
2927 if (ibitsize
>= BITS_PER_WORD
2928 /* For hard regs we have exact predicates. Assume we can split
2929 the original object if it spans an even number of hard regs.
2930 This special case is important for SCmode on 64-bit platforms
2931 where the natural size of floating-point regs is 32-bit. */
2933 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2934 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2936 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2937 imag_p
? GET_MODE_SIZE (imode
) : 0);
2941 /* simplify_gen_subreg may fail for sub-word MEMs. */
2942 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2945 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2946 true, NULL_RTX
, imode
, imode
);
2949 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2950 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2951 represented in NEW_MODE. If FORCE is true, this will never happen, as
2952 we'll force-create a SUBREG if needed. */
2955 emit_move_change_mode (enum machine_mode new_mode
,
2956 enum machine_mode old_mode
, rtx x
, bool force
)
2960 if (push_operand (x
, GET_MODE (x
)))
2962 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
2963 MEM_COPY_ATTRIBUTES (ret
, x
);
2967 /* We don't have to worry about changing the address since the
2968 size in bytes is supposed to be the same. */
2969 if (reload_in_progress
)
2971 /* Copy the MEM to change the mode and move any
2972 substitutions from the old MEM to the new one. */
2973 ret
= adjust_address_nv (x
, new_mode
, 0);
2974 copy_replacements (x
, ret
);
2977 ret
= adjust_address (x
, new_mode
, 0);
2981 /* Note that we do want simplify_subreg's behavior of validating
2982 that the new mode is ok for a hard register. If we were to use
2983 simplify_gen_subreg, we would create the subreg, but would
2984 probably run into the target not being able to implement it. */
2985 /* Except, of course, when FORCE is true, when this is exactly what
2986 we want. Which is needed for CCmodes on some targets. */
2988 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2990 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2996 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2997 an integer mode of the same size as MODE. Returns the instruction
2998 emitted, or NULL if such a move could not be generated. */
3001 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3003 enum machine_mode imode
;
3004 enum insn_code code
;
3006 /* There must exist a mode of the exact size we require. */
3007 imode
= int_mode_for_mode (mode
);
3008 if (imode
== BLKmode
)
3011 /* The target must support moves in this mode. */
3012 code
= optab_handler (mov_optab
, imode
)->insn_code
;
3013 if (code
== CODE_FOR_nothing
)
3016 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3019 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3022 return emit_insn (GEN_FCN (code
) (x
, y
));
3025 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3026 Return an equivalent MEM that does not use an auto-increment. */
3029 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3031 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3032 HOST_WIDE_INT adjust
;
3035 adjust
= GET_MODE_SIZE (mode
);
3036 #ifdef PUSH_ROUNDING
3037 adjust
= PUSH_ROUNDING (adjust
);
3039 if (code
== PRE_DEC
|| code
== POST_DEC
)
3041 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3043 rtx expr
= XEXP (XEXP (x
, 0), 1);
3046 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3047 gcc_assert (GET_CODE (XEXP (expr
, 1)) == CONST_INT
);
3048 val
= INTVAL (XEXP (expr
, 1));
3049 if (GET_CODE (expr
) == MINUS
)
3051 gcc_assert (adjust
== val
|| adjust
== -val
);
3055 /* Do not use anti_adjust_stack, since we don't want to update
3056 stack_pointer_delta. */
3057 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3058 GEN_INT (adjust
), stack_pointer_rtx
,
3059 0, OPTAB_LIB_WIDEN
);
3060 if (temp
!= stack_pointer_rtx
)
3061 emit_move_insn (stack_pointer_rtx
, temp
);
3068 temp
= stack_pointer_rtx
;
3073 temp
= plus_constant (stack_pointer_rtx
, -adjust
);
3079 return replace_equiv_address (x
, temp
);
3082 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3083 X is known to satisfy push_operand, and MODE is known to be complex.
3084 Returns the last instruction emitted. */
3087 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3089 enum machine_mode submode
= GET_MODE_INNER (mode
);
3092 #ifdef PUSH_ROUNDING
3093 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3095 /* In case we output to the stack, but the size is smaller than the
3096 machine can push exactly, we need to use move instructions. */
3097 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3099 x
= emit_move_resolve_push (mode
, x
);
3100 return emit_move_insn (x
, y
);
3104 /* Note that the real part always precedes the imag part in memory
3105 regardless of machine's endianness. */
3106 switch (GET_CODE (XEXP (x
, 0)))
3120 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3121 read_complex_part (y
, imag_first
));
3122 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3123 read_complex_part (y
, !imag_first
));
3126 /* A subroutine of emit_move_complex. Perform the move from Y to X
3127 via two moves of the parts. Returns the last instruction emitted. */
3130 emit_move_complex_parts (rtx x
, rtx y
)
3132 /* Show the output dies here. This is necessary for SUBREGs
3133 of pseudos since we cannot track their lifetimes correctly;
3134 hard regs shouldn't appear here except as return values. */
3135 if (!reload_completed
&& !reload_in_progress
3136 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3139 write_complex_part (x
, read_complex_part (y
, false), false);
3140 write_complex_part (x
, read_complex_part (y
, true), true);
3142 return get_last_insn ();
3145 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3146 MODE is known to be complex. Returns the last instruction emitted. */
3149 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3153 /* Need to take special care for pushes, to maintain proper ordering
3154 of the data, and possibly extra padding. */
3155 if (push_operand (x
, mode
))
3156 return emit_move_complex_push (mode
, x
, y
);
3158 /* See if we can coerce the target into moving both values at once. */
3160 /* Move floating point as parts. */
3161 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3162 && optab_handler (mov_optab
, GET_MODE_INNER (mode
))->insn_code
!= CODE_FOR_nothing
)
3164 /* Not possible if the values are inherently not adjacent. */
3165 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3167 /* Is possible if both are registers (or subregs of registers). */
3168 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3170 /* If one of the operands is a memory, and alignment constraints
3171 are friendly enough, we may be able to do combined memory operations.
3172 We do not attempt this if Y is a constant because that combination is
3173 usually better with the by-parts thing below. */
3174 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3175 && (!STRICT_ALIGNMENT
3176 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3185 /* For memory to memory moves, optimal behavior can be had with the
3186 existing block move logic. */
3187 if (MEM_P (x
) && MEM_P (y
))
3189 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3190 BLOCK_OP_NO_LIBCALL
);
3191 return get_last_insn ();
3194 ret
= emit_move_via_integer (mode
, x
, y
, true);
3199 return emit_move_complex_parts (x
, y
);
3202 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3203 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3206 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3210 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3213 enum insn_code code
= optab_handler (mov_optab
, CCmode
)->insn_code
;
3214 if (code
!= CODE_FOR_nothing
)
3216 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3217 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3218 return emit_insn (GEN_FCN (code
) (x
, y
));
3222 /* Otherwise, find the MODE_INT mode of the same width. */
3223 ret
= emit_move_via_integer (mode
, x
, y
, false);
3224 gcc_assert (ret
!= NULL
);
3228 /* Return true if word I of OP lies entirely in the
3229 undefined bits of a paradoxical subreg. */
3232 undefined_operand_subword_p (const_rtx op
, int i
)
3234 enum machine_mode innermode
, innermostmode
;
3236 if (GET_CODE (op
) != SUBREG
)
3238 innermode
= GET_MODE (op
);
3239 innermostmode
= GET_MODE (SUBREG_REG (op
));
3240 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3241 /* The SUBREG_BYTE represents offset, as if the value were stored in
3242 memory, except for a paradoxical subreg where we define
3243 SUBREG_BYTE to be 0; undo this exception as in
3245 if (SUBREG_BYTE (op
) == 0
3246 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3248 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3249 if (WORDS_BIG_ENDIAN
)
3250 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3251 if (BYTES_BIG_ENDIAN
)
3252 offset
+= difference
% UNITS_PER_WORD
;
3254 if (offset
>= GET_MODE_SIZE (innermostmode
)
3255 || offset
<= -GET_MODE_SIZE (word_mode
))
3260 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3261 MODE is any multi-word or full-word mode that lacks a move_insn
3262 pattern. Note that you will get better code if you define such
3263 patterns, even if they must turn into multiple assembler instructions. */
3266 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3273 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3275 /* If X is a push on the stack, do the push now and replace
3276 X with a reference to the stack pointer. */
3277 if (push_operand (x
, mode
))
3278 x
= emit_move_resolve_push (mode
, x
);
3280 /* If we are in reload, see if either operand is a MEM whose address
3281 is scheduled for replacement. */
3282 if (reload_in_progress
&& MEM_P (x
)
3283 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3284 x
= replace_equiv_address_nv (x
, inner
);
3285 if (reload_in_progress
&& MEM_P (y
)
3286 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3287 y
= replace_equiv_address_nv (y
, inner
);
3291 need_clobber
= false;
3293 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3296 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3299 /* Do not generate code for a move if it would come entirely
3300 from the undefined bits of a paradoxical subreg. */
3301 if (undefined_operand_subword_p (y
, i
))
3304 ypart
= operand_subword (y
, i
, 1, mode
);
3306 /* If we can't get a part of Y, put Y into memory if it is a
3307 constant. Otherwise, force it into a register. Then we must
3308 be able to get a part of Y. */
3309 if (ypart
== 0 && CONSTANT_P (y
))
3311 y
= use_anchored_address (force_const_mem (mode
, y
));
3312 ypart
= operand_subword (y
, i
, 1, mode
);
3314 else if (ypart
== 0)
3315 ypart
= operand_subword_force (y
, i
, mode
);
3317 gcc_assert (xpart
&& ypart
);
3319 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3321 last_insn
= emit_move_insn (xpart
, ypart
);
3327 /* Show the output dies here. This is necessary for SUBREGs
3328 of pseudos since we cannot track their lifetimes correctly;
3329 hard regs shouldn't appear here except as return values.
3330 We never want to emit such a clobber after reload. */
3332 && ! (reload_in_progress
|| reload_completed
)
3333 && need_clobber
!= 0)
3341 /* Low level part of emit_move_insn.
3342 Called just like emit_move_insn, but assumes X and Y
3343 are basically valid. */
3346 emit_move_insn_1 (rtx x
, rtx y
)
3348 enum machine_mode mode
= GET_MODE (x
);
3349 enum insn_code code
;
3351 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3353 code
= optab_handler (mov_optab
, mode
)->insn_code
;
3354 if (code
!= CODE_FOR_nothing
)
3355 return emit_insn (GEN_FCN (code
) (x
, y
));
3357 /* Expand complex moves by moving real part and imag part. */
3358 if (COMPLEX_MODE_P (mode
))
3359 return emit_move_complex (mode
, x
, y
);
3361 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3362 || ALL_FIXED_POINT_MODE_P (mode
))
3364 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3366 /* If we can't find an integer mode, use multi words. */
3370 return emit_move_multi_word (mode
, x
, y
);
3373 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3374 return emit_move_ccmode (mode
, x
, y
);
3376 /* Try using a move pattern for the corresponding integer mode. This is
3377 only safe when simplify_subreg can convert MODE constants into integer
3378 constants. At present, it can only do this reliably if the value
3379 fits within a HOST_WIDE_INT. */
3380 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3382 rtx ret
= emit_move_via_integer (mode
, x
, y
, false);
3387 return emit_move_multi_word (mode
, x
, y
);
3390 /* Generate code to copy Y into X.
3391 Both Y and X must have the same mode, except that
3392 Y can be a constant with VOIDmode.
3393 This mode cannot be BLKmode; use emit_block_move for that.
3395 Return the last instruction emitted. */
3398 emit_move_insn (rtx x
, rtx y
)
3400 enum machine_mode mode
= GET_MODE (x
);
3401 rtx y_cst
= NULL_RTX
;
3404 gcc_assert (mode
!= BLKmode
3405 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3410 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3411 && (last_insn
= compress_float_constant (x
, y
)))
3416 if (!LEGITIMATE_CONSTANT_P (y
))
3418 y
= force_const_mem (mode
, y
);
3420 /* If the target's cannot_force_const_mem prevented the spill,
3421 assume that the target's move expanders will also take care
3422 of the non-legitimate constant. */
3426 y
= use_anchored_address (y
);
3430 /* If X or Y are memory references, verify that their addresses are valid
3433 && (! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3434 && ! push_operand (x
, GET_MODE (x
))))
3435 x
= validize_mem (x
);
3438 && ! memory_address_p (GET_MODE (y
), XEXP (y
, 0)))
3439 y
= validize_mem (y
);
3441 gcc_assert (mode
!= BLKmode
);
3443 last_insn
= emit_move_insn_1 (x
, y
);
3445 if (y_cst
&& REG_P (x
)
3446 && (set
= single_set (last_insn
)) != NULL_RTX
3447 && SET_DEST (set
) == x
3448 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3449 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3454 /* If Y is representable exactly in a narrower mode, and the target can
3455 perform the extension directly from constant or memory, then emit the
3456 move as an extension. */
3459 compress_float_constant (rtx x
, rtx y
)
3461 enum machine_mode dstmode
= GET_MODE (x
);
3462 enum machine_mode orig_srcmode
= GET_MODE (y
);
3463 enum machine_mode srcmode
;
3465 int oldcost
, newcost
;
3466 bool speed
= optimize_insn_for_speed_p ();
3468 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3470 if (LEGITIMATE_CONSTANT_P (y
))
3471 oldcost
= rtx_cost (y
, SET
, speed
);
3473 oldcost
= rtx_cost (force_const_mem (dstmode
, y
), SET
, speed
);
3475 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3476 srcmode
!= orig_srcmode
;
3477 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3480 rtx trunc_y
, last_insn
;
3482 /* Skip if the target can't extend this way. */
3483 ic
= can_extend_p (dstmode
, srcmode
, 0);
3484 if (ic
== CODE_FOR_nothing
)
3487 /* Skip if the narrowed value isn't exact. */
3488 if (! exact_real_truncate (srcmode
, &r
))
3491 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3493 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3495 /* Skip if the target needs extra instructions to perform
3497 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3499 /* This is valid, but may not be cheaper than the original. */
3500 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
, speed
);
3501 if (oldcost
< newcost
)
3504 else if (float_extend_from_mem
[dstmode
][srcmode
])
3506 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3507 /* This is valid, but may not be cheaper than the original. */
3508 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
, speed
);
3509 if (oldcost
< newcost
)
3511 trunc_y
= validize_mem (trunc_y
);
3516 /* For CSE's benefit, force the compressed constant pool entry
3517 into a new pseudo. This constant may be used in different modes,
3518 and if not, combine will put things back together for us. */
3519 trunc_y
= force_reg (srcmode
, trunc_y
);
3520 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3521 last_insn
= get_last_insn ();
3524 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3532 /* Pushing data onto the stack. */
3534 /* Push a block of length SIZE (perhaps variable)
3535 and return an rtx to address the beginning of the block.
3536 The value may be virtual_outgoing_args_rtx.
3538 EXTRA is the number of bytes of padding to push in addition to SIZE.
3539 BELOW nonzero means this padding comes at low addresses;
3540 otherwise, the padding comes at high addresses. */
3543 push_block (rtx size
, int extra
, int below
)
3547 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3548 if (CONSTANT_P (size
))
3549 anti_adjust_stack (plus_constant (size
, extra
));
3550 else if (REG_P (size
) && extra
== 0)
3551 anti_adjust_stack (size
);
3554 temp
= copy_to_mode_reg (Pmode
, size
);
3556 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3557 temp
, 0, OPTAB_LIB_WIDEN
);
3558 anti_adjust_stack (temp
);
3561 #ifndef STACK_GROWS_DOWNWARD
3567 temp
= virtual_outgoing_args_rtx
;
3568 if (extra
!= 0 && below
)
3569 temp
= plus_constant (temp
, extra
);
3573 if (GET_CODE (size
) == CONST_INT
)
3574 temp
= plus_constant (virtual_outgoing_args_rtx
,
3575 -INTVAL (size
) - (below
? 0 : extra
));
3576 else if (extra
!= 0 && !below
)
3577 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3578 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3580 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3581 negate_rtx (Pmode
, size
));
3584 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3587 #ifdef PUSH_ROUNDING
3589 /* Emit single push insn. */
3592 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3595 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3597 enum insn_code icode
;
3598 insn_operand_predicate_fn pred
;
3600 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3601 /* If there is push pattern, use it. Otherwise try old way of throwing
3602 MEM representing push operation to move expander. */
3603 icode
= optab_handler (push_optab
, mode
)->insn_code
;
3604 if (icode
!= CODE_FOR_nothing
)
3606 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3607 && !((*pred
) (x
, mode
))))
3608 x
= force_reg (mode
, x
);
3609 emit_insn (GEN_FCN (icode
) (x
));
3612 if (GET_MODE_SIZE (mode
) == rounded_size
)
3613 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3614 /* If we are to pad downward, adjust the stack pointer first and
3615 then store X into the stack location using an offset. This is
3616 because emit_move_insn does not know how to pad; it does not have
3618 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3620 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3621 HOST_WIDE_INT offset
;
3623 emit_move_insn (stack_pointer_rtx
,
3624 expand_binop (Pmode
,
3625 #ifdef STACK_GROWS_DOWNWARD
3631 GEN_INT (rounded_size
),
3632 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3634 offset
= (HOST_WIDE_INT
) padding_size
;
3635 #ifdef STACK_GROWS_DOWNWARD
3636 if (STACK_PUSH_CODE
== POST_DEC
)
3637 /* We have already decremented the stack pointer, so get the
3639 offset
+= (HOST_WIDE_INT
) rounded_size
;
3641 if (STACK_PUSH_CODE
== POST_INC
)
3642 /* We have already incremented the stack pointer, so get the
3644 offset
-= (HOST_WIDE_INT
) rounded_size
;
3646 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3650 #ifdef STACK_GROWS_DOWNWARD
3651 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3652 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3653 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3655 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3656 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3657 GEN_INT (rounded_size
));
3659 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3662 dest
= gen_rtx_MEM (mode
, dest_addr
);
3666 set_mem_attributes (dest
, type
, 1);
3668 if (flag_optimize_sibling_calls
)
3669 /* Function incoming arguments may overlap with sibling call
3670 outgoing arguments and we cannot allow reordering of reads
3671 from function arguments with stores to outgoing arguments
3672 of sibling calls. */
3673 set_mem_alias_set (dest
, 0);
3675 emit_move_insn (dest
, x
);
3679 /* Generate code to push X onto the stack, assuming it has mode MODE and
3681 MODE is redundant except when X is a CONST_INT (since they don't
3683 SIZE is an rtx for the size of data to be copied (in bytes),
3684 needed only if X is BLKmode.
3686 ALIGN (in bits) is maximum alignment we can assume.
3688 If PARTIAL and REG are both nonzero, then copy that many of the first
3689 bytes of X into registers starting with REG, and push the rest of X.
3690 The amount of space pushed is decreased by PARTIAL bytes.
3691 REG must be a hard register in this case.
3692 If REG is zero but PARTIAL is not, take any all others actions for an
3693 argument partially in registers, but do not actually load any
3696 EXTRA is the amount in bytes of extra space to leave next to this arg.
3697 This is ignored if an argument block has already been allocated.
3699 On a machine that lacks real push insns, ARGS_ADDR is the address of
3700 the bottom of the argument block for this call. We use indexing off there
3701 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3702 argument block has not been preallocated.
3704 ARGS_SO_FAR is the size of args previously pushed for this call.
3706 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3707 for arguments passed in registers. If nonzero, it will be the number
3708 of bytes required. */
3711 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3712 unsigned int align
, int partial
, rtx reg
, int extra
,
3713 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3717 enum direction stack_direction
3718 #ifdef STACK_GROWS_DOWNWARD
3724 /* Decide where to pad the argument: `downward' for below,
3725 `upward' for above, or `none' for don't pad it.
3726 Default is below for small data on big-endian machines; else above. */
3727 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3729 /* Invert direction if stack is post-decrement.
3731 if (STACK_PUSH_CODE
== POST_DEC
)
3732 if (where_pad
!= none
)
3733 where_pad
= (where_pad
== downward
? upward
: downward
);
3738 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
3740 /* Copy a block into the stack, entirely or partially. */
3747 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3748 used
= partial
- offset
;
3750 if (mode
!= BLKmode
)
3752 /* A value is to be stored in an insufficiently aligned
3753 stack slot; copy via a suitably aligned slot if
3755 size
= GEN_INT (GET_MODE_SIZE (mode
));
3756 if (!MEM_P (xinner
))
3758 temp
= assign_temp (type
, 0, 1, 1);
3759 emit_move_insn (temp
, xinner
);
3766 /* USED is now the # of bytes we need not copy to the stack
3767 because registers will take care of them. */
3770 xinner
= adjust_address (xinner
, BLKmode
, used
);
3772 /* If the partial register-part of the arg counts in its stack size,
3773 skip the part of stack space corresponding to the registers.
3774 Otherwise, start copying to the beginning of the stack space,
3775 by setting SKIP to 0. */
3776 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3778 #ifdef PUSH_ROUNDING
3779 /* Do it with several push insns if that doesn't take lots of insns
3780 and if there is no difficulty with push insns that skip bytes
3781 on the stack for alignment purposes. */
3784 && GET_CODE (size
) == CONST_INT
3786 && MEM_ALIGN (xinner
) >= align
3787 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3788 /* Here we avoid the case of a structure whose weak alignment
3789 forces many pushes of a small amount of data,
3790 and such small pushes do rounding that causes trouble. */
3791 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3792 || align
>= BIGGEST_ALIGNMENT
3793 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3794 == (align
/ BITS_PER_UNIT
)))
3795 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3797 /* Push padding now if padding above and stack grows down,
3798 or if padding below and stack grows up.
3799 But if space already allocated, this has already been done. */
3800 if (extra
&& args_addr
== 0
3801 && where_pad
!= none
&& where_pad
!= stack_direction
)
3802 anti_adjust_stack (GEN_INT (extra
));
3804 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3807 #endif /* PUSH_ROUNDING */
3811 /* Otherwise make space on the stack and copy the data
3812 to the address of that space. */
3814 /* Deduct words put into registers from the size we must copy. */
3817 if (GET_CODE (size
) == CONST_INT
)
3818 size
= GEN_INT (INTVAL (size
) - used
);
3820 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3821 GEN_INT (used
), NULL_RTX
, 0,
3825 /* Get the address of the stack space.
3826 In this case, we do not deal with EXTRA separately.
3827 A single stack adjust will do. */
3830 temp
= push_block (size
, extra
, where_pad
== downward
);
3833 else if (GET_CODE (args_so_far
) == CONST_INT
)
3834 temp
= memory_address (BLKmode
,
3835 plus_constant (args_addr
,
3836 skip
+ INTVAL (args_so_far
)));
3838 temp
= memory_address (BLKmode
,
3839 plus_constant (gen_rtx_PLUS (Pmode
,
3844 if (!ACCUMULATE_OUTGOING_ARGS
)
3846 /* If the source is referenced relative to the stack pointer,
3847 copy it to another register to stabilize it. We do not need
3848 to do this if we know that we won't be changing sp. */
3850 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3851 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3852 temp
= copy_to_reg (temp
);
3855 target
= gen_rtx_MEM (BLKmode
, temp
);
3857 /* We do *not* set_mem_attributes here, because incoming arguments
3858 may overlap with sibling call outgoing arguments and we cannot
3859 allow reordering of reads from function arguments with stores
3860 to outgoing arguments of sibling calls. We do, however, want
3861 to record the alignment of the stack slot. */
3862 /* ALIGN may well be better aligned than TYPE, e.g. due to
3863 PARM_BOUNDARY. Assume the caller isn't lying. */
3864 set_mem_align (target
, align
);
3866 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3869 else if (partial
> 0)
3871 /* Scalar partly in registers. */
3873 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3876 /* # bytes of start of argument
3877 that we must make space for but need not store. */
3878 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3879 int args_offset
= INTVAL (args_so_far
);
3882 /* Push padding now if padding above and stack grows down,
3883 or if padding below and stack grows up.
3884 But if space already allocated, this has already been done. */
3885 if (extra
&& args_addr
== 0
3886 && where_pad
!= none
&& where_pad
!= stack_direction
)
3887 anti_adjust_stack (GEN_INT (extra
));
3889 /* If we make space by pushing it, we might as well push
3890 the real data. Otherwise, we can leave OFFSET nonzero
3891 and leave the space uninitialized. */
3895 /* Now NOT_STACK gets the number of words that we don't need to
3896 allocate on the stack. Convert OFFSET to words too. */
3897 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3898 offset
/= UNITS_PER_WORD
;
3900 /* If the partial register-part of the arg counts in its stack size,
3901 skip the part of stack space corresponding to the registers.
3902 Otherwise, start copying to the beginning of the stack space,
3903 by setting SKIP to 0. */
3904 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3906 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3907 x
= validize_mem (force_const_mem (mode
, x
));
3909 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3910 SUBREGs of such registers are not allowed. */
3911 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3912 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3913 x
= copy_to_reg (x
);
3915 /* Loop over all the words allocated on the stack for this arg. */
3916 /* We can do it by words, because any scalar bigger than a word
3917 has a size a multiple of a word. */
3918 #ifndef PUSH_ARGS_REVERSED
3919 for (i
= not_stack
; i
< size
; i
++)
3921 for (i
= size
- 1; i
>= not_stack
; i
--)
3923 if (i
>= not_stack
+ offset
)
3924 emit_push_insn (operand_subword_force (x
, i
, mode
),
3925 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3927 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3929 reg_parm_stack_space
, alignment_pad
);
3936 /* Push padding now if padding above and stack grows down,
3937 or if padding below and stack grows up.
3938 But if space already allocated, this has already been done. */
3939 if (extra
&& args_addr
== 0
3940 && where_pad
!= none
&& where_pad
!= stack_direction
)
3941 anti_adjust_stack (GEN_INT (extra
));
3943 #ifdef PUSH_ROUNDING
3944 if (args_addr
== 0 && PUSH_ARGS
)
3945 emit_single_push_insn (mode
, x
, type
);
3949 if (GET_CODE (args_so_far
) == CONST_INT
)
3951 = memory_address (mode
,
3952 plus_constant (args_addr
,
3953 INTVAL (args_so_far
)));
3955 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3957 dest
= gen_rtx_MEM (mode
, addr
);
3959 /* We do *not* set_mem_attributes here, because incoming arguments
3960 may overlap with sibling call outgoing arguments and we cannot
3961 allow reordering of reads from function arguments with stores
3962 to outgoing arguments of sibling calls. We do, however, want
3963 to record the alignment of the stack slot. */
3964 /* ALIGN may well be better aligned than TYPE, e.g. due to
3965 PARM_BOUNDARY. Assume the caller isn't lying. */
3966 set_mem_align (dest
, align
);
3968 emit_move_insn (dest
, x
);
3972 /* If part should go in registers, copy that part
3973 into the appropriate registers. Do this now, at the end,
3974 since mem-to-mem copies above may do function calls. */
3975 if (partial
> 0 && reg
!= 0)
3977 /* Handle calls that pass values in multiple non-contiguous locations.
3978 The Irix 6 ABI has examples of this. */
3979 if (GET_CODE (reg
) == PARALLEL
)
3980 emit_group_load (reg
, x
, type
, -1);
3983 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3984 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3988 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3989 anti_adjust_stack (GEN_INT (extra
));
3991 if (alignment_pad
&& args_addr
== 0)
3992 anti_adjust_stack (alignment_pad
);
3995 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3999 get_subtarget (rtx x
)
4003 /* Only registers can be subtargets. */
4005 /* Don't use hard regs to avoid extending their life. */
4006 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4010 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4011 FIELD is a bitfield. Returns true if the optimization was successful,
4012 and there's nothing else to do. */
4015 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4016 unsigned HOST_WIDE_INT bitpos
,
4017 enum machine_mode mode1
, rtx str_rtx
,
4020 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4021 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4026 if (mode1
!= VOIDmode
4027 || bitsize
>= BITS_PER_WORD
4028 || str_bitsize
> BITS_PER_WORD
4029 || TREE_SIDE_EFFECTS (to
)
4030 || TREE_THIS_VOLATILE (to
))
4034 if (!BINARY_CLASS_P (src
)
4035 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4038 op0
= TREE_OPERAND (src
, 0);
4039 op1
= TREE_OPERAND (src
, 1);
4042 if (!operand_equal_p (to
, op0
, 0))
4045 if (MEM_P (str_rtx
))
4047 unsigned HOST_WIDE_INT offset1
;
4049 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4050 str_mode
= word_mode
;
4051 str_mode
= get_best_mode (bitsize
, bitpos
,
4052 MEM_ALIGN (str_rtx
), str_mode
, 0);
4053 if (str_mode
== VOIDmode
)
4055 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4058 bitpos
%= str_bitsize
;
4059 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4060 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4062 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4065 /* If the bit field covers the whole REG/MEM, store_field
4066 will likely generate better code. */
4067 if (bitsize
>= str_bitsize
)
4070 /* We can't handle fields split across multiple entities. */
4071 if (bitpos
+ bitsize
> str_bitsize
)
4074 if (BYTES_BIG_ENDIAN
)
4075 bitpos
= str_bitsize
- bitpos
- bitsize
;
4077 switch (TREE_CODE (src
))
4081 /* For now, just optimize the case of the topmost bitfield
4082 where we don't need to do any masking and also
4083 1 bit bitfields where xor can be used.
4084 We might win by one instruction for the other bitfields
4085 too if insv/extv instructions aren't used, so that
4086 can be added later. */
4087 if (bitpos
+ bitsize
!= str_bitsize
4088 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4091 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4092 value
= convert_modes (str_mode
,
4093 TYPE_MODE (TREE_TYPE (op1
)), value
,
4094 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4096 /* We may be accessing data outside the field, which means
4097 we can alias adjacent data. */
4098 if (MEM_P (str_rtx
))
4100 str_rtx
= shallow_copy_rtx (str_rtx
);
4101 set_mem_alias_set (str_rtx
, 0);
4102 set_mem_expr (str_rtx
, 0);
4105 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
4106 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4108 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4111 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
4112 build_int_cst (NULL_TREE
, bitpos
),
4114 result
= expand_binop (str_mode
, binop
, str_rtx
,
4115 value
, str_rtx
, 1, OPTAB_WIDEN
);
4116 if (result
!= str_rtx
)
4117 emit_move_insn (str_rtx
, result
);
4122 if (TREE_CODE (op1
) != INTEGER_CST
)
4124 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), EXPAND_NORMAL
);
4125 value
= convert_modes (GET_MODE (str_rtx
),
4126 TYPE_MODE (TREE_TYPE (op1
)), value
,
4127 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4129 /* We may be accessing data outside the field, which means
4130 we can alias adjacent data. */
4131 if (MEM_P (str_rtx
))
4133 str_rtx
= shallow_copy_rtx (str_rtx
);
4134 set_mem_alias_set (str_rtx
, 0);
4135 set_mem_expr (str_rtx
, 0);
4138 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4139 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
4141 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
4143 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
4146 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
4147 build_int_cst (NULL_TREE
, bitpos
),
4149 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
4150 value
, str_rtx
, 1, OPTAB_WIDEN
);
4151 if (result
!= str_rtx
)
4152 emit_move_insn (str_rtx
, result
);
4163 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4164 is true, try generating a nontemporal store. */
4167 expand_assignment (tree to
, tree from
, bool nontemporal
)
4172 /* Don't crash if the lhs of the assignment was erroneous. */
4173 if (TREE_CODE (to
) == ERROR_MARK
)
4175 result
= expand_normal (from
);
4179 /* Optimize away no-op moves without side-effects. */
4180 if (operand_equal_p (to
, from
, 0))
4183 /* Assignment of a structure component needs special treatment
4184 if the structure component's rtx is not simply a MEM.
4185 Assignment of an array element at a constant index, and assignment of
4186 an array element in an unaligned packed structure field, has the same
4188 if (handled_component_p (to
)
4189 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4191 enum machine_mode mode1
;
4192 HOST_WIDE_INT bitsize
, bitpos
;
4199 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4200 &unsignedp
, &volatilep
, true);
4202 /* If we are going to use store_bit_field and extract_bit_field,
4203 make sure to_rtx will be safe for multiple use. */
4205 to_rtx
= expand_normal (tem
);
4211 if (!MEM_P (to_rtx
))
4213 /* We can get constant negative offsets into arrays with broken
4214 user code. Translate this to a trap instead of ICEing. */
4215 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4216 expand_builtin_trap ();
4217 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4220 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4221 #ifdef POINTERS_EXTEND_UNSIGNED
4222 if (GET_MODE (offset_rtx
) != Pmode
)
4223 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4225 if (GET_MODE (offset_rtx
) != ptr_mode
)
4226 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4229 /* A constant address in TO_RTX can have VOIDmode, we must not try
4230 to call force_reg for that case. Avoid that case. */
4232 && GET_MODE (to_rtx
) == BLKmode
4233 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4235 && (bitpos
% bitsize
) == 0
4236 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4237 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4239 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4243 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4244 highest_pow2_factor_for_target (to
,
4248 /* Handle expand_expr of a complex value returning a CONCAT. */
4249 if (GET_CODE (to_rtx
) == CONCAT
)
4251 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
4253 gcc_assert (bitpos
== 0);
4254 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4258 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
4259 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4267 /* If the field is at offset zero, we could have been given the
4268 DECL_RTX of the parent struct. Don't munge it. */
4269 to_rtx
= shallow_copy_rtx (to_rtx
);
4271 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4273 /* Deal with volatile and readonly fields. The former is only
4274 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4276 MEM_VOLATILE_P (to_rtx
) = 1;
4277 if (component_uses_parent_alias_set (to
))
4278 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4281 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
4285 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
4286 TREE_TYPE (tem
), get_alias_set (to
),
4291 preserve_temp_slots (result
);
4297 /* If the rhs is a function call and its value is not an aggregate,
4298 call the function before we start to compute the lhs.
4299 This is needed for correct code for cases such as
4300 val = setjmp (buf) on machines where reference to val
4301 requires loading up part of an address in a separate insn.
4303 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4304 since it might be a promoted variable where the zero- or sign- extension
4305 needs to be done. Handling this in the normal way is safe because no
4306 computation is done before the call. */
4307 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4308 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4309 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4310 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
4311 && REG_P (DECL_RTL (to
))))
4316 value
= expand_normal (from
);
4318 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4320 /* Handle calls that return values in multiple non-contiguous locations.
4321 The Irix 6 ABI has examples of this. */
4322 if (GET_CODE (to_rtx
) == PARALLEL
)
4323 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4324 int_size_in_bytes (TREE_TYPE (from
)));
4325 else if (GET_MODE (to_rtx
) == BLKmode
)
4326 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4329 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4330 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
4331 emit_move_insn (to_rtx
, value
);
4333 preserve_temp_slots (to_rtx
);
4339 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4340 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4343 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4345 /* Don't move directly into a return register. */
4346 if (TREE_CODE (to
) == RESULT_DECL
4347 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4352 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
4354 if (GET_CODE (to_rtx
) == PARALLEL
)
4355 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4356 int_size_in_bytes (TREE_TYPE (from
)));
4358 emit_move_insn (to_rtx
, temp
);
4360 preserve_temp_slots (to_rtx
);
4366 /* In case we are returning the contents of an object which overlaps
4367 the place the value is being stored, use a safe function when copying
4368 a value through a pointer into a structure value return block. */
4369 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4370 && cfun
->returns_struct
4371 && !cfun
->returns_pcc_struct
)
4376 size
= expr_size (from
);
4377 from_rtx
= expand_normal (from
);
4379 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4380 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4381 XEXP (from_rtx
, 0), Pmode
,
4382 convert_to_mode (TYPE_MODE (sizetype
),
4383 size
, TYPE_UNSIGNED (sizetype
)),
4384 TYPE_MODE (sizetype
));
4386 preserve_temp_slots (to_rtx
);
4392 /* Compute FROM and store the value in the rtx we got. */
4395 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
4396 preserve_temp_slots (result
);
4402 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4403 succeeded, false otherwise. */
4406 emit_storent_insn (rtx to
, rtx from
)
4408 enum machine_mode mode
= GET_MODE (to
), imode
;
4409 enum insn_code code
= optab_handler (storent_optab
, mode
)->insn_code
;
4412 if (code
== CODE_FOR_nothing
)
4415 imode
= insn_data
[code
].operand
[0].mode
;
4416 if (!insn_data
[code
].operand
[0].predicate (to
, imode
))
4419 imode
= insn_data
[code
].operand
[1].mode
;
4420 if (!insn_data
[code
].operand
[1].predicate (from
, imode
))
4422 from
= copy_to_mode_reg (imode
, from
);
4423 if (!insn_data
[code
].operand
[1].predicate (from
, imode
))
4427 pattern
= GEN_FCN (code
) (to
, from
);
4428 if (pattern
== NULL_RTX
)
4431 emit_insn (pattern
);
4435 /* Generate code for computing expression EXP,
4436 and storing the value into TARGET.
4438 If the mode is BLKmode then we may return TARGET itself.
4439 It turns out that in BLKmode it doesn't cause a problem.
4440 because C has no operators that could combine two different
4441 assignments into the same BLKmode object with different values
4442 with no sequence point. Will other languages need this to
4445 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4446 stack, and block moves may need to be treated specially.
4448 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4451 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
4454 rtx alt_rtl
= NULL_RTX
;
4455 int dont_return_target
= 0;
4457 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4459 /* C++ can generate ?: expressions with a throw expression in one
4460 branch and an rvalue in the other. Here, we resolve attempts to
4461 store the throw expression's nonexistent result. */
4462 gcc_assert (!call_param_p
);
4463 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
4466 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4468 /* Perform first part of compound expression, then assign from second
4470 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4471 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4472 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
4475 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4477 /* For conditional expression, get safe form of the target. Then
4478 test the condition, doing the appropriate assignment on either
4479 side. This avoids the creation of unnecessary temporaries.
4480 For non-BLKmode, it is more efficient not to do this. */
4482 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4484 do_pending_stack_adjust ();
4486 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4487 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
4489 emit_jump_insn (gen_jump (lab2
));
4492 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
4499 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4500 /* If this is a scalar in a register that is stored in a wider mode
4501 than the declared mode, compute the result into its declared mode
4502 and then convert to the wider mode. Our value is the computed
4505 rtx inner_target
= 0;
4507 /* We can do the conversion inside EXP, which will often result
4508 in some optimizations. Do the conversion in two steps: first
4509 change the signedness, if needed, then the extend. But don't
4510 do this if the type of EXP is a subtype of something else
4511 since then the conversion might involve more than just
4512 converting modes. */
4513 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4514 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4515 && GET_MODE_PRECISION (GET_MODE (target
))
4516 == TYPE_PRECISION (TREE_TYPE (exp
)))
4518 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4519 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4521 /* Some types, e.g. Fortran's logical*4, won't have a signed
4522 version, so use the mode instead. */
4524 = (signed_or_unsigned_type_for
4525 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
4527 ntype
= lang_hooks
.types
.type_for_mode
4528 (TYPE_MODE (TREE_TYPE (exp
)),
4529 SUBREG_PROMOTED_UNSIGNED_P (target
));
4531 exp
= fold_convert (ntype
, exp
);
4534 exp
= fold_convert (lang_hooks
.types
.type_for_mode
4535 (GET_MODE (SUBREG_REG (target
)),
4536 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4539 inner_target
= SUBREG_REG (target
);
4542 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4543 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4545 /* If TEMP is a VOIDmode constant, use convert_modes to make
4546 sure that we properly convert it. */
4547 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4549 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4550 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4551 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4552 GET_MODE (target
), temp
,
4553 SUBREG_PROMOTED_UNSIGNED_P (target
));
4556 convert_move (SUBREG_REG (target
), temp
,
4557 SUBREG_PROMOTED_UNSIGNED_P (target
));
4561 else if (TREE_CODE (exp
) == STRING_CST
4562 && !nontemporal
&& !call_param_p
4563 && TREE_STRING_LENGTH (exp
) > 0
4564 && TYPE_MODE (TREE_TYPE (exp
)) == BLKmode
)
4566 /* Optimize initialization of an array with a STRING_CST. */
4567 HOST_WIDE_INT exp_len
, str_copy_len
;
4570 exp_len
= int_expr_size (exp
);
4574 str_copy_len
= strlen (TREE_STRING_POINTER (exp
));
4575 if (str_copy_len
< TREE_STRING_LENGTH (exp
) - 1)
4578 str_copy_len
= TREE_STRING_LENGTH (exp
);
4579 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0)
4581 str_copy_len
+= STORE_MAX_PIECES
- 1;
4582 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
4584 str_copy_len
= MIN (str_copy_len
, exp_len
);
4585 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
4586 CONST_CAST(char *, TREE_STRING_POINTER (exp
)),
4587 MEM_ALIGN (target
), false))
4592 dest_mem
= store_by_pieces (dest_mem
,
4593 str_copy_len
, builtin_strncpy_read_str
,
4594 CONST_CAST(char *, TREE_STRING_POINTER (exp
)),
4595 MEM_ALIGN (target
), false,
4596 exp_len
> str_copy_len
? 1 : 0);
4597 if (exp_len
> str_copy_len
)
4598 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
4599 GEN_INT (exp_len
- str_copy_len
),
4608 /* If we want to use a nontemporal store, force the value to
4610 tmp_target
= nontemporal
? NULL_RTX
: target
;
4611 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
4613 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4615 /* Return TARGET if it's a specified hardware register.
4616 If TARGET is a volatile mem ref, either return TARGET
4617 or return a reg copied *from* TARGET; ANSI requires this.
4619 Otherwise, if TEMP is not TARGET, return TEMP
4620 if it is constant (for efficiency),
4621 or if we really want the correct value. */
4622 if (!(target
&& REG_P (target
)
4623 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4624 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4625 && ! rtx_equal_p (temp
, target
)
4626 && CONSTANT_P (temp
))
4627 dont_return_target
= 1;
4630 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4631 the same as that of TARGET, adjust the constant. This is needed, for
4632 example, in case it is a CONST_DOUBLE and we want only a word-sized
4634 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4635 && TREE_CODE (exp
) != ERROR_MARK
4636 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4637 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4638 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4640 /* If value was not generated in the target, store it there.
4641 Convert the value to TARGET's type first if necessary and emit the
4642 pending incrementations that have been queued when expanding EXP.
4643 Note that we cannot emit the whole queue blindly because this will
4644 effectively disable the POST_INC optimization later.
4646 If TEMP and TARGET compare equal according to rtx_equal_p, but
4647 one or both of them are volatile memory refs, we have to distinguish
4649 - expand_expr has used TARGET. In this case, we must not generate
4650 another copy. This can be detected by TARGET being equal according
4652 - expand_expr has not used TARGET - that means that the source just
4653 happens to have the same RTX form. Since temp will have been created
4654 by expand_expr, it will compare unequal according to == .
4655 We must generate a copy in this case, to reach the correct number
4656 of volatile memory references. */
4658 if ((! rtx_equal_p (temp
, target
)
4659 || (temp
!= target
&& (side_effects_p (temp
)
4660 || side_effects_p (target
))))
4661 && TREE_CODE (exp
) != ERROR_MARK
4662 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4663 but TARGET is not valid memory reference, TEMP will differ
4664 from TARGET although it is really the same location. */
4665 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4666 /* If there's nothing to copy, don't bother. Don't call
4667 expr_size unless necessary, because some front-ends (C++)
4668 expr_size-hook must not be given objects that are not
4669 supposed to be bit-copied or bit-initialized. */
4670 && expr_size (exp
) != const0_rtx
)
4672 if (GET_MODE (temp
) != GET_MODE (target
)
4673 && GET_MODE (temp
) != VOIDmode
)
4675 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4676 if (dont_return_target
)
4678 /* In this case, we will return TEMP,
4679 so make sure it has the proper mode.
4680 But don't forget to store the value into TARGET. */
4681 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4682 emit_move_insn (target
, temp
);
4684 else if (GET_MODE (target
) == BLKmode
4685 || GET_MODE (temp
) == BLKmode
)
4686 emit_block_move (target
, temp
, expr_size (exp
),
4688 ? BLOCK_OP_CALL_PARM
4689 : BLOCK_OP_NORMAL
));
4691 convert_move (target
, temp
, unsignedp
);
4694 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4696 /* Handle copying a string constant into an array. The string
4697 constant may be shorter than the array. So copy just the string's
4698 actual length, and clear the rest. First get the size of the data
4699 type of the string, which is actually the size of the target. */
4700 rtx size
= expr_size (exp
);
4702 if (GET_CODE (size
) == CONST_INT
4703 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4704 emit_block_move (target
, temp
, size
,
4706 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4709 /* Compute the size of the data to copy from the string. */
4711 = size_binop (MIN_EXPR
,
4712 make_tree (sizetype
, size
),
4713 size_int (TREE_STRING_LENGTH (exp
)));
4715 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4717 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4720 /* Copy that much. */
4721 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4722 TYPE_UNSIGNED (sizetype
));
4723 emit_block_move (target
, temp
, copy_size_rtx
,
4725 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4727 /* Figure out how much is left in TARGET that we have to clear.
4728 Do all calculations in ptr_mode. */
4729 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4731 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4732 target
= adjust_address (target
, BLKmode
,
4733 INTVAL (copy_size_rtx
));
4737 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4738 copy_size_rtx
, NULL_RTX
, 0,
4741 #ifdef POINTERS_EXTEND_UNSIGNED
4742 if (GET_MODE (copy_size_rtx
) != Pmode
)
4743 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4744 TYPE_UNSIGNED (sizetype
));
4747 target
= offset_address (target
, copy_size_rtx
,
4748 highest_pow2_factor (copy_size
));
4749 label
= gen_label_rtx ();
4750 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4751 GET_MODE (size
), 0, label
);
4754 if (size
!= const0_rtx
)
4755 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
4761 /* Handle calls that return values in multiple non-contiguous locations.
4762 The Irix 6 ABI has examples of this. */
4763 else if (GET_CODE (target
) == PARALLEL
)
4764 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4765 int_size_in_bytes (TREE_TYPE (exp
)));
4766 else if (GET_MODE (temp
) == BLKmode
)
4767 emit_block_move (target
, temp
, expr_size (exp
),
4769 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4770 else if (nontemporal
4771 && emit_storent_insn (target
, temp
))
4772 /* If we managed to emit a nontemporal store, there is nothing else to
4777 temp
= force_operand (temp
, target
);
4779 emit_move_insn (target
, temp
);
4786 /* Helper for categorize_ctor_elements. Identical interface. */
4789 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4790 HOST_WIDE_INT
*p_elt_count
,
4793 unsigned HOST_WIDE_INT idx
;
4794 HOST_WIDE_INT nz_elts
, elt_count
;
4795 tree value
, purpose
;
4797 /* Whether CTOR is a valid constant initializer, in accordance with what
4798 initializer_constant_valid_p does. If inferred from the constructor
4799 elements, true until proven otherwise. */
4800 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
4801 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
4806 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
4811 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4813 tree lo_index
= TREE_OPERAND (purpose
, 0);
4814 tree hi_index
= TREE_OPERAND (purpose
, 1);
4816 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4817 mult
= (tree_low_cst (hi_index
, 1)
4818 - tree_low_cst (lo_index
, 1) + 1);
4821 switch (TREE_CODE (value
))
4825 HOST_WIDE_INT nz
= 0, ic
= 0;
4828 = categorize_ctor_elements_1 (value
, &nz
, &ic
, p_must_clear
);
4830 nz_elts
+= mult
* nz
;
4831 elt_count
+= mult
* ic
;
4833 if (const_from_elts_p
&& const_p
)
4834 const_p
= const_elt_p
;
4841 if (!initializer_zerop (value
))
4847 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4848 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4852 if (!initializer_zerop (TREE_REALPART (value
)))
4854 if (!initializer_zerop (TREE_IMAGPART (value
)))
4862 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4864 if (!initializer_zerop (TREE_VALUE (v
)))
4875 if (const_from_elts_p
&& const_p
)
4876 const_p
= initializer_constant_valid_p (value
, TREE_TYPE (value
))
4883 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4884 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4887 bool clear_this
= true;
4889 if (!VEC_empty (constructor_elt
, CONSTRUCTOR_ELTS (ctor
)))
4891 /* We don't expect more than one element of the union to be
4892 initialized. Not sure what we should do otherwise... */
4893 gcc_assert (VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (ctor
))
4896 init_sub_type
= TREE_TYPE (VEC_index (constructor_elt
,
4897 CONSTRUCTOR_ELTS (ctor
),
4900 /* ??? We could look at each element of the union, and find the
4901 largest element. Which would avoid comparing the size of the
4902 initialized element against any tail padding in the union.
4903 Doesn't seem worth the effort... */
4904 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4905 TYPE_SIZE (init_sub_type
)) == 1)
4907 /* And now we have to find out if the element itself is fully
4908 constructed. E.g. for union { struct { int a, b; } s; } u
4909 = { .s = { .a = 1 } }. */
4910 if (elt_count
== count_type_elements (init_sub_type
, false))
4915 *p_must_clear
= clear_this
;
4918 *p_nz_elts
+= nz_elts
;
4919 *p_elt_count
+= elt_count
;
4924 /* Examine CTOR to discover:
4925 * how many scalar fields are set to nonzero values,
4926 and place it in *P_NZ_ELTS;
4927 * how many scalar fields in total are in CTOR,
4928 and place it in *P_ELT_COUNT.
4929 * if a type is a union, and the initializer from the constructor
4930 is not the largest element in the union, then set *p_must_clear.
4932 Return whether or not CTOR is a valid static constant initializer, the same
4933 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4936 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4937 HOST_WIDE_INT
*p_elt_count
,
4942 *p_must_clear
= false;
4945 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_elt_count
, p_must_clear
);
4948 /* Count the number of scalars in TYPE. Return -1 on overflow or
4949 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4950 array member at the end of the structure. */
4953 count_type_elements (const_tree type
, bool allow_flexarr
)
4955 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4956 switch (TREE_CODE (type
))
4960 tree telts
= array_type_nelts (type
);
4961 if (telts
&& host_integerp (telts
, 1))
4963 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4964 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
), false);
4967 else if (max
/ n
> m
)
4975 HOST_WIDE_INT n
= 0, t
;
4978 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4979 if (TREE_CODE (f
) == FIELD_DECL
)
4981 t
= count_type_elements (TREE_TYPE (f
), false);
4984 /* Check for structures with flexible array member. */
4985 tree tf
= TREE_TYPE (f
);
4987 && TREE_CHAIN (f
) == NULL
4988 && TREE_CODE (tf
) == ARRAY_TYPE
4990 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
4991 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
4992 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
4993 && int_size_in_bytes (type
) >= 0)
5005 case QUAL_UNION_TYPE
:
5012 return TYPE_VECTOR_SUBPARTS (type
);
5016 case FIXED_POINT_TYPE
:
5021 case REFERENCE_TYPE
:
5036 /* Return 1 if EXP contains mostly (3/4) zeros. */
5039 mostly_zeros_p (const_tree exp
)
5041 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5044 HOST_WIDE_INT nz_elts
, count
, elts
;
5047 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
5051 elts
= count_type_elements (TREE_TYPE (exp
), false);
5053 return nz_elts
< elts
/ 4;
5056 return initializer_zerop (exp
);
5059 /* Return 1 if EXP contains all zeros. */
5062 all_zeros_p (const_tree exp
)
5064 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5067 HOST_WIDE_INT nz_elts
, count
;
5070 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
5071 return nz_elts
== 0;
5074 return initializer_zerop (exp
);
5077 /* Helper function for store_constructor.
5078 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5079 TYPE is the type of the CONSTRUCTOR, not the element type.
5080 CLEARED is as for store_constructor.
5081 ALIAS_SET is the alias set to use for any stores.
5083 This provides a recursive shortcut back to store_constructor when it isn't
5084 necessary to go through store_field. This is so that we can pass through
5085 the cleared field to let store_constructor know that we may not have to
5086 clear a substructure if the outer structure has already been cleared. */
5089 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5090 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5091 tree exp
, tree type
, int cleared
,
5092 alias_set_type alias_set
)
5094 if (TREE_CODE (exp
) == CONSTRUCTOR
5095 /* We can only call store_constructor recursively if the size and
5096 bit position are on a byte boundary. */
5097 && bitpos
% BITS_PER_UNIT
== 0
5098 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5099 /* If we have a nonzero bitpos for a register target, then we just
5100 let store_field do the bitfield handling. This is unlikely to
5101 generate unnecessary clear instructions anyways. */
5102 && (bitpos
== 0 || MEM_P (target
)))
5106 = adjust_address (target
,
5107 GET_MODE (target
) == BLKmode
5109 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5110 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5113 /* Update the alias set, if required. */
5114 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5115 && MEM_ALIAS_SET (target
) != 0)
5117 target
= copy_rtx (target
);
5118 set_mem_alias_set (target
, alias_set
);
5121 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5124 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
, false);
5127 /* Store the value of constructor EXP into the rtx TARGET.
5128 TARGET is either a REG or a MEM; we know it cannot conflict, since
5129 safe_from_p has been called.
5130 CLEARED is true if TARGET is known to have been zero'd.
5131 SIZE is the number of bytes of TARGET we are allowed to modify: this
5132 may not be the same as the size of EXP if we are assigning to a field
5133 which has been packed to exclude padding bits. */
5136 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5138 tree type
= TREE_TYPE (exp
);
5139 #ifdef WORD_REGISTER_OPERATIONS
5140 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5143 switch (TREE_CODE (type
))
5147 case QUAL_UNION_TYPE
:
5149 unsigned HOST_WIDE_INT idx
;
5152 /* If size is zero or the target is already cleared, do nothing. */
5153 if (size
== 0 || cleared
)
5155 /* We either clear the aggregate or indicate the value is dead. */
5156 else if ((TREE_CODE (type
) == UNION_TYPE
5157 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5158 && ! CONSTRUCTOR_ELTS (exp
))
5159 /* If the constructor is empty, clear the union. */
5161 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5165 /* If we are building a static constructor into a register,
5166 set the initial value as zero so we can fold the value into
5167 a constant. But if more than one register is involved,
5168 this probably loses. */
5169 else if (REG_P (target
) && TREE_STATIC (exp
)
5170 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5172 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5176 /* If the constructor has fewer fields than the structure or
5177 if we are initializing the structure to mostly zeros, clear
5178 the whole structure first. Don't do this if TARGET is a
5179 register whose mode size isn't equal to SIZE since
5180 clear_storage can't handle this case. */
5182 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
5183 != fields_length (type
))
5184 || mostly_zeros_p (exp
))
5186 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5189 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5193 if (REG_P (target
) && !cleared
)
5194 emit_clobber (target
);
5196 /* Store each element of the constructor into the
5197 corresponding field of TARGET. */
5198 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5200 enum machine_mode mode
;
5201 HOST_WIDE_INT bitsize
;
5202 HOST_WIDE_INT bitpos
= 0;
5204 rtx to_rtx
= target
;
5206 /* Just ignore missing fields. We cleared the whole
5207 structure, above, if any fields are missing. */
5211 if (cleared
&& initializer_zerop (value
))
5214 if (host_integerp (DECL_SIZE (field
), 1))
5215 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5219 mode
= DECL_MODE (field
);
5220 if (DECL_BIT_FIELD (field
))
5223 offset
= DECL_FIELD_OFFSET (field
);
5224 if (host_integerp (offset
, 0)
5225 && host_integerp (bit_position (field
), 0))
5227 bitpos
= int_bit_position (field
);
5231 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5238 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5239 make_tree (TREE_TYPE (exp
),
5242 offset_rtx
= expand_normal (offset
);
5243 gcc_assert (MEM_P (to_rtx
));
5245 #ifdef POINTERS_EXTEND_UNSIGNED
5246 if (GET_MODE (offset_rtx
) != Pmode
)
5247 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
5249 if (GET_MODE (offset_rtx
) != ptr_mode
)
5250 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
5253 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5254 highest_pow2_factor (offset
));
5257 #ifdef WORD_REGISTER_OPERATIONS
5258 /* If this initializes a field that is smaller than a
5259 word, at the start of a word, try to widen it to a full
5260 word. This special case allows us to output C++ member
5261 function initializations in a form that the optimizers
5264 && bitsize
< BITS_PER_WORD
5265 && bitpos
% BITS_PER_WORD
== 0
5266 && GET_MODE_CLASS (mode
) == MODE_INT
5267 && TREE_CODE (value
) == INTEGER_CST
5269 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5271 tree type
= TREE_TYPE (value
);
5273 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5275 type
= lang_hooks
.types
.type_for_size
5276 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
5277 value
= fold_convert (type
, value
);
5280 if (BYTES_BIG_ENDIAN
)
5282 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5283 build_int_cst (type
,
5284 BITS_PER_WORD
- bitsize
));
5285 bitsize
= BITS_PER_WORD
;
5290 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5291 && DECL_NONADDRESSABLE_P (field
))
5293 to_rtx
= copy_rtx (to_rtx
);
5294 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5297 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5298 value
, type
, cleared
,
5299 get_alias_set (TREE_TYPE (field
)));
5306 unsigned HOST_WIDE_INT i
;
5309 tree elttype
= TREE_TYPE (type
);
5311 HOST_WIDE_INT minelt
= 0;
5312 HOST_WIDE_INT maxelt
= 0;
5314 domain
= TYPE_DOMAIN (type
);
5315 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5316 && TYPE_MAX_VALUE (domain
)
5317 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5318 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5320 /* If we have constant bounds for the range of the type, get them. */
5323 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5324 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5327 /* If the constructor has fewer elements than the array, clear
5328 the whole array first. Similarly if this is static
5329 constructor of a non-BLKmode object. */
5332 else if (REG_P (target
) && TREE_STATIC (exp
))
5336 unsigned HOST_WIDE_INT idx
;
5338 HOST_WIDE_INT count
= 0, zero_count
= 0;
5339 need_to_clear
= ! const_bounds_p
;
5341 /* This loop is a more accurate version of the loop in
5342 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5343 is also needed to check for missing elements. */
5344 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5346 HOST_WIDE_INT this_node_count
;
5351 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5353 tree lo_index
= TREE_OPERAND (index
, 0);
5354 tree hi_index
= TREE_OPERAND (index
, 1);
5356 if (! host_integerp (lo_index
, 1)
5357 || ! host_integerp (hi_index
, 1))
5363 this_node_count
= (tree_low_cst (hi_index
, 1)
5364 - tree_low_cst (lo_index
, 1) + 1);
5367 this_node_count
= 1;
5369 count
+= this_node_count
;
5370 if (mostly_zeros_p (value
))
5371 zero_count
+= this_node_count
;
5374 /* Clear the entire array first if there are any missing
5375 elements, or if the incidence of zero elements is >=
5378 && (count
< maxelt
- minelt
+ 1
5379 || 4 * zero_count
>= 3 * count
))
5383 if (need_to_clear
&& size
> 0)
5386 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5388 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5392 if (!cleared
&& REG_P (target
))
5393 /* Inform later passes that the old value is dead. */
5394 emit_clobber (target
);
5396 /* Store each element of the constructor into the
5397 corresponding element of TARGET, determined by counting the
5399 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
5401 enum machine_mode mode
;
5402 HOST_WIDE_INT bitsize
;
5403 HOST_WIDE_INT bitpos
;
5405 rtx xtarget
= target
;
5407 if (cleared
&& initializer_zerop (value
))
5410 unsignedp
= TYPE_UNSIGNED (elttype
);
5411 mode
= TYPE_MODE (elttype
);
5412 if (mode
== BLKmode
)
5413 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5414 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
5417 bitsize
= GET_MODE_BITSIZE (mode
);
5419 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5421 tree lo_index
= TREE_OPERAND (index
, 0);
5422 tree hi_index
= TREE_OPERAND (index
, 1);
5423 rtx index_r
, pos_rtx
;
5424 HOST_WIDE_INT lo
, hi
, count
;
5427 /* If the range is constant and "small", unroll the loop. */
5429 && host_integerp (lo_index
, 0)
5430 && host_integerp (hi_index
, 0)
5431 && (lo
= tree_low_cst (lo_index
, 0),
5432 hi
= tree_low_cst (hi_index
, 0),
5433 count
= hi
- lo
+ 1,
5436 || (host_integerp (TYPE_SIZE (elttype
), 1)
5437 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
5440 lo
-= minelt
; hi
-= minelt
;
5441 for (; lo
<= hi
; lo
++)
5443 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
5446 && !MEM_KEEP_ALIAS_SET_P (target
)
5447 && TREE_CODE (type
) == ARRAY_TYPE
5448 && TYPE_NONALIASED_COMPONENT (type
))
5450 target
= copy_rtx (target
);
5451 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5454 store_constructor_field
5455 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
5456 get_alias_set (elttype
));
5461 rtx loop_start
= gen_label_rtx ();
5462 rtx loop_end
= gen_label_rtx ();
5465 expand_normal (hi_index
);
5466 unsignedp
= TYPE_UNSIGNED (domain
);
5468 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
5471 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
5473 SET_DECL_RTL (index
, index_r
);
5474 store_expr (lo_index
, index_r
, 0, false);
5476 /* Build the head of the loop. */
5477 do_pending_stack_adjust ();
5478 emit_label (loop_start
);
5480 /* Assign value to element index. */
5482 fold_convert (ssizetype
,
5483 fold_build2 (MINUS_EXPR
,
5486 TYPE_MIN_VALUE (domain
)));
5489 size_binop (MULT_EXPR
, position
,
5490 fold_convert (ssizetype
,
5491 TYPE_SIZE_UNIT (elttype
)));
5493 pos_rtx
= expand_normal (position
);
5494 xtarget
= offset_address (target
, pos_rtx
,
5495 highest_pow2_factor (position
));
5496 xtarget
= adjust_address (xtarget
, mode
, 0);
5497 if (TREE_CODE (value
) == CONSTRUCTOR
)
5498 store_constructor (value
, xtarget
, cleared
,
5499 bitsize
/ BITS_PER_UNIT
);
5501 store_expr (value
, xtarget
, 0, false);
5503 /* Generate a conditional jump to exit the loop. */
5504 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5506 jumpif (exit_cond
, loop_end
);
5508 /* Update the loop counter, and jump to the head of
5510 expand_assignment (index
,
5511 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5512 index
, integer_one_node
),
5515 emit_jump (loop_start
);
5517 /* Build the end of the loop. */
5518 emit_label (loop_end
);
5521 else if ((index
!= 0 && ! host_integerp (index
, 0))
5522 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5527 index
= ssize_int (1);
5530 index
= fold_convert (ssizetype
,
5531 fold_build2 (MINUS_EXPR
,
5534 TYPE_MIN_VALUE (domain
)));
5537 size_binop (MULT_EXPR
, index
,
5538 fold_convert (ssizetype
,
5539 TYPE_SIZE_UNIT (elttype
)));
5540 xtarget
= offset_address (target
,
5541 expand_normal (position
),
5542 highest_pow2_factor (position
));
5543 xtarget
= adjust_address (xtarget
, mode
, 0);
5544 store_expr (value
, xtarget
, 0, false);
5549 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5550 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5552 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5554 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5555 && TREE_CODE (type
) == ARRAY_TYPE
5556 && TYPE_NONALIASED_COMPONENT (type
))
5558 target
= copy_rtx (target
);
5559 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5561 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5562 type
, cleared
, get_alias_set (elttype
));
5570 unsigned HOST_WIDE_INT idx
;
5571 constructor_elt
*ce
;
5575 tree elttype
= TREE_TYPE (type
);
5576 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5577 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5578 HOST_WIDE_INT bitsize
;
5579 HOST_WIDE_INT bitpos
;
5580 rtvec vector
= NULL
;
5582 alias_set_type alias
;
5584 gcc_assert (eltmode
!= BLKmode
);
5586 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5587 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5589 enum machine_mode mode
= GET_MODE (target
);
5591 icode
= (int) optab_handler (vec_init_optab
, mode
)->insn_code
;
5592 if (icode
!= CODE_FOR_nothing
)
5596 vector
= rtvec_alloc (n_elts
);
5597 for (i
= 0; i
< n_elts
; i
++)
5598 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5602 /* If the constructor has fewer elements than the vector,
5603 clear the whole array first. Similarly if this is static
5604 constructor of a non-BLKmode object. */
5607 else if (REG_P (target
) && TREE_STATIC (exp
))
5611 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5614 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
5616 int n_elts_here
= tree_low_cst
5617 (int_const_binop (TRUNC_DIV_EXPR
,
5618 TYPE_SIZE (TREE_TYPE (value
)),
5619 TYPE_SIZE (elttype
), 0), 1);
5621 count
+= n_elts_here
;
5622 if (mostly_zeros_p (value
))
5623 zero_count
+= n_elts_here
;
5626 /* Clear the entire vector first if there are any missing elements,
5627 or if the incidence of zero elements is >= 75%. */
5628 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5631 if (need_to_clear
&& size
> 0 && !vector
)
5634 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5636 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5640 /* Inform later passes that the old value is dead. */
5641 if (!cleared
&& !vector
&& REG_P (target
))
5642 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5645 alias
= MEM_ALIAS_SET (target
);
5647 alias
= get_alias_set (elttype
);
5649 /* Store each element of the constructor into the corresponding
5650 element of TARGET, determined by counting the elements. */
5651 for (idx
= 0, i
= 0;
5652 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
5653 idx
++, i
+= bitsize
/ elt_size
)
5655 HOST_WIDE_INT eltpos
;
5656 tree value
= ce
->value
;
5658 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5659 if (cleared
&& initializer_zerop (value
))
5663 eltpos
= tree_low_cst (ce
->index
, 1);
5669 /* Vector CONSTRUCTORs should only be built from smaller
5670 vectors in the case of BLKmode vectors. */
5671 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5672 RTVEC_ELT (vector
, eltpos
)
5673 = expand_normal (value
);
5677 enum machine_mode value_mode
=
5678 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5679 ? TYPE_MODE (TREE_TYPE (value
))
5681 bitpos
= eltpos
* elt_size
;
5682 store_constructor_field (target
, bitsize
, bitpos
,
5683 value_mode
, value
, type
,
5689 emit_insn (GEN_FCN (icode
)
5691 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5700 /* Store the value of EXP (an expression tree)
5701 into a subfield of TARGET which has mode MODE and occupies
5702 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5703 If MODE is VOIDmode, it means that we are storing into a bit-field.
5705 Always return const0_rtx unless we have something particular to
5708 TYPE is the type of the underlying object,
5710 ALIAS_SET is the alias set for the destination. This value will
5711 (in general) be different from that for TARGET, since TARGET is a
5712 reference to the containing structure.
5714 If NONTEMPORAL is true, try generating a nontemporal store. */
5717 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5718 enum machine_mode mode
, tree exp
, tree type
,
5719 alias_set_type alias_set
, bool nontemporal
)
5721 HOST_WIDE_INT width_mask
= 0;
5723 if (TREE_CODE (exp
) == ERROR_MARK
)
5726 /* If we have nothing to store, do nothing unless the expression has
5729 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5730 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5731 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5733 /* If we are storing into an unaligned field of an aligned union that is
5734 in a register, we may have the mode of TARGET being an integer mode but
5735 MODE == BLKmode. In that case, get an aligned object whose size and
5736 alignment are the same as TARGET and store TARGET into it (we can avoid
5737 the store if the field being stored is the entire width of TARGET). Then
5738 call ourselves recursively to store the field into a BLKmode version of
5739 that object. Finally, load from the object into TARGET. This is not
5740 very efficient in general, but should only be slightly more expensive
5741 than the otherwise-required unaligned accesses. Perhaps this can be
5742 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5743 twice, once with emit_move_insn and once via store_field. */
5746 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5748 rtx object
= assign_temp (type
, 0, 1, 1);
5749 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5751 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5752 emit_move_insn (object
, target
);
5754 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
,
5757 emit_move_insn (target
, object
);
5759 /* We want to return the BLKmode version of the data. */
5763 if (GET_CODE (target
) == CONCAT
)
5765 /* We're storing into a struct containing a single __complex. */
5767 gcc_assert (!bitpos
);
5768 return store_expr (exp
, target
, 0, nontemporal
);
5771 /* If the structure is in a register or if the component
5772 is a bit field, we cannot use addressing to access it.
5773 Use bit-field techniques or SUBREG to store in it. */
5775 if (mode
== VOIDmode
5776 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5777 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5778 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5780 || GET_CODE (target
) == SUBREG
5781 /* If the field isn't aligned enough to store as an ordinary memref,
5782 store it as a bit field. */
5784 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5785 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5786 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5787 || (bitpos
% BITS_PER_UNIT
!= 0)))
5788 /* If the RHS and field are a constant size and the size of the
5789 RHS isn't the same size as the bitfield, we must use bitfield
5792 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5793 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5797 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5798 implies a mask operation. If the precision is the same size as
5799 the field we're storing into, that mask is redundant. This is
5800 particularly common with bit field assignments generated by the
5802 if (TREE_CODE (exp
) == NOP_EXPR
)
5804 tree type
= TREE_TYPE (exp
);
5805 if (INTEGRAL_TYPE_P (type
)
5806 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5807 && bitsize
== TYPE_PRECISION (type
))
5809 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5810 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5811 exp
= TREE_OPERAND (exp
, 0);
5815 temp
= expand_normal (exp
);
5817 /* If BITSIZE is narrower than the size of the type of EXP
5818 we will be narrowing TEMP. Normally, what's wanted are the
5819 low-order bits. However, if EXP's type is a record and this is
5820 big-endian machine, we want the upper BITSIZE bits. */
5821 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5822 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5823 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5824 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5825 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5829 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5831 if (mode
!= VOIDmode
&& mode
!= BLKmode
5832 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5833 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5835 /* If the modes of TEMP and TARGET are both BLKmode, both
5836 must be in memory and BITPOS must be aligned on a byte
5837 boundary. If so, we simply do a block copy. Likewise
5838 for a BLKmode-like TARGET. */
5839 if (GET_MODE (temp
) == BLKmode
5840 && (GET_MODE (target
) == BLKmode
5842 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
5843 && (bitpos
% BITS_PER_UNIT
) == 0
5844 && (bitsize
% BITS_PER_UNIT
) == 0)))
5846 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5847 && (bitpos
% BITS_PER_UNIT
) == 0);
5849 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5850 emit_block_move (target
, temp
,
5851 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5858 /* Store the value in the bitfield. */
5859 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5865 /* Now build a reference to just the desired component. */
5866 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5868 if (to_rtx
== target
)
5869 to_rtx
= copy_rtx (to_rtx
);
5871 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5872 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5873 set_mem_alias_set (to_rtx
, alias_set
);
5875 return store_expr (exp
, to_rtx
, 0, nontemporal
);
5879 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5880 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5881 codes and find the ultimate containing object, which we return.
5883 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5884 bit position, and *PUNSIGNEDP to the signedness of the field.
5885 If the position of the field is variable, we store a tree
5886 giving the variable offset (in units) in *POFFSET.
5887 This offset is in addition to the bit position.
5888 If the position is not variable, we store 0 in *POFFSET.
5890 If any of the extraction expressions is volatile,
5891 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5893 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5894 Otherwise, it is a mode that can be used to access the field.
5896 If the field describes a variable-sized object, *PMODE is set to
5897 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5898 this case, but the address of the object can be found.
5900 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5901 look through nodes that serve as markers of a greater alignment than
5902 the one that can be deduced from the expression. These nodes make it
5903 possible for front-ends to prevent temporaries from being created by
5904 the middle-end on alignment considerations. For that purpose, the
5905 normal operating mode at high-level is to always pass FALSE so that
5906 the ultimate containing object is really returned; moreover, the
5907 associated predicate handled_component_p will always return TRUE
5908 on these nodes, thus indicating that they are essentially handled
5909 by get_inner_reference. TRUE should only be passed when the caller
5910 is scanning the expression in order to build another representation
5911 and specifically knows how to handle these nodes; as such, this is
5912 the normal operating mode in the RTL expanders. */
5915 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5916 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5917 enum machine_mode
*pmode
, int *punsignedp
,
5918 int *pvolatilep
, bool keep_aligning
)
5921 enum machine_mode mode
= VOIDmode
;
5922 bool blkmode_bitfield
= false;
5923 tree offset
= size_zero_node
;
5924 tree bit_offset
= bitsize_zero_node
;
5926 /* First get the mode, signedness, and size. We do this from just the
5927 outermost expression. */
5928 if (TREE_CODE (exp
) == COMPONENT_REF
)
5930 tree field
= TREE_OPERAND (exp
, 1);
5931 size_tree
= DECL_SIZE (field
);
5932 if (!DECL_BIT_FIELD (field
))
5933 mode
= DECL_MODE (field
);
5934 else if (DECL_MODE (field
) == BLKmode
)
5935 blkmode_bitfield
= true;
5937 *punsignedp
= DECL_UNSIGNED (field
);
5939 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5941 size_tree
= TREE_OPERAND (exp
, 1);
5942 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5943 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
5945 /* For vector types, with the correct size of access, use the mode of
5947 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
5948 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5949 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
5950 mode
= TYPE_MODE (TREE_TYPE (exp
));
5954 mode
= TYPE_MODE (TREE_TYPE (exp
));
5955 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5957 if (mode
== BLKmode
)
5958 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5960 *pbitsize
= GET_MODE_BITSIZE (mode
);
5965 if (! host_integerp (size_tree
, 1))
5966 mode
= BLKmode
, *pbitsize
= -1;
5968 *pbitsize
= tree_low_cst (size_tree
, 1);
5971 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5972 and find the ultimate containing object. */
5975 switch (TREE_CODE (exp
))
5978 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5979 TREE_OPERAND (exp
, 2));
5984 tree field
= TREE_OPERAND (exp
, 1);
5985 tree this_offset
= component_ref_field_offset (exp
);
5987 /* If this field hasn't been filled in yet, don't go past it.
5988 This should only happen when folding expressions made during
5989 type construction. */
5990 if (this_offset
== 0)
5993 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5994 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5995 DECL_FIELD_BIT_OFFSET (field
));
5997 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6002 case ARRAY_RANGE_REF
:
6004 tree index
= TREE_OPERAND (exp
, 1);
6005 tree low_bound
= array_ref_low_bound (exp
);
6006 tree unit_size
= array_ref_element_size (exp
);
6008 /* We assume all arrays have sizes that are a multiple of a byte.
6009 First subtract the lower bound, if any, in the type of the
6010 index, then convert to sizetype and multiply by the size of
6011 the array element. */
6012 if (! integer_zerop (low_bound
))
6013 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6016 offset
= size_binop (PLUS_EXPR
, offset
,
6017 size_binop (MULT_EXPR
,
6018 fold_convert (sizetype
, index
),
6027 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
6028 bitsize_int (*pbitsize
));
6031 case VIEW_CONVERT_EXPR
:
6032 if (keep_aligning
&& STRICT_ALIGNMENT
6033 && (TYPE_ALIGN (TREE_TYPE (exp
))
6034 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6035 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6036 < BIGGEST_ALIGNMENT
)
6037 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6038 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6046 /* If any reference in the chain is volatile, the effect is volatile. */
6047 if (TREE_THIS_VOLATILE (exp
))
6050 exp
= TREE_OPERAND (exp
, 0);
6054 /* If OFFSET is constant, see if we can return the whole thing as a
6055 constant bit position. Make sure to handle overflow during
6057 if (host_integerp (offset
, 0))
6059 double_int tem
= double_int_mul (tree_to_double_int (offset
),
6060 uhwi_to_double_int (BITS_PER_UNIT
));
6061 tem
= double_int_add (tem
, tree_to_double_int (bit_offset
));
6062 if (double_int_fits_in_shwi_p (tem
))
6064 *pbitpos
= double_int_to_shwi (tem
);
6065 *poffset
= offset
= NULL_TREE
;
6069 /* Otherwise, split it up. */
6072 *pbitpos
= tree_low_cst (bit_offset
, 0);
6076 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6077 if (mode
== VOIDmode
6079 && (*pbitpos
% BITS_PER_UNIT
) == 0
6080 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6088 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6089 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6090 EXP is marked as PACKED. */
6093 contains_packed_reference (const_tree exp
)
6095 bool packed_p
= false;
6099 switch (TREE_CODE (exp
))
6103 tree field
= TREE_OPERAND (exp
, 1);
6104 packed_p
= DECL_PACKED (field
)
6105 || TYPE_PACKED (TREE_TYPE (field
))
6106 || TYPE_PACKED (TREE_TYPE (exp
));
6114 case ARRAY_RANGE_REF
:
6117 case VIEW_CONVERT_EXPR
:
6123 exp
= TREE_OPERAND (exp
, 0);
6129 /* Return a tree of sizetype representing the size, in bytes, of the element
6130 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6133 array_ref_element_size (tree exp
)
6135 tree aligned_size
= TREE_OPERAND (exp
, 3);
6136 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6138 /* If a size was specified in the ARRAY_REF, it's the size measured
6139 in alignment units of the element type. So multiply by that value. */
6142 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6143 sizetype from another type of the same width and signedness. */
6144 if (TREE_TYPE (aligned_size
) != sizetype
)
6145 aligned_size
= fold_convert (sizetype
, aligned_size
);
6146 return size_binop (MULT_EXPR
, aligned_size
,
6147 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6150 /* Otherwise, take the size from that of the element type. Substitute
6151 any PLACEHOLDER_EXPR that we have. */
6153 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6156 /* Return a tree representing the lower bound of the array mentioned in
6157 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6160 array_ref_low_bound (tree exp
)
6162 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6164 /* If a lower bound is specified in EXP, use it. */
6165 if (TREE_OPERAND (exp
, 2))
6166 return TREE_OPERAND (exp
, 2);
6168 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6169 substituting for a PLACEHOLDER_EXPR as needed. */
6170 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6171 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6173 /* Otherwise, return a zero of the appropriate type. */
6174 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6177 /* Return a tree representing the upper bound of the array mentioned in
6178 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6181 array_ref_up_bound (tree exp
)
6183 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6185 /* If there is a domain type and it has an upper bound, use it, substituting
6186 for a PLACEHOLDER_EXPR as needed. */
6187 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6188 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6190 /* Otherwise fail. */
6194 /* Return a tree representing the offset, in bytes, of the field referenced
6195 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6198 component_ref_field_offset (tree exp
)
6200 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6201 tree field
= TREE_OPERAND (exp
, 1);
6203 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6204 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6208 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6209 sizetype from another type of the same width and signedness. */
6210 if (TREE_TYPE (aligned_offset
) != sizetype
)
6211 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
6212 return size_binop (MULT_EXPR
, aligned_offset
,
6213 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
6216 /* Otherwise, take the offset from that of the field. Substitute
6217 any PLACEHOLDER_EXPR that we have. */
6219 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
6222 /* Return 1 if T is an expression that get_inner_reference handles. */
6225 handled_component_p (const_tree t
)
6227 switch (TREE_CODE (t
))
6232 case ARRAY_RANGE_REF
:
6233 case VIEW_CONVERT_EXPR
:
6243 /* Given an rtx VALUE that may contain additions and multiplications, return
6244 an equivalent value that just refers to a register, memory, or constant.
6245 This is done by generating instructions to perform the arithmetic and
6246 returning a pseudo-register containing the value.
6248 The returned value may be a REG, SUBREG, MEM or constant. */
6251 force_operand (rtx value
, rtx target
)
6254 /* Use subtarget as the target for operand 0 of a binary operation. */
6255 rtx subtarget
= get_subtarget (target
);
6256 enum rtx_code code
= GET_CODE (value
);
6258 /* Check for subreg applied to an expression produced by loop optimizer. */
6260 && !REG_P (SUBREG_REG (value
))
6261 && !MEM_P (SUBREG_REG (value
)))
6264 = simplify_gen_subreg (GET_MODE (value
),
6265 force_reg (GET_MODE (SUBREG_REG (value
)),
6266 force_operand (SUBREG_REG (value
),
6268 GET_MODE (SUBREG_REG (value
)),
6269 SUBREG_BYTE (value
));
6270 code
= GET_CODE (value
);
6273 /* Check for a PIC address load. */
6274 if ((code
== PLUS
|| code
== MINUS
)
6275 && XEXP (value
, 0) == pic_offset_table_rtx
6276 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
6277 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
6278 || GET_CODE (XEXP (value
, 1)) == CONST
))
6281 subtarget
= gen_reg_rtx (GET_MODE (value
));
6282 emit_move_insn (subtarget
, value
);
6286 if (ARITHMETIC_P (value
))
6288 op2
= XEXP (value
, 1);
6289 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
6291 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
6294 op2
= negate_rtx (GET_MODE (value
), op2
);
6297 /* Check for an addition with OP2 a constant integer and our first
6298 operand a PLUS of a virtual register and something else. In that
6299 case, we want to emit the sum of the virtual register and the
6300 constant first and then add the other value. This allows virtual
6301 register instantiation to simply modify the constant rather than
6302 creating another one around this addition. */
6303 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
6304 && GET_CODE (XEXP (value
, 0)) == PLUS
6305 && REG_P (XEXP (XEXP (value
, 0), 0))
6306 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6307 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
6309 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6310 XEXP (XEXP (value
, 0), 0), op2
,
6311 subtarget
, 0, OPTAB_LIB_WIDEN
);
6312 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6313 force_operand (XEXP (XEXP (value
,
6315 target
, 0, OPTAB_LIB_WIDEN
);
6318 op1
= force_operand (XEXP (value
, 0), subtarget
);
6319 op2
= force_operand (op2
, NULL_RTX
);
6323 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
6325 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
6326 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6327 target
, 1, OPTAB_LIB_WIDEN
);
6329 return expand_divmod (0,
6330 FLOAT_MODE_P (GET_MODE (value
))
6331 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
6332 GET_MODE (value
), op1
, op2
, target
, 0);
6334 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6337 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
6340 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6343 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6344 target
, 0, OPTAB_LIB_WIDEN
);
6346 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6347 target
, 1, OPTAB_LIB_WIDEN
);
6350 if (UNARY_P (value
))
6353 target
= gen_reg_rtx (GET_MODE (value
));
6354 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
6361 case FLOAT_TRUNCATE
:
6362 convert_move (target
, op1
, code
== ZERO_EXTEND
);
6367 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
6371 case UNSIGNED_FLOAT
:
6372 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
6376 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
6380 #ifdef INSN_SCHEDULING
6381 /* On machines that have insn scheduling, we want all memory reference to be
6382 explicit, so we need to deal with such paradoxical SUBREGs. */
6383 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
6384 && (GET_MODE_SIZE (GET_MODE (value
))
6385 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
6387 = simplify_gen_subreg (GET_MODE (value
),
6388 force_reg (GET_MODE (SUBREG_REG (value
)),
6389 force_operand (SUBREG_REG (value
),
6391 GET_MODE (SUBREG_REG (value
)),
6392 SUBREG_BYTE (value
));
6398 /* Subroutine of expand_expr: return nonzero iff there is no way that
6399 EXP can reference X, which is being modified. TOP_P is nonzero if this
6400 call is going to be used to determine whether we need a temporary
6401 for EXP, as opposed to a recursive call to this function.
6403 It is always safe for this routine to return zero since it merely
6404 searches for optimization opportunities. */
6407 safe_from_p (const_rtx x
, tree exp
, int top_p
)
6413 /* If EXP has varying size, we MUST use a target since we currently
6414 have no way of allocating temporaries of variable size
6415 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6416 So we assume here that something at a higher level has prevented a
6417 clash. This is somewhat bogus, but the best we can do. Only
6418 do this when X is BLKmode and when we are at the top level. */
6419 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
6420 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
6421 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
6422 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
6423 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
6425 && GET_MODE (x
) == BLKmode
)
6426 /* If X is in the outgoing argument area, it is always safe. */
6428 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
6429 || (GET_CODE (XEXP (x
, 0)) == PLUS
6430 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
6433 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6434 find the underlying pseudo. */
6435 if (GET_CODE (x
) == SUBREG
)
6438 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6442 /* Now look at our tree code and possibly recurse. */
6443 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
6445 case tcc_declaration
:
6446 exp_rtl
= DECL_RTL_IF_SET (exp
);
6452 case tcc_exceptional
:
6453 if (TREE_CODE (exp
) == TREE_LIST
)
6457 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
6459 exp
= TREE_CHAIN (exp
);
6462 if (TREE_CODE (exp
) != TREE_LIST
)
6463 return safe_from_p (x
, exp
, 0);
6466 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
6468 constructor_elt
*ce
;
6469 unsigned HOST_WIDE_INT idx
;
6472 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
6474 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
6475 || !safe_from_p (x
, ce
->value
, 0))
6479 else if (TREE_CODE (exp
) == ERROR_MARK
)
6480 return 1; /* An already-visited SAVE_EXPR? */
6485 /* The only case we look at here is the DECL_INITIAL inside a
6487 return (TREE_CODE (exp
) != DECL_EXPR
6488 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
6489 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
6490 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
6493 case tcc_comparison
:
6494 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
6499 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6501 case tcc_expression
:
6504 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6505 the expression. If it is set, we conflict iff we are that rtx or
6506 both are in memory. Otherwise, we check all operands of the
6507 expression recursively. */
6509 switch (TREE_CODE (exp
))
6512 /* If the operand is static or we are static, we can't conflict.
6513 Likewise if we don't conflict with the operand at all. */
6514 if (staticp (TREE_OPERAND (exp
, 0))
6515 || TREE_STATIC (exp
)
6516 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
6519 /* Otherwise, the only way this can conflict is if we are taking
6520 the address of a DECL a that address if part of X, which is
6522 exp
= TREE_OPERAND (exp
, 0);
6525 if (!DECL_RTL_SET_P (exp
)
6526 || !MEM_P (DECL_RTL (exp
)))
6529 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
6533 case MISALIGNED_INDIRECT_REF
:
6534 case ALIGN_INDIRECT_REF
:
6537 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
6538 get_alias_set (exp
)))
6543 /* Assume that the call will clobber all hard registers and
6545 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6550 case WITH_CLEANUP_EXPR
:
6551 case CLEANUP_POINT_EXPR
:
6552 /* Lowered by gimplify.c. */
6556 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6562 /* If we have an rtx, we do not need to scan our operands. */
6566 nops
= TREE_OPERAND_LENGTH (exp
);
6567 for (i
= 0; i
< nops
; i
++)
6568 if (TREE_OPERAND (exp
, i
) != 0
6569 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
6575 /* Should never get a type here. */
6579 /* If we have an rtl, find any enclosed object. Then see if we conflict
6583 if (GET_CODE (exp_rtl
) == SUBREG
)
6585 exp_rtl
= SUBREG_REG (exp_rtl
);
6587 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
6591 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6592 are memory and they conflict. */
6593 return ! (rtx_equal_p (x
, exp_rtl
)
6594 || (MEM_P (x
) && MEM_P (exp_rtl
)
6595 && true_dependence (exp_rtl
, VOIDmode
, x
,
6596 rtx_addr_varies_p
)));
6599 /* If we reach here, it is safe. */
6604 /* Return the highest power of two that EXP is known to be a multiple of.
6605 This is used in updating alignment of MEMs in array references. */
6607 unsigned HOST_WIDE_INT
6608 highest_pow2_factor (const_tree exp
)
6610 unsigned HOST_WIDE_INT c0
, c1
;
6612 switch (TREE_CODE (exp
))
6615 /* We can find the lowest bit that's a one. If the low
6616 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6617 We need to handle this case since we can find it in a COND_EXPR,
6618 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6619 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6621 if (TREE_OVERFLOW (exp
))
6622 return BIGGEST_ALIGNMENT
;
6625 /* Note: tree_low_cst is intentionally not used here,
6626 we don't care about the upper bits. */
6627 c0
= TREE_INT_CST_LOW (exp
);
6629 return c0
? c0
: BIGGEST_ALIGNMENT
;
6633 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6634 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6635 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6636 return MIN (c0
, c1
);
6639 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6640 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6643 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6645 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6646 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6648 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6649 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6650 return MAX (1, c0
/ c1
);
6655 /* The highest power of two of a bit-and expression is the maximum of
6656 that of its operands. We typically get here for a complex LHS and
6657 a constant negative power of two on the RHS to force an explicit
6658 alignment, so don't bother looking at the LHS. */
6659 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6663 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6666 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6669 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6670 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6671 return MIN (c0
, c1
);
6680 /* Similar, except that the alignment requirements of TARGET are
6681 taken into account. Assume it is at least as aligned as its
6682 type, unless it is a COMPONENT_REF in which case the layout of
6683 the structure gives the alignment. */
6685 static unsigned HOST_WIDE_INT
6686 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
6688 unsigned HOST_WIDE_INT target_align
, factor
;
6690 factor
= highest_pow2_factor (exp
);
6691 if (TREE_CODE (target
) == COMPONENT_REF
)
6692 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6694 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6695 return MAX (factor
, target_align
);
6698 /* Return &VAR expression for emulated thread local VAR. */
6701 emutls_var_address (tree var
)
6703 tree emuvar
= emutls_decl (var
);
6704 tree fn
= built_in_decls
[BUILT_IN_EMUTLS_GET_ADDRESS
];
6705 tree arg
= build_fold_addr_expr_with_type (emuvar
, ptr_type_node
);
6706 tree arglist
= build_tree_list (NULL_TREE
, arg
);
6707 tree call
= build_function_call_expr (fn
, arglist
);
6708 return fold_convert (build_pointer_type (TREE_TYPE (var
)), call
);
6712 /* Subroutine of expand_expr. Expand the two operands of a binary
6713 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6714 The value may be stored in TARGET if TARGET is nonzero. The
6715 MODIFIER argument is as documented by expand_expr. */
6718 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6719 enum expand_modifier modifier
)
6721 if (! safe_from_p (target
, exp1
, 1))
6723 if (operand_equal_p (exp0
, exp1
, 0))
6725 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6726 *op1
= copy_rtx (*op0
);
6730 /* If we need to preserve evaluation order, copy exp0 into its own
6731 temporary variable so that it can't be clobbered by exp1. */
6732 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6733 exp0
= save_expr (exp0
);
6734 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6735 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6740 /* Return a MEM that contains constant EXP. DEFER is as for
6741 output_constant_def and MODIFIER is as for expand_expr. */
6744 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
6748 mem
= output_constant_def (exp
, defer
);
6749 if (modifier
!= EXPAND_INITIALIZER
)
6750 mem
= use_anchored_address (mem
);
6754 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6755 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6758 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6759 enum expand_modifier modifier
)
6761 rtx result
, subtarget
;
6763 HOST_WIDE_INT bitsize
, bitpos
;
6764 int volatilep
, unsignedp
;
6765 enum machine_mode mode1
;
6767 /* If we are taking the address of a constant and are at the top level,
6768 we have to use output_constant_def since we can't call force_const_mem
6770 /* ??? This should be considered a front-end bug. We should not be
6771 generating ADDR_EXPR of something that isn't an LVALUE. The only
6772 exception here is STRING_CST. */
6773 if (CONSTANT_CLASS_P (exp
))
6774 return XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
6776 /* Everything must be something allowed by is_gimple_addressable. */
6777 switch (TREE_CODE (exp
))
6780 /* This case will happen via recursion for &a->b. */
6781 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
6784 /* Recurse and make the output_constant_def clause above handle this. */
6785 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6789 /* The real part of the complex number is always first, therefore
6790 the address is the same as the address of the parent object. */
6793 inner
= TREE_OPERAND (exp
, 0);
6797 /* The imaginary part of the complex number is always second.
6798 The expression is therefore always offset by the size of the
6801 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6802 inner
= TREE_OPERAND (exp
, 0);
6806 /* TLS emulation hook - replace __thread VAR's &VAR with
6807 __emutls_get_address (&_emutls.VAR). */
6808 if (! targetm
.have_tls
6809 && TREE_CODE (exp
) == VAR_DECL
6810 && DECL_THREAD_LOCAL_P (exp
))
6812 exp
= emutls_var_address (exp
);
6813 return expand_expr (exp
, target
, tmode
, modifier
);
6818 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6819 expand_expr, as that can have various side effects; LABEL_DECLs for
6820 example, may not have their DECL_RTL set yet. Expand the rtl of
6821 CONSTRUCTORs too, which should yield a memory reference for the
6822 constructor's contents. Assume language specific tree nodes can
6823 be expanded in some interesting way. */
6824 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
6826 || TREE_CODE (exp
) == CONSTRUCTOR
6827 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
6829 result
= expand_expr (exp
, target
, tmode
,
6830 modifier
== EXPAND_INITIALIZER
6831 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6833 /* If the DECL isn't in memory, then the DECL wasn't properly
6834 marked TREE_ADDRESSABLE, which will be either a front-end
6835 or a tree optimizer bug. */
6836 gcc_assert (MEM_P (result
));
6837 result
= XEXP (result
, 0);
6839 /* ??? Is this needed anymore? */
6840 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6842 assemble_external (exp
);
6843 TREE_USED (exp
) = 1;
6846 if (modifier
!= EXPAND_INITIALIZER
6847 && modifier
!= EXPAND_CONST_ADDRESS
)
6848 result
= force_operand (result
, target
);
6852 /* Pass FALSE as the last argument to get_inner_reference although
6853 we are expanding to RTL. The rationale is that we know how to
6854 handle "aligning nodes" here: we can just bypass them because
6855 they won't change the final object whose address will be returned
6856 (they actually exist only for that purpose). */
6857 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6858 &mode1
, &unsignedp
, &volatilep
, false);
6862 /* We must have made progress. */
6863 gcc_assert (inner
!= exp
);
6865 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6866 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6867 inner alignment, force the inner to be sufficiently aligned. */
6868 if (CONSTANT_CLASS_P (inner
)
6869 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
6871 inner
= copy_node (inner
);
6872 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
6873 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
6874 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
6876 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6882 if (modifier
!= EXPAND_NORMAL
)
6883 result
= force_operand (result
, NULL
);
6884 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
6885 modifier
== EXPAND_INITIALIZER
6886 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
6888 result
= convert_memory_address (tmode
, result
);
6889 tmp
= convert_memory_address (tmode
, tmp
);
6891 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
6892 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6895 subtarget
= bitpos
? NULL_RTX
: target
;
6896 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6897 1, OPTAB_LIB_WIDEN
);
6903 /* Someone beforehand should have rejected taking the address
6904 of such an object. */
6905 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6907 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6908 if (modifier
< EXPAND_SUM
)
6909 result
= force_operand (result
, target
);
6915 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6916 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6919 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6920 enum expand_modifier modifier
)
6922 enum machine_mode rmode
;
6925 /* Target mode of VOIDmode says "whatever's natural". */
6926 if (tmode
== VOIDmode
)
6927 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6929 /* We can get called with some Weird Things if the user does silliness
6930 like "(short) &a". In that case, convert_memory_address won't do
6931 the right thing, so ignore the given target mode. */
6932 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6935 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6938 /* Despite expand_expr claims concerning ignoring TMODE when not
6939 strictly convenient, stuff breaks if we don't honor it. Note
6940 that combined with the above, we only do this for pointer modes. */
6941 rmode
= GET_MODE (result
);
6942 if (rmode
== VOIDmode
)
6945 result
= convert_memory_address (tmode
, result
);
6950 /* Generate code for computing CONSTRUCTOR EXP.
6951 An rtx for the computed value is returned. If AVOID_TEMP_MEM
6952 is TRUE, instead of creating a temporary variable in memory
6953 NULL is returned and the caller needs to handle it differently. */
6956 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
6957 bool avoid_temp_mem
)
6959 tree type
= TREE_TYPE (exp
);
6960 enum machine_mode mode
= TYPE_MODE (type
);
6962 /* Try to avoid creating a temporary at all. This is possible
6963 if all of the initializer is zero.
6964 FIXME: try to handle all [0..255] initializers we can handle
6966 if (TREE_STATIC (exp
)
6967 && !TREE_ADDRESSABLE (exp
)
6968 && target
!= 0 && mode
== BLKmode
6969 && all_zeros_p (exp
))
6971 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
6975 /* All elts simple constants => refer to a constant in memory. But
6976 if this is a non-BLKmode mode, let it store a field at a time
6977 since that should make a CONST_INT or CONST_DOUBLE when we
6978 fold. Likewise, if we have a target we can use, it is best to
6979 store directly into the target unless the type is large enough
6980 that memcpy will be used. If we are making an initializer and
6981 all operands are constant, put it in memory as well.
6983 FIXME: Avoid trying to fill vector constructors piece-meal.
6984 Output them with output_constant_def below unless we're sure
6985 they're zeros. This should go away when vector initializers
6986 are treated like VECTOR_CST instead of arrays. */
6987 if ((TREE_STATIC (exp
)
6988 && ((mode
== BLKmode
6989 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6990 || TREE_ADDRESSABLE (exp
)
6991 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6992 && (! MOVE_BY_PIECES_P
6993 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6995 && ! mostly_zeros_p (exp
))))
6996 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
6997 && TREE_CONSTANT (exp
)))
7004 constructor
= expand_expr_constant (exp
, 1, modifier
);
7006 if (modifier
!= EXPAND_CONST_ADDRESS
7007 && modifier
!= EXPAND_INITIALIZER
7008 && modifier
!= EXPAND_SUM
)
7009 constructor
= validize_mem (constructor
);
7014 /* Handle calls that pass values in multiple non-contiguous
7015 locations. The Irix 6 ABI has examples of this. */
7016 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7017 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7023 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7024 | (TREE_READONLY (exp
)
7025 * TYPE_QUAL_CONST
))),
7026 0, TREE_ADDRESSABLE (exp
), 1);
7029 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7034 /* expand_expr: generate code for computing expression EXP.
7035 An rtx for the computed value is returned. The value is never null.
7036 In the case of a void EXP, const0_rtx is returned.
7038 The value may be stored in TARGET if TARGET is nonzero.
7039 TARGET is just a suggestion; callers must assume that
7040 the rtx returned may not be the same as TARGET.
7042 If TARGET is CONST0_RTX, it means that the value will be ignored.
7044 If TMODE is not VOIDmode, it suggests generating the
7045 result in mode TMODE. But this is done only when convenient.
7046 Otherwise, TMODE is ignored and the value generated in its natural mode.
7047 TMODE is just a suggestion; callers must assume that
7048 the rtx returned may not have mode TMODE.
7050 Note that TARGET may have neither TMODE nor MODE. In that case, it
7051 probably will not be used.
7053 If MODIFIER is EXPAND_SUM then when EXP is an addition
7054 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7055 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7056 products as above, or REG or MEM, or constant.
7057 Ordinarily in such cases we would output mul or add instructions
7058 and then return a pseudo reg containing the sum.
7060 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7061 it also marks a label as absolutely required (it can't be dead).
7062 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7063 This is used for outputting expressions used in initializers.
7065 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7066 with a constant address even if that address is not normally legitimate.
7067 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7069 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7070 a call parameter. Such targets require special care as we haven't yet
7071 marked TARGET so that it's safe from being trashed by libcalls. We
7072 don't want to use TARGET for anything but the final result;
7073 Intermediate values must go elsewhere. Additionally, calls to
7074 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7076 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7077 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7078 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7079 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7082 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
7083 enum expand_modifier
, rtx
*);
7086 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7087 enum expand_modifier modifier
, rtx
*alt_rtl
)
7090 rtx ret
, last
= NULL
;
7092 /* Handle ERROR_MARK before anybody tries to access its type. */
7093 if (TREE_CODE (exp
) == ERROR_MARK
7094 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7096 ret
= CONST0_RTX (tmode
);
7097 return ret
? ret
: const0_rtx
;
7100 if (flag_non_call_exceptions
)
7102 rn
= lookup_expr_eh_region (exp
);
7104 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7106 last
= get_last_insn ();
7109 /* If this is an expression of some kind and it has an associated line
7110 number, then emit the line number before expanding the expression.
7112 We need to save and restore the file and line information so that
7113 errors discovered during expansion are emitted with the right
7114 information. It would be better of the diagnostic routines
7115 used the file/line information embedded in the tree nodes rather
7117 if (cfun
&& EXPR_HAS_LOCATION (exp
))
7119 location_t saved_location
= input_location
;
7120 input_location
= EXPR_LOCATION (exp
);
7121 set_curr_insn_source_location (input_location
);
7123 /* Record where the insns produced belong. */
7124 set_curr_insn_block (TREE_BLOCK (exp
));
7126 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7128 input_location
= saved_location
;
7132 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7135 /* If using non-call exceptions, mark all insns that may trap.
7136 expand_call() will mark CALL_INSNs before we get to this code,
7137 but it doesn't handle libcalls, and these may trap. */
7141 for (insn
= next_real_insn (last
); insn
;
7142 insn
= next_real_insn (insn
))
7144 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
7145 /* If we want exceptions for non-call insns, any
7146 may_trap_p instruction may throw. */
7147 && GET_CODE (PATTERN (insn
)) != CLOBBER
7148 && GET_CODE (PATTERN (insn
)) != USE
7149 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
7150 add_reg_note (insn
, REG_EH_REGION
, GEN_INT (rn
));
7158 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7159 enum expand_modifier modifier
, rtx
*alt_rtl
)
7161 rtx op0
, op1
, op2
, temp
, decl_rtl
;
7164 enum machine_mode mode
;
7165 enum tree_code code
= TREE_CODE (exp
);
7167 rtx subtarget
, original_target
;
7169 tree context
, subexp0
, subexp1
;
7170 bool reduce_bit_field
;
7171 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7172 ? reduce_to_bit_field_precision ((expr), \
7177 type
= TREE_TYPE (exp
);
7178 mode
= TYPE_MODE (type
);
7179 unsignedp
= TYPE_UNSIGNED (type
);
7181 ignore
= (target
== const0_rtx
7182 || ((CONVERT_EXPR_CODE_P (code
)
7183 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
7184 && TREE_CODE (type
) == VOID_TYPE
));
7186 /* An operation in what may be a bit-field type needs the
7187 result to be reduced to the precision of the bit-field type,
7188 which is narrower than that of the type's mode. */
7189 reduce_bit_field
= (!ignore
7190 && TREE_CODE (type
) == INTEGER_TYPE
7191 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
7193 /* If we are going to ignore this result, we need only do something
7194 if there is a side-effect somewhere in the expression. If there
7195 is, short-circuit the most common cases here. Note that we must
7196 not call expand_expr with anything but const0_rtx in case this
7197 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7201 if (! TREE_SIDE_EFFECTS (exp
))
7204 /* Ensure we reference a volatile object even if value is ignored, but
7205 don't do this if all we are doing is taking its address. */
7206 if (TREE_THIS_VOLATILE (exp
)
7207 && TREE_CODE (exp
) != FUNCTION_DECL
7208 && mode
!= VOIDmode
&& mode
!= BLKmode
7209 && modifier
!= EXPAND_CONST_ADDRESS
)
7211 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
7213 temp
= copy_to_reg (temp
);
7217 if (TREE_CODE_CLASS (code
) == tcc_unary
7218 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
7219 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
7222 else if (TREE_CODE_CLASS (code
) == tcc_binary
7223 || TREE_CODE_CLASS (code
) == tcc_comparison
7224 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
7226 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
7227 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
7230 else if (code
== BIT_FIELD_REF
)
7232 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
7233 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
7234 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
7241 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
7244 /* Use subtarget as the target for operand 0 of a binary operation. */
7245 subtarget
= get_subtarget (target
);
7246 original_target
= target
;
7252 tree function
= decl_function_context (exp
);
7254 temp
= label_rtx (exp
);
7255 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
7257 if (function
!= current_function_decl
7259 LABEL_REF_NONLOCAL_P (temp
) = 1;
7261 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
7266 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
7271 /* If a static var's type was incomplete when the decl was written,
7272 but the type is complete now, lay out the decl now. */
7273 if (DECL_SIZE (exp
) == 0
7274 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
7275 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
7276 layout_decl (exp
, 0);
7278 /* TLS emulation hook - replace __thread vars with
7279 *__emutls_get_address (&_emutls.var). */
7280 if (! targetm
.have_tls
7281 && TREE_CODE (exp
) == VAR_DECL
7282 && DECL_THREAD_LOCAL_P (exp
))
7284 exp
= build_fold_indirect_ref (emutls_var_address (exp
));
7285 return expand_expr_real_1 (exp
, target
, tmode
, modifier
, NULL
);
7288 /* ... fall through ... */
7292 decl_rtl
= DECL_RTL (exp
);
7293 gcc_assert (decl_rtl
);
7294 decl_rtl
= copy_rtx (decl_rtl
);
7296 /* Ensure variable marked as used even if it doesn't go through
7297 a parser. If it hasn't be used yet, write out an external
7299 if (! TREE_USED (exp
))
7301 assemble_external (exp
);
7302 TREE_USED (exp
) = 1;
7305 /* Show we haven't gotten RTL for this yet. */
7308 /* Variables inherited from containing functions should have
7309 been lowered by this point. */
7310 context
= decl_function_context (exp
);
7311 gcc_assert (!context
7312 || context
== current_function_decl
7313 || TREE_STATIC (exp
)
7314 /* ??? C++ creates functions that are not TREE_STATIC. */
7315 || TREE_CODE (exp
) == FUNCTION_DECL
);
7317 /* This is the case of an array whose size is to be determined
7318 from its initializer, while the initializer is still being parsed.
7321 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
7322 temp
= validize_mem (decl_rtl
);
7324 /* If DECL_RTL is memory, we are in the normal case and the
7325 address is not valid, get the address into a register. */
7327 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
7330 *alt_rtl
= decl_rtl
;
7331 decl_rtl
= use_anchored_address (decl_rtl
);
7332 if (modifier
!= EXPAND_CONST_ADDRESS
7333 && modifier
!= EXPAND_SUM
7334 && !memory_address_p (DECL_MODE (exp
), XEXP (decl_rtl
, 0)))
7335 temp
= replace_equiv_address (decl_rtl
,
7336 copy_rtx (XEXP (decl_rtl
, 0)));
7339 /* If we got something, return it. But first, set the alignment
7340 if the address is a register. */
7343 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
7344 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
7349 /* If the mode of DECL_RTL does not match that of the decl, it
7350 must be a promoted value. We return a SUBREG of the wanted mode,
7351 but mark it so that we know that it was already extended. */
7353 if (REG_P (decl_rtl
)
7354 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
7356 enum machine_mode pmode
;
7358 /* Get the signedness used for this variable. Ensure we get the
7359 same mode we got when the variable was declared. */
7360 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
7361 (TREE_CODE (exp
) == RESULT_DECL
7362 || TREE_CODE (exp
) == PARM_DECL
) ? 1 : 0);
7363 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
7365 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
7366 SUBREG_PROMOTED_VAR_P (temp
) = 1;
7367 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
7374 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
7375 TREE_INT_CST_HIGH (exp
), mode
);
7381 tree tmp
= NULL_TREE
;
7382 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
7383 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
7384 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
7385 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
7386 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
7387 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
7388 return const_vector_from_tree (exp
);
7389 if (GET_MODE_CLASS (mode
) == MODE_INT
)
7391 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
7393 tmp
= fold_unary (VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
7396 tmp
= build_constructor_from_list (type
,
7397 TREE_VECTOR_CST_ELTS (exp
));
7398 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
7403 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
7406 /* If optimized, generate immediate CONST_DOUBLE
7407 which will be turned into memory by reload if necessary.
7409 We used to force a register so that loop.c could see it. But
7410 this does not allow gen_* patterns to perform optimizations with
7411 the constants. It also produces two insns in cases like "x = 1.0;".
7412 On most machines, floating-point constants are not permitted in
7413 many insns, so we'd end up copying it to a register in any case.
7415 Now, we do the copying in expand_binop, if appropriate. */
7416 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
7417 TYPE_MODE (TREE_TYPE (exp
)));
7420 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
7421 TYPE_MODE (TREE_TYPE (exp
)));
7424 /* Handle evaluating a complex constant in a CONCAT target. */
7425 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
7427 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
7430 rtarg
= XEXP (original_target
, 0);
7431 itarg
= XEXP (original_target
, 1);
7433 /* Move the real and imaginary parts separately. */
7434 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
7435 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
7438 emit_move_insn (rtarg
, op0
);
7440 emit_move_insn (itarg
, op1
);
7442 return original_target
;
7445 /* ... fall through ... */
7448 temp
= expand_expr_constant (exp
, 1, modifier
);
7450 /* temp contains a constant address.
7451 On RISC machines where a constant address isn't valid,
7452 make some insns to get that address into a register. */
7453 if (modifier
!= EXPAND_CONST_ADDRESS
7454 && modifier
!= EXPAND_INITIALIZER
7455 && modifier
!= EXPAND_SUM
7456 && ! memory_address_p (mode
, XEXP (temp
, 0)))
7457 return replace_equiv_address (temp
,
7458 copy_rtx (XEXP (temp
, 0)));
7463 tree val
= TREE_OPERAND (exp
, 0);
7464 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
7466 if (!SAVE_EXPR_RESOLVED_P (exp
))
7468 /* We can indeed still hit this case, typically via builtin
7469 expanders calling save_expr immediately before expanding
7470 something. Assume this means that we only have to deal
7471 with non-BLKmode values. */
7472 gcc_assert (GET_MODE (ret
) != BLKmode
);
7474 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
7475 DECL_ARTIFICIAL (val
) = 1;
7476 DECL_IGNORED_P (val
) = 1;
7477 TREE_OPERAND (exp
, 0) = val
;
7478 SAVE_EXPR_RESOLVED_P (exp
) = 1;
7480 if (!CONSTANT_P (ret
))
7481 ret
= copy_to_reg (ret
);
7482 SET_DECL_RTL (val
, ret
);
7489 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
7490 expand_goto (TREE_OPERAND (exp
, 0));
7492 expand_computed_goto (TREE_OPERAND (exp
, 0));
7496 /* If we don't need the result, just ensure we evaluate any
7500 unsigned HOST_WIDE_INT idx
;
7503 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
7504 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
7509 return expand_constructor (exp
, target
, modifier
, false);
7511 case MISALIGNED_INDIRECT_REF
:
7512 case ALIGN_INDIRECT_REF
:
7515 tree exp1
= TREE_OPERAND (exp
, 0);
7517 if (modifier
!= EXPAND_WRITE
)
7521 t
= fold_read_from_constant_string (exp
);
7523 return expand_expr (t
, target
, tmode
, modifier
);
7526 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
7527 op0
= memory_address (mode
, op0
);
7529 if (code
== ALIGN_INDIRECT_REF
)
7531 int align
= TYPE_ALIGN_UNIT (type
);
7532 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
7533 op0
= memory_address (mode
, op0
);
7536 temp
= gen_rtx_MEM (mode
, op0
);
7538 set_mem_attributes (temp
, exp
, 0);
7540 /* Resolve the misalignment now, so that we don't have to remember
7541 to resolve it later. Of course, this only works for reads. */
7542 /* ??? When we get around to supporting writes, we'll have to handle
7543 this in store_expr directly. The vectorizer isn't generating
7544 those yet, however. */
7545 if (code
== MISALIGNED_INDIRECT_REF
)
7550 gcc_assert (modifier
== EXPAND_NORMAL
7551 || modifier
== EXPAND_STACK_PARM
);
7553 /* The vectorizer should have already checked the mode. */
7554 icode
= optab_handler (movmisalign_optab
, mode
)->insn_code
;
7555 gcc_assert (icode
!= CODE_FOR_nothing
);
7557 /* We've already validated the memory, and we're creating a
7558 new pseudo destination. The predicates really can't fail. */
7559 reg
= gen_reg_rtx (mode
);
7561 /* Nor can the insn generator. */
7562 insn
= GEN_FCN (icode
) (reg
, temp
);
7571 case TARGET_MEM_REF
:
7573 struct mem_address addr
;
7575 get_address_description (exp
, &addr
);
7576 op0
= addr_for_mem_ref (&addr
, true);
7577 op0
= memory_address (mode
, op0
);
7578 temp
= gen_rtx_MEM (mode
, op0
);
7579 set_mem_attributes (temp
, TMR_ORIGINAL (exp
), 0);
7586 tree array
= TREE_OPERAND (exp
, 0);
7587 tree index
= TREE_OPERAND (exp
, 1);
7589 /* Fold an expression like: "foo"[2].
7590 This is not done in fold so it won't happen inside &.
7591 Don't fold if this is for wide characters since it's too
7592 difficult to do correctly and this is a very rare case. */
7594 if (modifier
!= EXPAND_CONST_ADDRESS
7595 && modifier
!= EXPAND_INITIALIZER
7596 && modifier
!= EXPAND_MEMORY
)
7598 tree t
= fold_read_from_constant_string (exp
);
7601 return expand_expr (t
, target
, tmode
, modifier
);
7604 /* If this is a constant index into a constant array,
7605 just get the value from the array. Handle both the cases when
7606 we have an explicit constructor and when our operand is a variable
7607 that was declared const. */
7609 if (modifier
!= EXPAND_CONST_ADDRESS
7610 && modifier
!= EXPAND_INITIALIZER
7611 && modifier
!= EXPAND_MEMORY
7612 && TREE_CODE (array
) == CONSTRUCTOR
7613 && ! TREE_SIDE_EFFECTS (array
)
7614 && TREE_CODE (index
) == INTEGER_CST
)
7616 unsigned HOST_WIDE_INT ix
;
7619 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
7621 if (tree_int_cst_equal (field
, index
))
7623 if (!TREE_SIDE_EFFECTS (value
))
7624 return expand_expr (fold (value
), target
, tmode
, modifier
);
7629 else if (optimize
>= 1
7630 && modifier
!= EXPAND_CONST_ADDRESS
7631 && modifier
!= EXPAND_INITIALIZER
7632 && modifier
!= EXPAND_MEMORY
7633 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
7634 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
7635 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
7636 && targetm
.binds_local_p (array
))
7638 if (TREE_CODE (index
) == INTEGER_CST
)
7640 tree init
= DECL_INITIAL (array
);
7642 if (TREE_CODE (init
) == CONSTRUCTOR
)
7644 unsigned HOST_WIDE_INT ix
;
7647 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
7649 if (tree_int_cst_equal (field
, index
))
7651 if (TREE_SIDE_EFFECTS (value
))
7654 if (TREE_CODE (value
) == CONSTRUCTOR
)
7656 /* If VALUE is a CONSTRUCTOR, this
7657 optimization is only useful if
7658 this doesn't store the CONSTRUCTOR
7659 into memory. If it does, it is more
7660 efficient to just load the data from
7661 the array directly. */
7662 rtx ret
= expand_constructor (value
, target
,
7664 if (ret
== NULL_RTX
)
7668 return expand_expr (fold (value
), target
, tmode
,
7672 else if(TREE_CODE (init
) == STRING_CST
)
7674 tree index1
= index
;
7675 tree low_bound
= array_ref_low_bound (exp
);
7676 index1
= fold_convert (sizetype
, TREE_OPERAND (exp
, 1));
7678 /* Optimize the special-case of a zero lower bound.
7680 We convert the low_bound to sizetype to avoid some problems
7681 with constant folding. (E.g. suppose the lower bound is 1,
7682 and its mode is QI. Without the conversion,l (ARRAY
7683 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7684 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7686 if (! integer_zerop (low_bound
))
7687 index1
= size_diffop (index1
, fold_convert (sizetype
,
7690 if (0 > compare_tree_int (index1
,
7691 TREE_STRING_LENGTH (init
)))
7693 tree type
= TREE_TYPE (TREE_TYPE (init
));
7694 enum machine_mode mode
= TYPE_MODE (type
);
7696 if (GET_MODE_CLASS (mode
) == MODE_INT
7697 && GET_MODE_SIZE (mode
) == 1)
7698 return gen_int_mode (TREE_STRING_POINTER (init
)
7699 [TREE_INT_CST_LOW (index1
)],
7706 goto normal_inner_ref
;
7709 /* If the operand is a CONSTRUCTOR, we can just extract the
7710 appropriate field if it is present. */
7711 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7713 unsigned HOST_WIDE_INT idx
;
7716 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
7718 if (field
== TREE_OPERAND (exp
, 1)
7719 /* We can normally use the value of the field in the
7720 CONSTRUCTOR. However, if this is a bitfield in
7721 an integral mode that we can fit in a HOST_WIDE_INT,
7722 we must mask only the number of bits in the bitfield,
7723 since this is done implicitly by the constructor. If
7724 the bitfield does not meet either of those conditions,
7725 we can't do this optimization. */
7726 && (! DECL_BIT_FIELD (field
)
7727 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
7728 && (GET_MODE_BITSIZE (DECL_MODE (field
))
7729 <= HOST_BITS_PER_WIDE_INT
))))
7731 if (DECL_BIT_FIELD (field
)
7732 && modifier
== EXPAND_STACK_PARM
)
7734 op0
= expand_expr (value
, target
, tmode
, modifier
);
7735 if (DECL_BIT_FIELD (field
))
7737 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
7738 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
7740 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
7742 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7743 op0
= expand_and (imode
, op0
, op1
, target
);
7748 = build_int_cst (NULL_TREE
,
7749 GET_MODE_BITSIZE (imode
) - bitsize
);
7751 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7753 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7761 goto normal_inner_ref
;
7764 case ARRAY_RANGE_REF
:
7767 enum machine_mode mode1
, mode2
;
7768 HOST_WIDE_INT bitsize
, bitpos
;
7770 int volatilep
= 0, must_force_mem
;
7771 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7772 &mode1
, &unsignedp
, &volatilep
, true);
7773 rtx orig_op0
, memloc
;
7775 /* If we got back the original object, something is wrong. Perhaps
7776 we are evaluating an expression too early. In any event, don't
7777 infinitely recurse. */
7778 gcc_assert (tem
!= exp
);
7780 /* If TEM's type is a union of variable size, pass TARGET to the inner
7781 computation, since it will need a temporary and TARGET is known
7782 to have to do. This occurs in unchecked conversion in Ada. */
7785 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7786 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7788 && modifier
!= EXPAND_STACK_PARM
7789 ? target
: NULL_RTX
),
7791 (modifier
== EXPAND_INITIALIZER
7792 || modifier
== EXPAND_CONST_ADDRESS
7793 || modifier
== EXPAND_STACK_PARM
)
7794 ? modifier
: EXPAND_NORMAL
);
7797 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
7799 /* If we have either an offset, a BLKmode result, or a reference
7800 outside the underlying object, we must force it to memory.
7801 Such a case can occur in Ada if we have unchecked conversion
7802 of an expression from a scalar type to an aggregate type or
7803 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
7804 passed a partially uninitialized object or a view-conversion
7805 to a larger size. */
7806 must_force_mem
= (offset
7808 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
7810 /* If this is a constant, put it in a register if it is a legitimate
7811 constant and we don't need a memory reference. */
7812 if (CONSTANT_P (op0
)
7814 && LEGITIMATE_CONSTANT_P (op0
)
7816 op0
= force_reg (mode2
, op0
);
7818 /* Otherwise, if this is a constant, try to force it to the constant
7819 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
7820 is a legitimate constant. */
7821 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
7822 op0
= validize_mem (memloc
);
7824 /* Otherwise, if this is a constant or the object is not in memory
7825 and need be, put it there. */
7826 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
7828 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7829 (TYPE_QUALS (TREE_TYPE (tem
))
7830 | TYPE_QUAL_CONST
));
7831 memloc
= assign_temp (nt
, 1, 1, 1);
7832 emit_move_insn (memloc
, op0
);
7838 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7841 gcc_assert (MEM_P (op0
));
7843 #ifdef POINTERS_EXTEND_UNSIGNED
7844 if (GET_MODE (offset_rtx
) != Pmode
)
7845 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7847 if (GET_MODE (offset_rtx
) != ptr_mode
)
7848 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7851 if (GET_MODE (op0
) == BLKmode
7852 /* A constant address in OP0 can have VOIDmode, we must
7853 not try to call force_reg in that case. */
7854 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7856 && (bitpos
% bitsize
) == 0
7857 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7858 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7860 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7864 op0
= offset_address (op0
, offset_rtx
,
7865 highest_pow2_factor (offset
));
7868 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7869 record its alignment as BIGGEST_ALIGNMENT. */
7870 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7871 && is_aligning_offset (offset
, tem
))
7872 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7874 /* Don't forget about volatility even if this is a bitfield. */
7875 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7877 if (op0
== orig_op0
)
7878 op0
= copy_rtx (op0
);
7880 MEM_VOLATILE_P (op0
) = 1;
7883 /* The following code doesn't handle CONCAT.
7884 Assume only bitpos == 0 can be used for CONCAT, due to
7885 one element arrays having the same mode as its element. */
7886 if (GET_CODE (op0
) == CONCAT
)
7888 gcc_assert (bitpos
== 0
7889 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7893 /* In cases where an aligned union has an unaligned object
7894 as a field, we might be extracting a BLKmode value from
7895 an integer-mode (e.g., SImode) object. Handle this case
7896 by doing the extract into an object as wide as the field
7897 (which we know to be the width of a basic mode), then
7898 storing into memory, and changing the mode to BLKmode. */
7899 if (mode1
== VOIDmode
7900 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7901 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7902 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7903 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7904 && modifier
!= EXPAND_CONST_ADDRESS
7905 && modifier
!= EXPAND_INITIALIZER
)
7906 /* If the field isn't aligned enough to fetch as a memref,
7907 fetch it as a bit field. */
7908 || (mode1
!= BLKmode
7909 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7910 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7912 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7913 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7914 && ((modifier
== EXPAND_CONST_ADDRESS
7915 || modifier
== EXPAND_INITIALIZER
)
7917 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7918 || (bitpos
% BITS_PER_UNIT
!= 0)))
7919 /* If the type and the field are a constant size and the
7920 size of the type isn't the same size as the bitfield,
7921 we must use bitfield operations. */
7923 && TYPE_SIZE (TREE_TYPE (exp
))
7924 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7925 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7928 enum machine_mode ext_mode
= mode
;
7930 if (ext_mode
== BLKmode
7931 && ! (target
!= 0 && MEM_P (op0
)
7933 && bitpos
% BITS_PER_UNIT
== 0))
7934 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7936 if (ext_mode
== BLKmode
)
7939 target
= assign_temp (type
, 0, 1, 1);
7944 /* In this case, BITPOS must start at a byte boundary and
7945 TARGET, if specified, must be a MEM. */
7946 gcc_assert (MEM_P (op0
)
7947 && (!target
|| MEM_P (target
))
7948 && !(bitpos
% BITS_PER_UNIT
));
7950 emit_block_move (target
,
7951 adjust_address (op0
, VOIDmode
,
7952 bitpos
/ BITS_PER_UNIT
),
7953 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7955 (modifier
== EXPAND_STACK_PARM
7956 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7961 op0
= validize_mem (op0
);
7963 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7964 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7966 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7967 (modifier
== EXPAND_STACK_PARM
7968 ? NULL_RTX
: target
),
7969 ext_mode
, ext_mode
);
7971 /* If the result is a record type and BITSIZE is narrower than
7972 the mode of OP0, an integral mode, and this is a big endian
7973 machine, we must put the field into the high-order bits. */
7974 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7975 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7976 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7977 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7978 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7982 /* If the result type is BLKmode, store the data into a temporary
7983 of the appropriate type, but with the mode corresponding to the
7984 mode for the data we have (op0's mode). It's tempting to make
7985 this a constant type, since we know it's only being stored once,
7986 but that can cause problems if we are taking the address of this
7987 COMPONENT_REF because the MEM of any reference via that address
7988 will have flags corresponding to the type, which will not
7989 necessarily be constant. */
7990 if (mode
== BLKmode
)
7992 HOST_WIDE_INT size
= GET_MODE_BITSIZE (ext_mode
);
7995 /* If the reference doesn't use the alias set of its type,
7996 we cannot create the temporary using that type. */
7997 if (component_uses_parent_alias_set (exp
))
7999 new_rtx
= assign_stack_local (ext_mode
, size
, 0);
8000 set_mem_alias_set (new_rtx
, get_alias_set (exp
));
8003 new_rtx
= assign_stack_temp_for_type (ext_mode
, size
, 0, type
);
8005 emit_move_insn (new_rtx
, op0
);
8006 op0
= copy_rtx (new_rtx
);
8007 PUT_MODE (op0
, BLKmode
);
8008 set_mem_attributes (op0
, exp
, 1);
8014 /* If the result is BLKmode, use that to access the object
8016 if (mode
== BLKmode
)
8019 /* Get a reference to just this component. */
8020 if (modifier
== EXPAND_CONST_ADDRESS
8021 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8022 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
8024 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
8026 if (op0
== orig_op0
)
8027 op0
= copy_rtx (op0
);
8029 set_mem_attributes (op0
, exp
, 0);
8030 if (REG_P (XEXP (op0
, 0)))
8031 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
8033 MEM_VOLATILE_P (op0
) |= volatilep
;
8034 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
8035 || modifier
== EXPAND_CONST_ADDRESS
8036 || modifier
== EXPAND_INITIALIZER
)
8038 else if (target
== 0)
8039 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8041 convert_move (target
, op0
, unsignedp
);
8046 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
8049 /* All valid uses of __builtin_va_arg_pack () are removed during
8051 if (CALL_EXPR_VA_ARG_PACK (exp
))
8052 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
8054 tree fndecl
= get_callee_fndecl (exp
), attr
;
8057 && (attr
= lookup_attribute ("error",
8058 DECL_ATTRIBUTES (fndecl
))) != NULL
)
8059 error ("%Kcall to %qs declared with attribute error: %s",
8060 exp
, lang_hooks
.decl_printable_name (fndecl
, 1),
8061 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
8063 && (attr
= lookup_attribute ("warning",
8064 DECL_ATTRIBUTES (fndecl
))) != NULL
)
8065 warning_at (tree_nonartificial_location (exp
),
8066 0, "%Kcall to %qs declared with attribute warning: %s",
8067 exp
, lang_hooks
.decl_printable_name (fndecl
, 1),
8068 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
8070 /* Check for a built-in function. */
8071 if (fndecl
&& DECL_BUILT_IN (fndecl
))
8073 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
8074 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
8077 return expand_call (exp
, target
, ignore
);
8081 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
8084 if (TREE_CODE (type
) == UNION_TYPE
)
8086 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8088 /* If both input and output are BLKmode, this conversion isn't doing
8089 anything except possibly changing memory attribute. */
8090 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8092 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
8095 result
= copy_rtx (result
);
8096 set_mem_attributes (result
, exp
, 0);
8102 if (TYPE_MODE (type
) != BLKmode
)
8103 target
= gen_reg_rtx (TYPE_MODE (type
));
8105 target
= assign_temp (type
, 0, 1, 1);
8109 /* Store data into beginning of memory target. */
8110 store_expr (TREE_OPERAND (exp
, 0),
8111 adjust_address (target
, TYPE_MODE (valtype
), 0),
8112 modifier
== EXPAND_STACK_PARM
,
8117 gcc_assert (REG_P (target
));
8119 /* Store this field into a union of the proper type. */
8120 store_field (target
,
8121 MIN ((int_size_in_bytes (TREE_TYPE
8122 (TREE_OPERAND (exp
, 0)))
8124 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8125 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
8129 /* Return the entire union. */
8133 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8135 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
8138 /* If the signedness of the conversion differs and OP0 is
8139 a promoted SUBREG, clear that indication since we now
8140 have to do the proper extension. */
8141 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
8142 && GET_CODE (op0
) == SUBREG
)
8143 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8145 return REDUCE_BIT_FIELD (op0
);
8148 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
,
8149 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8150 if (GET_MODE (op0
) == mode
)
8153 /* If OP0 is a constant, just convert it into the proper mode. */
8154 else if (CONSTANT_P (op0
))
8156 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8157 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
8159 if (modifier
== EXPAND_INITIALIZER
)
8160 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8161 subreg_lowpart_offset (mode
,
8164 op0
= convert_modes (mode
, inner_mode
, op0
,
8165 TYPE_UNSIGNED (inner_type
));
8168 else if (modifier
== EXPAND_INITIALIZER
)
8169 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8171 else if (target
== 0)
8172 op0
= convert_to_mode (mode
, op0
,
8173 TYPE_UNSIGNED (TREE_TYPE
8174 (TREE_OPERAND (exp
, 0))));
8177 convert_move (target
, op0
,
8178 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8182 return REDUCE_BIT_FIELD (op0
);
8184 case VIEW_CONVERT_EXPR
:
8187 /* If we are converting to BLKmode, try to avoid an intermediate
8188 temporary by fetching an inner memory reference. */
8190 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
8191 && TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) != BLKmode
8192 && handled_component_p (TREE_OPERAND (exp
, 0)))
8194 enum machine_mode mode1
;
8195 HOST_WIDE_INT bitsize
, bitpos
;
8200 = get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, &bitpos
,
8201 &offset
, &mode1
, &unsignedp
, &volatilep
,
8205 /* ??? We should work harder and deal with non-zero offsets. */
8207 && (bitpos
% BITS_PER_UNIT
) == 0
8209 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) == 0)
8211 /* See the normal_inner_ref case for the rationale. */
8214 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
8215 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
8217 && modifier
!= EXPAND_STACK_PARM
8218 ? target
: NULL_RTX
),
8220 (modifier
== EXPAND_INITIALIZER
8221 || modifier
== EXPAND_CONST_ADDRESS
8222 || modifier
== EXPAND_STACK_PARM
)
8223 ? modifier
: EXPAND_NORMAL
);
8225 if (MEM_P (orig_op0
))
8229 /* Get a reference to just this component. */
8230 if (modifier
== EXPAND_CONST_ADDRESS
8231 || modifier
== EXPAND_SUM
8232 || modifier
== EXPAND_INITIALIZER
)
8233 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
8235 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
8237 if (op0
== orig_op0
)
8238 op0
= copy_rtx (op0
);
8240 set_mem_attributes (op0
, TREE_OPERAND (exp
, 0), 0);
8241 if (REG_P (XEXP (op0
, 0)))
8242 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
8244 MEM_VOLATILE_P (op0
) |= volatilep
;
8250 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
8252 /* If the input and output modes are both the same, we are done. */
8253 if (mode
== GET_MODE (op0
))
8255 /* If neither mode is BLKmode, and both modes are the same size
8256 then we can use gen_lowpart. */
8257 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
8258 && GET_MODE_SIZE (mode
) == GET_MODE_SIZE (GET_MODE (op0
)))
8260 if (GET_CODE (op0
) == SUBREG
)
8261 op0
= force_reg (GET_MODE (op0
), op0
);
8262 op0
= gen_lowpart (mode
, op0
);
8264 /* If both modes are integral, then we can convert from one to the
8266 else if (SCALAR_INT_MODE_P (GET_MODE (op0
)) && SCALAR_INT_MODE_P (mode
))
8267 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
8268 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8269 /* As a last resort, spill op0 to memory, and reload it in a
8271 else if (!MEM_P (op0
))
8273 /* If the operand is not a MEM, force it into memory. Since we
8274 are going to be changing the mode of the MEM, don't call
8275 force_const_mem for constants because we don't allow pool
8276 constants to change mode. */
8277 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8279 gcc_assert (!TREE_ADDRESSABLE (exp
));
8281 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
8283 = assign_stack_temp_for_type
8284 (TYPE_MODE (inner_type
),
8285 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
8287 emit_move_insn (target
, op0
);
8291 /* At this point, OP0 is in the correct mode. If the output type is
8292 such that the operand is known to be aligned, indicate that it is.
8293 Otherwise, we need only be concerned about alignment for non-BLKmode
8297 op0
= copy_rtx (op0
);
8299 if (TYPE_ALIGN_OK (type
))
8300 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
8301 else if (STRICT_ALIGNMENT
8303 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
8305 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8306 HOST_WIDE_INT temp_size
8307 = MAX (int_size_in_bytes (inner_type
),
8308 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
8310 = assign_stack_temp_for_type (mode
, temp_size
, 0, type
);
8311 rtx new_with_op0_mode
8312 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
8314 gcc_assert (!TREE_ADDRESSABLE (exp
));
8316 if (GET_MODE (op0
) == BLKmode
)
8317 emit_block_move (new_with_op0_mode
, op0
,
8318 GEN_INT (GET_MODE_SIZE (mode
)),
8319 (modifier
== EXPAND_STACK_PARM
8320 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
8322 emit_move_insn (new_with_op0_mode
, op0
);
8327 op0
= adjust_address (op0
, mode
, 0);
8332 case POINTER_PLUS_EXPR
:
8333 /* Even though the sizetype mode and the pointer's mode can be different
8334 expand is able to handle this correctly and get the correct result out
8335 of the PLUS_EXPR code. */
8336 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8337 if sizetype precision is smaller than pointer precision. */
8338 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8339 exp
= build2 (PLUS_EXPR
, type
,
8340 TREE_OPERAND (exp
, 0),
8342 fold_convert (ssizetype
,
8343 TREE_OPERAND (exp
, 1))));
8346 /* Check if this is a case for multiplication and addition. */
8347 if ((TREE_CODE (type
) == INTEGER_TYPE
8348 || TREE_CODE (type
) == FIXED_POINT_TYPE
)
8349 && TREE_CODE (TREE_OPERAND (exp
, 0)) == MULT_EXPR
)
8351 tree subsubexp0
, subsubexp1
;
8352 enum tree_code code0
, code1
, this_code
;
8354 subexp0
= TREE_OPERAND (exp
, 0);
8355 subsubexp0
= TREE_OPERAND (subexp0
, 0);
8356 subsubexp1
= TREE_OPERAND (subexp0
, 1);
8357 code0
= TREE_CODE (subsubexp0
);
8358 code1
= TREE_CODE (subsubexp1
);
8359 this_code
= TREE_CODE (type
) == INTEGER_TYPE
? NOP_EXPR
8360 : FIXED_CONVERT_EXPR
;
8361 if (code0
== this_code
&& code1
== this_code
8362 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8363 < TYPE_PRECISION (TREE_TYPE (subsubexp0
)))
8364 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8365 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1
, 0))))
8366 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8367 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1
, 0)))))
8369 tree op0type
= TREE_TYPE (TREE_OPERAND (subsubexp0
, 0));
8370 enum machine_mode innermode
= TYPE_MODE (op0type
);
8371 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8372 bool sat_p
= TYPE_SATURATING (TREE_TYPE (subsubexp0
));
8374 this_optab
= zextend_p
? umadd_widen_optab
: smadd_widen_optab
;
8376 this_optab
= zextend_p
? usmadd_widen_optab
8377 : ssmadd_widen_optab
;
8378 if (mode
== GET_MODE_2XWIDER_MODE (innermode
)
8379 && (optab_handler (this_optab
, mode
)->insn_code
8380 != CODE_FOR_nothing
))
8382 expand_operands (TREE_OPERAND (subsubexp0
, 0),
8383 TREE_OPERAND (subsubexp1
, 0),
8384 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8385 op2
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
,
8386 VOIDmode
, EXPAND_NORMAL
);
8387 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8390 return REDUCE_BIT_FIELD (temp
);
8395 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8396 something else, make sure we add the register to the constant and
8397 then to the other thing. This case can occur during strength
8398 reduction and doing it this way will produce better code if the
8399 frame pointer or argument pointer is eliminated.
8401 fold-const.c will ensure that the constant is always in the inner
8402 PLUS_EXPR, so the only case we need to do anything about is if
8403 sp, ap, or fp is our second argument, in which case we must swap
8404 the innermost first argument and our second argument. */
8406 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
8407 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
8408 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
8409 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
8410 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
8411 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
8413 tree t
= TREE_OPERAND (exp
, 1);
8415 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
8416 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
8419 /* If the result is to be ptr_mode and we are adding an integer to
8420 something, we might be forming a constant. So try to use
8421 plus_constant. If it produces a sum and we can't accept it,
8422 use force_operand. This allows P = &ARR[const] to generate
8423 efficient code on machines where a SYMBOL_REF is not a valid
8426 If this is an EXPAND_SUM call, always return the sum. */
8427 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8428 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8430 if (modifier
== EXPAND_STACK_PARM
)
8432 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
8433 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8434 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
8438 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
8440 /* Use immed_double_const to ensure that the constant is
8441 truncated according to the mode of OP1, then sign extended
8442 to a HOST_WIDE_INT. Using the constant directly can result
8443 in non-canonical RTL in a 64x32 cross compile. */
8445 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
8447 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
8448 op1
= plus_constant (op1
, INTVAL (constant_part
));
8449 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8450 op1
= force_operand (op1
, target
);
8451 return REDUCE_BIT_FIELD (op1
);
8454 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8455 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8456 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
8460 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8461 (modifier
== EXPAND_INITIALIZER
8462 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8463 if (! CONSTANT_P (op0
))
8465 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
8466 VOIDmode
, modifier
);
8467 /* Return a PLUS if modifier says it's OK. */
8468 if (modifier
== EXPAND_SUM
8469 || modifier
== EXPAND_INITIALIZER
)
8470 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8473 /* Use immed_double_const to ensure that the constant is
8474 truncated according to the mode of OP1, then sign extended
8475 to a HOST_WIDE_INT. Using the constant directly can result
8476 in non-canonical RTL in a 64x32 cross compile. */
8478 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
8480 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8481 op0
= plus_constant (op0
, INTVAL (constant_part
));
8482 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8483 op0
= force_operand (op0
, target
);
8484 return REDUCE_BIT_FIELD (op0
);
8488 /* No sense saving up arithmetic to be done
8489 if it's all in the wrong mode to form part of an address.
8490 And force_operand won't know whether to sign-extend or
8492 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8493 || mode
!= ptr_mode
)
8495 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8496 subtarget
, &op0
, &op1
, 0);
8497 if (op0
== const0_rtx
)
8499 if (op1
== const0_rtx
)
8504 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8505 subtarget
, &op0
, &op1
, modifier
);
8506 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8509 /* Check if this is a case for multiplication and subtraction. */
8510 if ((TREE_CODE (type
) == INTEGER_TYPE
8511 || TREE_CODE (type
) == FIXED_POINT_TYPE
)
8512 && TREE_CODE (TREE_OPERAND (exp
, 1)) == MULT_EXPR
)
8514 tree subsubexp0
, subsubexp1
;
8515 enum tree_code code0
, code1
, this_code
;
8517 subexp1
= TREE_OPERAND (exp
, 1);
8518 subsubexp0
= TREE_OPERAND (subexp1
, 0);
8519 subsubexp1
= TREE_OPERAND (subexp1
, 1);
8520 code0
= TREE_CODE (subsubexp0
);
8521 code1
= TREE_CODE (subsubexp1
);
8522 this_code
= TREE_CODE (type
) == INTEGER_TYPE
? NOP_EXPR
8523 : FIXED_CONVERT_EXPR
;
8524 if (code0
== this_code
&& code1
== this_code
8525 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8526 < TYPE_PRECISION (TREE_TYPE (subsubexp0
)))
8527 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8528 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1
, 0))))
8529 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8530 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1
, 0)))))
8532 tree op0type
= TREE_TYPE (TREE_OPERAND (subsubexp0
, 0));
8533 enum machine_mode innermode
= TYPE_MODE (op0type
);
8534 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8535 bool sat_p
= TYPE_SATURATING (TREE_TYPE (subsubexp0
));
8537 this_optab
= zextend_p
? umsub_widen_optab
: smsub_widen_optab
;
8539 this_optab
= zextend_p
? usmsub_widen_optab
8540 : ssmsub_widen_optab
;
8541 if (mode
== GET_MODE_2XWIDER_MODE (innermode
)
8542 && (optab_handler (this_optab
, mode
)->insn_code
8543 != CODE_FOR_nothing
))
8545 expand_operands (TREE_OPERAND (subsubexp0
, 0),
8546 TREE_OPERAND (subsubexp1
, 0),
8547 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8548 op2
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8549 VOIDmode
, EXPAND_NORMAL
);
8550 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8553 return REDUCE_BIT_FIELD (temp
);
8558 /* For initializers, we are allowed to return a MINUS of two
8559 symbolic constants. Here we handle all cases when both operands
8561 /* Handle difference of two symbolic constants,
8562 for the sake of an initializer. */
8563 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8564 && really_constant_p (TREE_OPERAND (exp
, 0))
8565 && really_constant_p (TREE_OPERAND (exp
, 1)))
8567 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8568 NULL_RTX
, &op0
, &op1
, modifier
);
8570 /* If the last operand is a CONST_INT, use plus_constant of
8571 the negated constant. Else make the MINUS. */
8572 if (GET_CODE (op1
) == CONST_INT
)
8573 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
8575 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8578 /* No sense saving up arithmetic to be done
8579 if it's all in the wrong mode to form part of an address.
8580 And force_operand won't know whether to sign-extend or
8582 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8583 || mode
!= ptr_mode
)
8586 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8587 subtarget
, &op0
, &op1
, modifier
);
8589 /* Convert A - const to A + (-const). */
8590 if (GET_CODE (op1
) == CONST_INT
)
8592 op1
= negate_rtx (mode
, op1
);
8593 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8599 /* If this is a fixed-point operation, then we cannot use the code
8600 below because "expand_mult" doesn't support sat/no-sat fixed-point
8602 if (ALL_FIXED_POINT_MODE_P (mode
))
8605 /* If first operand is constant, swap them.
8606 Thus the following special case checks need only
8607 check the second operand. */
8608 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
8610 tree t1
= TREE_OPERAND (exp
, 0);
8611 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
8612 TREE_OPERAND (exp
, 1) = t1
;
8615 /* Attempt to return something suitable for generating an
8616 indexed address, for machines that support that. */
8618 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8619 && host_integerp (TREE_OPERAND (exp
, 1), 0))
8621 tree exp1
= TREE_OPERAND (exp
, 1);
8623 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8627 op0
= force_operand (op0
, NULL_RTX
);
8629 op0
= copy_to_mode_reg (mode
, op0
);
8631 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8632 gen_int_mode (tree_low_cst (exp1
, 0),
8633 TYPE_MODE (TREE_TYPE (exp1
)))));
8636 if (modifier
== EXPAND_STACK_PARM
)
8639 /* Check for multiplying things that have been extended
8640 from a narrower type. If this machine supports multiplying
8641 in that narrower type with a result in the desired type,
8642 do it that way, and avoid the explicit type-conversion. */
8644 subexp0
= TREE_OPERAND (exp
, 0);
8645 subexp1
= TREE_OPERAND (exp
, 1);
8646 /* First, check if we have a multiplication of one signed and one
8647 unsigned operand. */
8648 if (TREE_CODE (subexp0
) == NOP_EXPR
8649 && TREE_CODE (subexp1
) == NOP_EXPR
8650 && TREE_CODE (type
) == INTEGER_TYPE
8651 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8652 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8653 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8654 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1
, 0))))
8655 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8656 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1
, 0)))))
8658 enum machine_mode innermode
8659 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0
, 0)));
8660 this_optab
= usmul_widen_optab
;
8661 if (mode
== GET_MODE_WIDER_MODE (innermode
))
8663 if (optab_handler (this_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
8665 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0))))
8666 expand_operands (TREE_OPERAND (subexp0
, 0),
8667 TREE_OPERAND (subexp1
, 0),
8668 NULL_RTX
, &op0
, &op1
, 0);
8670 expand_operands (TREE_OPERAND (subexp0
, 0),
8671 TREE_OPERAND (subexp1
, 0),
8672 NULL_RTX
, &op1
, &op0
, 0);
8678 /* Check for a multiplication with matching signedness. */
8679 else if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
8680 && TREE_CODE (type
) == INTEGER_TYPE
8681 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8682 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8683 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8684 && int_fits_type_p (TREE_OPERAND (exp
, 1),
8685 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8686 /* Don't use a widening multiply if a shift will do. */
8687 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8688 > HOST_BITS_PER_WIDE_INT
)
8689 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
8691 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
8692 && (TYPE_PRECISION (TREE_TYPE
8693 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8694 == TYPE_PRECISION (TREE_TYPE
8696 (TREE_OPERAND (exp
, 0), 0))))
8697 /* If both operands are extended, they must either both
8698 be zero-extended or both be sign-extended. */
8699 && (TYPE_UNSIGNED (TREE_TYPE
8700 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8701 == TYPE_UNSIGNED (TREE_TYPE
8703 (TREE_OPERAND (exp
, 0), 0)))))))
8705 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
8706 enum machine_mode innermode
= TYPE_MODE (op0type
);
8707 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8708 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8709 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8711 if (mode
== GET_MODE_2XWIDER_MODE (innermode
))
8713 if (optab_handler (this_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
8715 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8716 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8717 TREE_OPERAND (exp
, 1),
8718 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8720 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8721 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
8722 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8725 else if (optab_handler (other_optab
, mode
)->insn_code
!= CODE_FOR_nothing
8726 && innermode
== word_mode
)
8729 op0
= expand_normal (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
8730 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8731 op1
= convert_modes (innermode
, mode
,
8732 expand_normal (TREE_OPERAND (exp
, 1)),
8735 op1
= expand_normal (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0));
8736 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8737 unsignedp
, OPTAB_LIB_WIDEN
);
8738 hipart
= gen_highpart (innermode
, temp
);
8739 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8743 emit_move_insn (hipart
, htem
);
8744 return REDUCE_BIT_FIELD (temp
);
8748 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8749 subtarget
, &op0
, &op1
, 0);
8750 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8752 case TRUNC_DIV_EXPR
:
8753 case FLOOR_DIV_EXPR
:
8755 case ROUND_DIV_EXPR
:
8756 case EXACT_DIV_EXPR
:
8757 /* If this is a fixed-point operation, then we cannot use the code
8758 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8760 if (ALL_FIXED_POINT_MODE_P (mode
))
8763 if (modifier
== EXPAND_STACK_PARM
)
8765 /* Possible optimization: compute the dividend with EXPAND_SUM
8766 then if the divisor is constant can optimize the case
8767 where some terms of the dividend have coeffs divisible by it. */
8768 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8769 subtarget
, &op0
, &op1
, 0);
8770 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8775 case TRUNC_MOD_EXPR
:
8776 case FLOOR_MOD_EXPR
:
8778 case ROUND_MOD_EXPR
:
8779 if (modifier
== EXPAND_STACK_PARM
)
8781 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8782 subtarget
, &op0
, &op1
, 0);
8783 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8785 case FIXED_CONVERT_EXPR
:
8786 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8787 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8788 target
= gen_reg_rtx (mode
);
8790 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == INTEGER_TYPE
8791 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8792 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8793 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8795 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8798 case FIX_TRUNC_EXPR
:
8799 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8800 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8801 target
= gen_reg_rtx (mode
);
8802 expand_fix (target
, op0
, unsignedp
);
8806 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8807 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8808 target
= gen_reg_rtx (mode
);
8809 /* expand_float can't figure out what to do if FROM has VOIDmode.
8810 So give it the correct mode. With -O, cse will optimize this. */
8811 if (GET_MODE (op0
) == VOIDmode
)
8812 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
8814 expand_float (target
, op0
,
8815 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8819 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8820 VOIDmode
, EXPAND_NORMAL
);
8821 if (modifier
== EXPAND_STACK_PARM
)
8823 temp
= expand_unop (mode
,
8824 optab_for_tree_code (NEGATE_EXPR
, type
,
8828 return REDUCE_BIT_FIELD (temp
);
8831 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8832 VOIDmode
, EXPAND_NORMAL
);
8833 if (modifier
== EXPAND_STACK_PARM
)
8836 /* ABS_EXPR is not valid for complex arguments. */
8837 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8838 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8840 /* Unsigned abs is simply the operand. Testing here means we don't
8841 risk generating incorrect code below. */
8842 if (TYPE_UNSIGNED (type
))
8845 return expand_abs (mode
, op0
, target
, unsignedp
,
8846 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
8850 target
= original_target
;
8852 || modifier
== EXPAND_STACK_PARM
8853 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8854 || GET_MODE (target
) != mode
8856 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8857 target
= gen_reg_rtx (mode
);
8858 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8859 target
, &op0
, &op1
, 0);
8861 /* First try to do it with a special MIN or MAX instruction.
8862 If that does not win, use a conditional jump to select the proper
8864 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8865 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8870 /* At this point, a MEM target is no longer useful; we will get better
8873 if (! REG_P (target
))
8874 target
= gen_reg_rtx (mode
);
8876 /* If op1 was placed in target, swap op0 and op1. */
8877 if (target
!= op0
&& target
== op1
)
8884 /* We generate better code and avoid problems with op1 mentioning
8885 target by forcing op1 into a pseudo if it isn't a constant. */
8886 if (! CONSTANT_P (op1
))
8887 op1
= force_reg (mode
, op1
);
8890 enum rtx_code comparison_code
;
8893 if (code
== MAX_EXPR
)
8894 comparison_code
= unsignedp
? GEU
: GE
;
8896 comparison_code
= unsignedp
? LEU
: LE
;
8898 /* Canonicalize to comparisons against 0. */
8899 if (op1
== const1_rtx
)
8901 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8902 or (a != 0 ? a : 1) for unsigned.
8903 For MIN we are safe converting (a <= 1 ? a : 1)
8904 into (a <= 0 ? a : 1) */
8905 cmpop1
= const0_rtx
;
8906 if (code
== MAX_EXPR
)
8907 comparison_code
= unsignedp
? NE
: GT
;
8909 if (op1
== constm1_rtx
&& !unsignedp
)
8911 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8912 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8913 cmpop1
= const0_rtx
;
8914 if (code
== MIN_EXPR
)
8915 comparison_code
= LT
;
8917 #ifdef HAVE_conditional_move
8918 /* Use a conditional move if possible. */
8919 if (can_conditionally_move_p (mode
))
8923 /* ??? Same problem as in expmed.c: emit_conditional_move
8924 forces a stack adjustment via compare_from_rtx, and we
8925 lose the stack adjustment if the sequence we are about
8926 to create is discarded. */
8927 do_pending_stack_adjust ();
8931 /* Try to emit the conditional move. */
8932 insn
= emit_conditional_move (target
, comparison_code
,
8937 /* If we could do the conditional move, emit the sequence,
8941 rtx seq
= get_insns ();
8947 /* Otherwise discard the sequence and fall back to code with
8953 emit_move_insn (target
, op0
);
8955 temp
= gen_label_rtx ();
8956 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8957 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
8959 emit_move_insn (target
, op1
);
8964 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8965 VOIDmode
, EXPAND_NORMAL
);
8966 if (modifier
== EXPAND_STACK_PARM
)
8968 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8972 /* ??? Can optimize bitwise operations with one arg constant.
8973 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8974 and (a bitwise1 b) bitwise2 b (etc)
8975 but that is probably not worth while. */
8977 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8978 boolean values when we want in all cases to compute both of them. In
8979 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8980 as actual zero-or-1 values and then bitwise anding. In cases where
8981 there cannot be any side effects, better code would be made by
8982 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8983 how to recognize those cases. */
8985 case TRUTH_AND_EXPR
:
8986 code
= BIT_AND_EXPR
;
8991 code
= BIT_IOR_EXPR
;
8995 case TRUTH_XOR_EXPR
:
8996 code
= BIT_XOR_EXPR
;
9002 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
9003 || (GET_MODE_PRECISION (TYPE_MODE (type
))
9004 == TYPE_PRECISION (type
)));
9009 /* If this is a fixed-point operation, then we cannot use the code
9010 below because "expand_shift" doesn't support sat/no-sat fixed-point
9012 if (ALL_FIXED_POINT_MODE_P (mode
))
9015 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
9017 if (modifier
== EXPAND_STACK_PARM
)
9019 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
9020 VOIDmode
, EXPAND_NORMAL
);
9021 temp
= expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
9023 if (code
== LSHIFT_EXPR
)
9024 temp
= REDUCE_BIT_FIELD (temp
);
9027 /* Could determine the answer when only additive constants differ. Also,
9028 the addition of one can be handled by changing the condition. */
9035 case UNORDERED_EXPR
:
9043 temp
= do_store_flag (exp
,
9044 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9045 tmode
!= VOIDmode
? tmode
: mode
, 0);
9049 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
9050 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
9052 && REG_P (original_target
)
9053 && (GET_MODE (original_target
)
9054 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
9056 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
9057 VOIDmode
, EXPAND_NORMAL
);
9059 /* If temp is constant, we can just compute the result. */
9060 if (GET_CODE (temp
) == CONST_INT
)
9062 if (INTVAL (temp
) != 0)
9063 emit_move_insn (target
, const1_rtx
);
9065 emit_move_insn (target
, const0_rtx
);
9070 if (temp
!= original_target
)
9072 enum machine_mode mode1
= GET_MODE (temp
);
9073 if (mode1
== VOIDmode
)
9074 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
9076 temp
= copy_to_mode_reg (mode1
, temp
);
9079 op1
= gen_label_rtx ();
9080 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
9081 GET_MODE (temp
), unsignedp
, op1
);
9082 emit_move_insn (temp
, const1_rtx
);
9087 /* If no set-flag instruction, must generate a conditional store
9088 into a temporary variable. Drop through and handle this
9090 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9091 are occassionally created by folding during expansion. */
9092 case TRUTH_ANDIF_EXPR
:
9093 case TRUTH_ORIF_EXPR
:
9096 || modifier
== EXPAND_STACK_PARM
9097 || ! safe_from_p (target
, exp
, 1)
9098 /* Make sure we don't have a hard reg (such as function's return
9099 value) live across basic blocks, if not optimizing. */
9100 || (!optimize
&& REG_P (target
)
9101 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9102 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9105 emit_move_insn (target
, const0_rtx
);
9107 op1
= gen_label_rtx ();
9108 jumpifnot (exp
, op1
);
9111 emit_move_insn (target
, const1_rtx
);
9114 return ignore
? const0_rtx
: target
;
9116 case TRUTH_NOT_EXPR
:
9117 if (modifier
== EXPAND_STACK_PARM
)
9119 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
,
9120 VOIDmode
, EXPAND_NORMAL
);
9121 /* The parser is careful to generate TRUTH_NOT_EXPR
9122 only with operands that are always zero or one. */
9123 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
9124 target
, 1, OPTAB_LIB_WIDEN
);
9128 case STATEMENT_LIST
:
9130 tree_stmt_iterator iter
;
9132 gcc_assert (ignore
);
9134 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
9135 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
9140 /* A COND_EXPR with its type being VOID_TYPE represents a
9141 conditional jump and is handled in
9142 expand_gimple_cond_expr. */
9143 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
9145 /* Note that COND_EXPRs whose type is a structure or union
9146 are required to be constructed to contain assignments of
9147 a temporary variable, so that we can evaluate them here
9148 for side effect only. If type is void, we must do likewise. */
9150 gcc_assert (!TREE_ADDRESSABLE (type
)
9152 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
9153 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
9155 /* If we are not to produce a result, we have no target. Otherwise,
9156 if a target was specified use it; it will not be used as an
9157 intermediate target unless it is safe. If no target, use a
9160 if (modifier
!= EXPAND_STACK_PARM
9162 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
9163 && GET_MODE (original_target
) == mode
9164 #ifdef HAVE_conditional_move
9165 && (! can_conditionally_move_p (mode
)
9166 || REG_P (original_target
))
9168 && !MEM_P (original_target
))
9169 temp
= original_target
;
9171 temp
= assign_temp (type
, 0, 0, 1);
9173 do_pending_stack_adjust ();
9175 op0
= gen_label_rtx ();
9176 op1
= gen_label_rtx ();
9177 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
9178 store_expr (TREE_OPERAND (exp
, 1), temp
,
9179 modifier
== EXPAND_STACK_PARM
,
9182 emit_jump_insn (gen_jump (op1
));
9185 store_expr (TREE_OPERAND (exp
, 2), temp
,
9186 modifier
== EXPAND_STACK_PARM
,
9194 target
= expand_vec_cond_expr (exp
, target
);
9199 tree lhs
= TREE_OPERAND (exp
, 0);
9200 tree rhs
= TREE_OPERAND (exp
, 1);
9201 gcc_assert (ignore
);
9203 /* Check for |= or &= of a bitfield of size one into another bitfield
9204 of size 1. In this case, (unless we need the result of the
9205 assignment) we can do this more efficiently with a
9206 test followed by an assignment, if necessary.
9208 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9209 things change so we do, this code should be enhanced to
9211 if (TREE_CODE (lhs
) == COMPONENT_REF
9212 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
9213 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
9214 && TREE_OPERAND (rhs
, 0) == lhs
9215 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
9216 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
9217 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
9219 rtx label
= gen_label_rtx ();
9220 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
9221 do_jump (TREE_OPERAND (rhs
, 1),
9224 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
9225 MOVE_NONTEMPORAL (exp
));
9226 do_pending_stack_adjust ();
9231 expand_assignment (lhs
, rhs
, MOVE_NONTEMPORAL (exp
));
9236 if (!TREE_OPERAND (exp
, 0))
9237 expand_null_return ();
9239 expand_return (TREE_OPERAND (exp
, 0));
9243 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
9246 /* Get the rtx code of the operands. */
9247 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9248 op1
= expand_normal (TREE_OPERAND (exp
, 1));
9251 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
9253 /* Move the real (op0) and imaginary (op1) parts to their location. */
9254 write_complex_part (target
, op0
, false);
9255 write_complex_part (target
, op1
, true);
9260 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9261 return read_complex_part (op0
, false);
9264 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9265 return read_complex_part (op0
, true);
9268 expand_resx_expr (exp
);
9271 case TRY_CATCH_EXPR
:
9273 case EH_FILTER_EXPR
:
9274 case TRY_FINALLY_EXPR
:
9275 /* Lowered by tree-eh.c. */
9278 case WITH_CLEANUP_EXPR
:
9279 case CLEANUP_POINT_EXPR
:
9281 case CASE_LABEL_EXPR
:
9287 case PREINCREMENT_EXPR
:
9288 case PREDECREMENT_EXPR
:
9289 case POSTINCREMENT_EXPR
:
9290 case POSTDECREMENT_EXPR
:
9293 /* Lowered by gimplify.c. */
9296 case CHANGE_DYNAMIC_TYPE_EXPR
:
9297 /* This is ignored at the RTL level. The tree level set
9298 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
9299 overkill for the RTL layer but is all that we can
9304 return get_exception_pointer ();
9307 return get_exception_filter ();
9310 /* Function descriptors are not valid except for as
9311 initialization constants, and should not be expanded. */
9319 expand_label (TREE_OPERAND (exp
, 0));
9323 expand_asm_expr (exp
);
9326 case WITH_SIZE_EXPR
:
9327 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9328 have pulled out the size to use in whatever context it needed. */
9329 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
9332 case REALIGN_LOAD_EXPR
:
9334 tree oprnd0
= TREE_OPERAND (exp
, 0);
9335 tree oprnd1
= TREE_OPERAND (exp
, 1);
9336 tree oprnd2
= TREE_OPERAND (exp
, 2);
9339 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9340 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9341 op2
= expand_normal (oprnd2
);
9342 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9350 tree oprnd0
= TREE_OPERAND (exp
, 0);
9351 tree oprnd1
= TREE_OPERAND (exp
, 1);
9352 tree oprnd2
= TREE_OPERAND (exp
, 2);
9355 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9356 op2
= expand_normal (oprnd2
);
9357 target
= expand_widen_pattern_expr (exp
, op0
, op1
, op2
,
9362 case WIDEN_SUM_EXPR
:
9364 tree oprnd0
= TREE_OPERAND (exp
, 0);
9365 tree oprnd1
= TREE_OPERAND (exp
, 1);
9367 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
9368 target
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, op1
,
9373 case REDUC_MAX_EXPR
:
9374 case REDUC_MIN_EXPR
:
9375 case REDUC_PLUS_EXPR
:
9377 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9378 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9379 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
9384 case VEC_EXTRACT_EVEN_EXPR
:
9385 case VEC_EXTRACT_ODD_EXPR
:
9387 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9388 NULL_RTX
, &op0
, &op1
, 0);
9389 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9390 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9396 case VEC_INTERLEAVE_HIGH_EXPR
:
9397 case VEC_INTERLEAVE_LOW_EXPR
:
9399 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9400 NULL_RTX
, &op0
, &op1
, 0);
9401 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9402 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9408 case VEC_LSHIFT_EXPR
:
9409 case VEC_RSHIFT_EXPR
:
9411 target
= expand_vec_shift_expr (exp
, target
);
9415 case VEC_UNPACK_HI_EXPR
:
9416 case VEC_UNPACK_LO_EXPR
:
9418 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9419 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9420 temp
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, NULL_RTX
,
9426 case VEC_UNPACK_FLOAT_HI_EXPR
:
9427 case VEC_UNPACK_FLOAT_LO_EXPR
:
9429 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9430 /* The signedness is determined from input operand. */
9431 this_optab
= optab_for_tree_code (code
,
9432 TREE_TYPE (TREE_OPERAND (exp
, 0)),
9434 temp
= expand_widen_pattern_expr
9435 (exp
, op0
, NULL_RTX
, NULL_RTX
,
9436 target
, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9442 case VEC_WIDEN_MULT_HI_EXPR
:
9443 case VEC_WIDEN_MULT_LO_EXPR
:
9445 tree oprnd0
= TREE_OPERAND (exp
, 0);
9446 tree oprnd1
= TREE_OPERAND (exp
, 1);
9448 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
9449 target
= expand_widen_pattern_expr (exp
, op0
, op1
, NULL_RTX
,
9451 gcc_assert (target
);
9455 case VEC_PACK_TRUNC_EXPR
:
9456 case VEC_PACK_SAT_EXPR
:
9457 case VEC_PACK_FIX_TRUNC_EXPR
:
9458 mode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
9461 case COMPOUND_LITERAL_EXPR
:
9463 /* Initialize the anonymous variable declared in the compound
9464 literal, then return the variable. */
9465 tree decl
= COMPOUND_LITERAL_EXPR_DECL (exp
);
9467 /* Create RTL for this variable. */
9468 if (!DECL_RTL_SET_P (decl
))
9470 if (DECL_HARD_REGISTER (decl
))
9471 /* The user specified an assembler name for this variable.
9473 rest_of_decl_compilation (decl
, 0, 0);
9478 return expand_expr_real (decl
, original_target
, tmode
,
9486 /* Here to do an ordinary binary operator. */
9488 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9489 subtarget
, &op0
, &op1
, 0);
9491 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9493 if (modifier
== EXPAND_STACK_PARM
)
9495 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9496 unsignedp
, OPTAB_LIB_WIDEN
);
9498 return REDUCE_BIT_FIELD (temp
);
9500 #undef REDUCE_BIT_FIELD
9502 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9503 signedness of TYPE), possibly returning the result in TARGET. */
9505 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
9507 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
9508 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
9510 /* For constant values, reduce using build_int_cst_type. */
9511 if (GET_CODE (exp
) == CONST_INT
)
9513 HOST_WIDE_INT value
= INTVAL (exp
);
9514 tree t
= build_int_cst_type (type
, value
);
9515 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
9517 else if (TYPE_UNSIGNED (type
))
9520 if (prec
< HOST_BITS_PER_WIDE_INT
)
9521 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
9524 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
9525 ((unsigned HOST_WIDE_INT
) 1
9526 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
9528 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
9532 tree count
= build_int_cst (NULL_TREE
,
9533 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
9534 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
9535 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
9539 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9540 when applied to the address of EXP produces an address known to be
9541 aligned more than BIGGEST_ALIGNMENT. */
9544 is_aligning_offset (const_tree offset
, const_tree exp
)
9546 /* Strip off any conversions. */
9547 while (CONVERT_EXPR_P (offset
))
9548 offset
= TREE_OPERAND (offset
, 0);
9550 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9551 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9552 if (TREE_CODE (offset
) != BIT_AND_EXPR
9553 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
9554 || compare_tree_int (TREE_OPERAND (offset
, 1),
9555 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
9556 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
9559 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9560 It must be NEGATE_EXPR. Then strip any more conversions. */
9561 offset
= TREE_OPERAND (offset
, 0);
9562 while (CONVERT_EXPR_P (offset
))
9563 offset
= TREE_OPERAND (offset
, 0);
9565 if (TREE_CODE (offset
) != NEGATE_EXPR
)
9568 offset
= TREE_OPERAND (offset
, 0);
9569 while (CONVERT_EXPR_P (offset
))
9570 offset
= TREE_OPERAND (offset
, 0);
9572 /* This must now be the address of EXP. */
9573 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
9576 /* Return the tree node if an ARG corresponds to a string constant or zero
9577 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9578 in bytes within the string that ARG is accessing. The type of the
9579 offset will be `sizetype'. */
9582 string_constant (tree arg
, tree
*ptr_offset
)
9584 tree array
, offset
, lower_bound
;
9587 if (TREE_CODE (arg
) == ADDR_EXPR
)
9589 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
9591 *ptr_offset
= size_zero_node
;
9592 return TREE_OPERAND (arg
, 0);
9594 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
9596 array
= TREE_OPERAND (arg
, 0);
9597 offset
= size_zero_node
;
9599 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
9601 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
9602 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
9603 if (TREE_CODE (array
) != STRING_CST
9604 && TREE_CODE (array
) != VAR_DECL
)
9607 /* Check if the array has a nonzero lower bound. */
9608 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
9609 if (!integer_zerop (lower_bound
))
9611 /* If the offset and base aren't both constants, return 0. */
9612 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
9614 if (TREE_CODE (offset
) != INTEGER_CST
)
9616 /* Adjust offset by the lower bound. */
9617 offset
= size_diffop (fold_convert (sizetype
, offset
),
9618 fold_convert (sizetype
, lower_bound
));
9624 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
9626 tree arg0
= TREE_OPERAND (arg
, 0);
9627 tree arg1
= TREE_OPERAND (arg
, 1);
9632 if (TREE_CODE (arg0
) == ADDR_EXPR
9633 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
9634 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
9636 array
= TREE_OPERAND (arg0
, 0);
9639 else if (TREE_CODE (arg1
) == ADDR_EXPR
9640 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
9641 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
9643 array
= TREE_OPERAND (arg1
, 0);
9652 if (TREE_CODE (array
) == STRING_CST
)
9654 *ptr_offset
= fold_convert (sizetype
, offset
);
9657 else if (TREE_CODE (array
) == VAR_DECL
)
9661 /* Variables initialized to string literals can be handled too. */
9662 if (DECL_INITIAL (array
) == NULL_TREE
9663 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
9666 /* If they are read-only, non-volatile and bind locally. */
9667 if (! TREE_READONLY (array
)
9668 || TREE_SIDE_EFFECTS (array
)
9669 || ! targetm
.binds_local_p (array
))
9672 /* Avoid const char foo[4] = "abcde"; */
9673 if (DECL_SIZE_UNIT (array
) == NULL_TREE
9674 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
9675 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
9676 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
9679 /* If variable is bigger than the string literal, OFFSET must be constant
9680 and inside of the bounds of the string literal. */
9681 offset
= fold_convert (sizetype
, offset
);
9682 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
9683 && (! host_integerp (offset
, 1)
9684 || compare_tree_int (offset
, length
) >= 0))
9687 *ptr_offset
= offset
;
9688 return DECL_INITIAL (array
);
9694 /* Generate code to calculate EXP using a store-flag instruction
9695 and return an rtx for the result. EXP is either a comparison
9696 or a TRUTH_NOT_EXPR whose operand is a comparison.
9698 If TARGET is nonzero, store the result there if convenient.
9700 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9703 Return zero if there is no suitable set-flag instruction
9704 available on this machine.
9706 Once expand_expr has been called on the arguments of the comparison,
9707 we are committed to doing the store flag, since it is not safe to
9708 re-evaluate the expression. We emit the store-flag insn by calling
9709 emit_store_flag, but only expand the arguments if we have a reason
9710 to believe that emit_store_flag will be successful. If we think that
9711 it will, but it isn't, we have to simulate the store-flag with a
9712 set/jump/set sequence. */
9715 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
9718 tree arg0
, arg1
, type
;
9720 enum machine_mode operand_mode
;
9724 enum insn_code icode
;
9725 rtx subtarget
= target
;
9728 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9729 result at the end. We can't simply invert the test since it would
9730 have already been inverted if it were valid. This case occurs for
9731 some floating-point comparisons. */
9733 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
9734 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
9736 arg0
= TREE_OPERAND (exp
, 0);
9737 arg1
= TREE_OPERAND (exp
, 1);
9739 /* Don't crash if the comparison was erroneous. */
9740 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
9743 type
= TREE_TYPE (arg0
);
9744 operand_mode
= TYPE_MODE (type
);
9745 unsignedp
= TYPE_UNSIGNED (type
);
9747 /* We won't bother with BLKmode store-flag operations because it would mean
9748 passing a lot of information to emit_store_flag. */
9749 if (operand_mode
== BLKmode
)
9752 /* We won't bother with store-flag operations involving function pointers
9753 when function pointers must be canonicalized before comparisons. */
9754 #ifdef HAVE_canonicalize_funcptr_for_compare
9755 if (HAVE_canonicalize_funcptr_for_compare
9756 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
9757 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
9759 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
9760 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
9761 == FUNCTION_TYPE
))))
9768 /* Get the rtx comparison code to use. We know that EXP is a comparison
9769 operation of some type. Some comparisons against 1 and -1 can be
9770 converted to comparisons with zero. Do so here so that the tests
9771 below will be aware that we have a comparison with zero. These
9772 tests will not catch constants in the first operand, but constants
9773 are rarely passed as the first operand. */
9775 switch (TREE_CODE (exp
))
9784 if (integer_onep (arg1
))
9785 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
9787 code
= unsignedp
? LTU
: LT
;
9790 if (! unsignedp
&& integer_all_onesp (arg1
))
9791 arg1
= integer_zero_node
, code
= LT
;
9793 code
= unsignedp
? LEU
: LE
;
9796 if (! unsignedp
&& integer_all_onesp (arg1
))
9797 arg1
= integer_zero_node
, code
= GE
;
9799 code
= unsignedp
? GTU
: GT
;
9802 if (integer_onep (arg1
))
9803 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
9805 code
= unsignedp
? GEU
: GE
;
9808 case UNORDERED_EXPR
:
9837 /* Put a constant second. */
9838 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
9839 || TREE_CODE (arg0
) == FIXED_CST
)
9841 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
9842 code
= swap_condition (code
);
9845 /* If this is an equality or inequality test of a single bit, we can
9846 do this by shifting the bit being tested to the low-order bit and
9847 masking the result with the constant 1. If the condition was EQ,
9848 we xor it with 1. This does not require an scc insn and is faster
9849 than an scc insn even if we have it.
9851 The code to make this transformation was moved into fold_single_bit_test,
9852 so we just call into the folder and expand its result. */
9854 if ((code
== NE
|| code
== EQ
)
9855 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
9856 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
9858 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
9859 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
9861 target
, VOIDmode
, EXPAND_NORMAL
);
9864 /* Now see if we are likely to be able to do this. Return if not. */
9865 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
9868 icode
= setcc_gen_code
[(int) code
];
9870 if (icode
== CODE_FOR_nothing
)
9872 enum machine_mode wmode
;
9874 for (wmode
= operand_mode
;
9875 icode
== CODE_FOR_nothing
&& wmode
!= VOIDmode
;
9876 wmode
= GET_MODE_WIDER_MODE (wmode
))
9877 icode
= optab_handler (cstore_optab
, wmode
)->insn_code
;
9880 if (icode
== CODE_FOR_nothing
9881 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
9883 /* We can only do this if it is one of the special cases that
9884 can be handled without an scc insn. */
9885 if ((code
== LT
&& integer_zerop (arg1
))
9886 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
9888 else if (! only_cheap
&& (code
== NE
|| code
== EQ
)
9889 && TREE_CODE (type
) != REAL_TYPE
9890 && ((optab_handler (abs_optab
, operand_mode
)->insn_code
9891 != CODE_FOR_nothing
)
9892 || (optab_handler (ffs_optab
, operand_mode
)->insn_code
9893 != CODE_FOR_nothing
)))
9899 if (! get_subtarget (target
)
9900 || GET_MODE (subtarget
) != operand_mode
)
9903 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
9906 target
= gen_reg_rtx (mode
);
9908 result
= emit_store_flag (target
, code
, op0
, op1
,
9909 operand_mode
, unsignedp
, 1);
9914 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
9915 result
, 0, OPTAB_LIB_WIDEN
);
9919 /* If this failed, we have to do this with set/compare/jump/set code. */
9921 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
9922 target
= gen_reg_rtx (GET_MODE (target
));
9924 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
9925 label
= gen_label_rtx ();
9926 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, operand_mode
, NULL_RTX
,
9929 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
9936 /* Stubs in case we haven't got a casesi insn. */
9938 # define HAVE_casesi 0
9939 # define gen_casesi(a, b, c, d, e) (0)
9940 # define CODE_FOR_casesi CODE_FOR_nothing
9943 /* If the machine does not have a case insn that compares the bounds,
9944 this means extra overhead for dispatch tables, which raises the
9945 threshold for using them. */
9946 #ifndef CASE_VALUES_THRESHOLD
9947 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9948 #endif /* CASE_VALUES_THRESHOLD */
9951 case_values_threshold (void)
9953 return CASE_VALUES_THRESHOLD
;
9956 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9957 0 otherwise (i.e. if there is no casesi instruction). */
9959 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
9960 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
,
9961 rtx fallback_label ATTRIBUTE_UNUSED
)
9963 enum machine_mode index_mode
= SImode
;
9964 int index_bits
= GET_MODE_BITSIZE (index_mode
);
9965 rtx op1
, op2
, index
;
9966 enum machine_mode op_mode
;
9971 /* Convert the index to SImode. */
9972 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
9974 enum machine_mode omode
= TYPE_MODE (index_type
);
9975 rtx rangertx
= expand_normal (range
);
9977 /* We must handle the endpoints in the original mode. */
9978 index_expr
= build2 (MINUS_EXPR
, index_type
,
9979 index_expr
, minval
);
9980 minval
= integer_zero_node
;
9981 index
= expand_normal (index_expr
);
9983 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
9984 omode
, 1, default_label
);
9985 /* Now we can safely truncate. */
9986 index
= convert_to_mode (index_mode
, index
, 0);
9990 if (TYPE_MODE (index_type
) != index_mode
)
9992 index_type
= lang_hooks
.types
.type_for_size (index_bits
, 0);
9993 index_expr
= fold_convert (index_type
, index_expr
);
9996 index
= expand_normal (index_expr
);
9999 do_pending_stack_adjust ();
10001 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
10002 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
10004 index
= copy_to_mode_reg (op_mode
, index
);
10006 op1
= expand_normal (minval
);
10008 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
10009 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
10010 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
10011 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
10013 op1
= copy_to_mode_reg (op_mode
, op1
);
10015 op2
= expand_normal (range
);
10017 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
10018 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
10019 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
10020 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
10022 op2
= copy_to_mode_reg (op_mode
, op2
);
10024 emit_jump_insn (gen_casesi (index
, op1
, op2
,
10025 table_label
, !default_label
10026 ? fallback_label
: default_label
));
10030 /* Attempt to generate a tablejump instruction; same concept. */
10031 #ifndef HAVE_tablejump
10032 #define HAVE_tablejump 0
10033 #define gen_tablejump(x, y) (0)
10036 /* Subroutine of the next function.
10038 INDEX is the value being switched on, with the lowest value
10039 in the table already subtracted.
10040 MODE is its expected mode (needed if INDEX is constant).
10041 RANGE is the length of the jump table.
10042 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10044 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10045 index value is out of range. */
10048 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
10053 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
10054 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
10056 /* Do an unsigned comparison (in the proper mode) between the index
10057 expression and the value which represents the length of the range.
10058 Since we just finished subtracting the lower bound of the range
10059 from the index expression, this comparison allows us to simultaneously
10060 check that the original index expression value is both greater than
10061 or equal to the minimum value of the range and less than or equal to
10062 the maximum value of the range. */
10065 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10068 /* If index is in range, it must fit in Pmode.
10069 Convert to Pmode so we can index with it. */
10071 index
= convert_to_mode (Pmode
, index
, 1);
10073 /* Don't let a MEM slip through, because then INDEX that comes
10074 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10075 and break_out_memory_refs will go to work on it and mess it up. */
10076 #ifdef PIC_CASE_VECTOR_ADDRESS
10077 if (flag_pic
&& !REG_P (index
))
10078 index
= copy_to_mode_reg (Pmode
, index
);
10081 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10082 GET_MODE_SIZE, because this indicates how large insns are. The other
10083 uses should all be Pmode, because they are addresses. This code
10084 could fail if addresses and insns are not the same size. */
10085 index
= gen_rtx_PLUS (Pmode
,
10086 gen_rtx_MULT (Pmode
, index
,
10087 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
10088 gen_rtx_LABEL_REF (Pmode
, table_label
));
10089 #ifdef PIC_CASE_VECTOR_ADDRESS
10091 index
= PIC_CASE_VECTOR_ADDRESS (index
);
10094 index
= memory_address (CASE_VECTOR_MODE
, index
);
10095 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
10096 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
10097 convert_move (temp
, vector
, 0);
10099 emit_jump_insn (gen_tablejump (temp
, table_label
));
10101 /* If we are generating PIC code or if the table is PC-relative, the
10102 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10103 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
10108 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
10109 rtx table_label
, rtx default_label
)
10113 if (! HAVE_tablejump
)
10116 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
10117 fold_convert (index_type
, index_expr
),
10118 fold_convert (index_type
, minval
));
10119 index
= expand_normal (index_expr
);
10120 do_pending_stack_adjust ();
10122 do_tablejump (index
, TYPE_MODE (index_type
),
10123 convert_modes (TYPE_MODE (index_type
),
10124 TYPE_MODE (TREE_TYPE (range
)),
10125 expand_normal (range
),
10126 TYPE_UNSIGNED (TREE_TYPE (range
))),
10127 table_label
, default_label
);
10131 /* Nonzero if the mode is a valid vector mode for this architecture.
10132 This returns nonzero even if there is no hardware support for the
10133 vector mode, but we can emulate with narrower modes. */
10136 vector_mode_valid_p (enum machine_mode mode
)
10138 enum mode_class mclass
= GET_MODE_CLASS (mode
);
10139 enum machine_mode innermode
;
10141 /* Doh! What's going on? */
10142 if (mclass
!= MODE_VECTOR_INT
10143 && mclass
!= MODE_VECTOR_FLOAT
10144 && mclass
!= MODE_VECTOR_FRACT
10145 && mclass
!= MODE_VECTOR_UFRACT
10146 && mclass
!= MODE_VECTOR_ACCUM
10147 && mclass
!= MODE_VECTOR_UACCUM
)
10150 /* Hardware support. Woo hoo! */
10151 if (targetm
.vector_mode_supported_p (mode
))
10154 innermode
= GET_MODE_INNER (mode
);
10156 /* We should probably return 1 if requesting V4DI and we have no DI,
10157 but we have V2DI, but this is probably very unlikely. */
10159 /* If we have support for the inner mode, we can safely emulate it.
10160 We may not have V2DI, but me can emulate with a pair of DIs. */
10161 return targetm
.scalar_mode_supported_p (innermode
);
10164 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10166 const_vector_from_tree (tree exp
)
10171 enum machine_mode inner
, mode
;
10173 mode
= TYPE_MODE (TREE_TYPE (exp
));
10175 if (initializer_zerop (exp
))
10176 return CONST0_RTX (mode
);
10178 units
= GET_MODE_NUNITS (mode
);
10179 inner
= GET_MODE_INNER (mode
);
10181 v
= rtvec_alloc (units
);
10183 link
= TREE_VECTOR_CST_ELTS (exp
);
10184 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
10186 elt
= TREE_VALUE (link
);
10188 if (TREE_CODE (elt
) == REAL_CST
)
10189 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
10191 else if (TREE_CODE (elt
) == FIXED_CST
)
10192 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
10195 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
10196 TREE_INT_CST_HIGH (elt
),
10200 /* Initialize remaining elements to 0. */
10201 for (; i
< units
; ++i
)
10202 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
10204 return gen_rtx_CONST_VECTOR (mode
, v
);
10206 #include "gt-expr.h"