(note_mem_written): Varying structure memory access with
[official-gcc.git] / gcc / reorg.c
blob54ad9389aa0f4f8296a4364acdb35707e6aa87e3
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
4 Hacked by Michael Tiemann (tiemann@cygnus.com).
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* Instruction reorganization pass.
25 This pass runs after register allocation and final jump
26 optimization. It should be the last pass to run before peephole.
27 It serves primarily to fill delay slots of insns, typically branch
28 and call insns. Other insns typically involve more complicated
29 interactions of data dependencies and resource constraints, and
30 are better handled by scheduling before register allocation (by the
31 function `schedule_insns').
33 The Branch Penalty is the number of extra cycles that are needed to
34 execute a branch insn. On an ideal machine, branches take a single
35 cycle, and the Branch Penalty is 0. Several RISC machines approach
36 branch delays differently:
38 The MIPS and AMD 29000 have a single branch delay slot. Most insns
39 (except other branches) can be used to fill this slot. When the
40 slot is filled, two insns execute in two cycles, reducing the
41 branch penalty to zero.
43 The Motorola 88000 conditionally exposes its branch delay slot,
44 so code is shorter when it is turned off, but will run faster
45 when useful insns are scheduled there.
47 The IBM ROMP has two forms of branch and call insns, both with and
48 without a delay slot. Much like the 88k, insns not using the delay
49 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
51 The SPARC always has a branch delay slot, but its effects can be
52 annulled when the branch is not taken. This means that failing to
53 find other sources of insns, we can hoist an insn from the branch
54 target that would only be safe to execute knowing that the branch
55 is taken.
57 The HP-PA always has a branch delay slot. For unconditional branches
58 its effects can be annulled when the branch is taken. The effects
59 of the delay slot in a conditional branch can be nullified for forward
60 taken branches, or for untaken backward branches. This means
61 we can hoist insns from the fall-through path for forward branches or
62 steal insns from the target of backward branches.
64 Three techniques for filling delay slots have been implemented so far:
66 (1) `fill_simple_delay_slots' is the simplest, most efficient way
67 to fill delay slots. This pass first looks for insns which come
68 from before the branch and which are safe to execute after the
69 branch. Then it searches after the insn requiring delay slots or,
70 in the case of a branch, for insns that are after the point at
71 which the branch merges into the fallthrough code, if such a point
72 exists. When such insns are found, the branch penalty decreases
73 and no code expansion takes place.
75 (2) `fill_eager_delay_slots' is more complicated: it is used for
76 scheduling conditional jumps, or for scheduling jumps which cannot
77 be filled using (1). A machine need not have annulled jumps to use
78 this strategy, but it helps (by keeping more options open).
79 `fill_eager_delay_slots' tries to guess the direction the branch
80 will go; if it guesses right 100% of the time, it can reduce the
81 branch penalty as much as `fill_simple_delay_slots' does. If it
82 guesses wrong 100% of the time, it might as well schedule nops (or
83 on the m88k, unexpose the branch slot). When
84 `fill_eager_delay_slots' takes insns from the fall-through path of
85 the jump, usually there is no code expansion; when it takes insns
86 from the branch target, there is code expansion if it is not the
87 only way to reach that target.
89 (3) `relax_delay_slots' uses a set of rules to simplify code that
90 has been reorganized by (1) and (2). It finds cases where
91 conditional test can be eliminated, jumps can be threaded, extra
92 insns can be eliminated, etc. It is the job of (1) and (2) to do a
93 good job of scheduling locally; `relax_delay_slots' takes care of
94 making the various individual schedules work well together. It is
95 especially tuned to handle the control flow interactions of branch
96 insns. It does nothing for insns with delay slots that do not
97 branch.
99 On machines that use CC0, we are very conservative. We will not make
100 a copy of an insn involving CC0 since we want to maintain a 1-1
101 correspondence between the insn that sets and uses CC0. The insns are
102 allowed to be separated by placing an insn that sets CC0 (but not an insn
103 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
104 delay slot. In that case, we point each insn at the other with REG_CC_USER
105 and REG_CC_SETTER notes. Note that these restrictions affect very few
106 machines because most RISC machines with delay slots will not use CC0
107 (the RT is the only known exception at this point).
109 Not yet implemented:
111 The Acorn Risc Machine can conditionally execute most insns, so
112 it is profitable to move single insns into a position to execute
113 based on the condition code of the previous insn.
115 The HP-PA can conditionally nullify insns, providing a similar
116 effect to the ARM, differing mostly in which insn is "in charge". */
118 #include <stdio.h>
119 #include "config.h"
120 #include "rtl.h"
121 #include "insn-config.h"
122 #include "conditions.h"
123 #include "hard-reg-set.h"
124 #include "basic-block.h"
125 #include "regs.h"
126 #include "insn-flags.h"
127 #include "recog.h"
128 #include "flags.h"
129 #include "output.h"
130 #include "obstack.h"
131 #include "insn-attr.h"
133 /* Import list of registers used as spill regs from reload. */
134 extern HARD_REG_SET used_spill_regs;
136 /* Import highest label used in function at end of reload. */
137 extern int max_label_num_after_reload;
140 #ifdef DELAY_SLOTS
142 #define obstack_chunk_alloc xmalloc
143 #define obstack_chunk_free free
145 #ifndef ANNUL_IFTRUE_SLOTS
146 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
147 #endif
148 #ifndef ANNUL_IFFALSE_SLOTS
149 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
150 #endif
152 /* Insns which have delay slots that have not yet been filled. */
154 static struct obstack unfilled_slots_obstack;
155 static rtx *unfilled_firstobj;
157 /* Define macros to refer to the first and last slot containing unfilled
158 insns. These are used because the list may move and its address
159 should be recomputed at each use. */
161 #define unfilled_slots_base \
162 ((rtx *) obstack_base (&unfilled_slots_obstack))
164 #define unfilled_slots_next \
165 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
167 /* This structure is used to indicate which hardware resources are set or
168 needed by insns so far. */
170 struct resources
172 char memory; /* Insn sets or needs a memory location. */
173 char unch_memory; /* Insn sets of needs a "unchanging" MEM. */
174 char volatil; /* Insn sets or needs a volatile memory loc. */
175 char cc; /* Insn sets or needs the condition codes. */
176 HARD_REG_SET regs; /* Which registers are set or needed. */
179 /* Macro to clear all resources. */
180 #define CLEAR_RESOURCE(RES) \
181 do { (RES)->memory = (RES)->unch_memory = (RES)->volatil = (RES)->cc = 0; \
182 CLEAR_HARD_REG_SET ((RES)->regs); } while (0)
184 /* Indicates what resources are required at the beginning of the epilogue. */
185 static struct resources start_of_epilogue_needs;
187 /* Indicates what resources are required at function end. */
188 static struct resources end_of_function_needs;
190 /* Points to the label before the end of the function. */
191 static rtx end_of_function_label;
193 /* This structure is used to record liveness information at the targets or
194 fallthrough insns of branches. We will most likely need the information
195 at targets again, so save them in a hash table rather than recomputing them
196 each time. */
198 struct target_info
200 int uid; /* INSN_UID of target. */
201 struct target_info *next; /* Next info for same hash bucket. */
202 HARD_REG_SET live_regs; /* Registers live at target. */
203 int block; /* Basic block number containing target. */
204 int bb_tick; /* Generation count of basic block info. */
207 #define TARGET_HASH_PRIME 257
209 /* Define the hash table itself. */
210 static struct target_info **target_hash_table;
212 /* For each basic block, we maintain a generation number of its basic
213 block info, which is updated each time we move an insn from the
214 target of a jump. This is the generation number indexed by block
215 number. */
217 static int *bb_ticks;
219 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
220 not always monotonically increase. */
221 static int *uid_to_ruid;
223 /* Highest valid index in `uid_to_ruid'. */
224 static int max_uid;
226 static void mark_referenced_resources PROTO((rtx, struct resources *, int));
227 static void mark_set_resources PROTO((rtx, struct resources *, int, int));
228 static int stop_search_p PROTO((rtx, int));
229 static int resource_conflicts_p PROTO((struct resources *,
230 struct resources *));
231 static int insn_references_resource_p PROTO((rtx, struct resources *, int));
232 static int insn_sets_resources_p PROTO((rtx, struct resources *, int));
233 static rtx find_end_label PROTO((void));
234 static rtx emit_delay_sequence PROTO((rtx, rtx, int, int));
235 static rtx add_to_delay_list PROTO((rtx, rtx));
236 static void delete_from_delay_slot PROTO((rtx));
237 static void delete_scheduled_jump PROTO((rtx));
238 static void note_delay_statistics PROTO((int, int));
239 static rtx optimize_skip PROTO((rtx));
240 static int get_jump_flags PROTO((rtx, rtx));
241 static int rare_destination PROTO((rtx));
242 static int mostly_true_jump PROTO((rtx, rtx));
243 static rtx get_branch_condition PROTO((rtx, rtx));
244 static int condition_dominates_p PROTO((rtx, rtx));
245 static rtx steal_delay_list_from_target PROTO((rtx, rtx, rtx, rtx,
246 struct resources *,
247 struct resources *,
248 struct resources *,
249 int, int *, int *, rtx *));
250 static rtx steal_delay_list_from_fallthrough PROTO((rtx, rtx, rtx, rtx,
251 struct resources *,
252 struct resources *,
253 struct resources *,
254 int, int *, int *));
255 static void try_merge_delay_insns PROTO((rtx, rtx));
256 static rtx redundant_insn PROTO((rtx, rtx, rtx));
257 static int own_thread_p PROTO((rtx, rtx, int));
258 static int find_basic_block PROTO((rtx));
259 static void update_block PROTO((rtx, rtx));
260 static int reorg_redirect_jump PROTO((rtx, rtx));
261 static void update_reg_dead_notes PROTO((rtx, rtx));
262 static void fix_reg_dead_note PROTO((rtx, rtx));
263 static void update_reg_unused_notes PROTO((rtx, rtx));
264 static void update_live_status PROTO((rtx, rtx));
265 static rtx next_insn_no_annul PROTO((rtx));
266 static void mark_target_live_regs PROTO((rtx, struct resources *));
267 static void fill_simple_delay_slots PROTO((rtx, int));
268 static rtx fill_slots_from_thread PROTO((rtx, rtx, rtx, rtx, int, int,
269 int, int, int, int *));
270 static void fill_eager_delay_slots PROTO((rtx));
271 static void relax_delay_slots PROTO((rtx));
272 static void make_return_insns PROTO((rtx));
273 static int redirect_with_delay_slots_safe_p PROTO ((rtx, rtx, rtx));
274 static int redirect_with_delay_list_safe_p PROTO ((rtx, rtx, rtx));
276 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
277 which resources are references by the insn. If INCLUDE_CALLED_ROUTINE
278 is TRUE, resources used by the called routine will be included for
279 CALL_INSNs. */
281 static void
282 mark_referenced_resources (x, res, include_delayed_effects)
283 register rtx x;
284 register struct resources *res;
285 register int include_delayed_effects;
287 register enum rtx_code code = GET_CODE (x);
288 register int i, j;
289 register char *format_ptr;
291 /* Handle leaf items for which we set resource flags. Also, special-case
292 CALL, SET and CLOBBER operators. */
293 switch (code)
295 case CONST:
296 case CONST_INT:
297 case CONST_DOUBLE:
298 case PC:
299 case SYMBOL_REF:
300 case LABEL_REF:
301 return;
303 case SUBREG:
304 if (GET_CODE (SUBREG_REG (x)) != REG)
305 mark_referenced_resources (SUBREG_REG (x), res, 0);
306 else
308 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
309 int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
310 for (i = regno; i < last_regno; i++)
311 SET_HARD_REG_BIT (res->regs, i);
313 return;
315 case REG:
316 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
317 SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
318 return;
320 case MEM:
321 /* If this memory shouldn't change, it really isn't referencing
322 memory. */
323 if (RTX_UNCHANGING_P (x))
324 res->unch_memory = 1;
325 else
326 res->memory = 1;
327 res->volatil = MEM_VOLATILE_P (x);
329 /* Mark registers used to access memory. */
330 mark_referenced_resources (XEXP (x, 0), res, 0);
331 return;
333 case CC0:
334 res->cc = 1;
335 return;
337 case UNSPEC_VOLATILE:
338 case ASM_INPUT:
339 case TRAP_IF:
340 /* Traditional asm's are always volatile. */
341 res->volatil = 1;
342 return;
344 case ASM_OPERANDS:
345 res->volatil = MEM_VOLATILE_P (x);
347 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
348 We can not just fall through here since then we would be confused
349 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
350 traditional asms unlike their normal usage. */
352 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
353 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
354 return;
356 case CALL:
357 /* The first operand will be a (MEM (xxx)) but doesn't really reference
358 memory. The second operand may be referenced, though. */
359 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
360 mark_referenced_resources (XEXP (x, 1), res, 0);
361 return;
363 case SET:
364 /* Usually, the first operand of SET is set, not referenced. But
365 registers used to access memory are referenced. SET_DEST is
366 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
368 mark_referenced_resources (SET_SRC (x), res, 0);
370 x = SET_DEST (x);
371 if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT)
372 mark_referenced_resources (x, res, 0);
373 else if (GET_CODE (x) == SUBREG)
374 x = SUBREG_REG (x);
375 if (GET_CODE (x) == MEM)
376 mark_referenced_resources (XEXP (x, 0), res, 0);
377 return;
379 case CLOBBER:
380 return;
382 case CALL_INSN:
383 if (include_delayed_effects)
385 /* A CALL references memory, the frame pointer if it exists, the
386 stack pointer, any global registers and any registers given in
387 USE insns immediately in front of the CALL.
389 However, we may have moved some of the parameter loading insns
390 into the delay slot of this CALL. If so, the USE's for them
391 don't count and should be skipped. */
392 rtx insn = PREV_INSN (x);
393 rtx sequence = 0;
394 int seq_size = 0;
395 rtx next = NEXT_INSN (x);
396 int i;
398 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
399 if (NEXT_INSN (insn) != x)
401 next = NEXT_INSN (NEXT_INSN (insn));
402 sequence = PATTERN (NEXT_INSN (insn));
403 seq_size = XVECLEN (sequence, 0);
404 if (GET_CODE (sequence) != SEQUENCE)
405 abort ();
408 res->memory = 1;
409 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
410 if (frame_pointer_needed)
412 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
413 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
414 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
415 #endif
418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
419 if (global_regs[i])
420 SET_HARD_REG_BIT (res->regs, i);
422 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
423 assume that this call can need any register.
425 This is done to be more conservative about how we handle setjmp.
426 We assume that they both use and set all registers. Using all
427 registers ensures that a register will not be considered dead
428 just because it crosses a setjmp call. A register should be
429 considered dead only if the setjmp call returns non-zero. */
430 if (next && GET_CODE (next) == NOTE
431 && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
432 SET_HARD_REG_SET (res->regs);
435 rtx link;
437 for (link = CALL_INSN_FUNCTION_USAGE (x);
438 link;
439 link = XEXP (link, 1))
440 if (GET_CODE (XEXP (link, 0)) == USE)
442 for (i = 1; i < seq_size; i++)
444 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
445 if (GET_CODE (slot_pat) == SET
446 && rtx_equal_p (SET_DEST (slot_pat),
447 SET_DEST (XEXP (link, 0))))
448 break;
450 if (i >= seq_size)
451 mark_referenced_resources (SET_DEST (XEXP (link, 0)),
452 res, 0);
457 /* ... fall through to other INSN processing ... */
459 case INSN:
460 case JUMP_INSN:
462 #ifdef INSN_REFERENCES_ARE_DELAYED
463 if (! include_delayed_effects
464 && INSN_REFERENCES_ARE_DELAYED (x))
465 return;
466 #endif
468 /* No special processing, just speed up. */
469 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
470 return;
473 /* Process each sub-expression and flag what it needs. */
474 format_ptr = GET_RTX_FORMAT (code);
475 for (i = 0; i < GET_RTX_LENGTH (code); i++)
476 switch (*format_ptr++)
478 case 'e':
479 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
480 break;
482 case 'E':
483 for (j = 0; j < XVECLEN (x, i); j++)
484 mark_referenced_resources (XVECEXP (x, i, j), res,
485 include_delayed_effects);
486 break;
490 /* Given X, a part of an insn, and a pointer to a `struct resource', RES,
491 indicate which resources are modified by the insn. If INCLUDE_CALLED_ROUTINE
492 is nonzero, also mark resources potentially set by the called routine.
494 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
495 objects are being referenced instead of set.
497 We never mark the insn as modifying the condition code unless it explicitly
498 SETs CC0 even though this is not totally correct. The reason for this is
499 that we require a SET of CC0 to immediately precede the reference to CC0.
500 So if some other insn sets CC0 as a side-effect, we know it cannot affect
501 our computation and thus may be placed in a delay slot. */
503 static void
504 mark_set_resources (x, res, in_dest, include_delayed_effects)
505 register rtx x;
506 register struct resources *res;
507 int in_dest;
508 int include_delayed_effects;
510 register enum rtx_code code;
511 register int i, j;
512 register char *format_ptr;
514 restart:
516 code = GET_CODE (x);
518 switch (code)
520 case NOTE:
521 case BARRIER:
522 case CODE_LABEL:
523 case USE:
524 case CONST_INT:
525 case CONST_DOUBLE:
526 case LABEL_REF:
527 case SYMBOL_REF:
528 case CONST:
529 case PC:
530 /* These don't set any resources. */
531 return;
533 case CC0:
534 if (in_dest)
535 res->cc = 1;
536 return;
538 case CALL_INSN:
539 /* Called routine modifies the condition code, memory, any registers
540 that aren't saved across calls, global registers and anything
541 explicitly CLOBBERed immediately after the CALL_INSN. */
543 if (include_delayed_effects)
545 rtx next = NEXT_INSN (x);
546 rtx prev = PREV_INSN (x);
547 rtx link;
549 res->cc = res->memory = 1;
550 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
551 if (call_used_regs[i] || global_regs[i])
552 SET_HARD_REG_BIT (res->regs, i);
554 /* If X is part of a delay slot sequence, then NEXT should be
555 the first insn after the sequence. */
556 if (NEXT_INSN (prev) != x)
557 next = NEXT_INSN (NEXT_INSN (prev));
559 for (link = CALL_INSN_FUNCTION_USAGE (x);
560 link; link = XEXP (link, 1))
561 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
562 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 0);
564 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
565 assume that this call can clobber any register. */
566 if (next && GET_CODE (next) == NOTE
567 && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
568 SET_HARD_REG_SET (res->regs);
571 /* ... and also what it's RTL says it modifies, if anything. */
573 case JUMP_INSN:
574 case INSN:
576 /* An insn consisting of just a CLOBBER (or USE) is just for flow
577 and doesn't actually do anything, so we ignore it. */
579 #ifdef INSN_SETS_ARE_DELAYED
580 if (! include_delayed_effects
581 && INSN_SETS_ARE_DELAYED (x))
582 return;
583 #endif
585 x = PATTERN (x);
586 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
587 goto restart;
588 return;
590 case SET:
591 /* If the source of a SET is a CALL, this is actually done by
592 the called routine. So only include it if we are to include the
593 effects of the calling routine. */
595 mark_set_resources (SET_DEST (x), res,
596 (include_delayed_effects
597 || GET_CODE (SET_SRC (x)) != CALL),
600 mark_set_resources (SET_SRC (x), res, 0, 0);
601 return;
603 case CLOBBER:
604 mark_set_resources (XEXP (x, 0), res, 1, 0);
605 return;
607 case SEQUENCE:
608 for (i = 0; i < XVECLEN (x, 0); i++)
609 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
610 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
611 mark_set_resources (XVECEXP (x, 0, i), res, 0,
612 include_delayed_effects);
613 return;
615 case POST_INC:
616 case PRE_INC:
617 case POST_DEC:
618 case PRE_DEC:
619 mark_set_resources (XEXP (x, 0), res, 1, 0);
620 return;
622 case ZERO_EXTRACT:
623 mark_set_resources (XEXP (x, 0), res, in_dest, 0);
624 mark_set_resources (XEXP (x, 1), res, 0, 0);
625 mark_set_resources (XEXP (x, 2), res, 0, 0);
626 return;
628 case MEM:
629 if (in_dest)
631 res->memory = 1;
632 res->unch_memory = RTX_UNCHANGING_P (x);
633 res->volatil = MEM_VOLATILE_P (x);
636 mark_set_resources (XEXP (x, 0), res, 0, 0);
637 return;
639 case SUBREG:
640 if (in_dest)
642 if (GET_CODE (SUBREG_REG (x)) != REG)
643 mark_set_resources (SUBREG_REG (x), res,
644 in_dest, include_delayed_effects);
645 else
647 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
648 int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
649 for (i = regno; i < last_regno; i++)
650 SET_HARD_REG_BIT (res->regs, i);
653 return;
655 case REG:
656 if (in_dest)
657 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
658 SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
659 return;
662 /* Process each sub-expression and flag what it needs. */
663 format_ptr = GET_RTX_FORMAT (code);
664 for (i = 0; i < GET_RTX_LENGTH (code); i++)
665 switch (*format_ptr++)
667 case 'e':
668 mark_set_resources (XEXP (x, i), res, in_dest, include_delayed_effects);
669 break;
671 case 'E':
672 for (j = 0; j < XVECLEN (x, i); j++)
673 mark_set_resources (XVECEXP (x, i, j), res, in_dest,
674 include_delayed_effects);
675 break;
679 /* Return TRUE if this insn should stop the search for insn to fill delay
680 slots. LABELS_P indicates that labels should terminate the search.
681 In all cases, jumps terminate the search. */
683 static int
684 stop_search_p (insn, labels_p)
685 rtx insn;
686 int labels_p;
688 if (insn == 0)
689 return 1;
691 switch (GET_CODE (insn))
693 case NOTE:
694 case CALL_INSN:
695 return 0;
697 case CODE_LABEL:
698 return labels_p;
700 case JUMP_INSN:
701 case BARRIER:
702 return 1;
704 case INSN:
705 /* OK unless it contains a delay slot or is an `asm' insn of some type.
706 We don't know anything about these. */
707 return (GET_CODE (PATTERN (insn)) == SEQUENCE
708 || GET_CODE (PATTERN (insn)) == ASM_INPUT
709 || asm_noperands (PATTERN (insn)) >= 0);
711 default:
712 abort ();
716 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
717 resource set contains a volatile memory reference. Otherwise, return FALSE. */
719 static int
720 resource_conflicts_p (res1, res2)
721 struct resources *res1, *res2;
723 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
724 || (res1->unch_memory && res2->unch_memory)
725 || res1->volatil || res2->volatil)
726 return 1;
728 #ifdef HARD_REG_SET
729 return (res1->regs & res2->regs) != HARD_CONST (0);
730 #else
732 int i;
734 for (i = 0; i < HARD_REG_SET_LONGS; i++)
735 if ((res1->regs[i] & res2->regs[i]) != 0)
736 return 1;
737 return 0;
739 #endif
742 /* Return TRUE if any resource marked in RES, a `struct resources', is
743 referenced by INSN. If INCLUDE_CALLED_ROUTINE is set, return if the called
744 routine is using those resources.
746 We compute this by computing all the resources referenced by INSN and
747 seeing if this conflicts with RES. It might be faster to directly check
748 ourselves, and this is the way it used to work, but it means duplicating
749 a large block of complex code. */
751 static int
752 insn_references_resource_p (insn, res, include_delayed_effects)
753 register rtx insn;
754 register struct resources *res;
755 int include_delayed_effects;
757 struct resources insn_res;
759 CLEAR_RESOURCE (&insn_res);
760 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
761 return resource_conflicts_p (&insn_res, res);
764 /* Return TRUE if INSN modifies resources that are marked in RES.
765 INCLUDE_CALLED_ROUTINE is set if the actions of that routine should be
766 included. CC0 is only modified if it is explicitly set; see comments
767 in front of mark_set_resources for details. */
769 static int
770 insn_sets_resource_p (insn, res, include_delayed_effects)
771 register rtx insn;
772 register struct resources *res;
773 int include_delayed_effects;
775 struct resources insn_sets;
777 CLEAR_RESOURCE (&insn_sets);
778 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
779 return resource_conflicts_p (&insn_sets, res);
782 /* Find a label at the end of the function or before a RETURN. If there is
783 none, make one. */
785 static rtx
786 find_end_label ()
788 rtx insn;
790 /* If we found one previously, return it. */
791 if (end_of_function_label)
792 return end_of_function_label;
794 /* Otherwise, see if there is a label at the end of the function. If there
795 is, it must be that RETURN insns aren't needed, so that is our return
796 label and we don't have to do anything else. */
798 insn = get_last_insn ();
799 while (GET_CODE (insn) == NOTE
800 || (GET_CODE (insn) == INSN
801 && (GET_CODE (PATTERN (insn)) == USE
802 || GET_CODE (PATTERN (insn)) == CLOBBER)))
803 insn = PREV_INSN (insn);
805 /* When a target threads its epilogue we might already have a
806 suitable return insn. If so put a label before it for the
807 end_of_function_label. */
808 if (GET_CODE (insn) == BARRIER
809 && GET_CODE (PREV_INSN (insn)) == JUMP_INSN
810 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
812 rtx temp = PREV_INSN (PREV_INSN (insn));
813 end_of_function_label = gen_label_rtx ();
814 LABEL_NUSES (end_of_function_label) = 0;
816 /* Put the label before an USE insns that may proceed the RETURN insn. */
817 while (GET_CODE (temp) == USE)
818 temp = PREV_INSN (temp);
820 emit_label_after (end_of_function_label, temp);
823 else if (GET_CODE (insn) == CODE_LABEL)
824 end_of_function_label = insn;
825 else
827 /* Otherwise, make a new label and emit a RETURN and BARRIER,
828 if needed. */
829 end_of_function_label = gen_label_rtx ();
830 LABEL_NUSES (end_of_function_label) = 0;
831 emit_label (end_of_function_label);
832 #ifdef HAVE_return
833 if (HAVE_return)
835 /* The return we make may have delay slots too. */
836 rtx insn = gen_return ();
837 insn = emit_jump_insn (insn);
838 emit_barrier ();
839 if (num_delay_slots (insn) > 0)
840 obstack_ptr_grow (&unfilled_slots_obstack, insn);
842 #endif
845 /* Show one additional use for this label so it won't go away until
846 we are done. */
847 ++LABEL_NUSES (end_of_function_label);
849 return end_of_function_label;
852 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
853 the pattern of INSN with the SEQUENCE.
855 Chain the insns so that NEXT_INSN of each insn in the sequence points to
856 the next and NEXT_INSN of the last insn in the sequence points to
857 the first insn after the sequence. Similarly for PREV_INSN. This makes
858 it easier to scan all insns.
860 Returns the SEQUENCE that replaces INSN. */
862 static rtx
863 emit_delay_sequence (insn, list, length, avail)
864 rtx insn;
865 rtx list;
866 int length;
867 int avail;
869 register int i = 1;
870 register rtx li;
871 int had_barrier = 0;
873 /* Allocate the the rtvec to hold the insns and the SEQUENCE. */
874 rtvec seqv = rtvec_alloc (length + 1);
875 rtx seq = gen_rtx (SEQUENCE, VOIDmode, seqv);
876 rtx seq_insn = make_insn_raw (seq);
877 rtx first = get_insns ();
878 rtx last = get_last_insn ();
880 /* Make a copy of the insn having delay slots. */
881 rtx delay_insn = copy_rtx (insn);
883 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
884 confuse further processing. Update LAST in case it was the last insn.
885 We will put the BARRIER back in later. */
886 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == BARRIER)
888 delete_insn (NEXT_INSN (insn));
889 last = get_last_insn ();
890 had_barrier = 1;
893 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
894 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
895 PREV_INSN (seq_insn) = PREV_INSN (insn);
897 if (insn == last)
898 set_new_first_and_last_insn (first, seq_insn);
899 else
900 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
902 if (insn == first)
903 set_new_first_and_last_insn (seq_insn, last);
904 else
905 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
907 /* Build our SEQUENCE and rebuild the insn chain. */
908 XVECEXP (seq, 0, 0) = delay_insn;
909 INSN_DELETED_P (delay_insn) = 0;
910 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
912 for (li = list; li; li = XEXP (li, 1), i++)
914 rtx tem = XEXP (li, 0);
915 rtx note;
917 /* Show that this copy of the insn isn't deleted. */
918 INSN_DELETED_P (tem) = 0;
920 XVECEXP (seq, 0, i) = tem;
921 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
922 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
924 /* Remove any REG_DEAD notes because we can't rely on them now
925 that the insn has been moved. */
926 for (note = REG_NOTES (tem); note; note = XEXP (note, 1))
927 if (REG_NOTE_KIND (note) == REG_DEAD)
928 XEXP (note, 0) = const0_rtx;
931 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
933 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
934 last insn in that SEQUENCE to point to us. Similarly for the first
935 insn in the following insn if it is a SEQUENCE. */
937 if (PREV_INSN (seq_insn) && GET_CODE (PREV_INSN (seq_insn)) == INSN
938 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
939 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
940 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
941 = seq_insn;
943 if (NEXT_INSN (seq_insn) && GET_CODE (NEXT_INSN (seq_insn)) == INSN
944 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
945 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
947 /* If there used to be a BARRIER, put it back. */
948 if (had_barrier)
949 emit_barrier_after (seq_insn);
951 if (i != length + 1)
952 abort ();
954 return seq_insn;
957 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
958 be in the order in which the insns are to be executed. */
960 static rtx
961 add_to_delay_list (insn, delay_list)
962 rtx insn;
963 rtx delay_list;
965 /* If we have an empty list, just make a new list element. If
966 INSN has it's block number recorded, clear it since we may
967 be moving the insn to a new block. */
969 if (delay_list == 0)
971 struct target_info *tinfo;
973 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
974 tinfo; tinfo = tinfo->next)
975 if (tinfo->uid == INSN_UID (insn))
976 break;
978 if (tinfo)
979 tinfo->block = -1;
981 return gen_rtx (INSN_LIST, VOIDmode, insn, NULL_RTX);
984 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
985 list. */
986 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
988 return delay_list;
991 /* Delete INSN from the the delay slot of the insn that it is in. This may
992 produce an insn without anything in its delay slots. */
994 static void
995 delete_from_delay_slot (insn)
996 rtx insn;
998 rtx trial, seq_insn, seq, prev;
999 rtx delay_list = 0;
1000 int i;
1002 /* We first must find the insn containing the SEQUENCE with INSN in its
1003 delay slot. Do this by finding an insn, TRIAL, where
1004 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
1006 for (trial = insn;
1007 PREV_INSN (NEXT_INSN (trial)) == trial;
1008 trial = NEXT_INSN (trial))
1011 seq_insn = PREV_INSN (NEXT_INSN (trial));
1012 seq = PATTERN (seq_insn);
1014 /* Create a delay list consisting of all the insns other than the one
1015 we are deleting (unless we were the only one). */
1016 if (XVECLEN (seq, 0) > 2)
1017 for (i = 1; i < XVECLEN (seq, 0); i++)
1018 if (XVECEXP (seq, 0, i) != insn)
1019 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
1021 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
1022 list, and rebuild the delay list if non-empty. */
1023 prev = PREV_INSN (seq_insn);
1024 trial = XVECEXP (seq, 0, 0);
1025 delete_insn (seq_insn);
1026 add_insn_after (trial, prev);
1028 if (GET_CODE (trial) == JUMP_INSN
1029 && (simplejump_p (trial) || GET_CODE (PATTERN (trial)) == RETURN))
1030 emit_barrier_after (trial);
1032 /* If there are any delay insns, remit them. Otherwise clear the
1033 annul flag. */
1034 if (delay_list)
1035 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2, 0);
1036 else
1037 INSN_ANNULLED_BRANCH_P (trial) = 0;
1039 INSN_FROM_TARGET_P (insn) = 0;
1041 /* Show we need to fill this insn again. */
1042 obstack_ptr_grow (&unfilled_slots_obstack, trial);
1045 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
1046 the insn that sets CC0 for it and delete it too. */
1048 static void
1049 delete_scheduled_jump (insn)
1050 rtx insn;
1052 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
1053 delete the insn that sets the condition code, but it is hard to find it.
1054 Since this case is rare anyway, don't bother trying; there would likely
1055 be other insns that became dead anyway, which we wouldn't know to
1056 delete. */
1058 #ifdef HAVE_cc0
1059 if (reg_mentioned_p (cc0_rtx, insn))
1061 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1063 /* If a reg-note was found, it points to an insn to set CC0. This
1064 insn is in the delay list of some other insn. So delete it from
1065 the delay list it was in. */
1066 if (note)
1068 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
1069 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
1070 delete_from_delay_slot (XEXP (note, 0));
1072 else
1074 /* The insn setting CC0 is our previous insn, but it may be in
1075 a delay slot. It will be the last insn in the delay slot, if
1076 it is. */
1077 rtx trial = previous_insn (insn);
1078 if (GET_CODE (trial) == NOTE)
1079 trial = prev_nonnote_insn (trial);
1080 if (sets_cc0_p (PATTERN (trial)) != 1
1081 || FIND_REG_INC_NOTE (trial, 0))
1082 return;
1083 if (PREV_INSN (NEXT_INSN (trial)) == trial)
1084 delete_insn (trial);
1085 else
1086 delete_from_delay_slot (trial);
1089 #endif
1091 delete_insn (insn);
1094 /* Counters for delay-slot filling. */
1096 #define NUM_REORG_FUNCTIONS 2
1097 #define MAX_DELAY_HISTOGRAM 3
1098 #define MAX_REORG_PASSES 2
1100 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
1102 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
1104 static int reorg_pass_number;
1106 static void
1107 note_delay_statistics (slots_filled, index)
1108 int slots_filled, index;
1110 num_insns_needing_delays[index][reorg_pass_number]++;
1111 if (slots_filled > MAX_DELAY_HISTOGRAM)
1112 slots_filled = MAX_DELAY_HISTOGRAM;
1113 num_filled_delays[index][slots_filled][reorg_pass_number]++;
1116 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
1118 /* Optimize the following cases:
1120 1. When a conditional branch skips over only one instruction,
1121 use an annulling branch and put that insn in the delay slot.
1122 Use either a branch that annuls when the condition if true or
1123 invert the test with a branch that annuls when the condition is
1124 false. This saves insns, since otherwise we must copy an insn
1125 from the L1 target.
1127 (orig) (skip) (otherwise)
1128 Bcc.n L1 Bcc',a L1 Bcc,a L1'
1129 insn insn insn2
1130 L1: L1: L1:
1131 insn2 insn2 insn2
1132 insn3 insn3 L1':
1133 insn3
1135 2. When a conditional branch skips over only one instruction,
1136 and after that, it unconditionally branches somewhere else,
1137 perform the similar optimization. This saves executing the
1138 second branch in the case where the inverted condition is true.
1140 Bcc.n L1 Bcc',a L2
1141 insn insn
1142 L1: L1:
1143 Bra L2 Bra L2
1145 INSN is a JUMP_INSN.
1147 This should be expanded to skip over N insns, where N is the number
1148 of delay slots required. */
1150 static rtx
1151 optimize_skip (insn)
1152 register rtx insn;
1154 register rtx trial = next_nonnote_insn (insn);
1155 rtx next_trial = next_active_insn (trial);
1156 rtx delay_list = 0;
1157 rtx target_label;
1158 int flags;
1160 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1162 if (trial == 0
1163 || GET_CODE (trial) != INSN
1164 || GET_CODE (PATTERN (trial)) == SEQUENCE
1165 || recog_memoized (trial) < 0
1166 || (! eligible_for_annul_false (insn, 0, trial, flags)
1167 && ! eligible_for_annul_true (insn, 0, trial, flags)))
1168 return 0;
1170 /* There are two cases where we are just executing one insn (we assume
1171 here that a branch requires only one insn; this should be generalized
1172 at some point): Where the branch goes around a single insn or where
1173 we have one insn followed by a branch to the same label we branch to.
1174 In both of these cases, inverting the jump and annulling the delay
1175 slot give the same effect in fewer insns. */
1176 if ((next_trial == next_active_insn (JUMP_LABEL (insn)))
1177 || (next_trial != 0
1178 && GET_CODE (next_trial) == JUMP_INSN
1179 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
1180 && (simplejump_p (next_trial)
1181 || GET_CODE (PATTERN (next_trial)) == RETURN)))
1183 if (eligible_for_annul_false (insn, 0, trial, flags))
1185 if (invert_jump (insn, JUMP_LABEL (insn)))
1186 INSN_FROM_TARGET_P (trial) = 1;
1187 else if (! eligible_for_annul_true (insn, 0, trial, flags))
1188 return 0;
1191 delay_list = add_to_delay_list (trial, NULL_RTX);
1192 next_trial = next_active_insn (trial);
1193 update_block (trial, trial);
1194 delete_insn (trial);
1196 /* Also, if we are targeting an unconditional
1197 branch, thread our jump to the target of that branch. Don't
1198 change this into a RETURN here, because it may not accept what
1199 we have in the delay slot. We'll fix this up later. */
1200 if (next_trial && GET_CODE (next_trial) == JUMP_INSN
1201 && (simplejump_p (next_trial)
1202 || GET_CODE (PATTERN (next_trial)) == RETURN))
1204 target_label = JUMP_LABEL (next_trial);
1205 if (target_label == 0)
1206 target_label = find_end_label ();
1208 /* Recompute the flags based on TARGET_LABEL since threading
1209 the jump to TARGET_LABEL may change the direction of the
1210 jump (which may change the circumstances in which the
1211 delay slot is nullified). */
1212 flags = get_jump_flags (insn, target_label);
1213 if (eligible_for_annul_true (insn, 0, trial, flags))
1214 reorg_redirect_jump (insn, target_label);
1217 INSN_ANNULLED_BRANCH_P (insn) = 1;
1220 return delay_list;
1222 #endif
1225 /* Encode and return branch direction and prediction information for
1226 INSN assuming it will jump to LABEL.
1228 Non conditional branches return no direction information and
1229 are predicted as very likely taken. */
1231 static int
1232 get_jump_flags (insn, label)
1233 rtx insn, label;
1235 int flags;
1237 /* get_jump_flags can be passed any insn with delay slots, these may
1238 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
1239 direction information, and only if they are conditional jumps.
1241 If LABEL is zero, then there is no way to determine the branch
1242 direction. */
1243 if (GET_CODE (insn) == JUMP_INSN
1244 && (condjump_p (insn) || condjump_in_parallel_p (insn))
1245 && INSN_UID (insn) <= max_uid
1246 && label != 0
1247 && INSN_UID (label) <= max_uid)
1248 flags
1249 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
1250 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
1251 /* No valid direction information. */
1252 else
1253 flags = 0;
1255 /* If insn is a conditional branch call mostly_true_jump to get
1256 determine the branch prediction.
1258 Non conditional branches are predicted as very likely taken. */
1259 if (GET_CODE (insn) == JUMP_INSN
1260 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
1262 int prediction;
1264 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
1265 switch (prediction)
1267 case 2:
1268 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
1269 break;
1270 case 1:
1271 flags |= ATTR_FLAG_likely;
1272 break;
1273 case 0:
1274 flags |= ATTR_FLAG_unlikely;
1275 break;
1276 case -1:
1277 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
1278 break;
1280 default:
1281 abort();
1284 else
1285 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
1287 return flags;
1290 /* Return 1 if INSN is a destination that will be branched to rarely (the
1291 return point of a function); return 2 if DEST will be branched to very
1292 rarely (a call to a function that doesn't return). Otherwise,
1293 return 0. */
1295 static int
1296 rare_destination (insn)
1297 rtx insn;
1299 int jump_count = 0;
1300 rtx next;
1302 for (; insn; insn = next)
1304 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1305 insn = XVECEXP (PATTERN (insn), 0, 0);
1307 next = NEXT_INSN (insn);
1309 switch (GET_CODE (insn))
1311 case CODE_LABEL:
1312 return 0;
1313 case BARRIER:
1314 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
1315 don't scan past JUMP_INSNs, so any barrier we find here must
1316 have been after a CALL_INSN and hence mean the call doesn't
1317 return. */
1318 return 2;
1319 case JUMP_INSN:
1320 if (GET_CODE (PATTERN (insn)) == RETURN)
1321 return 1;
1322 else if (simplejump_p (insn)
1323 && jump_count++ < 10)
1324 next = JUMP_LABEL (insn);
1325 else
1326 return 0;
1330 /* If we got here it means we hit the end of the function. So this
1331 is an unlikely destination. */
1333 return 1;
1336 /* Return truth value of the statement that this branch
1337 is mostly taken. If we think that the branch is extremely likely
1338 to be taken, we return 2. If the branch is slightly more likely to be
1339 taken, return 1. If the branch is slightly less likely to be taken,
1340 return 0 and if the branch is highly unlikely to be taken, return -1.
1342 CONDITION, if non-zero, is the condition that JUMP_INSN is testing. */
1344 static int
1345 mostly_true_jump (jump_insn, condition)
1346 rtx jump_insn, condition;
1348 rtx target_label = JUMP_LABEL (jump_insn);
1349 rtx insn;
1350 int rare_dest = rare_destination (target_label);
1351 int rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
1353 /* If this is a branch outside a loop, it is highly unlikely. */
1354 if (GET_CODE (PATTERN (jump_insn)) == SET
1355 && GET_CODE (SET_SRC (PATTERN (jump_insn))) == IF_THEN_ELSE
1356 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 1)) == LABEL_REF
1357 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 1)))
1358 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 2)) == LABEL_REF
1359 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 2)))))
1360 return -1;
1362 if (target_label)
1364 /* If this is the test of a loop, it is very likely true. We scan
1365 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
1366 before the next real insn, we assume the branch is to the top of
1367 the loop. */
1368 for (insn = PREV_INSN (target_label);
1369 insn && GET_CODE (insn) == NOTE;
1370 insn = PREV_INSN (insn))
1371 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1372 return 2;
1374 /* If this is a jump to the test of a loop, it is likely true. We scan
1375 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
1376 before the next real insn, we assume the branch is to the loop branch
1377 test. */
1378 for (insn = NEXT_INSN (target_label);
1379 insn && GET_CODE (insn) == NOTE;
1380 insn = PREV_INSN (insn))
1381 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
1382 return 1;
1385 /* Look at the relative rarities of the fallthrough and destination. If
1386 they differ, we can predict the branch that way. */
1388 switch (rare_fallthrough - rare_dest)
1390 case -2:
1391 return -1;
1392 case -1:
1393 return 0;
1394 case 0:
1395 break;
1396 case 1:
1397 return 1;
1398 case 2:
1399 return 2;
1402 /* If we couldn't figure out what this jump was, assume it won't be
1403 taken. This should be rare. */
1404 if (condition == 0)
1405 return 0;
1407 /* EQ tests are usually false and NE tests are usually true. Also,
1408 most quantities are positive, so we can make the appropriate guesses
1409 about signed comparisons against zero. */
1410 switch (GET_CODE (condition))
1412 case CONST_INT:
1413 /* Unconditional branch. */
1414 return 1;
1415 case EQ:
1416 return 0;
1417 case NE:
1418 return 1;
1419 case LE:
1420 case LT:
1421 if (XEXP (condition, 1) == const0_rtx)
1422 return 0;
1423 break;
1424 case GE:
1425 case GT:
1426 if (XEXP (condition, 1) == const0_rtx)
1427 return 1;
1428 break;
1431 /* Predict backward branches usually take, forward branches usually not. If
1432 we don't know whether this is forward or backward, assume the branch
1433 will be taken, since most are. */
1434 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1435 || INSN_UID (target_label) > max_uid
1436 || (uid_to_ruid[INSN_UID (jump_insn)]
1437 > uid_to_ruid[INSN_UID (target_label)]));;
1440 /* Return the condition under which INSN will branch to TARGET. If TARGET
1441 is zero, return the condition under which INSN will return. If INSN is
1442 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1443 type of jump, or it doesn't go to TARGET, return 0. */
1445 static rtx
1446 get_branch_condition (insn, target)
1447 rtx insn;
1448 rtx target;
1450 rtx pat = PATTERN (insn);
1451 rtx src;
1453 if (condjump_in_parallel_p (insn))
1454 pat = XVECEXP (pat, 0, 0);
1456 if (GET_CODE (pat) == RETURN)
1457 return target == 0 ? const_true_rtx : 0;
1459 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1460 return 0;
1462 src = SET_SRC (pat);
1463 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1464 return const_true_rtx;
1466 else if (GET_CODE (src) == IF_THEN_ELSE
1467 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1468 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1469 && XEXP (XEXP (src, 1), 0) == target))
1470 && XEXP (src, 2) == pc_rtx)
1471 return XEXP (src, 0);
1473 else if (GET_CODE (src) == IF_THEN_ELSE
1474 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1475 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1476 && XEXP (XEXP (src, 2), 0) == target))
1477 && XEXP (src, 1) == pc_rtx)
1478 return gen_rtx (reverse_condition (GET_CODE (XEXP (src, 0))),
1479 GET_MODE (XEXP (src, 0)),
1480 XEXP (XEXP (src, 0), 0), XEXP (XEXP (src, 0), 1));
1482 return 0;
1485 /* Return non-zero if CONDITION is more strict than the condition of
1486 INSN, i.e., if INSN will always branch if CONDITION is true. */
1488 static int
1489 condition_dominates_p (condition, insn)
1490 rtx condition;
1491 rtx insn;
1493 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1494 enum rtx_code code = GET_CODE (condition);
1495 enum rtx_code other_code;
1497 if (rtx_equal_p (condition, other_condition)
1498 || other_condition == const_true_rtx)
1499 return 1;
1501 else if (condition == const_true_rtx || other_condition == 0)
1502 return 0;
1504 other_code = GET_CODE (other_condition);
1505 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1506 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1507 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1508 return 0;
1510 return comparison_dominates_p (code, other_code);
1513 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1514 any insns already in the delay slot of JUMP. */
1516 static int
1517 redirect_with_delay_slots_safe_p (jump, newlabel, seq)
1518 rtx jump, newlabel, seq;
1520 int flags, slots, i;
1521 rtx pat = PATTERN (seq);
1523 /* Make sure all the delay slots of this jump would still
1524 be valid after threading the jump. If they are still
1525 valid, then return non-zero. */
1527 flags = get_jump_flags (jump, newlabel);
1528 for (i = 1; i < XVECLEN (pat, 0); i++)
1529 if (! (
1530 #ifdef ANNUL_IFFALSE_SLOTS
1531 (INSN_ANNULLED_BRANCH_P (jump)
1532 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1533 ? eligible_for_annul_false (jump, i - 1,
1534 XVECEXP (pat, 0, i), flags) :
1535 #endif
1536 #ifdef ANNUL_IFTRUE_SLOTS
1537 (INSN_ANNULLED_BRANCH_P (jump)
1538 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1539 ? eligible_for_annul_true (jump, i - 1,
1540 XVECEXP (pat, 0, i), flags) :
1541 #endif
1542 eligible_for_delay (jump, i -1, XVECEXP (pat, 0, i), flags)))
1543 break;
1545 return (i == XVECLEN (pat, 0));
1548 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1549 any insns we wish to place in the delay slot of JUMP. */
1551 static int
1552 redirect_with_delay_list_safe_p (jump, newlabel, delay_list)
1553 rtx jump, newlabel, delay_list;
1555 int flags, i;
1556 rtx li;
1558 /* Make sure all the insns in DELAY_LIST would still be
1559 valid after threading the jump. If they are still
1560 valid, then return non-zero. */
1562 flags = get_jump_flags (jump, newlabel);
1563 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1564 if (! (
1565 #ifdef ANNUL_IFFALSE_SLOTS
1566 (INSN_ANNULLED_BRANCH_P (jump)
1567 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1568 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1569 #endif
1570 #ifdef ANNUL_IFTRUE_SLOTS
1571 (INSN_ANNULLED_BRANCH_P (jump)
1572 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1573 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1574 #endif
1575 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1576 break;
1578 return (li == NULL);
1582 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1583 the condition tested by INSN is CONDITION and the resources shown in
1584 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1585 from SEQ's delay list, in addition to whatever insns it may execute
1586 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1587 needed while searching for delay slot insns. Return the concatenated
1588 delay list if possible, otherwise, return 0.
1590 SLOTS_TO_FILL is the total number of slots required by INSN, and
1591 PSLOTS_FILLED points to the number filled so far (also the number of
1592 insns in DELAY_LIST). It is updated with the number that have been
1593 filled from the SEQUENCE, if any.
1595 PANNUL_P points to a non-zero value if we already know that we need
1596 to annul INSN. If this routine determines that annulling is needed,
1597 it may set that value non-zero.
1599 PNEW_THREAD points to a location that is to receive the place at which
1600 execution should continue. */
1602 static rtx
1603 steal_delay_list_from_target (insn, condition, seq, delay_list,
1604 sets, needed, other_needed,
1605 slots_to_fill, pslots_filled, pannul_p,
1606 pnew_thread)
1607 rtx insn, condition;
1608 rtx seq;
1609 rtx delay_list;
1610 struct resources *sets, *needed, *other_needed;
1611 int slots_to_fill;
1612 int *pslots_filled;
1613 int *pannul_p;
1614 rtx *pnew_thread;
1616 rtx temp;
1617 int slots_remaining = slots_to_fill - *pslots_filled;
1618 int total_slots_filled = *pslots_filled;
1619 rtx new_delay_list = 0;
1620 int must_annul = *pannul_p;
1621 int i;
1623 /* We can't do anything if there are more delay slots in SEQ than we
1624 can handle, or if we don't know that it will be a taken branch.
1625 We know that it will be a taken branch if it is either an unconditional
1626 branch or a conditional branch with a stricter branch condition.
1628 Also, exit if the branch has more than one set, since then it is computing
1629 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1630 ??? It may be possible to move other sets into INSN in addition to
1631 moving the instructions in the delay slots. */
1633 if (XVECLEN (seq, 0) - 1 > slots_remaining
1634 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1635 || ! single_set (XVECEXP (seq, 0, 0)))
1636 return delay_list;
1638 for (i = 1; i < XVECLEN (seq, 0); i++)
1640 rtx trial = XVECEXP (seq, 0, i);
1641 int flags;
1643 if (insn_references_resource_p (trial, sets, 0)
1644 || insn_sets_resource_p (trial, needed, 0)
1645 || insn_sets_resource_p (trial, sets, 0)
1646 #ifdef HAVE_cc0
1647 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1648 delay list. */
1649 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1650 #endif
1651 /* If TRIAL is from the fallthrough code of an annulled branch insn
1652 in SEQ, we cannot use it. */
1653 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1654 && ! INSN_FROM_TARGET_P (trial)))
1655 return delay_list;
1657 /* If this insn was already done (usually in a previous delay slot),
1658 pretend we put it in our delay slot. */
1659 if (redundant_insn (trial, insn, new_delay_list))
1660 continue;
1662 /* We will end up re-vectoring this branch, so compute flags
1663 based on jumping to the new label. */
1664 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1666 if (! must_annul
1667 && ((condition == const_true_rtx
1668 || (! insn_sets_resource_p (trial, other_needed, 0)
1669 && ! may_trap_p (PATTERN (trial)))))
1670 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1671 : (must_annul = 1,
1672 eligible_for_annul_false (insn, total_slots_filled, trial, flags)))
1674 temp = copy_rtx (trial);
1675 INSN_FROM_TARGET_P (temp) = 1;
1676 new_delay_list = add_to_delay_list (temp, new_delay_list);
1677 total_slots_filled++;
1679 if (--slots_remaining == 0)
1680 break;
1682 else
1683 return delay_list;
1686 /* Show the place to which we will be branching. */
1687 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1689 /* Add any new insns to the delay list and update the count of the
1690 number of slots filled. */
1691 *pslots_filled = total_slots_filled;
1692 *pannul_p = must_annul;
1694 if (delay_list == 0)
1695 return new_delay_list;
1697 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1698 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1700 return delay_list;
1703 /* Similar to steal_delay_list_from_target except that SEQ is on the
1704 fallthrough path of INSN. Here we only do something if the delay insn
1705 of SEQ is an unconditional branch. In that case we steal its delay slot
1706 for INSN since unconditional branches are much easier to fill. */
1708 static rtx
1709 steal_delay_list_from_fallthrough (insn, condition, seq,
1710 delay_list, sets, needed, other_needed,
1711 slots_to_fill, pslots_filled, pannul_p)
1712 rtx insn, condition;
1713 rtx seq;
1714 rtx delay_list;
1715 struct resources *sets, *needed, *other_needed;
1716 int slots_to_fill;
1717 int *pslots_filled;
1718 int *pannul_p;
1720 int i;
1721 int flags;
1723 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1725 /* We can't do anything if SEQ's delay insn isn't an
1726 unconditional branch. */
1728 if (! simplejump_p (XVECEXP (seq, 0, 0))
1729 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1730 return delay_list;
1732 for (i = 1; i < XVECLEN (seq, 0); i++)
1734 rtx trial = XVECEXP (seq, 0, i);
1736 /* If TRIAL sets CC0, stealing it will move it too far from the use
1737 of CC0. */
1738 if (insn_references_resource_p (trial, sets, 0)
1739 || insn_sets_resource_p (trial, needed, 0)
1740 || insn_sets_resource_p (trial, sets, 0)
1741 #ifdef HAVE_cc0
1742 || sets_cc0_p (PATTERN (trial))
1743 #endif
1746 break;
1748 /* If this insn was already done, we don't need it. */
1749 if (redundant_insn (trial, insn, delay_list))
1751 delete_from_delay_slot (trial);
1752 continue;
1755 if (! *pannul_p
1756 && ((condition == const_true_rtx
1757 || (! insn_sets_resource_p (trial, other_needed, 0)
1758 && ! may_trap_p (PATTERN (trial)))))
1759 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1760 : (*pannul_p = 1,
1761 eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1763 delete_from_delay_slot (trial);
1764 delay_list = add_to_delay_list (trial, delay_list);
1766 if (++(*pslots_filled) == slots_to_fill)
1767 break;
1769 else
1770 break;
1773 return delay_list;
1776 /* Try merging insns starting at THREAD which match exactly the insns in
1777 INSN's delay list.
1779 If all insns were matched and the insn was previously annulling, the
1780 annul bit will be cleared.
1782 For each insn that is merged, if the branch is or will be non-annulling,
1783 we delete the merged insn. */
1785 static void
1786 try_merge_delay_insns (insn, thread)
1787 rtx insn, thread;
1789 rtx trial, next_trial;
1790 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1791 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1792 int slot_number = 1;
1793 int num_slots = XVECLEN (PATTERN (insn), 0);
1794 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1795 struct resources set, needed;
1796 rtx merged_insns = 0;
1797 int i;
1798 int flags;
1800 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1802 CLEAR_RESOURCE (&needed);
1803 CLEAR_RESOURCE (&set);
1805 /* If this is not an annulling branch, take into account anything needed in
1806 NEXT_TO_MATCH. This prevents two increments from being incorrectly
1807 folded into one. If we are annulling, this would be the correct
1808 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1809 will essentially disable this optimization. This method is somewhat of
1810 a kludge, but I don't see a better way.) */
1811 if (! annul_p)
1812 mark_referenced_resources (next_to_match, &needed, 1);
1814 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1816 rtx pat = PATTERN (trial);
1817 rtx oldtrial = trial;
1819 next_trial = next_nonnote_insn (trial);
1821 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1822 if (GET_CODE (trial) == INSN
1823 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1824 continue;
1826 if (GET_CODE (next_to_match) == GET_CODE (trial)
1827 #ifdef HAVE_cc0
1828 /* We can't share an insn that sets cc0. */
1829 && ! sets_cc0_p (pat)
1830 #endif
1831 && ! insn_references_resource_p (trial, &set, 1)
1832 && ! insn_sets_resource_p (trial, &set, 1)
1833 && ! insn_sets_resource_p (trial, &needed, 1)
1834 && (trial = try_split (pat, trial, 0)) != 0
1835 /* Update next_trial, in case try_split succeeded. */
1836 && (next_trial = next_nonnote_insn (trial))
1837 /* Likewise THREAD. */
1838 && (thread = oldtrial == thread ? trial : thread)
1839 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1840 /* Have to test this condition if annul condition is different
1841 from (and less restrictive than) non-annulling one. */
1842 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1845 if (! annul_p)
1847 update_block (trial, thread);
1848 if (trial == thread)
1849 thread = next_active_insn (thread);
1851 delete_insn (trial);
1852 INSN_FROM_TARGET_P (next_to_match) = 0;
1854 else
1855 merged_insns = gen_rtx (INSN_LIST, VOIDmode, trial, merged_insns);
1857 if (++slot_number == num_slots)
1858 break;
1860 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1861 if (! annul_p)
1862 mark_referenced_resources (next_to_match, &needed, 1);
1865 mark_set_resources (trial, &set, 0, 1);
1866 mark_referenced_resources (trial, &needed, 1);
1869 /* See if we stopped on a filled insn. If we did, try to see if its
1870 delay slots match. */
1871 if (slot_number != num_slots
1872 && trial && GET_CODE (trial) == INSN
1873 && GET_CODE (PATTERN (trial)) == SEQUENCE
1874 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1876 rtx pat = PATTERN (trial);
1877 rtx filled_insn = XVECEXP (pat, 0, 0);
1879 /* Account for resources set/needed by the filled insn. */
1880 mark_set_resources (filled_insn, &set, 0, 1);
1881 mark_referenced_resources (filled_insn, &needed, 1);
1883 for (i = 1; i < XVECLEN (pat, 0); i++)
1885 rtx dtrial = XVECEXP (pat, 0, i);
1887 if (! insn_references_resource_p (dtrial, &set, 1)
1888 && ! insn_sets_resource_p (dtrial, &set, 1)
1889 && ! insn_sets_resource_p (dtrial, &needed, 1)
1890 #ifdef HAVE_cc0
1891 && ! sets_cc0_p (PATTERN (dtrial))
1892 #endif
1893 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1894 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1896 if (! annul_p)
1898 update_block (dtrial, thread);
1899 delete_from_delay_slot (dtrial);
1900 INSN_FROM_TARGET_P (next_to_match) = 0;
1902 else
1903 merged_insns = gen_rtx (INSN_LIST, SImode, dtrial,
1904 merged_insns);
1906 if (++slot_number == num_slots)
1907 break;
1909 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1914 /* If all insns in the delay slot have been matched and we were previously
1915 annulling the branch, we need not any more. In that case delete all the
1916 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn the
1917 the delay list so that we know that it isn't only being used at the
1918 target. */
1919 if (slot_number == num_slots && annul_p)
1921 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1923 if (GET_MODE (merged_insns) == SImode)
1925 update_block (XEXP (merged_insns, 0), thread);
1926 delete_from_delay_slot (XEXP (merged_insns, 0));
1928 else
1930 update_block (XEXP (merged_insns, 0), thread);
1931 delete_insn (XEXP (merged_insns, 0));
1935 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1937 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1938 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1942 /* See if INSN is redundant with an insn in front of TARGET. Often this
1943 is called when INSN is a candidate for a delay slot of TARGET.
1944 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1945 of INSN. Often INSN will be redundant with an insn in a delay slot of
1946 some previous insn. This happens when we have a series of branches to the
1947 same label; in that case the first insn at the target might want to go
1948 into each of the delay slots.
1950 If we are not careful, this routine can take up a significant fraction
1951 of the total compilation time (4%), but only wins rarely. Hence we
1952 speed this routine up by making two passes. The first pass goes back
1953 until it hits a label and sees if it find an insn with an identical
1954 pattern. Only in this (relatively rare) event does it check for
1955 data conflicts.
1957 We do not split insns we encounter. This could cause us not to find a
1958 redundant insn, but the cost of splitting seems greater than the possible
1959 gain in rare cases. */
1961 static rtx
1962 redundant_insn (insn, target, delay_list)
1963 rtx insn;
1964 rtx target;
1965 rtx delay_list;
1967 rtx target_main = target;
1968 rtx ipat = PATTERN (insn);
1969 rtx trial, pat;
1970 struct resources needed, set;
1971 int i;
1973 /* Scan backwards looking for a match. */
1974 for (trial = PREV_INSN (target); trial; trial = PREV_INSN (trial))
1976 if (GET_CODE (trial) == CODE_LABEL)
1977 return 0;
1979 if (GET_RTX_CLASS (GET_CODE (trial)) != 'i')
1980 continue;
1982 pat = PATTERN (trial);
1983 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1984 continue;
1986 if (GET_CODE (pat) == SEQUENCE)
1988 /* Stop for a CALL and its delay slots because it is difficult to
1989 track its resource needs correctly. */
1990 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
1991 return 0;
1993 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1994 slots because it is difficult to track its resource needs
1995 correctly. */
1997 #ifdef INSN_SETS_ARE_DELAYED
1998 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1999 return 0;
2000 #endif
2002 #ifdef INSN_REFERENCES_ARE_DELAYED
2003 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2004 return 0;
2005 #endif
2007 /* See if any of the insns in the delay slot match, updating
2008 resource requirements as we go. */
2009 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
2010 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
2011 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat))
2012 break;
2014 /* If found a match, exit this loop early. */
2015 if (i > 0)
2016 break;
2019 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat))
2020 break;
2023 /* If we didn't find an insn that matches, return 0. */
2024 if (trial == 0)
2025 return 0;
2027 /* See what resources this insn sets and needs. If they overlap, or
2028 if this insn references CC0, it can't be redundant. */
2030 CLEAR_RESOURCE (&needed);
2031 CLEAR_RESOURCE (&set);
2032 mark_set_resources (insn, &set, 0, 1);
2033 mark_referenced_resources (insn, &needed, 1);
2035 /* If TARGET is a SEQUENCE, get the main insn. */
2036 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
2037 target_main = XVECEXP (PATTERN (target), 0, 0);
2039 if (resource_conflicts_p (&needed, &set)
2040 #ifdef HAVE_cc0
2041 || reg_mentioned_p (cc0_rtx, ipat)
2042 #endif
2043 /* The insn requiring the delay may not set anything needed or set by
2044 INSN. */
2045 || insn_sets_resource_p (target_main, &needed, 1)
2046 || insn_sets_resource_p (target_main, &set, 1))
2047 return 0;
2049 /* Insns we pass may not set either NEEDED or SET, so merge them for
2050 simpler tests. */
2051 needed.memory |= set.memory;
2052 needed.unch_memory |= set.unch_memory;
2053 IOR_HARD_REG_SET (needed.regs, set.regs);
2055 /* This insn isn't redundant if it conflicts with an insn that either is
2056 or will be in a delay slot of TARGET. */
2058 while (delay_list)
2060 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
2061 return 0;
2062 delay_list = XEXP (delay_list, 1);
2065 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
2066 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
2067 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
2068 return 0;
2070 /* Scan backwards until we reach a label or an insn that uses something
2071 INSN sets or sets something insn uses or sets. */
2073 for (trial = PREV_INSN (target);
2074 trial && GET_CODE (trial) != CODE_LABEL;
2075 trial = PREV_INSN (trial))
2077 if (GET_CODE (trial) != INSN && GET_CODE (trial) != CALL_INSN
2078 && GET_CODE (trial) != JUMP_INSN)
2079 continue;
2081 pat = PATTERN (trial);
2082 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2083 continue;
2085 if (GET_CODE (pat) == SEQUENCE)
2087 /* If this is a CALL_INSN and its delay slots, it is hard to track
2088 the resource needs properly, so give up. */
2089 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
2090 return 0;
2092 /* If this this is an INSN or JUMP_INSN with delayed effects, it
2093 is hard to track the resource needs properly, so give up. */
2095 #ifdef INSN_SETS_ARE_DELAYED
2096 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2097 return 0;
2098 #endif
2100 #ifdef INSN_REFERENCES_ARE_DELAYED
2101 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2102 return 0;
2103 #endif
2105 /* See if any of the insns in the delay slot match, updating
2106 resource requirements as we go. */
2107 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
2109 rtx candidate = XVECEXP (pat, 0, i);
2111 /* If an insn will be annulled if the branch is false, it isn't
2112 considered as a possible duplicate insn. */
2113 if (rtx_equal_p (PATTERN (candidate), ipat)
2114 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
2115 && INSN_FROM_TARGET_P (candidate)))
2117 /* Show that this insn will be used in the sequel. */
2118 INSN_FROM_TARGET_P (candidate) = 0;
2119 return candidate;
2122 /* Unless this is an annulled insn from the target of a branch,
2123 we must stop if it sets anything needed or set by INSN. */
2124 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
2125 || ! INSN_FROM_TARGET_P (candidate))
2126 && insn_sets_resource_p (candidate, &needed, 1))
2127 return 0;
2131 /* If the insn requiring the delay slot conflicts with INSN, we
2132 must stop. */
2133 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
2134 return 0;
2136 else
2138 /* See if TRIAL is the same as INSN. */
2139 pat = PATTERN (trial);
2140 if (rtx_equal_p (pat, ipat))
2141 return trial;
2143 /* Can't go any further if TRIAL conflicts with INSN. */
2144 if (insn_sets_resource_p (trial, &needed, 1))
2145 return 0;
2149 return 0;
2152 /* Return 1 if THREAD can only be executed in one way. If LABEL is non-zero,
2153 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
2154 is non-zero, we are allowed to fall into this thread; otherwise, we are
2155 not.
2157 If LABEL is used more than one or we pass a label other than LABEL before
2158 finding an active insn, we do not own this thread. */
2160 static int
2161 own_thread_p (thread, label, allow_fallthrough)
2162 rtx thread;
2163 rtx label;
2164 int allow_fallthrough;
2166 rtx active_insn;
2167 rtx insn;
2169 /* We don't own the function end. */
2170 if (thread == 0)
2171 return 0;
2173 /* Get the first active insn, or THREAD, if it is an active insn. */
2174 active_insn = next_active_insn (PREV_INSN (thread));
2176 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
2177 if (GET_CODE (insn) == CODE_LABEL
2178 && (insn != label || LABEL_NUSES (insn) != 1))
2179 return 0;
2181 if (allow_fallthrough)
2182 return 1;
2184 /* Ensure that we reach a BARRIER before any insn or label. */
2185 for (insn = prev_nonnote_insn (thread);
2186 insn == 0 || GET_CODE (insn) != BARRIER;
2187 insn = prev_nonnote_insn (insn))
2188 if (insn == 0
2189 || GET_CODE (insn) == CODE_LABEL
2190 || (GET_CODE (insn) == INSN
2191 && GET_CODE (PATTERN (insn)) != USE
2192 && GET_CODE (PATTERN (insn)) != CLOBBER))
2193 return 0;
2195 return 1;
2198 /* Find the number of the basic block that starts closest to INSN. Return -1
2199 if we couldn't find such a basic block. */
2201 static int
2202 find_basic_block (insn)
2203 rtx insn;
2205 int i;
2207 /* Scan backwards to the previous BARRIER. Then see if we can find a
2208 label that starts a basic block. Return the basic block number. */
2210 for (insn = prev_nonnote_insn (insn);
2211 insn && GET_CODE (insn) != BARRIER;
2212 insn = prev_nonnote_insn (insn))
2215 /* The start of the function is basic block zero. */
2216 if (insn == 0)
2217 return 0;
2219 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
2220 anything other than a CODE_LABEL or note, we can't find this code. */
2221 for (insn = next_nonnote_insn (insn);
2222 insn && GET_CODE (insn) == CODE_LABEL;
2223 insn = next_nonnote_insn (insn))
2225 for (i = 0; i < n_basic_blocks; i++)
2226 if (insn == basic_block_head[i])
2227 return i;
2230 return -1;
2233 /* Called when INSN is being moved from a location near the target of a jump.
2234 We leave a marker of the form (use (INSN)) immediately in front
2235 of WHERE for mark_target_live_regs. These markers will be deleted when
2236 reorg finishes.
2238 We used to try to update the live status of registers if WHERE is at
2239 the start of a basic block, but that can't work since we may remove a
2240 BARRIER in relax_delay_slots. */
2242 static void
2243 update_block (insn, where)
2244 rtx insn;
2245 rtx where;
2247 int b;
2249 /* Ignore if this was in a delay slot and it came from the target of
2250 a branch. */
2251 if (INSN_FROM_TARGET_P (insn))
2252 return;
2254 emit_insn_before (gen_rtx (USE, VOIDmode, insn), where);
2256 /* INSN might be making a value live in a block where it didn't use to
2257 be. So recompute liveness information for this block. */
2259 b = find_basic_block (insn);
2260 if (b != -1)
2261 bb_ticks[b]++;
2264 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
2265 the basic block containing the jump. */
2267 static int
2268 reorg_redirect_jump (jump, nlabel)
2269 rtx jump;
2270 rtx nlabel;
2272 int b = find_basic_block (jump);
2274 if (b != -1)
2275 bb_ticks[b]++;
2277 return redirect_jump (jump, nlabel);
2280 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
2281 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
2282 that reference values used in INSN. If we find one, then we move the
2283 REG_DEAD note to INSN.
2285 This is needed to handle the case where an later insn (after INSN) has a
2286 REG_DEAD note for a register used by INSN, and this later insn subsequently
2287 gets moved before a CODE_LABEL because it is a redundant insn. In this
2288 case, mark_target_live_regs may be confused into thinking the register
2289 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
2291 static void
2292 update_reg_dead_notes (insn, delayed_insn)
2293 rtx insn, delayed_insn;
2295 rtx p, link, next;
2297 for (p = next_nonnote_insn (insn); p != delayed_insn;
2298 p = next_nonnote_insn (p))
2299 for (link = REG_NOTES (p); link; link = next)
2301 next = XEXP (link, 1);
2303 if (REG_NOTE_KIND (link) != REG_DEAD
2304 || GET_CODE (XEXP (link, 0)) != REG)
2305 continue;
2307 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
2309 /* Move the REG_DEAD note from P to INSN. */
2310 remove_note (p, link);
2311 XEXP (link, 1) = REG_NOTES (insn);
2312 REG_NOTES (insn) = link;
2317 /* Called when an insn redundant with start_insn is deleted. If there
2318 is a REG_DEAD note for the target of start_insn between start_insn
2319 and stop_insn, then the REG_DEAD note needs to be deleted since the
2320 value no longer dies there.
2322 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
2323 confused into thinking the register is dead. */
2325 static void
2326 fix_reg_dead_note (start_insn, stop_insn)
2327 rtx start_insn, stop_insn;
2329 rtx p, link, next;
2331 for (p = next_nonnote_insn (start_insn); p != stop_insn;
2332 p = next_nonnote_insn (p))
2333 for (link = REG_NOTES (p); link; link = next)
2335 next = XEXP (link, 1);
2337 if (REG_NOTE_KIND (link) != REG_DEAD
2338 || GET_CODE (XEXP (link, 0)) != REG)
2339 continue;
2341 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
2343 remove_note (p, link);
2344 return;
2349 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
2351 This handles the case of udivmodXi4 instructions which optimize their
2352 output depending on whether any REG_UNUSED notes are present.
2353 we must make sure that INSN calculates as many results as REDUNDANT_INSN
2354 does. */
2356 static void
2357 update_reg_unused_notes (insn, redundant_insn)
2358 rtx insn, redundant_insn;
2360 rtx p, link, next;
2362 for (link = REG_NOTES (insn); link; link = next)
2364 next = XEXP (link, 1);
2366 if (REG_NOTE_KIND (link) != REG_UNUSED
2367 || GET_CODE (XEXP (link, 0)) != REG)
2368 continue;
2370 if (! find_regno_note (redundant_insn, REG_UNUSED,
2371 REGNO (XEXP (link, 0))))
2372 remove_note (insn, link);
2376 /* Marks registers possibly live at the current place being scanned by
2377 mark_target_live_regs. Used only by next two function. */
2379 static HARD_REG_SET current_live_regs;
2381 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
2382 Also only used by the next two functions. */
2384 static HARD_REG_SET pending_dead_regs;
2386 /* Utility function called from mark_target_live_regs via note_stores.
2387 It deadens any CLOBBERed registers and livens any SET registers. */
2389 static void
2390 update_live_status (dest, x)
2391 rtx dest;
2392 rtx x;
2394 int first_regno, last_regno;
2395 int i;
2397 if (GET_CODE (dest) != REG
2398 && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
2399 return;
2401 if (GET_CODE (dest) == SUBREG)
2402 first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest);
2403 else
2404 first_regno = REGNO (dest);
2406 last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
2408 if (GET_CODE (x) == CLOBBER)
2409 for (i = first_regno; i < last_regno; i++)
2410 CLEAR_HARD_REG_BIT (current_live_regs, i);
2411 else
2412 for (i = first_regno; i < last_regno; i++)
2414 SET_HARD_REG_BIT (current_live_regs, i);
2415 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
2419 /* Similar to next_insn, but ignores insns in the delay slots of
2420 an annulled branch. */
2422 static rtx
2423 next_insn_no_annul (insn)
2424 rtx insn;
2426 if (insn)
2428 /* If INSN is an annulled branch, skip any insns from the target
2429 of the branch. */
2430 if (INSN_ANNULLED_BRANCH_P (insn)
2431 && NEXT_INSN (PREV_INSN (insn)) != insn)
2432 while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
2433 insn = NEXT_INSN (insn);
2435 insn = NEXT_INSN (insn);
2436 if (insn && GET_CODE (insn) == INSN
2437 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2438 insn = XVECEXP (PATTERN (insn), 0, 0);
2441 return insn;
2444 /* A subroutine of mark_target_live_regs. Search forward from TARGET
2445 looking for registers that are set before they are used. These are dead.
2446 Stop after passing a few conditional jumps, and/or a small
2447 number of unconditional branches. */
2449 static rtx
2450 find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
2451 rtx target;
2452 struct resources *res;
2453 rtx *jump_target;
2454 int jump_count;
2455 struct resources set, needed;
2457 HARD_REG_SET scratch;
2458 rtx insn, next;
2459 rtx jump_insn = 0;
2460 int i;
2462 for (insn = target; insn; insn = next)
2464 rtx this_jump_insn = insn;
2466 next = NEXT_INSN (insn);
2467 switch (GET_CODE (insn))
2469 case CODE_LABEL:
2470 /* After a label, any pending dead registers that weren't yet
2471 used can be made dead. */
2472 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
2473 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
2474 CLEAR_HARD_REG_SET (pending_dead_regs);
2476 if (CODE_LABEL_NUMBER (insn) < max_label_num_after_reload)
2478 /* All spill registers are dead at a label, so kill all of the
2479 ones that aren't needed also. */
2480 COPY_HARD_REG_SET (scratch, used_spill_regs);
2481 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2482 AND_COMPL_HARD_REG_SET (res->regs, scratch);
2484 continue;
2486 case BARRIER:
2487 case NOTE:
2488 continue;
2490 case INSN:
2491 if (GET_CODE (PATTERN (insn)) == USE)
2493 /* If INSN is a USE made by update_block, we care about the
2494 underlying insn. Any registers set by the underlying insn
2495 are live since the insn is being done somewhere else. */
2496 if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
2497 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1);
2499 /* All other USE insns are to be ignored. */
2500 continue;
2502 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
2503 continue;
2504 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2506 /* An unconditional jump can be used to fill the delay slot
2507 of a call, so search for a JUMP_INSN in any position. */
2508 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2510 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
2511 if (GET_CODE (this_jump_insn) == JUMP_INSN)
2512 break;
2517 if (GET_CODE (this_jump_insn) == JUMP_INSN)
2519 if (jump_count++ < 10)
2521 if (simplejump_p (this_jump_insn)
2522 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
2524 next = JUMP_LABEL (this_jump_insn);
2525 if (jump_insn == 0)
2527 jump_insn = insn;
2528 if (jump_target)
2529 *jump_target = JUMP_LABEL (this_jump_insn);
2532 else if (condjump_p (this_jump_insn)
2533 || condjump_in_parallel_p (this_jump_insn))
2535 struct resources target_set, target_res;
2536 struct resources fallthrough_res;
2538 /* We can handle conditional branches here by following
2539 both paths, and then IOR the results of the two paths
2540 together, which will give us registers that are dead
2541 on both paths. Since this is expensive, we give it
2542 a much higher cost than unconditional branches. The
2543 cost was chosen so that we will follow at most 1
2544 conditional branch. */
2546 jump_count += 4;
2547 if (jump_count >= 10)
2548 break;
2550 mark_referenced_resources (insn, &needed, 1);
2552 /* For an annulled branch, mark_set_resources ignores slots
2553 filled by instructions from the target. This is correct
2554 if the branch is not taken. Since we are following both
2555 paths from the branch, we must also compute correct info
2556 if the branch is taken. We do this by inverting all of
2557 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
2558 and then inverting the INSN_FROM_TARGET_P bits again. */
2560 if (GET_CODE (PATTERN (insn)) == SEQUENCE
2561 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
2563 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
2564 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
2565 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
2567 target_set = set;
2568 mark_set_resources (insn, &target_set, 0, 1);
2570 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
2571 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
2572 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
2574 mark_set_resources (insn, &set, 0, 1);
2576 else
2578 mark_set_resources (insn, &set, 0, 1);
2579 target_set = set;
2582 target_res = *res;
2583 COPY_HARD_REG_SET (scratch, target_set.regs);
2584 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2585 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
2587 fallthrough_res = *res;
2588 COPY_HARD_REG_SET (scratch, set.regs);
2589 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2590 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
2592 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
2593 &target_res, 0, jump_count,
2594 target_set, needed);
2595 find_dead_or_set_registers (next,
2596 &fallthrough_res, 0, jump_count,
2597 set, needed);
2598 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
2599 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
2600 break;
2602 else
2603 break;
2605 else
2607 /* Don't try this optimization if we expired our jump count
2608 above, since that would mean there may be an infinite loop
2609 in the function being compiled. */
2610 jump_insn = 0;
2611 break;
2615 mark_referenced_resources (insn, &needed, 1);
2616 mark_set_resources (insn, &set, 0, 1);
2618 COPY_HARD_REG_SET (scratch, set.regs);
2619 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2620 AND_COMPL_HARD_REG_SET (res->regs, scratch);
2623 return jump_insn;
2626 /* Set the resources that are live at TARGET.
2628 If TARGET is zero, we refer to the end of the current function and can
2629 return our precomputed value.
2631 Otherwise, we try to find out what is live by consulting the basic block
2632 information. This is tricky, because we must consider the actions of
2633 reload and jump optimization, which occur after the basic block information
2634 has been computed.
2636 Accordingly, we proceed as follows::
2638 We find the previous BARRIER and look at all immediately following labels
2639 (with no intervening active insns) to see if any of them start a basic
2640 block. If we hit the start of the function first, we use block 0.
2642 Once we have found a basic block and a corresponding first insns, we can
2643 accurately compute the live status from basic_block_live_regs and
2644 reg_renumber. (By starting at a label following a BARRIER, we are immune
2645 to actions taken by reload and jump.) Then we scan all insns between
2646 that point and our target. For each CLOBBER (or for call-clobbered regs
2647 when we pass a CALL_INSN), mark the appropriate registers are dead. For
2648 a SET, mark them as live.
2650 We have to be careful when using REG_DEAD notes because they are not
2651 updated by such things as find_equiv_reg. So keep track of registers
2652 marked as dead that haven't been assigned to, and mark them dead at the
2653 next CODE_LABEL since reload and jump won't propagate values across labels.
2655 If we cannot find the start of a basic block (should be a very rare
2656 case, if it can happen at all), mark everything as potentially live.
2658 Next, scan forward from TARGET looking for things set or clobbered
2659 before they are used. These are not live.
2661 Because we can be called many times on the same target, save our results
2662 in a hash table indexed by INSN_UID. */
2664 static void
2665 mark_target_live_regs (target, res)
2666 rtx target;
2667 struct resources *res;
2669 int b = -1;
2670 int i;
2671 struct target_info *tinfo;
2672 rtx insn, next;
2673 rtx jump_insn = 0;
2674 rtx jump_target;
2675 HARD_REG_SET scratch;
2676 struct resources set, needed;
2677 int jump_count = 0;
2679 /* Handle end of function. */
2680 if (target == 0)
2682 *res = end_of_function_needs;
2683 return;
2686 /* We have to assume memory is needed, but the CC isn't. */
2687 res->memory = 1;
2688 res->volatil = res->unch_memory = 0;
2689 res->cc = 0;
2691 /* See if we have computed this value already. */
2692 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
2693 tinfo; tinfo = tinfo->next)
2694 if (tinfo->uid == INSN_UID (target))
2695 break;
2697 /* Start by getting the basic block number. If we have saved information,
2698 we can get it from there unless the insn at the start of the basic block
2699 has been deleted. */
2700 if (tinfo && tinfo->block != -1
2701 && ! INSN_DELETED_P (basic_block_head[tinfo->block]))
2702 b = tinfo->block;
2704 if (b == -1)
2705 b = find_basic_block (target);
2707 if (tinfo)
2709 /* If the information is up-to-date, use it. Otherwise, we will
2710 update it below. */
2711 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
2713 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
2714 return;
2717 else
2719 /* Allocate a place to put our results and chain it into the
2720 hash table. */
2721 tinfo = (struct target_info *) oballoc (sizeof (struct target_info));
2722 tinfo->uid = INSN_UID (target);
2723 tinfo->block = b;
2724 tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
2725 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
2728 CLEAR_HARD_REG_SET (pending_dead_regs);
2730 /* If we found a basic block, get the live registers from it and update
2731 them with anything set or killed between its start and the insn before
2732 TARGET. Otherwise, we must assume everything is live. */
2733 if (b != -1)
2735 regset regs_live = basic_block_live_at_start[b];
2736 int offset, j;
2737 REGSET_ELT_TYPE bit;
2738 int regno;
2739 rtx start_insn, stop_insn;
2741 /* Compute hard regs live at start of block -- this is the real hard regs
2742 marked live, plus live pseudo regs that have been renumbered to
2743 hard regs. */
2745 #ifdef HARD_REG_SET
2746 current_live_regs = *regs_live;
2747 #else
2748 COPY_HARD_REG_SET (current_live_regs, regs_live);
2749 #endif
2751 for (offset = 0, i = 0; offset < regset_size; offset++)
2753 if (regs_live[offset] == 0)
2754 i += REGSET_ELT_BITS;
2755 else
2756 for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
2757 if ((regs_live[offset] & bit)
2758 && (regno = reg_renumber[i]) >= 0)
2759 for (j = regno;
2760 j < regno + HARD_REGNO_NREGS (regno,
2761 PSEUDO_REGNO_MODE (i));
2762 j++)
2763 SET_HARD_REG_BIT (current_live_regs, j);
2766 /* Get starting and ending insn, handling the case where each might
2767 be a SEQUENCE. */
2768 start_insn = (b == 0 ? get_insns () : basic_block_head[b]);
2769 stop_insn = target;
2771 if (GET_CODE (start_insn) == INSN
2772 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
2773 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
2775 if (GET_CODE (stop_insn) == INSN
2776 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
2777 stop_insn = next_insn (PREV_INSN (stop_insn));
2779 for (insn = start_insn; insn != stop_insn;
2780 insn = next_insn_no_annul (insn))
2782 rtx link;
2783 rtx real_insn = insn;
2785 /* If this insn is from the target of a branch, it isn't going to
2786 be used in the sequel. If it is used in both cases, this
2787 test will not be true. */
2788 if (INSN_FROM_TARGET_P (insn))
2789 continue;
2791 /* If this insn is a USE made by update_block, we care about the
2792 underlying insn. */
2793 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
2794 && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
2795 real_insn = XEXP (PATTERN (insn), 0);
2797 if (GET_CODE (real_insn) == CALL_INSN)
2799 /* CALL clobbers all call-used regs that aren't fixed except
2800 sp, ap, and fp. Do this before setting the result of the
2801 call live. */
2802 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2803 if (call_used_regs[i]
2804 && i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
2805 && i != ARG_POINTER_REGNUM
2806 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2807 && i != HARD_FRAME_POINTER_REGNUM
2808 #endif
2809 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2810 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
2811 #endif
2812 #ifdef PIC_OFFSET_TABLE_REGNUM
2813 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2814 #endif
2816 CLEAR_HARD_REG_BIT (current_live_regs, i);
2818 /* A CALL_INSN sets any global register live, since it may
2819 have been modified by the call. */
2820 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2821 if (global_regs[i])
2822 SET_HARD_REG_BIT (current_live_regs, i);
2825 /* Mark anything killed in an insn to be deadened at the next
2826 label. Ignore USE insns; the only REG_DEAD notes will be for
2827 parameters. But they might be early. A CALL_INSN will usually
2828 clobber registers used for parameters. It isn't worth bothering
2829 with the unlikely case when it won't. */
2830 if ((GET_CODE (real_insn) == INSN
2831 && GET_CODE (PATTERN (real_insn)) != USE
2832 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
2833 || GET_CODE (real_insn) == JUMP_INSN
2834 || GET_CODE (real_insn) == CALL_INSN)
2836 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
2837 if (REG_NOTE_KIND (link) == REG_DEAD
2838 && GET_CODE (XEXP (link, 0)) == REG
2839 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
2841 int first_regno = REGNO (XEXP (link, 0));
2842 int last_regno
2843 = (first_regno
2844 + HARD_REGNO_NREGS (first_regno,
2845 GET_MODE (XEXP (link, 0))));
2847 for (i = first_regno; i < last_regno; i++)
2848 SET_HARD_REG_BIT (pending_dead_regs, i);
2851 note_stores (PATTERN (real_insn), update_live_status);
2853 /* If any registers were unused after this insn, kill them.
2854 These notes will always be accurate. */
2855 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
2856 if (REG_NOTE_KIND (link) == REG_UNUSED
2857 && GET_CODE (XEXP (link, 0)) == REG
2858 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
2860 int first_regno = REGNO (XEXP (link, 0));
2861 int last_regno
2862 = (first_regno
2863 + HARD_REGNO_NREGS (first_regno,
2864 GET_MODE (XEXP (link, 0))));
2866 for (i = first_regno; i < last_regno; i++)
2867 CLEAR_HARD_REG_BIT (current_live_regs, i);
2871 else if (GET_CODE (real_insn) == CODE_LABEL)
2873 /* A label clobbers the pending dead registers since neither
2874 reload nor jump will propagate a value across a label. */
2875 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
2876 CLEAR_HARD_REG_SET (pending_dead_regs);
2879 /* The beginning of the epilogue corresponds to the end of the
2880 RTL chain when there are no epilogue insns. Certain resources
2881 are implicitly required at that point. */
2882 else if (GET_CODE (real_insn) == NOTE
2883 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
2884 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
2887 COPY_HARD_REG_SET (res->regs, current_live_regs);
2888 tinfo->block = b;
2889 tinfo->bb_tick = bb_ticks[b];
2891 else
2892 /* We didn't find the start of a basic block. Assume everything
2893 in use. This should happen only extremely rarely. */
2894 SET_HARD_REG_SET (res->regs);
2896 CLEAR_RESOURCE (&set);
2897 CLEAR_RESOURCE (&needed);
2899 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
2900 set, needed);
2902 /* If we hit an unconditional branch, we have another way of finding out
2903 what is live: we can see what is live at the branch target and include
2904 anything used but not set before the branch. The only things that are
2905 live are those that are live using the above test and the test below. */
2907 if (jump_insn)
2909 struct resources new_resources;
2910 rtx stop_insn = next_active_insn (jump_insn);
2912 mark_target_live_regs (next_active_insn (jump_target), &new_resources);
2913 CLEAR_RESOURCE (&set);
2914 CLEAR_RESOURCE (&needed);
2916 /* Include JUMP_INSN in the needed registers. */
2917 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
2919 mark_referenced_resources (insn, &needed, 1);
2921 COPY_HARD_REG_SET (scratch, needed.regs);
2922 AND_COMPL_HARD_REG_SET (scratch, set.regs);
2923 IOR_HARD_REG_SET (new_resources.regs, scratch);
2925 mark_set_resources (insn, &set, 0, 1);
2928 AND_HARD_REG_SET (res->regs, new_resources.regs);
2931 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
2934 /* Scan a function looking for insns that need a delay slot and find insns to
2935 put into the delay slot.
2937 NON_JUMPS_P is non-zero if we are to only try to fill non-jump insns (such
2938 as calls). We do these first since we don't want jump insns (that are
2939 easier to fill) to get the only insns that could be used for non-jump insns.
2940 When it is zero, only try to fill JUMP_INSNs.
2942 When slots are filled in this manner, the insns (including the
2943 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2944 it is possible to tell whether a delay slot has really been filled
2945 or not. `final' knows how to deal with this, by communicating
2946 through FINAL_SEQUENCE. */
2948 static void
2949 fill_simple_delay_slots (first, non_jumps_p)
2950 rtx first;
2951 int non_jumps_p;
2953 register rtx insn, pat, trial, next_trial;
2954 register int i, j;
2955 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2956 struct resources needed, set;
2957 int slots_to_fill, slots_filled;
2958 rtx delay_list;
2960 for (i = 0; i < num_unfilled_slots; i++)
2962 int flags;
2963 /* Get the next insn to fill. If it has already had any slots assigned,
2964 we can't do anything with it. Maybe we'll improve this later. */
2966 insn = unfilled_slots_base[i];
2967 if (insn == 0
2968 || INSN_DELETED_P (insn)
2969 || (GET_CODE (insn) == INSN
2970 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2971 || (GET_CODE (insn) == JUMP_INSN && non_jumps_p)
2972 || (GET_CODE (insn) != JUMP_INSN && ! non_jumps_p))
2973 continue;
2975 if (GET_CODE (insn) == JUMP_INSN)
2976 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2977 else
2978 flags = get_jump_flags (insn, NULL_RTX);
2979 slots_to_fill = num_delay_slots (insn);
2980 if (slots_to_fill == 0)
2981 abort ();
2983 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2984 says how many. After initialization, first try optimizing
2986 call _foo call _foo
2987 nop add %o7,.-L1,%o7
2988 b,a L1
2991 If this case applies, the delay slot of the call is filled with
2992 the unconditional jump. This is done first to avoid having the
2993 delay slot of the call filled in the backward scan. Also, since
2994 the unconditional jump is likely to also have a delay slot, that
2995 insn must exist when it is subsequently scanned.
2997 This is tried on each insn with delay slots as some machines
2998 have insns which perform calls, but are not represented as
2999 CALL_INSNs. */
3001 slots_filled = 0;
3002 delay_list = 0;
3004 if ((trial = next_active_insn (insn))
3005 && GET_CODE (trial) == JUMP_INSN
3006 && simplejump_p (trial)
3007 && eligible_for_delay (insn, slots_filled, trial, flags)
3008 && no_labels_between_p (insn, trial))
3010 rtx *tmp;
3011 slots_filled++;
3012 delay_list = add_to_delay_list (trial, delay_list);
3014 /* TRIAL may have had its delay slot filled, then unfilled. When
3015 the delay slot is unfilled, TRIAL is placed back on the unfilled
3016 slots obstack. Unfortunately, it is placed on the end of the
3017 obstack, not in its original location. Therefore, we must search
3018 from entry i + 1 to the end of the unfilled slots obstack to
3019 try and find TRIAL. */
3020 tmp = &unfilled_slots_base[i + 1];
3021 while (*tmp != trial && tmp != unfilled_slots_next)
3022 tmp++;
3024 /* Remove the unconditional jump from consideration for delay slot
3025 filling and unthread it. */
3026 if (*tmp == trial)
3027 *tmp = 0;
3029 rtx next = NEXT_INSN (trial);
3030 rtx prev = PREV_INSN (trial);
3031 if (prev)
3032 NEXT_INSN (prev) = next;
3033 if (next)
3034 PREV_INSN (next) = prev;
3038 /* Now, scan backwards from the insn to search for a potential
3039 delay-slot candidate. Stop searching when a label or jump is hit.
3041 For each candidate, if it is to go into the delay slot (moved
3042 forward in execution sequence), it must not need or set any resources
3043 that were set by later insns and must not set any resources that
3044 are needed for those insns.
3046 The delay slot insn itself sets resources unless it is a call
3047 (in which case the called routine, not the insn itself, is doing
3048 the setting). */
3050 if (slots_filled < slots_to_fill)
3052 CLEAR_RESOURCE (&needed);
3053 CLEAR_RESOURCE (&set);
3054 mark_set_resources (insn, &set, 0, 0);
3055 mark_referenced_resources (insn, &needed, 0);
3057 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
3058 trial = next_trial)
3060 next_trial = prev_nonnote_insn (trial);
3062 /* This must be an INSN or CALL_INSN. */
3063 pat = PATTERN (trial);
3065 /* USE and CLOBBER at this level was just for flow; ignore it. */
3066 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3067 continue;
3069 /* Check for resource conflict first, to avoid unnecessary
3070 splitting. */
3071 if (! insn_references_resource_p (trial, &set, 1)
3072 && ! insn_sets_resource_p (trial, &set, 1)
3073 && ! insn_sets_resource_p (trial, &needed, 1)
3074 #ifdef HAVE_cc0
3075 /* Can't separate set of cc0 from its use. */
3076 && ! (reg_mentioned_p (cc0_rtx, pat)
3077 && ! sets_cc0_p (cc0_rtx, pat))
3078 #endif
3081 trial = try_split (pat, trial, 1);
3082 next_trial = prev_nonnote_insn (trial);
3083 if (eligible_for_delay (insn, slots_filled, trial, flags))
3085 /* In this case, we are searching backward, so if we
3086 find insns to put on the delay list, we want
3087 to put them at the head, rather than the
3088 tail, of the list. */
3090 update_reg_dead_notes (trial, insn);
3091 delay_list = gen_rtx (INSN_LIST, VOIDmode,
3092 trial, delay_list);
3093 update_block (trial, trial);
3094 delete_insn (trial);
3095 if (slots_to_fill == ++slots_filled)
3096 break;
3097 continue;
3101 mark_set_resources (trial, &set, 0, 1);
3102 mark_referenced_resources (trial, &needed, 1);
3106 /* If all needed slots haven't been filled, we come here. */
3108 /* Try to optimize case of jumping around a single insn. */
3109 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
3110 if (slots_filled != slots_to_fill
3111 && delay_list == 0
3112 && GET_CODE (insn) == JUMP_INSN
3113 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
3115 delay_list = optimize_skip (insn);
3116 if (delay_list)
3117 slots_filled += 1;
3119 #endif
3121 /* Try to get insns from beyond the insn needing the delay slot.
3122 These insns can neither set or reference resources set in insns being
3123 skipped, cannot set resources in the insn being skipped, and, if this
3124 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
3125 call might not return).
3127 There used to be code which continued past the target label if
3128 we saw all uses of the target label. This code did not work,
3129 because it failed to account for some instructions which were
3130 both annulled and marked as from the target. This can happen as a
3131 result of optimize_skip. Since this code was redundant with
3132 fill_eager_delay_slots anyways, it was just deleted. */
3134 if (slots_filled != slots_to_fill
3135 && (GET_CODE (insn) != JUMP_INSN
3136 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
3137 && ! simplejump_p (insn)
3138 && JUMP_LABEL (insn) != 0)))
3140 rtx target = 0;
3141 int maybe_never = 0;
3142 struct resources needed_at_jump;
3144 CLEAR_RESOURCE (&needed);
3145 CLEAR_RESOURCE (&set);
3147 if (GET_CODE (insn) == CALL_INSN)
3149 mark_set_resources (insn, &set, 0, 1);
3150 mark_referenced_resources (insn, &needed, 1);
3151 maybe_never = 1;
3153 else
3155 mark_set_resources (insn, &set, 0, 1);
3156 mark_referenced_resources (insn, &needed, 1);
3157 if (GET_CODE (insn) == JUMP_INSN)
3158 target = JUMP_LABEL (insn);
3161 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
3163 rtx pat, trial_delay;
3165 next_trial = next_nonnote_insn (trial);
3167 if (GET_CODE (trial) == CODE_LABEL
3168 || GET_CODE (trial) == BARRIER)
3169 break;
3171 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
3172 pat = PATTERN (trial);
3174 /* Stand-alone USE and CLOBBER are just for flow. */
3175 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3176 continue;
3178 /* If this already has filled delay slots, get the insn needing
3179 the delay slots. */
3180 if (GET_CODE (pat) == SEQUENCE)
3181 trial_delay = XVECEXP (pat, 0, 0);
3182 else
3183 trial_delay = trial;
3185 /* If this is a jump insn to our target, indicate that we have
3186 seen another jump to it. If we aren't handling a conditional
3187 jump, stop our search. Otherwise, compute the needs at its
3188 target and add them to NEEDED. */
3189 if (GET_CODE (trial_delay) == JUMP_INSN)
3191 if (target == 0)
3192 break;
3193 else if (JUMP_LABEL (trial_delay) != target)
3195 mark_target_live_regs
3196 (next_active_insn (JUMP_LABEL (trial_delay)),
3197 &needed_at_jump);
3198 needed.memory |= needed_at_jump.memory;
3199 needed.unch_memory |= needed_at_jump.unch_memory;
3200 IOR_HARD_REG_SET (needed.regs, needed_at_jump.regs);
3204 /* See if we have a resource problem before we try to
3205 split. */
3206 if (target == 0
3207 && GET_CODE (pat) != SEQUENCE
3208 && ! insn_references_resource_p (trial, &set, 1)
3209 && ! insn_sets_resource_p (trial, &set, 1)
3210 && ! insn_sets_resource_p (trial, &needed, 1)
3211 #ifdef HAVE_cc0
3212 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
3213 #endif
3214 && ! (maybe_never && may_trap_p (pat))
3215 && (trial = try_split (pat, trial, 0))
3216 && eligible_for_delay (insn, slots_filled, trial, flags))
3218 next_trial = next_nonnote_insn (trial);
3219 delay_list = add_to_delay_list (trial, delay_list);
3221 #ifdef HAVE_cc0
3222 if (reg_mentioned_p (cc0_rtx, pat))
3223 link_cc0_insns (trial);
3224 #endif
3226 delete_insn (trial);
3227 if (slots_to_fill == ++slots_filled)
3228 break;
3229 continue;
3232 mark_set_resources (trial, &set, 0, 1);
3233 mark_referenced_resources (trial, &needed, 1);
3235 /* Ensure we don't put insns between the setting of cc and the
3236 comparison by moving a setting of cc into an earlier delay
3237 slot since these insns could clobber the condition code. */
3238 set.cc = 1;
3240 /* If this is a call or jump, we might not get here. */
3241 if (GET_CODE (trial_delay) == CALL_INSN
3242 || GET_CODE (trial_delay) == JUMP_INSN)
3243 maybe_never = 1;
3246 /* If there are slots left to fill and our search was stopped by an
3247 unconditional branch, try the insn at the branch target. We can
3248 redirect the branch if it works.
3250 Don't do this if the insn at the branch target is a branch. */
3251 if (slots_to_fill != slots_filled
3252 && trial
3253 && GET_CODE (trial) == JUMP_INSN
3254 && simplejump_p (trial)
3255 && (target == 0 || JUMP_LABEL (trial) == target)
3256 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
3257 && ! (GET_CODE (next_trial) == INSN
3258 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
3259 && GET_CODE (next_trial) != JUMP_INSN
3260 && ! insn_references_resource_p (next_trial, &set, 1)
3261 && ! insn_sets_resource_p (next_trial, &set, 1)
3262 && ! insn_sets_resource_p (next_trial, &needed, 1)
3263 #ifdef HAVE_cc0
3264 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
3265 #endif
3266 && ! (maybe_never && may_trap_p (PATTERN (next_trial)))
3267 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
3268 && eligible_for_delay (insn, slots_filled, next_trial, flags))
3270 rtx new_label = next_active_insn (next_trial);
3272 if (new_label != 0)
3273 new_label = get_label_before (new_label);
3274 else
3275 new_label = find_end_label ();
3277 delay_list
3278 = add_to_delay_list (copy_rtx (next_trial), delay_list);
3279 slots_filled++;
3280 reorg_redirect_jump (trial, new_label);
3282 /* If we merged because we both jumped to the same place,
3283 redirect the original insn also. */
3284 if (target)
3285 reorg_redirect_jump (insn, new_label);
3289 /* If this is an unconditional jump, then try to get insns from the
3290 target of the jump. */
3291 if (GET_CODE (insn) == JUMP_INSN
3292 && simplejump_p (insn)
3293 && slots_filled != slots_to_fill)
3294 delay_list
3295 = fill_slots_from_thread (insn, const_true_rtx,
3296 next_active_insn (JUMP_LABEL (insn)),
3297 NULL, 1, 1,
3298 own_thread_p (JUMP_LABEL (insn),
3299 JUMP_LABEL (insn), 0),
3300 0, slots_to_fill, &slots_filled);
3302 if (delay_list)
3303 unfilled_slots_base[i]
3304 = emit_delay_sequence (insn, delay_list,
3305 slots_filled, slots_to_fill);
3307 if (slots_to_fill == slots_filled)
3308 unfilled_slots_base[i] = 0;
3310 note_delay_statistics (slots_filled, 0);
3313 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3314 /* See if the epilogue needs any delay slots. Try to fill them if so.
3315 The only thing we can do is scan backwards from the end of the
3316 function. If we did this in a previous pass, it is incorrect to do it
3317 again. */
3318 if (current_function_epilogue_delay_list)
3319 return;
3321 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
3322 if (slots_to_fill == 0)
3323 return;
3325 slots_filled = 0;
3326 CLEAR_RESOURCE (&set);
3328 /* The frame pointer and stack pointer are needed at the beginning of
3329 the epilogue, so instructions setting them can not be put in the
3330 epilogue delay slot. However, everything else needed at function
3331 end is safe, so we don't want to use end_of_function_needs here. */
3332 CLEAR_RESOURCE (&needed);
3333 if (frame_pointer_needed)
3335 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
3336 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3337 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
3338 #endif
3339 #ifdef EXIT_IGNORE_STACK
3340 if (! EXIT_IGNORE_STACK)
3341 #endif
3342 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
3344 else
3345 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
3347 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
3348 trial = PREV_INSN (trial))
3350 if (GET_CODE (trial) == NOTE)
3351 continue;
3352 pat = PATTERN (trial);
3353 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3354 continue;
3356 if (! insn_references_resource_p (trial, &set, 1)
3357 && ! insn_sets_resource_p (trial, &needed, 1)
3358 && ! insn_sets_resource_p (trial, &set, 1)
3359 #ifdef HAVE_cc0
3360 /* Don't want to mess with cc0 here. */
3361 && ! reg_mentioned_p (cc0_rtx, pat)
3362 #endif
3365 trial = try_split (pat, trial, 1);
3366 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
3368 /* Here as well we are searching backward, so put the
3369 insns we find on the head of the list. */
3371 current_function_epilogue_delay_list
3372 = gen_rtx (INSN_LIST, VOIDmode, trial,
3373 current_function_epilogue_delay_list);
3374 mark_referenced_resources (trial, &end_of_function_needs, 1);
3375 update_block (trial, trial);
3376 delete_insn (trial);
3378 /* Clear deleted bit so final.c will output the insn. */
3379 INSN_DELETED_P (trial) = 0;
3381 if (slots_to_fill == ++slots_filled)
3382 break;
3383 continue;
3387 mark_set_resources (trial, &set, 0, 1);
3388 mark_referenced_resources (trial, &needed, 1);
3391 note_delay_statistics (slots_filled, 0);
3392 #endif
3395 /* Try to find insns to place in delay slots.
3397 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
3398 or is an unconditional branch if CONDITION is const_true_rtx.
3399 *PSLOTS_FILLED is updated with the number of slots that we have filled.
3401 THREAD is a flow-of-control, either the insns to be executed if the
3402 branch is true or if the branch is false, THREAD_IF_TRUE says which.
3404 OPPOSITE_THREAD is the thread in the opposite direction. It is used
3405 to see if any potential delay slot insns set things needed there.
3407 LIKELY is non-zero if it is extremely likely that the branch will be
3408 taken and THREAD_IF_TRUE is set. This is used for the branch at the
3409 end of a loop back up to the top.
3411 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
3412 thread. I.e., it is the fallthrough code of our jump or the target of the
3413 jump when we are the only jump going there.
3415 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
3416 case, we can only take insns from the head of the thread for our delay
3417 slot. We then adjust the jump to point after the insns we have taken. */
3419 static rtx
3420 fill_slots_from_thread (insn, condition, thread, opposite_thread, likely,
3421 thread_if_true, own_thread, own_opposite_thread,
3422 slots_to_fill, pslots_filled)
3423 rtx insn;
3424 rtx condition;
3425 rtx thread, opposite_thread;
3426 int likely;
3427 int thread_if_true;
3428 int own_thread, own_opposite_thread;
3429 int slots_to_fill, *pslots_filled;
3431 rtx new_thread;
3432 rtx delay_list = 0;
3433 struct resources opposite_needed, set, needed;
3434 rtx trial;
3435 int lose = 0;
3436 int must_annul = 0;
3437 int flags;
3439 /* Validate our arguments. */
3440 if ((condition == const_true_rtx && ! thread_if_true)
3441 || (! own_thread && ! thread_if_true))
3442 abort ();
3444 flags = get_jump_flags (insn, JUMP_LABEL (insn));
3446 /* If our thread is the end of subroutine, we can't get any delay
3447 insns from that. */
3448 if (thread == 0)
3449 return 0;
3451 /* If this is an unconditional branch, nothing is needed at the
3452 opposite thread. Otherwise, compute what is needed there. */
3453 if (condition == const_true_rtx)
3454 CLEAR_RESOURCE (&opposite_needed);
3455 else
3456 mark_target_live_regs (opposite_thread, &opposite_needed);
3458 /* If the insn at THREAD can be split, do it here to avoid having to
3459 update THREAD and NEW_THREAD if it is done in the loop below. Also
3460 initialize NEW_THREAD. */
3462 new_thread = thread = try_split (PATTERN (thread), thread, 0);
3464 /* Scan insns at THREAD. We are looking for an insn that can be removed
3465 from THREAD (it neither sets nor references resources that were set
3466 ahead of it and it doesn't set anything needs by the insns ahead of
3467 it) and that either can be placed in an annulling insn or aren't
3468 needed at OPPOSITE_THREAD. */
3470 CLEAR_RESOURCE (&needed);
3471 CLEAR_RESOURCE (&set);
3473 /* If we do not own this thread, we must stop as soon as we find
3474 something that we can't put in a delay slot, since all we can do
3475 is branch into THREAD at a later point. Therefore, labels stop
3476 the search if this is not the `true' thread. */
3478 for (trial = thread;
3479 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
3480 trial = next_nonnote_insn (trial))
3482 rtx pat, old_trial;
3484 /* If we have passed a label, we no longer own this thread. */
3485 if (GET_CODE (trial) == CODE_LABEL)
3487 own_thread = 0;
3488 continue;
3491 pat = PATTERN (trial);
3492 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3493 continue;
3495 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
3496 don't separate or copy insns that set and use CC0. */
3497 if (! insn_references_resource_p (trial, &set, 1)
3498 && ! insn_sets_resource_p (trial, &set, 1)
3499 && ! insn_sets_resource_p (trial, &needed, 1)
3500 #ifdef HAVE_cc0
3501 && ! (reg_mentioned_p (cc0_rtx, pat)
3502 && (! own_thread || ! sets_cc0_p (pat)))
3503 #endif
3506 rtx prior_insn;
3508 /* If TRIAL is redundant with some insn before INSN, we don't
3509 actually need to add it to the delay list; we can merely pretend
3510 we did. */
3511 if (prior_insn = redundant_insn (trial, insn, delay_list))
3513 fix_reg_dead_note (prior_insn, insn);
3514 if (own_thread)
3516 update_block (trial, thread);
3517 if (trial == thread)
3519 thread = next_active_insn (thread);
3520 if (new_thread == trial)
3521 new_thread = thread;
3524 delete_insn (trial);
3526 else
3528 update_reg_unused_notes (prior_insn, trial);
3529 new_thread = next_active_insn (trial);
3532 continue;
3535 /* There are two ways we can win: If TRIAL doesn't set anything
3536 needed at the opposite thread and can't trap, or if it can
3537 go into an annulled delay slot. */
3538 if (condition == const_true_rtx
3539 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
3540 && ! may_trap_p (pat)))
3542 old_trial = trial;
3543 trial = try_split (pat, trial, 0);
3544 if (new_thread == old_trial)
3545 new_thread = trial;
3546 if (thread == old_trial)
3547 thread = trial;
3548 pat = PATTERN (trial);
3549 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
3550 goto winner;
3552 else if (0
3553 #ifdef ANNUL_IFTRUE_SLOTS
3554 || ! thread_if_true
3555 #endif
3556 #ifdef ANNUL_IFFALSE_SLOTS
3557 || thread_if_true
3558 #endif
3561 old_trial = trial;
3562 trial = try_split (pat, trial, 0);
3563 if (new_thread == old_trial)
3564 new_thread = trial;
3565 if (thread == old_trial)
3566 thread = trial;
3567 pat = PATTERN (trial);
3568 if ((thread_if_true
3569 ? eligible_for_annul_false (insn, *pslots_filled, trial, flags)
3570 : eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
3572 rtx temp;
3574 must_annul = 1;
3575 winner:
3577 #ifdef HAVE_cc0
3578 if (reg_mentioned_p (cc0_rtx, pat))
3579 link_cc0_insns (trial);
3580 #endif
3582 /* If we own this thread, delete the insn. If this is the
3583 destination of a branch, show that a basic block status
3584 may have been updated. In any case, mark the new
3585 starting point of this thread. */
3586 if (own_thread)
3588 update_block (trial, thread);
3589 delete_insn (trial);
3591 else
3592 new_thread = next_active_insn (trial);
3594 temp = own_thread ? trial : copy_rtx (trial);
3595 if (thread_if_true)
3596 INSN_FROM_TARGET_P (temp) = 1;
3598 delay_list = add_to_delay_list (temp, delay_list);
3600 if (slots_to_fill == ++(*pslots_filled))
3602 /* Even though we have filled all the slots, we
3603 may be branching to a location that has a
3604 redundant insn. Skip any if so. */
3605 while (new_thread && ! own_thread
3606 && ! insn_sets_resource_p (new_thread, &set, 1)
3607 && ! insn_sets_resource_p (new_thread, &needed, 1)
3608 && ! insn_references_resource_p (new_thread,
3609 &set, 1)
3610 && redundant_insn (new_thread, insn, delay_list))
3611 new_thread = next_active_insn (new_thread);
3612 break;
3615 continue;
3620 /* This insn can't go into a delay slot. */
3621 lose = 1;
3622 mark_set_resources (trial, &set, 0, 1);
3623 mark_referenced_resources (trial, &needed, 1);
3625 /* Ensure we don't put insns between the setting of cc and the comparison
3626 by moving a setting of cc into an earlier delay slot since these insns
3627 could clobber the condition code. */
3628 set.cc = 1;
3630 /* If this insn is a register-register copy and the next insn has
3631 a use of our destination, change it to use our source. That way,
3632 it will become a candidate for our delay slot the next time
3633 through this loop. This case occurs commonly in loops that
3634 scan a list.
3636 We could check for more complex cases than those tested below,
3637 but it doesn't seem worth it. It might also be a good idea to try
3638 to swap the two insns. That might do better.
3640 We can't do this if the next insn modifies our destination, because
3641 that would make the replacement into the insn invalid. We also can't
3642 do this if it modifies our source, because it might be an earlyclobber
3643 operand. This latter test also prevents updating the contents of
3644 a PRE_INC. */
3646 if (GET_CODE (trial) == INSN && GET_CODE (pat) == SET
3647 && GET_CODE (SET_SRC (pat)) == REG
3648 && GET_CODE (SET_DEST (pat)) == REG)
3650 rtx next = next_nonnote_insn (trial);
3652 if (next && GET_CODE (next) == INSN
3653 && GET_CODE (PATTERN (next)) != USE
3654 && ! reg_set_p (SET_DEST (pat), next)
3655 && ! reg_set_p (SET_SRC (pat), next)
3656 && reg_referenced_p (SET_DEST (pat), PATTERN (next)))
3657 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
3661 /* If we stopped on a branch insn that has delay slots, see if we can
3662 steal some of the insns in those slots. */
3663 if (trial && GET_CODE (trial) == INSN
3664 && GET_CODE (PATTERN (trial)) == SEQUENCE
3665 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN)
3667 /* If this is the `true' thread, we will want to follow the jump,
3668 so we can only do this if we have taken everything up to here. */
3669 if (thread_if_true && trial == new_thread)
3670 delay_list
3671 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
3672 delay_list, &set, &needed,
3673 &opposite_needed, slots_to_fill,
3674 pslots_filled, &must_annul,
3675 &new_thread);
3676 else if (! thread_if_true)
3677 delay_list
3678 = steal_delay_list_from_fallthrough (insn, condition,
3679 PATTERN (trial),
3680 delay_list, &set, &needed,
3681 &opposite_needed, slots_to_fill,
3682 pslots_filled, &must_annul);
3685 /* If we haven't found anything for this delay slot and it is very
3686 likely that the branch will be taken, see if the insn at our target
3687 increments or decrements a register with an increment that does not
3688 depend on the destination register. If so, try to place the opposite
3689 arithmetic insn after the jump insn and put the arithmetic insn in the
3690 delay slot. If we can't do this, return. */
3691 if (delay_list == 0 && likely && new_thread && GET_CODE (new_thread) == INSN)
3693 rtx pat = PATTERN (new_thread);
3694 rtx dest;
3695 rtx src;
3697 trial = new_thread;
3698 pat = PATTERN (trial);
3700 if (GET_CODE (trial) != INSN || GET_CODE (pat) != SET
3701 || ! eligible_for_delay (insn, 0, trial, flags))
3702 return 0;
3704 dest = SET_DEST (pat), src = SET_SRC (pat);
3705 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
3706 && rtx_equal_p (XEXP (src, 0), dest)
3707 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1)))
3709 rtx other = XEXP (src, 1);
3710 rtx new_arith;
3711 rtx ninsn;
3713 /* If this is a constant adjustment, use the same code with
3714 the negated constant. Otherwise, reverse the sense of the
3715 arithmetic. */
3716 if (GET_CODE (other) == CONST_INT)
3717 new_arith = gen_rtx (GET_CODE (src), GET_MODE (src), dest,
3718 negate_rtx (GET_MODE (src), other));
3719 else
3720 new_arith = gen_rtx (GET_CODE (src) == PLUS ? MINUS : PLUS,
3721 GET_MODE (src), dest, other);
3723 ninsn = emit_insn_after (gen_rtx (SET, VOIDmode, dest, new_arith),
3724 insn);
3726 if (recog_memoized (ninsn) < 0
3727 || (insn_extract (ninsn),
3728 ! constrain_operands (INSN_CODE (ninsn), 1)))
3730 delete_insn (ninsn);
3731 return 0;
3734 if (own_thread)
3736 update_block (trial, thread);
3737 delete_insn (trial);
3739 else
3740 new_thread = next_active_insn (trial);
3742 ninsn = own_thread ? trial : copy_rtx (trial);
3743 if (thread_if_true)
3744 INSN_FROM_TARGET_P (ninsn) = 1;
3746 delay_list = add_to_delay_list (ninsn, NULL_RTX);
3747 (*pslots_filled)++;
3751 if (delay_list && must_annul)
3752 INSN_ANNULLED_BRANCH_P (insn) = 1;
3754 /* If we are to branch into the middle of this thread, find an appropriate
3755 label or make a new one if none, and redirect INSN to it. If we hit the
3756 end of the function, use the end-of-function label. */
3757 if (new_thread != thread)
3759 rtx label;
3761 if (! thread_if_true)
3762 abort ();
3764 if (new_thread && GET_CODE (new_thread) == JUMP_INSN
3765 && (simplejump_p (new_thread)
3766 || GET_CODE (PATTERN (new_thread)) == RETURN)
3767 && redirect_with_delay_list_safe_p (insn,
3768 JUMP_LABEL (new_thread),
3769 delay_list))
3770 new_thread = follow_jumps (JUMP_LABEL (new_thread));
3772 if (new_thread == 0)
3773 label = find_end_label ();
3774 else if (GET_CODE (new_thread) == CODE_LABEL)
3775 label = new_thread;
3776 else
3777 label = get_label_before (new_thread);
3779 reorg_redirect_jump (insn, label);
3782 return delay_list;
3785 /* Make another attempt to find insns to place in delay slots.
3787 We previously looked for insns located in front of the delay insn
3788 and, for non-jump delay insns, located behind the delay insn.
3790 Here only try to schedule jump insns and try to move insns from either
3791 the target or the following insns into the delay slot. If annulling is
3792 supported, we will be likely to do this. Otherwise, we can do this only
3793 if safe. */
3795 static void
3796 fill_eager_delay_slots (first)
3797 rtx first;
3799 register rtx insn;
3800 register int i;
3801 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3803 for (i = 0; i < num_unfilled_slots; i++)
3805 rtx condition;
3806 rtx target_label, insn_at_target, fallthrough_insn;
3807 rtx delay_list = 0;
3808 int own_target;
3809 int own_fallthrough;
3810 int prediction, slots_to_fill, slots_filled;
3812 insn = unfilled_slots_base[i];
3813 if (insn == 0
3814 || INSN_DELETED_P (insn)
3815 || GET_CODE (insn) != JUMP_INSN
3816 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
3817 continue;
3819 slots_to_fill = num_delay_slots (insn);
3820 if (slots_to_fill == 0)
3821 abort ();
3823 slots_filled = 0;
3824 target_label = JUMP_LABEL (insn);
3825 condition = get_branch_condition (insn, target_label);
3827 if (condition == 0)
3828 continue;
3830 /* Get the next active fallthrough and target insns and see if we own
3831 them. Then see whether the branch is likely true. We don't need
3832 to do a lot of this for unconditional branches. */
3834 insn_at_target = next_active_insn (target_label);
3835 own_target = own_thread_p (target_label, target_label, 0);
3837 if (condition == const_true_rtx)
3839 own_fallthrough = 0;
3840 fallthrough_insn = 0;
3841 prediction = 2;
3843 else
3845 fallthrough_insn = next_active_insn (insn);
3846 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3847 prediction = mostly_true_jump (insn, condition);
3850 /* If this insn is expected to branch, first try to get insns from our
3851 target, then our fallthrough insns. If it is not, expected to branch,
3852 try the other order. */
3854 if (prediction > 0)
3856 delay_list
3857 = fill_slots_from_thread (insn, condition, insn_at_target,
3858 fallthrough_insn, prediction == 2, 1,
3859 own_target, own_fallthrough,
3860 slots_to_fill, &slots_filled);
3862 if (delay_list == 0 && own_fallthrough)
3864 /* Even though we didn't find anything for delay slots,
3865 we might have found a redundant insn which we deleted
3866 from the thread that was filled. So we have to recompute
3867 the next insn at the target. */
3868 target_label = JUMP_LABEL (insn);
3869 insn_at_target = next_active_insn (target_label);
3871 delay_list
3872 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3873 insn_at_target, 0, 0,
3874 own_fallthrough, own_target,
3875 slots_to_fill, &slots_filled);
3878 else
3880 if (own_fallthrough)
3881 delay_list
3882 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3883 insn_at_target, 0, 0,
3884 own_fallthrough, own_target,
3885 slots_to_fill, &slots_filled);
3887 if (delay_list == 0)
3888 delay_list
3889 = fill_slots_from_thread (insn, condition, insn_at_target,
3890 next_active_insn (insn), 0, 1,
3891 own_target, own_fallthrough,
3892 slots_to_fill, &slots_filled);
3895 if (delay_list)
3896 unfilled_slots_base[i]
3897 = emit_delay_sequence (insn, delay_list,
3898 slots_filled, slots_to_fill);
3900 if (slots_to_fill == slots_filled)
3901 unfilled_slots_base[i] = 0;
3903 note_delay_statistics (slots_filled, 1);
3907 /* Once we have tried two ways to fill a delay slot, make a pass over the
3908 code to try to improve the results and to do such things as more jump
3909 threading. */
3911 static void
3912 relax_delay_slots (first)
3913 rtx first;
3915 register rtx insn, next, pat;
3916 register rtx trial, delay_insn, target_label;
3918 /* Look at every JUMP_INSN and see if we can improve it. */
3919 for (insn = first; insn; insn = next)
3921 rtx other;
3923 next = next_active_insn (insn);
3925 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3926 the next insn, or jumps to a label that is not the last of a
3927 group of consecutive labels. */
3928 if (GET_CODE (insn) == JUMP_INSN
3929 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3930 && (target_label = JUMP_LABEL (insn)) != 0)
3932 target_label = follow_jumps (target_label);
3933 target_label = prev_label (next_active_insn (target_label));
3935 if (target_label == 0)
3936 target_label = find_end_label ();
3938 if (next_active_insn (target_label) == next
3939 && ! condjump_in_parallel_p (insn))
3941 delete_jump (insn);
3942 continue;
3945 if (target_label != JUMP_LABEL (insn))
3946 reorg_redirect_jump (insn, target_label);
3948 /* See if this jump branches around a unconditional jump.
3949 If so, invert this jump and point it to the target of the
3950 second jump. */
3951 if (next && GET_CODE (next) == JUMP_INSN
3952 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3953 && next_active_insn (target_label) == next_active_insn (next)
3954 && no_labels_between_p (insn, next))
3956 rtx label = JUMP_LABEL (next);
3958 /* Be careful how we do this to avoid deleting code or
3959 labels that are momentarily dead. See similar optimization
3960 in jump.c.
3962 We also need to ensure we properly handle the case when
3963 invert_jump fails. */
3965 ++LABEL_NUSES (target_label);
3966 if (label)
3967 ++LABEL_NUSES (label);
3969 if (invert_jump (insn, label))
3971 delete_insn (next);
3972 next = insn;
3975 if (label)
3976 --LABEL_NUSES (label);
3978 if (--LABEL_NUSES (target_label) == 0)
3979 delete_insn (target_label);
3981 continue;
3985 /* If this is an unconditional jump and the previous insn is a
3986 conditional jump, try reversing the condition of the previous
3987 insn and swapping our targets. The next pass might be able to
3988 fill the slots.
3990 Don't do this if we expect the conditional branch to be true, because
3991 we would then be making the more common case longer. */
3993 if (GET_CODE (insn) == JUMP_INSN
3994 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3995 && (other = prev_active_insn (insn)) != 0
3996 && (condjump_p (other) || condjump_in_parallel_p (other))
3997 && no_labels_between_p (other, insn)
3998 && 0 < mostly_true_jump (other,
3999 get_branch_condition (other,
4000 JUMP_LABEL (other))))
4002 rtx other_target = JUMP_LABEL (other);
4003 target_label = JUMP_LABEL (insn);
4005 /* Increment the count of OTHER_TARGET, so it doesn't get deleted
4006 as we move the label. */
4007 if (other_target)
4008 ++LABEL_NUSES (other_target);
4010 if (invert_jump (other, target_label))
4011 reorg_redirect_jump (insn, other_target);
4013 if (other_target)
4014 --LABEL_NUSES (other_target);
4017 /* Now look only at cases where we have filled a delay slot. */
4018 if (GET_CODE (insn) != INSN
4019 || GET_CODE (PATTERN (insn)) != SEQUENCE)
4020 continue;
4022 pat = PATTERN (insn);
4023 delay_insn = XVECEXP (pat, 0, 0);
4025 /* See if the first insn in the delay slot is redundant with some
4026 previous insn. Remove it from the delay slot if so; then set up
4027 to reprocess this insn. */
4028 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
4030 delete_from_delay_slot (XVECEXP (pat, 0, 1));
4031 next = prev_active_insn (next);
4032 continue;
4035 /* Now look only at the cases where we have a filled JUMP_INSN. */
4036 if (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
4037 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
4038 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
4039 continue;
4041 target_label = JUMP_LABEL (delay_insn);
4043 if (target_label)
4045 /* If this jump goes to another unconditional jump, thread it, but
4046 don't convert a jump into a RETURN here. */
4047 trial = follow_jumps (target_label);
4048 /* We use next_real_insn instead of next_active_insn, so that
4049 the special USE insns emitted by reorg won't be ignored.
4050 If they are ignored, then they will get deleted if target_label
4051 is now unreachable, and that would cause mark_target_live_regs
4052 to fail. */
4053 trial = prev_label (next_real_insn (trial));
4054 if (trial == 0 && target_label != 0)
4055 trial = find_end_label ();
4057 if (trial != target_label
4058 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
4060 reorg_redirect_jump (delay_insn, trial);
4061 target_label = trial;
4064 /* If the first insn at TARGET_LABEL is redundant with a previous
4065 insn, redirect the jump to the following insn process again. */
4066 trial = next_active_insn (target_label);
4067 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
4068 && redundant_insn (trial, insn, 0))
4070 rtx tmp;
4072 /* Figure out where to emit the special USE insn so we don't
4073 later incorrectly compute register live/death info. */
4074 tmp = next_active_insn (trial);
4075 if (tmp == 0)
4076 tmp = find_end_label ();
4078 /* Insert the special USE insn and update dataflow info. */
4079 update_block (trial, tmp);
4081 /* Now emit a label before the special USE insn, and
4082 redirect our jump to the new label. */
4083 target_label = get_label_before (PREV_INSN (tmp));
4084 reorg_redirect_jump (delay_insn, target_label);
4085 next = insn;
4086 continue;
4089 /* Similarly, if it is an unconditional jump with one insn in its
4090 delay list and that insn is redundant, thread the jump. */
4091 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
4092 && XVECLEN (PATTERN (trial), 0) == 2
4093 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN
4094 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
4095 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
4096 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
4098 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
4099 if (target_label == 0)
4100 target_label = find_end_label ();
4102 if (redirect_with_delay_slots_safe_p (delay_insn, target_label,
4103 insn))
4105 reorg_redirect_jump (delay_insn, target_label);
4106 next = insn;
4107 continue;
4112 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
4113 && prev_active_insn (target_label) == insn
4114 && ! condjump_in_parallel_p (delay_insn)
4115 #ifdef HAVE_cc0
4116 /* If the last insn in the delay slot sets CC0 for some insn,
4117 various code assumes that it is in a delay slot. We could
4118 put it back where it belonged and delete the register notes,
4119 but it doesn't seem worthwhile in this uncommon case. */
4120 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
4121 REG_CC_USER, NULL_RTX)
4122 #endif
4125 int i;
4127 /* All this insn does is execute its delay list and jump to the
4128 following insn. So delete the jump and just execute the delay
4129 list insns.
4131 We do this by deleting the INSN containing the SEQUENCE, then
4132 re-emitting the insns separately, and then deleting the jump.
4133 This allows the count of the jump target to be properly
4134 decremented. */
4136 /* Clear the from target bit, since these insns are no longer
4137 in delay slots. */
4138 for (i = 0; i < XVECLEN (pat, 0); i++)
4139 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
4141 trial = PREV_INSN (insn);
4142 delete_insn (insn);
4143 emit_insn_after (pat, trial);
4144 delete_scheduled_jump (delay_insn);
4145 continue;
4148 /* See if this is an unconditional jump around a single insn which is
4149 identical to the one in its delay slot. In this case, we can just
4150 delete the branch and the insn in its delay slot. */
4151 if (next && GET_CODE (next) == INSN
4152 && prev_label (next_active_insn (next)) == target_label
4153 && simplejump_p (insn)
4154 && XVECLEN (pat, 0) == 2
4155 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
4157 delete_insn (insn);
4158 continue;
4161 /* See if this jump (with its delay slots) branches around another
4162 jump (without delay slots). If so, invert this jump and point
4163 it to the target of the second jump. We cannot do this for
4164 annulled jumps, though. Again, don't convert a jump to a RETURN
4165 here. */
4166 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
4167 && next && GET_CODE (next) == JUMP_INSN
4168 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
4169 && next_active_insn (target_label) == next_active_insn (next)
4170 && no_labels_between_p (insn, next))
4172 rtx label = JUMP_LABEL (next);
4173 rtx old_label = JUMP_LABEL (delay_insn);
4175 if (label == 0)
4176 label = find_end_label ();
4178 if (redirect_with_delay_slots_safe_p (delay_insn, label, insn))
4180 /* Be careful how we do this to avoid deleting code or labels
4181 that are momentarily dead. See similar optimization in
4182 jump.c */
4183 if (old_label)
4184 ++LABEL_NUSES (old_label);
4186 if (invert_jump (delay_insn, label))
4188 int i;
4190 /* Must update the INSN_FROM_TARGET_P bits now that
4191 the branch is reversed, so that mark_target_live_regs
4192 will handle the delay slot insn correctly. */
4193 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
4195 rtx slot = XVECEXP (PATTERN (insn), 0, i);
4196 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
4199 delete_insn (next);
4200 next = insn;
4203 if (old_label && --LABEL_NUSES (old_label) == 0)
4204 delete_insn (old_label);
4205 continue;
4209 /* If we own the thread opposite the way this insn branches, see if we
4210 can merge its delay slots with following insns. */
4211 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
4212 && own_thread_p (NEXT_INSN (insn), 0, 1))
4213 try_merge_delay_insns (insn, next);
4214 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
4215 && own_thread_p (target_label, target_label, 0))
4216 try_merge_delay_insns (insn, next_active_insn (target_label));
4218 /* If we get here, we haven't deleted INSN. But we may have deleted
4219 NEXT, so recompute it. */
4220 next = next_active_insn (insn);
4224 #ifdef HAVE_return
4226 /* Look for filled jumps to the end of function label. We can try to convert
4227 them into RETURN insns if the insns in the delay slot are valid for the
4228 RETURN as well. */
4230 static void
4231 make_return_insns (first)
4232 rtx first;
4234 rtx insn, jump_insn, pat;
4235 rtx real_return_label = end_of_function_label;
4236 int slots, i;
4238 /* See if there is a RETURN insn in the function other than the one we
4239 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
4240 into a RETURN to jump to it. */
4241 for (insn = first; insn; insn = NEXT_INSN (insn))
4242 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == RETURN)
4244 real_return_label = get_label_before (insn);
4245 break;
4248 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
4249 was equal to END_OF_FUNCTION_LABEL. */
4250 LABEL_NUSES (real_return_label)++;
4252 /* Clear the list of insns to fill so we can use it. */
4253 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
4255 for (insn = first; insn; insn = NEXT_INSN (insn))
4257 int flags;
4259 /* Only look at filled JUMP_INSNs that go to the end of function
4260 label. */
4261 if (GET_CODE (insn) != INSN
4262 || GET_CODE (PATTERN (insn)) != SEQUENCE
4263 || GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
4264 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
4265 continue;
4267 pat = PATTERN (insn);
4268 jump_insn = XVECEXP (pat, 0, 0);
4270 /* If we can't make the jump into a RETURN, try to redirect it to the best
4271 RETURN and go on to the next insn. */
4272 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
4274 /* Make sure redirecting the jump will not invalidate the delay
4275 slot insns. */
4276 if (redirect_with_delay_slots_safe_p (jump_insn,
4277 real_return_label,
4278 insn))
4279 reorg_redirect_jump (jump_insn, real_return_label);
4280 continue;
4283 /* See if this RETURN can accept the insns current in its delay slot.
4284 It can if it has more or an equal number of slots and the contents
4285 of each is valid. */
4287 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
4288 slots = num_delay_slots (jump_insn);
4289 if (slots >= XVECLEN (pat, 0) - 1)
4291 for (i = 1; i < XVECLEN (pat, 0); i++)
4292 if (! (
4293 #ifdef ANNUL_IFFALSE_SLOTS
4294 (INSN_ANNULLED_BRANCH_P (jump_insn)
4295 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
4296 ? eligible_for_annul_false (jump_insn, i - 1,
4297 XVECEXP (pat, 0, i), flags) :
4298 #endif
4299 #ifdef ANNUL_IFTRUE_SLOTS
4300 (INSN_ANNULLED_BRANCH_P (jump_insn)
4301 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
4302 ? eligible_for_annul_true (jump_insn, i - 1,
4303 XVECEXP (pat, 0, i), flags) :
4304 #endif
4305 eligible_for_delay (jump_insn, i -1, XVECEXP (pat, 0, i), flags)))
4306 break;
4308 else
4309 i = 0;
4311 if (i == XVECLEN (pat, 0))
4312 continue;
4314 /* We have to do something with this insn. If it is an unconditional
4315 RETURN, delete the SEQUENCE and output the individual insns,
4316 followed by the RETURN. Then set things up so we try to find
4317 insns for its delay slots, if it needs some. */
4318 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
4320 rtx prev = PREV_INSN (insn);
4322 delete_insn (insn);
4323 for (i = 1; i < XVECLEN (pat, 0); i++)
4324 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
4326 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
4327 emit_barrier_after (insn);
4329 if (slots)
4330 obstack_ptr_grow (&unfilled_slots_obstack, insn);
4332 else
4333 /* It is probably more efficient to keep this with its current
4334 delay slot as a branch to a RETURN. */
4335 reorg_redirect_jump (jump_insn, real_return_label);
4338 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
4339 new delay slots we have created. */
4340 if (--LABEL_NUSES (real_return_label) == 0)
4341 delete_insn (real_return_label);
4343 fill_simple_delay_slots (first, 1);
4344 fill_simple_delay_slots (first, 0);
4346 #endif
4348 /* Try to find insns to place in delay slots. */
4350 void
4351 dbr_schedule (first, file)
4352 rtx first;
4353 FILE *file;
4355 rtx insn, next, epilogue_insn = 0;
4356 int i;
4357 #if 0
4358 int old_flag_no_peephole = flag_no_peephole;
4360 /* Execute `final' once in prescan mode to delete any insns that won't be
4361 used. Don't let final try to do any peephole optimization--it will
4362 ruin dataflow information for this pass. */
4364 flag_no_peephole = 1;
4365 final (first, 0, NO_DEBUG, 1, 1);
4366 flag_no_peephole = old_flag_no_peephole;
4367 #endif
4369 /* If the current function has no insns other than the prologue and
4370 epilogue, then do not try to fill any delay slots. */
4371 if (n_basic_blocks == 0)
4372 return;
4374 /* Find the highest INSN_UID and allocate and initialize our map from
4375 INSN_UID's to position in code. */
4376 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
4378 if (INSN_UID (insn) > max_uid)
4379 max_uid = INSN_UID (insn);
4380 if (GET_CODE (insn) == NOTE
4381 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
4382 epilogue_insn = insn;
4385 uid_to_ruid = (int *) alloca ((max_uid + 1) * sizeof (int *));
4386 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
4387 uid_to_ruid[INSN_UID (insn)] = i;
4389 /* Initialize the list of insns that need filling. */
4390 if (unfilled_firstobj == 0)
4392 gcc_obstack_init (&unfilled_slots_obstack);
4393 unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
4396 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
4398 rtx target;
4400 INSN_ANNULLED_BRANCH_P (insn) = 0;
4401 INSN_FROM_TARGET_P (insn) = 0;
4403 /* Skip vector tables. We can't get attributes for them. */
4404 if (GET_CODE (insn) == JUMP_INSN
4405 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
4406 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
4407 continue;
4409 if (num_delay_slots (insn) > 0)
4410 obstack_ptr_grow (&unfilled_slots_obstack, insn);
4412 /* Ensure all jumps go to the last of a set of consecutive labels. */
4413 if (GET_CODE (insn) == JUMP_INSN
4414 && (condjump_p (insn) || condjump_in_parallel_p (insn))
4415 && JUMP_LABEL (insn) != 0
4416 && ((target = prev_label (next_active_insn (JUMP_LABEL (insn))))
4417 != JUMP_LABEL (insn)))
4418 redirect_jump (insn, target);
4421 /* Indicate what resources are required to be valid at the end of the current
4422 function. The condition code never is and memory always is. If the
4423 frame pointer is needed, it is and so is the stack pointer unless
4424 EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
4425 stack pointer is. Registers used to return the function value are
4426 needed. Registers holding global variables are needed. */
4428 end_of_function_needs.cc = 0;
4429 end_of_function_needs.memory = 1;
4430 end_of_function_needs.unch_memory = 0;
4431 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
4433 if (frame_pointer_needed)
4435 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
4436 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4437 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
4438 #endif
4439 #ifdef EXIT_IGNORE_STACK
4440 if (! EXIT_IGNORE_STACK)
4441 #endif
4442 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
4444 else
4445 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
4447 if (current_function_return_rtx != 0
4448 && GET_CODE (current_function_return_rtx) == REG)
4449 mark_referenced_resources (current_function_return_rtx,
4450 &end_of_function_needs, 1);
4452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4453 if (global_regs[i])
4454 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
4456 /* The registers required to be live at the end of the function are
4457 represented in the flow information as being dead just prior to
4458 reaching the end of the function. For example, the return of a value
4459 might be represented by a USE of the return register immediately
4460 followed by an unconditional jump to the return label where the
4461 return label is the end of the RTL chain. The end of the RTL chain
4462 is then taken to mean that the return register is live.
4464 This sequence is no longer maintained when epilogue instructions are
4465 added to the RTL chain. To reconstruct the original meaning, the
4466 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
4467 point where these registers become live (start_of_epilogue_needs).
4468 If epilogue instructions are present, the registers set by those
4469 instructions won't have been processed by flow. Thus, those
4470 registers are additionally required at the end of the RTL chain
4471 (end_of_function_needs). */
4473 start_of_epilogue_needs = end_of_function_needs;
4475 while (epilogue_insn = next_nonnote_insn (epilogue_insn))
4476 mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1);
4478 /* Show we haven't computed an end-of-function label yet. */
4479 end_of_function_label = 0;
4481 /* Allocate and initialize the tables used by mark_target_live_regs. */
4482 target_hash_table
4483 = (struct target_info **) alloca ((TARGET_HASH_PRIME
4484 * sizeof (struct target_info *)));
4485 bzero ((char *) target_hash_table,
4486 TARGET_HASH_PRIME * sizeof (struct target_info *));
4488 bb_ticks = (int *) alloca (n_basic_blocks * sizeof (int));
4489 bzero ((char *) bb_ticks, n_basic_blocks * sizeof (int));
4491 /* Initialize the statistics for this function. */
4492 bzero ((char *) num_insns_needing_delays, sizeof num_insns_needing_delays);
4493 bzero ((char *) num_filled_delays, sizeof num_filled_delays);
4495 /* Now do the delay slot filling. Try everything twice in case earlier
4496 changes make more slots fillable. */
4498 for (reorg_pass_number = 0;
4499 reorg_pass_number < MAX_REORG_PASSES;
4500 reorg_pass_number++)
4502 fill_simple_delay_slots (first, 1);
4503 fill_simple_delay_slots (first, 0);
4504 fill_eager_delay_slots (first);
4505 relax_delay_slots (first);
4508 /* Delete any USE insns made by update_block; subsequent passes don't need
4509 them or know how to deal with them. */
4510 for (insn = first; insn; insn = next)
4512 next = NEXT_INSN (insn);
4514 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
4515 && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
4516 next = delete_insn (insn);
4519 /* If we made an end of function label, indicate that it is now
4520 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
4521 If it is now unused, delete it. */
4522 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
4523 delete_insn (end_of_function_label);
4525 #ifdef HAVE_return
4526 if (HAVE_return && end_of_function_label != 0)
4527 make_return_insns (first);
4528 #endif
4530 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
4532 /* It is not clear why the line below is needed, but it does seem to be. */
4533 unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
4535 /* Reposition the prologue and epilogue notes in case we moved the
4536 prologue/epilogue insns. */
4537 reposition_prologue_and_epilogue_notes (first);
4539 if (file)
4541 register int i, j, need_comma;
4543 for (reorg_pass_number = 0;
4544 reorg_pass_number < MAX_REORG_PASSES;
4545 reorg_pass_number++)
4547 fprintf (file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
4548 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
4550 need_comma = 0;
4551 fprintf (file, ";; Reorg function #%d\n", i);
4553 fprintf (file, ";; %d insns needing delay slots\n;; ",
4554 num_insns_needing_delays[i][reorg_pass_number]);
4556 for (j = 0; j < MAX_DELAY_HISTOGRAM; j++)
4557 if (num_filled_delays[i][j][reorg_pass_number])
4559 if (need_comma)
4560 fprintf (file, ", ");
4561 need_comma = 1;
4562 fprintf (file, "%d got %d delays",
4563 num_filled_delays[i][j][reorg_pass_number], j);
4565 fprintf (file, "\n");
4570 #endif /* DELAY_SLOTS */