Bring in all split-stack work done over on gccgo branch.
[official-gcc.git] / gcc / explow.c
blobf46c95e1833f00467c075c1531122502d76a5690
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "except.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "libfuncs.h"
38 #include "hard-reg-set.h"
39 #include "insn-config.h"
40 #include "ggc.h"
41 #include "recog.h"
42 #include "langhooks.h"
43 #include "target.h"
44 #include "output.h"
46 static rtx break_out_memory_refs (rtx);
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
54 int width = GET_MODE_BITSIZE (mode);
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
63 /* Sign-extend for the requested mode. */
65 if (width < HOST_BITS_PER_WIDE_INT)
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
74 return c;
77 /* Return an rtx for the sum of X and the integer C. */
79 rtx
80 plus_constant (rtx x, HOST_WIDE_INT c)
82 RTX_CODE code;
83 rtx y;
84 enum machine_mode mode;
85 rtx tem;
86 int all_constant = 0;
88 if (c == 0)
89 return x;
91 restart:
93 code = GET_CODE (x);
94 mode = GET_MODE (x);
95 y = x;
97 switch (code)
99 case CONST_INT:
100 return GEN_INT (INTVAL (x) + c);
102 case CONST_DOUBLE:
104 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106 unsigned HOST_WIDE_INT l2 = c;
107 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv;
109 HOST_WIDE_INT hv;
111 add_double (l1, h1, l2, h2, &lv, &hv);
113 return immed_double_const (lv, hv, VOIDmode);
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
124 = force_const_mem (GET_MODE (x),
125 plus_constant (get_pool_constant (XEXP (x, 0)),
126 c));
127 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128 return tem;
130 break;
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
144 case PLUS:
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
157 if (CONST_INT_P (XEXP (x, 1)))
159 c += INTVAL (XEXP (x, 1));
161 if (GET_MODE (x) != VOIDmode)
162 c = trunc_int_for_mode (c, GET_MODE (x));
164 x = XEXP (x, 0);
165 goto restart;
167 else if (CONSTANT_P (XEXP (x, 1)))
169 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170 c = 0;
172 else if (find_constant_term_loc (&y))
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
179 *const_loc = plus_constant (*const_loc, c);
180 x = copy;
181 c = 0;
183 break;
185 default:
186 break;
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
206 eliminate_constant_term (rtx x, rtx *constptr)
208 rtx x0, x1;
209 rtx tem;
211 if (GET_CODE (x) != PLUS)
212 return x;
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
236 return x;
239 /* Return an rtx for the size in bytes of the value of EXP. */
242 expr_size (tree exp)
244 tree size;
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
264 tree size;
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
270 size = tree_expr_size (exp);
271 gcc_assert (size);
274 if (size == 0 || !host_integerp (size, 0))
275 return -1;
277 return tree_low_cst (size, 0);
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
296 static rtx
297 break_out_memory_refs (rtx x)
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
313 return x;
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328 return x;
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode, address_mode, from_mode;
331 rtx temp;
332 enum rtx_code code;
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x) == to_mode)
336 return x;
338 pointer_mode = targetm.addr_space.pointer_mode (as);
339 address_mode = targetm.addr_space.address_mode (as);
340 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x))
346 case CONST_INT:
347 case CONST_DOUBLE:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
385 case PLUS:
386 case MULT:
387 /* For addition we can safely permute the conversion and addition
388 operation if one operand is a constant and converting the constant
389 does not change it or if one operand is a constant and we are
390 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
391 We can always safely permute them if we are making the address
392 narrower. */
393 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
394 || (GET_CODE (x) == PLUS
395 && CONST_INT_P (XEXP (x, 1))
396 && (XEXP (x, 1) == convert_memory_address_addr_space
397 (to_mode, XEXP (x, 1), as)
398 || POINTERS_EXTEND_UNSIGNED < 0)))
399 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
400 convert_memory_address_addr_space
401 (to_mode, XEXP (x, 0), as),
402 XEXP (x, 1));
403 break;
405 default:
406 break;
409 return convert_modes (to_mode, from_mode,
410 x, POINTERS_EXTEND_UNSIGNED);
411 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
414 /* Return something equivalent to X but valid as a memory address for something
415 of mode MODE in the named address space AS. When X is not itself valid,
416 this works by copying X or subexpressions of it into registers. */
419 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
421 rtx oldx = x;
422 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
424 x = convert_memory_address_addr_space (address_mode, x, as);
426 /* By passing constant addresses through registers
427 we get a chance to cse them. */
428 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
429 x = force_reg (address_mode, x);
431 /* We get better cse by rejecting indirect addressing at this stage.
432 Let the combiner create indirect addresses where appropriate.
433 For now, generate the code so that the subexpressions useful to share
434 are visible. But not if cse won't be done! */
435 else
437 if (! cse_not_expected && !REG_P (x))
438 x = break_out_memory_refs (x);
440 /* At this point, any valid address is accepted. */
441 if (memory_address_addr_space_p (mode, x, as))
442 goto done;
444 /* If it was valid before but breaking out memory refs invalidated it,
445 use it the old way. */
446 if (memory_address_addr_space_p (mode, oldx, as))
448 x = oldx;
449 goto done;
452 /* Perform machine-dependent transformations on X
453 in certain cases. This is not necessary since the code
454 below can handle all possible cases, but machine-dependent
455 transformations can make better code. */
457 rtx orig_x = x;
458 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
459 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
460 goto done;
463 /* PLUS and MULT can appear in special ways
464 as the result of attempts to make an address usable for indexing.
465 Usually they are dealt with by calling force_operand, below.
466 But a sum containing constant terms is special
467 if removing them makes the sum a valid address:
468 then we generate that address in a register
469 and index off of it. We do this because it often makes
470 shorter code, and because the addresses thus generated
471 in registers often become common subexpressions. */
472 if (GET_CODE (x) == PLUS)
474 rtx constant_term = const0_rtx;
475 rtx y = eliminate_constant_term (x, &constant_term);
476 if (constant_term == const0_rtx
477 || ! memory_address_addr_space_p (mode, y, as))
478 x = force_operand (x, NULL_RTX);
479 else
481 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
482 if (! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
485 x = y;
489 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
490 x = force_operand (x, NULL_RTX);
492 /* If we have a register that's an invalid address,
493 it must be a hard reg of the wrong class. Copy it to a pseudo. */
494 else if (REG_P (x))
495 x = copy_to_reg (x);
497 /* Last resort: copy the value to a register, since
498 the register is a valid address. */
499 else
500 x = force_reg (address_mode, x);
503 done:
505 gcc_assert (memory_address_addr_space_p (mode, x, as));
506 /* If we didn't change the address, we are done. Otherwise, mark
507 a reg as a pointer if we have REG or REG + CONST_INT. */
508 if (oldx == x)
509 return x;
510 else if (REG_P (x))
511 mark_reg_pointer (x, BITS_PER_UNIT);
512 else if (GET_CODE (x) == PLUS
513 && REG_P (XEXP (x, 0))
514 && CONST_INT_P (XEXP (x, 1)))
515 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
517 /* OLDX may have been the address on a temporary. Update the address
518 to indicate that X is now used. */
519 update_temp_slot_address (oldx, x);
521 return x;
524 /* Convert a mem ref into one with a valid memory address.
525 Pass through anything else unchanged. */
528 validize_mem (rtx ref)
530 if (!MEM_P (ref))
531 return ref;
532 ref = use_anchored_address (ref);
533 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
534 MEM_ADDR_SPACE (ref)))
535 return ref;
537 /* Don't alter REF itself, since that is probably a stack slot. */
538 return replace_equiv_address (ref, XEXP (ref, 0));
541 /* If X is a memory reference to a member of an object block, try rewriting
542 it to use an anchor instead. Return the new memory reference on success
543 and the old one on failure. */
546 use_anchored_address (rtx x)
548 rtx base;
549 HOST_WIDE_INT offset;
551 if (!flag_section_anchors)
552 return x;
554 if (!MEM_P (x))
555 return x;
557 /* Split the address into a base and offset. */
558 base = XEXP (x, 0);
559 offset = 0;
560 if (GET_CODE (base) == CONST
561 && GET_CODE (XEXP (base, 0)) == PLUS
562 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
564 offset += INTVAL (XEXP (XEXP (base, 0), 1));
565 base = XEXP (XEXP (base, 0), 0);
568 /* Check whether BASE is suitable for anchors. */
569 if (GET_CODE (base) != SYMBOL_REF
570 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
571 || SYMBOL_REF_ANCHOR_P (base)
572 || SYMBOL_REF_BLOCK (base) == NULL
573 || !targetm.use_anchors_for_symbol_p (base))
574 return x;
576 /* Decide where BASE is going to be. */
577 place_block_symbol (base);
579 /* Get the anchor we need to use. */
580 offset += SYMBOL_REF_BLOCK_OFFSET (base);
581 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
582 SYMBOL_REF_TLS_MODEL (base));
584 /* Work out the offset from the anchor. */
585 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
587 /* If we're going to run a CSE pass, force the anchor into a register.
588 We will then be able to reuse registers for several accesses, if the
589 target costs say that that's worthwhile. */
590 if (!cse_not_expected)
591 base = force_reg (GET_MODE (base), base);
593 return replace_equiv_address (x, plus_constant (base, offset));
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
599 copy_to_reg (rtx x)
601 rtx temp = gen_reg_rtx (GET_MODE (x));
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
608 if (x != temp)
609 emit_move_insn (temp, x);
611 return temp;
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
618 copy_addr_to_reg (rtx x)
620 return copy_to_mode_reg (Pmode, x);
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
627 copy_to_mode_reg (enum machine_mode mode, rtx x)
629 rtx temp = gen_reg_rtx (mode);
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x, VOIDmode))
634 x = force_operand (x, temp);
636 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
637 if (x != temp)
638 emit_move_insn (temp, x);
639 return temp;
642 /* Load X into a register if it is not already one.
643 Use mode MODE for the register.
644 X should be valid for mode MODE, but it may be a constant which
645 is valid for all integer modes; that's why caller must specify MODE.
647 The caller must not alter the value in the register we return,
648 since we mark it as a "constant" register. */
651 force_reg (enum machine_mode mode, rtx x)
653 rtx temp, insn, set;
655 if (REG_P (x))
656 return x;
658 if (general_operand (x, mode))
660 temp = gen_reg_rtx (mode);
661 insn = emit_move_insn (temp, x);
663 else
665 temp = force_operand (x, NULL_RTX);
666 if (REG_P (temp))
667 insn = get_last_insn ();
668 else
670 rtx temp2 = gen_reg_rtx (mode);
671 insn = emit_move_insn (temp2, temp);
672 temp = temp2;
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
679 if (CONSTANT_P (x)
680 && (set = single_set (insn)) != 0
681 && SET_DEST (set) == temp
682 && ! rtx_equal_p (x, SET_SRC (set)))
683 set_unique_reg_note (insn, REG_EQUAL, x);
685 /* Let optimizers know that TEMP is a pointer, and if so, the
686 known alignment of that pointer. */
688 unsigned align = 0;
689 if (GET_CODE (x) == SYMBOL_REF)
691 align = BITS_PER_UNIT;
692 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
693 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
695 else if (GET_CODE (x) == LABEL_REF)
696 align = BITS_PER_UNIT;
697 else if (GET_CODE (x) == CONST
698 && GET_CODE (XEXP (x, 0)) == PLUS
699 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
700 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
702 rtx s = XEXP (XEXP (x, 0), 0);
703 rtx c = XEXP (XEXP (x, 0), 1);
704 unsigned sa, ca;
706 sa = BITS_PER_UNIT;
707 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
708 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
710 if (INTVAL (c) == 0)
711 align = sa;
712 else
714 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
715 align = MIN (sa, ca);
719 if (align || (MEM_P (x) && MEM_POINTER (x)))
720 mark_reg_pointer (temp, align);
723 return temp;
726 /* If X is a memory ref, copy its contents to a new temp reg and return
727 that reg. Otherwise, return X. */
730 force_not_mem (rtx x)
732 rtx temp;
734 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
735 return x;
737 temp = gen_reg_rtx (GET_MODE (x));
739 if (MEM_POINTER (x))
740 REG_POINTER (temp) = 1;
742 emit_move_insn (temp, x);
743 return temp;
746 /* Copy X to TARGET (if it's nonzero and a reg)
747 or to a new temp reg and return that reg.
748 MODE is the mode to use for X in case it is a constant. */
751 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
753 rtx temp;
755 if (target && REG_P (target))
756 temp = target;
757 else
758 temp = gen_reg_rtx (mode);
760 emit_move_insn (temp, x);
761 return temp;
764 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
765 PUNSIGNEDP points to the signedness of the type and may be adjusted
766 to show what signedness to use on extension operations.
768 FOR_RETURN is nonzero if the caller is promoting the return value
769 of FNDECL, else it is for promoting args. */
771 enum machine_mode
772 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
773 const_tree funtype, int for_return)
775 switch (TREE_CODE (type))
777 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
778 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
779 case POINTER_TYPE: case REFERENCE_TYPE:
780 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
781 for_return);
783 default:
784 return mode;
787 /* Return the mode to use to store a scalar of TYPE and MODE.
788 PUNSIGNEDP points to the signedness of the type and may be adjusted
789 to show what signedness to use on extension operations. */
791 enum machine_mode
792 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
793 int *punsignedp ATTRIBUTE_UNUSED)
795 /* FIXME: this is the same logic that was there until GCC 4.4, but we
796 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
797 is not defined. The affected targets are M32C, S390, SPARC. */
798 #ifdef PROMOTE_MODE
799 const enum tree_code code = TREE_CODE (type);
800 int unsignedp = *punsignedp;
802 switch (code)
804 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
805 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
806 PROMOTE_MODE (mode, unsignedp, type);
807 *punsignedp = unsignedp;
808 return mode;
809 break;
811 #ifdef POINTERS_EXTEND_UNSIGNED
812 case REFERENCE_TYPE:
813 case POINTER_TYPE:
814 *punsignedp = POINTERS_EXTEND_UNSIGNED;
815 return targetm.addr_space.address_mode
816 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
817 break;
818 #endif
820 default:
821 return mode;
823 #else
824 return mode;
825 #endif
829 /* Use one of promote_mode or promote_function_mode to find the promoted
830 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
831 of DECL after promotion. */
833 enum machine_mode
834 promote_decl_mode (const_tree decl, int *punsignedp)
836 tree type = TREE_TYPE (decl);
837 int unsignedp = TYPE_UNSIGNED (type);
838 enum machine_mode mode = DECL_MODE (decl);
839 enum machine_mode pmode;
841 if (TREE_CODE (decl) == RESULT_DECL
842 || TREE_CODE (decl) == PARM_DECL)
843 pmode = promote_function_mode (type, mode, &unsignedp,
844 TREE_TYPE (current_function_decl), 2);
845 else
846 pmode = promote_mode (type, mode, &unsignedp);
848 if (punsignedp)
849 *punsignedp = unsignedp;
850 return pmode;
854 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
855 This pops when ADJUST is positive. ADJUST need not be constant. */
857 void
858 adjust_stack (rtx adjust)
860 rtx temp;
862 if (adjust == const0_rtx)
863 return;
865 /* We expect all variable sized adjustments to be multiple of
866 PREFERRED_STACK_BOUNDARY. */
867 if (CONST_INT_P (adjust))
868 stack_pointer_delta -= INTVAL (adjust);
870 temp = expand_binop (Pmode,
871 #ifdef STACK_GROWS_DOWNWARD
872 add_optab,
873 #else
874 sub_optab,
875 #endif
876 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
877 OPTAB_LIB_WIDEN);
879 if (temp != stack_pointer_rtx)
880 emit_move_insn (stack_pointer_rtx, temp);
883 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
884 This pushes when ADJUST is positive. ADJUST need not be constant. */
886 void
887 anti_adjust_stack (rtx adjust)
889 rtx temp;
891 if (adjust == const0_rtx)
892 return;
894 /* We expect all variable sized adjustments to be multiple of
895 PREFERRED_STACK_BOUNDARY. */
896 if (CONST_INT_P (adjust))
897 stack_pointer_delta += INTVAL (adjust);
899 temp = expand_binop (Pmode,
900 #ifdef STACK_GROWS_DOWNWARD
901 sub_optab,
902 #else
903 add_optab,
904 #endif
905 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
906 OPTAB_LIB_WIDEN);
908 if (temp != stack_pointer_rtx)
909 emit_move_insn (stack_pointer_rtx, temp);
912 /* Round the size of a block to be pushed up to the boundary required
913 by this machine. SIZE is the desired size, which need not be constant. */
915 static rtx
916 round_push (rtx size)
918 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
920 if (align == 1)
921 return size;
923 if (CONST_INT_P (size))
925 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
927 if (INTVAL (size) != new_size)
928 size = GEN_INT (new_size);
930 else
932 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
933 but we know it can't. So add ourselves and then do
934 TRUNC_DIV_EXPR. */
935 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
936 NULL_RTX, 1, OPTAB_LIB_WIDEN);
937 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
938 NULL_RTX, 1);
939 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
942 return size;
945 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
946 to a previously-created save area. If no save area has been allocated,
947 this function will allocate one. If a save area is specified, it
948 must be of the proper mode.
950 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
951 are emitted at the current position. */
953 void
954 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
956 rtx sa = *psave;
957 /* The default is that we use a move insn and save in a Pmode object. */
958 rtx (*fcn) (rtx, rtx) = gen_move_insn;
959 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
961 /* See if this machine has anything special to do for this kind of save. */
962 switch (save_level)
964 #ifdef HAVE_save_stack_block
965 case SAVE_BLOCK:
966 if (HAVE_save_stack_block)
967 fcn = gen_save_stack_block;
968 break;
969 #endif
970 #ifdef HAVE_save_stack_function
971 case SAVE_FUNCTION:
972 if (HAVE_save_stack_function)
973 fcn = gen_save_stack_function;
974 break;
975 #endif
976 #ifdef HAVE_save_stack_nonlocal
977 case SAVE_NONLOCAL:
978 if (HAVE_save_stack_nonlocal)
979 fcn = gen_save_stack_nonlocal;
980 break;
981 #endif
982 default:
983 break;
986 /* If there is no save area and we have to allocate one, do so. Otherwise
987 verify the save area is the proper mode. */
989 if (sa == 0)
991 if (mode != VOIDmode)
993 if (save_level == SAVE_NONLOCAL)
994 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
995 else
996 *psave = sa = gen_reg_rtx (mode);
1000 if (after)
1002 rtx seq;
1004 start_sequence ();
1005 do_pending_stack_adjust ();
1006 /* We must validize inside the sequence, to ensure that any instructions
1007 created by the validize call also get moved to the right place. */
1008 if (sa != 0)
1009 sa = validize_mem (sa);
1010 emit_insn (fcn (sa, stack_pointer_rtx));
1011 seq = get_insns ();
1012 end_sequence ();
1013 emit_insn_after (seq, after);
1015 else
1017 do_pending_stack_adjust ();
1018 if (sa != 0)
1019 sa = validize_mem (sa);
1020 emit_insn (fcn (sa, stack_pointer_rtx));
1024 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1025 area made by emit_stack_save. If it is zero, we have nothing to do.
1027 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1028 current position. */
1030 void
1031 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1033 /* The default is that we use a move insn. */
1034 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1036 /* See if this machine has anything special to do for this kind of save. */
1037 switch (save_level)
1039 #ifdef HAVE_restore_stack_block
1040 case SAVE_BLOCK:
1041 if (HAVE_restore_stack_block)
1042 fcn = gen_restore_stack_block;
1043 break;
1044 #endif
1045 #ifdef HAVE_restore_stack_function
1046 case SAVE_FUNCTION:
1047 if (HAVE_restore_stack_function)
1048 fcn = gen_restore_stack_function;
1049 break;
1050 #endif
1051 #ifdef HAVE_restore_stack_nonlocal
1052 case SAVE_NONLOCAL:
1053 if (HAVE_restore_stack_nonlocal)
1054 fcn = gen_restore_stack_nonlocal;
1055 break;
1056 #endif
1057 default:
1058 break;
1061 if (sa != 0)
1063 sa = validize_mem (sa);
1064 /* These clobbers prevent the scheduler from moving
1065 references to variable arrays below the code
1066 that deletes (pops) the arrays. */
1067 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1068 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1071 discard_pending_stack_adjust ();
1073 if (after)
1075 rtx seq;
1077 start_sequence ();
1078 emit_insn (fcn (stack_pointer_rtx, sa));
1079 seq = get_insns ();
1080 end_sequence ();
1081 emit_insn_after (seq, after);
1083 else
1084 emit_insn (fcn (stack_pointer_rtx, sa));
1087 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1088 function. This function should be called whenever we allocate or
1089 deallocate dynamic stack space. */
1091 void
1092 update_nonlocal_goto_save_area (void)
1094 tree t_save;
1095 rtx r_save;
1097 /* The nonlocal_goto_save_area object is an array of N pointers. The
1098 first one is used for the frame pointer save; the rest are sized by
1099 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1100 of the stack save area slots. */
1101 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1102 integer_one_node, NULL_TREE, NULL_TREE);
1103 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1105 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1108 /* Return an rtx representing the address of an area of memory dynamically
1109 pushed on the stack. This region of memory is always aligned to
1110 a multiple of BIGGEST_ALIGNMENT.
1112 Any required stack pointer alignment is preserved.
1114 SIZE is an rtx representing the size of the area.
1115 TARGET is a place in which the address can be placed.
1117 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.
1119 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1120 stack space allocated by the generated code cannot be added with itself
1121 in the course of the execution of the function. It is always safe to
1122 pass FALSE here and the following criterion is sufficient in order to
1123 pass TRUE: every path in the CFG that starts at the allocation point and
1124 loops to it executes the associated deallocation code. */
1127 allocate_dynamic_stack_space (rtx size, rtx target, int known_align,
1128 bool cannot_accumulate)
1130 HOST_WIDE_INT stack_usage_size = -1;
1131 bool known_align_valid = true;
1132 rtx final_label, final_target;
1134 /* If we're asking for zero bytes, it doesn't matter what we point
1135 to since we can't dereference it. But return a reasonable
1136 address anyway. */
1137 if (size == const0_rtx)
1138 return virtual_stack_dynamic_rtx;
1140 /* Otherwise, show we're calling alloca or equivalent. */
1141 cfun->calls_alloca = 1;
1143 /* If stack usage info is requested, look into the size we are passed.
1144 We need to do so this early to avoid the obfuscation that may be
1145 introduced later by the various alignment operations. */
1146 if (flag_stack_usage)
1148 if (GET_CODE (size) == CONST_INT)
1149 stack_usage_size = INTVAL (size);
1150 else if (GET_CODE (size) == REG)
1152 /* Look into the last emitted insn and see if we can deduce
1153 something for the register. */
1154 rtx insn, set, note;
1155 insn = get_last_insn ();
1156 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1158 if (GET_CODE (SET_SRC (set)) == CONST_INT)
1159 stack_usage_size = INTVAL (SET_SRC (set));
1160 else if ((note = find_reg_equal_equiv_note (insn))
1161 && GET_CODE (XEXP (note, 0)) == CONST_INT)
1162 stack_usage_size = INTVAL (XEXP (note, 0));
1166 /* If the size is not constant, we can't say anything. */
1167 if (stack_usage_size == -1)
1169 current_function_has_unbounded_dynamic_stack_size = 1;
1170 stack_usage_size = 0;
1174 /* Ensure the size is in the proper mode. */
1175 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1176 size = convert_to_mode (Pmode, size, 1);
1178 /* We can't attempt to minimize alignment necessary, because we don't
1179 know the final value of preferred_stack_boundary yet while executing
1180 this code. */
1181 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1183 /* We will need to ensure that the address we return is aligned to
1184 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1185 always know its final value at this point in the compilation (it
1186 might depend on the size of the outgoing parameter lists, for
1187 example), so we must align the value to be returned in that case.
1188 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1189 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1190 We must also do an alignment operation on the returned value if
1191 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1193 If we have to align, we must leave space in SIZE for the hole
1194 that might result from the alignment operation. */
1196 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1197 #define MUST_ALIGN 1
1198 #else
1199 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1200 #endif
1202 if (MUST_ALIGN)
1204 size
1205 = force_operand (plus_constant (size,
1206 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1207 NULL_RTX);
1209 if (flag_stack_usage)
1210 stack_usage_size += BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1;
1212 known_align_valid = false;
1215 #ifdef SETJMP_VIA_SAVE_AREA
1216 /* If setjmp restores regs from a save area in the stack frame,
1217 avoid clobbering the reg save area. Note that the offset of
1218 virtual_incoming_args_rtx includes the preallocated stack args space.
1219 It would be no problem to clobber that, but it's on the wrong side
1220 of the old save area.
1222 What used to happen is that, since we did not know for sure
1223 whether setjmp() was invoked until after RTL generation, we
1224 would use reg notes to store the "optimized" size and fix things
1225 up later. These days we know this information before we ever
1226 start building RTL so the reg notes are unnecessary. */
1227 if (cfun->calls_setjmp)
1229 rtx dynamic_offset
1230 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1231 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1233 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1234 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1236 /* The above dynamic offset cannot be computed statically at this
1237 point, but it will be possible to do so after RTL expansion is
1238 done. Record how many times we will need to add it. */
1239 if (flag_stack_usage)
1240 current_function_dynamic_alloc_count++;
1242 known_align_valid = false;
1244 #endif /* SETJMP_VIA_SAVE_AREA */
1246 /* Round the size to a multiple of the required stack alignment.
1247 Since the stack if presumed to be rounded before this allocation,
1248 this will maintain the required alignment.
1250 If the stack grows downward, we could save an insn by subtracting
1251 SIZE from the stack pointer and then aligning the stack pointer.
1252 The problem with this is that the stack pointer may be unaligned
1253 between the execution of the subtraction and alignment insns and
1254 some machines do not allow this. Even on those that do, some
1255 signal handlers malfunction if a signal should occur between those
1256 insns. Since this is an extremely rare event, we have no reliable
1257 way of knowing which systems have this problem. So we avoid even
1258 momentarily mis-aligning the stack. */
1259 if (!known_align_valid || known_align % PREFERRED_STACK_BOUNDARY != 0)
1261 size = round_push (size);
1263 if (flag_stack_usage)
1265 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1266 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1270 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1271 if (target == 0 || !REG_P (target)
1272 || REGNO (target) < FIRST_PSEUDO_REGISTER
1273 || GET_MODE (target) != Pmode)
1274 target = gen_reg_rtx (Pmode);
1276 mark_reg_pointer (target, known_align);
1278 /* The size is supposed to be fully adjusted at this point so record it
1279 if stack usage info is requested. */
1280 if (flag_stack_usage)
1282 current_function_dynamic_stack_size += stack_usage_size;
1284 /* ??? This is gross but the only safe stance in the absence
1285 of stack usage oriented flow analysis. */
1286 if (!cannot_accumulate)
1287 current_function_has_unbounded_dynamic_stack_size = 1;
1290 final_label = NULL_RTX;
1291 final_target = NULL_RTX;
1293 /* If we are splitting the stack, we need to ask the backend whether
1294 there is enough room on the current stack. If there isn't, or if
1295 the backend doesn't know how to tell is, then we need to call a
1296 function to allocate memory in some other way. This memory will
1297 be released when we release the current stack segment. The
1298 effect is that stack allocation becomes less efficient, but at
1299 least it doesn't cause a stack overflow. */
1300 if (flag_split_stack)
1302 rtx available_label, space, func;
1304 available_label = NULL_RTX;
1306 #ifdef HAVE_split_stack_space_check
1307 if (HAVE_split_stack_space_check)
1309 available_label = gen_label_rtx ();
1311 /* This instruction will branch to AVAILABLE_LABEL if there
1312 are SIZE bytes available on the stack. */
1313 emit_insn (gen_split_stack_space_check (size, available_label));
1315 #endif
1317 func = init_one_libfunc ("__morestack_allocate_stack_space");
1319 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1320 1, size, Pmode);
1322 if (available_label == NULL_RTX)
1323 return space;
1325 final_target = gen_reg_rtx (Pmode);
1326 mark_reg_pointer (final_target, known_align);
1328 emit_move_insn (final_target, space);
1330 final_label = gen_label_rtx ();
1331 emit_jump (final_label);
1333 emit_label (available_label);
1336 do_pending_stack_adjust ();
1338 /* We ought to be called always on the toplevel and stack ought to be aligned
1339 properly. */
1340 gcc_assert (!(stack_pointer_delta
1341 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1343 /* If needed, check that we have the required amount of stack. Take into
1344 account what has already been checked. */
1345 if (STACK_CHECK_MOVING_SP)
1347 else if (flag_stack_check == GENERIC_STACK_CHECK)
1348 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1349 size);
1350 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1351 probe_stack_range (STACK_CHECK_PROTECT, size);
1353 /* Perform the required allocation from the stack. Some systems do
1354 this differently than simply incrementing/decrementing from the
1355 stack pointer, such as acquiring the space by calling malloc(). */
1356 #ifdef HAVE_allocate_stack
1357 if (HAVE_allocate_stack)
1359 enum machine_mode mode = STACK_SIZE_MODE;
1360 insn_operand_predicate_fn pred;
1362 /* We don't have to check against the predicate for operand 0 since
1363 TARGET is known to be a pseudo of the proper mode, which must
1364 be valid for the operand. For operand 1, convert to the
1365 proper mode and validate. */
1366 if (mode == VOIDmode)
1367 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1369 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1370 if (pred && ! ((*pred) (size, mode)))
1371 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1373 emit_insn (gen_allocate_stack (target, size));
1375 else
1376 #endif
1378 #ifndef STACK_GROWS_DOWNWARD
1379 emit_move_insn (target, virtual_stack_dynamic_rtx);
1380 #endif
1382 /* Check stack bounds if necessary. */
1383 if (crtl->limit_stack)
1385 rtx available;
1386 rtx space_available = gen_label_rtx ();
1387 #ifdef STACK_GROWS_DOWNWARD
1388 available = expand_binop (Pmode, sub_optab,
1389 stack_pointer_rtx, stack_limit_rtx,
1390 NULL_RTX, 1, OPTAB_WIDEN);
1391 #else
1392 available = expand_binop (Pmode, sub_optab,
1393 stack_limit_rtx, stack_pointer_rtx,
1394 NULL_RTX, 1, OPTAB_WIDEN);
1395 #endif
1396 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1397 space_available);
1398 #ifdef HAVE_trap
1399 if (HAVE_trap)
1400 emit_insn (gen_trap ());
1401 else
1402 #endif
1403 error ("stack limits not supported on this target");
1404 emit_barrier ();
1405 emit_label (space_available);
1408 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1409 anti_adjust_stack_and_probe (size, false);
1410 else
1411 anti_adjust_stack (size);
1413 #ifdef STACK_GROWS_DOWNWARD
1414 emit_move_insn (target, virtual_stack_dynamic_rtx);
1415 #endif
1418 if (MUST_ALIGN)
1420 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1421 but we know it can't. So add ourselves and then do
1422 TRUNC_DIV_EXPR. */
1423 target = expand_binop (Pmode, add_optab, target,
1424 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1425 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1426 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1427 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1428 NULL_RTX, 1);
1429 target = expand_mult (Pmode, target,
1430 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1431 NULL_RTX, 1);
1434 /* Record the new stack level for nonlocal gotos. */
1435 if (cfun->nonlocal_goto_save_area != 0)
1436 update_nonlocal_goto_save_area ();
1438 /* Finish up the split stack handling. */
1439 if (final_label != NULL_RTX)
1441 gcc_assert (flag_split_stack);
1442 emit_move_insn (final_target, target);
1443 emit_label (final_label);
1444 target = final_target;
1447 return target;
1450 /* A front end may want to override GCC's stack checking by providing a
1451 run-time routine to call to check the stack, so provide a mechanism for
1452 calling that routine. */
1454 static GTY(()) rtx stack_check_libfunc;
1456 void
1457 set_stack_check_libfunc (const char *libfunc_name)
1459 gcc_assert (stack_check_libfunc == NULL_RTX);
1460 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1463 /* Emit one stack probe at ADDRESS, an address within the stack. */
1465 void
1466 emit_stack_probe (rtx address)
1468 rtx memref = gen_rtx_MEM (word_mode, address);
1470 MEM_VOLATILE_P (memref) = 1;
1472 /* See if we have an insn to probe the stack. */
1473 #ifdef HAVE_probe_stack
1474 if (HAVE_probe_stack)
1475 emit_insn (gen_probe_stack (memref));
1476 else
1477 #endif
1478 emit_move_insn (memref, const0_rtx);
1481 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1482 FIRST is a constant and size is a Pmode RTX. These are offsets from
1483 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1484 or subtract them from the stack pointer. */
1486 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1488 #ifdef STACK_GROWS_DOWNWARD
1489 #define STACK_GROW_OP MINUS
1490 #define STACK_GROW_OPTAB sub_optab
1491 #define STACK_GROW_OFF(off) -(off)
1492 #else
1493 #define STACK_GROW_OP PLUS
1494 #define STACK_GROW_OPTAB add_optab
1495 #define STACK_GROW_OFF(off) (off)
1496 #endif
1498 void
1499 probe_stack_range (HOST_WIDE_INT first, rtx size)
1501 /* First ensure SIZE is Pmode. */
1502 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1503 size = convert_to_mode (Pmode, size, 1);
1505 /* Next see if we have a function to check the stack. */
1506 if (stack_check_libfunc)
1508 rtx addr = memory_address (Pmode,
1509 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1510 stack_pointer_rtx,
1511 plus_constant (size, first)));
1512 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1513 Pmode);
1516 /* Next see if we have an insn to check the stack. */
1517 #ifdef HAVE_check_stack
1518 else if (HAVE_check_stack)
1520 rtx addr = memory_address (Pmode,
1521 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1522 stack_pointer_rtx,
1523 plus_constant (size, first)));
1524 insn_operand_predicate_fn pred
1525 = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1526 if (pred && !((*pred) (addr, Pmode)))
1527 addr = copy_to_mode_reg (Pmode, addr);
1529 emit_insn (gen_check_stack (addr));
1531 #endif
1533 /* Otherwise we have to generate explicit probes. If we have a constant
1534 small number of them to generate, that's the easy case. */
1535 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1537 HOST_WIDE_INT isize = INTVAL (size), i;
1538 rtx addr;
1540 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1541 it exceeds SIZE. If only one probe is needed, this will not
1542 generate any code. Then probe at FIRST + SIZE. */
1543 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1545 addr = memory_address (Pmode,
1546 plus_constant (stack_pointer_rtx,
1547 STACK_GROW_OFF (first + i)));
1548 emit_stack_probe (addr);
1551 addr = memory_address (Pmode,
1552 plus_constant (stack_pointer_rtx,
1553 STACK_GROW_OFF (first + isize)));
1554 emit_stack_probe (addr);
1557 /* In the variable case, do the same as above, but in a loop. Note that we
1558 must be extra careful with variables wrapping around because we might be
1559 at the very top (or the very bottom) of the address space and we have to
1560 be able to handle this case properly; in particular, we use an equality
1561 test for the loop condition. */
1562 else
1564 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1565 rtx loop_lab = gen_label_rtx ();
1566 rtx end_lab = gen_label_rtx ();
1569 /* Step 1: round SIZE to the previous multiple of the interval. */
1571 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1572 rounded_size
1573 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1574 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1577 /* Step 2: compute initial and final value of the loop counter. */
1579 /* TEST_ADDR = SP + FIRST. */
1580 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1581 stack_pointer_rtx,
1582 GEN_INT (first)), NULL_RTX);
1584 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1585 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1586 test_addr,
1587 rounded_size_op), NULL_RTX);
1590 /* Step 3: the loop
1592 while (TEST_ADDR != LAST_ADDR)
1594 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1595 probe at TEST_ADDR
1598 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1599 until it is equal to ROUNDED_SIZE. */
1601 emit_label (loop_lab);
1603 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1604 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1605 end_lab);
1607 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1608 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1609 GEN_INT (PROBE_INTERVAL), test_addr,
1610 1, OPTAB_WIDEN);
1612 gcc_assert (temp == test_addr);
1614 /* Probe at TEST_ADDR. */
1615 emit_stack_probe (test_addr);
1617 emit_jump (loop_lab);
1619 emit_label (end_lab);
1622 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1623 that SIZE is equal to ROUNDED_SIZE. */
1625 /* TEMP = SIZE - ROUNDED_SIZE. */
1626 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1627 if (temp != const0_rtx)
1629 rtx addr;
1631 if (GET_CODE (temp) == CONST_INT)
1633 /* Use [base + disp} addressing mode if supported. */
1634 HOST_WIDE_INT offset = INTVAL (temp);
1635 addr = memory_address (Pmode,
1636 plus_constant (last_addr,
1637 STACK_GROW_OFF (offset)));
1639 else
1641 /* Manual CSE if the difference is not known at compile-time. */
1642 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1643 addr = memory_address (Pmode,
1644 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1645 last_addr, temp));
1648 emit_stack_probe (addr);
1653 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1654 while probing it. This pushes when SIZE is positive. SIZE need not
1655 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1656 by plus SIZE at the end. */
1658 void
1659 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1661 /* We skip the probe for the first interval + a small dope of 4 words and
1662 probe that many bytes past the specified size to maintain a protection
1663 area at the botton of the stack. */
1664 const int dope = 4 * UNITS_PER_WORD;
1666 /* First ensure SIZE is Pmode. */
1667 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1668 size = convert_to_mode (Pmode, size, 1);
1670 /* If we have a constant small number of probes to generate, that's the
1671 easy case. */
1672 if (GET_CODE (size) == CONST_INT && INTVAL (size) < 7 * PROBE_INTERVAL)
1674 HOST_WIDE_INT isize = INTVAL (size), i;
1675 bool first_probe = true;
1677 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1678 values of N from 1 until it exceeds SIZE. If only one probe is
1679 needed, this will not generate any code. Then adjust and probe
1680 to PROBE_INTERVAL + SIZE. */
1681 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1683 if (first_probe)
1685 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1686 first_probe = false;
1688 else
1689 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1690 emit_stack_probe (stack_pointer_rtx);
1693 if (first_probe)
1694 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1695 else
1696 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1697 emit_stack_probe (stack_pointer_rtx);
1700 /* In the variable case, do the same as above, but in a loop. Note that we
1701 must be extra careful with variables wrapping around because we might be
1702 at the very top (or the very bottom) of the address space and we have to
1703 be able to handle this case properly; in particular, we use an equality
1704 test for the loop condition. */
1705 else
1707 rtx rounded_size, rounded_size_op, last_addr, temp;
1708 rtx loop_lab = gen_label_rtx ();
1709 rtx end_lab = gen_label_rtx ();
1712 /* Step 1: round SIZE to the previous multiple of the interval. */
1714 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1715 rounded_size
1716 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1717 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1720 /* Step 2: compute initial and final value of the loop counter. */
1722 /* SP = SP_0 + PROBE_INTERVAL. */
1723 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1725 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1726 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1727 stack_pointer_rtx,
1728 rounded_size_op), NULL_RTX);
1731 /* Step 3: the loop
1733 while (SP != LAST_ADDR)
1735 SP = SP + PROBE_INTERVAL
1736 probe at SP
1739 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1740 values of N from 1 until it is equal to ROUNDED_SIZE. */
1742 emit_label (loop_lab);
1744 /* Jump to END_LAB if SP == LAST_ADDR. */
1745 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1746 Pmode, 1, end_lab);
1748 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1749 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1750 emit_stack_probe (stack_pointer_rtx);
1752 emit_jump (loop_lab);
1754 emit_label (end_lab);
1757 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1758 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1760 /* TEMP = SIZE - ROUNDED_SIZE. */
1761 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1762 if (temp != const0_rtx)
1764 /* Manual CSE if the difference is not known at compile-time. */
1765 if (GET_CODE (temp) != CONST_INT)
1766 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1767 anti_adjust_stack (temp);
1768 emit_stack_probe (stack_pointer_rtx);
1772 /* Adjust back and account for the additional first interval. */
1773 if (adjust_back)
1774 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1775 else
1776 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1779 /* Return an rtx representing the register or memory location
1780 in which a scalar value of data type VALTYPE
1781 was returned by a function call to function FUNC.
1782 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1783 function is known, otherwise 0.
1784 OUTGOING is 1 if on a machine with register windows this function
1785 should return the register in which the function will put its result
1786 and 0 otherwise. */
1789 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1790 int outgoing ATTRIBUTE_UNUSED)
1792 rtx val;
1794 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1796 if (REG_P (val)
1797 && GET_MODE (val) == BLKmode)
1799 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1800 enum machine_mode tmpmode;
1802 /* int_size_in_bytes can return -1. We don't need a check here
1803 since the value of bytes will then be large enough that no
1804 mode will match anyway. */
1806 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1807 tmpmode != VOIDmode;
1808 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1810 /* Have we found a large enough mode? */
1811 if (GET_MODE_SIZE (tmpmode) >= bytes)
1812 break;
1815 /* No suitable mode found. */
1816 gcc_assert (tmpmode != VOIDmode);
1818 PUT_MODE (val, tmpmode);
1820 return val;
1823 /* Return an rtx representing the register or memory location
1824 in which a scalar value of mode MODE was returned by a library call. */
1827 hard_libcall_value (enum machine_mode mode, rtx fun)
1829 return targetm.calls.libcall_value (mode, fun);
1832 /* Look up the tree code for a given rtx code
1833 to provide the arithmetic operation for REAL_ARITHMETIC.
1834 The function returns an int because the caller may not know
1835 what `enum tree_code' means. */
1838 rtx_to_tree_code (enum rtx_code code)
1840 enum tree_code tcode;
1842 switch (code)
1844 case PLUS:
1845 tcode = PLUS_EXPR;
1846 break;
1847 case MINUS:
1848 tcode = MINUS_EXPR;
1849 break;
1850 case MULT:
1851 tcode = MULT_EXPR;
1852 break;
1853 case DIV:
1854 tcode = RDIV_EXPR;
1855 break;
1856 case SMIN:
1857 tcode = MIN_EXPR;
1858 break;
1859 case SMAX:
1860 tcode = MAX_EXPR;
1861 break;
1862 default:
1863 tcode = LAST_AND_UNUSED_TREE_CODE;
1864 break;
1866 return ((int) tcode);
1869 #include "gt-explow.h"