* dwarf2out.c (is_subrange_type): Renamed from is_ada_subrange_type().
[official-gcc.git] / gcc / dwarf2out.c
blob51c0f1c4297eaa0358285962e5de7ab68118062a
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
69 #ifdef DWARF2_DEBUGGING_INFO
70 static void dwarf2out_source_line (unsigned int, const char *);
71 #endif
73 /* DWARF2 Abbreviation Glossary:
74 CFA = Canonical Frame Address
75 a fixed address on the stack which identifies a call frame.
76 We define it to be the value of SP just before the call insn.
77 The CFA register and offset, which may change during the course
78 of the function, are used to calculate its value at runtime.
79 CFI = Call Frame Instruction
80 an instruction for the DWARF2 abstract machine
81 CIE = Common Information Entry
82 information describing information common to one or more FDEs
83 DIE = Debugging Information Entry
84 FDE = Frame Description Entry
85 information describing the stack call frame, in particular,
86 how to restore registers
88 DW_CFA_... = DWARF2 CFA call frame instruction
89 DW_TAG_... = DWARF2 DIE tag */
91 /* Decide whether we want to emit frame unwind information for the current
92 translation unit. */
94 int
95 dwarf2out_do_frame (void)
97 return (write_symbols == DWARF2_DEBUG
98 || write_symbols == VMS_AND_DWARF2_DEBUG
99 #ifdef DWARF2_FRAME_INFO
100 || DWARF2_FRAME_INFO
101 #endif
102 #ifdef DWARF2_UNWIND_INFO
103 || flag_unwind_tables
104 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
105 #endif
109 /* The size of the target's pointer type. */
110 #ifndef PTR_SIZE
111 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
112 #endif
114 /* Various versions of targetm.eh_frame_section. Note these must appear
115 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
117 /* Version of targetm.eh_frame_section for systems with named sections. */
118 void
119 named_section_eh_frame_section (void)
121 #ifdef EH_FRAME_SECTION_NAME
122 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
123 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
124 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
125 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
126 int flags;
128 flags = (! flag_pic
129 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
130 && (fde_encoding & 0x70) != DW_EH_PE_aligned
131 && (per_encoding & 0x70) != DW_EH_PE_absptr
132 && (per_encoding & 0x70) != DW_EH_PE_aligned
133 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
134 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
135 ? 0 : SECTION_WRITE;
136 named_section_flags (EH_FRAME_SECTION_NAME, flags);
137 #else
138 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
139 #endif
140 #endif
143 /* Version of targetm.eh_frame_section for systems using collect2. */
144 void
145 collect2_eh_frame_section (void)
147 tree label = get_file_function_name ('F');
149 data_section ();
150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
151 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
152 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
155 /* Default version of targetm.eh_frame_section. */
156 void
157 default_eh_frame_section (void)
159 #ifdef EH_FRAME_SECTION_NAME
160 named_section_eh_frame_section ();
161 #else
162 collect2_eh_frame_section ();
163 #endif
166 /* Array of RTXes referenced by the debugging information, which therefore
167 must be kept around forever. */
168 static GTY(()) varray_type used_rtx_varray;
170 /* A pointer to the base of a list of incomplete types which might be
171 completed at some later time. incomplete_types_list needs to be a VARRAY
172 because we want to tell the garbage collector about it. */
173 static GTY(()) varray_type incomplete_types;
175 /* A pointer to the base of a table of references to declaration
176 scopes. This table is a display which tracks the nesting
177 of declaration scopes at the current scope and containing
178 scopes. This table is used to find the proper place to
179 define type declaration DIE's. */
180 static GTY(()) varray_type decl_scope_table;
182 /* How to start an assembler comment. */
183 #ifndef ASM_COMMENT_START
184 #define ASM_COMMENT_START ";#"
185 #endif
187 typedef struct dw_cfi_struct *dw_cfi_ref;
188 typedef struct dw_fde_struct *dw_fde_ref;
189 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
191 /* Call frames are described using a sequence of Call Frame
192 Information instructions. The register number, offset
193 and address fields are provided as possible operands;
194 their use is selected by the opcode field. */
196 enum dw_cfi_oprnd_type {
197 dw_cfi_oprnd_unused,
198 dw_cfi_oprnd_reg_num,
199 dw_cfi_oprnd_offset,
200 dw_cfi_oprnd_addr,
201 dw_cfi_oprnd_loc
204 typedef union dw_cfi_oprnd_struct GTY(())
206 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
207 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
208 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
209 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
211 dw_cfi_oprnd;
213 typedef struct dw_cfi_struct GTY(())
215 dw_cfi_ref dw_cfi_next;
216 enum dwarf_call_frame_info dw_cfi_opc;
217 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
218 dw_cfi_oprnd1;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd2;
222 dw_cfi_node;
224 /* This is how we define the location of the CFA. We use to handle it
225 as REG + OFFSET all the time, but now it can be more complex.
226 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
227 Instead of passing around REG and OFFSET, we pass a copy
228 of this structure. */
229 typedef struct cfa_loc GTY(())
231 unsigned long reg;
232 HOST_WIDE_INT offset;
233 HOST_WIDE_INT base_offset;
234 int indirect; /* 1 if CFA is accessed via a dereference. */
235 } dw_cfa_location;
237 /* All call frame descriptions (FDE's) in the GCC generated DWARF
238 refer to a single Common Information Entry (CIE), defined at
239 the beginning of the .debug_frame section. This use of a single
240 CIE obviates the need to keep track of multiple CIE's
241 in the DWARF generation routines below. */
243 typedef struct dw_fde_struct GTY(())
245 const char *dw_fde_begin;
246 const char *dw_fde_current_label;
247 const char *dw_fde_end;
248 dw_cfi_ref dw_fde_cfi;
249 unsigned funcdef_number;
250 unsigned all_throwers_are_sibcalls : 1;
251 unsigned nothrow : 1;
252 unsigned uses_eh_lsda : 1;
254 dw_fde_node;
256 /* Maximum size (in bytes) of an artificially generated label. */
257 #define MAX_ARTIFICIAL_LABEL_BYTES 30
259 /* The size of addresses as they appear in the Dwarf 2 data.
260 Some architectures use word addresses to refer to code locations,
261 but Dwarf 2 info always uses byte addresses. On such machines,
262 Dwarf 2 addresses need to be larger than the architecture's
263 pointers. */
264 #ifndef DWARF2_ADDR_SIZE
265 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
266 #endif
268 /* The size in bytes of a DWARF field indicating an offset or length
269 relative to a debug info section, specified to be 4 bytes in the
270 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
271 as PTR_SIZE. */
273 #ifndef DWARF_OFFSET_SIZE
274 #define DWARF_OFFSET_SIZE 4
275 #endif
277 /* According to the (draft) DWARF 3 specification, the initial length
278 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
279 bytes are 0xffffffff, followed by the length stored in the next 8
280 bytes.
282 However, the SGI/MIPS ABI uses an initial length which is equal to
283 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
285 #ifndef DWARF_INITIAL_LENGTH_SIZE
286 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
287 #endif
289 #define DWARF_VERSION 2
291 /* Round SIZE up to the nearest BOUNDARY. */
292 #define DWARF_ROUND(SIZE,BOUNDARY) \
293 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
295 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
296 #ifndef DWARF_CIE_DATA_ALIGNMENT
297 #ifdef STACK_GROWS_DOWNWARD
298 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
299 #else
300 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
301 #endif
302 #endif
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated;
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use;
314 /* Size (in elements) of increments by which we may expand the
315 fde_table. */
316 #define FDE_TABLE_INCREMENT 256
318 /* A list of call frame insns for the CIE. */
319 static GTY(()) dw_cfi_ref cie_cfi_head;
321 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323 attribute that accelerates the lookup of the FDE associated
324 with the subprogram. This variable holds the table index of the FDE
325 associated with the current function (body) definition. */
326 static unsigned current_funcdef_fde;
327 #endif
329 struct indirect_string_node GTY(())
331 const char *str;
332 unsigned int refcount;
333 unsigned int form;
334 char *label;
337 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
339 static GTY(()) int dw2_string_counter;
340 static GTY(()) unsigned long dwarf2out_cfi_label_num;
342 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
344 /* Forward declarations for functions defined in this file. */
346 static char *stripattributes (const char *);
347 static const char *dwarf_cfi_name (unsigned);
348 static dw_cfi_ref new_cfi (void);
349 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
350 static void add_fde_cfi (const char *, dw_cfi_ref);
351 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
352 static void lookup_cfa (dw_cfa_location *);
353 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
354 static void initial_return_save (rtx);
355 static HOST_WIDE_INT stack_adjust_offset (rtx);
356 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
357 static void output_call_frame_info (int);
358 static void dwarf2out_stack_adjust (rtx);
359 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
360 static void flush_queued_reg_saves (void);
361 static bool clobbers_queued_reg_save (rtx);
362 static void dwarf2out_frame_debug_expr (rtx, const char *);
364 /* Support for complex CFA locations. */
365 static void output_cfa_loc (dw_cfi_ref);
366 static void get_cfa_from_loc_descr (dw_cfa_location *,
367 struct dw_loc_descr_struct *);
368 static struct dw_loc_descr_struct *build_cfa_loc
369 (dw_cfa_location *);
370 static void def_cfa_1 (const char *, dw_cfa_location *);
372 /* How to start an assembler comment. */
373 #ifndef ASM_COMMENT_START
374 #define ASM_COMMENT_START ";#"
375 #endif
377 /* Data and reference forms for relocatable data. */
378 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
379 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
381 #ifndef DEBUG_FRAME_SECTION
382 #define DEBUG_FRAME_SECTION ".debug_frame"
383 #endif
385 #ifndef FUNC_BEGIN_LABEL
386 #define FUNC_BEGIN_LABEL "LFB"
387 #endif
389 #ifndef FUNC_END_LABEL
390 #define FUNC_END_LABEL "LFE"
391 #endif
393 #define FRAME_BEGIN_LABEL "Lframe"
394 #define CIE_AFTER_SIZE_LABEL "LSCIE"
395 #define CIE_END_LABEL "LECIE"
396 #define FDE_LABEL "LSFDE"
397 #define FDE_AFTER_SIZE_LABEL "LASFDE"
398 #define FDE_END_LABEL "LEFDE"
399 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
400 #define LINE_NUMBER_END_LABEL "LELT"
401 #define LN_PROLOG_AS_LABEL "LASLTP"
402 #define LN_PROLOG_END_LABEL "LELTP"
403 #define DIE_LABEL_PREFIX "DW"
405 /* The DWARF 2 CFA column which tracks the return address. Normally this
406 is the column for PC, or the first column after all of the hard
407 registers. */
408 #ifndef DWARF_FRAME_RETURN_COLUMN
409 #ifdef PC_REGNUM
410 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
411 #else
412 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
413 #endif
414 #endif
416 /* The mapping from gcc register number to DWARF 2 CFA column number. By
417 default, we just provide columns for all registers. */
418 #ifndef DWARF_FRAME_REGNUM
419 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
420 #endif
422 /* The offset from the incoming value of %sp to the top of the stack frame
423 for the current function. */
424 #ifndef INCOMING_FRAME_SP_OFFSET
425 #define INCOMING_FRAME_SP_OFFSET 0
426 #endif
428 /* Hook used by __throw. */
431 expand_builtin_dwarf_sp_column (void)
433 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
436 /* Return a pointer to a copy of the section string name S with all
437 attributes stripped off, and an asterisk prepended (for assemble_name). */
439 static inline char *
440 stripattributes (const char *s)
442 char *stripped = xmalloc (strlen (s) + 2);
443 char *p = stripped;
445 *p++ = '*';
447 while (*s && *s != ',')
448 *p++ = *s++;
450 *p = '\0';
451 return stripped;
454 /* Generate code to initialize the register size table. */
456 void
457 expand_builtin_init_dwarf_reg_sizes (tree address)
459 int i;
460 enum machine_mode mode = TYPE_MODE (char_type_node);
461 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
462 rtx mem = gen_rtx_MEM (BLKmode, addr);
463 bool wrote_return_column = false;
465 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
466 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
468 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
469 enum machine_mode save_mode = reg_raw_mode[i];
470 HOST_WIDE_INT size;
472 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
473 save_mode = choose_hard_reg_mode (i, 1, true);
474 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
476 if (save_mode == VOIDmode)
477 continue;
478 wrote_return_column = true;
480 size = GET_MODE_SIZE (save_mode);
481 if (offset < 0)
482 continue;
484 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
487 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
488 if (! wrote_return_column)
489 abort ();
490 i = DWARF_ALT_FRAME_RETURN_COLUMN;
491 wrote_return_column = false;
492 #else
493 i = DWARF_FRAME_RETURN_COLUMN;
494 #endif
496 if (! wrote_return_column)
498 enum machine_mode save_mode = Pmode;
499 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
500 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
501 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
505 /* Convert a DWARF call frame info. operation to its string name */
507 static const char *
508 dwarf_cfi_name (unsigned int cfi_opc)
510 switch (cfi_opc)
512 case DW_CFA_advance_loc:
513 return "DW_CFA_advance_loc";
514 case DW_CFA_offset:
515 return "DW_CFA_offset";
516 case DW_CFA_restore:
517 return "DW_CFA_restore";
518 case DW_CFA_nop:
519 return "DW_CFA_nop";
520 case DW_CFA_set_loc:
521 return "DW_CFA_set_loc";
522 case DW_CFA_advance_loc1:
523 return "DW_CFA_advance_loc1";
524 case DW_CFA_advance_loc2:
525 return "DW_CFA_advance_loc2";
526 case DW_CFA_advance_loc4:
527 return "DW_CFA_advance_loc4";
528 case DW_CFA_offset_extended:
529 return "DW_CFA_offset_extended";
530 case DW_CFA_restore_extended:
531 return "DW_CFA_restore_extended";
532 case DW_CFA_undefined:
533 return "DW_CFA_undefined";
534 case DW_CFA_same_value:
535 return "DW_CFA_same_value";
536 case DW_CFA_register:
537 return "DW_CFA_register";
538 case DW_CFA_remember_state:
539 return "DW_CFA_remember_state";
540 case DW_CFA_restore_state:
541 return "DW_CFA_restore_state";
542 case DW_CFA_def_cfa:
543 return "DW_CFA_def_cfa";
544 case DW_CFA_def_cfa_register:
545 return "DW_CFA_def_cfa_register";
546 case DW_CFA_def_cfa_offset:
547 return "DW_CFA_def_cfa_offset";
549 /* DWARF 3 */
550 case DW_CFA_def_cfa_expression:
551 return "DW_CFA_def_cfa_expression";
552 case DW_CFA_expression:
553 return "DW_CFA_expression";
554 case DW_CFA_offset_extended_sf:
555 return "DW_CFA_offset_extended_sf";
556 case DW_CFA_def_cfa_sf:
557 return "DW_CFA_def_cfa_sf";
558 case DW_CFA_def_cfa_offset_sf:
559 return "DW_CFA_def_cfa_offset_sf";
561 /* SGI/MIPS specific */
562 case DW_CFA_MIPS_advance_loc8:
563 return "DW_CFA_MIPS_advance_loc8";
565 /* GNU extensions */
566 case DW_CFA_GNU_window_save:
567 return "DW_CFA_GNU_window_save";
568 case DW_CFA_GNU_args_size:
569 return "DW_CFA_GNU_args_size";
570 case DW_CFA_GNU_negative_offset_extended:
571 return "DW_CFA_GNU_negative_offset_extended";
573 default:
574 return "DW_CFA_<unknown>";
578 /* Return a pointer to a newly allocated Call Frame Instruction. */
580 static inline dw_cfi_ref
581 new_cfi (void)
583 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
585 cfi->dw_cfi_next = NULL;
586 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
587 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
589 return cfi;
592 /* Add a Call Frame Instruction to list of instructions. */
594 static inline void
595 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
597 dw_cfi_ref *p;
599 /* Find the end of the chain. */
600 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
603 *p = cfi;
606 /* Generate a new label for the CFI info to refer to. */
608 char *
609 dwarf2out_cfi_label (void)
611 static char label[20];
613 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
614 ASM_OUTPUT_LABEL (asm_out_file, label);
615 return label;
618 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
619 or to the CIE if LABEL is NULL. */
621 static void
622 add_fde_cfi (const char *label, dw_cfi_ref cfi)
624 if (label)
626 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
628 if (*label == 0)
629 label = dwarf2out_cfi_label ();
631 if (fde->dw_fde_current_label == NULL
632 || strcmp (label, fde->dw_fde_current_label) != 0)
634 dw_cfi_ref xcfi;
636 fde->dw_fde_current_label = label = xstrdup (label);
638 /* Set the location counter to the new label. */
639 xcfi = new_cfi ();
640 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
645 add_cfi (&fde->dw_fde_cfi, cfi);
648 else
649 add_cfi (&cie_cfi_head, cfi);
652 /* Subroutine of lookup_cfa. */
654 static inline void
655 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
657 switch (cfi->dw_cfi_opc)
659 case DW_CFA_def_cfa_offset:
660 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
661 break;
662 case DW_CFA_def_cfa_register:
663 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
664 break;
665 case DW_CFA_def_cfa:
666 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
668 break;
669 case DW_CFA_def_cfa_expression:
670 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
671 break;
672 default:
673 break;
677 /* Find the previous value for the CFA. */
679 static void
680 lookup_cfa (dw_cfa_location *loc)
682 dw_cfi_ref cfi;
684 loc->reg = (unsigned long) -1;
685 loc->offset = 0;
686 loc->indirect = 0;
687 loc->base_offset = 0;
689 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
690 lookup_cfa_1 (cfi, loc);
692 if (fde_table_in_use)
694 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
695 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
696 lookup_cfa_1 (cfi, loc);
700 /* The current rule for calculating the DWARF2 canonical frame address. */
701 static dw_cfa_location cfa;
703 /* The register used for saving registers to the stack, and its offset
704 from the CFA. */
705 static dw_cfa_location cfa_store;
707 /* The running total of the size of arguments pushed onto the stack. */
708 static HOST_WIDE_INT args_size;
710 /* The last args_size we actually output. */
711 static HOST_WIDE_INT old_args_size;
713 /* Entry point to update the canonical frame address (CFA).
714 LABEL is passed to add_fde_cfi. The value of CFA is now to be
715 calculated from REG+OFFSET. */
717 void
718 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
720 dw_cfa_location loc;
721 loc.indirect = 0;
722 loc.base_offset = 0;
723 loc.reg = reg;
724 loc.offset = offset;
725 def_cfa_1 (label, &loc);
728 /* This routine does the actual work. The CFA is now calculated from
729 the dw_cfa_location structure. */
731 static void
732 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
734 dw_cfi_ref cfi;
735 dw_cfa_location old_cfa, loc;
737 cfa = *loc_p;
738 loc = *loc_p;
740 if (cfa_store.reg == loc.reg && loc.indirect == 0)
741 cfa_store.offset = loc.offset;
743 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
744 lookup_cfa (&old_cfa);
746 /* If nothing changed, no need to issue any call frame instructions. */
747 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
748 && loc.indirect == old_cfa.indirect
749 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
750 return;
752 cfi = new_cfi ();
754 if (loc.reg == old_cfa.reg && !loc.indirect)
756 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
757 indicating the CFA register did not change but the offset
758 did. */
759 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
760 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
763 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
764 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
765 && !loc.indirect)
767 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
768 indicating the CFA register has changed to <register> but the
769 offset has not changed. */
770 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
771 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
773 #endif
775 else if (loc.indirect == 0)
777 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
778 indicating the CFA register has changed to <register> with
779 the specified offset. */
780 cfi->dw_cfi_opc = DW_CFA_def_cfa;
781 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
782 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
784 else
786 /* Construct a DW_CFA_def_cfa_expression instruction to
787 calculate the CFA using a full location expression since no
788 register-offset pair is available. */
789 struct dw_loc_descr_struct *loc_list;
791 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
792 loc_list = build_cfa_loc (&loc);
793 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
796 add_fde_cfi (label, cfi);
799 /* Add the CFI for saving a register. REG is the CFA column number.
800 LABEL is passed to add_fde_cfi.
801 If SREG is -1, the register is saved at OFFSET from the CFA;
802 otherwise it is saved in SREG. */
804 static void
805 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
807 dw_cfi_ref cfi = new_cfi ();
809 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
811 /* The following comparison is correct. -1 is used to indicate that
812 the value isn't a register number. */
813 if (sreg == (unsigned int) -1)
815 if (reg & ~0x3f)
816 /* The register number won't fit in 6 bits, so we have to use
817 the long form. */
818 cfi->dw_cfi_opc = DW_CFA_offset_extended;
819 else
820 cfi->dw_cfi_opc = DW_CFA_offset;
822 #ifdef ENABLE_CHECKING
824 /* If we get an offset that is not a multiple of
825 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
826 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
827 description. */
828 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
830 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
831 abort ();
833 #endif
834 offset /= DWARF_CIE_DATA_ALIGNMENT;
835 if (offset < 0)
836 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
838 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
840 else if (sreg == reg)
841 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
842 return;
843 else
845 cfi->dw_cfi_opc = DW_CFA_register;
846 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
849 add_fde_cfi (label, cfi);
852 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
853 This CFI tells the unwinder that it needs to restore the window registers
854 from the previous frame's window save area.
856 ??? Perhaps we should note in the CIE where windows are saved (instead of
857 assuming 0(cfa)) and what registers are in the window. */
859 void
860 dwarf2out_window_save (const char *label)
862 dw_cfi_ref cfi = new_cfi ();
864 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
865 add_fde_cfi (label, cfi);
868 /* Add a CFI to update the running total of the size of arguments
869 pushed onto the stack. */
871 void
872 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
874 dw_cfi_ref cfi;
876 if (size == old_args_size)
877 return;
879 old_args_size = size;
881 cfi = new_cfi ();
882 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
883 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
884 add_fde_cfi (label, cfi);
887 /* Entry point for saving a register to the stack. REG is the GCC register
888 number. LABEL and OFFSET are passed to reg_save. */
890 void
891 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
893 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
896 /* Entry point for saving the return address in the stack.
897 LABEL and OFFSET are passed to reg_save. */
899 void
900 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
902 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
905 /* Entry point for saving the return address in a register.
906 LABEL and SREG are passed to reg_save. */
908 void
909 dwarf2out_return_reg (const char *label, unsigned int sreg)
911 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
914 /* Record the initial position of the return address. RTL is
915 INCOMING_RETURN_ADDR_RTX. */
917 static void
918 initial_return_save (rtx rtl)
920 unsigned int reg = (unsigned int) -1;
921 HOST_WIDE_INT offset = 0;
923 switch (GET_CODE (rtl))
925 case REG:
926 /* RA is in a register. */
927 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
928 break;
930 case MEM:
931 /* RA is on the stack. */
932 rtl = XEXP (rtl, 0);
933 switch (GET_CODE (rtl))
935 case REG:
936 if (REGNO (rtl) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = 0;
939 break;
941 case PLUS:
942 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
943 abort ();
944 offset = INTVAL (XEXP (rtl, 1));
945 break;
947 case MINUS:
948 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
949 abort ();
950 offset = -INTVAL (XEXP (rtl, 1));
951 break;
953 default:
954 abort ();
957 break;
959 case PLUS:
960 /* The return address is at some offset from any value we can
961 actually load. For instance, on the SPARC it is in %i7+8. Just
962 ignore the offset for now; it doesn't matter for unwinding frames. */
963 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
964 abort ();
965 initial_return_save (XEXP (rtl, 0));
966 return;
968 default:
969 abort ();
972 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
975 /* Given a SET, calculate the amount of stack adjustment it
976 contains. */
978 static HOST_WIDE_INT
979 stack_adjust_offset (rtx pattern)
981 rtx src = SET_SRC (pattern);
982 rtx dest = SET_DEST (pattern);
983 HOST_WIDE_INT offset = 0;
984 enum rtx_code code;
986 if (dest == stack_pointer_rtx)
988 /* (set (reg sp) (plus (reg sp) (const_int))) */
989 code = GET_CODE (src);
990 if (! (code == PLUS || code == MINUS)
991 || XEXP (src, 0) != stack_pointer_rtx
992 || GET_CODE (XEXP (src, 1)) != CONST_INT)
993 return 0;
995 offset = INTVAL (XEXP (src, 1));
996 if (code == PLUS)
997 offset = -offset;
999 else if (GET_CODE (dest) == MEM)
1001 /* (set (mem (pre_dec (reg sp))) (foo)) */
1002 src = XEXP (dest, 0);
1003 code = GET_CODE (src);
1005 switch (code)
1007 case PRE_MODIFY:
1008 case POST_MODIFY:
1009 if (XEXP (src, 0) == stack_pointer_rtx)
1011 rtx val = XEXP (XEXP (src, 1), 1);
1012 /* We handle only adjustments by constant amount. */
1013 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1014 GET_CODE (val) != CONST_INT)
1015 abort ();
1016 offset = -INTVAL (val);
1017 break;
1019 return 0;
1021 case PRE_DEC:
1022 case POST_DEC:
1023 if (XEXP (src, 0) == stack_pointer_rtx)
1025 offset = GET_MODE_SIZE (GET_MODE (dest));
1026 break;
1028 return 0;
1030 case PRE_INC:
1031 case POST_INC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1034 offset = -GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1037 return 0;
1039 default:
1040 return 0;
1043 else
1044 return 0;
1046 return offset;
1049 /* Check INSN to see if it looks like a push or a stack adjustment, and
1050 make a note of it if it does. EH uses this information to find out how
1051 much extra space it needs to pop off the stack. */
1053 static void
1054 dwarf2out_stack_adjust (rtx insn)
1056 HOST_WIDE_INT offset;
1057 const char *label;
1058 int i;
1060 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1061 with this function. Proper support would require all frame-related
1062 insns to be marked, and to be able to handle saving state around
1063 epilogues textually in the middle of the function. */
1064 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1065 return;
1067 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1069 /* Extract the size of the args from the CALL rtx itself. */
1070 insn = PATTERN (insn);
1071 if (GET_CODE (insn) == PARALLEL)
1072 insn = XVECEXP (insn, 0, 0);
1073 if (GET_CODE (insn) == SET)
1074 insn = SET_SRC (insn);
1075 if (GET_CODE (insn) != CALL)
1076 abort ();
1078 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1079 return;
1082 /* If only calls can throw, and we have a frame pointer,
1083 save up adjustments until we see the CALL_INSN. */
1084 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1085 return;
1087 if (GET_CODE (insn) == BARRIER)
1089 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1090 the compiler will have already emitted a stack adjustment, but
1091 doesn't bother for calls to noreturn functions. */
1092 #ifdef STACK_GROWS_DOWNWARD
1093 offset = -args_size;
1094 #else
1095 offset = args_size;
1096 #endif
1098 else if (GET_CODE (PATTERN (insn)) == SET)
1099 offset = stack_adjust_offset (PATTERN (insn));
1100 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1101 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1103 /* There may be stack adjustments inside compound insns. Search
1104 for them. */
1105 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1106 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1107 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1109 else
1110 return;
1112 if (offset == 0)
1113 return;
1115 if (cfa.reg == STACK_POINTER_REGNUM)
1116 cfa.offset += offset;
1118 #ifndef STACK_GROWS_DOWNWARD
1119 offset = -offset;
1120 #endif
1122 args_size += offset;
1123 if (args_size < 0)
1124 args_size = 0;
1126 label = dwarf2out_cfi_label ();
1127 def_cfa_1 (label, &cfa);
1128 dwarf2out_args_size (label, args_size);
1131 #endif
1133 /* We delay emitting a register save until either (a) we reach the end
1134 of the prologue or (b) the register is clobbered. This clusters
1135 register saves so that there are fewer pc advances. */
1137 struct queued_reg_save GTY(())
1139 struct queued_reg_save *next;
1140 rtx reg;
1141 HOST_WIDE_INT cfa_offset;
1144 static GTY(()) struct queued_reg_save *queued_reg_saves;
1146 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1147 static const char *last_reg_save_label;
1149 static void
1150 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1152 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1154 q->next = queued_reg_saves;
1155 q->reg = reg;
1156 q->cfa_offset = offset;
1157 queued_reg_saves = q;
1159 last_reg_save_label = label;
1162 static void
1163 flush_queued_reg_saves (void)
1165 struct queued_reg_save *q, *next;
1167 for (q = queued_reg_saves; q; q = next)
1169 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1170 next = q->next;
1173 queued_reg_saves = NULL;
1174 last_reg_save_label = NULL;
1177 static bool
1178 clobbers_queued_reg_save (rtx insn)
1180 struct queued_reg_save *q;
1182 for (q = queued_reg_saves; q; q = q->next)
1183 if (modified_in_p (q->reg, insn))
1184 return true;
1186 return false;
1190 /* A temporary register holding an integral value used in adjusting SP
1191 or setting up the store_reg. The "offset" field holds the integer
1192 value, not an offset. */
1193 static dw_cfa_location cfa_temp;
1195 /* Record call frame debugging information for an expression EXPR,
1196 which either sets SP or FP (adjusting how we calculate the frame
1197 address) or saves a register to the stack. LABEL indicates the
1198 address of EXPR.
1200 This function encodes a state machine mapping rtxes to actions on
1201 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1202 users need not read the source code.
1204 The High-Level Picture
1206 Changes in the register we use to calculate the CFA: Currently we
1207 assume that if you copy the CFA register into another register, we
1208 should take the other one as the new CFA register; this seems to
1209 work pretty well. If it's wrong for some target, it's simple
1210 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1212 Changes in the register we use for saving registers to the stack:
1213 This is usually SP, but not always. Again, we deduce that if you
1214 copy SP into another register (and SP is not the CFA register),
1215 then the new register is the one we will be using for register
1216 saves. This also seems to work.
1218 Register saves: There's not much guesswork about this one; if
1219 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1220 register save, and the register used to calculate the destination
1221 had better be the one we think we're using for this purpose.
1223 Except: If the register being saved is the CFA register, and the
1224 offset is nonzero, we are saving the CFA, so we assume we have to
1225 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1226 the intent is to save the value of SP from the previous frame.
1228 Invariants / Summaries of Rules
1230 cfa current rule for calculating the CFA. It usually
1231 consists of a register and an offset.
1232 cfa_store register used by prologue code to save things to the stack
1233 cfa_store.offset is the offset from the value of
1234 cfa_store.reg to the actual CFA
1235 cfa_temp register holding an integral value. cfa_temp.offset
1236 stores the value, which will be used to adjust the
1237 stack pointer. cfa_temp is also used like cfa_store,
1238 to track stores to the stack via fp or a temp reg.
1240 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1241 with cfa.reg as the first operand changes the cfa.reg and its
1242 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1243 cfa_temp.offset.
1245 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1246 expression yielding a constant. This sets cfa_temp.reg
1247 and cfa_temp.offset.
1249 Rule 5: Create a new register cfa_store used to save items to the
1250 stack.
1252 Rules 10-14: Save a register to the stack. Define offset as the
1253 difference of the original location and cfa_store's
1254 location (or cfa_temp's location if cfa_temp is used).
1256 The Rules
1258 "{a,b}" indicates a choice of a xor b.
1259 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1261 Rule 1:
1262 (set <reg1> <reg2>:cfa.reg)
1263 effects: cfa.reg = <reg1>
1264 cfa.offset unchanged
1265 cfa_temp.reg = <reg1>
1266 cfa_temp.offset = cfa.offset
1268 Rule 2:
1269 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1270 {<const_int>,<reg>:cfa_temp.reg}))
1271 effects: cfa.reg = sp if fp used
1272 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1273 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1274 if cfa_store.reg==sp
1276 Rule 3:
1277 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1278 effects: cfa.reg = fp
1279 cfa_offset += +/- <const_int>
1281 Rule 4:
1282 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1283 constraints: <reg1> != fp
1284 <reg1> != sp
1285 effects: cfa.reg = <reg1>
1286 cfa_temp.reg = <reg1>
1287 cfa_temp.offset = cfa.offset
1289 Rule 5:
1290 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1291 constraints: <reg1> != fp
1292 <reg1> != sp
1293 effects: cfa_store.reg = <reg1>
1294 cfa_store.offset = cfa.offset - cfa_temp.offset
1296 Rule 6:
1297 (set <reg> <const_int>)
1298 effects: cfa_temp.reg = <reg>
1299 cfa_temp.offset = <const_int>
1301 Rule 7:
1302 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1303 effects: cfa_temp.reg = <reg1>
1304 cfa_temp.offset |= <const_int>
1306 Rule 8:
1307 (set <reg> (high <exp>))
1308 effects: none
1310 Rule 9:
1311 (set <reg> (lo_sum <exp> <const_int>))
1312 effects: cfa_temp.reg = <reg>
1313 cfa_temp.offset = <const_int>
1315 Rule 10:
1316 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1317 effects: cfa_store.offset -= <const_int>
1318 cfa.offset = cfa_store.offset if cfa.reg == sp
1319 cfa.reg = sp
1320 cfa.base_offset = -cfa_store.offset
1322 Rule 11:
1323 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1324 effects: cfa_store.offset += -/+ mode_size(mem)
1325 cfa.offset = cfa_store.offset if cfa.reg == sp
1326 cfa.reg = sp
1327 cfa.base_offset = -cfa_store.offset
1329 Rule 12:
1330 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1332 <reg2>)
1333 effects: cfa.reg = <reg1>
1334 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1336 Rule 13:
1337 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1338 effects: cfa.reg = <reg1>
1339 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1341 Rule 14:
1342 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1343 effects: cfa.reg = <reg1>
1344 cfa.base_offset = -cfa_temp.offset
1345 cfa_temp.offset -= mode_size(mem) */
1347 static void
1348 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1350 rtx src, dest;
1351 HOST_WIDE_INT offset;
1353 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1354 the PARALLEL independently. The first element is always processed if
1355 it is a SET. This is for backward compatibility. Other elements
1356 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1357 flag is set in them. */
1358 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1360 int par_index;
1361 int limit = XVECLEN (expr, 0);
1363 for (par_index = 0; par_index < limit; par_index++)
1364 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1365 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1366 || par_index == 0))
1367 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1369 return;
1372 if (GET_CODE (expr) != SET)
1373 abort ();
1375 src = SET_SRC (expr);
1376 dest = SET_DEST (expr);
1378 switch (GET_CODE (dest))
1380 case REG:
1381 /* Rule 1 */
1382 /* Update the CFA rule wrt SP or FP. Make sure src is
1383 relative to the current CFA register. */
1384 switch (GET_CODE (src))
1386 /* Setting FP from SP. */
1387 case REG:
1388 if (cfa.reg == (unsigned) REGNO (src))
1389 /* OK. */
1391 else
1392 abort ();
1394 /* We used to require that dest be either SP or FP, but the
1395 ARM copies SP to a temporary register, and from there to
1396 FP. So we just rely on the backends to only set
1397 RTX_FRAME_RELATED_P on appropriate insns. */
1398 cfa.reg = REGNO (dest);
1399 cfa_temp.reg = cfa.reg;
1400 cfa_temp.offset = cfa.offset;
1401 break;
1403 case PLUS:
1404 case MINUS:
1405 case LO_SUM:
1406 if (dest == stack_pointer_rtx)
1408 /* Rule 2 */
1409 /* Adjusting SP. */
1410 switch (GET_CODE (XEXP (src, 1)))
1412 case CONST_INT:
1413 offset = INTVAL (XEXP (src, 1));
1414 break;
1415 case REG:
1416 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1417 abort ();
1418 offset = cfa_temp.offset;
1419 break;
1420 default:
1421 abort ();
1424 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1426 /* Restoring SP from FP in the epilogue. */
1427 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1428 abort ();
1429 cfa.reg = STACK_POINTER_REGNUM;
1431 else if (GET_CODE (src) == LO_SUM)
1432 /* Assume we've set the source reg of the LO_SUM from sp. */
1434 else if (XEXP (src, 0) != stack_pointer_rtx)
1435 abort ();
1437 if (GET_CODE (src) != MINUS)
1438 offset = -offset;
1439 if (cfa.reg == STACK_POINTER_REGNUM)
1440 cfa.offset += offset;
1441 if (cfa_store.reg == STACK_POINTER_REGNUM)
1442 cfa_store.offset += offset;
1444 else if (dest == hard_frame_pointer_rtx)
1446 /* Rule 3 */
1447 /* Either setting the FP from an offset of the SP,
1448 or adjusting the FP */
1449 if (! frame_pointer_needed)
1450 abort ();
1452 if (GET_CODE (XEXP (src, 0)) == REG
1453 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1454 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1456 offset = INTVAL (XEXP (src, 1));
1457 if (GET_CODE (src) != MINUS)
1458 offset = -offset;
1459 cfa.offset += offset;
1460 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1462 else
1463 abort ();
1465 else
1467 if (GET_CODE (src) == MINUS)
1468 abort ();
1470 /* Rule 4 */
1471 if (GET_CODE (XEXP (src, 0)) == REG
1472 && REGNO (XEXP (src, 0)) == cfa.reg
1473 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1475 /* Setting a temporary CFA register that will be copied
1476 into the FP later on. */
1477 offset = - INTVAL (XEXP (src, 1));
1478 cfa.offset += offset;
1479 cfa.reg = REGNO (dest);
1480 /* Or used to save regs to the stack. */
1481 cfa_temp.reg = cfa.reg;
1482 cfa_temp.offset = cfa.offset;
1485 /* Rule 5 */
1486 else if (GET_CODE (XEXP (src, 0)) == REG
1487 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1488 && XEXP (src, 1) == stack_pointer_rtx)
1490 /* Setting a scratch register that we will use instead
1491 of SP for saving registers to the stack. */
1492 if (cfa.reg != STACK_POINTER_REGNUM)
1493 abort ();
1494 cfa_store.reg = REGNO (dest);
1495 cfa_store.offset = cfa.offset - cfa_temp.offset;
1498 /* Rule 9 */
1499 else if (GET_CODE (src) == LO_SUM
1500 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1502 cfa_temp.reg = REGNO (dest);
1503 cfa_temp.offset = INTVAL (XEXP (src, 1));
1505 else
1506 abort ();
1508 break;
1510 /* Rule 6 */
1511 case CONST_INT:
1512 cfa_temp.reg = REGNO (dest);
1513 cfa_temp.offset = INTVAL (src);
1514 break;
1516 /* Rule 7 */
1517 case IOR:
1518 if (GET_CODE (XEXP (src, 0)) != REG
1519 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1520 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1521 abort ();
1523 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1524 cfa_temp.reg = REGNO (dest);
1525 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1526 break;
1528 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1529 which will fill in all of the bits. */
1530 /* Rule 8 */
1531 case HIGH:
1532 break;
1534 default:
1535 abort ();
1538 def_cfa_1 (label, &cfa);
1539 break;
1541 case MEM:
1542 if (GET_CODE (src) != REG)
1543 abort ();
1545 /* Saving a register to the stack. Make sure dest is relative to the
1546 CFA register. */
1547 switch (GET_CODE (XEXP (dest, 0)))
1549 /* Rule 10 */
1550 /* With a push. */
1551 case PRE_MODIFY:
1552 /* We can't handle variable size modifications. */
1553 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1554 abort ();
1555 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1557 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1558 || cfa_store.reg != STACK_POINTER_REGNUM)
1559 abort ();
1561 cfa_store.offset += offset;
1562 if (cfa.reg == STACK_POINTER_REGNUM)
1563 cfa.offset = cfa_store.offset;
1565 offset = -cfa_store.offset;
1566 break;
1568 /* Rule 11 */
1569 case PRE_INC:
1570 case PRE_DEC:
1571 offset = GET_MODE_SIZE (GET_MODE (dest));
1572 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1573 offset = -offset;
1575 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1576 || cfa_store.reg != STACK_POINTER_REGNUM)
1577 abort ();
1579 cfa_store.offset += offset;
1580 if (cfa.reg == STACK_POINTER_REGNUM)
1581 cfa.offset = cfa_store.offset;
1583 offset = -cfa_store.offset;
1584 break;
1586 /* Rule 12 */
1587 /* With an offset. */
1588 case PLUS:
1589 case MINUS:
1590 case LO_SUM:
1591 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1592 abort ();
1593 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1594 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1595 offset = -offset;
1597 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1598 offset -= cfa_store.offset;
1599 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1600 offset -= cfa_temp.offset;
1601 else
1602 abort ();
1603 break;
1605 /* Rule 13 */
1606 /* Without an offset. */
1607 case REG:
1608 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1609 offset = -cfa_store.offset;
1610 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1611 offset = -cfa_temp.offset;
1612 else
1613 abort ();
1614 break;
1616 /* Rule 14 */
1617 case POST_INC:
1618 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1619 abort ();
1620 offset = -cfa_temp.offset;
1621 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1622 break;
1624 default:
1625 abort ();
1628 if (REGNO (src) != STACK_POINTER_REGNUM
1629 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1630 && (unsigned) REGNO (src) == cfa.reg)
1632 /* We're storing the current CFA reg into the stack. */
1634 if (cfa.offset == 0)
1636 /* If the source register is exactly the CFA, assume
1637 we're saving SP like any other register; this happens
1638 on the ARM. */
1639 def_cfa_1 (label, &cfa);
1640 queue_reg_save (label, stack_pointer_rtx, offset);
1641 break;
1643 else
1645 /* Otherwise, we'll need to look in the stack to
1646 calculate the CFA. */
1647 rtx x = XEXP (dest, 0);
1649 if (GET_CODE (x) != REG)
1650 x = XEXP (x, 0);
1651 if (GET_CODE (x) != REG)
1652 abort ();
1654 cfa.reg = REGNO (x);
1655 cfa.base_offset = offset;
1656 cfa.indirect = 1;
1657 def_cfa_1 (label, &cfa);
1658 break;
1662 def_cfa_1 (label, &cfa);
1663 queue_reg_save (label, src, offset);
1664 break;
1666 default:
1667 abort ();
1671 /* Record call frame debugging information for INSN, which either
1672 sets SP or FP (adjusting how we calculate the frame address) or saves a
1673 register to the stack. If INSN is NULL_RTX, initialize our state. */
1675 void
1676 dwarf2out_frame_debug (rtx insn)
1678 const char *label;
1679 rtx src;
1681 if (insn == NULL_RTX)
1683 /* Flush any queued register saves. */
1684 flush_queued_reg_saves ();
1686 /* Set up state for generating call frame debug info. */
1687 lookup_cfa (&cfa);
1688 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1689 abort ();
1691 cfa.reg = STACK_POINTER_REGNUM;
1692 cfa_store = cfa;
1693 cfa_temp.reg = -1;
1694 cfa_temp.offset = 0;
1695 return;
1698 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1699 flush_queued_reg_saves ();
1701 if (! RTX_FRAME_RELATED_P (insn))
1703 if (!ACCUMULATE_OUTGOING_ARGS)
1704 dwarf2out_stack_adjust (insn);
1706 return;
1709 label = dwarf2out_cfi_label ();
1710 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1711 if (src)
1712 insn = XEXP (src, 0);
1713 else
1714 insn = PATTERN (insn);
1716 dwarf2out_frame_debug_expr (insn, label);
1719 #endif
1721 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1722 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1723 (enum dwarf_call_frame_info cfi);
1725 static enum dw_cfi_oprnd_type
1726 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1728 switch (cfi)
1730 case DW_CFA_nop:
1731 case DW_CFA_GNU_window_save:
1732 return dw_cfi_oprnd_unused;
1734 case DW_CFA_set_loc:
1735 case DW_CFA_advance_loc1:
1736 case DW_CFA_advance_loc2:
1737 case DW_CFA_advance_loc4:
1738 case DW_CFA_MIPS_advance_loc8:
1739 return dw_cfi_oprnd_addr;
1741 case DW_CFA_offset:
1742 case DW_CFA_offset_extended:
1743 case DW_CFA_def_cfa:
1744 case DW_CFA_offset_extended_sf:
1745 case DW_CFA_def_cfa_sf:
1746 case DW_CFA_restore_extended:
1747 case DW_CFA_undefined:
1748 case DW_CFA_same_value:
1749 case DW_CFA_def_cfa_register:
1750 case DW_CFA_register:
1751 return dw_cfi_oprnd_reg_num;
1753 case DW_CFA_def_cfa_offset:
1754 case DW_CFA_GNU_args_size:
1755 case DW_CFA_def_cfa_offset_sf:
1756 return dw_cfi_oprnd_offset;
1758 case DW_CFA_def_cfa_expression:
1759 case DW_CFA_expression:
1760 return dw_cfi_oprnd_loc;
1762 default:
1763 abort ();
1767 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1768 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1769 (enum dwarf_call_frame_info cfi);
1771 static enum dw_cfi_oprnd_type
1772 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1774 switch (cfi)
1776 case DW_CFA_def_cfa:
1777 case DW_CFA_def_cfa_sf:
1778 case DW_CFA_offset:
1779 case DW_CFA_offset_extended_sf:
1780 case DW_CFA_offset_extended:
1781 return dw_cfi_oprnd_offset;
1783 case DW_CFA_register:
1784 return dw_cfi_oprnd_reg_num;
1786 default:
1787 return dw_cfi_oprnd_unused;
1791 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1793 /* Output a Call Frame Information opcode and its operand(s). */
1795 static void
1796 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1798 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1799 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1800 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1801 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1802 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1803 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1805 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1806 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1807 "DW_CFA_offset, column 0x%lx",
1808 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1809 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1811 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1812 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1813 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1814 "DW_CFA_restore, column 0x%lx",
1815 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1816 else
1818 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1819 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1821 switch (cfi->dw_cfi_opc)
1823 case DW_CFA_set_loc:
1824 if (for_eh)
1825 dw2_asm_output_encoded_addr_rtx (
1826 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1827 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1828 NULL);
1829 else
1830 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1831 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1832 break;
1834 case DW_CFA_advance_loc1:
1835 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1836 fde->dw_fde_current_label, NULL);
1837 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1838 break;
1840 case DW_CFA_advance_loc2:
1841 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1842 fde->dw_fde_current_label, NULL);
1843 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1844 break;
1846 case DW_CFA_advance_loc4:
1847 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1848 fde->dw_fde_current_label, NULL);
1849 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1850 break;
1852 case DW_CFA_MIPS_advance_loc8:
1853 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1854 fde->dw_fde_current_label, NULL);
1855 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1856 break;
1858 case DW_CFA_offset_extended:
1859 case DW_CFA_def_cfa:
1860 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1861 NULL);
1862 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1863 break;
1865 case DW_CFA_offset_extended_sf:
1866 case DW_CFA_def_cfa_sf:
1867 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1868 NULL);
1869 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1870 break;
1872 case DW_CFA_restore_extended:
1873 case DW_CFA_undefined:
1874 case DW_CFA_same_value:
1875 case DW_CFA_def_cfa_register:
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1877 NULL);
1878 break;
1880 case DW_CFA_register:
1881 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1882 NULL);
1883 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1884 NULL);
1885 break;
1887 case DW_CFA_def_cfa_offset:
1888 case DW_CFA_GNU_args_size:
1889 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1890 break;
1892 case DW_CFA_def_cfa_offset_sf:
1893 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1894 break;
1896 case DW_CFA_GNU_window_save:
1897 break;
1899 case DW_CFA_def_cfa_expression:
1900 case DW_CFA_expression:
1901 output_cfa_loc (cfi);
1902 break;
1904 case DW_CFA_GNU_negative_offset_extended:
1905 /* Obsoleted by DW_CFA_offset_extended_sf. */
1906 abort ();
1908 default:
1909 break;
1914 /* Output the call frame information used to used to record information
1915 that relates to calculating the frame pointer, and records the
1916 location of saved registers. */
1918 static void
1919 output_call_frame_info (int for_eh)
1921 unsigned int i;
1922 dw_fde_ref fde;
1923 dw_cfi_ref cfi;
1924 char l1[20], l2[20], section_start_label[20];
1925 bool any_lsda_needed = false;
1926 char augmentation[6];
1927 int augmentation_size;
1928 int fde_encoding = DW_EH_PE_absptr;
1929 int per_encoding = DW_EH_PE_absptr;
1930 int lsda_encoding = DW_EH_PE_absptr;
1932 /* Don't emit a CIE if there won't be any FDEs. */
1933 if (fde_table_in_use == 0)
1934 return;
1936 /* If we don't have any functions we'll want to unwind out of, don't
1937 emit any EH unwind information. Note that if exceptions aren't
1938 enabled, we won't have collected nothrow information, and if we
1939 asked for asynchronous tables, we always want this info. */
1940 if (for_eh)
1942 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1944 for (i = 0; i < fde_table_in_use; i++)
1945 if (fde_table[i].uses_eh_lsda)
1946 any_eh_needed = any_lsda_needed = true;
1947 else if (! fde_table[i].nothrow
1948 && ! fde_table[i].all_throwers_are_sibcalls)
1949 any_eh_needed = true;
1951 if (! any_eh_needed)
1952 return;
1955 /* We're going to be generating comments, so turn on app. */
1956 if (flag_debug_asm)
1957 app_enable ();
1959 if (for_eh)
1960 (*targetm.asm_out.eh_frame_section) ();
1961 else
1962 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1964 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1965 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1967 /* Output the CIE. */
1968 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1969 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1970 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1971 "Length of Common Information Entry");
1972 ASM_OUTPUT_LABEL (asm_out_file, l1);
1974 /* Now that the CIE pointer is PC-relative for EH,
1975 use 0 to identify the CIE. */
1976 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1977 (for_eh ? 0 : DW_CIE_ID),
1978 "CIE Identifier Tag");
1980 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1982 augmentation[0] = 0;
1983 augmentation_size = 0;
1984 if (for_eh)
1986 char *p;
1988 /* Augmentation:
1989 z Indicates that a uleb128 is present to size the
1990 augmentation section.
1991 L Indicates the encoding (and thus presence) of
1992 an LSDA pointer in the FDE augmentation.
1993 R Indicates a non-default pointer encoding for
1994 FDE code pointers.
1995 P Indicates the presence of an encoding + language
1996 personality routine in the CIE augmentation. */
1998 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1999 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2000 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2002 p = augmentation + 1;
2003 if (eh_personality_libfunc)
2005 *p++ = 'P';
2006 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2008 if (any_lsda_needed)
2010 *p++ = 'L';
2011 augmentation_size += 1;
2013 if (fde_encoding != DW_EH_PE_absptr)
2015 *p++ = 'R';
2016 augmentation_size += 1;
2018 if (p > augmentation + 1)
2020 augmentation[0] = 'z';
2021 *p = '\0';
2024 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2025 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2027 int offset = ( 4 /* Length */
2028 + 4 /* CIE Id */
2029 + 1 /* CIE version */
2030 + strlen (augmentation) + 1 /* Augmentation */
2031 + size_of_uleb128 (1) /* Code alignment */
2032 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2033 + 1 /* RA column */
2034 + 1 /* Augmentation size */
2035 + 1 /* Personality encoding */ );
2036 int pad = -offset & (PTR_SIZE - 1);
2038 augmentation_size += pad;
2040 /* Augmentations should be small, so there's scarce need to
2041 iterate for a solution. Die if we exceed one uleb128 byte. */
2042 if (size_of_uleb128 (augmentation_size) != 1)
2043 abort ();
2047 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2048 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2049 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2050 "CIE Data Alignment Factor");
2051 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2053 if (augmentation[0])
2055 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2056 if (eh_personality_libfunc)
2058 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2059 eh_data_format_name (per_encoding));
2060 dw2_asm_output_encoded_addr_rtx (per_encoding,
2061 eh_personality_libfunc, NULL);
2064 if (any_lsda_needed)
2065 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2066 eh_data_format_name (lsda_encoding));
2068 if (fde_encoding != DW_EH_PE_absptr)
2069 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2070 eh_data_format_name (fde_encoding));
2073 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2074 output_cfi (cfi, NULL, for_eh);
2076 /* Pad the CIE out to an address sized boundary. */
2077 ASM_OUTPUT_ALIGN (asm_out_file,
2078 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2079 ASM_OUTPUT_LABEL (asm_out_file, l2);
2081 /* Loop through all of the FDE's. */
2082 for (i = 0; i < fde_table_in_use; i++)
2084 fde = &fde_table[i];
2086 /* Don't emit EH unwind info for leaf functions that don't need it. */
2087 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2088 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2089 && !fde->uses_eh_lsda)
2090 continue;
2092 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2093 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2094 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2095 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2096 "FDE Length");
2097 ASM_OUTPUT_LABEL (asm_out_file, l1);
2099 if (for_eh)
2100 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2101 else
2102 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2103 "FDE CIE offset");
2105 if (for_eh)
2107 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2108 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2109 "FDE initial location");
2110 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2111 fde->dw_fde_end, fde->dw_fde_begin,
2112 "FDE address range");
2114 else
2116 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2117 "FDE initial location");
2118 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2119 fde->dw_fde_end, fde->dw_fde_begin,
2120 "FDE address range");
2123 if (augmentation[0])
2125 if (any_lsda_needed)
2127 int size = size_of_encoded_value (lsda_encoding);
2129 if (lsda_encoding == DW_EH_PE_aligned)
2131 int offset = ( 4 /* Length */
2132 + 4 /* CIE offset */
2133 + 2 * size_of_encoded_value (fde_encoding)
2134 + 1 /* Augmentation size */ );
2135 int pad = -offset & (PTR_SIZE - 1);
2137 size += pad;
2138 if (size_of_uleb128 (size) != 1)
2139 abort ();
2142 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2144 if (fde->uses_eh_lsda)
2146 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2147 fde->funcdef_number);
2148 dw2_asm_output_encoded_addr_rtx (
2149 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2150 "Language Specific Data Area");
2152 else
2154 if (lsda_encoding == DW_EH_PE_aligned)
2155 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2156 dw2_asm_output_data
2157 (size_of_encoded_value (lsda_encoding), 0,
2158 "Language Specific Data Area (none)");
2161 else
2162 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2165 /* Loop through the Call Frame Instructions associated with
2166 this FDE. */
2167 fde->dw_fde_current_label = fde->dw_fde_begin;
2168 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2169 output_cfi (cfi, fde, for_eh);
2171 /* Pad the FDE out to an address sized boundary. */
2172 ASM_OUTPUT_ALIGN (asm_out_file,
2173 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2174 ASM_OUTPUT_LABEL (asm_out_file, l2);
2177 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2178 dw2_asm_output_data (4, 0, "End of Table");
2179 #ifdef MIPS_DEBUGGING_INFO
2180 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2181 get a value of 0. Putting .align 0 after the label fixes it. */
2182 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2183 #endif
2185 /* Turn off app to make assembly quicker. */
2186 if (flag_debug_asm)
2187 app_disable ();
2190 /* Output a marker (i.e. a label) for the beginning of a function, before
2191 the prologue. */
2193 void
2194 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2195 const char *file ATTRIBUTE_UNUSED)
2197 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2198 dw_fde_ref fde;
2200 current_function_func_begin_label = 0;
2202 #ifdef IA64_UNWIND_INFO
2203 /* ??? current_function_func_begin_label is also used by except.c
2204 for call-site information. We must emit this label if it might
2205 be used. */
2206 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2207 && ! dwarf2out_do_frame ())
2208 return;
2209 #else
2210 if (! dwarf2out_do_frame ())
2211 return;
2212 #endif
2214 function_section (current_function_decl);
2215 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2216 current_function_funcdef_no);
2217 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2218 current_function_funcdef_no);
2219 current_function_func_begin_label = get_identifier (label);
2221 #ifdef IA64_UNWIND_INFO
2222 /* We can elide the fde allocation if we're not emitting debug info. */
2223 if (! dwarf2out_do_frame ())
2224 return;
2225 #endif
2227 /* Expand the fde table if necessary. */
2228 if (fde_table_in_use == fde_table_allocated)
2230 fde_table_allocated += FDE_TABLE_INCREMENT;
2231 fde_table = ggc_realloc (fde_table,
2232 fde_table_allocated * sizeof (dw_fde_node));
2233 memset (fde_table + fde_table_in_use, 0,
2234 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2237 /* Record the FDE associated with this function. */
2238 current_funcdef_fde = fde_table_in_use;
2240 /* Add the new FDE at the end of the fde_table. */
2241 fde = &fde_table[fde_table_in_use++];
2242 fde->dw_fde_begin = xstrdup (label);
2243 fde->dw_fde_current_label = NULL;
2244 fde->dw_fde_end = NULL;
2245 fde->dw_fde_cfi = NULL;
2246 fde->funcdef_number = current_function_funcdef_no;
2247 fde->nothrow = current_function_nothrow;
2248 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2249 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2251 args_size = old_args_size = 0;
2253 /* We only want to output line number information for the genuine dwarf2
2254 prologue case, not the eh frame case. */
2255 #ifdef DWARF2_DEBUGGING_INFO
2256 if (file)
2257 dwarf2out_source_line (line, file);
2258 #endif
2261 /* Output a marker (i.e. a label) for the absolute end of the generated code
2262 for a function definition. This gets called *after* the epilogue code has
2263 been generated. */
2265 void
2266 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2267 const char *file ATTRIBUTE_UNUSED)
2269 dw_fde_ref fde;
2270 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2272 /* Output a label to mark the endpoint of the code generated for this
2273 function. */
2274 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2275 current_function_funcdef_no);
2276 ASM_OUTPUT_LABEL (asm_out_file, label);
2277 fde = &fde_table[fde_table_in_use - 1];
2278 fde->dw_fde_end = xstrdup (label);
2281 void
2282 dwarf2out_frame_init (void)
2284 /* Allocate the initial hunk of the fde_table. */
2285 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2286 fde_table_allocated = FDE_TABLE_INCREMENT;
2287 fde_table_in_use = 0;
2289 /* Generate the CFA instructions common to all FDE's. Do it now for the
2290 sake of lookup_cfa. */
2292 #ifdef DWARF2_UNWIND_INFO
2293 /* On entry, the Canonical Frame Address is at SP. */
2294 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2295 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2296 #endif
2299 void
2300 dwarf2out_frame_finish (void)
2302 /* Output call frame information. */
2303 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2304 output_call_frame_info (0);
2306 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2307 output_call_frame_info (1);
2309 #endif
2311 /* And now, the subset of the debugging information support code necessary
2312 for emitting location expressions. */
2314 /* We need some way to distinguish DW_OP_addr with a direct symbol
2315 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2316 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2319 typedef struct dw_val_struct *dw_val_ref;
2320 typedef struct die_struct *dw_die_ref;
2321 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2322 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2324 /* Each DIE may have a series of attribute/value pairs. Values
2325 can take on several forms. The forms that are used in this
2326 implementation are listed below. */
2328 enum dw_val_class
2330 dw_val_class_addr,
2331 dw_val_class_offset,
2332 dw_val_class_loc,
2333 dw_val_class_loc_list,
2334 dw_val_class_range_list,
2335 dw_val_class_const,
2336 dw_val_class_unsigned_const,
2337 dw_val_class_long_long,
2338 dw_val_class_float,
2339 dw_val_class_flag,
2340 dw_val_class_die_ref,
2341 dw_val_class_fde_ref,
2342 dw_val_class_lbl_id,
2343 dw_val_class_lbl_offset,
2344 dw_val_class_str
2347 /* Describe a double word constant value. */
2348 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2350 typedef struct dw_long_long_struct GTY(())
2352 unsigned long hi;
2353 unsigned long low;
2355 dw_long_long_const;
2357 /* Describe a floating point constant value. */
2359 typedef struct dw_fp_struct GTY(())
2361 long * GTY((length ("%h.length"))) array;
2362 unsigned length;
2364 dw_float_const;
2366 /* The dw_val_node describes an attribute's value, as it is
2367 represented internally. */
2369 typedef struct dw_val_struct GTY(())
2371 enum dw_val_class val_class;
2372 union dw_val_struct_union
2374 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2375 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2376 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2377 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2378 HOST_WIDE_INT GTY ((default (""))) val_int;
2379 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2380 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2381 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2382 struct dw_val_die_union
2384 dw_die_ref die;
2385 int external;
2386 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2387 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2388 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2389 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2390 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2392 GTY ((desc ("%1.val_class"))) v;
2394 dw_val_node;
2396 /* Locations in memory are described using a sequence of stack machine
2397 operations. */
2399 typedef struct dw_loc_descr_struct GTY(())
2401 dw_loc_descr_ref dw_loc_next;
2402 enum dwarf_location_atom dw_loc_opc;
2403 dw_val_node dw_loc_oprnd1;
2404 dw_val_node dw_loc_oprnd2;
2405 int dw_loc_addr;
2407 dw_loc_descr_node;
2409 /* Location lists are ranges + location descriptions for that range,
2410 so you can track variables that are in different places over
2411 their entire life. */
2412 typedef struct dw_loc_list_struct GTY(())
2414 dw_loc_list_ref dw_loc_next;
2415 const char *begin; /* Label for begin address of range */
2416 const char *end; /* Label for end address of range */
2417 char *ll_symbol; /* Label for beginning of location list.
2418 Only on head of list */
2419 const char *section; /* Section this loclist is relative to */
2420 dw_loc_descr_ref expr;
2421 } dw_loc_list_node;
2423 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2425 static const char *dwarf_stack_op_name (unsigned);
2426 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2427 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2428 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2429 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2430 static unsigned long size_of_locs (dw_loc_descr_ref);
2431 static void output_loc_operands (dw_loc_descr_ref);
2432 static void output_loc_sequence (dw_loc_descr_ref);
2434 /* Convert a DWARF stack opcode into its string name. */
2436 static const char *
2437 dwarf_stack_op_name (unsigned int op)
2439 switch (op)
2441 case DW_OP_addr:
2442 case INTERNAL_DW_OP_tls_addr:
2443 return "DW_OP_addr";
2444 case DW_OP_deref:
2445 return "DW_OP_deref";
2446 case DW_OP_const1u:
2447 return "DW_OP_const1u";
2448 case DW_OP_const1s:
2449 return "DW_OP_const1s";
2450 case DW_OP_const2u:
2451 return "DW_OP_const2u";
2452 case DW_OP_const2s:
2453 return "DW_OP_const2s";
2454 case DW_OP_const4u:
2455 return "DW_OP_const4u";
2456 case DW_OP_const4s:
2457 return "DW_OP_const4s";
2458 case DW_OP_const8u:
2459 return "DW_OP_const8u";
2460 case DW_OP_const8s:
2461 return "DW_OP_const8s";
2462 case DW_OP_constu:
2463 return "DW_OP_constu";
2464 case DW_OP_consts:
2465 return "DW_OP_consts";
2466 case DW_OP_dup:
2467 return "DW_OP_dup";
2468 case DW_OP_drop:
2469 return "DW_OP_drop";
2470 case DW_OP_over:
2471 return "DW_OP_over";
2472 case DW_OP_pick:
2473 return "DW_OP_pick";
2474 case DW_OP_swap:
2475 return "DW_OP_swap";
2476 case DW_OP_rot:
2477 return "DW_OP_rot";
2478 case DW_OP_xderef:
2479 return "DW_OP_xderef";
2480 case DW_OP_abs:
2481 return "DW_OP_abs";
2482 case DW_OP_and:
2483 return "DW_OP_and";
2484 case DW_OP_div:
2485 return "DW_OP_div";
2486 case DW_OP_minus:
2487 return "DW_OP_minus";
2488 case DW_OP_mod:
2489 return "DW_OP_mod";
2490 case DW_OP_mul:
2491 return "DW_OP_mul";
2492 case DW_OP_neg:
2493 return "DW_OP_neg";
2494 case DW_OP_not:
2495 return "DW_OP_not";
2496 case DW_OP_or:
2497 return "DW_OP_or";
2498 case DW_OP_plus:
2499 return "DW_OP_plus";
2500 case DW_OP_plus_uconst:
2501 return "DW_OP_plus_uconst";
2502 case DW_OP_shl:
2503 return "DW_OP_shl";
2504 case DW_OP_shr:
2505 return "DW_OP_shr";
2506 case DW_OP_shra:
2507 return "DW_OP_shra";
2508 case DW_OP_xor:
2509 return "DW_OP_xor";
2510 case DW_OP_bra:
2511 return "DW_OP_bra";
2512 case DW_OP_eq:
2513 return "DW_OP_eq";
2514 case DW_OP_ge:
2515 return "DW_OP_ge";
2516 case DW_OP_gt:
2517 return "DW_OP_gt";
2518 case DW_OP_le:
2519 return "DW_OP_le";
2520 case DW_OP_lt:
2521 return "DW_OP_lt";
2522 case DW_OP_ne:
2523 return "DW_OP_ne";
2524 case DW_OP_skip:
2525 return "DW_OP_skip";
2526 case DW_OP_lit0:
2527 return "DW_OP_lit0";
2528 case DW_OP_lit1:
2529 return "DW_OP_lit1";
2530 case DW_OP_lit2:
2531 return "DW_OP_lit2";
2532 case DW_OP_lit3:
2533 return "DW_OP_lit3";
2534 case DW_OP_lit4:
2535 return "DW_OP_lit4";
2536 case DW_OP_lit5:
2537 return "DW_OP_lit5";
2538 case DW_OP_lit6:
2539 return "DW_OP_lit6";
2540 case DW_OP_lit7:
2541 return "DW_OP_lit7";
2542 case DW_OP_lit8:
2543 return "DW_OP_lit8";
2544 case DW_OP_lit9:
2545 return "DW_OP_lit9";
2546 case DW_OP_lit10:
2547 return "DW_OP_lit10";
2548 case DW_OP_lit11:
2549 return "DW_OP_lit11";
2550 case DW_OP_lit12:
2551 return "DW_OP_lit12";
2552 case DW_OP_lit13:
2553 return "DW_OP_lit13";
2554 case DW_OP_lit14:
2555 return "DW_OP_lit14";
2556 case DW_OP_lit15:
2557 return "DW_OP_lit15";
2558 case DW_OP_lit16:
2559 return "DW_OP_lit16";
2560 case DW_OP_lit17:
2561 return "DW_OP_lit17";
2562 case DW_OP_lit18:
2563 return "DW_OP_lit18";
2564 case DW_OP_lit19:
2565 return "DW_OP_lit19";
2566 case DW_OP_lit20:
2567 return "DW_OP_lit20";
2568 case DW_OP_lit21:
2569 return "DW_OP_lit21";
2570 case DW_OP_lit22:
2571 return "DW_OP_lit22";
2572 case DW_OP_lit23:
2573 return "DW_OP_lit23";
2574 case DW_OP_lit24:
2575 return "DW_OP_lit24";
2576 case DW_OP_lit25:
2577 return "DW_OP_lit25";
2578 case DW_OP_lit26:
2579 return "DW_OP_lit26";
2580 case DW_OP_lit27:
2581 return "DW_OP_lit27";
2582 case DW_OP_lit28:
2583 return "DW_OP_lit28";
2584 case DW_OP_lit29:
2585 return "DW_OP_lit29";
2586 case DW_OP_lit30:
2587 return "DW_OP_lit30";
2588 case DW_OP_lit31:
2589 return "DW_OP_lit31";
2590 case DW_OP_reg0:
2591 return "DW_OP_reg0";
2592 case DW_OP_reg1:
2593 return "DW_OP_reg1";
2594 case DW_OP_reg2:
2595 return "DW_OP_reg2";
2596 case DW_OP_reg3:
2597 return "DW_OP_reg3";
2598 case DW_OP_reg4:
2599 return "DW_OP_reg4";
2600 case DW_OP_reg5:
2601 return "DW_OP_reg5";
2602 case DW_OP_reg6:
2603 return "DW_OP_reg6";
2604 case DW_OP_reg7:
2605 return "DW_OP_reg7";
2606 case DW_OP_reg8:
2607 return "DW_OP_reg8";
2608 case DW_OP_reg9:
2609 return "DW_OP_reg9";
2610 case DW_OP_reg10:
2611 return "DW_OP_reg10";
2612 case DW_OP_reg11:
2613 return "DW_OP_reg11";
2614 case DW_OP_reg12:
2615 return "DW_OP_reg12";
2616 case DW_OP_reg13:
2617 return "DW_OP_reg13";
2618 case DW_OP_reg14:
2619 return "DW_OP_reg14";
2620 case DW_OP_reg15:
2621 return "DW_OP_reg15";
2622 case DW_OP_reg16:
2623 return "DW_OP_reg16";
2624 case DW_OP_reg17:
2625 return "DW_OP_reg17";
2626 case DW_OP_reg18:
2627 return "DW_OP_reg18";
2628 case DW_OP_reg19:
2629 return "DW_OP_reg19";
2630 case DW_OP_reg20:
2631 return "DW_OP_reg20";
2632 case DW_OP_reg21:
2633 return "DW_OP_reg21";
2634 case DW_OP_reg22:
2635 return "DW_OP_reg22";
2636 case DW_OP_reg23:
2637 return "DW_OP_reg23";
2638 case DW_OP_reg24:
2639 return "DW_OP_reg24";
2640 case DW_OP_reg25:
2641 return "DW_OP_reg25";
2642 case DW_OP_reg26:
2643 return "DW_OP_reg26";
2644 case DW_OP_reg27:
2645 return "DW_OP_reg27";
2646 case DW_OP_reg28:
2647 return "DW_OP_reg28";
2648 case DW_OP_reg29:
2649 return "DW_OP_reg29";
2650 case DW_OP_reg30:
2651 return "DW_OP_reg30";
2652 case DW_OP_reg31:
2653 return "DW_OP_reg31";
2654 case DW_OP_breg0:
2655 return "DW_OP_breg0";
2656 case DW_OP_breg1:
2657 return "DW_OP_breg1";
2658 case DW_OP_breg2:
2659 return "DW_OP_breg2";
2660 case DW_OP_breg3:
2661 return "DW_OP_breg3";
2662 case DW_OP_breg4:
2663 return "DW_OP_breg4";
2664 case DW_OP_breg5:
2665 return "DW_OP_breg5";
2666 case DW_OP_breg6:
2667 return "DW_OP_breg6";
2668 case DW_OP_breg7:
2669 return "DW_OP_breg7";
2670 case DW_OP_breg8:
2671 return "DW_OP_breg8";
2672 case DW_OP_breg9:
2673 return "DW_OP_breg9";
2674 case DW_OP_breg10:
2675 return "DW_OP_breg10";
2676 case DW_OP_breg11:
2677 return "DW_OP_breg11";
2678 case DW_OP_breg12:
2679 return "DW_OP_breg12";
2680 case DW_OP_breg13:
2681 return "DW_OP_breg13";
2682 case DW_OP_breg14:
2683 return "DW_OP_breg14";
2684 case DW_OP_breg15:
2685 return "DW_OP_breg15";
2686 case DW_OP_breg16:
2687 return "DW_OP_breg16";
2688 case DW_OP_breg17:
2689 return "DW_OP_breg17";
2690 case DW_OP_breg18:
2691 return "DW_OP_breg18";
2692 case DW_OP_breg19:
2693 return "DW_OP_breg19";
2694 case DW_OP_breg20:
2695 return "DW_OP_breg20";
2696 case DW_OP_breg21:
2697 return "DW_OP_breg21";
2698 case DW_OP_breg22:
2699 return "DW_OP_breg22";
2700 case DW_OP_breg23:
2701 return "DW_OP_breg23";
2702 case DW_OP_breg24:
2703 return "DW_OP_breg24";
2704 case DW_OP_breg25:
2705 return "DW_OP_breg25";
2706 case DW_OP_breg26:
2707 return "DW_OP_breg26";
2708 case DW_OP_breg27:
2709 return "DW_OP_breg27";
2710 case DW_OP_breg28:
2711 return "DW_OP_breg28";
2712 case DW_OP_breg29:
2713 return "DW_OP_breg29";
2714 case DW_OP_breg30:
2715 return "DW_OP_breg30";
2716 case DW_OP_breg31:
2717 return "DW_OP_breg31";
2718 case DW_OP_regx:
2719 return "DW_OP_regx";
2720 case DW_OP_fbreg:
2721 return "DW_OP_fbreg";
2722 case DW_OP_bregx:
2723 return "DW_OP_bregx";
2724 case DW_OP_piece:
2725 return "DW_OP_piece";
2726 case DW_OP_deref_size:
2727 return "DW_OP_deref_size";
2728 case DW_OP_xderef_size:
2729 return "DW_OP_xderef_size";
2730 case DW_OP_nop:
2731 return "DW_OP_nop";
2732 case DW_OP_push_object_address:
2733 return "DW_OP_push_object_address";
2734 case DW_OP_call2:
2735 return "DW_OP_call2";
2736 case DW_OP_call4:
2737 return "DW_OP_call4";
2738 case DW_OP_call_ref:
2739 return "DW_OP_call_ref";
2740 case DW_OP_GNU_push_tls_address:
2741 return "DW_OP_GNU_push_tls_address";
2742 default:
2743 return "OP_<unknown>";
2747 /* Return a pointer to a newly allocated location description. Location
2748 descriptions are simple expression terms that can be strung
2749 together to form more complicated location (address) descriptions. */
2751 static inline dw_loc_descr_ref
2752 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2753 unsigned HOST_WIDE_INT oprnd2)
2755 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2757 descr->dw_loc_opc = op;
2758 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2759 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2760 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2761 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2763 return descr;
2767 /* Add a location description term to a location description expression. */
2769 static inline void
2770 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2772 dw_loc_descr_ref *d;
2774 /* Find the end of the chain. */
2775 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2778 *d = descr;
2781 /* Return the size of a location descriptor. */
2783 static unsigned long
2784 size_of_loc_descr (dw_loc_descr_ref loc)
2786 unsigned long size = 1;
2788 switch (loc->dw_loc_opc)
2790 case DW_OP_addr:
2791 case INTERNAL_DW_OP_tls_addr:
2792 size += DWARF2_ADDR_SIZE;
2793 break;
2794 case DW_OP_const1u:
2795 case DW_OP_const1s:
2796 size += 1;
2797 break;
2798 case DW_OP_const2u:
2799 case DW_OP_const2s:
2800 size += 2;
2801 break;
2802 case DW_OP_const4u:
2803 case DW_OP_const4s:
2804 size += 4;
2805 break;
2806 case DW_OP_const8u:
2807 case DW_OP_const8s:
2808 size += 8;
2809 break;
2810 case DW_OP_constu:
2811 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2812 break;
2813 case DW_OP_consts:
2814 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2815 break;
2816 case DW_OP_pick:
2817 size += 1;
2818 break;
2819 case DW_OP_plus_uconst:
2820 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2821 break;
2822 case DW_OP_skip:
2823 case DW_OP_bra:
2824 size += 2;
2825 break;
2826 case DW_OP_breg0:
2827 case DW_OP_breg1:
2828 case DW_OP_breg2:
2829 case DW_OP_breg3:
2830 case DW_OP_breg4:
2831 case DW_OP_breg5:
2832 case DW_OP_breg6:
2833 case DW_OP_breg7:
2834 case DW_OP_breg8:
2835 case DW_OP_breg9:
2836 case DW_OP_breg10:
2837 case DW_OP_breg11:
2838 case DW_OP_breg12:
2839 case DW_OP_breg13:
2840 case DW_OP_breg14:
2841 case DW_OP_breg15:
2842 case DW_OP_breg16:
2843 case DW_OP_breg17:
2844 case DW_OP_breg18:
2845 case DW_OP_breg19:
2846 case DW_OP_breg20:
2847 case DW_OP_breg21:
2848 case DW_OP_breg22:
2849 case DW_OP_breg23:
2850 case DW_OP_breg24:
2851 case DW_OP_breg25:
2852 case DW_OP_breg26:
2853 case DW_OP_breg27:
2854 case DW_OP_breg28:
2855 case DW_OP_breg29:
2856 case DW_OP_breg30:
2857 case DW_OP_breg31:
2858 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2859 break;
2860 case DW_OP_regx:
2861 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2862 break;
2863 case DW_OP_fbreg:
2864 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2865 break;
2866 case DW_OP_bregx:
2867 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2868 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2869 break;
2870 case DW_OP_piece:
2871 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2872 break;
2873 case DW_OP_deref_size:
2874 case DW_OP_xderef_size:
2875 size += 1;
2876 break;
2877 case DW_OP_call2:
2878 size += 2;
2879 break;
2880 case DW_OP_call4:
2881 size += 4;
2882 break;
2883 case DW_OP_call_ref:
2884 size += DWARF2_ADDR_SIZE;
2885 break;
2886 default:
2887 break;
2890 return size;
2893 /* Return the size of a series of location descriptors. */
2895 static unsigned long
2896 size_of_locs (dw_loc_descr_ref loc)
2898 unsigned long size;
2900 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2902 loc->dw_loc_addr = size;
2903 size += size_of_loc_descr (loc);
2906 return size;
2909 /* Output location description stack opcode's operands (if any). */
2911 static void
2912 output_loc_operands (dw_loc_descr_ref loc)
2914 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2915 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2917 switch (loc->dw_loc_opc)
2919 #ifdef DWARF2_DEBUGGING_INFO
2920 case DW_OP_addr:
2921 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2922 break;
2923 case DW_OP_const2u:
2924 case DW_OP_const2s:
2925 dw2_asm_output_data (2, val1->v.val_int, NULL);
2926 break;
2927 case DW_OP_const4u:
2928 case DW_OP_const4s:
2929 dw2_asm_output_data (4, val1->v.val_int, NULL);
2930 break;
2931 case DW_OP_const8u:
2932 case DW_OP_const8s:
2933 if (HOST_BITS_PER_LONG < 64)
2934 abort ();
2935 dw2_asm_output_data (8, val1->v.val_int, NULL);
2936 break;
2937 case DW_OP_skip:
2938 case DW_OP_bra:
2940 int offset;
2942 if (val1->val_class == dw_val_class_loc)
2943 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2944 else
2945 abort ();
2947 dw2_asm_output_data (2, offset, NULL);
2949 break;
2950 #else
2951 case DW_OP_addr:
2952 case DW_OP_const2u:
2953 case DW_OP_const2s:
2954 case DW_OP_const4u:
2955 case DW_OP_const4s:
2956 case DW_OP_const8u:
2957 case DW_OP_const8s:
2958 case DW_OP_skip:
2959 case DW_OP_bra:
2960 /* We currently don't make any attempt to make sure these are
2961 aligned properly like we do for the main unwind info, so
2962 don't support emitting things larger than a byte if we're
2963 only doing unwinding. */
2964 abort ();
2965 #endif
2966 case DW_OP_const1u:
2967 case DW_OP_const1s:
2968 dw2_asm_output_data (1, val1->v.val_int, NULL);
2969 break;
2970 case DW_OP_constu:
2971 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2972 break;
2973 case DW_OP_consts:
2974 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2975 break;
2976 case DW_OP_pick:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_plus_uconst:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_breg0:
2983 case DW_OP_breg1:
2984 case DW_OP_breg2:
2985 case DW_OP_breg3:
2986 case DW_OP_breg4:
2987 case DW_OP_breg5:
2988 case DW_OP_breg6:
2989 case DW_OP_breg7:
2990 case DW_OP_breg8:
2991 case DW_OP_breg9:
2992 case DW_OP_breg10:
2993 case DW_OP_breg11:
2994 case DW_OP_breg12:
2995 case DW_OP_breg13:
2996 case DW_OP_breg14:
2997 case DW_OP_breg15:
2998 case DW_OP_breg16:
2999 case DW_OP_breg17:
3000 case DW_OP_breg18:
3001 case DW_OP_breg19:
3002 case DW_OP_breg20:
3003 case DW_OP_breg21:
3004 case DW_OP_breg22:
3005 case DW_OP_breg23:
3006 case DW_OP_breg24:
3007 case DW_OP_breg25:
3008 case DW_OP_breg26:
3009 case DW_OP_breg27:
3010 case DW_OP_breg28:
3011 case DW_OP_breg29:
3012 case DW_OP_breg30:
3013 case DW_OP_breg31:
3014 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3015 break;
3016 case DW_OP_regx:
3017 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3018 break;
3019 case DW_OP_fbreg:
3020 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3021 break;
3022 case DW_OP_bregx:
3023 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3024 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3025 break;
3026 case DW_OP_piece:
3027 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3028 break;
3029 case DW_OP_deref_size:
3030 case DW_OP_xderef_size:
3031 dw2_asm_output_data (1, val1->v.val_int, NULL);
3032 break;
3034 case INTERNAL_DW_OP_tls_addr:
3035 #ifdef ASM_OUTPUT_DWARF_DTPREL
3036 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3037 val1->v.val_addr);
3038 fputc ('\n', asm_out_file);
3039 #else
3040 abort ();
3041 #endif
3042 break;
3044 default:
3045 /* Other codes have no operands. */
3046 break;
3050 /* Output a sequence of location operations. */
3052 static void
3053 output_loc_sequence (dw_loc_descr_ref loc)
3055 for (; loc != NULL; loc = loc->dw_loc_next)
3057 /* Output the opcode. */
3058 dw2_asm_output_data (1, loc->dw_loc_opc,
3059 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3061 /* Output the operand(s) (if any). */
3062 output_loc_operands (loc);
3066 /* This routine will generate the correct assembly data for a location
3067 description based on a cfi entry with a complex address. */
3069 static void
3070 output_cfa_loc (dw_cfi_ref cfi)
3072 dw_loc_descr_ref loc;
3073 unsigned long size;
3075 /* Output the size of the block. */
3076 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3077 size = size_of_locs (loc);
3078 dw2_asm_output_data_uleb128 (size, NULL);
3080 /* Now output the operations themselves. */
3081 output_loc_sequence (loc);
3084 /* This function builds a dwarf location descriptor sequence from
3085 a dw_cfa_location. */
3087 static struct dw_loc_descr_struct *
3088 build_cfa_loc (dw_cfa_location *cfa)
3090 struct dw_loc_descr_struct *head, *tmp;
3092 if (cfa->indirect == 0)
3093 abort ();
3095 if (cfa->base_offset)
3097 if (cfa->reg <= 31)
3098 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3099 else
3100 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3102 else if (cfa->reg <= 31)
3103 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3104 else
3105 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3107 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3108 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3109 add_loc_descr (&head, tmp);
3110 if (cfa->offset != 0)
3112 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3113 add_loc_descr (&head, tmp);
3116 return head;
3119 /* This function fills in aa dw_cfa_location structure from a dwarf location
3120 descriptor sequence. */
3122 static void
3123 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3125 struct dw_loc_descr_struct *ptr;
3126 cfa->offset = 0;
3127 cfa->base_offset = 0;
3128 cfa->indirect = 0;
3129 cfa->reg = -1;
3131 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3133 enum dwarf_location_atom op = ptr->dw_loc_opc;
3135 switch (op)
3137 case DW_OP_reg0:
3138 case DW_OP_reg1:
3139 case DW_OP_reg2:
3140 case DW_OP_reg3:
3141 case DW_OP_reg4:
3142 case DW_OP_reg5:
3143 case DW_OP_reg6:
3144 case DW_OP_reg7:
3145 case DW_OP_reg8:
3146 case DW_OP_reg9:
3147 case DW_OP_reg10:
3148 case DW_OP_reg11:
3149 case DW_OP_reg12:
3150 case DW_OP_reg13:
3151 case DW_OP_reg14:
3152 case DW_OP_reg15:
3153 case DW_OP_reg16:
3154 case DW_OP_reg17:
3155 case DW_OP_reg18:
3156 case DW_OP_reg19:
3157 case DW_OP_reg20:
3158 case DW_OP_reg21:
3159 case DW_OP_reg22:
3160 case DW_OP_reg23:
3161 case DW_OP_reg24:
3162 case DW_OP_reg25:
3163 case DW_OP_reg26:
3164 case DW_OP_reg27:
3165 case DW_OP_reg28:
3166 case DW_OP_reg29:
3167 case DW_OP_reg30:
3168 case DW_OP_reg31:
3169 cfa->reg = op - DW_OP_reg0;
3170 break;
3171 case DW_OP_regx:
3172 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3173 break;
3174 case DW_OP_breg0:
3175 case DW_OP_breg1:
3176 case DW_OP_breg2:
3177 case DW_OP_breg3:
3178 case DW_OP_breg4:
3179 case DW_OP_breg5:
3180 case DW_OP_breg6:
3181 case DW_OP_breg7:
3182 case DW_OP_breg8:
3183 case DW_OP_breg9:
3184 case DW_OP_breg10:
3185 case DW_OP_breg11:
3186 case DW_OP_breg12:
3187 case DW_OP_breg13:
3188 case DW_OP_breg14:
3189 case DW_OP_breg15:
3190 case DW_OP_breg16:
3191 case DW_OP_breg17:
3192 case DW_OP_breg18:
3193 case DW_OP_breg19:
3194 case DW_OP_breg20:
3195 case DW_OP_breg21:
3196 case DW_OP_breg22:
3197 case DW_OP_breg23:
3198 case DW_OP_breg24:
3199 case DW_OP_breg25:
3200 case DW_OP_breg26:
3201 case DW_OP_breg27:
3202 case DW_OP_breg28:
3203 case DW_OP_breg29:
3204 case DW_OP_breg30:
3205 case DW_OP_breg31:
3206 cfa->reg = op - DW_OP_breg0;
3207 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3208 break;
3209 case DW_OP_bregx:
3210 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3211 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3212 break;
3213 case DW_OP_deref:
3214 cfa->indirect = 1;
3215 break;
3216 case DW_OP_plus_uconst:
3217 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3218 break;
3219 default:
3220 internal_error ("DW_LOC_OP %s not implemented\n",
3221 dwarf_stack_op_name (ptr->dw_loc_opc));
3225 #endif /* .debug_frame support */
3227 /* And now, the support for symbolic debugging information. */
3228 #ifdef DWARF2_DEBUGGING_INFO
3230 /* .debug_str support. */
3231 static int output_indirect_string (void **, void *);
3233 static void dwarf2out_init (const char *);
3234 static void dwarf2out_finish (const char *);
3235 static void dwarf2out_define (unsigned int, const char *);
3236 static void dwarf2out_undef (unsigned int, const char *);
3237 static void dwarf2out_start_source_file (unsigned, const char *);
3238 static void dwarf2out_end_source_file (unsigned);
3239 static void dwarf2out_begin_block (unsigned, unsigned);
3240 static void dwarf2out_end_block (unsigned, unsigned);
3241 static bool dwarf2out_ignore_block (tree);
3242 static void dwarf2out_global_decl (tree);
3243 static void dwarf2out_abstract_function (tree);
3245 /* The debug hooks structure. */
3247 const struct gcc_debug_hooks dwarf2_debug_hooks =
3249 dwarf2out_init,
3250 dwarf2out_finish,
3251 dwarf2out_define,
3252 dwarf2out_undef,
3253 dwarf2out_start_source_file,
3254 dwarf2out_end_source_file,
3255 dwarf2out_begin_block,
3256 dwarf2out_end_block,
3257 dwarf2out_ignore_block,
3258 dwarf2out_source_line,
3259 dwarf2out_begin_prologue,
3260 debug_nothing_int_charstar, /* end_prologue */
3261 dwarf2out_end_epilogue,
3262 debug_nothing_tree, /* begin_function */
3263 debug_nothing_int, /* end_function */
3264 dwarf2out_decl, /* function_decl */
3265 dwarf2out_global_decl,
3266 debug_nothing_tree, /* deferred_inline_function */
3267 /* The DWARF 2 backend tries to reduce debugging bloat by not
3268 emitting the abstract description of inline functions until
3269 something tries to reference them. */
3270 dwarf2out_abstract_function, /* outlining_inline_function */
3271 debug_nothing_rtx, /* label */
3272 debug_nothing_int /* handle_pch */
3274 #endif
3276 /* NOTE: In the comments in this file, many references are made to
3277 "Debugging Information Entries". This term is abbreviated as `DIE'
3278 throughout the remainder of this file. */
3280 /* An internal representation of the DWARF output is built, and then
3281 walked to generate the DWARF debugging info. The walk of the internal
3282 representation is done after the entire program has been compiled.
3283 The types below are used to describe the internal representation. */
3285 /* Various DIE's use offsets relative to the beginning of the
3286 .debug_info section to refer to each other. */
3288 typedef long int dw_offset;
3290 /* Define typedefs here to avoid circular dependencies. */
3292 typedef struct dw_attr_struct *dw_attr_ref;
3293 typedef struct dw_line_info_struct *dw_line_info_ref;
3294 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3295 typedef struct pubname_struct *pubname_ref;
3296 typedef struct dw_ranges_struct *dw_ranges_ref;
3298 /* Each entry in the line_info_table maintains the file and
3299 line number associated with the label generated for that
3300 entry. The label gives the PC value associated with
3301 the line number entry. */
3303 typedef struct dw_line_info_struct GTY(())
3305 unsigned long dw_file_num;
3306 unsigned long dw_line_num;
3308 dw_line_info_entry;
3310 /* Line information for functions in separate sections; each one gets its
3311 own sequence. */
3312 typedef struct dw_separate_line_info_struct GTY(())
3314 unsigned long dw_file_num;
3315 unsigned long dw_line_num;
3316 unsigned long function;
3318 dw_separate_line_info_entry;
3320 /* Each DIE attribute has a field specifying the attribute kind,
3321 a link to the next attribute in the chain, and an attribute value.
3322 Attributes are typically linked below the DIE they modify. */
3324 typedef struct dw_attr_struct GTY(())
3326 enum dwarf_attribute dw_attr;
3327 dw_attr_ref dw_attr_next;
3328 dw_val_node dw_attr_val;
3330 dw_attr_node;
3332 /* The Debugging Information Entry (DIE) structure */
3334 typedef struct die_struct GTY(())
3336 enum dwarf_tag die_tag;
3337 char *die_symbol;
3338 dw_attr_ref die_attr;
3339 dw_die_ref die_parent;
3340 dw_die_ref die_child;
3341 dw_die_ref die_sib;
3342 dw_die_ref die_definition; /* ref from a specification to its definition */
3343 dw_offset die_offset;
3344 unsigned long die_abbrev;
3345 int die_mark;
3347 die_node;
3349 /* The pubname structure */
3351 typedef struct pubname_struct GTY(())
3353 dw_die_ref die;
3354 char *name;
3356 pubname_entry;
3358 struct dw_ranges_struct GTY(())
3360 int block_num;
3363 /* The limbo die list structure. */
3364 typedef struct limbo_die_struct GTY(())
3366 dw_die_ref die;
3367 tree created_for;
3368 struct limbo_die_struct *next;
3370 limbo_die_node;
3372 /* How to start an assembler comment. */
3373 #ifndef ASM_COMMENT_START
3374 #define ASM_COMMENT_START ";#"
3375 #endif
3377 /* Define a macro which returns nonzero for a TYPE_DECL which was
3378 implicitly generated for a tagged type.
3380 Note that unlike the gcc front end (which generates a NULL named
3381 TYPE_DECL node for each complete tagged type, each array type, and
3382 each function type node created) the g++ front end generates a
3383 _named_ TYPE_DECL node for each tagged type node created.
3384 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3385 generate a DW_TAG_typedef DIE for them. */
3387 #define TYPE_DECL_IS_STUB(decl) \
3388 (DECL_NAME (decl) == NULL_TREE \
3389 || (DECL_ARTIFICIAL (decl) \
3390 && is_tagged_type (TREE_TYPE (decl)) \
3391 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3392 /* This is necessary for stub decls that \
3393 appear in nested inline functions. */ \
3394 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3395 && (decl_ultimate_origin (decl) \
3396 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3398 /* Information concerning the compilation unit's programming
3399 language, and compiler version. */
3401 /* Fixed size portion of the DWARF compilation unit header. */
3402 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3403 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3405 /* Fixed size portion of public names info. */
3406 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3408 /* Fixed size portion of the address range info. */
3409 #define DWARF_ARANGES_HEADER_SIZE \
3410 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3411 DWARF2_ADDR_SIZE * 2) \
3412 - DWARF_INITIAL_LENGTH_SIZE)
3414 /* Size of padding portion in the address range info. It must be
3415 aligned to twice the pointer size. */
3416 #define DWARF_ARANGES_PAD_SIZE \
3417 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3418 DWARF2_ADDR_SIZE * 2) \
3419 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3421 /* Use assembler line directives if available. */
3422 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3423 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3424 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3425 #else
3426 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3427 #endif
3428 #endif
3430 /* Minimum line offset in a special line info. opcode.
3431 This value was chosen to give a reasonable range of values. */
3432 #define DWARF_LINE_BASE -10
3434 /* First special line opcode - leave room for the standard opcodes. */
3435 #define DWARF_LINE_OPCODE_BASE 10
3437 /* Range of line offsets in a special line info. opcode. */
3438 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3440 /* Flag that indicates the initial value of the is_stmt_start flag.
3441 In the present implementation, we do not mark any lines as
3442 the beginning of a source statement, because that information
3443 is not made available by the GCC front-end. */
3444 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3446 #ifdef DWARF2_DEBUGGING_INFO
3447 /* This location is used by calc_die_sizes() to keep track
3448 the offset of each DIE within the .debug_info section. */
3449 static unsigned long next_die_offset;
3450 #endif
3452 /* Record the root of the DIE's built for the current compilation unit. */
3453 static GTY(()) dw_die_ref comp_unit_die;
3455 /* A list of DIEs with a NULL parent waiting to be relocated. */
3456 static GTY(()) limbo_die_node *limbo_die_list;
3458 /* Filenames referenced by this compilation unit. */
3459 static GTY(()) varray_type file_table;
3460 static GTY(()) varray_type file_table_emitted;
3461 static GTY(()) size_t file_table_last_lookup_index;
3463 /* A pointer to the base of a table of references to DIE's that describe
3464 declarations. The table is indexed by DECL_UID() which is a unique
3465 number identifying each decl. */
3466 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3468 /* Number of elements currently allocated for the decl_die_table. */
3469 static GTY(()) unsigned decl_die_table_allocated;
3471 /* Number of elements in decl_die_table currently in use. */
3472 static GTY(()) unsigned decl_die_table_in_use;
3474 /* Size (in elements) of increments by which we may expand the
3475 decl_die_table. */
3476 #define DECL_DIE_TABLE_INCREMENT 256
3478 /* A pointer to the base of a list of references to DIE's that
3479 are uniquely identified by their tag, presence/absence of
3480 children DIE's, and list of attribute/value pairs. */
3481 static GTY((length ("abbrev_die_table_allocated")))
3482 dw_die_ref *abbrev_die_table;
3484 /* Number of elements currently allocated for abbrev_die_table. */
3485 static GTY(()) unsigned abbrev_die_table_allocated;
3487 /* Number of elements in type_die_table currently in use. */
3488 static GTY(()) unsigned abbrev_die_table_in_use;
3490 /* Size (in elements) of increments by which we may expand the
3491 abbrev_die_table. */
3492 #define ABBREV_DIE_TABLE_INCREMENT 256
3494 /* A pointer to the base of a table that contains line information
3495 for each source code line in .text in the compilation unit. */
3496 static GTY((length ("line_info_table_allocated")))
3497 dw_line_info_ref line_info_table;
3499 /* Number of elements currently allocated for line_info_table. */
3500 static GTY(()) unsigned line_info_table_allocated;
3502 /* Number of elements in line_info_table currently in use. */
3503 static GTY(()) unsigned line_info_table_in_use;
3505 /* A pointer to the base of a table that contains line information
3506 for each source code line outside of .text in the compilation unit. */
3507 static GTY ((length ("separate_line_info_table_allocated")))
3508 dw_separate_line_info_ref separate_line_info_table;
3510 /* Number of elements currently allocated for separate_line_info_table. */
3511 static GTY(()) unsigned separate_line_info_table_allocated;
3513 /* Number of elements in separate_line_info_table currently in use. */
3514 static GTY(()) unsigned separate_line_info_table_in_use;
3516 /* Size (in elements) of increments by which we may expand the
3517 line_info_table. */
3518 #define LINE_INFO_TABLE_INCREMENT 1024
3520 /* A pointer to the base of a table that contains a list of publicly
3521 accessible names. */
3522 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3524 /* Number of elements currently allocated for pubname_table. */
3525 static GTY(()) unsigned pubname_table_allocated;
3527 /* Number of elements in pubname_table currently in use. */
3528 static GTY(()) unsigned pubname_table_in_use;
3530 /* Size (in elements) of increments by which we may expand the
3531 pubname_table. */
3532 #define PUBNAME_TABLE_INCREMENT 64
3534 /* Array of dies for which we should generate .debug_arange info. */
3535 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3537 /* Number of elements currently allocated for arange_table. */
3538 static GTY(()) unsigned arange_table_allocated;
3540 /* Number of elements in arange_table currently in use. */
3541 static GTY(()) unsigned arange_table_in_use;
3543 /* Size (in elements) of increments by which we may expand the
3544 arange_table. */
3545 #define ARANGE_TABLE_INCREMENT 64
3547 /* Array of dies for which we should generate .debug_ranges info. */
3548 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3550 /* Number of elements currently allocated for ranges_table. */
3551 static GTY(()) unsigned ranges_table_allocated;
3553 /* Number of elements in ranges_table currently in use. */
3554 static GTY(()) unsigned ranges_table_in_use;
3556 /* Size (in elements) of increments by which we may expand the
3557 ranges_table. */
3558 #define RANGES_TABLE_INCREMENT 64
3560 /* Whether we have location lists that need outputting */
3561 static GTY(()) unsigned have_location_lists;
3563 #ifdef DWARF2_DEBUGGING_INFO
3564 /* Record whether the function being analyzed contains inlined functions. */
3565 static int current_function_has_inlines;
3566 #endif
3567 #if 0 && defined (MIPS_DEBUGGING_INFO)
3568 static int comp_unit_has_inlines;
3569 #endif
3571 /* Number of file tables emitted in maybe_emit_file(). */
3572 static GTY(()) int emitcount = 0;
3574 /* Number of internal labels generated by gen_internal_sym(). */
3575 static GTY(()) int label_num;
3577 #ifdef DWARF2_DEBUGGING_INFO
3579 /* Forward declarations for functions defined in this file. */
3581 static int is_pseudo_reg (rtx);
3582 static tree type_main_variant (tree);
3583 static int is_tagged_type (tree);
3584 static const char *dwarf_tag_name (unsigned);
3585 static const char *dwarf_attr_name (unsigned);
3586 static const char *dwarf_form_name (unsigned);
3587 #if 0
3588 static const char *dwarf_type_encoding_name (unsigned);
3589 #endif
3590 static tree decl_ultimate_origin (tree);
3591 static tree block_ultimate_origin (tree);
3592 static tree decl_class_context (tree);
3593 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3594 static inline enum dw_val_class AT_class (dw_attr_ref);
3595 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3596 static inline unsigned AT_flag (dw_attr_ref);
3597 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3598 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3599 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3600 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3601 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3602 unsigned long);
3603 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3604 static hashval_t debug_str_do_hash (const void *);
3605 static int debug_str_eq (const void *, const void *);
3606 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3607 static inline const char *AT_string (dw_attr_ref);
3608 static int AT_string_form (dw_attr_ref);
3609 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3610 static void add_AT_specification (dw_die_ref, dw_die_ref);
3611 static inline dw_die_ref AT_ref (dw_attr_ref);
3612 static inline int AT_ref_external (dw_attr_ref);
3613 static inline void set_AT_ref_external (dw_attr_ref, int);
3614 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3615 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3616 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3617 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3618 dw_loc_list_ref);
3619 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3620 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3621 static inline rtx AT_addr (dw_attr_ref);
3622 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3623 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3624 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3625 unsigned HOST_WIDE_INT);
3626 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3627 unsigned long);
3628 static inline const char *AT_lbl (dw_attr_ref);
3629 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3630 static const char *get_AT_low_pc (dw_die_ref);
3631 static const char *get_AT_hi_pc (dw_die_ref);
3632 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3633 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3634 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3635 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3636 static bool is_c_family (void);
3637 static bool is_cxx (void);
3638 static bool is_java (void);
3639 static bool is_fortran (void);
3640 static bool is_ada (void);
3641 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3642 static inline void free_die (dw_die_ref);
3643 static void remove_children (dw_die_ref);
3644 static void add_child_die (dw_die_ref, dw_die_ref);
3645 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3646 static dw_die_ref lookup_type_die (tree);
3647 static void equate_type_number_to_die (tree, dw_die_ref);
3648 static dw_die_ref lookup_decl_die (tree);
3649 static void equate_decl_number_to_die (tree, dw_die_ref);
3650 static void print_spaces (FILE *);
3651 static void print_die (dw_die_ref, FILE *);
3652 static void print_dwarf_line_table (FILE *);
3653 static void reverse_die_lists (dw_die_ref);
3654 static void reverse_all_dies (dw_die_ref);
3655 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3656 static dw_die_ref pop_compile_unit (dw_die_ref);
3657 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3658 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3659 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3660 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3661 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3662 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3663 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3664 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3665 static void compute_section_prefix (dw_die_ref);
3666 static int is_type_die (dw_die_ref);
3667 static int is_comdat_die (dw_die_ref);
3668 static int is_symbol_die (dw_die_ref);
3669 static void assign_symbol_names (dw_die_ref);
3670 static void break_out_includes (dw_die_ref);
3671 static hashval_t htab_cu_hash (const void *);
3672 static int htab_cu_eq (const void *, const void *);
3673 static void htab_cu_del (void *);
3674 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3675 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3676 static void add_sibling_attributes (dw_die_ref);
3677 static void build_abbrev_table (dw_die_ref);
3678 static void output_location_lists (dw_die_ref);
3679 static int constant_size (long unsigned);
3680 static unsigned long size_of_die (dw_die_ref);
3681 static void calc_die_sizes (dw_die_ref);
3682 static void mark_dies (dw_die_ref);
3683 static void unmark_dies (dw_die_ref);
3684 static void unmark_all_dies (dw_die_ref);
3685 static unsigned long size_of_pubnames (void);
3686 static unsigned long size_of_aranges (void);
3687 static enum dwarf_form value_format (dw_attr_ref);
3688 static void output_value_format (dw_attr_ref);
3689 static void output_abbrev_section (void);
3690 static void output_die_symbol (dw_die_ref);
3691 static void output_die (dw_die_ref);
3692 static void output_compilation_unit_header (void);
3693 static void output_comp_unit (dw_die_ref, int);
3694 static const char *dwarf2_name (tree, int);
3695 static void add_pubname (tree, dw_die_ref);
3696 static void output_pubnames (void);
3697 static void add_arange (tree, dw_die_ref);
3698 static void output_aranges (void);
3699 static unsigned int add_ranges (tree);
3700 static void output_ranges (void);
3701 static void output_line_info (void);
3702 static void output_file_names (void);
3703 static dw_die_ref base_type_die (tree);
3704 static tree root_type (tree);
3705 static int is_base_type (tree);
3706 static bool is_subrange_type (tree);
3707 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3708 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3709 static int type_is_enum (tree);
3710 static unsigned int reg_number (rtx);
3711 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3712 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3713 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3714 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3715 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT);
3716 static int is_based_loc (rtx);
3717 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3718 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3719 static dw_loc_descr_ref loc_descriptor (rtx);
3720 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3721 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3722 static tree field_type (tree);
3723 static unsigned int simple_type_align_in_bits (tree);
3724 static unsigned int simple_decl_align_in_bits (tree);
3725 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3726 static HOST_WIDE_INT field_byte_offset (tree);
3727 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3728 dw_loc_descr_ref);
3729 static void add_data_member_location_attribute (dw_die_ref, tree);
3730 static void add_const_value_attribute (dw_die_ref, rtx);
3731 static rtx rtl_for_decl_location (tree);
3732 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3733 static void tree_add_const_value_attribute (dw_die_ref, tree);
3734 static void add_name_attribute (dw_die_ref, const char *);
3735 static void add_comp_dir_attribute (dw_die_ref);
3736 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3737 static void add_subscript_info (dw_die_ref, tree);
3738 static void add_byte_size_attribute (dw_die_ref, tree);
3739 static void add_bit_offset_attribute (dw_die_ref, tree);
3740 static void add_bit_size_attribute (dw_die_ref, tree);
3741 static void add_prototyped_attribute (dw_die_ref, tree);
3742 static void add_abstract_origin_attribute (dw_die_ref, tree);
3743 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3744 static void add_src_coords_attributes (dw_die_ref, tree);
3745 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3746 static void push_decl_scope (tree);
3747 static void pop_decl_scope (void);
3748 static dw_die_ref scope_die_for (tree, dw_die_ref);
3749 static inline int local_scope_p (dw_die_ref);
3750 static inline int class_or_namespace_scope_p (dw_die_ref);
3751 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3752 static const char *type_tag (tree);
3753 static tree member_declared_type (tree);
3754 #if 0
3755 static const char *decl_start_label (tree);
3756 #endif
3757 static void gen_array_type_die (tree, dw_die_ref);
3758 static void gen_set_type_die (tree, dw_die_ref);
3759 #if 0
3760 static void gen_entry_point_die (tree, dw_die_ref);
3761 #endif
3762 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3763 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3764 static void gen_inlined_union_type_die (tree, dw_die_ref);
3765 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3766 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3767 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3768 static void gen_formal_types_die (tree, dw_die_ref);
3769 static void gen_subprogram_die (tree, dw_die_ref);
3770 static void gen_variable_die (tree, dw_die_ref);
3771 static void gen_label_die (tree, dw_die_ref);
3772 static void gen_lexical_block_die (tree, dw_die_ref, int);
3773 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3774 static void gen_field_die (tree, dw_die_ref);
3775 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3776 static dw_die_ref gen_compile_unit_die (const char *);
3777 static void gen_string_type_die (tree, dw_die_ref);
3778 static void gen_inheritance_die (tree, tree, dw_die_ref);
3779 static void gen_member_die (tree, dw_die_ref);
3780 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3781 static void gen_subroutine_type_die (tree, dw_die_ref);
3782 static void gen_typedef_die (tree, dw_die_ref);
3783 static void gen_type_die (tree, dw_die_ref);
3784 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3785 static void gen_block_die (tree, dw_die_ref, int);
3786 static void decls_for_scope (tree, dw_die_ref, int);
3787 static int is_redundant_typedef (tree);
3788 static void gen_namespace_die (tree);
3789 static void gen_decl_die (tree, dw_die_ref);
3790 static dw_die_ref force_namespace_die (tree);
3791 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3792 static void declare_in_namespace (tree, dw_die_ref);
3793 static unsigned lookup_filename (const char *);
3794 static void init_file_table (void);
3795 static void retry_incomplete_types (void);
3796 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3797 static void splice_child_die (dw_die_ref, dw_die_ref);
3798 static int file_info_cmp (const void *, const void *);
3799 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3800 const char *, const char *, unsigned);
3801 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3802 const char *, const char *,
3803 const char *);
3804 static void output_loc_list (dw_loc_list_ref);
3805 static char *gen_internal_sym (const char *);
3807 static void prune_unmark_dies (dw_die_ref);
3808 static void prune_unused_types_mark (dw_die_ref, int);
3809 static void prune_unused_types_walk (dw_die_ref);
3810 static void prune_unused_types_walk_attribs (dw_die_ref);
3811 static void prune_unused_types_prune (dw_die_ref);
3812 static void prune_unused_types (void);
3813 static int maybe_emit_file (int);
3815 /* Section names used to hold DWARF debugging information. */
3816 #ifndef DEBUG_INFO_SECTION
3817 #define DEBUG_INFO_SECTION ".debug_info"
3818 #endif
3819 #ifndef DEBUG_ABBREV_SECTION
3820 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3821 #endif
3822 #ifndef DEBUG_ARANGES_SECTION
3823 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3824 #endif
3825 #ifndef DEBUG_MACINFO_SECTION
3826 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3827 #endif
3828 #ifndef DEBUG_LINE_SECTION
3829 #define DEBUG_LINE_SECTION ".debug_line"
3830 #endif
3831 #ifndef DEBUG_LOC_SECTION
3832 #define DEBUG_LOC_SECTION ".debug_loc"
3833 #endif
3834 #ifndef DEBUG_PUBNAMES_SECTION
3835 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3836 #endif
3837 #ifndef DEBUG_STR_SECTION
3838 #define DEBUG_STR_SECTION ".debug_str"
3839 #endif
3840 #ifndef DEBUG_RANGES_SECTION
3841 #define DEBUG_RANGES_SECTION ".debug_ranges"
3842 #endif
3844 /* Standard ELF section names for compiled code and data. */
3845 #ifndef TEXT_SECTION_NAME
3846 #define TEXT_SECTION_NAME ".text"
3847 #endif
3849 /* Section flags for .debug_str section. */
3850 #define DEBUG_STR_SECTION_FLAGS \
3851 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3852 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3853 : SECTION_DEBUG)
3855 /* Labels we insert at beginning sections we can reference instead of
3856 the section names themselves. */
3858 #ifndef TEXT_SECTION_LABEL
3859 #define TEXT_SECTION_LABEL "Ltext"
3860 #endif
3861 #ifndef DEBUG_LINE_SECTION_LABEL
3862 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3863 #endif
3864 #ifndef DEBUG_INFO_SECTION_LABEL
3865 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3866 #endif
3867 #ifndef DEBUG_ABBREV_SECTION_LABEL
3868 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3869 #endif
3870 #ifndef DEBUG_LOC_SECTION_LABEL
3871 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3872 #endif
3873 #ifndef DEBUG_RANGES_SECTION_LABEL
3874 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3875 #endif
3876 #ifndef DEBUG_MACINFO_SECTION_LABEL
3877 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3878 #endif
3880 /* Definitions of defaults for formats and names of various special
3881 (artificial) labels which may be generated within this file (when the -g
3882 options is used and DWARF2_DEBUGGING_INFO is in effect.
3883 If necessary, these may be overridden from within the tm.h file, but
3884 typically, overriding these defaults is unnecessary. */
3886 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3887 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3888 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3889 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3890 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3891 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3892 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3893 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3895 #ifndef TEXT_END_LABEL
3896 #define TEXT_END_LABEL "Letext"
3897 #endif
3898 #ifndef BLOCK_BEGIN_LABEL
3899 #define BLOCK_BEGIN_LABEL "LBB"
3900 #endif
3901 #ifndef BLOCK_END_LABEL
3902 #define BLOCK_END_LABEL "LBE"
3903 #endif
3904 #ifndef LINE_CODE_LABEL
3905 #define LINE_CODE_LABEL "LM"
3906 #endif
3907 #ifndef SEPARATE_LINE_CODE_LABEL
3908 #define SEPARATE_LINE_CODE_LABEL "LSM"
3909 #endif
3911 /* We allow a language front-end to designate a function that is to be
3912 called to "demangle" any name before it it put into a DIE. */
3914 static const char *(*demangle_name_func) (const char *);
3916 void
3917 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3919 demangle_name_func = func;
3922 /* Test if rtl node points to a pseudo register. */
3924 static inline int
3925 is_pseudo_reg (rtx rtl)
3927 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3928 || (GET_CODE (rtl) == SUBREG
3929 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3932 /* Return a reference to a type, with its const and volatile qualifiers
3933 removed. */
3935 static inline tree
3936 type_main_variant (tree type)
3938 type = TYPE_MAIN_VARIANT (type);
3940 /* ??? There really should be only one main variant among any group of
3941 variants of a given type (and all of the MAIN_VARIANT values for all
3942 members of the group should point to that one type) but sometimes the C
3943 front-end messes this up for array types, so we work around that bug
3944 here. */
3945 if (TREE_CODE (type) == ARRAY_TYPE)
3946 while (type != TYPE_MAIN_VARIANT (type))
3947 type = TYPE_MAIN_VARIANT (type);
3949 return type;
3952 /* Return nonzero if the given type node represents a tagged type. */
3954 static inline int
3955 is_tagged_type (tree type)
3957 enum tree_code code = TREE_CODE (type);
3959 return (code == RECORD_TYPE || code == UNION_TYPE
3960 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3963 /* Convert a DIE tag into its string name. */
3965 static const char *
3966 dwarf_tag_name (unsigned int tag)
3968 switch (tag)
3970 case DW_TAG_padding:
3971 return "DW_TAG_padding";
3972 case DW_TAG_array_type:
3973 return "DW_TAG_array_type";
3974 case DW_TAG_class_type:
3975 return "DW_TAG_class_type";
3976 case DW_TAG_entry_point:
3977 return "DW_TAG_entry_point";
3978 case DW_TAG_enumeration_type:
3979 return "DW_TAG_enumeration_type";
3980 case DW_TAG_formal_parameter:
3981 return "DW_TAG_formal_parameter";
3982 case DW_TAG_imported_declaration:
3983 return "DW_TAG_imported_declaration";
3984 case DW_TAG_label:
3985 return "DW_TAG_label";
3986 case DW_TAG_lexical_block:
3987 return "DW_TAG_lexical_block";
3988 case DW_TAG_member:
3989 return "DW_TAG_member";
3990 case DW_TAG_pointer_type:
3991 return "DW_TAG_pointer_type";
3992 case DW_TAG_reference_type:
3993 return "DW_TAG_reference_type";
3994 case DW_TAG_compile_unit:
3995 return "DW_TAG_compile_unit";
3996 case DW_TAG_string_type:
3997 return "DW_TAG_string_type";
3998 case DW_TAG_structure_type:
3999 return "DW_TAG_structure_type";
4000 case DW_TAG_subroutine_type:
4001 return "DW_TAG_subroutine_type";
4002 case DW_TAG_typedef:
4003 return "DW_TAG_typedef";
4004 case DW_TAG_union_type:
4005 return "DW_TAG_union_type";
4006 case DW_TAG_unspecified_parameters:
4007 return "DW_TAG_unspecified_parameters";
4008 case DW_TAG_variant:
4009 return "DW_TAG_variant";
4010 case DW_TAG_common_block:
4011 return "DW_TAG_common_block";
4012 case DW_TAG_common_inclusion:
4013 return "DW_TAG_common_inclusion";
4014 case DW_TAG_inheritance:
4015 return "DW_TAG_inheritance";
4016 case DW_TAG_inlined_subroutine:
4017 return "DW_TAG_inlined_subroutine";
4018 case DW_TAG_module:
4019 return "DW_TAG_module";
4020 case DW_TAG_ptr_to_member_type:
4021 return "DW_TAG_ptr_to_member_type";
4022 case DW_TAG_set_type:
4023 return "DW_TAG_set_type";
4024 case DW_TAG_subrange_type:
4025 return "DW_TAG_subrange_type";
4026 case DW_TAG_with_stmt:
4027 return "DW_TAG_with_stmt";
4028 case DW_TAG_access_declaration:
4029 return "DW_TAG_access_declaration";
4030 case DW_TAG_base_type:
4031 return "DW_TAG_base_type";
4032 case DW_TAG_catch_block:
4033 return "DW_TAG_catch_block";
4034 case DW_TAG_const_type:
4035 return "DW_TAG_const_type";
4036 case DW_TAG_constant:
4037 return "DW_TAG_constant";
4038 case DW_TAG_enumerator:
4039 return "DW_TAG_enumerator";
4040 case DW_TAG_file_type:
4041 return "DW_TAG_file_type";
4042 case DW_TAG_friend:
4043 return "DW_TAG_friend";
4044 case DW_TAG_namelist:
4045 return "DW_TAG_namelist";
4046 case DW_TAG_namelist_item:
4047 return "DW_TAG_namelist_item";
4048 case DW_TAG_namespace:
4049 return "DW_TAG_namespace";
4050 case DW_TAG_packed_type:
4051 return "DW_TAG_packed_type";
4052 case DW_TAG_subprogram:
4053 return "DW_TAG_subprogram";
4054 case DW_TAG_template_type_param:
4055 return "DW_TAG_template_type_param";
4056 case DW_TAG_template_value_param:
4057 return "DW_TAG_template_value_param";
4058 case DW_TAG_thrown_type:
4059 return "DW_TAG_thrown_type";
4060 case DW_TAG_try_block:
4061 return "DW_TAG_try_block";
4062 case DW_TAG_variant_part:
4063 return "DW_TAG_variant_part";
4064 case DW_TAG_variable:
4065 return "DW_TAG_variable";
4066 case DW_TAG_volatile_type:
4067 return "DW_TAG_volatile_type";
4068 case DW_TAG_MIPS_loop:
4069 return "DW_TAG_MIPS_loop";
4070 case DW_TAG_format_label:
4071 return "DW_TAG_format_label";
4072 case DW_TAG_function_template:
4073 return "DW_TAG_function_template";
4074 case DW_TAG_class_template:
4075 return "DW_TAG_class_template";
4076 case DW_TAG_GNU_BINCL:
4077 return "DW_TAG_GNU_BINCL";
4078 case DW_TAG_GNU_EINCL:
4079 return "DW_TAG_GNU_EINCL";
4080 default:
4081 return "DW_TAG_<unknown>";
4085 /* Convert a DWARF attribute code into its string name. */
4087 static const char *
4088 dwarf_attr_name (unsigned int attr)
4090 switch (attr)
4092 case DW_AT_sibling:
4093 return "DW_AT_sibling";
4094 case DW_AT_location:
4095 return "DW_AT_location";
4096 case DW_AT_name:
4097 return "DW_AT_name";
4098 case DW_AT_ordering:
4099 return "DW_AT_ordering";
4100 case DW_AT_subscr_data:
4101 return "DW_AT_subscr_data";
4102 case DW_AT_byte_size:
4103 return "DW_AT_byte_size";
4104 case DW_AT_bit_offset:
4105 return "DW_AT_bit_offset";
4106 case DW_AT_bit_size:
4107 return "DW_AT_bit_size";
4108 case DW_AT_element_list:
4109 return "DW_AT_element_list";
4110 case DW_AT_stmt_list:
4111 return "DW_AT_stmt_list";
4112 case DW_AT_low_pc:
4113 return "DW_AT_low_pc";
4114 case DW_AT_high_pc:
4115 return "DW_AT_high_pc";
4116 case DW_AT_language:
4117 return "DW_AT_language";
4118 case DW_AT_member:
4119 return "DW_AT_member";
4120 case DW_AT_discr:
4121 return "DW_AT_discr";
4122 case DW_AT_discr_value:
4123 return "DW_AT_discr_value";
4124 case DW_AT_visibility:
4125 return "DW_AT_visibility";
4126 case DW_AT_import:
4127 return "DW_AT_import";
4128 case DW_AT_string_length:
4129 return "DW_AT_string_length";
4130 case DW_AT_common_reference:
4131 return "DW_AT_common_reference";
4132 case DW_AT_comp_dir:
4133 return "DW_AT_comp_dir";
4134 case DW_AT_const_value:
4135 return "DW_AT_const_value";
4136 case DW_AT_containing_type:
4137 return "DW_AT_containing_type";
4138 case DW_AT_default_value:
4139 return "DW_AT_default_value";
4140 case DW_AT_inline:
4141 return "DW_AT_inline";
4142 case DW_AT_is_optional:
4143 return "DW_AT_is_optional";
4144 case DW_AT_lower_bound:
4145 return "DW_AT_lower_bound";
4146 case DW_AT_producer:
4147 return "DW_AT_producer";
4148 case DW_AT_prototyped:
4149 return "DW_AT_prototyped";
4150 case DW_AT_return_addr:
4151 return "DW_AT_return_addr";
4152 case DW_AT_start_scope:
4153 return "DW_AT_start_scope";
4154 case DW_AT_stride_size:
4155 return "DW_AT_stride_size";
4156 case DW_AT_upper_bound:
4157 return "DW_AT_upper_bound";
4158 case DW_AT_abstract_origin:
4159 return "DW_AT_abstract_origin";
4160 case DW_AT_accessibility:
4161 return "DW_AT_accessibility";
4162 case DW_AT_address_class:
4163 return "DW_AT_address_class";
4164 case DW_AT_artificial:
4165 return "DW_AT_artificial";
4166 case DW_AT_base_types:
4167 return "DW_AT_base_types";
4168 case DW_AT_calling_convention:
4169 return "DW_AT_calling_convention";
4170 case DW_AT_count:
4171 return "DW_AT_count";
4172 case DW_AT_data_member_location:
4173 return "DW_AT_data_member_location";
4174 case DW_AT_decl_column:
4175 return "DW_AT_decl_column";
4176 case DW_AT_decl_file:
4177 return "DW_AT_decl_file";
4178 case DW_AT_decl_line:
4179 return "DW_AT_decl_line";
4180 case DW_AT_declaration:
4181 return "DW_AT_declaration";
4182 case DW_AT_discr_list:
4183 return "DW_AT_discr_list";
4184 case DW_AT_encoding:
4185 return "DW_AT_encoding";
4186 case DW_AT_external:
4187 return "DW_AT_external";
4188 case DW_AT_frame_base:
4189 return "DW_AT_frame_base";
4190 case DW_AT_friend:
4191 return "DW_AT_friend";
4192 case DW_AT_identifier_case:
4193 return "DW_AT_identifier_case";
4194 case DW_AT_macro_info:
4195 return "DW_AT_macro_info";
4196 case DW_AT_namelist_items:
4197 return "DW_AT_namelist_items";
4198 case DW_AT_priority:
4199 return "DW_AT_priority";
4200 case DW_AT_segment:
4201 return "DW_AT_segment";
4202 case DW_AT_specification:
4203 return "DW_AT_specification";
4204 case DW_AT_static_link:
4205 return "DW_AT_static_link";
4206 case DW_AT_type:
4207 return "DW_AT_type";
4208 case DW_AT_use_location:
4209 return "DW_AT_use_location";
4210 case DW_AT_variable_parameter:
4211 return "DW_AT_variable_parameter";
4212 case DW_AT_virtuality:
4213 return "DW_AT_virtuality";
4214 case DW_AT_vtable_elem_location:
4215 return "DW_AT_vtable_elem_location";
4217 case DW_AT_allocated:
4218 return "DW_AT_allocated";
4219 case DW_AT_associated:
4220 return "DW_AT_associated";
4221 case DW_AT_data_location:
4222 return "DW_AT_data_location";
4223 case DW_AT_stride:
4224 return "DW_AT_stride";
4225 case DW_AT_entry_pc:
4226 return "DW_AT_entry_pc";
4227 case DW_AT_use_UTF8:
4228 return "DW_AT_use_UTF8";
4229 case DW_AT_extension:
4230 return "DW_AT_extension";
4231 case DW_AT_ranges:
4232 return "DW_AT_ranges";
4233 case DW_AT_trampoline:
4234 return "DW_AT_trampoline";
4235 case DW_AT_call_column:
4236 return "DW_AT_call_column";
4237 case DW_AT_call_file:
4238 return "DW_AT_call_file";
4239 case DW_AT_call_line:
4240 return "DW_AT_call_line";
4242 case DW_AT_MIPS_fde:
4243 return "DW_AT_MIPS_fde";
4244 case DW_AT_MIPS_loop_begin:
4245 return "DW_AT_MIPS_loop_begin";
4246 case DW_AT_MIPS_tail_loop_begin:
4247 return "DW_AT_MIPS_tail_loop_begin";
4248 case DW_AT_MIPS_epilog_begin:
4249 return "DW_AT_MIPS_epilog_begin";
4250 case DW_AT_MIPS_loop_unroll_factor:
4251 return "DW_AT_MIPS_loop_unroll_factor";
4252 case DW_AT_MIPS_software_pipeline_depth:
4253 return "DW_AT_MIPS_software_pipeline_depth";
4254 case DW_AT_MIPS_linkage_name:
4255 return "DW_AT_MIPS_linkage_name";
4256 case DW_AT_MIPS_stride:
4257 return "DW_AT_MIPS_stride";
4258 case DW_AT_MIPS_abstract_name:
4259 return "DW_AT_MIPS_abstract_name";
4260 case DW_AT_MIPS_clone_origin:
4261 return "DW_AT_MIPS_clone_origin";
4262 case DW_AT_MIPS_has_inlines:
4263 return "DW_AT_MIPS_has_inlines";
4265 case DW_AT_sf_names:
4266 return "DW_AT_sf_names";
4267 case DW_AT_src_info:
4268 return "DW_AT_src_info";
4269 case DW_AT_mac_info:
4270 return "DW_AT_mac_info";
4271 case DW_AT_src_coords:
4272 return "DW_AT_src_coords";
4273 case DW_AT_body_begin:
4274 return "DW_AT_body_begin";
4275 case DW_AT_body_end:
4276 return "DW_AT_body_end";
4277 case DW_AT_GNU_vector:
4278 return "DW_AT_GNU_vector";
4280 case DW_AT_VMS_rtnbeg_pd_address:
4281 return "DW_AT_VMS_rtnbeg_pd_address";
4283 default:
4284 return "DW_AT_<unknown>";
4288 /* Convert a DWARF value form code into its string name. */
4290 static const char *
4291 dwarf_form_name (unsigned int form)
4293 switch (form)
4295 case DW_FORM_addr:
4296 return "DW_FORM_addr";
4297 case DW_FORM_block2:
4298 return "DW_FORM_block2";
4299 case DW_FORM_block4:
4300 return "DW_FORM_block4";
4301 case DW_FORM_data2:
4302 return "DW_FORM_data2";
4303 case DW_FORM_data4:
4304 return "DW_FORM_data4";
4305 case DW_FORM_data8:
4306 return "DW_FORM_data8";
4307 case DW_FORM_string:
4308 return "DW_FORM_string";
4309 case DW_FORM_block:
4310 return "DW_FORM_block";
4311 case DW_FORM_block1:
4312 return "DW_FORM_block1";
4313 case DW_FORM_data1:
4314 return "DW_FORM_data1";
4315 case DW_FORM_flag:
4316 return "DW_FORM_flag";
4317 case DW_FORM_sdata:
4318 return "DW_FORM_sdata";
4319 case DW_FORM_strp:
4320 return "DW_FORM_strp";
4321 case DW_FORM_udata:
4322 return "DW_FORM_udata";
4323 case DW_FORM_ref_addr:
4324 return "DW_FORM_ref_addr";
4325 case DW_FORM_ref1:
4326 return "DW_FORM_ref1";
4327 case DW_FORM_ref2:
4328 return "DW_FORM_ref2";
4329 case DW_FORM_ref4:
4330 return "DW_FORM_ref4";
4331 case DW_FORM_ref8:
4332 return "DW_FORM_ref8";
4333 case DW_FORM_ref_udata:
4334 return "DW_FORM_ref_udata";
4335 case DW_FORM_indirect:
4336 return "DW_FORM_indirect";
4337 default:
4338 return "DW_FORM_<unknown>";
4342 /* Convert a DWARF type code into its string name. */
4344 #if 0
4345 static const char *
4346 dwarf_type_encoding_name (unsigned enc)
4348 switch (enc)
4350 case DW_ATE_address:
4351 return "DW_ATE_address";
4352 case DW_ATE_boolean:
4353 return "DW_ATE_boolean";
4354 case DW_ATE_complex_float:
4355 return "DW_ATE_complex_float";
4356 case DW_ATE_float:
4357 return "DW_ATE_float";
4358 case DW_ATE_signed:
4359 return "DW_ATE_signed";
4360 case DW_ATE_signed_char:
4361 return "DW_ATE_signed_char";
4362 case DW_ATE_unsigned:
4363 return "DW_ATE_unsigned";
4364 case DW_ATE_unsigned_char:
4365 return "DW_ATE_unsigned_char";
4366 default:
4367 return "DW_ATE_<unknown>";
4370 #endif
4372 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4373 instance of an inlined instance of a decl which is local to an inline
4374 function, so we have to trace all of the way back through the origin chain
4375 to find out what sort of node actually served as the original seed for the
4376 given block. */
4378 static tree
4379 decl_ultimate_origin (tree decl)
4381 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4382 nodes in the function to point to themselves; ignore that if
4383 we're trying to output the abstract instance of this function. */
4384 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4385 return NULL_TREE;
4387 #ifdef ENABLE_CHECKING
4388 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4389 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4390 most distant ancestor, this should never happen. */
4391 abort ();
4392 #endif
4394 return DECL_ABSTRACT_ORIGIN (decl);
4397 /* Determine the "ultimate origin" of a block. The block may be an inlined
4398 instance of an inlined instance of a block which is local to an inline
4399 function, so we have to trace all of the way back through the origin chain
4400 to find out what sort of node actually served as the original seed for the
4401 given block. */
4403 static tree
4404 block_ultimate_origin (tree block)
4406 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4408 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4409 nodes in the function to point to themselves; ignore that if
4410 we're trying to output the abstract instance of this function. */
4411 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4412 return NULL_TREE;
4414 if (immediate_origin == NULL_TREE)
4415 return NULL_TREE;
4416 else
4418 tree ret_val;
4419 tree lookahead = immediate_origin;
4423 ret_val = lookahead;
4424 lookahead = (TREE_CODE (ret_val) == BLOCK
4425 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4427 while (lookahead != NULL && lookahead != ret_val);
4429 return ret_val;
4433 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4434 of a virtual function may refer to a base class, so we check the 'this'
4435 parameter. */
4437 static tree
4438 decl_class_context (tree decl)
4440 tree context = NULL_TREE;
4442 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4443 context = DECL_CONTEXT (decl);
4444 else
4445 context = TYPE_MAIN_VARIANT
4446 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4448 if (context && !TYPE_P (context))
4449 context = NULL_TREE;
4451 return context;
4454 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4455 addition order, and correct that in reverse_all_dies. */
4457 static inline void
4458 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4460 if (die != NULL && attr != NULL)
4462 attr->dw_attr_next = die->die_attr;
4463 die->die_attr = attr;
4467 static inline enum dw_val_class
4468 AT_class (dw_attr_ref a)
4470 return a->dw_attr_val.val_class;
4473 /* Add a flag value attribute to a DIE. */
4475 static inline void
4476 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4478 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4480 attr->dw_attr_next = NULL;
4481 attr->dw_attr = attr_kind;
4482 attr->dw_attr_val.val_class = dw_val_class_flag;
4483 attr->dw_attr_val.v.val_flag = flag;
4484 add_dwarf_attr (die, attr);
4487 static inline unsigned
4488 AT_flag (dw_attr_ref a)
4490 if (a && AT_class (a) == dw_val_class_flag)
4491 return a->dw_attr_val.v.val_flag;
4493 abort ();
4496 /* Add a signed integer attribute value to a DIE. */
4498 static inline void
4499 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4501 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4503 attr->dw_attr_next = NULL;
4504 attr->dw_attr = attr_kind;
4505 attr->dw_attr_val.val_class = dw_val_class_const;
4506 attr->dw_attr_val.v.val_int = int_val;
4507 add_dwarf_attr (die, attr);
4510 static inline HOST_WIDE_INT
4511 AT_int (dw_attr_ref a)
4513 if (a && AT_class (a) == dw_val_class_const)
4514 return a->dw_attr_val.v.val_int;
4516 abort ();
4519 /* Add an unsigned integer attribute value to a DIE. */
4521 static inline void
4522 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4523 unsigned HOST_WIDE_INT unsigned_val)
4525 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4527 attr->dw_attr_next = NULL;
4528 attr->dw_attr = attr_kind;
4529 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4530 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4531 add_dwarf_attr (die, attr);
4534 static inline unsigned HOST_WIDE_INT
4535 AT_unsigned (dw_attr_ref a)
4537 if (a && AT_class (a) == dw_val_class_unsigned_const)
4538 return a->dw_attr_val.v.val_unsigned;
4540 abort ();
4543 /* Add an unsigned double integer attribute value to a DIE. */
4545 static inline void
4546 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4547 long unsigned int val_hi, long unsigned int val_low)
4549 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4551 attr->dw_attr_next = NULL;
4552 attr->dw_attr = attr_kind;
4553 attr->dw_attr_val.val_class = dw_val_class_long_long;
4554 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4555 attr->dw_attr_val.v.val_long_long.low = val_low;
4556 add_dwarf_attr (die, attr);
4559 /* Add a floating point attribute value to a DIE and return it. */
4561 static inline void
4562 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4563 unsigned int length, long int *array)
4565 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4567 attr->dw_attr_next = NULL;
4568 attr->dw_attr = attr_kind;
4569 attr->dw_attr_val.val_class = dw_val_class_float;
4570 attr->dw_attr_val.v.val_float.length = length;
4571 attr->dw_attr_val.v.val_float.array = array;
4572 add_dwarf_attr (die, attr);
4575 /* Hash and equality functions for debug_str_hash. */
4577 static hashval_t
4578 debug_str_do_hash (const void *x)
4580 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4583 static int
4584 debug_str_eq (const void *x1, const void *x2)
4586 return strcmp ((((const struct indirect_string_node *)x1)->str),
4587 (const char *)x2) == 0;
4590 /* Add a string attribute value to a DIE. */
4592 static inline void
4593 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4595 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4596 struct indirect_string_node *node;
4597 void **slot;
4599 if (! debug_str_hash)
4600 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4601 debug_str_eq, NULL);
4603 slot = htab_find_slot_with_hash (debug_str_hash, str,
4604 htab_hash_string (str), INSERT);
4605 if (*slot == NULL)
4606 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4607 node = (struct indirect_string_node *) *slot;
4608 node->str = ggc_strdup (str);
4609 node->refcount++;
4611 attr->dw_attr_next = NULL;
4612 attr->dw_attr = attr_kind;
4613 attr->dw_attr_val.val_class = dw_val_class_str;
4614 attr->dw_attr_val.v.val_str = node;
4615 add_dwarf_attr (die, attr);
4618 static inline const char *
4619 AT_string (dw_attr_ref a)
4621 if (a && AT_class (a) == dw_val_class_str)
4622 return a->dw_attr_val.v.val_str->str;
4624 abort ();
4627 /* Find out whether a string should be output inline in DIE
4628 or out-of-line in .debug_str section. */
4630 static int
4631 AT_string_form (dw_attr_ref a)
4633 if (a && AT_class (a) == dw_val_class_str)
4635 struct indirect_string_node *node;
4636 unsigned int len;
4637 char label[32];
4639 node = a->dw_attr_val.v.val_str;
4640 if (node->form)
4641 return node->form;
4643 len = strlen (node->str) + 1;
4645 /* If the string is shorter or equal to the size of the reference, it is
4646 always better to put it inline. */
4647 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4648 return node->form = DW_FORM_string;
4650 /* If we cannot expect the linker to merge strings in .debug_str
4651 section, only put it into .debug_str if it is worth even in this
4652 single module. */
4653 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4654 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4655 return node->form = DW_FORM_string;
4657 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4658 ++dw2_string_counter;
4659 node->label = xstrdup (label);
4661 return node->form = DW_FORM_strp;
4664 abort ();
4667 /* Add a DIE reference attribute value to a DIE. */
4669 static inline void
4670 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4672 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4674 attr->dw_attr_next = NULL;
4675 attr->dw_attr = attr_kind;
4676 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4677 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4678 attr->dw_attr_val.v.val_die_ref.external = 0;
4679 add_dwarf_attr (die, attr);
4682 /* Add an AT_specification attribute to a DIE, and also make the back
4683 pointer from the specification to the definition. */
4685 static inline void
4686 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4688 add_AT_die_ref (die, DW_AT_specification, targ_die);
4689 if (targ_die->die_definition)
4690 abort ();
4691 targ_die->die_definition = die;
4694 static inline dw_die_ref
4695 AT_ref (dw_attr_ref a)
4697 if (a && AT_class (a) == dw_val_class_die_ref)
4698 return a->dw_attr_val.v.val_die_ref.die;
4700 abort ();
4703 static inline int
4704 AT_ref_external (dw_attr_ref a)
4706 if (a && AT_class (a) == dw_val_class_die_ref)
4707 return a->dw_attr_val.v.val_die_ref.external;
4709 return 0;
4712 static inline void
4713 set_AT_ref_external (dw_attr_ref a, int i)
4715 if (a && AT_class (a) == dw_val_class_die_ref)
4716 a->dw_attr_val.v.val_die_ref.external = i;
4717 else
4718 abort ();
4721 /* Add an FDE reference attribute value to a DIE. */
4723 static inline void
4724 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4726 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4728 attr->dw_attr_next = NULL;
4729 attr->dw_attr = attr_kind;
4730 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4731 attr->dw_attr_val.v.val_fde_index = targ_fde;
4732 add_dwarf_attr (die, attr);
4735 /* Add a location description attribute value to a DIE. */
4737 static inline void
4738 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4740 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4742 attr->dw_attr_next = NULL;
4743 attr->dw_attr = attr_kind;
4744 attr->dw_attr_val.val_class = dw_val_class_loc;
4745 attr->dw_attr_val.v.val_loc = loc;
4746 add_dwarf_attr (die, attr);
4749 static inline dw_loc_descr_ref
4750 AT_loc (dw_attr_ref a)
4752 if (a && AT_class (a) == dw_val_class_loc)
4753 return a->dw_attr_val.v.val_loc;
4755 abort ();
4758 static inline void
4759 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4761 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4763 attr->dw_attr_next = NULL;
4764 attr->dw_attr = attr_kind;
4765 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4766 attr->dw_attr_val.v.val_loc_list = loc_list;
4767 add_dwarf_attr (die, attr);
4768 have_location_lists = 1;
4771 static inline dw_loc_list_ref
4772 AT_loc_list (dw_attr_ref a)
4774 if (a && AT_class (a) == dw_val_class_loc_list)
4775 return a->dw_attr_val.v.val_loc_list;
4777 abort ();
4780 /* Add an address constant attribute value to a DIE. */
4782 static inline void
4783 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4785 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4787 attr->dw_attr_next = NULL;
4788 attr->dw_attr = attr_kind;
4789 attr->dw_attr_val.val_class = dw_val_class_addr;
4790 attr->dw_attr_val.v.val_addr = addr;
4791 add_dwarf_attr (die, attr);
4794 static inline rtx
4795 AT_addr (dw_attr_ref a)
4797 if (a && AT_class (a) == dw_val_class_addr)
4798 return a->dw_attr_val.v.val_addr;
4800 abort ();
4803 /* Add a label identifier attribute value to a DIE. */
4805 static inline void
4806 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4808 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4810 attr->dw_attr_next = NULL;
4811 attr->dw_attr = attr_kind;
4812 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4813 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4814 add_dwarf_attr (die, attr);
4817 /* Add a section offset attribute value to a DIE. */
4819 static inline void
4820 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4822 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4824 attr->dw_attr_next = NULL;
4825 attr->dw_attr = attr_kind;
4826 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4827 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4828 add_dwarf_attr (die, attr);
4831 /* Add an offset attribute value to a DIE. */
4833 static inline void
4834 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4835 unsigned HOST_WIDE_INT offset)
4837 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4839 attr->dw_attr_next = NULL;
4840 attr->dw_attr = attr_kind;
4841 attr->dw_attr_val.val_class = dw_val_class_offset;
4842 attr->dw_attr_val.v.val_offset = offset;
4843 add_dwarf_attr (die, attr);
4846 /* Add an range_list attribute value to a DIE. */
4848 static void
4849 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4850 long unsigned int offset)
4852 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4854 attr->dw_attr_next = NULL;
4855 attr->dw_attr = attr_kind;
4856 attr->dw_attr_val.val_class = dw_val_class_range_list;
4857 attr->dw_attr_val.v.val_offset = offset;
4858 add_dwarf_attr (die, attr);
4861 static inline const char *
4862 AT_lbl (dw_attr_ref a)
4864 if (a && (AT_class (a) == dw_val_class_lbl_id
4865 || AT_class (a) == dw_val_class_lbl_offset))
4866 return a->dw_attr_val.v.val_lbl_id;
4868 abort ();
4871 /* Get the attribute of type attr_kind. */
4873 static dw_attr_ref
4874 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4876 dw_attr_ref a;
4877 dw_die_ref spec = NULL;
4879 if (die != NULL)
4881 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4882 if (a->dw_attr == attr_kind)
4883 return a;
4884 else if (a->dw_attr == DW_AT_specification
4885 || a->dw_attr == DW_AT_abstract_origin)
4886 spec = AT_ref (a);
4888 if (spec)
4889 return get_AT (spec, attr_kind);
4892 return NULL;
4895 /* Return the "low pc" attribute value, typically associated with a subprogram
4896 DIE. Return null if the "low pc" attribute is either not present, or if it
4897 cannot be represented as an assembler label identifier. */
4899 static inline const char *
4900 get_AT_low_pc (dw_die_ref die)
4902 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4904 return a ? AT_lbl (a) : NULL;
4907 /* Return the "high pc" attribute value, typically associated with a subprogram
4908 DIE. Return null if the "high pc" attribute is either not present, or if it
4909 cannot be represented as an assembler label identifier. */
4911 static inline const char *
4912 get_AT_hi_pc (dw_die_ref die)
4914 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4916 return a ? AT_lbl (a) : NULL;
4919 /* Return the value of the string attribute designated by ATTR_KIND, or
4920 NULL if it is not present. */
4922 static inline const char *
4923 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4925 dw_attr_ref a = get_AT (die, attr_kind);
4927 return a ? AT_string (a) : NULL;
4930 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4931 if it is not present. */
4933 static inline int
4934 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4936 dw_attr_ref a = get_AT (die, attr_kind);
4938 return a ? AT_flag (a) : 0;
4941 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4942 if it is not present. */
4944 static inline unsigned
4945 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4947 dw_attr_ref a = get_AT (die, attr_kind);
4949 return a ? AT_unsigned (a) : 0;
4952 static inline dw_die_ref
4953 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4955 dw_attr_ref a = get_AT (die, attr_kind);
4957 return a ? AT_ref (a) : NULL;
4960 /* Return TRUE if the language is C or C++. */
4962 static inline bool
4963 is_c_family (void)
4965 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4967 return (lang == DW_LANG_C || lang == DW_LANG_C89
4968 || lang == DW_LANG_C_plus_plus);
4971 /* Return TRUE if the language is C++. */
4973 static inline bool
4974 is_cxx (void)
4976 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4977 == DW_LANG_C_plus_plus);
4980 /* Return TRUE if the language is Fortran. */
4982 static inline bool
4983 is_fortran (void)
4985 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4987 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4990 /* Return TRUE if the language is Java. */
4992 static inline bool
4993 is_java (void)
4995 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4997 return lang == DW_LANG_Java;
5000 /* Return TRUE if the language is Ada. */
5002 static inline bool
5003 is_ada (void)
5005 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5007 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5010 /* Free up the memory used by A. */
5012 static inline void free_AT (dw_attr_ref);
5013 static inline void
5014 free_AT (dw_attr_ref a)
5016 if (AT_class (a) == dw_val_class_str)
5017 if (a->dw_attr_val.v.val_str->refcount)
5018 a->dw_attr_val.v.val_str->refcount--;
5021 /* Remove the specified attribute if present. */
5023 static void
5024 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5026 dw_attr_ref *p;
5027 dw_attr_ref removed = NULL;
5029 if (die != NULL)
5031 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5032 if ((*p)->dw_attr == attr_kind)
5034 removed = *p;
5035 *p = (*p)->dw_attr_next;
5036 break;
5039 if (removed != 0)
5040 free_AT (removed);
5044 /* Free up the memory used by DIE. */
5046 static inline void
5047 free_die (dw_die_ref die)
5049 remove_children (die);
5052 /* Discard the children of this DIE. */
5054 static void
5055 remove_children (dw_die_ref die)
5057 dw_die_ref child_die = die->die_child;
5059 die->die_child = NULL;
5061 while (child_die != NULL)
5063 dw_die_ref tmp_die = child_die;
5064 dw_attr_ref a;
5066 child_die = child_die->die_sib;
5068 for (a = tmp_die->die_attr; a != NULL;)
5070 dw_attr_ref tmp_a = a;
5072 a = a->dw_attr_next;
5073 free_AT (tmp_a);
5076 free_die (tmp_die);
5080 /* Add a child DIE below its parent. We build the lists up in reverse
5081 addition order, and correct that in reverse_all_dies. */
5083 static inline void
5084 add_child_die (dw_die_ref die, dw_die_ref child_die)
5086 if (die != NULL && child_die != NULL)
5088 if (die == child_die)
5089 abort ();
5091 child_die->die_parent = die;
5092 child_die->die_sib = die->die_child;
5093 die->die_child = child_die;
5097 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5098 is the specification, to the front of PARENT's list of children. */
5100 static void
5101 splice_child_die (dw_die_ref parent, dw_die_ref child)
5103 dw_die_ref *p;
5105 /* We want the declaration DIE from inside the class, not the
5106 specification DIE at toplevel. */
5107 if (child->die_parent != parent)
5109 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5111 if (tmp)
5112 child = tmp;
5115 if (child->die_parent != parent
5116 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5117 abort ();
5119 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5120 if (*p == child)
5122 *p = child->die_sib;
5123 break;
5126 child->die_parent = parent;
5127 child->die_sib = parent->die_child;
5128 parent->die_child = child;
5131 /* Return a pointer to a newly created DIE node. */
5133 static inline dw_die_ref
5134 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5136 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5138 die->die_tag = tag_value;
5140 if (parent_die != NULL)
5141 add_child_die (parent_die, die);
5142 else
5144 limbo_die_node *limbo_node;
5146 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5147 limbo_node->die = die;
5148 limbo_node->created_for = t;
5149 limbo_node->next = limbo_die_list;
5150 limbo_die_list = limbo_node;
5153 return die;
5156 /* Return the DIE associated with the given type specifier. */
5158 static inline dw_die_ref
5159 lookup_type_die (tree type)
5161 return TYPE_SYMTAB_DIE (type);
5164 /* Equate a DIE to a given type specifier. */
5166 static inline void
5167 equate_type_number_to_die (tree type, dw_die_ref type_die)
5169 TYPE_SYMTAB_DIE (type) = type_die;
5172 /* Return the DIE associated with a given declaration. */
5174 static inline dw_die_ref
5175 lookup_decl_die (tree decl)
5177 unsigned decl_id = DECL_UID (decl);
5179 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5182 /* Equate a DIE to a particular declaration. */
5184 static void
5185 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5187 unsigned int decl_id = DECL_UID (decl);
5188 unsigned int num_allocated;
5190 if (decl_id >= decl_die_table_allocated)
5192 num_allocated
5193 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5194 / DECL_DIE_TABLE_INCREMENT)
5195 * DECL_DIE_TABLE_INCREMENT;
5197 decl_die_table = ggc_realloc (decl_die_table,
5198 sizeof (dw_die_ref) * num_allocated);
5200 memset (&decl_die_table[decl_die_table_allocated], 0,
5201 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5202 decl_die_table_allocated = num_allocated;
5205 if (decl_id >= decl_die_table_in_use)
5206 decl_die_table_in_use = (decl_id + 1);
5208 decl_die_table[decl_id] = decl_die;
5211 /* Keep track of the number of spaces used to indent the
5212 output of the debugging routines that print the structure of
5213 the DIE internal representation. */
5214 static int print_indent;
5216 /* Indent the line the number of spaces given by print_indent. */
5218 static inline void
5219 print_spaces (FILE *outfile)
5221 fprintf (outfile, "%*s", print_indent, "");
5224 /* Print the information associated with a given DIE, and its children.
5225 This routine is a debugging aid only. */
5227 static void
5228 print_die (dw_die_ref die, FILE *outfile)
5230 dw_attr_ref a;
5231 dw_die_ref c;
5233 print_spaces (outfile);
5234 fprintf (outfile, "DIE %4lu: %s\n",
5235 die->die_offset, dwarf_tag_name (die->die_tag));
5236 print_spaces (outfile);
5237 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5238 fprintf (outfile, " offset: %lu\n", die->die_offset);
5240 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5242 print_spaces (outfile);
5243 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5245 switch (AT_class (a))
5247 case dw_val_class_addr:
5248 fprintf (outfile, "address");
5249 break;
5250 case dw_val_class_offset:
5251 fprintf (outfile, "offset");
5252 break;
5253 case dw_val_class_loc:
5254 fprintf (outfile, "location descriptor");
5255 break;
5256 case dw_val_class_loc_list:
5257 fprintf (outfile, "location list -> label:%s",
5258 AT_loc_list (a)->ll_symbol);
5259 break;
5260 case dw_val_class_range_list:
5261 fprintf (outfile, "range list");
5262 break;
5263 case dw_val_class_const:
5264 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5265 break;
5266 case dw_val_class_unsigned_const:
5267 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5268 break;
5269 case dw_val_class_long_long:
5270 fprintf (outfile, "constant (%lu,%lu)",
5271 a->dw_attr_val.v.val_long_long.hi,
5272 a->dw_attr_val.v.val_long_long.low);
5273 break;
5274 case dw_val_class_float:
5275 fprintf (outfile, "floating-point constant");
5276 break;
5277 case dw_val_class_flag:
5278 fprintf (outfile, "%u", AT_flag (a));
5279 break;
5280 case dw_val_class_die_ref:
5281 if (AT_ref (a) != NULL)
5283 if (AT_ref (a)->die_symbol)
5284 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5285 else
5286 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5288 else
5289 fprintf (outfile, "die -> <null>");
5290 break;
5291 case dw_val_class_lbl_id:
5292 case dw_val_class_lbl_offset:
5293 fprintf (outfile, "label: %s", AT_lbl (a));
5294 break;
5295 case dw_val_class_str:
5296 if (AT_string (a) != NULL)
5297 fprintf (outfile, "\"%s\"", AT_string (a));
5298 else
5299 fprintf (outfile, "<null>");
5300 break;
5301 default:
5302 break;
5305 fprintf (outfile, "\n");
5308 if (die->die_child != NULL)
5310 print_indent += 4;
5311 for (c = die->die_child; c != NULL; c = c->die_sib)
5312 print_die (c, outfile);
5314 print_indent -= 4;
5316 if (print_indent == 0)
5317 fprintf (outfile, "\n");
5320 /* Print the contents of the source code line number correspondence table.
5321 This routine is a debugging aid only. */
5323 static void
5324 print_dwarf_line_table (FILE *outfile)
5326 unsigned i;
5327 dw_line_info_ref line_info;
5329 fprintf (outfile, "\n\nDWARF source line information\n");
5330 for (i = 1; i < line_info_table_in_use; i++)
5332 line_info = &line_info_table[i];
5333 fprintf (outfile, "%5d: ", i);
5334 fprintf (outfile, "%-20s",
5335 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5336 fprintf (outfile, "%6ld", line_info->dw_line_num);
5337 fprintf (outfile, "\n");
5340 fprintf (outfile, "\n\n");
5343 /* Print the information collected for a given DIE. */
5345 void
5346 debug_dwarf_die (dw_die_ref die)
5348 print_die (die, stderr);
5351 /* Print all DWARF information collected for the compilation unit.
5352 This routine is a debugging aid only. */
5354 void
5355 debug_dwarf (void)
5357 print_indent = 0;
5358 print_die (comp_unit_die, stderr);
5359 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5360 print_dwarf_line_table (stderr);
5363 /* We build up the lists of children and attributes by pushing new ones
5364 onto the beginning of the list. Reverse the lists for DIE so that
5365 they are in order of addition. */
5367 static void
5368 reverse_die_lists (dw_die_ref die)
5370 dw_die_ref c, cp, cn;
5371 dw_attr_ref a, ap, an;
5373 for (a = die->die_attr, ap = 0; a; a = an)
5375 an = a->dw_attr_next;
5376 a->dw_attr_next = ap;
5377 ap = a;
5380 die->die_attr = ap;
5382 for (c = die->die_child, cp = 0; c; c = cn)
5384 cn = c->die_sib;
5385 c->die_sib = cp;
5386 cp = c;
5389 die->die_child = cp;
5392 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5393 reverse all dies in add_sibling_attributes, which runs through all the dies,
5394 it would reverse all the dies. Now, however, since we don't call
5395 reverse_die_lists in add_sibling_attributes, we need a routine to
5396 recursively reverse all the dies. This is that routine. */
5398 static void
5399 reverse_all_dies (dw_die_ref die)
5401 dw_die_ref c;
5403 reverse_die_lists (die);
5405 for (c = die->die_child; c; c = c->die_sib)
5406 reverse_all_dies (c);
5409 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5410 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5411 DIE that marks the start of the DIEs for this include file. */
5413 static dw_die_ref
5414 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5416 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5417 dw_die_ref new_unit = gen_compile_unit_die (filename);
5419 new_unit->die_sib = old_unit;
5420 return new_unit;
5423 /* Close an include-file CU and reopen the enclosing one. */
5425 static dw_die_ref
5426 pop_compile_unit (dw_die_ref old_unit)
5428 dw_die_ref new_unit = old_unit->die_sib;
5430 old_unit->die_sib = NULL;
5431 return new_unit;
5434 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5435 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5437 /* Calculate the checksum of a location expression. */
5439 static inline void
5440 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5442 CHECKSUM (loc->dw_loc_opc);
5443 CHECKSUM (loc->dw_loc_oprnd1);
5444 CHECKSUM (loc->dw_loc_oprnd2);
5447 /* Calculate the checksum of an attribute. */
5449 static void
5450 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5452 dw_loc_descr_ref loc;
5453 rtx r;
5455 CHECKSUM (at->dw_attr);
5457 /* We don't care about differences in file numbering. */
5458 if (at->dw_attr == DW_AT_decl_file
5459 /* Or that this was compiled with a different compiler snapshot; if
5460 the output is the same, that's what matters. */
5461 || at->dw_attr == DW_AT_producer)
5462 return;
5464 switch (AT_class (at))
5466 case dw_val_class_const:
5467 CHECKSUM (at->dw_attr_val.v.val_int);
5468 break;
5469 case dw_val_class_unsigned_const:
5470 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5471 break;
5472 case dw_val_class_long_long:
5473 CHECKSUM (at->dw_attr_val.v.val_long_long);
5474 break;
5475 case dw_val_class_float:
5476 CHECKSUM (at->dw_attr_val.v.val_float);
5477 break;
5478 case dw_val_class_flag:
5479 CHECKSUM (at->dw_attr_val.v.val_flag);
5480 break;
5481 case dw_val_class_str:
5482 CHECKSUM_STRING (AT_string (at));
5483 break;
5485 case dw_val_class_addr:
5486 r = AT_addr (at);
5487 switch (GET_CODE (r))
5489 case SYMBOL_REF:
5490 CHECKSUM_STRING (XSTR (r, 0));
5491 break;
5493 default:
5494 abort ();
5496 break;
5498 case dw_val_class_offset:
5499 CHECKSUM (at->dw_attr_val.v.val_offset);
5500 break;
5502 case dw_val_class_loc:
5503 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5504 loc_checksum (loc, ctx);
5505 break;
5507 case dw_val_class_die_ref:
5508 die_checksum (AT_ref (at), ctx, mark);
5509 break;
5511 case dw_val_class_fde_ref:
5512 case dw_val_class_lbl_id:
5513 case dw_val_class_lbl_offset:
5514 break;
5516 default:
5517 break;
5521 /* Calculate the checksum of a DIE. */
5523 static void
5524 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5526 dw_die_ref c;
5527 dw_attr_ref a;
5529 /* To avoid infinite recursion. */
5530 if (die->die_mark)
5532 CHECKSUM (die->die_mark);
5533 return;
5535 die->die_mark = ++(*mark);
5537 CHECKSUM (die->die_tag);
5539 for (a = die->die_attr; a; a = a->dw_attr_next)
5540 attr_checksum (a, ctx, mark);
5542 for (c = die->die_child; c; c = c->die_sib)
5543 die_checksum (c, ctx, mark);
5546 #undef CHECKSUM
5547 #undef CHECKSUM_STRING
5549 /* Do the location expressions look same? */
5550 static inline int
5551 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5553 return loc1->dw_loc_opc == loc2->dw_loc_opc
5554 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5555 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5558 /* Do the values look the same? */
5559 static int
5560 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5562 dw_loc_descr_ref loc1, loc2;
5563 rtx r1, r2;
5564 unsigned i;
5566 if (v1->val_class != v2->val_class)
5567 return 0;
5569 switch (v1->val_class)
5571 case dw_val_class_const:
5572 return v1->v.val_int == v2->v.val_int;
5573 case dw_val_class_unsigned_const:
5574 return v1->v.val_unsigned == v2->v.val_unsigned;
5575 case dw_val_class_long_long:
5576 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5577 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5578 case dw_val_class_float:
5579 if (v1->v.val_float.length != v2->v.val_float.length)
5580 return 0;
5581 for (i = 0; i < v1->v.val_float.length; i++)
5582 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5583 return 0;
5584 return 1;
5585 case dw_val_class_flag:
5586 return v1->v.val_flag == v2->v.val_flag;
5587 case dw_val_class_str:
5588 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5590 case dw_val_class_addr:
5591 r1 = v1->v.val_addr;
5592 r2 = v2->v.val_addr;
5593 if (GET_CODE (r1) != GET_CODE (r2))
5594 return 0;
5595 switch (GET_CODE (r1))
5597 case SYMBOL_REF:
5598 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5600 default:
5601 abort ();
5604 case dw_val_class_offset:
5605 return v1->v.val_offset == v2->v.val_offset;
5607 case dw_val_class_loc:
5608 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5609 loc1 && loc2;
5610 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5611 if (!same_loc_p (loc1, loc2, mark))
5612 return 0;
5613 return !loc1 && !loc2;
5615 case dw_val_class_die_ref:
5616 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5618 case dw_val_class_fde_ref:
5619 case dw_val_class_lbl_id:
5620 case dw_val_class_lbl_offset:
5621 return 1;
5623 default:
5624 return 1;
5628 /* Do the attributes look the same? */
5630 static int
5631 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5633 if (at1->dw_attr != at2->dw_attr)
5634 return 0;
5636 /* We don't care about differences in file numbering. */
5637 if (at1->dw_attr == DW_AT_decl_file
5638 /* Or that this was compiled with a different compiler snapshot; if
5639 the output is the same, that's what matters. */
5640 || at1->dw_attr == DW_AT_producer)
5641 return 1;
5643 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5646 /* Do the dies look the same? */
5648 static int
5649 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5651 dw_die_ref c1, c2;
5652 dw_attr_ref a1, a2;
5654 /* To avoid infinite recursion. */
5655 if (die1->die_mark)
5656 return die1->die_mark == die2->die_mark;
5657 die1->die_mark = die2->die_mark = ++(*mark);
5659 if (die1->die_tag != die2->die_tag)
5660 return 0;
5662 for (a1 = die1->die_attr, a2 = die2->die_attr;
5663 a1 && a2;
5664 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5665 if (!same_attr_p (a1, a2, mark))
5666 return 0;
5667 if (a1 || a2)
5668 return 0;
5670 for (c1 = die1->die_child, c2 = die2->die_child;
5671 c1 && c2;
5672 c1 = c1->die_sib, c2 = c2->die_sib)
5673 if (!same_die_p (c1, c2, mark))
5674 return 0;
5675 if (c1 || c2)
5676 return 0;
5678 return 1;
5681 /* Do the dies look the same? Wrapper around same_die_p. */
5683 static int
5684 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5686 int mark = 0;
5687 int ret = same_die_p (die1, die2, &mark);
5689 unmark_all_dies (die1);
5690 unmark_all_dies (die2);
5692 return ret;
5695 /* The prefix to attach to symbols on DIEs in the current comdat debug
5696 info section. */
5697 static char *comdat_symbol_id;
5699 /* The index of the current symbol within the current comdat CU. */
5700 static unsigned int comdat_symbol_number;
5702 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5703 children, and set comdat_symbol_id accordingly. */
5705 static void
5706 compute_section_prefix (dw_die_ref unit_die)
5708 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5709 const char *base = die_name ? lbasename (die_name) : "anonymous";
5710 char *name = alloca (strlen (base) + 64);
5711 char *p;
5712 int i, mark;
5713 unsigned char checksum[16];
5714 struct md5_ctx ctx;
5716 /* Compute the checksum of the DIE, then append part of it as hex digits to
5717 the name filename of the unit. */
5719 md5_init_ctx (&ctx);
5720 mark = 0;
5721 die_checksum (unit_die, &ctx, &mark);
5722 unmark_all_dies (unit_die);
5723 md5_finish_ctx (&ctx, checksum);
5725 sprintf (name, "%s.", base);
5726 clean_symbol_name (name);
5728 p = name + strlen (name);
5729 for (i = 0; i < 4; i++)
5731 sprintf (p, "%.2x", checksum[i]);
5732 p += 2;
5735 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5736 comdat_symbol_number = 0;
5739 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5741 static int
5742 is_type_die (dw_die_ref die)
5744 switch (die->die_tag)
5746 case DW_TAG_array_type:
5747 case DW_TAG_class_type:
5748 case DW_TAG_enumeration_type:
5749 case DW_TAG_pointer_type:
5750 case DW_TAG_reference_type:
5751 case DW_TAG_string_type:
5752 case DW_TAG_structure_type:
5753 case DW_TAG_subroutine_type:
5754 case DW_TAG_union_type:
5755 case DW_TAG_ptr_to_member_type:
5756 case DW_TAG_set_type:
5757 case DW_TAG_subrange_type:
5758 case DW_TAG_base_type:
5759 case DW_TAG_const_type:
5760 case DW_TAG_file_type:
5761 case DW_TAG_packed_type:
5762 case DW_TAG_volatile_type:
5763 case DW_TAG_typedef:
5764 return 1;
5765 default:
5766 return 0;
5770 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5771 Basically, we want to choose the bits that are likely to be shared between
5772 compilations (types) and leave out the bits that are specific to individual
5773 compilations (functions). */
5775 static int
5776 is_comdat_die (dw_die_ref c)
5778 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5779 we do for stabs. The advantage is a greater likelihood of sharing between
5780 objects that don't include headers in the same order (and therefore would
5781 put the base types in a different comdat). jason 8/28/00 */
5783 if (c->die_tag == DW_TAG_base_type)
5784 return 0;
5786 if (c->die_tag == DW_TAG_pointer_type
5787 || c->die_tag == DW_TAG_reference_type
5788 || c->die_tag == DW_TAG_const_type
5789 || c->die_tag == DW_TAG_volatile_type)
5791 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5793 return t ? is_comdat_die (t) : 0;
5796 return is_type_die (c);
5799 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5800 compilation unit. */
5802 static int
5803 is_symbol_die (dw_die_ref c)
5805 return (is_type_die (c)
5806 || (get_AT (c, DW_AT_declaration)
5807 && !get_AT (c, DW_AT_specification)));
5810 static char *
5811 gen_internal_sym (const char *prefix)
5813 char buf[256];
5815 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5816 return xstrdup (buf);
5819 /* Assign symbols to all worthy DIEs under DIE. */
5821 static void
5822 assign_symbol_names (dw_die_ref die)
5824 dw_die_ref c;
5826 if (is_symbol_die (die))
5828 if (comdat_symbol_id)
5830 char *p = alloca (strlen (comdat_symbol_id) + 64);
5832 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5833 comdat_symbol_id, comdat_symbol_number++);
5834 die->die_symbol = xstrdup (p);
5836 else
5837 die->die_symbol = gen_internal_sym ("LDIE");
5840 for (c = die->die_child; c != NULL; c = c->die_sib)
5841 assign_symbol_names (c);
5844 struct cu_hash_table_entry
5846 dw_die_ref cu;
5847 unsigned min_comdat_num, max_comdat_num;
5848 struct cu_hash_table_entry *next;
5851 /* Routines to manipulate hash table of CUs. */
5852 static hashval_t
5853 htab_cu_hash (const void *of)
5855 const struct cu_hash_table_entry *entry = of;
5857 return htab_hash_string (entry->cu->die_symbol);
5860 static int
5861 htab_cu_eq (const void *of1, const void *of2)
5863 const struct cu_hash_table_entry *entry1 = of1;
5864 const struct die_struct *entry2 = of2;
5866 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5869 static void
5870 htab_cu_del (void *what)
5872 struct cu_hash_table_entry *next, *entry = what;
5874 while (entry)
5876 next = entry->next;
5877 free (entry);
5878 entry = next;
5882 /* Check whether we have already seen this CU and set up SYM_NUM
5883 accordingly. */
5884 static int
5885 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5887 struct cu_hash_table_entry dummy;
5888 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5890 dummy.max_comdat_num = 0;
5892 slot = (struct cu_hash_table_entry **)
5893 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5894 INSERT);
5895 entry = *slot;
5897 for (; entry; last = entry, entry = entry->next)
5899 if (same_die_p_wrap (cu, entry->cu))
5900 break;
5903 if (entry)
5905 *sym_num = entry->min_comdat_num;
5906 return 1;
5909 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5910 entry->cu = cu;
5911 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5912 entry->next = *slot;
5913 *slot = entry;
5915 return 0;
5918 /* Record SYM_NUM to record of CU in HTABLE. */
5919 static void
5920 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5922 struct cu_hash_table_entry **slot, *entry;
5924 slot = (struct cu_hash_table_entry **)
5925 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5926 NO_INSERT);
5927 entry = *slot;
5929 entry->max_comdat_num = sym_num;
5932 /* Traverse the DIE (which is always comp_unit_die), and set up
5933 additional compilation units for each of the include files we see
5934 bracketed by BINCL/EINCL. */
5936 static void
5937 break_out_includes (dw_die_ref die)
5939 dw_die_ref *ptr;
5940 dw_die_ref unit = NULL;
5941 limbo_die_node *node, **pnode;
5942 htab_t cu_hash_table;
5944 for (ptr = &(die->die_child); *ptr;)
5946 dw_die_ref c = *ptr;
5948 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5949 || (unit && is_comdat_die (c)))
5951 /* This DIE is for a secondary CU; remove it from the main one. */
5952 *ptr = c->die_sib;
5954 if (c->die_tag == DW_TAG_GNU_BINCL)
5956 unit = push_new_compile_unit (unit, c);
5957 free_die (c);
5959 else if (c->die_tag == DW_TAG_GNU_EINCL)
5961 unit = pop_compile_unit (unit);
5962 free_die (c);
5964 else
5965 add_child_die (unit, c);
5967 else
5969 /* Leave this DIE in the main CU. */
5970 ptr = &(c->die_sib);
5971 continue;
5975 #if 0
5976 /* We can only use this in debugging, since the frontend doesn't check
5977 to make sure that we leave every include file we enter. */
5978 if (unit != NULL)
5979 abort ();
5980 #endif
5982 assign_symbol_names (die);
5983 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
5984 for (node = limbo_die_list, pnode = &limbo_die_list;
5985 node;
5986 node = node->next)
5988 int is_dupl;
5990 compute_section_prefix (node->die);
5991 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
5992 &comdat_symbol_number);
5993 assign_symbol_names (node->die);
5994 if (is_dupl)
5995 *pnode = node->next;
5996 else
5998 pnode = &node->next;
5999 record_comdat_symbol_number (node->die, cu_hash_table,
6000 comdat_symbol_number);
6003 htab_delete (cu_hash_table);
6006 /* Traverse the DIE and add a sibling attribute if it may have the
6007 effect of speeding up access to siblings. To save some space,
6008 avoid generating sibling attributes for DIE's without children. */
6010 static void
6011 add_sibling_attributes (dw_die_ref die)
6013 dw_die_ref c;
6015 if (die->die_tag != DW_TAG_compile_unit
6016 && die->die_sib && die->die_child != NULL)
6017 /* Add the sibling link to the front of the attribute list. */
6018 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6020 for (c = die->die_child; c != NULL; c = c->die_sib)
6021 add_sibling_attributes (c);
6024 /* Output all location lists for the DIE and its children. */
6026 static void
6027 output_location_lists (dw_die_ref die)
6029 dw_die_ref c;
6030 dw_attr_ref d_attr;
6032 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6033 if (AT_class (d_attr) == dw_val_class_loc_list)
6034 output_loc_list (AT_loc_list (d_attr));
6036 for (c = die->die_child; c != NULL; c = c->die_sib)
6037 output_location_lists (c);
6041 /* The format of each DIE (and its attribute value pairs) is encoded in an
6042 abbreviation table. This routine builds the abbreviation table and assigns
6043 a unique abbreviation id for each abbreviation entry. The children of each
6044 die are visited recursively. */
6046 static void
6047 build_abbrev_table (dw_die_ref die)
6049 unsigned long abbrev_id;
6050 unsigned int n_alloc;
6051 dw_die_ref c;
6052 dw_attr_ref d_attr, a_attr;
6054 /* Scan the DIE references, and mark as external any that refer to
6055 DIEs from other CUs (i.e. those which are not marked). */
6056 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6057 if (AT_class (d_attr) == dw_val_class_die_ref
6058 && AT_ref (d_attr)->die_mark == 0)
6060 if (AT_ref (d_attr)->die_symbol == 0)
6061 abort ();
6063 set_AT_ref_external (d_attr, 1);
6066 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6068 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6070 if (abbrev->die_tag == die->die_tag)
6072 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6074 a_attr = abbrev->die_attr;
6075 d_attr = die->die_attr;
6077 while (a_attr != NULL && d_attr != NULL)
6079 if ((a_attr->dw_attr != d_attr->dw_attr)
6080 || (value_format (a_attr) != value_format (d_attr)))
6081 break;
6083 a_attr = a_attr->dw_attr_next;
6084 d_attr = d_attr->dw_attr_next;
6087 if (a_attr == NULL && d_attr == NULL)
6088 break;
6093 if (abbrev_id >= abbrev_die_table_in_use)
6095 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6097 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6098 abbrev_die_table = ggc_realloc (abbrev_die_table,
6099 sizeof (dw_die_ref) * n_alloc);
6101 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6102 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6103 abbrev_die_table_allocated = n_alloc;
6106 ++abbrev_die_table_in_use;
6107 abbrev_die_table[abbrev_id] = die;
6110 die->die_abbrev = abbrev_id;
6111 for (c = die->die_child; c != NULL; c = c->die_sib)
6112 build_abbrev_table (c);
6115 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6117 static int
6118 constant_size (long unsigned int value)
6120 int log;
6122 if (value == 0)
6123 log = 0;
6124 else
6125 log = floor_log2 (value);
6127 log = log / 8;
6128 log = 1 << (floor_log2 (log) + 1);
6130 return log;
6133 /* Return the size of a DIE as it is represented in the
6134 .debug_info section. */
6136 static unsigned long
6137 size_of_die (dw_die_ref die)
6139 unsigned long size = 0;
6140 dw_attr_ref a;
6142 size += size_of_uleb128 (die->die_abbrev);
6143 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6145 switch (AT_class (a))
6147 case dw_val_class_addr:
6148 size += DWARF2_ADDR_SIZE;
6149 break;
6150 case dw_val_class_offset:
6151 size += DWARF_OFFSET_SIZE;
6152 break;
6153 case dw_val_class_loc:
6155 unsigned long lsize = size_of_locs (AT_loc (a));
6157 /* Block length. */
6158 size += constant_size (lsize);
6159 size += lsize;
6161 break;
6162 case dw_val_class_loc_list:
6163 size += DWARF_OFFSET_SIZE;
6164 break;
6165 case dw_val_class_range_list:
6166 size += DWARF_OFFSET_SIZE;
6167 break;
6168 case dw_val_class_const:
6169 size += size_of_sleb128 (AT_int (a));
6170 break;
6171 case dw_val_class_unsigned_const:
6172 size += constant_size (AT_unsigned (a));
6173 break;
6174 case dw_val_class_long_long:
6175 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6176 break;
6177 case dw_val_class_float:
6178 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6179 break;
6180 case dw_val_class_flag:
6181 size += 1;
6182 break;
6183 case dw_val_class_die_ref:
6184 if (AT_ref_external (a))
6185 size += DWARF2_ADDR_SIZE;
6186 else
6187 size += DWARF_OFFSET_SIZE;
6188 break;
6189 case dw_val_class_fde_ref:
6190 size += DWARF_OFFSET_SIZE;
6191 break;
6192 case dw_val_class_lbl_id:
6193 size += DWARF2_ADDR_SIZE;
6194 break;
6195 case dw_val_class_lbl_offset:
6196 size += DWARF_OFFSET_SIZE;
6197 break;
6198 case dw_val_class_str:
6199 if (AT_string_form (a) == DW_FORM_strp)
6200 size += DWARF_OFFSET_SIZE;
6201 else
6202 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6203 break;
6204 default:
6205 abort ();
6209 return size;
6212 /* Size the debugging information associated with a given DIE. Visits the
6213 DIE's children recursively. Updates the global variable next_die_offset, on
6214 each time through. Uses the current value of next_die_offset to update the
6215 die_offset field in each DIE. */
6217 static void
6218 calc_die_sizes (dw_die_ref die)
6220 dw_die_ref c;
6222 die->die_offset = next_die_offset;
6223 next_die_offset += size_of_die (die);
6225 for (c = die->die_child; c != NULL; c = c->die_sib)
6226 calc_die_sizes (c);
6228 if (die->die_child != NULL)
6229 /* Count the null byte used to terminate sibling lists. */
6230 next_die_offset += 1;
6233 /* Set the marks for a die and its children. We do this so
6234 that we know whether or not a reference needs to use FORM_ref_addr; only
6235 DIEs in the same CU will be marked. We used to clear out the offset
6236 and use that as the flag, but ran into ordering problems. */
6238 static void
6239 mark_dies (dw_die_ref die)
6241 dw_die_ref c;
6243 if (die->die_mark)
6244 abort ();
6246 die->die_mark = 1;
6247 for (c = die->die_child; c; c = c->die_sib)
6248 mark_dies (c);
6251 /* Clear the marks for a die and its children. */
6253 static void
6254 unmark_dies (dw_die_ref die)
6256 dw_die_ref c;
6258 if (!die->die_mark)
6259 abort ();
6261 die->die_mark = 0;
6262 for (c = die->die_child; c; c = c->die_sib)
6263 unmark_dies (c);
6266 /* Clear the marks for a die, its children and referred dies. */
6268 static void
6269 unmark_all_dies (dw_die_ref die)
6271 dw_die_ref c;
6272 dw_attr_ref a;
6274 if (!die->die_mark)
6275 return;
6276 die->die_mark = 0;
6278 for (c = die->die_child; c; c = c->die_sib)
6279 unmark_all_dies (c);
6281 for (a = die->die_attr; a; a = a->dw_attr_next)
6282 if (AT_class (a) == dw_val_class_die_ref)
6283 unmark_all_dies (AT_ref (a));
6286 /* Return the size of the .debug_pubnames table generated for the
6287 compilation unit. */
6289 static unsigned long
6290 size_of_pubnames (void)
6292 unsigned long size;
6293 unsigned i;
6295 size = DWARF_PUBNAMES_HEADER_SIZE;
6296 for (i = 0; i < pubname_table_in_use; i++)
6298 pubname_ref p = &pubname_table[i];
6299 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6302 size += DWARF_OFFSET_SIZE;
6303 return size;
6306 /* Return the size of the information in the .debug_aranges section. */
6308 static unsigned long
6309 size_of_aranges (void)
6311 unsigned long size;
6313 size = DWARF_ARANGES_HEADER_SIZE;
6315 /* Count the address/length pair for this compilation unit. */
6316 size += 2 * DWARF2_ADDR_SIZE;
6317 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6319 /* Count the two zero words used to terminated the address range table. */
6320 size += 2 * DWARF2_ADDR_SIZE;
6321 return size;
6324 /* Select the encoding of an attribute value. */
6326 static enum dwarf_form
6327 value_format (dw_attr_ref a)
6329 switch (a->dw_attr_val.val_class)
6331 case dw_val_class_addr:
6332 return DW_FORM_addr;
6333 case dw_val_class_range_list:
6334 case dw_val_class_offset:
6335 if (DWARF_OFFSET_SIZE == 4)
6336 return DW_FORM_data4;
6337 if (DWARF_OFFSET_SIZE == 8)
6338 return DW_FORM_data8;
6339 abort ();
6340 case dw_val_class_loc_list:
6341 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6342 .debug_loc section */
6343 return DW_FORM_data4;
6344 case dw_val_class_loc:
6345 switch (constant_size (size_of_locs (AT_loc (a))))
6347 case 1:
6348 return DW_FORM_block1;
6349 case 2:
6350 return DW_FORM_block2;
6351 default:
6352 abort ();
6354 case dw_val_class_const:
6355 return DW_FORM_sdata;
6356 case dw_val_class_unsigned_const:
6357 switch (constant_size (AT_unsigned (a)))
6359 case 1:
6360 return DW_FORM_data1;
6361 case 2:
6362 return DW_FORM_data2;
6363 case 4:
6364 return DW_FORM_data4;
6365 case 8:
6366 return DW_FORM_data8;
6367 default:
6368 abort ();
6370 case dw_val_class_long_long:
6371 return DW_FORM_block1;
6372 case dw_val_class_float:
6373 return DW_FORM_block1;
6374 case dw_val_class_flag:
6375 return DW_FORM_flag;
6376 case dw_val_class_die_ref:
6377 if (AT_ref_external (a))
6378 return DW_FORM_ref_addr;
6379 else
6380 return DW_FORM_ref;
6381 case dw_val_class_fde_ref:
6382 return DW_FORM_data;
6383 case dw_val_class_lbl_id:
6384 return DW_FORM_addr;
6385 case dw_val_class_lbl_offset:
6386 return DW_FORM_data;
6387 case dw_val_class_str:
6388 return AT_string_form (a);
6390 default:
6391 abort ();
6395 /* Output the encoding of an attribute value. */
6397 static void
6398 output_value_format (dw_attr_ref a)
6400 enum dwarf_form form = value_format (a);
6402 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6405 /* Output the .debug_abbrev section which defines the DIE abbreviation
6406 table. */
6408 static void
6409 output_abbrev_section (void)
6411 unsigned long abbrev_id;
6413 dw_attr_ref a_attr;
6415 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6417 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6419 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6420 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6421 dwarf_tag_name (abbrev->die_tag));
6423 if (abbrev->die_child != NULL)
6424 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6425 else
6426 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6428 for (a_attr = abbrev->die_attr; a_attr != NULL;
6429 a_attr = a_attr->dw_attr_next)
6431 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6432 dwarf_attr_name (a_attr->dw_attr));
6433 output_value_format (a_attr);
6436 dw2_asm_output_data (1, 0, NULL);
6437 dw2_asm_output_data (1, 0, NULL);
6440 /* Terminate the table. */
6441 dw2_asm_output_data (1, 0, NULL);
6444 /* Output a symbol we can use to refer to this DIE from another CU. */
6446 static inline void
6447 output_die_symbol (dw_die_ref die)
6449 char *sym = die->die_symbol;
6451 if (sym == 0)
6452 return;
6454 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6455 /* We make these global, not weak; if the target doesn't support
6456 .linkonce, it doesn't support combining the sections, so debugging
6457 will break. */
6458 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6460 ASM_OUTPUT_LABEL (asm_out_file, sym);
6463 /* Return a new location list, given the begin and end range, and the
6464 expression. gensym tells us whether to generate a new internal symbol for
6465 this location list node, which is done for the head of the list only. */
6467 static inline dw_loc_list_ref
6468 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6469 const char *section, unsigned int gensym)
6471 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6473 retlist->begin = begin;
6474 retlist->end = end;
6475 retlist->expr = expr;
6476 retlist->section = section;
6477 if (gensym)
6478 retlist->ll_symbol = gen_internal_sym ("LLST");
6480 return retlist;
6483 /* Add a location description expression to a location list. */
6485 static inline void
6486 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6487 const char *begin, const char *end,
6488 const char *section)
6490 dw_loc_list_ref *d;
6492 /* Find the end of the chain. */
6493 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6496 /* Add a new location list node to the list. */
6497 *d = new_loc_list (descr, begin, end, section, 0);
6500 /* Output the location list given to us. */
6502 static void
6503 output_loc_list (dw_loc_list_ref list_head)
6505 dw_loc_list_ref curr = list_head;
6507 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6509 /* ??? This shouldn't be needed now that we've forced the
6510 compilation unit base address to zero when there is code
6511 in more than one section. */
6512 if (strcmp (curr->section, ".text") == 0)
6514 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6515 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6516 "Location list base address specifier fake entry");
6517 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6518 "Location list base address specifier base");
6521 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6523 unsigned long size;
6525 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6526 "Location list begin address (%s)",
6527 list_head->ll_symbol);
6528 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6529 "Location list end address (%s)",
6530 list_head->ll_symbol);
6531 size = size_of_locs (curr->expr);
6533 /* Output the block length for this list of location operations. */
6534 if (size > 0xffff)
6535 abort ();
6536 dw2_asm_output_data (2, size, "%s", "Location expression size");
6538 output_loc_sequence (curr->expr);
6541 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6542 "Location list terminator begin (%s)",
6543 list_head->ll_symbol);
6544 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6545 "Location list terminator end (%s)",
6546 list_head->ll_symbol);
6549 /* Output the DIE and its attributes. Called recursively to generate
6550 the definitions of each child DIE. */
6552 static void
6553 output_die (dw_die_ref die)
6555 dw_attr_ref a;
6556 dw_die_ref c;
6557 unsigned long size;
6559 /* If someone in another CU might refer to us, set up a symbol for
6560 them to point to. */
6561 if (die->die_symbol)
6562 output_die_symbol (die);
6564 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6565 die->die_offset, dwarf_tag_name (die->die_tag));
6567 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6569 const char *name = dwarf_attr_name (a->dw_attr);
6571 switch (AT_class (a))
6573 case dw_val_class_addr:
6574 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6575 break;
6577 case dw_val_class_offset:
6578 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6579 "%s", name);
6580 break;
6582 case dw_val_class_range_list:
6584 char *p = strchr (ranges_section_label, '\0');
6586 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6587 a->dw_attr_val.v.val_offset);
6588 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6589 "%s", name);
6590 *p = '\0';
6592 break;
6594 case dw_val_class_loc:
6595 size = size_of_locs (AT_loc (a));
6597 /* Output the block length for this list of location operations. */
6598 dw2_asm_output_data (constant_size (size), size, "%s", name);
6600 output_loc_sequence (AT_loc (a));
6601 break;
6603 case dw_val_class_const:
6604 /* ??? It would be slightly more efficient to use a scheme like is
6605 used for unsigned constants below, but gdb 4.x does not sign
6606 extend. Gdb 5.x does sign extend. */
6607 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6608 break;
6610 case dw_val_class_unsigned_const:
6611 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6612 AT_unsigned (a), "%s", name);
6613 break;
6615 case dw_val_class_long_long:
6617 unsigned HOST_WIDE_INT first, second;
6619 dw2_asm_output_data (1,
6620 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6621 "%s", name);
6623 if (WORDS_BIG_ENDIAN)
6625 first = a->dw_attr_val.v.val_long_long.hi;
6626 second = a->dw_attr_val.v.val_long_long.low;
6628 else
6630 first = a->dw_attr_val.v.val_long_long.low;
6631 second = a->dw_attr_val.v.val_long_long.hi;
6634 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6635 first, "long long constant");
6636 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6637 second, NULL);
6639 break;
6641 case dw_val_class_float:
6643 unsigned int i;
6645 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6646 "%s", name);
6648 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6649 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6650 "fp constant word %u", i);
6651 break;
6654 case dw_val_class_flag:
6655 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6656 break;
6658 case dw_val_class_loc_list:
6660 char *sym = AT_loc_list (a)->ll_symbol;
6662 if (sym == 0)
6663 abort ();
6664 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6665 loc_section_label, "%s", name);
6667 break;
6669 case dw_val_class_die_ref:
6670 if (AT_ref_external (a))
6672 char *sym = AT_ref (a)->die_symbol;
6674 if (sym == 0)
6675 abort ();
6676 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6678 else if (AT_ref (a)->die_offset == 0)
6679 abort ();
6680 else
6681 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6682 "%s", name);
6683 break;
6685 case dw_val_class_fde_ref:
6687 char l1[20];
6689 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6690 a->dw_attr_val.v.val_fde_index * 2);
6691 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6693 break;
6695 case dw_val_class_lbl_id:
6696 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6697 break;
6699 case dw_val_class_lbl_offset:
6700 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6701 break;
6703 case dw_val_class_str:
6704 if (AT_string_form (a) == DW_FORM_strp)
6705 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6706 a->dw_attr_val.v.val_str->label,
6707 "%s: \"%s\"", name, AT_string (a));
6708 else
6709 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6710 break;
6712 default:
6713 abort ();
6717 for (c = die->die_child; c != NULL; c = c->die_sib)
6718 output_die (c);
6720 /* Add null byte to terminate sibling list. */
6721 if (die->die_child != NULL)
6722 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6723 die->die_offset);
6726 /* Output the compilation unit that appears at the beginning of the
6727 .debug_info section, and precedes the DIE descriptions. */
6729 static void
6730 output_compilation_unit_header (void)
6732 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6733 dw2_asm_output_data (4, 0xffffffff,
6734 "Initial length escape value indicating 64-bit DWARF extension");
6735 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6736 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6737 "Length of Compilation Unit Info");
6738 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6739 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6740 "Offset Into Abbrev. Section");
6741 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6744 /* Output the compilation unit DIE and its children. */
6746 static void
6747 output_comp_unit (dw_die_ref die, int output_if_empty)
6749 const char *secname;
6750 char *oldsym, *tmp;
6752 /* Unless we are outputting main CU, we may throw away empty ones. */
6753 if (!output_if_empty && die->die_child == NULL)
6754 return;
6756 /* Even if there are no children of this DIE, we must output the information
6757 about the compilation unit. Otherwise, on an empty translation unit, we
6758 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6759 will then complain when examining the file. First mark all the DIEs in
6760 this CU so we know which get local refs. */
6761 mark_dies (die);
6763 build_abbrev_table (die);
6765 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6766 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6767 calc_die_sizes (die);
6769 oldsym = die->die_symbol;
6770 if (oldsym)
6772 tmp = alloca (strlen (oldsym) + 24);
6774 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6775 secname = tmp;
6776 die->die_symbol = NULL;
6778 else
6779 secname = (const char *) DEBUG_INFO_SECTION;
6781 /* Output debugging information. */
6782 named_section_flags (secname, SECTION_DEBUG);
6783 output_compilation_unit_header ();
6784 output_die (die);
6786 /* Leave the marks on the main CU, so we can check them in
6787 output_pubnames. */
6788 if (oldsym)
6790 unmark_dies (die);
6791 die->die_symbol = oldsym;
6795 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6796 output of lang_hooks.decl_printable_name for C++ looks like
6797 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6799 static const char *
6800 dwarf2_name (tree decl, int scope)
6802 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6805 /* Add a new entry to .debug_pubnames if appropriate. */
6807 static void
6808 add_pubname (tree decl, dw_die_ref die)
6810 pubname_ref p;
6812 if (! TREE_PUBLIC (decl))
6813 return;
6815 if (pubname_table_in_use == pubname_table_allocated)
6817 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6818 pubname_table
6819 = ggc_realloc (pubname_table,
6820 (pubname_table_allocated * sizeof (pubname_entry)));
6821 memset (pubname_table + pubname_table_in_use, 0,
6822 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6825 p = &pubname_table[pubname_table_in_use++];
6826 p->die = die;
6827 p->name = xstrdup (dwarf2_name (decl, 1));
6830 /* Output the public names table used to speed up access to externally
6831 visible names. For now, only generate entries for externally
6832 visible procedures. */
6834 static void
6835 output_pubnames (void)
6837 unsigned i;
6838 unsigned long pubnames_length = size_of_pubnames ();
6840 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6841 dw2_asm_output_data (4, 0xffffffff,
6842 "Initial length escape value indicating 64-bit DWARF extension");
6843 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6844 "Length of Public Names Info");
6845 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6846 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6847 "Offset of Compilation Unit Info");
6848 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6849 "Compilation Unit Length");
6851 for (i = 0; i < pubname_table_in_use; i++)
6853 pubname_ref pub = &pubname_table[i];
6855 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6856 if (pub->die->die_mark == 0)
6857 abort ();
6859 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6860 "DIE offset");
6862 dw2_asm_output_nstring (pub->name, -1, "external name");
6865 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6868 /* Add a new entry to .debug_aranges if appropriate. */
6870 static void
6871 add_arange (tree decl, dw_die_ref die)
6873 if (! DECL_SECTION_NAME (decl))
6874 return;
6876 if (arange_table_in_use == arange_table_allocated)
6878 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6879 arange_table = ggc_realloc (arange_table,
6880 (arange_table_allocated
6881 * sizeof (dw_die_ref)));
6882 memset (arange_table + arange_table_in_use, 0,
6883 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6886 arange_table[arange_table_in_use++] = die;
6889 /* Output the information that goes into the .debug_aranges table.
6890 Namely, define the beginning and ending address range of the
6891 text section generated for this compilation unit. */
6893 static void
6894 output_aranges (void)
6896 unsigned i;
6897 unsigned long aranges_length = size_of_aranges ();
6899 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6900 dw2_asm_output_data (4, 0xffffffff,
6901 "Initial length escape value indicating 64-bit DWARF extension");
6902 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6903 "Length of Address Ranges Info");
6904 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6905 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6906 "Offset of Compilation Unit Info");
6907 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6908 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6910 /* We need to align to twice the pointer size here. */
6911 if (DWARF_ARANGES_PAD_SIZE)
6913 /* Pad using a 2 byte words so that padding is correct for any
6914 pointer size. */
6915 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6916 2 * DWARF2_ADDR_SIZE);
6917 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6918 dw2_asm_output_data (2, 0, NULL);
6921 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6922 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6923 text_section_label, "Length");
6925 for (i = 0; i < arange_table_in_use; i++)
6927 dw_die_ref die = arange_table[i];
6929 /* We shouldn't see aranges for DIEs outside of the main CU. */
6930 if (die->die_mark == 0)
6931 abort ();
6933 if (die->die_tag == DW_TAG_subprogram)
6935 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6936 "Address");
6937 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6938 get_AT_low_pc (die), "Length");
6940 else
6942 /* A static variable; extract the symbol from DW_AT_location.
6943 Note that this code isn't currently hit, as we only emit
6944 aranges for functions (jason 9/23/99). */
6945 dw_attr_ref a = get_AT (die, DW_AT_location);
6946 dw_loc_descr_ref loc;
6948 if (! a || AT_class (a) != dw_val_class_loc)
6949 abort ();
6951 loc = AT_loc (a);
6952 if (loc->dw_loc_opc != DW_OP_addr)
6953 abort ();
6955 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6956 loc->dw_loc_oprnd1.v.val_addr, "Address");
6957 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6958 get_AT_unsigned (die, DW_AT_byte_size),
6959 "Length");
6963 /* Output the terminator words. */
6964 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6965 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6968 /* Add a new entry to .debug_ranges. Return the offset at which it
6969 was placed. */
6971 static unsigned int
6972 add_ranges (tree block)
6974 unsigned int in_use = ranges_table_in_use;
6976 if (in_use == ranges_table_allocated)
6978 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6979 ranges_table
6980 = ggc_realloc (ranges_table, (ranges_table_allocated
6981 * sizeof (struct dw_ranges_struct)));
6982 memset (ranges_table + ranges_table_in_use, 0,
6983 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
6986 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6987 ranges_table_in_use = in_use + 1;
6989 return in_use * 2 * DWARF2_ADDR_SIZE;
6992 static void
6993 output_ranges (void)
6995 unsigned i;
6996 static const char *const start_fmt = "Offset 0x%x";
6997 const char *fmt = start_fmt;
6999 for (i = 0; i < ranges_table_in_use; i++)
7001 int block_num = ranges_table[i].block_num;
7003 if (block_num)
7005 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7006 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7008 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7009 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7011 /* If all code is in the text section, then the compilation
7012 unit base address defaults to DW_AT_low_pc, which is the
7013 base of the text section. */
7014 if (separate_line_info_table_in_use == 0)
7016 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7017 text_section_label,
7018 fmt, i * 2 * DWARF2_ADDR_SIZE);
7019 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7020 text_section_label, NULL);
7023 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7024 compilation unit base address to zero, which allows us to
7025 use absolute addresses, and not worry about whether the
7026 target supports cross-section arithmetic. */
7027 else
7029 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7030 fmt, i * 2 * DWARF2_ADDR_SIZE);
7031 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7034 fmt = NULL;
7036 else
7038 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7039 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7040 fmt = start_fmt;
7045 /* Data structure containing information about input files. */
7046 struct file_info
7048 char *path; /* Complete file name. */
7049 char *fname; /* File name part. */
7050 int length; /* Length of entire string. */
7051 int file_idx; /* Index in input file table. */
7052 int dir_idx; /* Index in directory table. */
7055 /* Data structure containing information about directories with source
7056 files. */
7057 struct dir_info
7059 char *path; /* Path including directory name. */
7060 int length; /* Path length. */
7061 int prefix; /* Index of directory entry which is a prefix. */
7062 int count; /* Number of files in this directory. */
7063 int dir_idx; /* Index of directory used as base. */
7064 int used; /* Used in the end? */
7067 /* Callback function for file_info comparison. We sort by looking at
7068 the directories in the path. */
7070 static int
7071 file_info_cmp (const void *p1, const void *p2)
7073 const struct file_info *s1 = p1;
7074 const struct file_info *s2 = p2;
7075 unsigned char *cp1;
7076 unsigned char *cp2;
7078 /* Take care of file names without directories. We need to make sure that
7079 we return consistent values to qsort since some will get confused if
7080 we return the same value when identical operands are passed in opposite
7081 orders. So if neither has a directory, return 0 and otherwise return
7082 1 or -1 depending on which one has the directory. */
7083 if ((s1->path == s1->fname || s2->path == s2->fname))
7084 return (s2->path == s2->fname) - (s1->path == s1->fname);
7086 cp1 = (unsigned char *) s1->path;
7087 cp2 = (unsigned char *) s2->path;
7089 while (1)
7091 ++cp1;
7092 ++cp2;
7093 /* Reached the end of the first path? If so, handle like above. */
7094 if ((cp1 == (unsigned char *) s1->fname)
7095 || (cp2 == (unsigned char *) s2->fname))
7096 return ((cp2 == (unsigned char *) s2->fname)
7097 - (cp1 == (unsigned char *) s1->fname));
7099 /* Character of current path component the same? */
7100 else if (*cp1 != *cp2)
7101 return *cp1 - *cp2;
7105 /* Output the directory table and the file name table. We try to minimize
7106 the total amount of memory needed. A heuristic is used to avoid large
7107 slowdowns with many input files. */
7109 static void
7110 output_file_names (void)
7112 struct file_info *files;
7113 struct dir_info *dirs;
7114 int *saved;
7115 int *savehere;
7116 int *backmap;
7117 size_t ndirs;
7118 int idx_offset;
7119 size_t i;
7120 int idx;
7122 /* Handle the case where file_table is empty. */
7123 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7125 dw2_asm_output_data (1, 0, "End directory table");
7126 dw2_asm_output_data (1, 0, "End file name table");
7127 return;
7130 /* Allocate the various arrays we need. */
7131 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7132 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7134 /* Sort the file names. */
7135 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7137 char *f;
7139 /* Skip all leading "./". */
7140 f = VARRAY_CHAR_PTR (file_table, i);
7141 while (f[0] == '.' && f[1] == '/')
7142 f += 2;
7144 /* Create a new array entry. */
7145 files[i].path = f;
7146 files[i].length = strlen (f);
7147 files[i].file_idx = i;
7149 /* Search for the file name part. */
7150 f = strrchr (f, '/');
7151 files[i].fname = f == NULL ? files[i].path : f + 1;
7154 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7155 sizeof (files[0]), file_info_cmp);
7157 /* Find all the different directories used. */
7158 dirs[0].path = files[1].path;
7159 dirs[0].length = files[1].fname - files[1].path;
7160 dirs[0].prefix = -1;
7161 dirs[0].count = 1;
7162 dirs[0].dir_idx = 0;
7163 dirs[0].used = 0;
7164 files[1].dir_idx = 0;
7165 ndirs = 1;
7167 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7168 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7169 && memcmp (dirs[ndirs - 1].path, files[i].path,
7170 dirs[ndirs - 1].length) == 0)
7172 /* Same directory as last entry. */
7173 files[i].dir_idx = ndirs - 1;
7174 ++dirs[ndirs - 1].count;
7176 else
7178 size_t j;
7180 /* This is a new directory. */
7181 dirs[ndirs].path = files[i].path;
7182 dirs[ndirs].length = files[i].fname - files[i].path;
7183 dirs[ndirs].count = 1;
7184 dirs[ndirs].dir_idx = ndirs;
7185 dirs[ndirs].used = 0;
7186 files[i].dir_idx = ndirs;
7188 /* Search for a prefix. */
7189 dirs[ndirs].prefix = -1;
7190 for (j = 0; j < ndirs; j++)
7191 if (dirs[j].length < dirs[ndirs].length
7192 && dirs[j].length > 1
7193 && (dirs[ndirs].prefix == -1
7194 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7195 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7196 dirs[ndirs].prefix = j;
7198 ++ndirs;
7201 /* Now to the actual work. We have to find a subset of the directories which
7202 allow expressing the file name using references to the directory table
7203 with the least amount of characters. We do not do an exhaustive search
7204 where we would have to check out every combination of every single
7205 possible prefix. Instead we use a heuristic which provides nearly optimal
7206 results in most cases and never is much off. */
7207 saved = alloca (ndirs * sizeof (int));
7208 savehere = alloca (ndirs * sizeof (int));
7210 memset (saved, '\0', ndirs * sizeof (saved[0]));
7211 for (i = 0; i < ndirs; i++)
7213 size_t j;
7214 int total;
7216 /* We can always save some space for the current directory. But this
7217 does not mean it will be enough to justify adding the directory. */
7218 savehere[i] = dirs[i].length;
7219 total = (savehere[i] - saved[i]) * dirs[i].count;
7221 for (j = i + 1; j < ndirs; j++)
7223 savehere[j] = 0;
7224 if (saved[j] < dirs[i].length)
7226 /* Determine whether the dirs[i] path is a prefix of the
7227 dirs[j] path. */
7228 int k;
7230 k = dirs[j].prefix;
7231 while (k != -1 && k != (int) i)
7232 k = dirs[k].prefix;
7234 if (k == (int) i)
7236 /* Yes it is. We can possibly safe some memory but
7237 writing the filenames in dirs[j] relative to
7238 dirs[i]. */
7239 savehere[j] = dirs[i].length;
7240 total += (savehere[j] - saved[j]) * dirs[j].count;
7245 /* Check whether we can safe enough to justify adding the dirs[i]
7246 directory. */
7247 if (total > dirs[i].length + 1)
7249 /* It's worthwhile adding. */
7250 for (j = i; j < ndirs; j++)
7251 if (savehere[j] > 0)
7253 /* Remember how much we saved for this directory so far. */
7254 saved[j] = savehere[j];
7256 /* Remember the prefix directory. */
7257 dirs[j].dir_idx = i;
7262 /* We have to emit them in the order they appear in the file_table array
7263 since the index is used in the debug info generation. To do this
7264 efficiently we generate a back-mapping of the indices first. */
7265 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7266 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7268 backmap[files[i].file_idx] = i;
7270 /* Mark this directory as used. */
7271 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7274 /* That was it. We are ready to emit the information. First emit the
7275 directory name table. We have to make sure the first actually emitted
7276 directory name has index one; zero is reserved for the current working
7277 directory. Make sure we do not confuse these indices with the one for the
7278 constructed table (even though most of the time they are identical). */
7279 idx = 1;
7280 idx_offset = dirs[0].length > 0 ? 1 : 0;
7281 for (i = 1 - idx_offset; i < ndirs; i++)
7282 if (dirs[i].used != 0)
7284 dirs[i].used = idx++;
7285 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7286 "Directory Entry: 0x%x", dirs[i].used);
7289 dw2_asm_output_data (1, 0, "End directory table");
7291 /* Correct the index for the current working directory entry if it
7292 exists. */
7293 if (idx_offset == 0)
7294 dirs[0].used = 0;
7296 /* Now write all the file names. */
7297 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7299 int file_idx = backmap[i];
7300 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7302 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7303 "File Entry: 0x%lx", (unsigned long) i);
7305 /* Include directory index. */
7306 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7308 /* Modification time. */
7309 dw2_asm_output_data_uleb128 (0, NULL);
7311 /* File length in bytes. */
7312 dw2_asm_output_data_uleb128 (0, NULL);
7315 dw2_asm_output_data (1, 0, "End file name table");
7319 /* Output the source line number correspondence information. This
7320 information goes into the .debug_line section. */
7322 static void
7323 output_line_info (void)
7325 char l1[20], l2[20], p1[20], p2[20];
7326 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7327 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7328 unsigned opc;
7329 unsigned n_op_args;
7330 unsigned long lt_index;
7331 unsigned long current_line;
7332 long line_offset;
7333 long line_delta;
7334 unsigned long current_file;
7335 unsigned long function;
7337 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7338 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7339 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7340 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7342 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7343 dw2_asm_output_data (4, 0xffffffff,
7344 "Initial length escape value indicating 64-bit DWARF extension");
7345 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7346 "Length of Source Line Info");
7347 ASM_OUTPUT_LABEL (asm_out_file, l1);
7349 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7350 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7351 ASM_OUTPUT_LABEL (asm_out_file, p1);
7353 /* Define the architecture-dependent minimum instruction length (in
7354 bytes). In this implementation of DWARF, this field is used for
7355 information purposes only. Since GCC generates assembly language,
7356 we have no a priori knowledge of how many instruction bytes are
7357 generated for each source line, and therefore can use only the
7358 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7359 commands. Accordingly, we fix this as `1', which is "correct
7360 enough" for all architectures, and don't let the target override. */
7361 dw2_asm_output_data (1, 1,
7362 "Minimum Instruction Length");
7364 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7365 "Default is_stmt_start flag");
7366 dw2_asm_output_data (1, DWARF_LINE_BASE,
7367 "Line Base Value (Special Opcodes)");
7368 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7369 "Line Range Value (Special Opcodes)");
7370 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7371 "Special Opcode Base");
7373 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7375 switch (opc)
7377 case DW_LNS_advance_pc:
7378 case DW_LNS_advance_line:
7379 case DW_LNS_set_file:
7380 case DW_LNS_set_column:
7381 case DW_LNS_fixed_advance_pc:
7382 n_op_args = 1;
7383 break;
7384 default:
7385 n_op_args = 0;
7386 break;
7389 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7390 opc, n_op_args);
7393 /* Write out the information about the files we use. */
7394 output_file_names ();
7395 ASM_OUTPUT_LABEL (asm_out_file, p2);
7397 /* We used to set the address register to the first location in the text
7398 section here, but that didn't accomplish anything since we already
7399 have a line note for the opening brace of the first function. */
7401 /* Generate the line number to PC correspondence table, encoded as
7402 a series of state machine operations. */
7403 current_file = 1;
7404 current_line = 1;
7405 strcpy (prev_line_label, text_section_label);
7406 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7408 dw_line_info_ref line_info = &line_info_table[lt_index];
7410 #if 0
7411 /* Disable this optimization for now; GDB wants to see two line notes
7412 at the beginning of a function so it can find the end of the
7413 prologue. */
7415 /* Don't emit anything for redundant notes. Just updating the
7416 address doesn't accomplish anything, because we already assume
7417 that anything after the last address is this line. */
7418 if (line_info->dw_line_num == current_line
7419 && line_info->dw_file_num == current_file)
7420 continue;
7421 #endif
7423 /* Emit debug info for the address of the current line.
7425 Unfortunately, we have little choice here currently, and must always
7426 use the most general form. GCC does not know the address delta
7427 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7428 attributes which will give an upper bound on the address range. We
7429 could perhaps use length attributes to determine when it is safe to
7430 use DW_LNS_fixed_advance_pc. */
7432 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7433 if (0)
7435 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7436 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7437 "DW_LNS_fixed_advance_pc");
7438 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7440 else
7442 /* This can handle any delta. This takes
7443 4+DWARF2_ADDR_SIZE bytes. */
7444 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7445 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7446 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7447 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7450 strcpy (prev_line_label, line_label);
7452 /* Emit debug info for the source file of the current line, if
7453 different from the previous line. */
7454 if (line_info->dw_file_num != current_file)
7456 current_file = line_info->dw_file_num;
7457 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7458 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7459 VARRAY_CHAR_PTR (file_table,
7460 current_file));
7463 /* Emit debug info for the current line number, choosing the encoding
7464 that uses the least amount of space. */
7465 if (line_info->dw_line_num != current_line)
7467 line_offset = line_info->dw_line_num - current_line;
7468 line_delta = line_offset - DWARF_LINE_BASE;
7469 current_line = line_info->dw_line_num;
7470 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7471 /* This can handle deltas from -10 to 234, using the current
7472 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7473 takes 1 byte. */
7474 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7475 "line %lu", current_line);
7476 else
7478 /* This can handle any delta. This takes at least 4 bytes,
7479 depending on the value being encoded. */
7480 dw2_asm_output_data (1, DW_LNS_advance_line,
7481 "advance to line %lu", current_line);
7482 dw2_asm_output_data_sleb128 (line_offset, NULL);
7483 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7486 else
7487 /* We still need to start a new row, so output a copy insn. */
7488 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7491 /* Emit debug info for the address of the end of the function. */
7492 if (0)
7494 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7495 "DW_LNS_fixed_advance_pc");
7496 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7498 else
7500 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7501 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7502 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7503 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7506 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7507 dw2_asm_output_data_uleb128 (1, NULL);
7508 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7510 function = 0;
7511 current_file = 1;
7512 current_line = 1;
7513 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7515 dw_separate_line_info_ref line_info
7516 = &separate_line_info_table[lt_index];
7518 #if 0
7519 /* Don't emit anything for redundant notes. */
7520 if (line_info->dw_line_num == current_line
7521 && line_info->dw_file_num == current_file
7522 && line_info->function == function)
7523 goto cont;
7524 #endif
7526 /* Emit debug info for the address of the current line. If this is
7527 a new function, or the first line of a function, then we need
7528 to handle it differently. */
7529 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7530 lt_index);
7531 if (function != line_info->function)
7533 function = line_info->function;
7535 /* Set the address register to the first line in the function. */
7536 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7537 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7538 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7539 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7541 else
7543 /* ??? See the DW_LNS_advance_pc comment above. */
7544 if (0)
7546 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7547 "DW_LNS_fixed_advance_pc");
7548 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7550 else
7552 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7553 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7554 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7555 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7559 strcpy (prev_line_label, line_label);
7561 /* Emit debug info for the source file of the current line, if
7562 different from the previous line. */
7563 if (line_info->dw_file_num != current_file)
7565 current_file = line_info->dw_file_num;
7566 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7567 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7568 VARRAY_CHAR_PTR (file_table,
7569 current_file));
7572 /* Emit debug info for the current line number, choosing the encoding
7573 that uses the least amount of space. */
7574 if (line_info->dw_line_num != current_line)
7576 line_offset = line_info->dw_line_num - current_line;
7577 line_delta = line_offset - DWARF_LINE_BASE;
7578 current_line = line_info->dw_line_num;
7579 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7580 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7581 "line %lu", current_line);
7582 else
7584 dw2_asm_output_data (1, DW_LNS_advance_line,
7585 "advance to line %lu", current_line);
7586 dw2_asm_output_data_sleb128 (line_offset, NULL);
7587 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7590 else
7591 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7593 #if 0
7594 cont:
7595 #endif
7597 lt_index++;
7599 /* If we're done with a function, end its sequence. */
7600 if (lt_index == separate_line_info_table_in_use
7601 || separate_line_info_table[lt_index].function != function)
7603 current_file = 1;
7604 current_line = 1;
7606 /* Emit debug info for the address of the end of the function. */
7607 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7608 if (0)
7610 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7611 "DW_LNS_fixed_advance_pc");
7612 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7614 else
7616 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7617 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7618 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7619 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7622 /* Output the marker for the end of this sequence. */
7623 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7624 dw2_asm_output_data_uleb128 (1, NULL);
7625 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7629 /* Output the marker for the end of the line number info. */
7630 ASM_OUTPUT_LABEL (asm_out_file, l2);
7633 /* Given a pointer to a tree node for some base type, return a pointer to
7634 a DIE that describes the given type.
7636 This routine must only be called for GCC type nodes that correspond to
7637 Dwarf base (fundamental) types. */
7639 static dw_die_ref
7640 base_type_die (tree type)
7642 dw_die_ref base_type_result;
7643 const char *type_name;
7644 enum dwarf_type encoding;
7645 tree name = TYPE_NAME (type);
7647 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7648 return 0;
7650 if (name)
7652 if (TREE_CODE (name) == TYPE_DECL)
7653 name = DECL_NAME (name);
7655 type_name = IDENTIFIER_POINTER (name);
7657 else
7658 type_name = "__unknown__";
7660 switch (TREE_CODE (type))
7662 case INTEGER_TYPE:
7663 /* Carefully distinguish the C character types, without messing
7664 up if the language is not C. Note that we check only for the names
7665 that contain spaces; other names might occur by coincidence in other
7666 languages. */
7667 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7668 && (type == char_type_node
7669 || ! strcmp (type_name, "signed char")
7670 || ! strcmp (type_name, "unsigned char"))))
7672 if (TREE_UNSIGNED (type))
7673 encoding = DW_ATE_unsigned;
7674 else
7675 encoding = DW_ATE_signed;
7676 break;
7678 /* else fall through. */
7680 case CHAR_TYPE:
7681 /* GNU Pascal/Ada CHAR type. Not used in C. */
7682 if (TREE_UNSIGNED (type))
7683 encoding = DW_ATE_unsigned_char;
7684 else
7685 encoding = DW_ATE_signed_char;
7686 break;
7688 case REAL_TYPE:
7689 encoding = DW_ATE_float;
7690 break;
7692 /* Dwarf2 doesn't know anything about complex ints, so use
7693 a user defined type for it. */
7694 case COMPLEX_TYPE:
7695 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7696 encoding = DW_ATE_complex_float;
7697 else
7698 encoding = DW_ATE_lo_user;
7699 break;
7701 case BOOLEAN_TYPE:
7702 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7703 encoding = DW_ATE_boolean;
7704 break;
7706 default:
7707 /* No other TREE_CODEs are Dwarf fundamental types. */
7708 abort ();
7711 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7712 if (demangle_name_func)
7713 type_name = (*demangle_name_func) (type_name);
7715 add_AT_string (base_type_result, DW_AT_name, type_name);
7716 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7717 int_size_in_bytes (type));
7718 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7720 return base_type_result;
7723 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7724 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7725 a given type is generally the same as the given type, except that if the
7726 given type is a pointer or reference type, then the root type of the given
7727 type is the root type of the "basis" type for the pointer or reference
7728 type. (This definition of the "root" type is recursive.) Also, the root
7729 type of a `const' qualified type or a `volatile' qualified type is the
7730 root type of the given type without the qualifiers. */
7732 static tree
7733 root_type (tree type)
7735 if (TREE_CODE (type) == ERROR_MARK)
7736 return error_mark_node;
7738 switch (TREE_CODE (type))
7740 case ERROR_MARK:
7741 return error_mark_node;
7743 case POINTER_TYPE:
7744 case REFERENCE_TYPE:
7745 return type_main_variant (root_type (TREE_TYPE (type)));
7747 default:
7748 return type_main_variant (type);
7752 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7753 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7755 static inline int
7756 is_base_type (tree type)
7758 switch (TREE_CODE (type))
7760 case ERROR_MARK:
7761 case VOID_TYPE:
7762 case INTEGER_TYPE:
7763 case REAL_TYPE:
7764 case COMPLEX_TYPE:
7765 case BOOLEAN_TYPE:
7766 case CHAR_TYPE:
7767 return 1;
7769 case SET_TYPE:
7770 case ARRAY_TYPE:
7771 case RECORD_TYPE:
7772 case UNION_TYPE:
7773 case QUAL_UNION_TYPE:
7774 case ENUMERAL_TYPE:
7775 case FUNCTION_TYPE:
7776 case METHOD_TYPE:
7777 case POINTER_TYPE:
7778 case REFERENCE_TYPE:
7779 case FILE_TYPE:
7780 case OFFSET_TYPE:
7781 case LANG_TYPE:
7782 case VECTOR_TYPE:
7783 return 0;
7785 default:
7786 abort ();
7789 return 0;
7792 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7793 node, return the size in bits for the type if it is a constant, or else
7794 return the alignment for the type if the type's size is not constant, or
7795 else return BITS_PER_WORD if the type actually turns out to be an
7796 ERROR_MARK node. */
7798 static inline unsigned HOST_WIDE_INT
7799 simple_type_size_in_bits (tree type)
7801 if (TREE_CODE (type) == ERROR_MARK)
7802 return BITS_PER_WORD;
7803 else if (TYPE_SIZE (type) == NULL_TREE)
7804 return 0;
7805 else if (host_integerp (TYPE_SIZE (type), 1))
7806 return tree_low_cst (TYPE_SIZE (type), 1);
7807 else
7808 return TYPE_ALIGN (type);
7811 /* Return true if the debug information for the given type should be
7812 emitted as a subrange type. */
7814 static inline bool
7815 is_subrange_type (tree type)
7817 tree subtype = TREE_TYPE (type);
7819 if (TREE_CODE (type) == INTEGER_TYPE
7820 && subtype != NULL_TREE)
7822 if (TREE_CODE (subtype) == INTEGER_TYPE)
7823 return true;
7824 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
7825 return true;
7827 return false;
7830 /* Given a pointer to a tree node for a subrange type, return a pointer
7831 to a DIE that describes the given type. */
7833 static dw_die_ref
7834 subrange_type_die (tree type, dw_die_ref context_die)
7836 dw_die_ref subtype_die;
7837 dw_die_ref subrange_die;
7838 tree name = TYPE_NAME (type);
7839 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
7841 if (context_die == NULL)
7842 context_die = comp_unit_die;
7844 if (TREE_CODE (TREE_TYPE (type)) == ENUMERAL_TYPE)
7845 subtype_die = gen_enumeration_type_die (TREE_TYPE (type), context_die);
7846 else
7847 subtype_die = base_type_die (TREE_TYPE (type));
7849 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
7851 if (name != NULL)
7853 if (TREE_CODE (name) == TYPE_DECL)
7854 name = DECL_NAME (name);
7855 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7858 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
7860 /* The size of the subrange type and its base type do not match,
7861 so we need to generate a size attribute for the subrange type. */
7862 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
7865 if (TYPE_MIN_VALUE (type) != NULL)
7866 add_bound_info (subrange_die, DW_AT_lower_bound,
7867 TYPE_MIN_VALUE (type));
7868 if (TYPE_MAX_VALUE (type) != NULL)
7869 add_bound_info (subrange_die, DW_AT_upper_bound,
7870 TYPE_MAX_VALUE (type));
7871 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7873 return subrange_die;
7876 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7877 entry that chains various modifiers in front of the given type. */
7879 static dw_die_ref
7880 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7881 dw_die_ref context_die)
7883 enum tree_code code = TREE_CODE (type);
7884 dw_die_ref mod_type_die = NULL;
7885 dw_die_ref sub_die = NULL;
7886 tree item_type = NULL;
7888 if (code != ERROR_MARK)
7890 tree qualified_type;
7892 /* See if we already have the appropriately qualified variant of
7893 this type. */
7894 qualified_type
7895 = get_qualified_type (type,
7896 ((is_const_type ? TYPE_QUAL_CONST : 0)
7897 | (is_volatile_type
7898 ? TYPE_QUAL_VOLATILE : 0)));
7900 /* If we do, then we can just use its DIE, if it exists. */
7901 if (qualified_type)
7903 mod_type_die = lookup_type_die (qualified_type);
7904 if (mod_type_die)
7905 return mod_type_die;
7908 /* Handle C typedef types. */
7909 if (qualified_type && TYPE_NAME (qualified_type)
7910 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7911 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7913 tree type_name = TYPE_NAME (qualified_type);
7914 tree dtype = TREE_TYPE (type_name);
7916 if (qualified_type == dtype)
7918 /* For a named type, use the typedef. */
7919 gen_type_die (qualified_type, context_die);
7920 mod_type_die = lookup_type_die (qualified_type);
7922 else if (is_const_type < TYPE_READONLY (dtype)
7923 || is_volatile_type < TYPE_VOLATILE (dtype))
7924 /* cv-unqualified version of named type. Just use the unnamed
7925 type to which it refers. */
7926 mod_type_die
7927 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7928 is_const_type, is_volatile_type,
7929 context_die);
7931 /* Else cv-qualified version of named type; fall through. */
7934 if (mod_type_die)
7935 /* OK. */
7937 else if (is_const_type)
7939 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7940 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7942 else if (is_volatile_type)
7944 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7945 sub_die = modified_type_die (type, 0, 0, context_die);
7947 else if (code == POINTER_TYPE)
7949 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7950 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7951 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7952 #if 0
7953 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7954 #endif
7955 item_type = TREE_TYPE (type);
7957 else if (code == REFERENCE_TYPE)
7959 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7960 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7961 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7962 #if 0
7963 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7964 #endif
7965 item_type = TREE_TYPE (type);
7967 else if (is_subrange_type (type))
7968 mod_type_die = subrange_type_die (type, context_die);
7969 else if (is_base_type (type))
7970 mod_type_die = base_type_die (type);
7971 else
7973 gen_type_die (type, context_die);
7975 /* We have to get the type_main_variant here (and pass that to the
7976 `lookup_type_die' routine) because the ..._TYPE node we have
7977 might simply be a *copy* of some original type node (where the
7978 copy was created to help us keep track of typedef names) and
7979 that copy might have a different TYPE_UID from the original
7980 ..._TYPE node. */
7981 if (TREE_CODE (type) != VECTOR_TYPE)
7982 mod_type_die = lookup_type_die (type_main_variant (type));
7983 else
7984 /* Vectors have the debugging information in the type,
7985 not the main variant. */
7986 mod_type_die = lookup_type_die (type);
7987 if (mod_type_die == NULL)
7988 abort ();
7991 /* We want to equate the qualified type to the die below. */
7992 type = qualified_type;
7995 if (type)
7996 equate_type_number_to_die (type, mod_type_die);
7997 if (item_type)
7998 /* We must do this after the equate_type_number_to_die call, in case
7999 this is a recursive type. This ensures that the modified_type_die
8000 recursion will terminate even if the type is recursive. Recursive
8001 types are possible in Ada. */
8002 sub_die = modified_type_die (item_type,
8003 TYPE_READONLY (item_type),
8004 TYPE_VOLATILE (item_type),
8005 context_die);
8007 if (sub_die != NULL)
8008 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8010 return mod_type_die;
8013 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8014 an enumerated type. */
8016 static inline int
8017 type_is_enum (tree type)
8019 return TREE_CODE (type) == ENUMERAL_TYPE;
8022 /* Return the register number described by a given RTL node. */
8024 static unsigned int
8025 reg_number (rtx rtl)
8027 unsigned regno = REGNO (rtl);
8029 if (regno >= FIRST_PSEUDO_REGISTER)
8030 abort ();
8032 return DBX_REGISTER_NUMBER (regno);
8035 /* Return a location descriptor that designates a machine register or
8036 zero if there is none. */
8038 static dw_loc_descr_ref
8039 reg_loc_descriptor (rtx rtl)
8041 unsigned reg;
8042 rtx regs;
8044 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8045 return 0;
8047 reg = reg_number (rtl);
8048 regs = (*targetm.dwarf_register_span) (rtl);
8050 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8051 || regs)
8052 return multiple_reg_loc_descriptor (rtl, regs);
8053 else
8054 return one_reg_loc_descriptor (reg);
8057 /* Return a location descriptor that designates a machine register for
8058 a given hard register number. */
8060 static dw_loc_descr_ref
8061 one_reg_loc_descriptor (unsigned int regno)
8063 if (regno <= 31)
8064 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8065 else
8066 return new_loc_descr (DW_OP_regx, regno, 0);
8069 /* Given an RTL of a register, return a location descriptor that
8070 designates a value that spans more than one register. */
8072 static dw_loc_descr_ref
8073 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8075 int nregs, size, i;
8076 unsigned reg;
8077 dw_loc_descr_ref loc_result = NULL;
8079 reg = reg_number (rtl);
8080 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8082 /* Simple, contiguous registers. */
8083 if (regs == NULL_RTX)
8085 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8087 loc_result = NULL;
8088 while (nregs--)
8090 dw_loc_descr_ref t;
8092 t = one_reg_loc_descriptor (reg);
8093 add_loc_descr (&loc_result, t);
8094 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8095 ++reg;
8097 return loc_result;
8100 /* Now onto stupid register sets in non contiguous locations. */
8102 if (GET_CODE (regs) != PARALLEL)
8103 abort ();
8105 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8106 loc_result = NULL;
8108 for (i = 0; i < XVECLEN (regs, 0); ++i)
8110 dw_loc_descr_ref t;
8112 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8113 add_loc_descr (&loc_result, t);
8114 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8115 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8117 return loc_result;
8120 /* Return a location descriptor that designates a constant. */
8122 static dw_loc_descr_ref
8123 int_loc_descriptor (HOST_WIDE_INT i)
8125 enum dwarf_location_atom op;
8127 /* Pick the smallest representation of a constant, rather than just
8128 defaulting to the LEB encoding. */
8129 if (i >= 0)
8131 if (i <= 31)
8132 op = DW_OP_lit0 + i;
8133 else if (i <= 0xff)
8134 op = DW_OP_const1u;
8135 else if (i <= 0xffff)
8136 op = DW_OP_const2u;
8137 else if (HOST_BITS_PER_WIDE_INT == 32
8138 || i <= 0xffffffff)
8139 op = DW_OP_const4u;
8140 else
8141 op = DW_OP_constu;
8143 else
8145 if (i >= -0x80)
8146 op = DW_OP_const1s;
8147 else if (i >= -0x8000)
8148 op = DW_OP_const2s;
8149 else if (HOST_BITS_PER_WIDE_INT == 32
8150 || i >= -0x80000000)
8151 op = DW_OP_const4s;
8152 else
8153 op = DW_OP_consts;
8156 return new_loc_descr (op, i, 0);
8159 /* Return a location descriptor that designates a base+offset location. */
8161 static dw_loc_descr_ref
8162 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset)
8164 dw_loc_descr_ref loc_result;
8165 /* For the "frame base", we use the frame pointer or stack pointer
8166 registers, since the RTL for local variables is relative to one of
8167 them. */
8168 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8169 ? HARD_FRAME_POINTER_REGNUM
8170 : STACK_POINTER_REGNUM);
8172 if (reg == fp_reg)
8173 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8174 else if (reg <= 31)
8175 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8176 else
8177 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8179 return loc_result;
8182 /* Return true if this RTL expression describes a base+offset calculation. */
8184 static inline int
8185 is_based_loc (rtx rtl)
8187 return (GET_CODE (rtl) == PLUS
8188 && ((GET_CODE (XEXP (rtl, 0)) == REG
8189 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8190 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8193 /* The following routine converts the RTL for a variable or parameter
8194 (resident in memory) into an equivalent Dwarf representation of a
8195 mechanism for getting the address of that same variable onto the top of a
8196 hypothetical "address evaluation" stack.
8198 When creating memory location descriptors, we are effectively transforming
8199 the RTL for a memory-resident object into its Dwarf postfix expression
8200 equivalent. This routine recursively descends an RTL tree, turning
8201 it into Dwarf postfix code as it goes.
8203 MODE is the mode of the memory reference, needed to handle some
8204 autoincrement addressing modes.
8206 Return 0 if we can't represent the location. */
8208 static dw_loc_descr_ref
8209 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8211 dw_loc_descr_ref mem_loc_result = NULL;
8213 /* Note that for a dynamically sized array, the location we will generate a
8214 description of here will be the lowest numbered location which is
8215 actually within the array. That's *not* necessarily the same as the
8216 zeroth element of the array. */
8218 rtl = (*targetm.delegitimize_address) (rtl);
8220 switch (GET_CODE (rtl))
8222 case POST_INC:
8223 case POST_DEC:
8224 case POST_MODIFY:
8225 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8226 just fall into the SUBREG code. */
8228 /* ... fall through ... */
8230 case SUBREG:
8231 /* The case of a subreg may arise when we have a local (register)
8232 variable or a formal (register) parameter which doesn't quite fill
8233 up an entire register. For now, just assume that it is
8234 legitimate to make the Dwarf info refer to the whole register which
8235 contains the given subreg. */
8236 rtl = SUBREG_REG (rtl);
8238 /* ... fall through ... */
8240 case REG:
8241 /* Whenever a register number forms a part of the description of the
8242 method for calculating the (dynamic) address of a memory resident
8243 object, DWARF rules require the register number be referred to as
8244 a "base register". This distinction is not based in any way upon
8245 what category of register the hardware believes the given register
8246 belongs to. This is strictly DWARF terminology we're dealing with
8247 here. Note that in cases where the location of a memory-resident
8248 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8249 OP_CONST (0)) the actual DWARF location descriptor that we generate
8250 may just be OP_BASEREG (basereg). This may look deceptively like
8251 the object in question was allocated to a register (rather than in
8252 memory) so DWARF consumers need to be aware of the subtle
8253 distinction between OP_REG and OP_BASEREG. */
8254 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8255 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8256 break;
8258 case MEM:
8259 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8260 if (mem_loc_result != 0)
8261 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8262 break;
8264 case LO_SUM:
8265 rtl = XEXP (rtl, 1);
8267 /* ... fall through ... */
8269 case LABEL_REF:
8270 /* Some ports can transform a symbol ref into a label ref, because
8271 the symbol ref is too far away and has to be dumped into a constant
8272 pool. */
8273 case CONST:
8274 case SYMBOL_REF:
8275 /* Alternatively, the symbol in the constant pool might be referenced
8276 by a different symbol. */
8277 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8279 bool marked;
8280 rtx tmp = get_pool_constant_mark (rtl, &marked);
8282 if (GET_CODE (tmp) == SYMBOL_REF)
8284 rtl = tmp;
8285 if (CONSTANT_POOL_ADDRESS_P (tmp))
8286 get_pool_constant_mark (tmp, &marked);
8287 else
8288 marked = true;
8291 /* If all references to this pool constant were optimized away,
8292 it was not output and thus we can't represent it.
8293 FIXME: might try to use DW_OP_const_value here, though
8294 DW_OP_piece complicates it. */
8295 if (!marked)
8296 return 0;
8299 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8300 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8301 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8302 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8303 break;
8305 case PRE_MODIFY:
8306 /* Extract the PLUS expression nested inside and fall into
8307 PLUS code below. */
8308 rtl = XEXP (rtl, 1);
8309 goto plus;
8311 case PRE_INC:
8312 case PRE_DEC:
8313 /* Turn these into a PLUS expression and fall into the PLUS code
8314 below. */
8315 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8316 GEN_INT (GET_CODE (rtl) == PRE_INC
8317 ? GET_MODE_UNIT_SIZE (mode)
8318 : -GET_MODE_UNIT_SIZE (mode)));
8320 /* ... fall through ... */
8322 case PLUS:
8323 plus:
8324 if (is_based_loc (rtl))
8325 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8326 INTVAL (XEXP (rtl, 1)));
8327 else
8329 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8330 if (mem_loc_result == 0)
8331 break;
8333 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8334 && INTVAL (XEXP (rtl, 1)) >= 0)
8335 add_loc_descr (&mem_loc_result,
8336 new_loc_descr (DW_OP_plus_uconst,
8337 INTVAL (XEXP (rtl, 1)), 0));
8338 else
8340 add_loc_descr (&mem_loc_result,
8341 mem_loc_descriptor (XEXP (rtl, 1), mode));
8342 add_loc_descr (&mem_loc_result,
8343 new_loc_descr (DW_OP_plus, 0, 0));
8346 break;
8348 case MULT:
8350 /* If a pseudo-reg is optimized away, it is possible for it to
8351 be replaced with a MEM containing a multiply. */
8352 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8353 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8355 if (op0 == 0 || op1 == 0)
8356 break;
8358 mem_loc_result = op0;
8359 add_loc_descr (&mem_loc_result, op1);
8360 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8361 break;
8364 case CONST_INT:
8365 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8366 break;
8368 case ADDRESSOF:
8369 /* If this is a MEM, return its address. Otherwise, we can't
8370 represent this. */
8371 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8372 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8373 else
8374 return 0;
8376 default:
8377 abort ();
8380 return mem_loc_result;
8383 /* Return a descriptor that describes the concatenation of two locations.
8384 This is typically a complex variable. */
8386 static dw_loc_descr_ref
8387 concat_loc_descriptor (rtx x0, rtx x1)
8389 dw_loc_descr_ref cc_loc_result = NULL;
8390 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8391 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8393 if (x0_ref == 0 || x1_ref == 0)
8394 return 0;
8396 cc_loc_result = x0_ref;
8397 add_loc_descr (&cc_loc_result,
8398 new_loc_descr (DW_OP_piece,
8399 GET_MODE_SIZE (GET_MODE (x0)), 0));
8401 add_loc_descr (&cc_loc_result, x1_ref);
8402 add_loc_descr (&cc_loc_result,
8403 new_loc_descr (DW_OP_piece,
8404 GET_MODE_SIZE (GET_MODE (x1)), 0));
8406 return cc_loc_result;
8409 /* Output a proper Dwarf location descriptor for a variable or parameter
8410 which is either allocated in a register or in a memory location. For a
8411 register, we just generate an OP_REG and the register number. For a
8412 memory location we provide a Dwarf postfix expression describing how to
8413 generate the (dynamic) address of the object onto the address stack.
8415 If we don't know how to describe it, return 0. */
8417 static dw_loc_descr_ref
8418 loc_descriptor (rtx rtl)
8420 dw_loc_descr_ref loc_result = NULL;
8422 switch (GET_CODE (rtl))
8424 case SUBREG:
8425 /* The case of a subreg may arise when we have a local (register)
8426 variable or a formal (register) parameter which doesn't quite fill
8427 up an entire register. For now, just assume that it is
8428 legitimate to make the Dwarf info refer to the whole register which
8429 contains the given subreg. */
8430 rtl = SUBREG_REG (rtl);
8432 /* ... fall through ... */
8434 case REG:
8435 loc_result = reg_loc_descriptor (rtl);
8436 break;
8438 case MEM:
8439 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8440 break;
8442 case CONCAT:
8443 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8444 break;
8446 default:
8447 abort ();
8450 return loc_result;
8453 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8454 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8455 looking for an address. Otherwise, we return a value. If we can't make a
8456 descriptor, return 0. */
8458 static dw_loc_descr_ref
8459 loc_descriptor_from_tree (tree loc, int addressp)
8461 dw_loc_descr_ref ret, ret1;
8462 int indirect_p = 0;
8463 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8464 enum dwarf_location_atom op;
8466 /* ??? Most of the time we do not take proper care for sign/zero
8467 extending the values properly. Hopefully this won't be a real
8468 problem... */
8470 switch (TREE_CODE (loc))
8472 case ERROR_MARK:
8473 return 0;
8475 case WITH_RECORD_EXPR:
8476 case PLACEHOLDER_EXPR:
8477 /* This case involves extracting fields from an object to determine the
8478 position of other fields. We don't try to encode this here. The
8479 only user of this is Ada, which encodes the needed information using
8480 the names of types. */
8481 return 0;
8483 case CALL_EXPR:
8484 return 0;
8486 case ADDR_EXPR:
8487 /* We can support this only if we can look through conversions and
8488 find an INDIRECT_EXPR. */
8489 for (loc = TREE_OPERAND (loc, 0);
8490 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8491 || TREE_CODE (loc) == NON_LVALUE_EXPR
8492 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8493 || TREE_CODE (loc) == SAVE_EXPR;
8494 loc = TREE_OPERAND (loc, 0))
8497 return (TREE_CODE (loc) == INDIRECT_REF
8498 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8499 : 0);
8501 case VAR_DECL:
8502 if (DECL_THREAD_LOCAL (loc))
8504 rtx rtl;
8506 #ifndef ASM_OUTPUT_DWARF_DTPREL
8507 /* If this is not defined, we have no way to emit the data. */
8508 return 0;
8509 #endif
8511 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8512 look up addresses of objects in the current module. */
8513 if (DECL_EXTERNAL (loc))
8514 return 0;
8516 rtl = rtl_for_decl_location (loc);
8517 if (rtl == NULL_RTX)
8518 return 0;
8520 if (GET_CODE (rtl) != MEM)
8521 return 0;
8522 rtl = XEXP (rtl, 0);
8523 if (! CONSTANT_P (rtl))
8524 return 0;
8526 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8527 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8528 ret->dw_loc_oprnd1.v.val_addr = rtl;
8530 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8531 add_loc_descr (&ret, ret1);
8533 indirect_p = 1;
8534 break;
8536 /* Fall through. */
8538 case PARM_DECL:
8540 rtx rtl = rtl_for_decl_location (loc);
8542 if (rtl == NULL_RTX)
8543 return 0;
8544 else if (CONSTANT_P (rtl))
8546 ret = new_loc_descr (DW_OP_addr, 0, 0);
8547 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8548 ret->dw_loc_oprnd1.v.val_addr = rtl;
8549 indirect_p = 1;
8551 else
8553 enum machine_mode mode = GET_MODE (rtl);
8555 if (GET_CODE (rtl) == MEM)
8557 indirect_p = 1;
8558 rtl = XEXP (rtl, 0);
8561 ret = mem_loc_descriptor (rtl, mode);
8564 break;
8566 case INDIRECT_REF:
8567 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8568 indirect_p = 1;
8569 break;
8571 case COMPOUND_EXPR:
8572 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8574 case NOP_EXPR:
8575 case CONVERT_EXPR:
8576 case NON_LVALUE_EXPR:
8577 case VIEW_CONVERT_EXPR:
8578 case SAVE_EXPR:
8579 case MODIFY_EXPR:
8580 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8582 case COMPONENT_REF:
8583 case BIT_FIELD_REF:
8584 case ARRAY_REF:
8585 case ARRAY_RANGE_REF:
8587 tree obj, offset;
8588 HOST_WIDE_INT bitsize, bitpos, bytepos;
8589 enum machine_mode mode;
8590 int volatilep;
8592 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8593 &unsignedp, &volatilep);
8595 if (obj == loc)
8596 return 0;
8598 ret = loc_descriptor_from_tree (obj, 1);
8599 if (ret == 0
8600 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8601 return 0;
8603 if (offset != NULL_TREE)
8605 /* Variable offset. */
8606 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8607 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8610 if (!addressp)
8611 indirect_p = 1;
8613 bytepos = bitpos / BITS_PER_UNIT;
8614 if (bytepos > 0)
8615 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8616 else if (bytepos < 0)
8618 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8619 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8621 break;
8624 case INTEGER_CST:
8625 if (host_integerp (loc, 0))
8626 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8627 else
8628 return 0;
8629 break;
8631 case CONSTRUCTOR:
8633 /* Get an RTL for this, if something has been emitted. */
8634 rtx rtl = lookup_constant_def (loc);
8635 enum machine_mode mode;
8637 if (GET_CODE (rtl) != MEM)
8638 return 0;
8639 mode = GET_MODE (rtl);
8640 rtl = XEXP (rtl, 0);
8642 rtl = (*targetm.delegitimize_address) (rtl);
8644 indirect_p = 1;
8645 ret = mem_loc_descriptor (rtl, mode);
8646 break;
8649 case TRUTH_AND_EXPR:
8650 case TRUTH_ANDIF_EXPR:
8651 case BIT_AND_EXPR:
8652 op = DW_OP_and;
8653 goto do_binop;
8655 case TRUTH_XOR_EXPR:
8656 case BIT_XOR_EXPR:
8657 op = DW_OP_xor;
8658 goto do_binop;
8660 case TRUTH_OR_EXPR:
8661 case TRUTH_ORIF_EXPR:
8662 case BIT_IOR_EXPR:
8663 op = DW_OP_or;
8664 goto do_binop;
8666 case FLOOR_DIV_EXPR:
8667 case CEIL_DIV_EXPR:
8668 case ROUND_DIV_EXPR:
8669 case TRUNC_DIV_EXPR:
8670 op = DW_OP_div;
8671 goto do_binop;
8673 case MINUS_EXPR:
8674 op = DW_OP_minus;
8675 goto do_binop;
8677 case FLOOR_MOD_EXPR:
8678 case CEIL_MOD_EXPR:
8679 case ROUND_MOD_EXPR:
8680 case TRUNC_MOD_EXPR:
8681 op = DW_OP_mod;
8682 goto do_binop;
8684 case MULT_EXPR:
8685 op = DW_OP_mul;
8686 goto do_binop;
8688 case LSHIFT_EXPR:
8689 op = DW_OP_shl;
8690 goto do_binop;
8692 case RSHIFT_EXPR:
8693 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8694 goto do_binop;
8696 case PLUS_EXPR:
8697 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8698 && host_integerp (TREE_OPERAND (loc, 1), 0))
8700 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8701 if (ret == 0)
8702 return 0;
8704 add_loc_descr (&ret,
8705 new_loc_descr (DW_OP_plus_uconst,
8706 tree_low_cst (TREE_OPERAND (loc, 1),
8708 0));
8709 break;
8712 op = DW_OP_plus;
8713 goto do_binop;
8715 case LE_EXPR:
8716 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8717 return 0;
8719 op = DW_OP_le;
8720 goto do_binop;
8722 case GE_EXPR:
8723 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8724 return 0;
8726 op = DW_OP_ge;
8727 goto do_binop;
8729 case LT_EXPR:
8730 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8731 return 0;
8733 op = DW_OP_lt;
8734 goto do_binop;
8736 case GT_EXPR:
8737 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8738 return 0;
8740 op = DW_OP_gt;
8741 goto do_binop;
8743 case EQ_EXPR:
8744 op = DW_OP_eq;
8745 goto do_binop;
8747 case NE_EXPR:
8748 op = DW_OP_ne;
8749 goto do_binop;
8751 do_binop:
8752 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8753 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8754 if (ret == 0 || ret1 == 0)
8755 return 0;
8757 add_loc_descr (&ret, ret1);
8758 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8759 break;
8761 case TRUTH_NOT_EXPR:
8762 case BIT_NOT_EXPR:
8763 op = DW_OP_not;
8764 goto do_unop;
8766 case ABS_EXPR:
8767 op = DW_OP_abs;
8768 goto do_unop;
8770 case NEGATE_EXPR:
8771 op = DW_OP_neg;
8772 goto do_unop;
8774 do_unop:
8775 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8776 if (ret == 0)
8777 return 0;
8779 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8780 break;
8782 case MAX_EXPR:
8783 loc = build (COND_EXPR, TREE_TYPE (loc),
8784 build (LT_EXPR, integer_type_node,
8785 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8786 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8788 /* ... fall through ... */
8790 case COND_EXPR:
8792 dw_loc_descr_ref lhs
8793 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8794 dw_loc_descr_ref rhs
8795 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8796 dw_loc_descr_ref bra_node, jump_node, tmp;
8798 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8799 if (ret == 0 || lhs == 0 || rhs == 0)
8800 return 0;
8802 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8803 add_loc_descr (&ret, bra_node);
8805 add_loc_descr (&ret, rhs);
8806 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8807 add_loc_descr (&ret, jump_node);
8809 add_loc_descr (&ret, lhs);
8810 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8811 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8813 /* ??? Need a node to point the skip at. Use a nop. */
8814 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8815 add_loc_descr (&ret, tmp);
8816 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8817 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8819 break;
8821 default:
8822 /* Leave front-end specific codes as simply unknown. This comes
8823 up, for instance, with the C STMT_EXPR. */
8824 if ((unsigned int) TREE_CODE (loc)
8825 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8826 return 0;
8828 /* Otherwise this is a generic code; we should just lists all of
8829 these explicitly. Aborting means we forgot one. */
8830 abort ();
8833 /* Show if we can't fill the request for an address. */
8834 if (addressp && indirect_p == 0)
8835 return 0;
8837 /* If we've got an address and don't want one, dereference. */
8838 if (!addressp && indirect_p > 0)
8840 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8842 if (size > DWARF2_ADDR_SIZE || size == -1)
8843 return 0;
8844 else if (size == DWARF2_ADDR_SIZE)
8845 op = DW_OP_deref;
8846 else
8847 op = DW_OP_deref_size;
8849 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8852 return ret;
8855 /* Given a value, round it up to the lowest multiple of `boundary'
8856 which is not less than the value itself. */
8858 static inline HOST_WIDE_INT
8859 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8861 return (((value + boundary - 1) / boundary) * boundary);
8864 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8865 pointer to the declared type for the relevant field variable, or return
8866 `integer_type_node' if the given node turns out to be an
8867 ERROR_MARK node. */
8869 static inline tree
8870 field_type (tree decl)
8872 tree type;
8874 if (TREE_CODE (decl) == ERROR_MARK)
8875 return integer_type_node;
8877 type = DECL_BIT_FIELD_TYPE (decl);
8878 if (type == NULL_TREE)
8879 type = TREE_TYPE (decl);
8881 return type;
8884 /* Given a pointer to a tree node, return the alignment in bits for
8885 it, or else return BITS_PER_WORD if the node actually turns out to
8886 be an ERROR_MARK node. */
8888 static inline unsigned
8889 simple_type_align_in_bits (tree type)
8891 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8894 static inline unsigned
8895 simple_decl_align_in_bits (tree decl)
8897 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8900 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8901 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8902 or return 0 if we are unable to determine what that offset is, either
8903 because the argument turns out to be a pointer to an ERROR_MARK node, or
8904 because the offset is actually variable. (We can't handle the latter case
8905 just yet). */
8907 static HOST_WIDE_INT
8908 field_byte_offset (tree decl)
8910 unsigned int type_align_in_bits;
8911 unsigned int decl_align_in_bits;
8912 unsigned HOST_WIDE_INT type_size_in_bits;
8913 HOST_WIDE_INT object_offset_in_bits;
8914 tree type;
8915 tree field_size_tree;
8916 HOST_WIDE_INT bitpos_int;
8917 HOST_WIDE_INT deepest_bitpos;
8918 unsigned HOST_WIDE_INT field_size_in_bits;
8920 if (TREE_CODE (decl) == ERROR_MARK)
8921 return 0;
8922 else if (TREE_CODE (decl) != FIELD_DECL)
8923 abort ();
8925 type = field_type (decl);
8926 field_size_tree = DECL_SIZE (decl);
8928 /* The size could be unspecified if there was an error, or for
8929 a flexible array member. */
8930 if (! field_size_tree)
8931 field_size_tree = bitsize_zero_node;
8933 /* We cannot yet cope with fields whose positions are variable, so
8934 for now, when we see such things, we simply return 0. Someday, we may
8935 be able to handle such cases, but it will be damn difficult. */
8936 if (! host_integerp (bit_position (decl), 0))
8937 return 0;
8939 bitpos_int = int_bit_position (decl);
8941 /* If we don't know the size of the field, pretend it's a full word. */
8942 if (host_integerp (field_size_tree, 1))
8943 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8944 else
8945 field_size_in_bits = BITS_PER_WORD;
8947 type_size_in_bits = simple_type_size_in_bits (type);
8948 type_align_in_bits = simple_type_align_in_bits (type);
8949 decl_align_in_bits = simple_decl_align_in_bits (decl);
8951 /* The GCC front-end doesn't make any attempt to keep track of the starting
8952 bit offset (relative to the start of the containing structure type) of the
8953 hypothetical "containing object" for a bit-field. Thus, when computing
8954 the byte offset value for the start of the "containing object" of a
8955 bit-field, we must deduce this information on our own. This can be rather
8956 tricky to do in some cases. For example, handling the following structure
8957 type definition when compiling for an i386/i486 target (which only aligns
8958 long long's to 32-bit boundaries) can be very tricky:
8960 struct S { int field1; long long field2:31; };
8962 Fortunately, there is a simple rule-of-thumb which can be used in such
8963 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8964 structure shown above. It decides to do this based upon one simple rule
8965 for bit-field allocation. GCC allocates each "containing object" for each
8966 bit-field at the first (i.e. lowest addressed) legitimate alignment
8967 boundary (based upon the required minimum alignment for the declared type
8968 of the field) which it can possibly use, subject to the condition that
8969 there is still enough available space remaining in the containing object
8970 (when allocated at the selected point) to fully accommodate all of the
8971 bits of the bit-field itself.
8973 This simple rule makes it obvious why GCC allocates 8 bytes for each
8974 object of the structure type shown above. When looking for a place to
8975 allocate the "containing object" for `field2', the compiler simply tries
8976 to allocate a 64-bit "containing object" at each successive 32-bit
8977 boundary (starting at zero) until it finds a place to allocate that 64-
8978 bit field such that at least 31 contiguous (and previously unallocated)
8979 bits remain within that selected 64 bit field. (As it turns out, for the
8980 example above, the compiler finds it is OK to allocate the "containing
8981 object" 64-bit field at bit-offset zero within the structure type.)
8983 Here we attempt to work backwards from the limited set of facts we're
8984 given, and we try to deduce from those facts, where GCC must have believed
8985 that the containing object started (within the structure type). The value
8986 we deduce is then used (by the callers of this routine) to generate
8987 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8988 and, in the case of DW_AT_location, regular fields as well). */
8990 /* Figure out the bit-distance from the start of the structure to the
8991 "deepest" bit of the bit-field. */
8992 deepest_bitpos = bitpos_int + field_size_in_bits;
8994 /* This is the tricky part. Use some fancy footwork to deduce where the
8995 lowest addressed bit of the containing object must be. */
8996 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8998 /* Round up to type_align by default. This works best for bitfields. */
8999 object_offset_in_bits += type_align_in_bits - 1;
9000 object_offset_in_bits /= type_align_in_bits;
9001 object_offset_in_bits *= type_align_in_bits;
9003 if (object_offset_in_bits > bitpos_int)
9005 /* Sigh, the decl must be packed. */
9006 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9008 /* Round up to decl_align instead. */
9009 object_offset_in_bits += decl_align_in_bits - 1;
9010 object_offset_in_bits /= decl_align_in_bits;
9011 object_offset_in_bits *= decl_align_in_bits;
9014 return object_offset_in_bits / BITS_PER_UNIT;
9017 /* The following routines define various Dwarf attributes and any data
9018 associated with them. */
9020 /* Add a location description attribute value to a DIE.
9022 This emits location attributes suitable for whole variables and
9023 whole parameters. Note that the location attributes for struct fields are
9024 generated by the routine `data_member_location_attribute' below. */
9026 static inline void
9027 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9028 dw_loc_descr_ref descr)
9030 if (descr != 0)
9031 add_AT_loc (die, attr_kind, descr);
9034 /* Attach the specialized form of location attribute used for data members of
9035 struct and union types. In the special case of a FIELD_DECL node which
9036 represents a bit-field, the "offset" part of this special location
9037 descriptor must indicate the distance in bytes from the lowest-addressed
9038 byte of the containing struct or union type to the lowest-addressed byte of
9039 the "containing object" for the bit-field. (See the `field_byte_offset'
9040 function above).
9042 For any given bit-field, the "containing object" is a hypothetical object
9043 (of some integral or enum type) within which the given bit-field lives. The
9044 type of this hypothetical "containing object" is always the same as the
9045 declared type of the individual bit-field itself (for GCC anyway... the
9046 DWARF spec doesn't actually mandate this). Note that it is the size (in
9047 bytes) of the hypothetical "containing object" which will be given in the
9048 DW_AT_byte_size attribute for this bit-field. (See the
9049 `byte_size_attribute' function below.) It is also used when calculating the
9050 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9051 function below.) */
9053 static void
9054 add_data_member_location_attribute (dw_die_ref die, tree decl)
9056 HOST_WIDE_INT offset;
9057 dw_loc_descr_ref loc_descr = 0;
9059 if (TREE_CODE (decl) == TREE_VEC)
9061 /* We're working on the TAG_inheritance for a base class. */
9062 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9064 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9065 aren't at a fixed offset from all (sub)objects of the same
9066 type. We need to extract the appropriate offset from our
9067 vtable. The following dwarf expression means
9069 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9071 This is specific to the V3 ABI, of course. */
9073 dw_loc_descr_ref tmp;
9075 /* Make a copy of the object address. */
9076 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9077 add_loc_descr (&loc_descr, tmp);
9079 /* Extract the vtable address. */
9080 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9081 add_loc_descr (&loc_descr, tmp);
9083 /* Calculate the address of the offset. */
9084 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9085 if (offset >= 0)
9086 abort ();
9088 tmp = int_loc_descriptor (-offset);
9089 add_loc_descr (&loc_descr, tmp);
9090 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9091 add_loc_descr (&loc_descr, tmp);
9093 /* Extract the offset. */
9094 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9095 add_loc_descr (&loc_descr, tmp);
9097 /* Add it to the object address. */
9098 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9099 add_loc_descr (&loc_descr, tmp);
9101 else
9102 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9104 else
9105 offset = field_byte_offset (decl);
9107 if (! loc_descr)
9109 enum dwarf_location_atom op;
9111 /* The DWARF2 standard says that we should assume that the structure
9112 address is already on the stack, so we can specify a structure field
9113 address by using DW_OP_plus_uconst. */
9115 #ifdef MIPS_DEBUGGING_INFO
9116 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9117 operator correctly. It works only if we leave the offset on the
9118 stack. */
9119 op = DW_OP_constu;
9120 #else
9121 op = DW_OP_plus_uconst;
9122 #endif
9124 loc_descr = new_loc_descr (op, offset, 0);
9127 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9130 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9131 does not have a "location" either in memory or in a register. These
9132 things can arise in GNU C when a constant is passed as an actual parameter
9133 to an inlined function. They can also arise in C++ where declared
9134 constants do not necessarily get memory "homes". */
9136 static void
9137 add_const_value_attribute (dw_die_ref die, rtx rtl)
9139 switch (GET_CODE (rtl))
9141 case CONST_INT:
9143 HOST_WIDE_INT val = INTVAL (rtl);
9145 if (val < 0)
9146 add_AT_int (die, DW_AT_const_value, val);
9147 else
9148 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9150 break;
9152 case CONST_DOUBLE:
9153 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9154 floating-point constant. A CONST_DOUBLE is used whenever the
9155 constant requires more than one word in order to be adequately
9156 represented. We output CONST_DOUBLEs as blocks. */
9158 enum machine_mode mode = GET_MODE (rtl);
9160 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9162 unsigned length = GET_MODE_SIZE (mode) / 4;
9163 long *array = ggc_alloc (sizeof (long) * length);
9164 REAL_VALUE_TYPE rv;
9166 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9167 real_to_target (array, &rv, mode);
9169 add_AT_float (die, DW_AT_const_value, length, array);
9171 else
9173 /* ??? We really should be using HOST_WIDE_INT throughout. */
9174 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9175 abort ();
9177 add_AT_long_long (die, DW_AT_const_value,
9178 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9181 break;
9183 case CONST_STRING:
9184 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9185 break;
9187 case SYMBOL_REF:
9188 case LABEL_REF:
9189 case CONST:
9190 add_AT_addr (die, DW_AT_const_value, rtl);
9191 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9192 break;
9194 case PLUS:
9195 /* In cases where an inlined instance of an inline function is passed
9196 the address of an `auto' variable (which is local to the caller) we
9197 can get a situation where the DECL_RTL of the artificial local
9198 variable (for the inlining) which acts as a stand-in for the
9199 corresponding formal parameter (of the inline function) will look
9200 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9201 exactly a compile-time constant expression, but it isn't the address
9202 of the (artificial) local variable either. Rather, it represents the
9203 *value* which the artificial local variable always has during its
9204 lifetime. We currently have no way to represent such quasi-constant
9205 values in Dwarf, so for now we just punt and generate nothing. */
9206 break;
9208 default:
9209 /* No other kinds of rtx should be possible here. */
9210 abort ();
9215 static rtx
9216 rtl_for_decl_location (tree decl)
9218 rtx rtl;
9220 /* Here we have to decide where we are going to say the parameter "lives"
9221 (as far as the debugger is concerned). We only have a couple of
9222 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9224 DECL_RTL normally indicates where the parameter lives during most of the
9225 activation of the function. If optimization is enabled however, this
9226 could be either NULL or else a pseudo-reg. Both of those cases indicate
9227 that the parameter doesn't really live anywhere (as far as the code
9228 generation parts of GCC are concerned) during most of the function's
9229 activation. That will happen (for example) if the parameter is never
9230 referenced within the function.
9232 We could just generate a location descriptor here for all non-NULL
9233 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9234 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9235 where DECL_RTL is NULL or is a pseudo-reg.
9237 Note however that we can only get away with using DECL_INCOMING_RTL as
9238 a backup substitute for DECL_RTL in certain limited cases. In cases
9239 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9240 we can be sure that the parameter was passed using the same type as it is
9241 declared to have within the function, and that its DECL_INCOMING_RTL
9242 points us to a place where a value of that type is passed.
9244 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9245 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9246 because in these cases DECL_INCOMING_RTL points us to a value of some
9247 type which is *different* from the type of the parameter itself. Thus,
9248 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9249 such cases, the debugger would end up (for example) trying to fetch a
9250 `float' from a place which actually contains the first part of a
9251 `double'. That would lead to really incorrect and confusing
9252 output at debug-time.
9254 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9255 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9256 are a couple of exceptions however. On little-endian machines we can
9257 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9258 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9259 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9260 when (on a little-endian machine) a non-prototyped function has a
9261 parameter declared to be of type `short' or `char'. In such cases,
9262 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9263 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9264 passed `int' value. If the debugger then uses that address to fetch
9265 a `short' or a `char' (on a little-endian machine) the result will be
9266 the correct data, so we allow for such exceptional cases below.
9268 Note that our goal here is to describe the place where the given formal
9269 parameter lives during most of the function's activation (i.e. between the
9270 end of the prologue and the start of the epilogue). We'll do that as best
9271 as we can. Note however that if the given formal parameter is modified
9272 sometime during the execution of the function, then a stack backtrace (at
9273 debug-time) will show the function as having been called with the *new*
9274 value rather than the value which was originally passed in. This happens
9275 rarely enough that it is not a major problem, but it *is* a problem, and
9276 I'd like to fix it.
9278 A future version of dwarf2out.c may generate two additional attributes for
9279 any given DW_TAG_formal_parameter DIE which will describe the "passed
9280 type" and the "passed location" for the given formal parameter in addition
9281 to the attributes we now generate to indicate the "declared type" and the
9282 "active location" for each parameter. This additional set of attributes
9283 could be used by debuggers for stack backtraces. Separately, note that
9284 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9285 This happens (for example) for inlined-instances of inline function formal
9286 parameters which are never referenced. This really shouldn't be
9287 happening. All PARM_DECL nodes should get valid non-NULL
9288 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9289 values for inlined instances of inline function parameters, so when we see
9290 such cases, we are just out-of-luck for the time being (until integrate.c
9291 gets fixed). */
9293 /* Use DECL_RTL as the "location" unless we find something better. */
9294 rtl = DECL_RTL_IF_SET (decl);
9296 /* When generating abstract instances, ignore everything except
9297 constants, symbols living in memory, and symbols living in
9298 fixed registers. */
9299 if (! reload_completed)
9301 if (rtl
9302 && (CONSTANT_P (rtl)
9303 || (GET_CODE (rtl) == MEM
9304 && CONSTANT_P (XEXP (rtl, 0)))
9305 || (GET_CODE (rtl) == REG
9306 && TREE_CODE (decl) == VAR_DECL
9307 && TREE_STATIC (decl))))
9309 rtl = (*targetm.delegitimize_address) (rtl);
9310 return rtl;
9312 rtl = NULL_RTX;
9314 else if (TREE_CODE (decl) == PARM_DECL)
9316 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9318 tree declared_type = type_main_variant (TREE_TYPE (decl));
9319 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9321 /* This decl represents a formal parameter which was optimized out.
9322 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9323 all cases where (rtl == NULL_RTX) just below. */
9324 if (declared_type == passed_type)
9325 rtl = DECL_INCOMING_RTL (decl);
9326 else if (! BYTES_BIG_ENDIAN
9327 && TREE_CODE (declared_type) == INTEGER_TYPE
9328 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9329 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9330 rtl = DECL_INCOMING_RTL (decl);
9333 /* If the parm was passed in registers, but lives on the stack, then
9334 make a big endian correction if the mode of the type of the
9335 parameter is not the same as the mode of the rtl. */
9336 /* ??? This is the same series of checks that are made in dbxout.c before
9337 we reach the big endian correction code there. It isn't clear if all
9338 of these checks are necessary here, but keeping them all is the safe
9339 thing to do. */
9340 else if (GET_CODE (rtl) == MEM
9341 && XEXP (rtl, 0) != const0_rtx
9342 && ! CONSTANT_P (XEXP (rtl, 0))
9343 /* Not passed in memory. */
9344 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9345 /* Not passed by invisible reference. */
9346 && (GET_CODE (XEXP (rtl, 0)) != REG
9347 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9348 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9349 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9350 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9351 #endif
9353 /* Big endian correction check. */
9354 && BYTES_BIG_ENDIAN
9355 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9356 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9357 < UNITS_PER_WORD))
9359 int offset = (UNITS_PER_WORD
9360 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9362 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9363 plus_constant (XEXP (rtl, 0), offset));
9367 if (rtl != NULL_RTX)
9369 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9370 #ifdef LEAF_REG_REMAP
9371 if (current_function_uses_only_leaf_regs)
9372 leaf_renumber_regs_insn (rtl);
9373 #endif
9376 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9377 and will have been substituted directly into all expressions that use it.
9378 C does not have such a concept, but C++ and other languages do. */
9379 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9381 /* If a variable is initialized with a string constant without embedded
9382 zeros, build CONST_STRING. */
9383 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9384 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9386 tree arrtype = TREE_TYPE (decl);
9387 tree enttype = TREE_TYPE (arrtype);
9388 tree domain = TYPE_DOMAIN (arrtype);
9389 tree init = DECL_INITIAL (decl);
9390 enum machine_mode mode = TYPE_MODE (enttype);
9392 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9393 && domain
9394 && integer_zerop (TYPE_MIN_VALUE (domain))
9395 && compare_tree_int (TYPE_MAX_VALUE (domain),
9396 TREE_STRING_LENGTH (init) - 1) == 0
9397 && ((size_t) TREE_STRING_LENGTH (init)
9398 == strlen (TREE_STRING_POINTER (init)) + 1))
9399 rtl = gen_rtx_CONST_STRING (VOIDmode,
9400 ggc_strdup (TREE_STRING_POINTER (init)));
9402 /* If the initializer is something that we know will expand into an
9403 immediate RTL constant, expand it now. Expanding anything else
9404 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9405 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9406 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9408 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9409 EXPAND_INITIALIZER);
9410 /* If expand_expr returns a MEM, it wasn't immediate. */
9411 if (rtl && GET_CODE (rtl) == MEM)
9412 abort ();
9416 if (rtl)
9417 rtl = (*targetm.delegitimize_address) (rtl);
9419 /* If we don't look past the constant pool, we risk emitting a
9420 reference to a constant pool entry that isn't referenced from
9421 code, and thus is not emitted. */
9422 if (rtl)
9423 rtl = avoid_constant_pool_reference (rtl);
9425 return rtl;
9428 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9429 data attribute for a variable or a parameter. We generate the
9430 DW_AT_const_value attribute only in those cases where the given variable
9431 or parameter does not have a true "location" either in memory or in a
9432 register. This can happen (for example) when a constant is passed as an
9433 actual argument in a call to an inline function. (It's possible that
9434 these things can crop up in other ways also.) Note that one type of
9435 constant value which can be passed into an inlined function is a constant
9436 pointer. This can happen for example if an actual argument in an inlined
9437 function call evaluates to a compile-time constant address. */
9439 static void
9440 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9442 rtx rtl;
9443 dw_loc_descr_ref descr;
9445 if (TREE_CODE (decl) == ERROR_MARK)
9446 return;
9447 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9448 abort ();
9450 rtl = rtl_for_decl_location (decl);
9451 if (rtl == NULL_RTX)
9452 return;
9454 switch (GET_CODE (rtl))
9456 case ADDRESSOF:
9457 /* The address of a variable that was optimized away;
9458 don't emit anything. */
9459 break;
9461 case CONST_INT:
9462 case CONST_DOUBLE:
9463 case CONST_STRING:
9464 case SYMBOL_REF:
9465 case LABEL_REF:
9466 case CONST:
9467 case PLUS:
9468 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9469 add_const_value_attribute (die, rtl);
9470 break;
9472 case MEM:
9473 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9475 /* Need loc_descriptor_from_tree since that's where we know
9476 how to handle TLS variables. Want the object's address
9477 since the top-level DW_AT_location assumes such. See
9478 the confusion in loc_descriptor for reference. */
9479 descr = loc_descriptor_from_tree (decl, 1);
9481 else
9483 case REG:
9484 case SUBREG:
9485 case CONCAT:
9486 descr = loc_descriptor (rtl);
9488 add_AT_location_description (die, DW_AT_location, descr);
9489 break;
9491 case PARALLEL:
9493 rtvec par_elems = XVEC (rtl, 0);
9494 int num_elem = GET_NUM_ELEM (par_elems);
9495 enum machine_mode mode;
9496 int i;
9498 /* Create the first one, so we have something to add to. */
9499 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9500 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9501 add_loc_descr (&descr,
9502 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9503 for (i = 1; i < num_elem; i++)
9505 dw_loc_descr_ref temp;
9507 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9508 add_loc_descr (&descr, temp);
9509 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9510 add_loc_descr (&descr,
9511 new_loc_descr (DW_OP_piece,
9512 GET_MODE_SIZE (mode), 0));
9515 add_AT_location_description (die, DW_AT_location, descr);
9516 break;
9518 default:
9519 abort ();
9523 /* If we don't have a copy of this variable in memory for some reason (such
9524 as a C++ member constant that doesn't have an out-of-line definition),
9525 we should tell the debugger about the constant value. */
9527 static void
9528 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9530 tree init = DECL_INITIAL (decl);
9531 tree type = TREE_TYPE (decl);
9533 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9534 && initializer_constant_valid_p (init, type) == null_pointer_node)
9535 /* OK */;
9536 else
9537 return;
9539 switch (TREE_CODE (type))
9541 case INTEGER_TYPE:
9542 if (host_integerp (init, 0))
9543 add_AT_unsigned (var_die, DW_AT_const_value,
9544 tree_low_cst (init, 0));
9545 else
9546 add_AT_long_long (var_die, DW_AT_const_value,
9547 TREE_INT_CST_HIGH (init),
9548 TREE_INT_CST_LOW (init));
9549 break;
9551 default:;
9555 /* Generate a DW_AT_name attribute given some string value to be included as
9556 the value of the attribute. */
9558 static void
9559 add_name_attribute (dw_die_ref die, const char *name_string)
9561 if (name_string != NULL && *name_string != 0)
9563 if (demangle_name_func)
9564 name_string = (*demangle_name_func) (name_string);
9566 add_AT_string (die, DW_AT_name, name_string);
9570 /* Generate a DW_AT_comp_dir attribute for DIE. */
9572 static void
9573 add_comp_dir_attribute (dw_die_ref die)
9575 const char *wd = get_src_pwd ();
9576 if (wd != NULL)
9577 add_AT_string (die, DW_AT_comp_dir, wd);
9580 /* Given a tree node describing an array bound (either lower or upper) output
9581 a representation for that bound. */
9583 static void
9584 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9586 switch (TREE_CODE (bound))
9588 case ERROR_MARK:
9589 return;
9591 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9592 case INTEGER_CST:
9593 if (! host_integerp (bound, 0)
9594 || (bound_attr == DW_AT_lower_bound
9595 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9596 || (is_fortran () && integer_onep (bound)))))
9597 /* use the default */
9599 else
9600 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9601 break;
9603 case CONVERT_EXPR:
9604 case NOP_EXPR:
9605 case NON_LVALUE_EXPR:
9606 case VIEW_CONVERT_EXPR:
9607 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9608 break;
9610 case SAVE_EXPR:
9611 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9612 access the upper bound values may be bogus. If they refer to a
9613 register, they may only describe how to get at these values at the
9614 points in the generated code right after they have just been
9615 computed. Worse yet, in the typical case, the upper bound values
9616 will not even *be* computed in the optimized code (though the
9617 number of elements will), so these SAVE_EXPRs are entirely
9618 bogus. In order to compensate for this fact, we check here to see
9619 if optimization is enabled, and if so, we don't add an attribute
9620 for the (unknown and unknowable) upper bound. This should not
9621 cause too much trouble for existing (stupid?) debuggers because
9622 they have to deal with empty upper bounds location descriptions
9623 anyway in order to be able to deal with incomplete array types.
9624 Of course an intelligent debugger (GDB?) should be able to
9625 comprehend that a missing upper bound specification in an array
9626 type used for a storage class `auto' local array variable
9627 indicates that the upper bound is both unknown (at compile- time)
9628 and unknowable (at run-time) due to optimization.
9630 We assume that a MEM rtx is safe because gcc wouldn't put the
9631 value there unless it was going to be used repeatedly in the
9632 function, i.e. for cleanups. */
9633 if (SAVE_EXPR_RTL (bound)
9634 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9636 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9637 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9638 rtx loc = SAVE_EXPR_RTL (bound);
9640 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9641 it references an outer function's frame. */
9642 if (GET_CODE (loc) == MEM)
9644 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9646 if (XEXP (loc, 0) != new_addr)
9647 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9650 add_AT_flag (decl_die, DW_AT_artificial, 1);
9651 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9652 add_AT_location_description (decl_die, DW_AT_location,
9653 loc_descriptor (loc));
9654 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9657 /* Else leave out the attribute. */
9658 break;
9660 case VAR_DECL:
9661 case PARM_DECL:
9663 dw_die_ref decl_die = lookup_decl_die (bound);
9665 /* ??? Can this happen, or should the variable have been bound
9666 first? Probably it can, since I imagine that we try to create
9667 the types of parameters in the order in which they exist in
9668 the list, and won't have created a forward reference to a
9669 later parameter. */
9670 if (decl_die != NULL)
9671 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9672 break;
9675 default:
9677 /* Otherwise try to create a stack operation procedure to
9678 evaluate the value of the array bound. */
9680 dw_die_ref ctx, decl_die;
9681 dw_loc_descr_ref loc;
9683 loc = loc_descriptor_from_tree (bound, 0);
9684 if (loc == NULL)
9685 break;
9687 if (current_function_decl == 0)
9688 ctx = comp_unit_die;
9689 else
9690 ctx = lookup_decl_die (current_function_decl);
9692 /* If we weren't able to find a context, it's most likely the case
9693 that we are processing the return type of the function. So
9694 make a SAVE_EXPR to point to it and have the limbo DIE code
9695 find the proper die. The save_expr function doesn't always
9696 make a SAVE_EXPR, so do it ourselves. */
9697 if (ctx == 0)
9698 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9699 current_function_decl, NULL_TREE);
9701 decl_die = new_die (DW_TAG_variable, ctx, bound);
9702 add_AT_flag (decl_die, DW_AT_artificial, 1);
9703 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9704 add_AT_loc (decl_die, DW_AT_location, loc);
9706 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9707 break;
9712 /* Note that the block of subscript information for an array type also
9713 includes information about the element type of type given array type. */
9715 static void
9716 add_subscript_info (dw_die_ref type_die, tree type)
9718 #ifndef MIPS_DEBUGGING_INFO
9719 unsigned dimension_number;
9720 #endif
9721 tree lower, upper;
9722 dw_die_ref subrange_die;
9724 /* The GNU compilers represent multidimensional array types as sequences of
9725 one dimensional array types whose element types are themselves array
9726 types. Here we squish that down, so that each multidimensional array
9727 type gets only one array_type DIE in the Dwarf debugging info. The draft
9728 Dwarf specification say that we are allowed to do this kind of
9729 compression in C (because there is no difference between an array or
9730 arrays and a multidimensional array in C) but for other source languages
9731 (e.g. Ada) we probably shouldn't do this. */
9733 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9734 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9735 We work around this by disabling this feature. See also
9736 gen_array_type_die. */
9737 #ifndef MIPS_DEBUGGING_INFO
9738 for (dimension_number = 0;
9739 TREE_CODE (type) == ARRAY_TYPE;
9740 type = TREE_TYPE (type), dimension_number++)
9741 #endif
9743 tree domain = TYPE_DOMAIN (type);
9745 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9746 and (in GNU C only) variable bounds. Handle all three forms
9747 here. */
9748 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9749 if (domain)
9751 /* We have an array type with specified bounds. */
9752 lower = TYPE_MIN_VALUE (domain);
9753 upper = TYPE_MAX_VALUE (domain);
9755 /* Define the index type. */
9756 if (TREE_TYPE (domain))
9758 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9759 TREE_TYPE field. We can't emit debug info for this
9760 because it is an unnamed integral type. */
9761 if (TREE_CODE (domain) == INTEGER_TYPE
9762 && TYPE_NAME (domain) == NULL_TREE
9763 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9764 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9766 else
9767 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9768 type_die);
9771 /* ??? If upper is NULL, the array has unspecified length,
9772 but it does have a lower bound. This happens with Fortran
9773 dimension arr(N:*)
9774 Since the debugger is definitely going to need to know N
9775 to produce useful results, go ahead and output the lower
9776 bound solo, and hope the debugger can cope. */
9778 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9779 if (upper)
9780 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9783 /* Otherwise we have an array type with an unspecified length. The
9784 DWARF-2 spec does not say how to handle this; let's just leave out the
9785 bounds. */
9789 static void
9790 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9792 unsigned size;
9794 switch (TREE_CODE (tree_node))
9796 case ERROR_MARK:
9797 size = 0;
9798 break;
9799 case ENUMERAL_TYPE:
9800 case RECORD_TYPE:
9801 case UNION_TYPE:
9802 case QUAL_UNION_TYPE:
9803 size = int_size_in_bytes (tree_node);
9804 break;
9805 case FIELD_DECL:
9806 /* For a data member of a struct or union, the DW_AT_byte_size is
9807 generally given as the number of bytes normally allocated for an
9808 object of the *declared* type of the member itself. This is true
9809 even for bit-fields. */
9810 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9811 break;
9812 default:
9813 abort ();
9816 /* Note that `size' might be -1 when we get to this point. If it is, that
9817 indicates that the byte size of the entity in question is variable. We
9818 have no good way of expressing this fact in Dwarf at the present time,
9819 so just let the -1 pass on through. */
9820 add_AT_unsigned (die, DW_AT_byte_size, size);
9823 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9824 which specifies the distance in bits from the highest order bit of the
9825 "containing object" for the bit-field to the highest order bit of the
9826 bit-field itself.
9828 For any given bit-field, the "containing object" is a hypothetical object
9829 (of some integral or enum type) within which the given bit-field lives. The
9830 type of this hypothetical "containing object" is always the same as the
9831 declared type of the individual bit-field itself. The determination of the
9832 exact location of the "containing object" for a bit-field is rather
9833 complicated. It's handled by the `field_byte_offset' function (above).
9835 Note that it is the size (in bytes) of the hypothetical "containing object"
9836 which will be given in the DW_AT_byte_size attribute for this bit-field.
9837 (See `byte_size_attribute' above). */
9839 static inline void
9840 add_bit_offset_attribute (dw_die_ref die, tree decl)
9842 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9843 tree type = DECL_BIT_FIELD_TYPE (decl);
9844 HOST_WIDE_INT bitpos_int;
9845 HOST_WIDE_INT highest_order_object_bit_offset;
9846 HOST_WIDE_INT highest_order_field_bit_offset;
9847 HOST_WIDE_INT unsigned bit_offset;
9849 /* Must be a field and a bit field. */
9850 if (!type
9851 || TREE_CODE (decl) != FIELD_DECL)
9852 abort ();
9854 /* We can't yet handle bit-fields whose offsets are variable, so if we
9855 encounter such things, just return without generating any attribute
9856 whatsoever. Likewise for variable or too large size. */
9857 if (! host_integerp (bit_position (decl), 0)
9858 || ! host_integerp (DECL_SIZE (decl), 1))
9859 return;
9861 bitpos_int = int_bit_position (decl);
9863 /* Note that the bit offset is always the distance (in bits) from the
9864 highest-order bit of the "containing object" to the highest-order bit of
9865 the bit-field itself. Since the "high-order end" of any object or field
9866 is different on big-endian and little-endian machines, the computation
9867 below must take account of these differences. */
9868 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9869 highest_order_field_bit_offset = bitpos_int;
9871 if (! BYTES_BIG_ENDIAN)
9873 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9874 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9877 bit_offset
9878 = (! BYTES_BIG_ENDIAN
9879 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9880 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9882 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9885 /* For a FIELD_DECL node which represents a bit field, output an attribute
9886 which specifies the length in bits of the given field. */
9888 static inline void
9889 add_bit_size_attribute (dw_die_ref die, tree decl)
9891 /* Must be a field and a bit field. */
9892 if (TREE_CODE (decl) != FIELD_DECL
9893 || ! DECL_BIT_FIELD_TYPE (decl))
9894 abort ();
9896 if (host_integerp (DECL_SIZE (decl), 1))
9897 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9900 /* If the compiled language is ANSI C, then add a 'prototyped'
9901 attribute, if arg types are given for the parameters of a function. */
9903 static inline void
9904 add_prototyped_attribute (dw_die_ref die, tree func_type)
9906 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9907 && TYPE_ARG_TYPES (func_type) != NULL)
9908 add_AT_flag (die, DW_AT_prototyped, 1);
9911 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9912 by looking in either the type declaration or object declaration
9913 equate table. */
9915 static inline void
9916 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9918 dw_die_ref origin_die = NULL;
9920 if (TREE_CODE (origin) != FUNCTION_DECL)
9922 /* We may have gotten separated from the block for the inlined
9923 function, if we're in an exception handler or some such; make
9924 sure that the abstract function has been written out.
9926 Doing this for nested functions is wrong, however; functions are
9927 distinct units, and our context might not even be inline. */
9928 tree fn = origin;
9930 if (TYPE_P (fn))
9931 fn = TYPE_STUB_DECL (fn);
9933 fn = decl_function_context (fn);
9934 if (fn)
9935 dwarf2out_abstract_function (fn);
9938 if (DECL_P (origin))
9939 origin_die = lookup_decl_die (origin);
9940 else if (TYPE_P (origin))
9941 origin_die = lookup_type_die (origin);
9943 if (origin_die == NULL)
9944 abort ();
9946 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9949 /* We do not currently support the pure_virtual attribute. */
9951 static inline void
9952 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9954 if (DECL_VINDEX (func_decl))
9956 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9958 if (host_integerp (DECL_VINDEX (func_decl), 0))
9959 add_AT_loc (die, DW_AT_vtable_elem_location,
9960 new_loc_descr (DW_OP_constu,
9961 tree_low_cst (DECL_VINDEX (func_decl), 0),
9962 0));
9964 /* GNU extension: Record what type this method came from originally. */
9965 if (debug_info_level > DINFO_LEVEL_TERSE)
9966 add_AT_die_ref (die, DW_AT_containing_type,
9967 lookup_type_die (DECL_CONTEXT (func_decl)));
9971 /* Add source coordinate attributes for the given decl. */
9973 static void
9974 add_src_coords_attributes (dw_die_ref die, tree decl)
9976 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9978 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9979 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9982 /* Add a DW_AT_name attribute and source coordinate attribute for the
9983 given decl, but only if it actually has a name. */
9985 static void
9986 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
9988 tree decl_name;
9990 decl_name = DECL_NAME (decl);
9991 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9993 add_name_attribute (die, dwarf2_name (decl, 0));
9994 if (! DECL_ARTIFICIAL (decl))
9995 add_src_coords_attributes (die, decl);
9997 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9998 && TREE_PUBLIC (decl)
9999 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10000 && !DECL_ABSTRACT (decl))
10001 add_AT_string (die, DW_AT_MIPS_linkage_name,
10002 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10005 #ifdef VMS_DEBUGGING_INFO
10006 /* Get the function's name, as described by its RTL. This may be different
10007 from the DECL_NAME name used in the source file. */
10008 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10010 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10011 XEXP (DECL_RTL (decl), 0));
10012 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10014 #endif
10017 /* Push a new declaration scope. */
10019 static void
10020 push_decl_scope (tree scope)
10022 VARRAY_PUSH_TREE (decl_scope_table, scope);
10025 /* Pop a declaration scope. */
10027 static inline void
10028 pop_decl_scope (void)
10030 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10031 abort ();
10033 VARRAY_POP (decl_scope_table);
10036 /* Return the DIE for the scope that immediately contains this type.
10037 Non-named types get global scope. Named types nested in other
10038 types get their containing scope if it's open, or global scope
10039 otherwise. All other types (i.e. function-local named types) get
10040 the current active scope. */
10042 static dw_die_ref
10043 scope_die_for (tree t, dw_die_ref context_die)
10045 dw_die_ref scope_die = NULL;
10046 tree containing_scope;
10047 int i;
10049 /* Non-types always go in the current scope. */
10050 if (! TYPE_P (t))
10051 abort ();
10053 containing_scope = TYPE_CONTEXT (t);
10055 /* Use the containing namespace if it was passed in (for a declaration). */
10056 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10058 if (context_die == lookup_decl_die (containing_scope))
10059 /* OK */;
10060 else
10061 containing_scope = NULL_TREE;
10064 /* Ignore function type "scopes" from the C frontend. They mean that
10065 a tagged type is local to a parmlist of a function declarator, but
10066 that isn't useful to DWARF. */
10067 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10068 containing_scope = NULL_TREE;
10070 if (containing_scope == NULL_TREE)
10071 scope_die = comp_unit_die;
10072 else if (TYPE_P (containing_scope))
10074 /* For types, we can just look up the appropriate DIE. But
10075 first we check to see if we're in the middle of emitting it
10076 so we know where the new DIE should go. */
10077 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10078 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10079 break;
10081 if (i < 0)
10083 if (debug_info_level > DINFO_LEVEL_TERSE
10084 && !TREE_ASM_WRITTEN (containing_scope))
10085 abort ();
10087 /* If none of the current dies are suitable, we get file scope. */
10088 scope_die = comp_unit_die;
10090 else
10091 scope_die = lookup_type_die (containing_scope);
10093 else
10094 scope_die = context_die;
10096 return scope_die;
10099 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10101 static inline int
10102 local_scope_p (dw_die_ref context_die)
10104 for (; context_die; context_die = context_die->die_parent)
10105 if (context_die->die_tag == DW_TAG_inlined_subroutine
10106 || context_die->die_tag == DW_TAG_subprogram)
10107 return 1;
10109 return 0;
10112 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10113 whether or not to treat a DIE in this context as a declaration. */
10115 static inline int
10116 class_or_namespace_scope_p (dw_die_ref context_die)
10118 return (context_die
10119 && (context_die->die_tag == DW_TAG_structure_type
10120 || context_die->die_tag == DW_TAG_union_type
10121 || context_die->die_tag == DW_TAG_namespace));
10124 /* Many forms of DIEs require a "type description" attribute. This
10125 routine locates the proper "type descriptor" die for the type given
10126 by 'type', and adds a DW_AT_type attribute below the given die. */
10128 static void
10129 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10130 int decl_volatile, dw_die_ref context_die)
10132 enum tree_code code = TREE_CODE (type);
10133 dw_die_ref type_die = NULL;
10135 /* ??? If this type is an unnamed subrange type of an integral or
10136 floating-point type, use the inner type. This is because we have no
10137 support for unnamed types in base_type_die. This can happen if this is
10138 an Ada subrange type. Correct solution is emit a subrange type die. */
10139 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10140 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10141 type = TREE_TYPE (type), code = TREE_CODE (type);
10143 if (code == ERROR_MARK
10144 /* Handle a special case. For functions whose return type is void, we
10145 generate *no* type attribute. (Note that no object may have type
10146 `void', so this only applies to function return types). */
10147 || code == VOID_TYPE)
10148 return;
10150 type_die = modified_type_die (type,
10151 decl_const || TYPE_READONLY (type),
10152 decl_volatile || TYPE_VOLATILE (type),
10153 context_die);
10155 if (type_die != NULL)
10156 add_AT_die_ref (object_die, DW_AT_type, type_die);
10159 /* Given a tree pointer to a struct, class, union, or enum type node, return
10160 a pointer to the (string) tag name for the given type, or zero if the type
10161 was declared without a tag. */
10163 static const char *
10164 type_tag (tree type)
10166 const char *name = 0;
10168 if (TYPE_NAME (type) != 0)
10170 tree t = 0;
10172 /* Find the IDENTIFIER_NODE for the type name. */
10173 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10174 t = TYPE_NAME (type);
10176 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10177 a TYPE_DECL node, regardless of whether or not a `typedef' was
10178 involved. */
10179 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10180 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10181 t = DECL_NAME (TYPE_NAME (type));
10183 /* Now get the name as a string, or invent one. */
10184 if (t != 0)
10185 name = IDENTIFIER_POINTER (t);
10188 return (name == 0 || *name == '\0') ? 0 : name;
10191 /* Return the type associated with a data member, make a special check
10192 for bit field types. */
10194 static inline tree
10195 member_declared_type (tree member)
10197 return (DECL_BIT_FIELD_TYPE (member)
10198 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10201 /* Get the decl's label, as described by its RTL. This may be different
10202 from the DECL_NAME name used in the source file. */
10204 #if 0
10205 static const char *
10206 decl_start_label (tree decl)
10208 rtx x;
10209 const char *fnname;
10211 x = DECL_RTL (decl);
10212 if (GET_CODE (x) != MEM)
10213 abort ();
10215 x = XEXP (x, 0);
10216 if (GET_CODE (x) != SYMBOL_REF)
10217 abort ();
10219 fnname = XSTR (x, 0);
10220 return fnname;
10222 #endif
10224 /* These routines generate the internal representation of the DIE's for
10225 the compilation unit. Debugging information is collected by walking
10226 the declaration trees passed in from dwarf2out_decl(). */
10228 static void
10229 gen_array_type_die (tree type, dw_die_ref context_die)
10231 dw_die_ref scope_die = scope_die_for (type, context_die);
10232 dw_die_ref array_die;
10233 tree element_type;
10235 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10236 the inner array type comes before the outer array type. Thus we must
10237 call gen_type_die before we call new_die. See below also. */
10238 #ifdef MIPS_DEBUGGING_INFO
10239 gen_type_die (TREE_TYPE (type), context_die);
10240 #endif
10242 array_die = new_die (DW_TAG_array_type, scope_die, type);
10243 add_name_attribute (array_die, type_tag (type));
10244 equate_type_number_to_die (type, array_die);
10246 if (TREE_CODE (type) == VECTOR_TYPE)
10248 /* The frontend feeds us a representation for the vector as a struct
10249 containing an array. Pull out the array type. */
10250 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10251 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10254 #if 0
10255 /* We default the array ordering. SDB will probably do
10256 the right things even if DW_AT_ordering is not present. It's not even
10257 an issue until we start to get into multidimensional arrays anyway. If
10258 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10259 then we'll have to put the DW_AT_ordering attribute back in. (But if
10260 and when we find out that we need to put these in, we will only do so
10261 for multidimensional arrays. */
10262 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10263 #endif
10265 #ifdef MIPS_DEBUGGING_INFO
10266 /* The SGI compilers handle arrays of unknown bound by setting
10267 AT_declaration and not emitting any subrange DIEs. */
10268 if (! TYPE_DOMAIN (type))
10269 add_AT_flag (array_die, DW_AT_declaration, 1);
10270 else
10271 #endif
10272 add_subscript_info (array_die, type);
10274 /* Add representation of the type of the elements of this array type. */
10275 element_type = TREE_TYPE (type);
10277 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10278 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10279 We work around this by disabling this feature. See also
10280 add_subscript_info. */
10281 #ifndef MIPS_DEBUGGING_INFO
10282 while (TREE_CODE (element_type) == ARRAY_TYPE)
10283 element_type = TREE_TYPE (element_type);
10285 gen_type_die (element_type, context_die);
10286 #endif
10288 add_type_attribute (array_die, element_type, 0, 0, context_die);
10291 static void
10292 gen_set_type_die (tree type, dw_die_ref context_die)
10294 dw_die_ref type_die
10295 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10297 equate_type_number_to_die (type, type_die);
10298 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10301 #if 0
10302 static void
10303 gen_entry_point_die (tree decl, dw_die_ref context_die)
10305 tree origin = decl_ultimate_origin (decl);
10306 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10308 if (origin != NULL)
10309 add_abstract_origin_attribute (decl_die, origin);
10310 else
10312 add_name_and_src_coords_attributes (decl_die, decl);
10313 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10314 0, 0, context_die);
10317 if (DECL_ABSTRACT (decl))
10318 equate_decl_number_to_die (decl, decl_die);
10319 else
10320 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10322 #endif
10324 /* Walk through the list of incomplete types again, trying once more to
10325 emit full debugging info for them. */
10327 static void
10328 retry_incomplete_types (void)
10330 int i;
10332 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10333 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10336 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10338 static void
10339 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10341 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10343 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10344 be incomplete and such types are not marked. */
10345 add_abstract_origin_attribute (type_die, type);
10348 /* Generate a DIE to represent an inlined instance of a structure type. */
10350 static void
10351 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10353 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10355 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10356 be incomplete and such types are not marked. */
10357 add_abstract_origin_attribute (type_die, type);
10360 /* Generate a DIE to represent an inlined instance of a union type. */
10362 static void
10363 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10365 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10367 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10368 be incomplete and such types are not marked. */
10369 add_abstract_origin_attribute (type_die, type);
10372 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10373 include all of the information about the enumeration values also. Each
10374 enumerated type name/value is listed as a child of the enumerated type
10375 DIE. */
10377 static dw_die_ref
10378 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10380 dw_die_ref type_die = lookup_type_die (type);
10382 if (type_die == NULL)
10384 type_die = new_die (DW_TAG_enumeration_type,
10385 scope_die_for (type, context_die), type);
10386 equate_type_number_to_die (type, type_die);
10387 add_name_attribute (type_die, type_tag (type));
10389 else if (! TYPE_SIZE (type))
10390 return type_die;
10391 else
10392 remove_AT (type_die, DW_AT_declaration);
10394 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10395 given enum type is incomplete, do not generate the DW_AT_byte_size
10396 attribute or the DW_AT_element_list attribute. */
10397 if (TYPE_SIZE (type))
10399 tree link;
10401 TREE_ASM_WRITTEN (type) = 1;
10402 add_byte_size_attribute (type_die, type);
10403 if (TYPE_STUB_DECL (type) != NULL_TREE)
10404 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10406 /* If the first reference to this type was as the return type of an
10407 inline function, then it may not have a parent. Fix this now. */
10408 if (type_die->die_parent == NULL)
10409 add_child_die (scope_die_for (type, context_die), type_die);
10411 for (link = TYPE_FIELDS (type);
10412 link != NULL; link = TREE_CHAIN (link))
10414 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10416 add_name_attribute (enum_die,
10417 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10419 if (host_integerp (TREE_VALUE (link),
10420 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10422 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10423 add_AT_int (enum_die, DW_AT_const_value,
10424 tree_low_cst (TREE_VALUE (link), 0));
10425 else
10426 add_AT_unsigned (enum_die, DW_AT_const_value,
10427 tree_low_cst (TREE_VALUE (link), 1));
10431 else
10432 add_AT_flag (type_die, DW_AT_declaration, 1);
10434 return type_die;
10437 /* Generate a DIE to represent either a real live formal parameter decl or to
10438 represent just the type of some formal parameter position in some function
10439 type.
10441 Note that this routine is a bit unusual because its argument may be a
10442 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10443 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10444 node. If it's the former then this function is being called to output a
10445 DIE to represent a formal parameter object (or some inlining thereof). If
10446 it's the latter, then this function is only being called to output a
10447 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10448 argument type of some subprogram type. */
10450 static dw_die_ref
10451 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10453 dw_die_ref parm_die
10454 = new_die (DW_TAG_formal_parameter, context_die, node);
10455 tree origin;
10457 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10459 case 'd':
10460 origin = decl_ultimate_origin (node);
10461 if (origin != NULL)
10462 add_abstract_origin_attribute (parm_die, origin);
10463 else
10465 add_name_and_src_coords_attributes (parm_die, node);
10466 add_type_attribute (parm_die, TREE_TYPE (node),
10467 TREE_READONLY (node),
10468 TREE_THIS_VOLATILE (node),
10469 context_die);
10470 if (DECL_ARTIFICIAL (node))
10471 add_AT_flag (parm_die, DW_AT_artificial, 1);
10474 equate_decl_number_to_die (node, parm_die);
10475 if (! DECL_ABSTRACT (node))
10476 add_location_or_const_value_attribute (parm_die, node);
10478 break;
10480 case 't':
10481 /* We were called with some kind of a ..._TYPE node. */
10482 add_type_attribute (parm_die, node, 0, 0, context_die);
10483 break;
10485 default:
10486 abort ();
10489 return parm_die;
10492 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10493 at the end of an (ANSI prototyped) formal parameters list. */
10495 static void
10496 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10498 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10501 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10502 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10503 parameters as specified in some function type specification (except for
10504 those which appear as part of a function *definition*). */
10506 static void
10507 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10509 tree link;
10510 tree formal_type = NULL;
10511 tree first_parm_type;
10512 tree arg;
10514 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10516 arg = DECL_ARGUMENTS (function_or_method_type);
10517 function_or_method_type = TREE_TYPE (function_or_method_type);
10519 else
10520 arg = NULL_TREE;
10522 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10524 /* Make our first pass over the list of formal parameter types and output a
10525 DW_TAG_formal_parameter DIE for each one. */
10526 for (link = first_parm_type; link; )
10528 dw_die_ref parm_die;
10530 formal_type = TREE_VALUE (link);
10531 if (formal_type == void_type_node)
10532 break;
10534 /* Output a (nameless) DIE to represent the formal parameter itself. */
10535 parm_die = gen_formal_parameter_die (formal_type, context_die);
10536 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10537 && link == first_parm_type)
10538 || (arg && DECL_ARTIFICIAL (arg)))
10539 add_AT_flag (parm_die, DW_AT_artificial, 1);
10541 link = TREE_CHAIN (link);
10542 if (arg)
10543 arg = TREE_CHAIN (arg);
10546 /* If this function type has an ellipsis, add a
10547 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10548 if (formal_type != void_type_node)
10549 gen_unspecified_parameters_die (function_or_method_type, context_die);
10551 /* Make our second (and final) pass over the list of formal parameter types
10552 and output DIEs to represent those types (as necessary). */
10553 for (link = TYPE_ARG_TYPES (function_or_method_type);
10554 link && TREE_VALUE (link);
10555 link = TREE_CHAIN (link))
10556 gen_type_die (TREE_VALUE (link), context_die);
10559 /* We want to generate the DIE for TYPE so that we can generate the
10560 die for MEMBER, which has been defined; we will need to refer back
10561 to the member declaration nested within TYPE. If we're trying to
10562 generate minimal debug info for TYPE, processing TYPE won't do the
10563 trick; we need to attach the member declaration by hand. */
10565 static void
10566 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10568 gen_type_die (type, context_die);
10570 /* If we're trying to avoid duplicate debug info, we may not have
10571 emitted the member decl for this function. Emit it now. */
10572 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10573 && ! lookup_decl_die (member))
10575 if (decl_ultimate_origin (member))
10576 abort ();
10578 push_decl_scope (type);
10579 if (TREE_CODE (member) == FUNCTION_DECL)
10580 gen_subprogram_die (member, lookup_type_die (type));
10581 else
10582 gen_variable_die (member, lookup_type_die (type));
10584 pop_decl_scope ();
10588 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10589 may later generate inlined and/or out-of-line instances of. */
10591 static void
10592 dwarf2out_abstract_function (tree decl)
10594 dw_die_ref old_die;
10595 tree save_fn;
10596 tree context;
10597 int was_abstract = DECL_ABSTRACT (decl);
10599 /* Make sure we have the actual abstract inline, not a clone. */
10600 decl = DECL_ORIGIN (decl);
10602 old_die = lookup_decl_die (decl);
10603 if (old_die && get_AT (old_die, DW_AT_inline))
10604 /* We've already generated the abstract instance. */
10605 return;
10607 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10608 we don't get confused by DECL_ABSTRACT. */
10609 if (debug_info_level > DINFO_LEVEL_TERSE)
10611 context = decl_class_context (decl);
10612 if (context)
10613 gen_type_die_for_member
10614 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10617 /* Pretend we've just finished compiling this function. */
10618 save_fn = current_function_decl;
10619 current_function_decl = decl;
10621 set_decl_abstract_flags (decl, 1);
10622 dwarf2out_decl (decl);
10623 if (! was_abstract)
10624 set_decl_abstract_flags (decl, 0);
10626 current_function_decl = save_fn;
10629 /* Generate a DIE to represent a declared function (either file-scope or
10630 block-local). */
10632 static void
10633 gen_subprogram_die (tree decl, dw_die_ref context_die)
10635 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10636 tree origin = decl_ultimate_origin (decl);
10637 dw_die_ref subr_die;
10638 rtx fp_reg;
10639 tree fn_arg_types;
10640 tree outer_scope;
10641 dw_die_ref old_die = lookup_decl_die (decl);
10642 int declaration = (current_function_decl != decl
10643 || class_or_namespace_scope_p (context_die));
10645 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10646 started to generate the abstract instance of an inline, decided to output
10647 its containing class, and proceeded to emit the declaration of the inline
10648 from the member list for the class. If so, DECLARATION takes priority;
10649 we'll get back to the abstract instance when done with the class. */
10651 /* The class-scope declaration DIE must be the primary DIE. */
10652 if (origin && declaration && class_or_namespace_scope_p (context_die))
10654 origin = NULL;
10655 if (old_die)
10656 abort ();
10659 if (origin != NULL)
10661 if (declaration && ! local_scope_p (context_die))
10662 abort ();
10664 /* Fixup die_parent for the abstract instance of a nested
10665 inline function. */
10666 if (old_die && old_die->die_parent == NULL)
10667 add_child_die (context_die, old_die);
10669 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10670 add_abstract_origin_attribute (subr_die, origin);
10672 else if (old_die)
10674 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10676 if (!get_AT_flag (old_die, DW_AT_declaration)
10677 /* We can have a normal definition following an inline one in the
10678 case of redefinition of GNU C extern inlines.
10679 It seems reasonable to use AT_specification in this case. */
10680 && !get_AT (old_die, DW_AT_inline))
10682 /* ??? This can happen if there is a bug in the program, for
10683 instance, if it has duplicate function definitions. Ideally,
10684 we should detect this case and ignore it. For now, if we have
10685 already reported an error, any error at all, then assume that
10686 we got here because of an input error, not a dwarf2 bug. */
10687 if (errorcount)
10688 return;
10689 abort ();
10692 /* If the definition comes from the same place as the declaration,
10693 maybe use the old DIE. We always want the DIE for this function
10694 that has the *_pc attributes to be under comp_unit_die so the
10695 debugger can find it. We also need to do this for abstract
10696 instances of inlines, since the spec requires the out-of-line copy
10697 to have the same parent. For local class methods, this doesn't
10698 apply; we just use the old DIE. */
10699 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10700 && (DECL_ARTIFICIAL (decl)
10701 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10702 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10703 == (unsigned) DECL_SOURCE_LINE (decl)))))
10705 subr_die = old_die;
10707 /* Clear out the declaration attribute and the parm types. */
10708 remove_AT (subr_die, DW_AT_declaration);
10709 remove_children (subr_die);
10711 else
10713 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10714 add_AT_specification (subr_die, old_die);
10715 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10716 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10717 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10718 != (unsigned) DECL_SOURCE_LINE (decl))
10719 add_AT_unsigned
10720 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10723 else
10725 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10727 if (TREE_PUBLIC (decl))
10728 add_AT_flag (subr_die, DW_AT_external, 1);
10730 add_name_and_src_coords_attributes (subr_die, decl);
10731 if (debug_info_level > DINFO_LEVEL_TERSE)
10733 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10734 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10735 0, 0, context_die);
10738 add_pure_or_virtual_attribute (subr_die, decl);
10739 if (DECL_ARTIFICIAL (decl))
10740 add_AT_flag (subr_die, DW_AT_artificial, 1);
10742 if (TREE_PROTECTED (decl))
10743 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10744 else if (TREE_PRIVATE (decl))
10745 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10748 if (declaration)
10750 if (!old_die || !get_AT (old_die, DW_AT_inline))
10752 add_AT_flag (subr_die, DW_AT_declaration, 1);
10754 /* The first time we see a member function, it is in the context of
10755 the class to which it belongs. We make sure of this by emitting
10756 the class first. The next time is the definition, which is
10757 handled above. The two may come from the same source text. */
10758 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10759 equate_decl_number_to_die (decl, subr_die);
10762 else if (DECL_ABSTRACT (decl))
10764 if (DECL_DECLARED_INLINE_P (decl))
10766 if (cgraph_function_possibly_inlined_p (decl))
10767 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10768 else
10769 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10771 else
10773 if (cgraph_function_possibly_inlined_p (decl))
10774 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10775 else
10776 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
10779 equate_decl_number_to_die (decl, subr_die);
10781 else if (!DECL_EXTERNAL (decl))
10783 if (!old_die || !get_AT (old_die, DW_AT_inline))
10784 equate_decl_number_to_die (decl, subr_die);
10786 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10787 current_function_funcdef_no);
10788 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10789 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10790 current_function_funcdef_no);
10791 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10793 add_pubname (decl, subr_die);
10794 add_arange (decl, subr_die);
10796 #ifdef MIPS_DEBUGGING_INFO
10797 /* Add a reference to the FDE for this routine. */
10798 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10799 #endif
10801 /* Define the "frame base" location for this routine. We use the
10802 frame pointer or stack pointer registers, since the RTL for local
10803 variables is relative to one of them. */
10804 fp_reg
10805 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10806 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10808 #if 0
10809 /* ??? This fails for nested inline functions, because context_display
10810 is not part of the state saved/restored for inline functions. */
10811 if (current_function_needs_context)
10812 add_AT_location_description (subr_die, DW_AT_static_link,
10813 loc_descriptor (lookup_static_chain (decl)));
10814 #endif
10817 /* Now output descriptions of the arguments for this function. This gets
10818 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10819 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10820 `...' at the end of the formal parameter list. In order to find out if
10821 there was a trailing ellipsis or not, we must instead look at the type
10822 associated with the FUNCTION_DECL. This will be a node of type
10823 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10824 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10825 an ellipsis at the end. */
10827 /* In the case where we are describing a mere function declaration, all we
10828 need to do here (and all we *can* do here) is to describe the *types* of
10829 its formal parameters. */
10830 if (debug_info_level <= DINFO_LEVEL_TERSE)
10832 else if (declaration)
10833 gen_formal_types_die (decl, subr_die);
10834 else
10836 /* Generate DIEs to represent all known formal parameters. */
10837 tree arg_decls = DECL_ARGUMENTS (decl);
10838 tree parm;
10840 /* When generating DIEs, generate the unspecified_parameters DIE
10841 instead if we come across the arg "__builtin_va_alist" */
10842 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10843 if (TREE_CODE (parm) == PARM_DECL)
10845 if (DECL_NAME (parm)
10846 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10847 "__builtin_va_alist"))
10848 gen_unspecified_parameters_die (parm, subr_die);
10849 else
10850 gen_decl_die (parm, subr_die);
10853 /* Decide whether we need an unspecified_parameters DIE at the end.
10854 There are 2 more cases to do this for: 1) the ansi ... declaration -
10855 this is detectable when the end of the arg list is not a
10856 void_type_node 2) an unprototyped function declaration (not a
10857 definition). This just means that we have no info about the
10858 parameters at all. */
10859 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10860 if (fn_arg_types != NULL)
10862 /* This is the prototyped case, check for.... */
10863 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10864 gen_unspecified_parameters_die (decl, subr_die);
10866 else if (DECL_INITIAL (decl) == NULL_TREE)
10867 gen_unspecified_parameters_die (decl, subr_die);
10870 /* Output Dwarf info for all of the stuff within the body of the function
10871 (if it has one - it may be just a declaration). */
10872 outer_scope = DECL_INITIAL (decl);
10874 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10875 a function. This BLOCK actually represents the outermost binding contour
10876 for the function, i.e. the contour in which the function's formal
10877 parameters and labels get declared. Curiously, it appears that the front
10878 end doesn't actually put the PARM_DECL nodes for the current function onto
10879 the BLOCK_VARS list for this outer scope, but are strung off of the
10880 DECL_ARGUMENTS list for the function instead.
10882 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10883 the LABEL_DECL nodes for the function however, and we output DWARF info
10884 for those in decls_for_scope. Just within the `outer_scope' there will be
10885 a BLOCK node representing the function's outermost pair of curly braces,
10886 and any blocks used for the base and member initializers of a C++
10887 constructor function. */
10888 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10890 current_function_has_inlines = 0;
10891 decls_for_scope (outer_scope, subr_die, 0);
10893 #if 0 && defined (MIPS_DEBUGGING_INFO)
10894 if (current_function_has_inlines)
10896 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10897 if (! comp_unit_has_inlines)
10899 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10900 comp_unit_has_inlines = 1;
10903 #endif
10907 /* Generate a DIE to represent a declared data object. */
10909 static void
10910 gen_variable_die (tree decl, dw_die_ref context_die)
10912 tree origin = decl_ultimate_origin (decl);
10913 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10915 dw_die_ref old_die = lookup_decl_die (decl);
10916 int declaration = (DECL_EXTERNAL (decl)
10917 || class_or_namespace_scope_p (context_die));
10919 if (origin != NULL)
10920 add_abstract_origin_attribute (var_die, origin);
10922 /* Loop unrolling can create multiple blocks that refer to the same
10923 static variable, so we must test for the DW_AT_declaration flag.
10925 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10926 copy decls and set the DECL_ABSTRACT flag on them instead of
10927 sharing them.
10929 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10930 else if (old_die && TREE_STATIC (decl)
10931 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10933 /* This is a definition of a C++ class level static. */
10934 add_AT_specification (var_die, old_die);
10935 if (DECL_NAME (decl))
10937 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10939 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10940 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10942 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10943 != (unsigned) DECL_SOURCE_LINE (decl))
10945 add_AT_unsigned (var_die, DW_AT_decl_line,
10946 DECL_SOURCE_LINE (decl));
10949 else
10951 add_name_and_src_coords_attributes (var_die, decl);
10952 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10953 TREE_THIS_VOLATILE (decl), context_die);
10955 if (TREE_PUBLIC (decl))
10956 add_AT_flag (var_die, DW_AT_external, 1);
10958 if (DECL_ARTIFICIAL (decl))
10959 add_AT_flag (var_die, DW_AT_artificial, 1);
10961 if (TREE_PROTECTED (decl))
10962 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10963 else if (TREE_PRIVATE (decl))
10964 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10967 if (declaration)
10968 add_AT_flag (var_die, DW_AT_declaration, 1);
10970 if (class_or_namespace_scope_p (context_die) || DECL_ABSTRACT (decl))
10971 equate_decl_number_to_die (decl, var_die);
10973 if (! declaration && ! DECL_ABSTRACT (decl))
10975 add_location_or_const_value_attribute (var_die, decl);
10976 add_pubname (decl, var_die);
10978 else
10979 tree_add_const_value_attribute (var_die, decl);
10982 /* Generate a DIE to represent a label identifier. */
10984 static void
10985 gen_label_die (tree decl, dw_die_ref context_die)
10987 tree origin = decl_ultimate_origin (decl);
10988 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10989 rtx insn;
10990 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10992 if (origin != NULL)
10993 add_abstract_origin_attribute (lbl_die, origin);
10994 else
10995 add_name_and_src_coords_attributes (lbl_die, decl);
10997 if (DECL_ABSTRACT (decl))
10998 equate_decl_number_to_die (decl, lbl_die);
10999 else
11001 insn = DECL_RTL_IF_SET (decl);
11003 /* Deleted labels are programmer specified labels which have been
11004 eliminated because of various optimizations. We still emit them
11005 here so that it is possible to put breakpoints on them. */
11006 if (insn
11007 && (GET_CODE (insn) == CODE_LABEL
11008 || ((GET_CODE (insn) == NOTE
11009 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11011 /* When optimization is enabled (via -O) some parts of the compiler
11012 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11013 represent source-level labels which were explicitly declared by
11014 the user. This really shouldn't be happening though, so catch
11015 it if it ever does happen. */
11016 if (INSN_DELETED_P (insn))
11017 abort ();
11019 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11020 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11025 /* Generate a DIE for a lexical block. */
11027 static void
11028 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11030 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11031 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11033 if (! BLOCK_ABSTRACT (stmt))
11035 if (BLOCK_FRAGMENT_CHAIN (stmt))
11037 tree chain;
11039 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11041 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11044 add_ranges (chain);
11045 chain = BLOCK_FRAGMENT_CHAIN (chain);
11047 while (chain);
11048 add_ranges (NULL);
11050 else
11052 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11053 BLOCK_NUMBER (stmt));
11054 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11055 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11056 BLOCK_NUMBER (stmt));
11057 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11061 decls_for_scope (stmt, stmt_die, depth);
11064 /* Generate a DIE for an inlined subprogram. */
11066 static void
11067 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11069 tree decl = block_ultimate_origin (stmt);
11071 /* Emit info for the abstract instance first, if we haven't yet. We
11072 must emit this even if the block is abstract, otherwise when we
11073 emit the block below (or elsewhere), we may end up trying to emit
11074 a die whose origin die hasn't been emitted, and crashing. */
11075 dwarf2out_abstract_function (decl);
11077 if (! BLOCK_ABSTRACT (stmt))
11079 dw_die_ref subr_die
11080 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11081 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11083 add_abstract_origin_attribute (subr_die, decl);
11084 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11085 BLOCK_NUMBER (stmt));
11086 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11087 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11088 BLOCK_NUMBER (stmt));
11089 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11090 decls_for_scope (stmt, subr_die, depth);
11091 current_function_has_inlines = 1;
11093 else
11094 /* We may get here if we're the outer block of function A that was
11095 inlined into function B that was inlined into function C. When
11096 generating debugging info for C, dwarf2out_abstract_function(B)
11097 would mark all inlined blocks as abstract, including this one.
11098 So, we wouldn't (and shouldn't) expect labels to be generated
11099 for this one. Instead, just emit debugging info for
11100 declarations within the block. This is particularly important
11101 in the case of initializers of arguments passed from B to us:
11102 if they're statement expressions containing declarations, we
11103 wouldn't generate dies for their abstract variables, and then,
11104 when generating dies for the real variables, we'd die (pun
11105 intended :-) */
11106 gen_lexical_block_die (stmt, context_die, depth);
11109 /* Generate a DIE for a field in a record, or structure. */
11111 static void
11112 gen_field_die (tree decl, dw_die_ref context_die)
11114 dw_die_ref decl_die;
11116 if (TREE_TYPE (decl) == error_mark_node)
11117 return;
11119 decl_die = new_die (DW_TAG_member, context_die, decl);
11120 add_name_and_src_coords_attributes (decl_die, decl);
11121 add_type_attribute (decl_die, member_declared_type (decl),
11122 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11123 context_die);
11125 if (DECL_BIT_FIELD_TYPE (decl))
11127 add_byte_size_attribute (decl_die, decl);
11128 add_bit_size_attribute (decl_die, decl);
11129 add_bit_offset_attribute (decl_die, decl);
11132 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11133 add_data_member_location_attribute (decl_die, decl);
11135 if (DECL_ARTIFICIAL (decl))
11136 add_AT_flag (decl_die, DW_AT_artificial, 1);
11138 if (TREE_PROTECTED (decl))
11139 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11140 else if (TREE_PRIVATE (decl))
11141 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11144 #if 0
11145 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11146 Use modified_type_die instead.
11147 We keep this code here just in case these types of DIEs may be needed to
11148 represent certain things in other languages (e.g. Pascal) someday. */
11150 static void
11151 gen_pointer_type_die (tree type, dw_die_ref context_die)
11153 dw_die_ref ptr_die
11154 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11156 equate_type_number_to_die (type, ptr_die);
11157 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11158 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11161 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11162 Use modified_type_die instead.
11163 We keep this code here just in case these types of DIEs may be needed to
11164 represent certain things in other languages (e.g. Pascal) someday. */
11166 static void
11167 gen_reference_type_die (tree type, dw_die_ref context_die)
11169 dw_die_ref ref_die
11170 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11172 equate_type_number_to_die (type, ref_die);
11173 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11174 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11176 #endif
11178 /* Generate a DIE for a pointer to a member type. */
11180 static void
11181 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11183 dw_die_ref ptr_die
11184 = new_die (DW_TAG_ptr_to_member_type,
11185 scope_die_for (type, context_die), type);
11187 equate_type_number_to_die (type, ptr_die);
11188 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11189 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11190 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11193 /* Generate the DIE for the compilation unit. */
11195 static dw_die_ref
11196 gen_compile_unit_die (const char *filename)
11198 dw_die_ref die;
11199 char producer[250];
11200 const char *language_string = lang_hooks.name;
11201 int language;
11203 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11205 if (filename)
11207 add_name_attribute (die, filename);
11208 /* Don't add cwd for <built-in>. */
11209 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11210 add_comp_dir_attribute (die);
11213 sprintf (producer, "%s %s", language_string, version_string);
11215 #ifdef MIPS_DEBUGGING_INFO
11216 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11217 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11218 not appear in the producer string, the debugger reaches the conclusion
11219 that the object file is stripped and has no debugging information.
11220 To get the MIPS/SGI debugger to believe that there is debugging
11221 information in the object file, we add a -g to the producer string. */
11222 if (debug_info_level > DINFO_LEVEL_TERSE)
11223 strcat (producer, " -g");
11224 #endif
11226 add_AT_string (die, DW_AT_producer, producer);
11228 if (strcmp (language_string, "GNU C++") == 0)
11229 language = DW_LANG_C_plus_plus;
11230 else if (strcmp (language_string, "GNU Ada") == 0)
11231 language = DW_LANG_Ada95;
11232 else if (strcmp (language_string, "GNU F77") == 0)
11233 language = DW_LANG_Fortran77;
11234 else if (strcmp (language_string, "GNU Pascal") == 0)
11235 language = DW_LANG_Pascal83;
11236 else if (strcmp (language_string, "GNU Java") == 0)
11237 language = DW_LANG_Java;
11238 else
11239 language = DW_LANG_C89;
11241 add_AT_unsigned (die, DW_AT_language, language);
11242 return die;
11245 /* Generate a DIE for a string type. */
11247 static void
11248 gen_string_type_die (tree type, dw_die_ref context_die)
11250 dw_die_ref type_die
11251 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11253 equate_type_number_to_die (type, type_die);
11255 /* ??? Fudge the string length attribute for now.
11256 TODO: add string length info. */
11257 #if 0
11258 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11259 bound_representation (upper_bound, 0, 'u');
11260 #endif
11263 /* Generate the DIE for a base class. */
11265 static void
11266 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11268 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11270 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11271 add_data_member_location_attribute (die, binfo);
11273 if (TREE_VIA_VIRTUAL (binfo))
11274 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11276 if (access == access_public_node)
11277 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11278 else if (access == access_protected_node)
11279 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11282 /* Generate a DIE for a class member. */
11284 static void
11285 gen_member_die (tree type, dw_die_ref context_die)
11287 tree member;
11288 tree binfo = TYPE_BINFO (type);
11289 dw_die_ref child;
11291 /* If this is not an incomplete type, output descriptions of each of its
11292 members. Note that as we output the DIEs necessary to represent the
11293 members of this record or union type, we will also be trying to output
11294 DIEs to represent the *types* of those members. However the `type'
11295 function (above) will specifically avoid generating type DIEs for member
11296 types *within* the list of member DIEs for this (containing) type except
11297 for those types (of members) which are explicitly marked as also being
11298 members of this (containing) type themselves. The g++ front- end can
11299 force any given type to be treated as a member of some other (containing)
11300 type by setting the TYPE_CONTEXT of the given (member) type to point to
11301 the TREE node representing the appropriate (containing) type. */
11303 /* First output info about the base classes. */
11304 if (binfo && BINFO_BASETYPES (binfo))
11306 tree bases = BINFO_BASETYPES (binfo);
11307 tree accesses = BINFO_BASEACCESSES (binfo);
11308 int n_bases = TREE_VEC_LENGTH (bases);
11309 int i;
11311 for (i = 0; i < n_bases; i++)
11312 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11313 (accesses ? TREE_VEC_ELT (accesses, i)
11314 : access_public_node), context_die);
11317 /* Now output info about the data members and type members. */
11318 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11320 /* If we thought we were generating minimal debug info for TYPE
11321 and then changed our minds, some of the member declarations
11322 may have already been defined. Don't define them again, but
11323 do put them in the right order. */
11325 child = lookup_decl_die (member);
11326 if (child)
11327 splice_child_die (context_die, child);
11328 else
11329 gen_decl_die (member, context_die);
11332 /* Now output info about the function members (if any). */
11333 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11335 /* Don't include clones in the member list. */
11336 if (DECL_ABSTRACT_ORIGIN (member))
11337 continue;
11339 child = lookup_decl_die (member);
11340 if (child)
11341 splice_child_die (context_die, child);
11342 else
11343 gen_decl_die (member, context_die);
11347 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11348 is set, we pretend that the type was never defined, so we only get the
11349 member DIEs needed by later specification DIEs. */
11351 static void
11352 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11354 dw_die_ref type_die = lookup_type_die (type);
11355 dw_die_ref scope_die = 0;
11356 int nested = 0;
11357 int complete = (TYPE_SIZE (type)
11358 && (! TYPE_STUB_DECL (type)
11359 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11360 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11362 if (type_die && ! complete)
11363 return;
11365 if (TYPE_CONTEXT (type) != NULL_TREE
11366 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11367 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11368 nested = 1;
11370 scope_die = scope_die_for (type, context_die);
11372 if (! type_die || (nested && scope_die == comp_unit_die))
11373 /* First occurrence of type or toplevel definition of nested class. */
11375 dw_die_ref old_die = type_die;
11377 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11378 ? DW_TAG_structure_type : DW_TAG_union_type,
11379 scope_die, type);
11380 equate_type_number_to_die (type, type_die);
11381 if (old_die)
11382 add_AT_specification (type_die, old_die);
11383 else
11384 add_name_attribute (type_die, type_tag (type));
11386 else
11387 remove_AT (type_die, DW_AT_declaration);
11389 /* If this type has been completed, then give it a byte_size attribute and
11390 then give a list of members. */
11391 if (complete && !ns_decl)
11393 /* Prevent infinite recursion in cases where the type of some member of
11394 this type is expressed in terms of this type itself. */
11395 TREE_ASM_WRITTEN (type) = 1;
11396 add_byte_size_attribute (type_die, type);
11397 if (TYPE_STUB_DECL (type) != NULL_TREE)
11398 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11400 /* If the first reference to this type was as the return type of an
11401 inline function, then it may not have a parent. Fix this now. */
11402 if (type_die->die_parent == NULL)
11403 add_child_die (scope_die, type_die);
11405 push_decl_scope (type);
11406 gen_member_die (type, type_die);
11407 pop_decl_scope ();
11409 /* GNU extension: Record what type our vtable lives in. */
11410 if (TYPE_VFIELD (type))
11412 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11414 gen_type_die (vtype, context_die);
11415 add_AT_die_ref (type_die, DW_AT_containing_type,
11416 lookup_type_die (vtype));
11419 else
11421 add_AT_flag (type_die, DW_AT_declaration, 1);
11423 /* We don't need to do this for function-local types. */
11424 if (TYPE_STUB_DECL (type)
11425 && ! decl_function_context (TYPE_STUB_DECL (type)))
11426 VARRAY_PUSH_TREE (incomplete_types, type);
11430 /* Generate a DIE for a subroutine _type_. */
11432 static void
11433 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11435 tree return_type = TREE_TYPE (type);
11436 dw_die_ref subr_die
11437 = new_die (DW_TAG_subroutine_type,
11438 scope_die_for (type, context_die), type);
11440 equate_type_number_to_die (type, subr_die);
11441 add_prototyped_attribute (subr_die, type);
11442 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11443 gen_formal_types_die (type, subr_die);
11446 /* Generate a DIE for a type definition. */
11448 static void
11449 gen_typedef_die (tree decl, dw_die_ref context_die)
11451 dw_die_ref type_die;
11452 tree origin;
11454 if (TREE_ASM_WRITTEN (decl))
11455 return;
11457 TREE_ASM_WRITTEN (decl) = 1;
11458 type_die = new_die (DW_TAG_typedef, context_die, decl);
11459 origin = decl_ultimate_origin (decl);
11460 if (origin != NULL)
11461 add_abstract_origin_attribute (type_die, origin);
11462 else
11464 tree type;
11466 add_name_and_src_coords_attributes (type_die, decl);
11467 if (DECL_ORIGINAL_TYPE (decl))
11469 type = DECL_ORIGINAL_TYPE (decl);
11471 if (type == TREE_TYPE (decl))
11472 abort ();
11473 else
11474 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11476 else
11477 type = TREE_TYPE (decl);
11479 add_type_attribute (type_die, type, TREE_READONLY (decl),
11480 TREE_THIS_VOLATILE (decl), context_die);
11483 if (DECL_ABSTRACT (decl))
11484 equate_decl_number_to_die (decl, type_die);
11487 /* Generate a type description DIE. */
11489 static void
11490 gen_type_die (tree type, dw_die_ref context_die)
11492 int need_pop;
11494 if (type == NULL_TREE || type == error_mark_node)
11495 return;
11497 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11498 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11500 if (TREE_ASM_WRITTEN (type))
11501 return;
11503 /* Prevent broken recursion; we can't hand off to the same type. */
11504 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11505 abort ();
11507 TREE_ASM_WRITTEN (type) = 1;
11508 gen_decl_die (TYPE_NAME (type), context_die);
11509 return;
11512 /* We are going to output a DIE to represent the unqualified version
11513 of this type (i.e. without any const or volatile qualifiers) so
11514 get the main variant (i.e. the unqualified version) of this type
11515 now. (Vectors are special because the debugging info is in the
11516 cloned type itself). */
11517 if (TREE_CODE (type) != VECTOR_TYPE)
11518 type = type_main_variant (type);
11520 if (TREE_ASM_WRITTEN (type))
11521 return;
11523 switch (TREE_CODE (type))
11525 case ERROR_MARK:
11526 break;
11528 case POINTER_TYPE:
11529 case REFERENCE_TYPE:
11530 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11531 ensures that the gen_type_die recursion will terminate even if the
11532 type is recursive. Recursive types are possible in Ada. */
11533 /* ??? We could perhaps do this for all types before the switch
11534 statement. */
11535 TREE_ASM_WRITTEN (type) = 1;
11537 /* For these types, all that is required is that we output a DIE (or a
11538 set of DIEs) to represent the "basis" type. */
11539 gen_type_die (TREE_TYPE (type), context_die);
11540 break;
11542 case OFFSET_TYPE:
11543 /* This code is used for C++ pointer-to-data-member types.
11544 Output a description of the relevant class type. */
11545 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11547 /* Output a description of the type of the object pointed to. */
11548 gen_type_die (TREE_TYPE (type), context_die);
11550 /* Now output a DIE to represent this pointer-to-data-member type
11551 itself. */
11552 gen_ptr_to_mbr_type_die (type, context_die);
11553 break;
11555 case SET_TYPE:
11556 gen_type_die (TYPE_DOMAIN (type), context_die);
11557 gen_set_type_die (type, context_die);
11558 break;
11560 case FILE_TYPE:
11561 gen_type_die (TREE_TYPE (type), context_die);
11562 abort (); /* No way to represent these in Dwarf yet! */
11563 break;
11565 case FUNCTION_TYPE:
11566 /* Force out return type (in case it wasn't forced out already). */
11567 gen_type_die (TREE_TYPE (type), context_die);
11568 gen_subroutine_type_die (type, context_die);
11569 break;
11571 case METHOD_TYPE:
11572 /* Force out return type (in case it wasn't forced out already). */
11573 gen_type_die (TREE_TYPE (type), context_die);
11574 gen_subroutine_type_die (type, context_die);
11575 break;
11577 case ARRAY_TYPE:
11578 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11580 gen_type_die (TREE_TYPE (type), context_die);
11581 gen_string_type_die (type, context_die);
11583 else
11584 gen_array_type_die (type, context_die);
11585 break;
11587 case VECTOR_TYPE:
11588 gen_array_type_die (type, context_die);
11589 break;
11591 case ENUMERAL_TYPE:
11592 case RECORD_TYPE:
11593 case UNION_TYPE:
11594 case QUAL_UNION_TYPE:
11595 /* If this is a nested type whose containing class hasn't been written
11596 out yet, writing it out will cover this one, too. This does not apply
11597 to instantiations of member class templates; they need to be added to
11598 the containing class as they are generated. FIXME: This hurts the
11599 idea of combining type decls from multiple TUs, since we can't predict
11600 what set of template instantiations we'll get. */
11601 if (TYPE_CONTEXT (type)
11602 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11603 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11605 gen_type_die (TYPE_CONTEXT (type), context_die);
11607 if (TREE_ASM_WRITTEN (type))
11608 return;
11610 /* If that failed, attach ourselves to the stub. */
11611 push_decl_scope (TYPE_CONTEXT (type));
11612 context_die = lookup_type_die (TYPE_CONTEXT (type));
11613 need_pop = 1;
11615 else
11617 declare_in_namespace (type, context_die);
11618 need_pop = 0;
11621 if (TREE_CODE (type) == ENUMERAL_TYPE)
11622 gen_enumeration_type_die (type, context_die);
11623 else
11624 gen_struct_or_union_type_die (type, context_die);
11626 if (need_pop)
11627 pop_decl_scope ();
11629 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11630 it up if it is ever completed. gen_*_type_die will set it for us
11631 when appropriate. */
11632 return;
11634 case VOID_TYPE:
11635 case INTEGER_TYPE:
11636 case REAL_TYPE:
11637 case COMPLEX_TYPE:
11638 case BOOLEAN_TYPE:
11639 case CHAR_TYPE:
11640 /* No DIEs needed for fundamental types. */
11641 break;
11643 case LANG_TYPE:
11644 /* No Dwarf representation currently defined. */
11645 break;
11647 default:
11648 abort ();
11651 TREE_ASM_WRITTEN (type) = 1;
11654 /* Generate a DIE for a tagged type instantiation. */
11656 static void
11657 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11659 if (type == NULL_TREE || type == error_mark_node)
11660 return;
11662 /* We are going to output a DIE to represent the unqualified version of
11663 this type (i.e. without any const or volatile qualifiers) so make sure
11664 that we have the main variant (i.e. the unqualified version) of this
11665 type now. */
11666 if (type != type_main_variant (type))
11667 abort ();
11669 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11670 an instance of an unresolved type. */
11672 switch (TREE_CODE (type))
11674 case ERROR_MARK:
11675 break;
11677 case ENUMERAL_TYPE:
11678 gen_inlined_enumeration_type_die (type, context_die);
11679 break;
11681 case RECORD_TYPE:
11682 gen_inlined_structure_type_die (type, context_die);
11683 break;
11685 case UNION_TYPE:
11686 case QUAL_UNION_TYPE:
11687 gen_inlined_union_type_die (type, context_die);
11688 break;
11690 default:
11691 abort ();
11695 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11696 things which are local to the given block. */
11698 static void
11699 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11701 int must_output_die = 0;
11702 tree origin;
11703 tree decl;
11704 enum tree_code origin_code;
11706 /* Ignore blocks never really used to make RTL. */
11707 if (stmt == NULL_TREE || !TREE_USED (stmt)
11708 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11709 return;
11711 /* If the block is one fragment of a non-contiguous block, do not
11712 process the variables, since they will have been done by the
11713 origin block. Do process subblocks. */
11714 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11716 tree sub;
11718 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11719 gen_block_die (sub, context_die, depth + 1);
11721 return;
11724 /* Determine the "ultimate origin" of this block. This block may be an
11725 inlined instance of an inlined instance of inline function, so we have
11726 to trace all of the way back through the origin chain to find out what
11727 sort of node actually served as the original seed for the creation of
11728 the current block. */
11729 origin = block_ultimate_origin (stmt);
11730 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11732 /* Determine if we need to output any Dwarf DIEs at all to represent this
11733 block. */
11734 if (origin_code == FUNCTION_DECL)
11735 /* The outer scopes for inlinings *must* always be represented. We
11736 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11737 must_output_die = 1;
11738 else
11740 /* In the case where the current block represents an inlining of the
11741 "body block" of an inline function, we must *NOT* output any DIE for
11742 this block because we have already output a DIE to represent the whole
11743 inlined function scope and the "body block" of any function doesn't
11744 really represent a different scope according to ANSI C rules. So we
11745 check here to make sure that this block does not represent a "body
11746 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11747 if (! is_body_block (origin ? origin : stmt))
11749 /* Determine if this block directly contains any "significant"
11750 local declarations which we will need to output DIEs for. */
11751 if (debug_info_level > DINFO_LEVEL_TERSE)
11752 /* We are not in terse mode so *any* local declaration counts
11753 as being a "significant" one. */
11754 must_output_die = (BLOCK_VARS (stmt) != NULL);
11755 else
11756 /* We are in terse mode, so only local (nested) function
11757 definitions count as "significant" local declarations. */
11758 for (decl = BLOCK_VARS (stmt);
11759 decl != NULL; decl = TREE_CHAIN (decl))
11760 if (TREE_CODE (decl) == FUNCTION_DECL
11761 && DECL_INITIAL (decl))
11763 must_output_die = 1;
11764 break;
11769 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11770 DIE for any block which contains no significant local declarations at
11771 all. Rather, in such cases we just call `decls_for_scope' so that any
11772 needed Dwarf info for any sub-blocks will get properly generated. Note
11773 that in terse mode, our definition of what constitutes a "significant"
11774 local declaration gets restricted to include only inlined function
11775 instances and local (nested) function definitions. */
11776 if (must_output_die)
11778 if (origin_code == FUNCTION_DECL)
11779 gen_inlined_subroutine_die (stmt, context_die, depth);
11780 else
11781 gen_lexical_block_die (stmt, context_die, depth);
11783 else
11784 decls_for_scope (stmt, context_die, depth);
11787 /* Generate all of the decls declared within a given scope and (recursively)
11788 all of its sub-blocks. */
11790 static void
11791 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11793 tree decl;
11794 tree subblocks;
11796 /* Ignore blocks never really used to make RTL. */
11797 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11798 return;
11800 /* Output the DIEs to represent all of the data objects and typedefs
11801 declared directly within this block but not within any nested
11802 sub-blocks. Also, nested function and tag DIEs have been
11803 generated with a parent of NULL; fix that up now. */
11804 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11806 dw_die_ref die;
11808 if (TREE_CODE (decl) == FUNCTION_DECL)
11809 die = lookup_decl_die (decl);
11810 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11811 die = lookup_type_die (TREE_TYPE (decl));
11812 else
11813 die = NULL;
11815 if (die != NULL && die->die_parent == NULL)
11816 add_child_die (context_die, die);
11817 else
11818 gen_decl_die (decl, context_die);
11821 /* If we're at -g1, we're not interested in subblocks. */
11822 if (debug_info_level <= DINFO_LEVEL_TERSE)
11823 return;
11825 /* Output the DIEs to represent all sub-blocks (and the items declared
11826 therein) of this block. */
11827 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11828 subblocks != NULL;
11829 subblocks = BLOCK_CHAIN (subblocks))
11830 gen_block_die (subblocks, context_die, depth + 1);
11833 /* Is this a typedef we can avoid emitting? */
11835 static inline int
11836 is_redundant_typedef (tree decl)
11838 if (TYPE_DECL_IS_STUB (decl))
11839 return 1;
11841 if (DECL_ARTIFICIAL (decl)
11842 && DECL_CONTEXT (decl)
11843 && is_tagged_type (DECL_CONTEXT (decl))
11844 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11845 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11846 /* Also ignore the artificial member typedef for the class name. */
11847 return 1;
11849 return 0;
11852 /* Returns the DIE for namespace NS or aborts.
11854 Note that namespaces don't really have a lexical context, so there's no
11855 need to pass in a context_die. They always go inside their containing
11856 namespace, or comp_unit_die if none. */
11858 static dw_die_ref
11859 force_namespace_die (tree ns)
11861 dw_die_ref ns_die;
11863 dwarf2out_decl (ns);
11864 ns_die = lookup_decl_die (ns);
11865 if (!ns_die)
11866 abort();
11868 return ns_die;
11871 /* Force out any required namespaces to be able to output DECL,
11872 and return the new context_die for it, if it's changed. */
11874 static dw_die_ref
11875 setup_namespace_context (tree thing, dw_die_ref context_die)
11877 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
11878 if (context && TREE_CODE (context) == NAMESPACE_DECL)
11879 /* Force out the namespace. */
11880 context_die = force_namespace_die (context);
11882 return context_die;
11885 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
11886 type) within its namespace, if appropriate.
11888 For compatibility with older debuggers, namespace DIEs only contain
11889 declarations; all definitions are emitted at CU scope. */
11891 static void
11892 declare_in_namespace (tree thing, dw_die_ref context_die)
11894 dw_die_ref ns_context;
11896 if (debug_info_level <= DINFO_LEVEL_TERSE)
11897 return;
11899 ns_context = setup_namespace_context (thing, context_die);
11901 if (ns_context != context_die)
11903 if (DECL_P (thing))
11904 gen_decl_die (thing, ns_context);
11905 else
11906 gen_type_die (thing, ns_context);
11910 /* Generate a DIE for a namespace or namespace alias. */
11912 static void
11913 gen_namespace_die (tree decl)
11915 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
11917 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
11918 they are an alias of. */
11919 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
11921 /* Output a real namespace. */
11922 dw_die_ref namespace_die
11923 = new_die (DW_TAG_namespace, context_die, decl);
11924 add_name_and_src_coords_attributes (namespace_die, decl);
11925 equate_decl_number_to_die (decl, namespace_die);
11927 else
11929 /* Output a namespace alias. */
11931 /* Force out the namespace we are an alias of, if necessary. */
11932 dw_die_ref origin_die
11933 = force_namespace_die (DECL_ABSTRACT_ORIGIN (decl));
11935 /* Now create the namespace alias DIE. */
11936 dw_die_ref namespace_die
11937 = new_die (DW_TAG_imported_declaration, context_die, decl);
11938 add_name_and_src_coords_attributes (namespace_die, decl);
11939 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
11940 equate_decl_number_to_die (decl, namespace_die);
11944 /* Generate Dwarf debug information for a decl described by DECL. */
11946 static void
11947 gen_decl_die (tree decl, dw_die_ref context_die)
11949 tree origin;
11951 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11952 return;
11954 switch (TREE_CODE (decl))
11956 case ERROR_MARK:
11957 break;
11959 case CONST_DECL:
11960 /* The individual enumerators of an enum type get output when we output
11961 the Dwarf representation of the relevant enum type itself. */
11962 break;
11964 case FUNCTION_DECL:
11965 /* Don't output any DIEs to represent mere function declarations,
11966 unless they are class members or explicit block externs. */
11967 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11968 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11969 break;
11971 /* If we're emitting a clone, emit info for the abstract instance. */
11972 if (DECL_ORIGIN (decl) != decl)
11973 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11975 /* If we're emitting an out-of-line copy of an inline function,
11976 emit info for the abstract instance and set up to refer to it. */
11977 else if (cgraph_function_possibly_inlined_p (decl)
11978 && ! DECL_ABSTRACT (decl)
11979 && ! class_or_namespace_scope_p (context_die)
11980 /* dwarf2out_abstract_function won't emit a die if this is just
11981 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11982 that case, because that works only if we have a die. */
11983 && DECL_INITIAL (decl) != NULL_TREE)
11985 dwarf2out_abstract_function (decl);
11986 set_decl_origin_self (decl);
11989 /* Otherwise we're emitting the primary DIE for this decl. */
11990 else if (debug_info_level > DINFO_LEVEL_TERSE)
11992 /* Before we describe the FUNCTION_DECL itself, make sure that we
11993 have described its return type. */
11994 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11996 /* And its virtual context. */
11997 if (DECL_VINDEX (decl) != NULL_TREE)
11998 gen_type_die (DECL_CONTEXT (decl), context_die);
12000 /* And its containing type. */
12001 origin = decl_class_context (decl);
12002 if (origin != NULL_TREE)
12003 gen_type_die_for_member (origin, decl, context_die);
12005 /* And its containing namespace. */
12006 declare_in_namespace (decl, context_die);
12009 /* Now output a DIE to represent the function itself. */
12010 gen_subprogram_die (decl, context_die);
12011 break;
12013 case TYPE_DECL:
12014 /* If we are in terse mode, don't generate any DIEs to represent any
12015 actual typedefs. */
12016 if (debug_info_level <= DINFO_LEVEL_TERSE)
12017 break;
12019 /* In the special case of a TYPE_DECL node representing the declaration
12020 of some type tag, if the given TYPE_DECL is marked as having been
12021 instantiated from some other (original) TYPE_DECL node (e.g. one which
12022 was generated within the original definition of an inline function) we
12023 have to generate a special (abbreviated) DW_TAG_structure_type,
12024 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12025 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12027 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12028 break;
12031 if (is_redundant_typedef (decl))
12032 gen_type_die (TREE_TYPE (decl), context_die);
12033 else
12034 /* Output a DIE to represent the typedef itself. */
12035 gen_typedef_die (decl, context_die);
12036 break;
12038 case LABEL_DECL:
12039 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12040 gen_label_die (decl, context_die);
12041 break;
12043 case VAR_DECL:
12044 /* If we are in terse mode, don't generate any DIEs to represent any
12045 variable declarations or definitions. */
12046 if (debug_info_level <= DINFO_LEVEL_TERSE)
12047 break;
12049 /* Output any DIEs that are needed to specify the type of this data
12050 object. */
12051 gen_type_die (TREE_TYPE (decl), context_die);
12053 /* And its containing type. */
12054 origin = decl_class_context (decl);
12055 if (origin != NULL_TREE)
12056 gen_type_die_for_member (origin, decl, context_die);
12058 /* And its containing namespace. */
12059 declare_in_namespace (decl, context_die);
12061 /* Now output the DIE to represent the data object itself. This gets
12062 complicated because of the possibility that the VAR_DECL really
12063 represents an inlined instance of a formal parameter for an inline
12064 function. */
12065 origin = decl_ultimate_origin (decl);
12066 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12067 gen_formal_parameter_die (decl, context_die);
12068 else
12069 gen_variable_die (decl, context_die);
12070 break;
12072 case FIELD_DECL:
12073 /* Ignore the nameless fields that are used to skip bits but handle C++
12074 anonymous unions. */
12075 if (DECL_NAME (decl) != NULL_TREE
12076 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12078 gen_type_die (member_declared_type (decl), context_die);
12079 gen_field_die (decl, context_die);
12081 break;
12083 case PARM_DECL:
12084 gen_type_die (TREE_TYPE (decl), context_die);
12085 gen_formal_parameter_die (decl, context_die);
12086 break;
12088 case NAMESPACE_DECL:
12089 gen_namespace_die (decl);
12090 break;
12092 default:
12093 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12094 /* Probably some frontend-internal decl. Assume we don't care. */
12095 break;
12096 abort ();
12100 /* Add Ada "use" clause information for SGI Workshop debugger. */
12102 void
12103 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12105 unsigned int file_index;
12107 if (filename != NULL)
12109 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12110 tree context_list_decl
12111 = build_decl (LABEL_DECL, get_identifier (context_list),
12112 void_type_node);
12114 TREE_PUBLIC (context_list_decl) = TRUE;
12115 add_name_attribute (unit_die, context_list);
12116 file_index = lookup_filename (filename);
12117 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12118 add_pubname (context_list_decl, unit_die);
12122 /* Output debug information for global decl DECL. Called from toplev.c after
12123 compilation proper has finished. */
12125 static void
12126 dwarf2out_global_decl (tree decl)
12128 /* Output DWARF2 information for file-scope tentative data object
12129 declarations, file-scope (extern) function declarations (which had no
12130 corresponding body) and file-scope tagged type declarations and
12131 definitions which have not yet been forced out. */
12132 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12133 dwarf2out_decl (decl);
12136 /* Write the debugging output for DECL. */
12138 void
12139 dwarf2out_decl (tree decl)
12141 dw_die_ref context_die = comp_unit_die;
12143 switch (TREE_CODE (decl))
12145 case ERROR_MARK:
12146 return;
12148 case FUNCTION_DECL:
12149 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12150 builtin function. Explicit programmer-supplied declarations of
12151 these same functions should NOT be ignored however. */
12152 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12153 return;
12155 /* What we would really like to do here is to filter out all mere
12156 file-scope declarations of file-scope functions which are never
12157 referenced later within this translation unit (and keep all of ones
12158 that *are* referenced later on) but we aren't clairvoyant, so we have
12159 no idea which functions will be referenced in the future (i.e. later
12160 on within the current translation unit). So here we just ignore all
12161 file-scope function declarations which are not also definitions. If
12162 and when the debugger needs to know something about these functions,
12163 it will have to hunt around and find the DWARF information associated
12164 with the definition of the function.
12166 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12167 nodes represent definitions and which ones represent mere
12168 declarations. We have to check DECL_INITIAL instead. That's because
12169 the C front-end supports some weird semantics for "extern inline"
12170 function definitions. These can get inlined within the current
12171 translation unit (an thus, we need to generate Dwarf info for their
12172 abstract instances so that the Dwarf info for the concrete inlined
12173 instances can have something to refer to) but the compiler never
12174 generates any out-of-lines instances of such things (despite the fact
12175 that they *are* definitions).
12177 The important point is that the C front-end marks these "extern
12178 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12179 them anyway. Note that the C++ front-end also plays some similar games
12180 for inline function definitions appearing within include files which
12181 also contain `#pragma interface' pragmas. */
12182 if (DECL_INITIAL (decl) == NULL_TREE)
12183 return;
12185 /* If we're a nested function, initially use a parent of NULL; if we're
12186 a plain function, this will be fixed up in decls_for_scope. If
12187 we're a method, it will be ignored, since we already have a DIE. */
12188 if (decl_function_context (decl)
12189 /* But if we're in terse mode, we don't care about scope. */
12190 && debug_info_level > DINFO_LEVEL_TERSE)
12191 context_die = NULL;
12192 break;
12194 case VAR_DECL:
12195 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12196 declaration and if the declaration was never even referenced from
12197 within this entire compilation unit. We suppress these DIEs in
12198 order to save space in the .debug section (by eliminating entries
12199 which are probably useless). Note that we must not suppress
12200 block-local extern declarations (whether used or not) because that
12201 would screw-up the debugger's name lookup mechanism and cause it to
12202 miss things which really ought to be in scope at a given point. */
12203 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12204 return;
12206 /* If we are in terse mode, don't generate any DIEs to represent any
12207 variable declarations or definitions. */
12208 if (debug_info_level <= DINFO_LEVEL_TERSE)
12209 return;
12210 break;
12212 case NAMESPACE_DECL:
12213 if (debug_info_level <= DINFO_LEVEL_TERSE)
12214 return;
12215 if (lookup_decl_die (decl) != NULL)
12216 return;
12217 break;
12219 case TYPE_DECL:
12220 /* Don't emit stubs for types unless they are needed by other DIEs. */
12221 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12222 return;
12224 /* Don't bother trying to generate any DIEs to represent any of the
12225 normal built-in types for the language we are compiling. */
12226 if (DECL_SOURCE_LINE (decl) == 0)
12228 /* OK, we need to generate one for `bool' so GDB knows what type
12229 comparisons have. */
12230 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12231 == DW_LANG_C_plus_plus)
12232 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12233 && ! DECL_IGNORED_P (decl))
12234 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12236 return;
12239 /* If we are in terse mode, don't generate any DIEs for types. */
12240 if (debug_info_level <= DINFO_LEVEL_TERSE)
12241 return;
12243 /* If we're a function-scope tag, initially use a parent of NULL;
12244 this will be fixed up in decls_for_scope. */
12245 if (decl_function_context (decl))
12246 context_die = NULL;
12248 break;
12250 default:
12251 return;
12254 gen_decl_die (decl, context_die);
12257 /* Output a marker (i.e. a label) for the beginning of the generated code for
12258 a lexical block. */
12260 static void
12261 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12262 unsigned int blocknum)
12264 function_section (current_function_decl);
12265 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12268 /* Output a marker (i.e. a label) for the end of the generated code for a
12269 lexical block. */
12271 static void
12272 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12274 function_section (current_function_decl);
12275 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12278 /* Returns nonzero if it is appropriate not to emit any debugging
12279 information for BLOCK, because it doesn't contain any instructions.
12281 Don't allow this for blocks with nested functions or local classes
12282 as we would end up with orphans, and in the presence of scheduling
12283 we may end up calling them anyway. */
12285 static bool
12286 dwarf2out_ignore_block (tree block)
12288 tree decl;
12290 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12291 if (TREE_CODE (decl) == FUNCTION_DECL
12292 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12293 return 0;
12295 return 1;
12298 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12299 dwarf2out.c) and return its "index". The index of each (known) filename is
12300 just a unique number which is associated with only that one filename. We
12301 need such numbers for the sake of generating labels (in the .debug_sfnames
12302 section) and references to those files numbers (in the .debug_srcinfo
12303 and.debug_macinfo sections). If the filename given as an argument is not
12304 found in our current list, add it to the list and assign it the next
12305 available unique index number. In order to speed up searches, we remember
12306 the index of the filename was looked up last. This handles the majority of
12307 all searches. */
12309 static unsigned
12310 lookup_filename (const char *file_name)
12312 size_t i, n;
12313 char *save_file_name;
12315 /* Check to see if the file name that was searched on the previous
12316 call matches this file name. If so, return the index. */
12317 if (file_table_last_lookup_index != 0)
12319 const char *last
12320 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12321 if (strcmp (file_name, last) == 0)
12322 return file_table_last_lookup_index;
12325 /* Didn't match the previous lookup, search the table */
12326 n = VARRAY_ACTIVE_SIZE (file_table);
12327 for (i = 1; i < n; i++)
12328 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12330 file_table_last_lookup_index = i;
12331 return i;
12334 /* Add the new entry to the end of the filename table. */
12335 file_table_last_lookup_index = n;
12336 save_file_name = (char *) ggc_strdup (file_name);
12337 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12338 VARRAY_PUSH_UINT (file_table_emitted, 0);
12340 return i;
12343 static int
12344 maybe_emit_file (int fileno)
12346 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12348 if (!VARRAY_UINT (file_table_emitted, fileno))
12350 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12351 fprintf (asm_out_file, "\t.file %u ",
12352 VARRAY_UINT (file_table_emitted, fileno));
12353 output_quoted_string (asm_out_file,
12354 VARRAY_CHAR_PTR (file_table, fileno));
12355 fputc ('\n', asm_out_file);
12357 return VARRAY_UINT (file_table_emitted, fileno);
12359 else
12360 return fileno;
12363 static void
12364 init_file_table (void)
12366 /* Allocate the initial hunk of the file_table. */
12367 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12368 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12370 /* Skip the first entry - file numbers begin at 1. */
12371 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12372 VARRAY_PUSH_UINT (file_table_emitted, 0);
12373 file_table_last_lookup_index = 0;
12376 /* Output a label to mark the beginning of a source code line entry
12377 and record information relating to this source line, in
12378 'line_info_table' for later output of the .debug_line section. */
12380 static void
12381 dwarf2out_source_line (unsigned int line, const char *filename)
12383 if (debug_info_level >= DINFO_LEVEL_NORMAL
12384 && line != 0)
12386 function_section (current_function_decl);
12388 /* If requested, emit something human-readable. */
12389 if (flag_debug_asm)
12390 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12391 filename, line);
12393 if (DWARF2_ASM_LINE_DEBUG_INFO)
12395 unsigned file_num = lookup_filename (filename);
12397 file_num = maybe_emit_file (file_num);
12399 /* Emit the .loc directive understood by GNU as. */
12400 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12402 /* Indicate that line number info exists. */
12403 line_info_table_in_use++;
12405 /* Indicate that multiple line number tables exist. */
12406 if (DECL_SECTION_NAME (current_function_decl))
12407 separate_line_info_table_in_use++;
12409 else if (DECL_SECTION_NAME (current_function_decl))
12411 dw_separate_line_info_ref line_info;
12412 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12413 separate_line_info_table_in_use);
12415 /* expand the line info table if necessary */
12416 if (separate_line_info_table_in_use
12417 == separate_line_info_table_allocated)
12419 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12420 separate_line_info_table
12421 = ggc_realloc (separate_line_info_table,
12422 separate_line_info_table_allocated
12423 * sizeof (dw_separate_line_info_entry));
12424 memset (separate_line_info_table
12425 + separate_line_info_table_in_use,
12427 (LINE_INFO_TABLE_INCREMENT
12428 * sizeof (dw_separate_line_info_entry)));
12431 /* Add the new entry at the end of the line_info_table. */
12432 line_info
12433 = &separate_line_info_table[separate_line_info_table_in_use++];
12434 line_info->dw_file_num = lookup_filename (filename);
12435 line_info->dw_line_num = line;
12436 line_info->function = current_function_funcdef_no;
12438 else
12440 dw_line_info_ref line_info;
12442 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12443 line_info_table_in_use);
12445 /* Expand the line info table if necessary. */
12446 if (line_info_table_in_use == line_info_table_allocated)
12448 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12449 line_info_table
12450 = ggc_realloc (line_info_table,
12451 (line_info_table_allocated
12452 * sizeof (dw_line_info_entry)));
12453 memset (line_info_table + line_info_table_in_use, 0,
12454 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12457 /* Add the new entry at the end of the line_info_table. */
12458 line_info = &line_info_table[line_info_table_in_use++];
12459 line_info->dw_file_num = lookup_filename (filename);
12460 line_info->dw_line_num = line;
12465 /* Record the beginning of a new source file. */
12467 static void
12468 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12470 if (flag_eliminate_dwarf2_dups)
12472 /* Record the beginning of the file for break_out_includes. */
12473 dw_die_ref bincl_die;
12475 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12476 add_AT_string (bincl_die, DW_AT_name, filename);
12479 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12481 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12482 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12483 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12484 lineno);
12485 maybe_emit_file (lookup_filename (filename));
12486 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12487 "Filename we just started");
12491 /* Record the end of a source file. */
12493 static void
12494 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12496 if (flag_eliminate_dwarf2_dups)
12497 /* Record the end of the file for break_out_includes. */
12498 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12500 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12502 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12503 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12507 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12508 the tail part of the directive line, i.e. the part which is past the
12509 initial whitespace, #, whitespace, directive-name, whitespace part. */
12511 static void
12512 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12513 const char *buffer ATTRIBUTE_UNUSED)
12515 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12517 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12518 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12519 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12520 dw2_asm_output_nstring (buffer, -1, "The macro");
12524 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12525 the tail part of the directive line, i.e. the part which is past the
12526 initial whitespace, #, whitespace, directive-name, whitespace part. */
12528 static void
12529 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12530 const char *buffer ATTRIBUTE_UNUSED)
12532 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12534 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12535 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12536 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12537 dw2_asm_output_nstring (buffer, -1, "The macro");
12541 /* Set up for Dwarf output at the start of compilation. */
12543 static void
12544 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12546 init_file_table ();
12548 /* Allocate the initial hunk of the decl_die_table. */
12549 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12550 * sizeof (dw_die_ref));
12551 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12552 decl_die_table_in_use = 0;
12554 /* Allocate the initial hunk of the decl_scope_table. */
12555 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12557 /* Allocate the initial hunk of the abbrev_die_table. */
12558 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12559 * sizeof (dw_die_ref));
12560 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12561 /* Zero-th entry is allocated, but unused */
12562 abbrev_die_table_in_use = 1;
12564 /* Allocate the initial hunk of the line_info_table. */
12565 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12566 * sizeof (dw_line_info_entry));
12567 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12569 /* Zero-th entry is allocated, but unused */
12570 line_info_table_in_use = 1;
12572 /* Generate the initial DIE for the .debug section. Note that the (string)
12573 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12574 will (typically) be a relative pathname and that this pathname should be
12575 taken as being relative to the directory from which the compiler was
12576 invoked when the given (base) source file was compiled. We will fill
12577 in this value in dwarf2out_finish. */
12578 comp_unit_die = gen_compile_unit_die (NULL);
12580 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12582 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12584 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12585 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12586 DEBUG_ABBREV_SECTION_LABEL, 0);
12587 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12588 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12589 else
12590 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12592 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12593 DEBUG_INFO_SECTION_LABEL, 0);
12594 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12595 DEBUG_LINE_SECTION_LABEL, 0);
12596 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12597 DEBUG_RANGES_SECTION_LABEL, 0);
12598 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12599 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12600 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12601 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12602 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12603 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12605 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12607 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12608 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12609 DEBUG_MACINFO_SECTION_LABEL, 0);
12610 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12613 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12615 text_section ();
12616 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12620 /* A helper function for dwarf2out_finish called through
12621 ht_forall. Emit one queued .debug_str string. */
12623 static int
12624 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12626 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12628 if (node->form == DW_FORM_strp)
12630 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12631 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12632 assemble_string (node->str, strlen (node->str) + 1);
12635 return 1;
12640 /* Clear the marks for a die and its children.
12641 Be cool if the mark isn't set. */
12643 static void
12644 prune_unmark_dies (dw_die_ref die)
12646 dw_die_ref c;
12647 die->die_mark = 0;
12648 for (c = die->die_child; c; c = c->die_sib)
12649 prune_unmark_dies (c);
12653 /* Given DIE that we're marking as used, find any other dies
12654 it references as attributes and mark them as used. */
12656 static void
12657 prune_unused_types_walk_attribs (dw_die_ref die)
12659 dw_attr_ref a;
12661 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12663 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12665 /* A reference to another DIE.
12666 Make sure that it will get emitted. */
12667 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12669 else if (a->dw_attr == DW_AT_decl_file)
12671 /* A reference to a file. Make sure the file name is emitted. */
12672 a->dw_attr_val.v.val_unsigned =
12673 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12679 /* Mark DIE as being used. If DOKIDS is true, then walk down
12680 to DIE's children. */
12682 static void
12683 prune_unused_types_mark (dw_die_ref die, int dokids)
12685 dw_die_ref c;
12687 if (die->die_mark == 0)
12689 /* We haven't done this node yet. Mark it as used. */
12690 die->die_mark = 1;
12692 /* We also have to mark its parents as used.
12693 (But we don't want to mark our parents' kids due to this.) */
12694 if (die->die_parent)
12695 prune_unused_types_mark (die->die_parent, 0);
12697 /* Mark any referenced nodes. */
12698 prune_unused_types_walk_attribs (die);
12700 /* If this node is a specification,
12701 also mark the definition, if it exists. */
12702 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
12703 prune_unused_types_mark (die->die_definition, 1);
12706 if (dokids && die->die_mark != 2)
12708 /* We need to walk the children, but haven't done so yet.
12709 Remember that we've walked the kids. */
12710 die->die_mark = 2;
12712 /* Walk them. */
12713 for (c = die->die_child; c; c = c->die_sib)
12715 /* If this is an array type, we need to make sure our
12716 kids get marked, even if they're types. */
12717 if (die->die_tag == DW_TAG_array_type)
12718 prune_unused_types_mark (c, 1);
12719 else
12720 prune_unused_types_walk (c);
12726 /* Walk the tree DIE and mark types that we actually use. */
12728 static void
12729 prune_unused_types_walk (dw_die_ref die)
12731 dw_die_ref c;
12733 /* Don't do anything if this node is already marked. */
12734 if (die->die_mark)
12735 return;
12737 switch (die->die_tag) {
12738 case DW_TAG_const_type:
12739 case DW_TAG_packed_type:
12740 case DW_TAG_pointer_type:
12741 case DW_TAG_reference_type:
12742 case DW_TAG_volatile_type:
12743 case DW_TAG_typedef:
12744 case DW_TAG_array_type:
12745 case DW_TAG_structure_type:
12746 case DW_TAG_union_type:
12747 case DW_TAG_class_type:
12748 case DW_TAG_friend:
12749 case DW_TAG_variant_part:
12750 case DW_TAG_enumeration_type:
12751 case DW_TAG_subroutine_type:
12752 case DW_TAG_string_type:
12753 case DW_TAG_set_type:
12754 case DW_TAG_subrange_type:
12755 case DW_TAG_ptr_to_member_type:
12756 case DW_TAG_file_type:
12757 /* It's a type node --- don't mark it. */
12758 return;
12760 default:
12761 /* Mark everything else. */
12762 break;
12765 die->die_mark = 1;
12767 /* Now, mark any dies referenced from here. */
12768 prune_unused_types_walk_attribs (die);
12770 /* Mark children. */
12771 for (c = die->die_child; c; c = c->die_sib)
12772 prune_unused_types_walk (c);
12776 /* Remove from the tree DIE any dies that aren't marked. */
12778 static void
12779 prune_unused_types_prune (dw_die_ref die)
12781 dw_die_ref c, p, n;
12782 if (!die->die_mark)
12783 abort();
12785 p = NULL;
12786 for (c = die->die_child; c; c = n)
12788 n = c->die_sib;
12789 if (c->die_mark)
12791 prune_unused_types_prune (c);
12792 p = c;
12794 else
12796 if (p)
12797 p->die_sib = n;
12798 else
12799 die->die_child = n;
12800 free_die (c);
12806 /* Remove dies representing declarations that we never use. */
12808 static void
12809 prune_unused_types (void)
12811 unsigned int i;
12812 limbo_die_node *node;
12814 /* Clear all the marks. */
12815 prune_unmark_dies (comp_unit_die);
12816 for (node = limbo_die_list; node; node = node->next)
12817 prune_unmark_dies (node->die);
12819 /* Set the mark on nodes that are actually used. */
12820 prune_unused_types_walk (comp_unit_die);
12821 for (node = limbo_die_list; node; node = node->next)
12822 prune_unused_types_walk (node->die);
12824 /* Also set the mark on nodes referenced from the
12825 pubname_table or arange_table. */
12826 for (i = 0; i < pubname_table_in_use; i++)
12827 prune_unused_types_mark (pubname_table[i].die, 1);
12828 for (i = 0; i < arange_table_in_use; i++)
12829 prune_unused_types_mark (arange_table[i], 1);
12831 /* Get rid of nodes that aren't marked. */
12832 prune_unused_types_prune (comp_unit_die);
12833 for (node = limbo_die_list; node; node = node->next)
12834 prune_unused_types_prune (node->die);
12836 /* Leave the marks clear. */
12837 prune_unmark_dies (comp_unit_die);
12838 for (node = limbo_die_list; node; node = node->next)
12839 prune_unmark_dies (node->die);
12842 /* Output stuff that dwarf requires at the end of every file,
12843 and generate the DWARF-2 debugging info. */
12845 static void
12846 dwarf2out_finish (const char *filename)
12848 limbo_die_node *node, *next_node;
12849 dw_die_ref die = 0;
12851 /* Add the name for the main input file now. We delayed this from
12852 dwarf2out_init to avoid complications with PCH. */
12853 add_name_attribute (comp_unit_die, filename);
12854 if (filename[0] != DIR_SEPARATOR)
12855 add_comp_dir_attribute (comp_unit_die);
12856 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12858 size_t i;
12859 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12860 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
12861 /* Don't add cwd for <built-in>. */
12862 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
12864 add_comp_dir_attribute (comp_unit_die);
12865 break;
12869 /* Traverse the limbo die list, and add parent/child links. The only
12870 dies without parents that should be here are concrete instances of
12871 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12872 For concrete instances, we can get the parent die from the abstract
12873 instance. */
12874 for (node = limbo_die_list; node; node = next_node)
12876 next_node = node->next;
12877 die = node->die;
12879 if (die->die_parent == NULL)
12881 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12882 tree context;
12884 if (origin)
12885 add_child_die (origin->die_parent, die);
12886 else if (die == comp_unit_die)
12888 /* If this was an expression for a bound involved in a function
12889 return type, it may be a SAVE_EXPR for which we weren't able
12890 to find a DIE previously. So try now. */
12891 else if (node->created_for
12892 && TREE_CODE (node->created_for) == SAVE_EXPR
12893 && 0 != (origin = (lookup_decl_die
12894 (SAVE_EXPR_CONTEXT
12895 (node->created_for)))))
12896 add_child_die (origin, die);
12897 else if (errorcount > 0 || sorrycount > 0)
12898 /* It's OK to be confused by errors in the input. */
12899 add_child_die (comp_unit_die, die);
12900 else if (node->created_for
12901 && ((DECL_P (node->created_for)
12902 && (context = DECL_CONTEXT (node->created_for)))
12903 || (TYPE_P (node->created_for)
12904 && (context = TYPE_CONTEXT (node->created_for))))
12905 && TREE_CODE (context) == FUNCTION_DECL)
12907 /* In certain situations, the lexical block containing a
12908 nested function can be optimized away, which results
12909 in the nested function die being orphaned. Likewise
12910 with the return type of that nested function. Force
12911 this to be a child of the containing function. */
12912 origin = lookup_decl_die (context);
12913 if (! origin)
12914 abort ();
12915 add_child_die (origin, die);
12917 else
12918 abort ();
12922 limbo_die_list = NULL;
12924 /* Walk through the list of incomplete types again, trying once more to
12925 emit full debugging info for them. */
12926 retry_incomplete_types ();
12928 /* We need to reverse all the dies before break_out_includes, or
12929 we'll see the end of an include file before the beginning. */
12930 reverse_all_dies (comp_unit_die);
12932 if (flag_eliminate_unused_debug_types)
12933 prune_unused_types ();
12935 /* Generate separate CUs for each of the include files we've seen.
12936 They will go into limbo_die_list. */
12937 if (flag_eliminate_dwarf2_dups)
12938 break_out_includes (comp_unit_die);
12940 /* Traverse the DIE's and add add sibling attributes to those DIE's
12941 that have children. */
12942 add_sibling_attributes (comp_unit_die);
12943 for (node = limbo_die_list; node; node = node->next)
12944 add_sibling_attributes (node->die);
12946 /* Output a terminator label for the .text section. */
12947 text_section ();
12948 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12950 /* Output the source line correspondence table. We must do this
12951 even if there is no line information. Otherwise, on an empty
12952 translation unit, we will generate a present, but empty,
12953 .debug_info section. IRIX 6.5 `nm' will then complain when
12954 examining the file. */
12955 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12957 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12958 output_line_info ();
12961 /* Output location list section if necessary. */
12962 if (have_location_lists)
12964 /* Output the location lists info. */
12965 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12966 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12967 DEBUG_LOC_SECTION_LABEL, 0);
12968 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12969 output_location_lists (die);
12970 have_location_lists = 0;
12973 /* We can only use the low/high_pc attributes if all of the code was
12974 in .text. */
12975 if (separate_line_info_table_in_use == 0)
12977 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12978 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12981 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12982 "base address". Use zero so that these addresses become absolute. */
12983 else if (have_location_lists || ranges_table_in_use)
12984 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12986 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12987 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12988 debug_line_section_label);
12990 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12991 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12993 /* Output all of the compilation units. We put the main one last so that
12994 the offsets are available to output_pubnames. */
12995 for (node = limbo_die_list; node; node = node->next)
12996 output_comp_unit (node->die, 0);
12998 output_comp_unit (comp_unit_die, 0);
13000 /* Output the abbreviation table. */
13001 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13002 output_abbrev_section ();
13004 /* Output public names table if necessary. */
13005 if (pubname_table_in_use)
13007 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13008 output_pubnames ();
13011 /* Output the address range information. We only put functions in the arange
13012 table, so don't write it out if we don't have any. */
13013 if (fde_table_in_use)
13015 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13016 output_aranges ();
13019 /* Output ranges section if necessary. */
13020 if (ranges_table_in_use)
13022 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13023 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13024 output_ranges ();
13027 /* Have to end the primary source file. */
13028 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13030 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13031 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13032 dw2_asm_output_data (1, 0, "End compilation unit");
13035 /* If we emitted any DW_FORM_strp form attribute, output the string
13036 table too. */
13037 if (debug_str_hash)
13038 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13040 #else
13042 /* This should never be used, but its address is needed for comparisons. */
13043 const struct gcc_debug_hooks dwarf2_debug_hooks;
13045 #endif /* DWARF2_DEBUGGING_INFO */
13047 #include "gt-dwarf2out.h"