2001-02-14 Tom Tromey <tromey@redhat.com>
[official-gcc.git] / gcc / function.c
blob259ccca4fb0e038e81c99b1d18e1ff2c1864f1a9
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "insn-flags.h"
49 #include "expr.h"
50 #include "insn-codes.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "obstack.h"
58 #include "toplev.h"
59 #include "hash.h"
60 #include "ggc.h"
61 #include "tm_p.h"
63 #ifndef ACCUMULATE_OUTGOING_ARGS
64 #define ACCUMULATE_OUTGOING_ARGS 0
65 #endif
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
75 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
76 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
77 #endif
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
83 #ifndef NAME__MAIN
84 #define NAME__MAIN "__main"
85 #define SYMBOL__MAIN __main
86 #endif
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93 /* Similar, but round to the next highest integer that meets the
94 alignment. */
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
98 during rtl generation. If they are different register numbers, this is
99 always true. It may also be true if
100 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
101 generation. See fix_lexical_addr for details. */
103 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
104 #define NEED_SEPARATE_AP
105 #endif
107 /* Nonzero if function being compiled doesn't contain any calls
108 (ignoring the prologue and epilogue). This is set prior to
109 local register allocation and is valid for the remaining
110 compiler passes. */
111 int current_function_is_leaf;
113 /* Nonzero if function being compiled doesn't contain any instructions
114 that can throw an exception. This is set prior to final. */
116 int current_function_nothrow;
118 /* Nonzero if function being compiled doesn't modify the stack pointer
119 (ignoring the prologue and epilogue). This is only valid after
120 life_analysis has run. */
121 int current_function_sp_is_unchanging;
123 /* Nonzero if the function being compiled is a leaf function which only
124 uses leaf registers. This is valid after reload (specifically after
125 sched2) and is useful only if the port defines LEAF_REGISTERS. */
126 int current_function_uses_only_leaf_regs;
128 /* Nonzero once virtual register instantiation has been done.
129 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
130 static int virtuals_instantiated;
132 /* These variables hold pointers to functions to create and destroy
133 target specific, per-function data structures. */
134 void (*init_machine_status) PARAMS ((struct function *));
135 void (*free_machine_status) PARAMS ((struct function *));
136 /* This variable holds a pointer to a function to register any
137 data items in the target specific, per-function data structure
138 that will need garbage collection. */
139 void (*mark_machine_status) PARAMS ((struct function *));
141 /* Likewise, but for language-specific data. */
142 void (*init_lang_status) PARAMS ((struct function *));
143 void (*save_lang_status) PARAMS ((struct function *));
144 void (*restore_lang_status) PARAMS ((struct function *));
145 void (*mark_lang_status) PARAMS ((struct function *));
146 void (*free_lang_status) PARAMS ((struct function *));
148 /* The FUNCTION_DECL for an inline function currently being expanded. */
149 tree inline_function_decl;
151 /* The currently compiled function. */
152 struct function *cfun = 0;
154 /* Global list of all compiled functions. */
155 struct function *all_functions = 0;
157 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
158 static varray_type prologue;
159 static varray_type epilogue;
161 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
162 in this function. */
163 static varray_type sibcall_epilogue;
165 /* In order to evaluate some expressions, such as function calls returning
166 structures in memory, we need to temporarily allocate stack locations.
167 We record each allocated temporary in the following structure.
169 Associated with each temporary slot is a nesting level. When we pop up
170 one level, all temporaries associated with the previous level are freed.
171 Normally, all temporaries are freed after the execution of the statement
172 in which they were created. However, if we are inside a ({...}) grouping,
173 the result may be in a temporary and hence must be preserved. If the
174 result could be in a temporary, we preserve it if we can determine which
175 one it is in. If we cannot determine which temporary may contain the
176 result, all temporaries are preserved. A temporary is preserved by
177 pretending it was allocated at the previous nesting level.
179 Automatic variables are also assigned temporary slots, at the nesting
180 level where they are defined. They are marked a "kept" so that
181 free_temp_slots will not free them. */
183 struct temp_slot
185 /* Points to next temporary slot. */
186 struct temp_slot *next;
187 /* The rtx to used to reference the slot. */
188 rtx slot;
189 /* The rtx used to represent the address if not the address of the
190 slot above. May be an EXPR_LIST if multiple addresses exist. */
191 rtx address;
192 /* The alignment (in bits) of the slot. */
193 int align;
194 /* The size, in units, of the slot. */
195 HOST_WIDE_INT size;
196 /* The type of the object in the slot, or zero if it doesn't correspond
197 to a type. We use this to determine whether a slot can be reused.
198 It can be reused if objects of the type of the new slot will always
199 conflict with objects of the type of the old slot. */
200 tree type;
201 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
202 tree rtl_expr;
203 /* Non-zero if this temporary is currently in use. */
204 char in_use;
205 /* Non-zero if this temporary has its address taken. */
206 char addr_taken;
207 /* Nesting level at which this slot is being used. */
208 int level;
209 /* Non-zero if this should survive a call to free_temp_slots. */
210 int keep;
211 /* The offset of the slot from the frame_pointer, including extra space
212 for alignment. This info is for combine_temp_slots. */
213 HOST_WIDE_INT base_offset;
214 /* The size of the slot, including extra space for alignment. This
215 info is for combine_temp_slots. */
216 HOST_WIDE_INT full_size;
219 /* This structure is used to record MEMs or pseudos used to replace VAR, any
220 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
221 maintain this list in case two operands of an insn were required to match;
222 in that case we must ensure we use the same replacement. */
224 struct fixup_replacement
226 rtx old;
227 rtx new;
228 struct fixup_replacement *next;
231 struct insns_for_mem_entry {
232 /* The KEY in HE will be a MEM. */
233 struct hash_entry he;
234 /* These are the INSNS which reference the MEM. */
235 rtx insns;
238 /* Forward declarations. */
240 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
241 int, struct function *));
242 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
243 HOST_WIDE_INT, int, tree));
244 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
245 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
246 enum machine_mode, enum machine_mode,
247 int, unsigned int, int,
248 struct hash_table *));
249 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
250 enum machine_mode,
251 struct hash_table *));
252 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
253 struct hash_table *));
254 static struct fixup_replacement
255 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
256 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
257 int, int));
258 static void fixup_var_refs_insns_with_hash
259 PARAMS ((struct hash_table *, rtx,
260 enum machine_mode, int));
261 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
262 int, int));
263 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
264 struct fixup_replacement **));
265 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
266 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
267 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
268 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
269 static void instantiate_decls PARAMS ((tree, int));
270 static void instantiate_decls_1 PARAMS ((tree, int));
271 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
272 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
273 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
274 static void delete_handlers PARAMS ((void));
275 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
276 struct args_size *));
277 #ifndef ARGS_GROW_DOWNWARD
278 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
279 tree));
280 #endif
281 static rtx round_trampoline_addr PARAMS ((rtx));
282 static rtx adjust_trampoline_addr PARAMS ((rtx));
283 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
284 static void reorder_blocks_0 PARAMS ((rtx));
285 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
286 static tree blocks_nreverse PARAMS ((tree));
287 static int all_blocks PARAMS ((tree, tree *));
288 static tree *get_block_vector PARAMS ((tree, int *));
289 /* We always define `record_insns' even if its not used so that we
290 can always export `prologue_epilogue_contains'. */
291 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
292 static int contains PARAMS ((rtx, varray_type));
293 #ifdef HAVE_return
294 static void emit_return_into_block PARAMS ((basic_block, rtx));
295 #endif
296 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
297 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
298 struct hash_table *));
299 static void purge_single_hard_subreg_set PARAMS ((rtx));
300 #ifdef HAVE_epilogue
301 static void keep_stack_depressed PARAMS ((rtx));
302 #endif
303 static int is_addressof PARAMS ((rtx *, void *));
304 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
305 struct hash_table *,
306 hash_table_key));
307 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
308 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
309 static int insns_for_mem_walk PARAMS ((rtx *, void *));
310 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
311 static void mark_temp_slot PARAMS ((struct temp_slot *));
312 static void mark_function_status PARAMS ((struct function *));
313 static void mark_function_chain PARAMS ((void *));
314 static void prepare_function_start PARAMS ((void));
315 static void do_clobber_return_reg PARAMS ((rtx, void *));
316 static void do_use_return_reg PARAMS ((rtx, void *));
318 /* Pointer to chain of `struct function' for containing functions. */
319 struct function *outer_function_chain;
321 /* Given a function decl for a containing function,
322 return the `struct function' for it. */
324 struct function *
325 find_function_data (decl)
326 tree decl;
328 struct function *p;
330 for (p = outer_function_chain; p; p = p->next)
331 if (p->decl == decl)
332 return p;
334 abort ();
337 /* Save the current context for compilation of a nested function.
338 This is called from language-specific code. The caller should use
339 the save_lang_status callback to save any language-specific state,
340 since this function knows only about language-independent
341 variables. */
343 void
344 push_function_context_to (context)
345 tree context;
347 struct function *p, *context_data;
349 if (context)
351 context_data = (context == current_function_decl
352 ? cfun
353 : find_function_data (context));
354 context_data->contains_functions = 1;
357 if (cfun == 0)
358 init_dummy_function_start ();
359 p = cfun;
361 p->next = outer_function_chain;
362 outer_function_chain = p;
363 p->fixup_var_refs_queue = 0;
365 if (save_lang_status)
366 (*save_lang_status) (p);
368 cfun = 0;
371 void
372 push_function_context ()
374 push_function_context_to (current_function_decl);
377 /* Restore the last saved context, at the end of a nested function.
378 This function is called from language-specific code. */
380 void
381 pop_function_context_from (context)
382 tree context ATTRIBUTE_UNUSED;
384 struct function *p = outer_function_chain;
385 struct var_refs_queue *queue;
386 struct var_refs_queue *next;
388 cfun = p;
389 outer_function_chain = p->next;
391 current_function_decl = p->decl;
392 reg_renumber = 0;
394 restore_emit_status (p);
396 if (restore_lang_status)
397 (*restore_lang_status) (p);
399 /* Finish doing put_var_into_stack for any of our variables
400 which became addressable during the nested function. */
401 for (queue = p->fixup_var_refs_queue; queue; queue = next)
403 next = queue->next;
404 fixup_var_refs (queue->modified, queue->promoted_mode,
405 queue->unsignedp, 0);
406 free (queue);
408 p->fixup_var_refs_queue = 0;
410 /* Reset variables that have known state during rtx generation. */
411 rtx_equal_function_value_matters = 1;
412 virtuals_instantiated = 0;
413 generating_concat_p = 1;
416 void
417 pop_function_context ()
419 pop_function_context_from (current_function_decl);
422 /* Clear out all parts of the state in F that can safely be discarded
423 after the function has been parsed, but not compiled, to let
424 garbage collection reclaim the memory. */
426 void
427 free_after_parsing (f)
428 struct function *f;
430 /* f->expr->forced_labels is used by code generation. */
431 /* f->emit->regno_reg_rtx is used by code generation. */
432 /* f->varasm is used by code generation. */
433 /* f->eh->eh_return_stub_label is used by code generation. */
435 if (free_lang_status)
436 (*free_lang_status) (f);
437 free_stmt_status (f);
440 /* Clear out all parts of the state in F that can safely be discarded
441 after the function has been compiled, to let garbage collection
442 reclaim the memory. */
444 void
445 free_after_compilation (f)
446 struct function *f;
448 struct temp_slot *ts;
449 struct temp_slot *next;
451 free_eh_status (f);
452 free_expr_status (f);
453 free_emit_status (f);
454 free_varasm_status (f);
456 if (free_machine_status)
457 (*free_machine_status) (f);
459 if (f->x_parm_reg_stack_loc)
460 free (f->x_parm_reg_stack_loc);
462 for (ts = f->x_temp_slots; ts; ts = next)
464 next = ts->next;
465 free (ts);
467 f->x_temp_slots = NULL;
469 f->arg_offset_rtx = NULL;
470 f->return_rtx = NULL;
471 f->internal_arg_pointer = NULL;
472 f->x_nonlocal_labels = NULL;
473 f->x_nonlocal_goto_handler_slots = NULL;
474 f->x_nonlocal_goto_handler_labels = NULL;
475 f->x_nonlocal_goto_stack_level = NULL;
476 f->x_cleanup_label = NULL;
477 f->x_return_label = NULL;
478 f->x_save_expr_regs = NULL;
479 f->x_stack_slot_list = NULL;
480 f->x_rtl_expr_chain = NULL;
481 f->x_tail_recursion_label = NULL;
482 f->x_tail_recursion_reentry = NULL;
483 f->x_arg_pointer_save_area = NULL;
484 f->x_clobber_return_insn = NULL;
485 f->x_context_display = NULL;
486 f->x_trampoline_list = NULL;
487 f->x_parm_birth_insn = NULL;
488 f->x_last_parm_insn = NULL;
489 f->x_parm_reg_stack_loc = NULL;
490 f->fixup_var_refs_queue = NULL;
491 f->original_arg_vector = NULL;
492 f->original_decl_initial = NULL;
493 f->inl_last_parm_insn = NULL;
494 f->epilogue_delay_list = NULL;
497 /* Allocate fixed slots in the stack frame of the current function. */
499 /* Return size needed for stack frame based on slots so far allocated in
500 function F.
501 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
502 the caller may have to do that. */
504 HOST_WIDE_INT
505 get_func_frame_size (f)
506 struct function *f;
508 #ifdef FRAME_GROWS_DOWNWARD
509 return -f->x_frame_offset;
510 #else
511 return f->x_frame_offset;
512 #endif
515 /* Return size needed for stack frame based on slots so far allocated.
516 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
517 the caller may have to do that. */
518 HOST_WIDE_INT
519 get_frame_size ()
521 return get_func_frame_size (cfun);
524 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
525 with machine mode MODE.
527 ALIGN controls the amount of alignment for the address of the slot:
528 0 means according to MODE,
529 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
530 positive specifies alignment boundary in bits.
532 We do not round to stack_boundary here.
534 FUNCTION specifies the function to allocate in. */
536 static rtx
537 assign_stack_local_1 (mode, size, align, function)
538 enum machine_mode mode;
539 HOST_WIDE_INT size;
540 int align;
541 struct function *function;
543 register rtx x, addr;
544 int bigend_correction = 0;
545 int alignment;
547 if (align == 0)
549 tree type;
551 if (mode == BLKmode)
552 alignment = BIGGEST_ALIGNMENT;
553 else
554 alignment = GET_MODE_ALIGNMENT (mode);
556 /* Allow the target to (possibly) increase the alignment of this
557 stack slot. */
558 type = type_for_mode (mode, 0);
559 if (type)
560 alignment = LOCAL_ALIGNMENT (type, alignment);
562 alignment /= BITS_PER_UNIT;
564 else if (align == -1)
566 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
567 size = CEIL_ROUND (size, alignment);
569 else
570 alignment = align / BITS_PER_UNIT;
572 #ifdef FRAME_GROWS_DOWNWARD
573 function->x_frame_offset -= size;
574 #endif
576 /* Ignore alignment we can't do with expected alignment of the boundary. */
577 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
578 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
580 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
581 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
583 /* Round frame offset to that alignment.
584 We must be careful here, since FRAME_OFFSET might be negative and
585 division with a negative dividend isn't as well defined as we might
586 like. So we instead assume that ALIGNMENT is a power of two and
587 use logical operations which are unambiguous. */
588 #ifdef FRAME_GROWS_DOWNWARD
589 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
590 #else
591 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
592 #endif
594 /* On a big-endian machine, if we are allocating more space than we will use,
595 use the least significant bytes of those that are allocated. */
596 if (BYTES_BIG_ENDIAN && mode != BLKmode)
597 bigend_correction = size - GET_MODE_SIZE (mode);
599 /* If we have already instantiated virtual registers, return the actual
600 address relative to the frame pointer. */
601 if (function == cfun && virtuals_instantiated)
602 addr = plus_constant (frame_pointer_rtx,
603 (frame_offset + bigend_correction
604 + STARTING_FRAME_OFFSET));
605 else
606 addr = plus_constant (virtual_stack_vars_rtx,
607 function->x_frame_offset + bigend_correction);
609 #ifndef FRAME_GROWS_DOWNWARD
610 function->x_frame_offset += size;
611 #endif
613 x = gen_rtx_MEM (mode, addr);
615 function->x_stack_slot_list
616 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
618 return x;
621 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
622 current function. */
625 assign_stack_local (mode, size, align)
626 enum machine_mode mode;
627 HOST_WIDE_INT size;
628 int align;
630 return assign_stack_local_1 (mode, size, align, cfun);
633 /* Allocate a temporary stack slot and record it for possible later
634 reuse.
636 MODE is the machine mode to be given to the returned rtx.
638 SIZE is the size in units of the space required. We do no rounding here
639 since assign_stack_local will do any required rounding.
641 KEEP is 1 if this slot is to be retained after a call to
642 free_temp_slots. Automatic variables for a block are allocated
643 with this flag. KEEP is 2 if we allocate a longer term temporary,
644 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
645 if we are to allocate something at an inner level to be treated as
646 a variable in the block (e.g., a SAVE_EXPR).
648 TYPE is the type that will be used for the stack slot. */
650 static rtx
651 assign_stack_temp_for_type (mode, size, keep, type)
652 enum machine_mode mode;
653 HOST_WIDE_INT size;
654 int keep;
655 tree type;
657 int align;
658 struct temp_slot *p, *best_p = 0;
660 /* If SIZE is -1 it means that somebody tried to allocate a temporary
661 of a variable size. */
662 if (size == -1)
663 abort ();
665 if (mode == BLKmode)
666 align = BIGGEST_ALIGNMENT;
667 else
668 align = GET_MODE_ALIGNMENT (mode);
670 if (! type)
671 type = type_for_mode (mode, 0);
673 if (type)
674 align = LOCAL_ALIGNMENT (type, align);
676 /* Try to find an available, already-allocated temporary of the proper
677 mode which meets the size and alignment requirements. Choose the
678 smallest one with the closest alignment. */
679 for (p = temp_slots; p; p = p->next)
680 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
681 && ! p->in_use
682 && objects_must_conflict_p (p->type, type)
683 && (best_p == 0 || best_p->size > p->size
684 || (best_p->size == p->size && best_p->align > p->align)))
686 if (p->align == align && p->size == size)
688 best_p = 0;
689 break;
691 best_p = p;
694 /* Make our best, if any, the one to use. */
695 if (best_p)
697 /* If there are enough aligned bytes left over, make them into a new
698 temp_slot so that the extra bytes don't get wasted. Do this only
699 for BLKmode slots, so that we can be sure of the alignment. */
700 if (GET_MODE (best_p->slot) == BLKmode)
702 int alignment = best_p->align / BITS_PER_UNIT;
703 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
705 if (best_p->size - rounded_size >= alignment)
707 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
708 p->in_use = p->addr_taken = 0;
709 p->size = best_p->size - rounded_size;
710 p->base_offset = best_p->base_offset + rounded_size;
711 p->full_size = best_p->full_size - rounded_size;
712 p->slot = gen_rtx_MEM (BLKmode,
713 plus_constant (XEXP (best_p->slot, 0),
714 rounded_size));
715 p->align = best_p->align;
716 p->address = 0;
717 p->rtl_expr = 0;
718 p->type = best_p->type;
719 p->next = temp_slots;
720 temp_slots = p;
722 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
723 stack_slot_list);
725 best_p->size = rounded_size;
726 best_p->full_size = rounded_size;
730 p = best_p;
733 /* If we still didn't find one, make a new temporary. */
734 if (p == 0)
736 HOST_WIDE_INT frame_offset_old = frame_offset;
738 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
740 /* We are passing an explicit alignment request to assign_stack_local.
741 One side effect of that is assign_stack_local will not round SIZE
742 to ensure the frame offset remains suitably aligned.
744 So for requests which depended on the rounding of SIZE, we go ahead
745 and round it now. We also make sure ALIGNMENT is at least
746 BIGGEST_ALIGNMENT. */
747 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
748 abort();
749 p->slot = assign_stack_local (mode,
750 (mode == BLKmode
751 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
752 : size),
753 align);
755 p->align = align;
757 /* The following slot size computation is necessary because we don't
758 know the actual size of the temporary slot until assign_stack_local
759 has performed all the frame alignment and size rounding for the
760 requested temporary. Note that extra space added for alignment
761 can be either above or below this stack slot depending on which
762 way the frame grows. We include the extra space if and only if it
763 is above this slot. */
764 #ifdef FRAME_GROWS_DOWNWARD
765 p->size = frame_offset_old - frame_offset;
766 #else
767 p->size = size;
768 #endif
770 /* Now define the fields used by combine_temp_slots. */
771 #ifdef FRAME_GROWS_DOWNWARD
772 p->base_offset = frame_offset;
773 p->full_size = frame_offset_old - frame_offset;
774 #else
775 p->base_offset = frame_offset_old;
776 p->full_size = frame_offset - frame_offset_old;
777 #endif
778 p->address = 0;
779 p->next = temp_slots;
780 temp_slots = p;
783 p->in_use = 1;
784 p->addr_taken = 0;
785 p->rtl_expr = seq_rtl_expr;
786 p->type = type;
788 if (keep == 2)
790 p->level = target_temp_slot_level;
791 p->keep = 0;
793 else if (keep == 3)
795 p->level = var_temp_slot_level;
796 p->keep = 0;
798 else
800 p->level = temp_slot_level;
801 p->keep = keep;
804 /* We may be reusing an old slot, so clear any MEM flags that may have been
805 set from before. */
806 RTX_UNCHANGING_P (p->slot) = 0;
807 MEM_IN_STRUCT_P (p->slot) = 0;
808 MEM_SCALAR_P (p->slot) = 0;
809 MEM_VOLATILE_P (p->slot) = 0;
811 /* If we know the alias set for the memory that will be used, use
812 it. If there's no TYPE, then we don't know anything about the
813 alias set for the memory. */
814 if (type)
815 MEM_ALIAS_SET (p->slot) = get_alias_set (type);
816 else
817 MEM_ALIAS_SET (p->slot) = 0;
819 /* If a type is specified, set the relevant flags. */
820 if (type != 0)
822 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
823 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
824 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
827 return p->slot;
830 /* Allocate a temporary stack slot and record it for possible later
831 reuse. First three arguments are same as in preceding function. */
834 assign_stack_temp (mode, size, keep)
835 enum machine_mode mode;
836 HOST_WIDE_INT size;
837 int keep;
839 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
842 /* Assign a temporary of given TYPE.
843 KEEP is as for assign_stack_temp.
844 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
845 it is 0 if a register is OK.
846 DONT_PROMOTE is 1 if we should not promote values in register
847 to wider modes. */
850 assign_temp (type, keep, memory_required, dont_promote)
851 tree type;
852 int keep;
853 int memory_required;
854 int dont_promote ATTRIBUTE_UNUSED;
856 enum machine_mode mode = TYPE_MODE (type);
857 #ifndef PROMOTE_FOR_CALL_ONLY
858 int unsignedp = TREE_UNSIGNED (type);
859 #endif
861 if (mode == BLKmode || memory_required)
863 HOST_WIDE_INT size = int_size_in_bytes (type);
864 rtx tmp;
866 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
867 problems with allocating the stack space. */
868 if (size == 0)
869 size = 1;
871 /* Unfortunately, we don't yet know how to allocate variable-sized
872 temporaries. However, sometimes we have a fixed upper limit on
873 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
874 instead. This is the case for Chill variable-sized strings. */
875 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
876 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
877 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
878 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
880 tmp = assign_stack_temp_for_type (mode, size, keep, type);
881 return tmp;
884 #ifndef PROMOTE_FOR_CALL_ONLY
885 if (! dont_promote)
886 mode = promote_mode (type, mode, &unsignedp, 0);
887 #endif
889 return gen_reg_rtx (mode);
892 /* Combine temporary stack slots which are adjacent on the stack.
894 This allows for better use of already allocated stack space. This is only
895 done for BLKmode slots because we can be sure that we won't have alignment
896 problems in this case. */
898 void
899 combine_temp_slots ()
901 struct temp_slot *p, *q;
902 struct temp_slot *prev_p, *prev_q;
903 int num_slots;
905 /* We can't combine slots, because the information about which slot
906 is in which alias set will be lost. */
907 if (flag_strict_aliasing)
908 return;
910 /* If there are a lot of temp slots, don't do anything unless
911 high levels of optimizaton. */
912 if (! flag_expensive_optimizations)
913 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
914 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
915 return;
917 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
919 int delete_p = 0;
921 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
922 for (q = p->next, prev_q = p; q; q = prev_q->next)
924 int delete_q = 0;
925 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
927 if (p->base_offset + p->full_size == q->base_offset)
929 /* Q comes after P; combine Q into P. */
930 p->size += q->size;
931 p->full_size += q->full_size;
932 delete_q = 1;
934 else if (q->base_offset + q->full_size == p->base_offset)
936 /* P comes after Q; combine P into Q. */
937 q->size += p->size;
938 q->full_size += p->full_size;
939 delete_p = 1;
940 break;
943 /* Either delete Q or advance past it. */
944 if (delete_q)
946 prev_q->next = q->next;
947 free (q);
949 else
950 prev_q = q;
952 /* Either delete P or advance past it. */
953 if (delete_p)
955 if (prev_p)
956 prev_p->next = p->next;
957 else
958 temp_slots = p->next;
960 else
961 prev_p = p;
965 /* Find the temp slot corresponding to the object at address X. */
967 static struct temp_slot *
968 find_temp_slot_from_address (x)
969 rtx x;
971 struct temp_slot *p;
972 rtx next;
974 for (p = temp_slots; p; p = p->next)
976 if (! p->in_use)
977 continue;
979 else if (XEXP (p->slot, 0) == x
980 || p->address == x
981 || (GET_CODE (x) == PLUS
982 && XEXP (x, 0) == virtual_stack_vars_rtx
983 && GET_CODE (XEXP (x, 1)) == CONST_INT
984 && INTVAL (XEXP (x, 1)) >= p->base_offset
985 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
986 return p;
988 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
989 for (next = p->address; next; next = XEXP (next, 1))
990 if (XEXP (next, 0) == x)
991 return p;
994 /* If we have a sum involving a register, see if it points to a temp
995 slot. */
996 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
997 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
998 return p;
999 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1000 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1001 return p;
1003 return 0;
1006 /* Indicate that NEW is an alternate way of referring to the temp slot
1007 that previously was known by OLD. */
1009 void
1010 update_temp_slot_address (old, new)
1011 rtx old, new;
1013 struct temp_slot *p;
1015 if (rtx_equal_p (old, new))
1016 return;
1018 p = find_temp_slot_from_address (old);
1020 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1021 is a register, see if one operand of the PLUS is a temporary
1022 location. If so, NEW points into it. Otherwise, if both OLD and
1023 NEW are a PLUS and if there is a register in common between them.
1024 If so, try a recursive call on those values. */
1025 if (p == 0)
1027 if (GET_CODE (old) != PLUS)
1028 return;
1030 if (GET_CODE (new) == REG)
1032 update_temp_slot_address (XEXP (old, 0), new);
1033 update_temp_slot_address (XEXP (old, 1), new);
1034 return;
1036 else if (GET_CODE (new) != PLUS)
1037 return;
1039 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1040 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1041 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1044 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1045 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1048 return;
1051 /* Otherwise add an alias for the temp's address. */
1052 else if (p->address == 0)
1053 p->address = new;
1054 else
1056 if (GET_CODE (p->address) != EXPR_LIST)
1057 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1063 /* If X could be a reference to a temporary slot, mark the fact that its
1064 address was taken. */
1066 void
1067 mark_temp_addr_taken (x)
1068 rtx x;
1070 struct temp_slot *p;
1072 if (x == 0)
1073 return;
1075 /* If X is not in memory or is at a constant address, it cannot be in
1076 a temporary slot. */
1077 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1078 return;
1080 p = find_temp_slot_from_address (XEXP (x, 0));
1081 if (p != 0)
1082 p->addr_taken = 1;
1085 /* If X could be a reference to a temporary slot, mark that slot as
1086 belonging to the to one level higher than the current level. If X
1087 matched one of our slots, just mark that one. Otherwise, we can't
1088 easily predict which it is, so upgrade all of them. Kept slots
1089 need not be touched.
1091 This is called when an ({...}) construct occurs and a statement
1092 returns a value in memory. */
1094 void
1095 preserve_temp_slots (x)
1096 rtx x;
1098 struct temp_slot *p = 0;
1100 /* If there is no result, we still might have some objects whose address
1101 were taken, so we need to make sure they stay around. */
1102 if (x == 0)
1104 for (p = temp_slots; p; p = p->next)
1105 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1106 p->level--;
1108 return;
1111 /* If X is a register that is being used as a pointer, see if we have
1112 a temporary slot we know it points to. To be consistent with
1113 the code below, we really should preserve all non-kept slots
1114 if we can't find a match, but that seems to be much too costly. */
1115 if (GET_CODE (x) == REG && REG_POINTER (x))
1116 p = find_temp_slot_from_address (x);
1118 /* If X is not in memory or is at a constant address, it cannot be in
1119 a temporary slot, but it can contain something whose address was
1120 taken. */
1121 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1123 for (p = temp_slots; p; p = p->next)
1124 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1125 p->level--;
1127 return;
1130 /* First see if we can find a match. */
1131 if (p == 0)
1132 p = find_temp_slot_from_address (XEXP (x, 0));
1134 if (p != 0)
1136 /* Move everything at our level whose address was taken to our new
1137 level in case we used its address. */
1138 struct temp_slot *q;
1140 if (p->level == temp_slot_level)
1142 for (q = temp_slots; q; q = q->next)
1143 if (q != p && q->addr_taken && q->level == p->level)
1144 q->level--;
1146 p->level--;
1147 p->addr_taken = 0;
1149 return;
1152 /* Otherwise, preserve all non-kept slots at this level. */
1153 for (p = temp_slots; p; p = p->next)
1154 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1155 p->level--;
1158 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1159 with that RTL_EXPR, promote it into a temporary slot at the present
1160 level so it will not be freed when we free slots made in the
1161 RTL_EXPR. */
1163 void
1164 preserve_rtl_expr_result (x)
1165 rtx x;
1167 struct temp_slot *p;
1169 /* If X is not in memory or is at a constant address, it cannot be in
1170 a temporary slot. */
1171 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1172 return;
1174 /* If we can find a match, move it to our level unless it is already at
1175 an upper level. */
1176 p = find_temp_slot_from_address (XEXP (x, 0));
1177 if (p != 0)
1179 p->level = MIN (p->level, temp_slot_level);
1180 p->rtl_expr = 0;
1183 return;
1186 /* Free all temporaries used so far. This is normally called at the end
1187 of generating code for a statement. Don't free any temporaries
1188 currently in use for an RTL_EXPR that hasn't yet been emitted.
1189 We could eventually do better than this since it can be reused while
1190 generating the same RTL_EXPR, but this is complex and probably not
1191 worthwhile. */
1193 void
1194 free_temp_slots ()
1196 struct temp_slot *p;
1198 for (p = temp_slots; p; p = p->next)
1199 if (p->in_use && p->level == temp_slot_level && ! p->keep
1200 && p->rtl_expr == 0)
1201 p->in_use = 0;
1203 combine_temp_slots ();
1206 /* Free all temporary slots used in T, an RTL_EXPR node. */
1208 void
1209 free_temps_for_rtl_expr (t)
1210 tree t;
1212 struct temp_slot *p;
1214 for (p = temp_slots; p; p = p->next)
1215 if (p->rtl_expr == t)
1217 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1218 needs to be preserved. This can happen if a temporary in
1219 the RTL_EXPR was addressed; preserve_temp_slots will move
1220 the temporary into a higher level. */
1221 if (temp_slot_level <= p->level)
1222 p->in_use = 0;
1223 else
1224 p->rtl_expr = NULL_TREE;
1227 combine_temp_slots ();
1230 /* Mark all temporaries ever allocated in this function as not suitable
1231 for reuse until the current level is exited. */
1233 void
1234 mark_all_temps_used ()
1236 struct temp_slot *p;
1238 for (p = temp_slots; p; p = p->next)
1240 p->in_use = p->keep = 1;
1241 p->level = MIN (p->level, temp_slot_level);
1245 /* Push deeper into the nesting level for stack temporaries. */
1247 void
1248 push_temp_slots ()
1250 temp_slot_level++;
1253 /* Likewise, but save the new level as the place to allocate variables
1254 for blocks. */
1256 #if 0
1257 void
1258 push_temp_slots_for_block ()
1260 push_temp_slots ();
1262 var_temp_slot_level = temp_slot_level;
1265 /* Likewise, but save the new level as the place to allocate temporaries
1266 for TARGET_EXPRs. */
1268 void
1269 push_temp_slots_for_target ()
1271 push_temp_slots ();
1273 target_temp_slot_level = temp_slot_level;
1276 /* Set and get the value of target_temp_slot_level. The only
1277 permitted use of these functions is to save and restore this value. */
1280 get_target_temp_slot_level ()
1282 return target_temp_slot_level;
1285 void
1286 set_target_temp_slot_level (level)
1287 int level;
1289 target_temp_slot_level = level;
1291 #endif
1293 /* Pop a temporary nesting level. All slots in use in the current level
1294 are freed. */
1296 void
1297 pop_temp_slots ()
1299 struct temp_slot *p;
1301 for (p = temp_slots; p; p = p->next)
1302 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1303 p->in_use = 0;
1305 combine_temp_slots ();
1307 temp_slot_level--;
1310 /* Initialize temporary slots. */
1312 void
1313 init_temp_slots ()
1315 /* We have not allocated any temporaries yet. */
1316 temp_slots = 0;
1317 temp_slot_level = 0;
1318 var_temp_slot_level = 0;
1319 target_temp_slot_level = 0;
1322 /* Retroactively move an auto variable from a register to a stack slot.
1323 This is done when an address-reference to the variable is seen. */
1325 void
1326 put_var_into_stack (decl)
1327 tree decl;
1329 register rtx reg;
1330 enum machine_mode promoted_mode, decl_mode;
1331 struct function *function = 0;
1332 tree context;
1333 int can_use_addressof;
1334 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1335 int usedp = (TREE_USED (decl)
1336 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1338 context = decl_function_context (decl);
1340 /* Get the current rtl used for this object and its original mode. */
1341 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1343 /* No need to do anything if decl has no rtx yet
1344 since in that case caller is setting TREE_ADDRESSABLE
1345 and a stack slot will be assigned when the rtl is made. */
1346 if (reg == 0)
1347 return;
1349 /* Get the declared mode for this object. */
1350 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1351 : DECL_MODE (decl));
1352 /* Get the mode it's actually stored in. */
1353 promoted_mode = GET_MODE (reg);
1355 /* If this variable comes from an outer function,
1356 find that function's saved context. */
1357 if (context != current_function_decl && context != inline_function_decl)
1358 for (function = outer_function_chain; function; function = function->next)
1359 if (function->decl == context)
1360 break;
1362 /* If this is a variable-size object with a pseudo to address it,
1363 put that pseudo into the stack, if the var is nonlocal. */
1364 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1365 && GET_CODE (reg) == MEM
1366 && GET_CODE (XEXP (reg, 0)) == REG
1367 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1369 reg = XEXP (reg, 0);
1370 decl_mode = promoted_mode = GET_MODE (reg);
1373 can_use_addressof
1374 = (function == 0
1375 && optimize > 0
1376 /* FIXME make it work for promoted modes too */
1377 && decl_mode == promoted_mode
1378 #ifdef NON_SAVING_SETJMP
1379 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1380 #endif
1383 /* If we can't use ADDRESSOF, make sure we see through one we already
1384 generated. */
1385 if (! can_use_addressof && GET_CODE (reg) == MEM
1386 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1387 reg = XEXP (XEXP (reg, 0), 0);
1389 /* Now we should have a value that resides in one or more pseudo regs. */
1391 if (GET_CODE (reg) == REG)
1393 /* If this variable lives in the current function and we don't need
1394 to put things in the stack for the sake of setjmp, try to keep it
1395 in a register until we know we actually need the address. */
1396 if (can_use_addressof)
1397 gen_mem_addressof (reg, decl);
1398 else
1399 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1400 decl_mode, volatilep, 0, usedp, 0);
1402 else if (GET_CODE (reg) == CONCAT)
1404 /* A CONCAT contains two pseudos; put them both in the stack.
1405 We do it so they end up consecutive.
1406 We fixup references to the parts only after we fixup references
1407 to the whole CONCAT, lest we do double fixups for the latter
1408 references. */
1409 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1410 tree part_type = type_for_mode (part_mode, 0);
1411 rtx lopart = XEXP (reg, 0);
1412 rtx hipart = XEXP (reg, 1);
1413 #ifdef FRAME_GROWS_DOWNWARD
1414 /* Since part 0 should have a lower address, do it second. */
1415 put_reg_into_stack (function, hipart, part_type, part_mode,
1416 part_mode, volatilep, 0, 0, 0);
1417 put_reg_into_stack (function, lopart, part_type, part_mode,
1418 part_mode, volatilep, 0, 0, 0);
1419 #else
1420 put_reg_into_stack (function, lopart, part_type, part_mode,
1421 part_mode, volatilep, 0, 0, 0);
1422 put_reg_into_stack (function, hipart, part_type, part_mode,
1423 part_mode, volatilep, 0, 0, 0);
1424 #endif
1426 /* Change the CONCAT into a combined MEM for both parts. */
1427 PUT_CODE (reg, MEM);
1428 set_mem_attributes (reg, decl, 1);
1430 /* The two parts are in memory order already.
1431 Use the lower parts address as ours. */
1432 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1433 /* Prevent sharing of rtl that might lose. */
1434 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1435 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1436 if (usedp)
1438 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1439 promoted_mode, 0);
1440 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1441 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1444 else
1445 return;
1447 if (current_function_check_memory_usage)
1448 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode,
1449 3, XEXP (reg, 0), Pmode,
1450 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1451 TYPE_MODE (sizetype),
1452 GEN_INT (MEMORY_USE_RW),
1453 TYPE_MODE (integer_type_node));
1456 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1457 into the stack frame of FUNCTION (0 means the current function).
1458 DECL_MODE is the machine mode of the user-level data type.
1459 PROMOTED_MODE is the machine mode of the register.
1460 VOLATILE_P is nonzero if this is for a "volatile" decl.
1461 USED_P is nonzero if this reg might have already been used in an insn. */
1463 static void
1464 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1465 original_regno, used_p, ht)
1466 struct function *function;
1467 rtx reg;
1468 tree type;
1469 enum machine_mode promoted_mode, decl_mode;
1470 int volatile_p;
1471 unsigned int original_regno;
1472 int used_p;
1473 struct hash_table *ht;
1475 struct function *func = function ? function : cfun;
1476 rtx new = 0;
1477 unsigned int regno = original_regno;
1479 if (regno == 0)
1480 regno = REGNO (reg);
1482 if (regno < func->x_max_parm_reg)
1483 new = func->x_parm_reg_stack_loc[regno];
1485 if (new == 0)
1486 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1488 PUT_CODE (reg, MEM);
1489 PUT_MODE (reg, decl_mode);
1490 XEXP (reg, 0) = XEXP (new, 0);
1491 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1492 MEM_VOLATILE_P (reg) = volatile_p;
1494 /* If this is a memory ref that contains aggregate components,
1495 mark it as such for cse and loop optimize. If we are reusing a
1496 previously generated stack slot, then we need to copy the bit in
1497 case it was set for other reasons. For instance, it is set for
1498 __builtin_va_alist. */
1499 if (type)
1501 MEM_SET_IN_STRUCT_P (reg,
1502 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1503 MEM_ALIAS_SET (reg) = get_alias_set (type);
1505 if (used_p)
1506 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1509 /* Make sure that all refs to the variable, previously made
1510 when it was a register, are fixed up to be valid again.
1511 See function above for meaning of arguments. */
1513 static void
1514 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1515 struct function *function;
1516 rtx reg;
1517 tree type;
1518 enum machine_mode promoted_mode;
1519 struct hash_table *ht;
1521 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1523 if (function != 0)
1525 struct var_refs_queue *temp;
1527 temp
1528 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1529 temp->modified = reg;
1530 temp->promoted_mode = promoted_mode;
1531 temp->unsignedp = unsigned_p;
1532 temp->next = function->fixup_var_refs_queue;
1533 function->fixup_var_refs_queue = temp;
1535 else
1536 /* Variable is local; fix it up now. */
1537 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1540 static void
1541 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1542 rtx var;
1543 enum machine_mode promoted_mode;
1544 int unsignedp;
1545 struct hash_table *ht;
1547 tree pending;
1548 rtx first_insn = get_insns ();
1549 struct sequence_stack *stack = seq_stack;
1550 tree rtl_exps = rtl_expr_chain;
1552 /* If there's a hash table, it must record all uses of VAR. */
1553 if (ht)
1555 if (stack != 0)
1556 abort ();
1557 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp);
1558 return;
1561 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1562 stack == 0);
1564 /* Scan all pending sequences too. */
1565 for (; stack; stack = stack->next)
1567 push_to_full_sequence (stack->first, stack->last);
1568 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1569 stack->next != 0);
1570 /* Update remembered end of sequence
1571 in case we added an insn at the end. */
1572 stack->last = get_last_insn ();
1573 end_sequence ();
1576 /* Scan all waiting RTL_EXPRs too. */
1577 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1579 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1580 if (seq != const0_rtx && seq != 0)
1582 push_to_sequence (seq);
1583 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1584 end_sequence ();
1588 /* Scan the catch clauses for exception handling too. */
1589 push_to_full_sequence (catch_clauses, catch_clauses_last);
1590 fixup_var_refs_insns (catch_clauses, var, promoted_mode, unsignedp, 0);
1591 end_full_sequence (&catch_clauses, &catch_clauses_last);
1594 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1595 some part of an insn. Return a struct fixup_replacement whose OLD
1596 value is equal to X. Allocate a new structure if no such entry exists. */
1598 static struct fixup_replacement *
1599 find_fixup_replacement (replacements, x)
1600 struct fixup_replacement **replacements;
1601 rtx x;
1603 struct fixup_replacement *p;
1605 /* See if we have already replaced this. */
1606 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1609 if (p == 0)
1611 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1612 p->old = x;
1613 p->new = 0;
1614 p->next = *replacements;
1615 *replacements = p;
1618 return p;
1621 /* Scan the insn-chain starting with INSN for refs to VAR
1622 and fix them up. TOPLEVEL is nonzero if this chain is the
1623 main chain of insns for the current function. */
1625 static void
1626 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel)
1627 rtx insn;
1628 rtx var;
1629 enum machine_mode promoted_mode;
1630 int unsignedp;
1631 int toplevel;
1633 while (insn)
1635 /* fixup_var_refs_insn might modify insn, so save its next
1636 pointer now. */
1637 rtx next = NEXT_INSN (insn);
1639 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1640 the three sequences they (potentially) contain, and process
1641 them recursively. The CALL_INSN itself is not interesting. */
1643 if (GET_CODE (insn) == CALL_INSN
1644 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1646 int i;
1648 /* Look at the Normal call, sibling call and tail recursion
1649 sequences attached to the CALL_PLACEHOLDER. */
1650 for (i = 0; i < 3; i++)
1652 rtx seq = XEXP (PATTERN (insn), i);
1653 if (seq)
1655 push_to_sequence (seq);
1656 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1657 XEXP (PATTERN (insn), i) = get_insns ();
1658 end_sequence ();
1663 else if (INSN_P (insn))
1664 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel);
1666 insn = next;
1670 /* Look up the insns which reference VAR in HT and fix them up. Other
1671 arguments are the same as fixup_var_refs_insns.
1673 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1674 because the hash table will point straight to the interesting insn
1675 (inside the CALL_PLACEHOLDER). */
1676 static void
1677 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp)
1678 struct hash_table *ht;
1679 rtx var;
1680 enum machine_mode promoted_mode;
1681 int unsignedp;
1683 struct insns_for_mem_entry *ime = (struct insns_for_mem_entry *)
1684 hash_lookup (ht, var, /*create=*/0, /*copy=*/0);
1685 rtx insn_list = ime->insns;
1687 while (insn_list)
1689 rtx insn = XEXP (insn_list, 0);
1691 if (INSN_P (insn))
1692 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, 0);
1694 insn_list = XEXP (insn_list, 1);
1699 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1700 the insn under examination, VAR is the variable to fix up
1701 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1702 TOPLEVEL is nonzero if this is the main insn chain for this
1703 function. */
1704 static void
1705 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel)
1706 rtx insn;
1707 rtx var;
1708 enum machine_mode promoted_mode;
1709 int unsignedp;
1710 int toplevel;
1712 rtx call_dest = 0;
1713 rtx set, prev, prev_set;
1714 rtx note;
1716 /* Remember the notes in case we delete the insn. */
1717 note = REG_NOTES (insn);
1719 /* If this is a CLOBBER of VAR, delete it.
1721 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1722 and REG_RETVAL notes too. */
1723 if (GET_CODE (PATTERN (insn)) == CLOBBER
1724 && (XEXP (PATTERN (insn), 0) == var
1725 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1726 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1727 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1729 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1730 /* The REG_LIBCALL note will go away since we are going to
1731 turn INSN into a NOTE, so just delete the
1732 corresponding REG_RETVAL note. */
1733 remove_note (XEXP (note, 0),
1734 find_reg_note (XEXP (note, 0), REG_RETVAL,
1735 NULL_RTX));
1737 /* In unoptimized compilation, we shouldn't call delete_insn
1738 except in jump.c doing warnings. */
1739 PUT_CODE (insn, NOTE);
1740 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1741 NOTE_SOURCE_FILE (insn) = 0;
1744 /* The insn to load VAR from a home in the arglist
1745 is now a no-op. When we see it, just delete it.
1746 Similarly if this is storing VAR from a register from which
1747 it was loaded in the previous insn. This will occur
1748 when an ADDRESSOF was made for an arglist slot. */
1749 else if (toplevel
1750 && (set = single_set (insn)) != 0
1751 && SET_DEST (set) == var
1752 /* If this represents the result of an insn group,
1753 don't delete the insn. */
1754 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1755 && (rtx_equal_p (SET_SRC (set), var)
1756 || (GET_CODE (SET_SRC (set)) == REG
1757 && (prev = prev_nonnote_insn (insn)) != 0
1758 && (prev_set = single_set (prev)) != 0
1759 && SET_DEST (prev_set) == SET_SRC (set)
1760 && rtx_equal_p (SET_SRC (prev_set), var))))
1762 /* In unoptimized compilation, we shouldn't call delete_insn
1763 except in jump.c doing warnings. */
1764 PUT_CODE (insn, NOTE);
1765 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1766 NOTE_SOURCE_FILE (insn) = 0;
1768 else
1770 struct fixup_replacement *replacements = 0;
1771 rtx next_insn = NEXT_INSN (insn);
1773 if (SMALL_REGISTER_CLASSES)
1775 /* If the insn that copies the results of a CALL_INSN
1776 into a pseudo now references VAR, we have to use an
1777 intermediate pseudo since we want the life of the
1778 return value register to be only a single insn.
1780 If we don't use an intermediate pseudo, such things as
1781 address computations to make the address of VAR valid
1782 if it is not can be placed between the CALL_INSN and INSN.
1784 To make sure this doesn't happen, we record the destination
1785 of the CALL_INSN and see if the next insn uses both that
1786 and VAR. */
1788 if (call_dest != 0 && GET_CODE (insn) == INSN
1789 && reg_mentioned_p (var, PATTERN (insn))
1790 && reg_mentioned_p (call_dest, PATTERN (insn)))
1792 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1794 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1796 PATTERN (insn) = replace_rtx (PATTERN (insn),
1797 call_dest, temp);
1800 if (GET_CODE (insn) == CALL_INSN
1801 && GET_CODE (PATTERN (insn)) == SET)
1802 call_dest = SET_DEST (PATTERN (insn));
1803 else if (GET_CODE (insn) == CALL_INSN
1804 && GET_CODE (PATTERN (insn)) == PARALLEL
1805 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1806 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1807 else
1808 call_dest = 0;
1811 /* See if we have to do anything to INSN now that VAR is in
1812 memory. If it needs to be loaded into a pseudo, use a single
1813 pseudo for the entire insn in case there is a MATCH_DUP
1814 between two operands. We pass a pointer to the head of
1815 a list of struct fixup_replacements. If fixup_var_refs_1
1816 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1817 it will record them in this list.
1819 If it allocated a pseudo for any replacement, we copy into
1820 it here. */
1822 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1823 &replacements);
1825 /* If this is last_parm_insn, and any instructions were output
1826 after it to fix it up, then we must set last_parm_insn to
1827 the last such instruction emitted. */
1828 if (insn == last_parm_insn)
1829 last_parm_insn = PREV_INSN (next_insn);
1831 while (replacements)
1833 struct fixup_replacement *next;
1835 if (GET_CODE (replacements->new) == REG)
1837 rtx insert_before;
1838 rtx seq;
1840 /* OLD might be a (subreg (mem)). */
1841 if (GET_CODE (replacements->old) == SUBREG)
1842 replacements->old
1843 = fixup_memory_subreg (replacements->old, insn, 0);
1844 else
1845 replacements->old
1846 = fixup_stack_1 (replacements->old, insn);
1848 insert_before = insn;
1850 /* If we are changing the mode, do a conversion.
1851 This might be wasteful, but combine.c will
1852 eliminate much of the waste. */
1854 if (GET_MODE (replacements->new)
1855 != GET_MODE (replacements->old))
1857 start_sequence ();
1858 convert_move (replacements->new,
1859 replacements->old, unsignedp);
1860 seq = gen_sequence ();
1861 end_sequence ();
1863 else
1864 seq = gen_move_insn (replacements->new,
1865 replacements->old);
1867 emit_insn_before (seq, insert_before);
1870 next = replacements->next;
1871 free (replacements);
1872 replacements = next;
1876 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1877 But don't touch other insns referred to by reg-notes;
1878 we will get them elsewhere. */
1879 while (note)
1881 if (GET_CODE (note) != INSN_LIST)
1882 XEXP (note, 0)
1883 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1884 note = XEXP (note, 1);
1888 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1889 See if the rtx expression at *LOC in INSN needs to be changed.
1891 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1892 contain a list of original rtx's and replacements. If we find that we need
1893 to modify this insn by replacing a memory reference with a pseudo or by
1894 making a new MEM to implement a SUBREG, we consult that list to see if
1895 we have already chosen a replacement. If none has already been allocated,
1896 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1897 or the SUBREG, as appropriate, to the pseudo. */
1899 static void
1900 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1901 register rtx var;
1902 enum machine_mode promoted_mode;
1903 register rtx *loc;
1904 rtx insn;
1905 struct fixup_replacement **replacements;
1907 register int i;
1908 register rtx x = *loc;
1909 RTX_CODE code = GET_CODE (x);
1910 register const char *fmt;
1911 register rtx tem, tem1;
1912 struct fixup_replacement *replacement;
1914 switch (code)
1916 case ADDRESSOF:
1917 if (XEXP (x, 0) == var)
1919 /* Prevent sharing of rtl that might lose. */
1920 rtx sub = copy_rtx (XEXP (var, 0));
1922 if (! validate_change (insn, loc, sub, 0))
1924 rtx y = gen_reg_rtx (GET_MODE (sub));
1925 rtx seq, new_insn;
1927 /* We should be able to replace with a register or all is lost.
1928 Note that we can't use validate_change to verify this, since
1929 we're not caring for replacing all dups simultaneously. */
1930 if (! validate_replace_rtx (*loc, y, insn))
1931 abort ();
1933 /* Careful! First try to recognize a direct move of the
1934 value, mimicking how things are done in gen_reload wrt
1935 PLUS. Consider what happens when insn is a conditional
1936 move instruction and addsi3 clobbers flags. */
1938 start_sequence ();
1939 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1940 seq = gen_sequence ();
1941 end_sequence ();
1943 if (recog_memoized (new_insn) < 0)
1945 /* That failed. Fall back on force_operand and hope. */
1947 start_sequence ();
1948 sub = force_operand (sub, y);
1949 if (sub != y)
1950 emit_insn (gen_move_insn (y, sub));
1951 seq = gen_sequence ();
1952 end_sequence ();
1955 #ifdef HAVE_cc0
1956 /* Don't separate setter from user. */
1957 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1958 insn = PREV_INSN (insn);
1959 #endif
1961 emit_insn_before (seq, insn);
1964 return;
1966 case MEM:
1967 if (var == x)
1969 /* If we already have a replacement, use it. Otherwise,
1970 try to fix up this address in case it is invalid. */
1972 replacement = find_fixup_replacement (replacements, var);
1973 if (replacement->new)
1975 *loc = replacement->new;
1976 return;
1979 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1981 /* Unless we are forcing memory to register or we changed the mode,
1982 we can leave things the way they are if the insn is valid. */
1984 INSN_CODE (insn) = -1;
1985 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1986 && recog_memoized (insn) >= 0)
1987 return;
1989 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1990 return;
1993 /* If X contains VAR, we need to unshare it here so that we update
1994 each occurrence separately. But all identical MEMs in one insn
1995 must be replaced with the same rtx because of the possibility of
1996 MATCH_DUPs. */
1998 if (reg_mentioned_p (var, x))
2000 replacement = find_fixup_replacement (replacements, x);
2001 if (replacement->new == 0)
2002 replacement->new = copy_most_rtx (x, var);
2004 *loc = x = replacement->new;
2005 code = GET_CODE (x);
2007 break;
2009 case REG:
2010 case CC0:
2011 case PC:
2012 case CONST_INT:
2013 case CONST:
2014 case SYMBOL_REF:
2015 case LABEL_REF:
2016 case CONST_DOUBLE:
2017 return;
2019 case SIGN_EXTRACT:
2020 case ZERO_EXTRACT:
2021 /* Note that in some cases those types of expressions are altered
2022 by optimize_bit_field, and do not survive to get here. */
2023 if (XEXP (x, 0) == var
2024 || (GET_CODE (XEXP (x, 0)) == SUBREG
2025 && SUBREG_REG (XEXP (x, 0)) == var))
2027 /* Get TEM as a valid MEM in the mode presently in the insn.
2029 We don't worry about the possibility of MATCH_DUP here; it
2030 is highly unlikely and would be tricky to handle. */
2032 tem = XEXP (x, 0);
2033 if (GET_CODE (tem) == SUBREG)
2035 if (GET_MODE_BITSIZE (GET_MODE (tem))
2036 > GET_MODE_BITSIZE (GET_MODE (var)))
2038 replacement = find_fixup_replacement (replacements, var);
2039 if (replacement->new == 0)
2040 replacement->new = gen_reg_rtx (GET_MODE (var));
2041 SUBREG_REG (tem) = replacement->new;
2043 /* The following code works only if we have a MEM, so we
2044 need to handle the subreg here. We directly substitute
2045 it assuming that a subreg must be OK here. We already
2046 scheduled a replacement to copy the mem into the
2047 subreg. */
2048 XEXP (x, 0) = tem;
2049 return;
2051 else
2052 tem = fixup_memory_subreg (tem, insn, 0);
2054 else
2055 tem = fixup_stack_1 (tem, insn);
2057 /* Unless we want to load from memory, get TEM into the proper mode
2058 for an extract from memory. This can only be done if the
2059 extract is at a constant position and length. */
2061 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2062 && GET_CODE (XEXP (x, 2)) == CONST_INT
2063 && ! mode_dependent_address_p (XEXP (tem, 0))
2064 && ! MEM_VOLATILE_P (tem))
2066 enum machine_mode wanted_mode = VOIDmode;
2067 enum machine_mode is_mode = GET_MODE (tem);
2068 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2070 #ifdef HAVE_extzv
2071 if (GET_CODE (x) == ZERO_EXTRACT)
2073 wanted_mode
2074 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2075 if (wanted_mode == VOIDmode)
2076 wanted_mode = word_mode;
2078 #endif
2079 #ifdef HAVE_extv
2080 if (GET_CODE (x) == SIGN_EXTRACT)
2082 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2083 if (wanted_mode == VOIDmode)
2084 wanted_mode = word_mode;
2086 #endif
2087 /* If we have a narrower mode, we can do something. */
2088 if (wanted_mode != VOIDmode
2089 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2091 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2092 rtx old_pos = XEXP (x, 2);
2093 rtx newmem;
2095 /* If the bytes and bits are counted differently, we
2096 must adjust the offset. */
2097 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2098 offset = (GET_MODE_SIZE (is_mode)
2099 - GET_MODE_SIZE (wanted_mode) - offset);
2101 pos %= GET_MODE_BITSIZE (wanted_mode);
2103 newmem = gen_rtx_MEM (wanted_mode,
2104 plus_constant (XEXP (tem, 0), offset));
2105 MEM_COPY_ATTRIBUTES (newmem, tem);
2107 /* Make the change and see if the insn remains valid. */
2108 INSN_CODE (insn) = -1;
2109 XEXP (x, 0) = newmem;
2110 XEXP (x, 2) = GEN_INT (pos);
2112 if (recog_memoized (insn) >= 0)
2113 return;
2115 /* Otherwise, restore old position. XEXP (x, 0) will be
2116 restored later. */
2117 XEXP (x, 2) = old_pos;
2121 /* If we get here, the bitfield extract insn can't accept a memory
2122 reference. Copy the input into a register. */
2124 tem1 = gen_reg_rtx (GET_MODE (tem));
2125 emit_insn_before (gen_move_insn (tem1, tem), insn);
2126 XEXP (x, 0) = tem1;
2127 return;
2129 break;
2131 case SUBREG:
2132 if (SUBREG_REG (x) == var)
2134 /* If this is a special SUBREG made because VAR was promoted
2135 from a wider mode, replace it with VAR and call ourself
2136 recursively, this time saying that the object previously
2137 had its current mode (by virtue of the SUBREG). */
2139 if (SUBREG_PROMOTED_VAR_P (x))
2141 *loc = var;
2142 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2143 return;
2146 /* If this SUBREG makes VAR wider, it has become a paradoxical
2147 SUBREG with VAR in memory, but these aren't allowed at this
2148 stage of the compilation. So load VAR into a pseudo and take
2149 a SUBREG of that pseudo. */
2150 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2152 replacement = find_fixup_replacement (replacements, var);
2153 if (replacement->new == 0)
2154 replacement->new = gen_reg_rtx (GET_MODE (var));
2155 SUBREG_REG (x) = replacement->new;
2156 return;
2159 /* See if we have already found a replacement for this SUBREG.
2160 If so, use it. Otherwise, make a MEM and see if the insn
2161 is recognized. If not, or if we should force MEM into a register,
2162 make a pseudo for this SUBREG. */
2163 replacement = find_fixup_replacement (replacements, x);
2164 if (replacement->new)
2166 *loc = replacement->new;
2167 return;
2170 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2172 INSN_CODE (insn) = -1;
2173 if (! flag_force_mem && recog_memoized (insn) >= 0)
2174 return;
2176 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2177 return;
2179 break;
2181 case SET:
2182 /* First do special simplification of bit-field references. */
2183 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2184 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2185 optimize_bit_field (x, insn, 0);
2186 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2187 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2188 optimize_bit_field (x, insn, NULL_PTR);
2190 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2191 into a register and then store it back out. */
2192 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2193 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2194 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2195 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2196 > GET_MODE_SIZE (GET_MODE (var))))
2198 replacement = find_fixup_replacement (replacements, var);
2199 if (replacement->new == 0)
2200 replacement->new = gen_reg_rtx (GET_MODE (var));
2202 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2203 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2206 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2207 insn into a pseudo and store the low part of the pseudo into VAR. */
2208 if (GET_CODE (SET_DEST (x)) == SUBREG
2209 && SUBREG_REG (SET_DEST (x)) == var
2210 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2211 > GET_MODE_SIZE (GET_MODE (var))))
2213 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2214 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2215 tem)),
2216 insn);
2217 break;
2221 rtx dest = SET_DEST (x);
2222 rtx src = SET_SRC (x);
2223 #ifdef HAVE_insv
2224 rtx outerdest = dest;
2225 #endif
2227 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2228 || GET_CODE (dest) == SIGN_EXTRACT
2229 || GET_CODE (dest) == ZERO_EXTRACT)
2230 dest = XEXP (dest, 0);
2232 if (GET_CODE (src) == SUBREG)
2233 src = XEXP (src, 0);
2235 /* If VAR does not appear at the top level of the SET
2236 just scan the lower levels of the tree. */
2238 if (src != var && dest != var)
2239 break;
2241 /* We will need to rerecognize this insn. */
2242 INSN_CODE (insn) = -1;
2244 #ifdef HAVE_insv
2245 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2247 /* Since this case will return, ensure we fixup all the
2248 operands here. */
2249 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2250 insn, replacements);
2251 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2252 insn, replacements);
2253 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2254 insn, replacements);
2256 tem = XEXP (outerdest, 0);
2258 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2259 that may appear inside a ZERO_EXTRACT.
2260 This was legitimate when the MEM was a REG. */
2261 if (GET_CODE (tem) == SUBREG
2262 && SUBREG_REG (tem) == var)
2263 tem = fixup_memory_subreg (tem, insn, 0);
2264 else
2265 tem = fixup_stack_1 (tem, insn);
2267 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2268 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2269 && ! mode_dependent_address_p (XEXP (tem, 0))
2270 && ! MEM_VOLATILE_P (tem))
2272 enum machine_mode wanted_mode;
2273 enum machine_mode is_mode = GET_MODE (tem);
2274 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2276 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2277 if (wanted_mode == VOIDmode)
2278 wanted_mode = word_mode;
2280 /* If we have a narrower mode, we can do something. */
2281 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2283 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2284 rtx old_pos = XEXP (outerdest, 2);
2285 rtx newmem;
2287 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2288 offset = (GET_MODE_SIZE (is_mode)
2289 - GET_MODE_SIZE (wanted_mode) - offset);
2291 pos %= GET_MODE_BITSIZE (wanted_mode);
2293 newmem = gen_rtx_MEM (wanted_mode,
2294 plus_constant (XEXP (tem, 0),
2295 offset));
2296 MEM_COPY_ATTRIBUTES (newmem, tem);
2298 /* Make the change and see if the insn remains valid. */
2299 INSN_CODE (insn) = -1;
2300 XEXP (outerdest, 0) = newmem;
2301 XEXP (outerdest, 2) = GEN_INT (pos);
2303 if (recog_memoized (insn) >= 0)
2304 return;
2306 /* Otherwise, restore old position. XEXP (x, 0) will be
2307 restored later. */
2308 XEXP (outerdest, 2) = old_pos;
2312 /* If we get here, the bit-field store doesn't allow memory
2313 or isn't located at a constant position. Load the value into
2314 a register, do the store, and put it back into memory. */
2316 tem1 = gen_reg_rtx (GET_MODE (tem));
2317 emit_insn_before (gen_move_insn (tem1, tem), insn);
2318 emit_insn_after (gen_move_insn (tem, tem1), insn);
2319 XEXP (outerdest, 0) = tem1;
2320 return;
2322 #endif
2324 /* STRICT_LOW_PART is a no-op on memory references
2325 and it can cause combinations to be unrecognizable,
2326 so eliminate it. */
2328 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2329 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2331 /* A valid insn to copy VAR into or out of a register
2332 must be left alone, to avoid an infinite loop here.
2333 If the reference to VAR is by a subreg, fix that up,
2334 since SUBREG is not valid for a memref.
2335 Also fix up the address of the stack slot.
2337 Note that we must not try to recognize the insn until
2338 after we know that we have valid addresses and no
2339 (subreg (mem ...) ...) constructs, since these interfere
2340 with determining the validity of the insn. */
2342 if ((SET_SRC (x) == var
2343 || (GET_CODE (SET_SRC (x)) == SUBREG
2344 && SUBREG_REG (SET_SRC (x)) == var))
2345 && (GET_CODE (SET_DEST (x)) == REG
2346 || (GET_CODE (SET_DEST (x)) == SUBREG
2347 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2348 && GET_MODE (var) == promoted_mode
2349 && x == single_set (insn))
2351 rtx pat, last;
2353 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2354 if (replacement->new)
2355 SET_SRC (x) = replacement->new;
2356 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2357 SET_SRC (x) = replacement->new
2358 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2359 else
2360 SET_SRC (x) = replacement->new
2361 = fixup_stack_1 (SET_SRC (x), insn);
2363 if (recog_memoized (insn) >= 0)
2364 return;
2366 /* INSN is not valid, but we know that we want to
2367 copy SET_SRC (x) to SET_DEST (x) in some way. So
2368 we generate the move and see whether it requires more
2369 than one insn. If it does, we emit those insns and
2370 delete INSN. Otherwise, we an just replace the pattern
2371 of INSN; we have already verified above that INSN has
2372 no other function that to do X. */
2374 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2375 if (GET_CODE (pat) == SEQUENCE)
2377 last = emit_insn_before (pat, insn);
2379 /* INSN might have REG_RETVAL or other important notes, so
2380 we need to store the pattern of the last insn in the
2381 sequence into INSN similarly to the normal case. LAST
2382 should not have REG_NOTES, but we allow them if INSN has
2383 no REG_NOTES. */
2384 if (REG_NOTES (last) && REG_NOTES (insn))
2385 abort ();
2386 if (REG_NOTES (last))
2387 REG_NOTES (insn) = REG_NOTES (last);
2388 PATTERN (insn) = PATTERN (last);
2390 PUT_CODE (last, NOTE);
2391 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2392 NOTE_SOURCE_FILE (last) = 0;
2394 else
2395 PATTERN (insn) = pat;
2397 return;
2400 if ((SET_DEST (x) == var
2401 || (GET_CODE (SET_DEST (x)) == SUBREG
2402 && SUBREG_REG (SET_DEST (x)) == var))
2403 && (GET_CODE (SET_SRC (x)) == REG
2404 || (GET_CODE (SET_SRC (x)) == SUBREG
2405 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2406 && GET_MODE (var) == promoted_mode
2407 && x == single_set (insn))
2409 rtx pat, last;
2411 if (GET_CODE (SET_DEST (x)) == SUBREG)
2412 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2413 else
2414 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2416 if (recog_memoized (insn) >= 0)
2417 return;
2419 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2420 if (GET_CODE (pat) == SEQUENCE)
2422 last = emit_insn_before (pat, insn);
2424 /* INSN might have REG_RETVAL or other important notes, so
2425 we need to store the pattern of the last insn in the
2426 sequence into INSN similarly to the normal case. LAST
2427 should not have REG_NOTES, but we allow them if INSN has
2428 no REG_NOTES. */
2429 if (REG_NOTES (last) && REG_NOTES (insn))
2430 abort ();
2431 if (REG_NOTES (last))
2432 REG_NOTES (insn) = REG_NOTES (last);
2433 PATTERN (insn) = PATTERN (last);
2435 PUT_CODE (last, NOTE);
2436 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2437 NOTE_SOURCE_FILE (last) = 0;
2439 else
2440 PATTERN (insn) = pat;
2442 return;
2445 /* Otherwise, storing into VAR must be handled specially
2446 by storing into a temporary and copying that into VAR
2447 with a new insn after this one. Note that this case
2448 will be used when storing into a promoted scalar since
2449 the insn will now have different modes on the input
2450 and output and hence will be invalid (except for the case
2451 of setting it to a constant, which does not need any
2452 change if it is valid). We generate extra code in that case,
2453 but combine.c will eliminate it. */
2455 if (dest == var)
2457 rtx temp;
2458 rtx fixeddest = SET_DEST (x);
2460 /* STRICT_LOW_PART can be discarded, around a MEM. */
2461 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2462 fixeddest = XEXP (fixeddest, 0);
2463 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2464 if (GET_CODE (fixeddest) == SUBREG)
2466 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2467 promoted_mode = GET_MODE (fixeddest);
2469 else
2470 fixeddest = fixup_stack_1 (fixeddest, insn);
2472 temp = gen_reg_rtx (promoted_mode);
2474 emit_insn_after (gen_move_insn (fixeddest,
2475 gen_lowpart (GET_MODE (fixeddest),
2476 temp)),
2477 insn);
2479 SET_DEST (x) = temp;
2483 default:
2484 break;
2487 /* Nothing special about this RTX; fix its operands. */
2489 fmt = GET_RTX_FORMAT (code);
2490 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2492 if (fmt[i] == 'e')
2493 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2494 else if (fmt[i] == 'E')
2496 register int j;
2497 for (j = 0; j < XVECLEN (x, i); j++)
2498 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2499 insn, replacements);
2504 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2505 return an rtx (MEM:m1 newaddr) which is equivalent.
2506 If any insns must be emitted to compute NEWADDR, put them before INSN.
2508 UNCRITICAL nonzero means accept paradoxical subregs.
2509 This is used for subregs found inside REG_NOTES. */
2511 static rtx
2512 fixup_memory_subreg (x, insn, uncritical)
2513 rtx x;
2514 rtx insn;
2515 int uncritical;
2517 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2518 rtx addr = XEXP (SUBREG_REG (x), 0);
2519 enum machine_mode mode = GET_MODE (x);
2520 rtx result;
2522 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2523 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2524 && ! uncritical)
2525 abort ();
2527 if (BYTES_BIG_ENDIAN)
2528 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2529 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2530 addr = plus_constant (addr, offset);
2531 if (!flag_force_addr && memory_address_p (mode, addr))
2532 /* Shortcut if no insns need be emitted. */
2533 return change_address (SUBREG_REG (x), mode, addr);
2534 start_sequence ();
2535 result = change_address (SUBREG_REG (x), mode, addr);
2536 emit_insn_before (gen_sequence (), insn);
2537 end_sequence ();
2538 return result;
2541 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2542 Replace subexpressions of X in place.
2543 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2544 Otherwise return X, with its contents possibly altered.
2546 If any insns must be emitted to compute NEWADDR, put them before INSN.
2548 UNCRITICAL is as in fixup_memory_subreg. */
2550 static rtx
2551 walk_fixup_memory_subreg (x, insn, uncritical)
2552 register rtx x;
2553 rtx insn;
2554 int uncritical;
2556 register enum rtx_code code;
2557 register const char *fmt;
2558 register int i;
2560 if (x == 0)
2561 return 0;
2563 code = GET_CODE (x);
2565 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2566 return fixup_memory_subreg (x, insn, uncritical);
2568 /* Nothing special about this RTX; fix its operands. */
2570 fmt = GET_RTX_FORMAT (code);
2571 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2573 if (fmt[i] == 'e')
2574 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2575 else if (fmt[i] == 'E')
2577 register int j;
2578 for (j = 0; j < XVECLEN (x, i); j++)
2579 XVECEXP (x, i, j)
2580 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2583 return x;
2586 /* For each memory ref within X, if it refers to a stack slot
2587 with an out of range displacement, put the address in a temp register
2588 (emitting new insns before INSN to load these registers)
2589 and alter the memory ref to use that register.
2590 Replace each such MEM rtx with a copy, to avoid clobberage. */
2592 static rtx
2593 fixup_stack_1 (x, insn)
2594 rtx x;
2595 rtx insn;
2597 register int i;
2598 register RTX_CODE code = GET_CODE (x);
2599 register const char *fmt;
2601 if (code == MEM)
2603 register rtx ad = XEXP (x, 0);
2604 /* If we have address of a stack slot but it's not valid
2605 (displacement is too large), compute the sum in a register. */
2606 if (GET_CODE (ad) == PLUS
2607 && GET_CODE (XEXP (ad, 0)) == REG
2608 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2609 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2610 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2611 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2612 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2613 #endif
2614 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2615 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2616 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2617 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2619 rtx temp, seq;
2620 if (memory_address_p (GET_MODE (x), ad))
2621 return x;
2623 start_sequence ();
2624 temp = copy_to_reg (ad);
2625 seq = gen_sequence ();
2626 end_sequence ();
2627 emit_insn_before (seq, insn);
2628 return change_address (x, VOIDmode, temp);
2630 return x;
2633 fmt = GET_RTX_FORMAT (code);
2634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2636 if (fmt[i] == 'e')
2637 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2638 else if (fmt[i] == 'E')
2640 register int j;
2641 for (j = 0; j < XVECLEN (x, i); j++)
2642 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2645 return x;
2648 /* Optimization: a bit-field instruction whose field
2649 happens to be a byte or halfword in memory
2650 can be changed to a move instruction.
2652 We call here when INSN is an insn to examine or store into a bit-field.
2653 BODY is the SET-rtx to be altered.
2655 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2656 (Currently this is called only from function.c, and EQUIV_MEM
2657 is always 0.) */
2659 static void
2660 optimize_bit_field (body, insn, equiv_mem)
2661 rtx body;
2662 rtx insn;
2663 rtx *equiv_mem;
2665 register rtx bitfield;
2666 int destflag;
2667 rtx seq = 0;
2668 enum machine_mode mode;
2670 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2671 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2672 bitfield = SET_DEST (body), destflag = 1;
2673 else
2674 bitfield = SET_SRC (body), destflag = 0;
2676 /* First check that the field being stored has constant size and position
2677 and is in fact a byte or halfword suitably aligned. */
2679 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2680 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2681 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2682 != BLKmode)
2683 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2685 register rtx memref = 0;
2687 /* Now check that the containing word is memory, not a register,
2688 and that it is safe to change the machine mode. */
2690 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2691 memref = XEXP (bitfield, 0);
2692 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2693 && equiv_mem != 0)
2694 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2695 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2696 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2697 memref = SUBREG_REG (XEXP (bitfield, 0));
2698 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2699 && equiv_mem != 0
2700 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2701 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2703 if (memref
2704 && ! mode_dependent_address_p (XEXP (memref, 0))
2705 && ! MEM_VOLATILE_P (memref))
2707 /* Now adjust the address, first for any subreg'ing
2708 that we are now getting rid of,
2709 and then for which byte of the word is wanted. */
2711 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2712 rtx insns;
2714 /* Adjust OFFSET to count bits from low-address byte. */
2715 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2716 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2717 - offset - INTVAL (XEXP (bitfield, 1)));
2719 /* Adjust OFFSET to count bytes from low-address byte. */
2720 offset /= BITS_PER_UNIT;
2721 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2723 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2724 if (BYTES_BIG_ENDIAN)
2725 offset -= (MIN (UNITS_PER_WORD,
2726 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2727 - MIN (UNITS_PER_WORD,
2728 GET_MODE_SIZE (GET_MODE (memref))));
2731 start_sequence ();
2732 memref = change_address (memref, mode,
2733 plus_constant (XEXP (memref, 0), offset));
2734 insns = get_insns ();
2735 end_sequence ();
2736 emit_insns_before (insns, insn);
2738 /* Store this memory reference where
2739 we found the bit field reference. */
2741 if (destflag)
2743 validate_change (insn, &SET_DEST (body), memref, 1);
2744 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2746 rtx src = SET_SRC (body);
2747 while (GET_CODE (src) == SUBREG
2748 && SUBREG_WORD (src) == 0)
2749 src = SUBREG_REG (src);
2750 if (GET_MODE (src) != GET_MODE (memref))
2751 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2752 validate_change (insn, &SET_SRC (body), src, 1);
2754 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2755 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2756 /* This shouldn't happen because anything that didn't have
2757 one of these modes should have got converted explicitly
2758 and then referenced through a subreg.
2759 This is so because the original bit-field was
2760 handled by agg_mode and so its tree structure had
2761 the same mode that memref now has. */
2762 abort ();
2764 else
2766 rtx dest = SET_DEST (body);
2768 while (GET_CODE (dest) == SUBREG
2769 && SUBREG_WORD (dest) == 0
2770 && (GET_MODE_CLASS (GET_MODE (dest))
2771 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2772 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2773 <= UNITS_PER_WORD))
2774 dest = SUBREG_REG (dest);
2776 validate_change (insn, &SET_DEST (body), dest, 1);
2778 if (GET_MODE (dest) == GET_MODE (memref))
2779 validate_change (insn, &SET_SRC (body), memref, 1);
2780 else
2782 /* Convert the mem ref to the destination mode. */
2783 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2785 start_sequence ();
2786 convert_move (newreg, memref,
2787 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2788 seq = get_insns ();
2789 end_sequence ();
2791 validate_change (insn, &SET_SRC (body), newreg, 1);
2795 /* See if we can convert this extraction or insertion into
2796 a simple move insn. We might not be able to do so if this
2797 was, for example, part of a PARALLEL.
2799 If we succeed, write out any needed conversions. If we fail,
2800 it is hard to guess why we failed, so don't do anything
2801 special; just let the optimization be suppressed. */
2803 if (apply_change_group () && seq)
2804 emit_insns_before (seq, insn);
2809 /* These routines are responsible for converting virtual register references
2810 to the actual hard register references once RTL generation is complete.
2812 The following four variables are used for communication between the
2813 routines. They contain the offsets of the virtual registers from their
2814 respective hard registers. */
2816 static int in_arg_offset;
2817 static int var_offset;
2818 static int dynamic_offset;
2819 static int out_arg_offset;
2820 static int cfa_offset;
2822 /* In most machines, the stack pointer register is equivalent to the bottom
2823 of the stack. */
2825 #ifndef STACK_POINTER_OFFSET
2826 #define STACK_POINTER_OFFSET 0
2827 #endif
2829 /* If not defined, pick an appropriate default for the offset of dynamically
2830 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2831 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2833 #ifndef STACK_DYNAMIC_OFFSET
2835 /* The bottom of the stack points to the actual arguments. If
2836 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2837 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2838 stack space for register parameters is not pushed by the caller, but
2839 rather part of the fixed stack areas and hence not included in
2840 `current_function_outgoing_args_size'. Nevertheless, we must allow
2841 for it when allocating stack dynamic objects. */
2843 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2844 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2845 ((ACCUMULATE_OUTGOING_ARGS \
2846 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2847 + (STACK_POINTER_OFFSET)) \
2849 #else
2850 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2851 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2852 + (STACK_POINTER_OFFSET))
2853 #endif
2854 #endif
2856 /* On most machines, the CFA coincides with the first incoming parm. */
2858 #ifndef ARG_POINTER_CFA_OFFSET
2859 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2860 #endif
2862 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2863 its address taken. DECL is the decl for the object stored in the
2864 register, for later use if we do need to force REG into the stack.
2865 REG is overwritten by the MEM like in put_reg_into_stack. */
2868 gen_mem_addressof (reg, decl)
2869 rtx reg;
2870 tree decl;
2872 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2873 REGNO (reg), decl);
2875 /* If the original REG was a user-variable, then so is the REG whose
2876 address is being taken. Likewise for unchanging. */
2877 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2878 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2880 PUT_CODE (reg, MEM);
2881 XEXP (reg, 0) = r;
2882 if (decl)
2884 tree type = TREE_TYPE (decl);
2886 PUT_MODE (reg, DECL_MODE (decl));
2887 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2888 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2889 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2891 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2892 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2894 else
2896 /* We have no alias information about this newly created MEM. */
2897 MEM_ALIAS_SET (reg) = 0;
2899 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2902 return reg;
2905 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2907 void
2908 flush_addressof (decl)
2909 tree decl;
2911 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2912 && DECL_RTL (decl) != 0
2913 && GET_CODE (DECL_RTL (decl)) == MEM
2914 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2915 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2916 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2919 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2921 static void
2922 put_addressof_into_stack (r, ht)
2923 rtx r;
2924 struct hash_table *ht;
2926 tree decl, type;
2927 int volatile_p, used_p;
2929 rtx reg = XEXP (r, 0);
2931 if (GET_CODE (reg) != REG)
2932 abort ();
2934 decl = ADDRESSOF_DECL (r);
2935 if (decl)
2937 type = TREE_TYPE (decl);
2938 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2939 && TREE_THIS_VOLATILE (decl));
2940 used_p = (TREE_USED (decl)
2941 || (TREE_CODE (decl) != SAVE_EXPR
2942 && DECL_INITIAL (decl) != 0));
2944 else
2946 type = NULL_TREE;
2947 volatile_p = 0;
2948 used_p = 1;
2951 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2952 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2955 /* List of replacements made below in purge_addressof_1 when creating
2956 bitfield insertions. */
2957 static rtx purge_bitfield_addressof_replacements;
2959 /* List of replacements made below in purge_addressof_1 for patterns
2960 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2961 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2962 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2963 enough in complex cases, e.g. when some field values can be
2964 extracted by usage MEM with narrower mode. */
2965 static rtx purge_addressof_replacements;
2967 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2968 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2969 the stack. If the function returns FALSE then the replacement could not
2970 be made. */
2972 static boolean
2973 purge_addressof_1 (loc, insn, force, store, ht)
2974 rtx *loc;
2975 rtx insn;
2976 int force, store;
2977 struct hash_table *ht;
2979 rtx x;
2980 RTX_CODE code;
2981 int i, j;
2982 const char *fmt;
2983 boolean result = true;
2985 /* Re-start here to avoid recursion in common cases. */
2986 restart:
2988 x = *loc;
2989 if (x == 0)
2990 return true;
2992 code = GET_CODE (x);
2994 /* If we don't return in any of the cases below, we will recurse inside
2995 the RTX, which will normally result in any ADDRESSOF being forced into
2996 memory. */
2997 if (code == SET)
2999 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3000 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3001 return result;
3004 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
3006 /* We must create a copy of the rtx because it was created by
3007 overwriting a REG rtx which is always shared. */
3008 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3009 rtx insns;
3011 if (validate_change (insn, loc, sub, 0)
3012 || validate_replace_rtx (x, sub, insn))
3013 return true;
3015 start_sequence ();
3016 sub = force_operand (sub, NULL_RTX);
3017 if (! validate_change (insn, loc, sub, 0)
3018 && ! validate_replace_rtx (x, sub, insn))
3019 abort ();
3021 insns = gen_sequence ();
3022 end_sequence ();
3023 emit_insn_before (insns, insn);
3024 return true;
3027 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3029 rtx sub = XEXP (XEXP (x, 0), 0);
3030 rtx sub2;
3032 if (GET_CODE (sub) == MEM)
3034 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
3035 MEM_COPY_ATTRIBUTES (sub2, sub);
3036 sub = sub2;
3038 else if (GET_CODE (sub) == REG
3039 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3041 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3043 int size_x, size_sub;
3045 if (!insn)
3047 /* When processing REG_NOTES look at the list of
3048 replacements done on the insn to find the register that X
3049 was replaced by. */
3050 rtx tem;
3052 for (tem = purge_bitfield_addressof_replacements;
3053 tem != NULL_RTX;
3054 tem = XEXP (XEXP (tem, 1), 1))
3055 if (rtx_equal_p (x, XEXP (tem, 0)))
3057 *loc = XEXP (XEXP (tem, 1), 0);
3058 return true;
3061 /* See comment for purge_addressof_replacements. */
3062 for (tem = purge_addressof_replacements;
3063 tem != NULL_RTX;
3064 tem = XEXP (XEXP (tem, 1), 1))
3065 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3067 rtx z = XEXP (XEXP (tem, 1), 0);
3069 if (GET_MODE (x) == GET_MODE (z)
3070 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3071 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3072 abort ();
3074 /* It can happen that the note may speak of things
3075 in a wider (or just different) mode than the
3076 code did. This is especially true of
3077 REG_RETVAL. */
3079 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
3080 z = SUBREG_REG (z);
3082 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3083 && (GET_MODE_SIZE (GET_MODE (x))
3084 > GET_MODE_SIZE (GET_MODE (z))))
3086 /* This can occur as a result in invalid
3087 pointer casts, e.g. float f; ...
3088 *(long long int *)&f.
3089 ??? We could emit a warning here, but
3090 without a line number that wouldn't be
3091 very helpful. */
3092 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3094 else
3095 z = gen_lowpart (GET_MODE (x), z);
3097 *loc = z;
3098 return true;
3101 /* Sometimes we may not be able to find the replacement. For
3102 example when the original insn was a MEM in a wider mode,
3103 and the note is part of a sign extension of a narrowed
3104 version of that MEM. Gcc testcase compile/990829-1.c can
3105 generate an example of this siutation. Rather than complain
3106 we return false, which will prompt our caller to remove the
3107 offending note. */
3108 return false;
3111 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3112 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3114 /* Don't even consider working with paradoxical subregs,
3115 or the moral equivalent seen here. */
3116 if (size_x <= size_sub
3117 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3119 /* Do a bitfield insertion to mirror what would happen
3120 in memory. */
3122 rtx val, seq;
3124 if (store)
3126 rtx p = PREV_INSN (insn);
3128 start_sequence ();
3129 val = gen_reg_rtx (GET_MODE (x));
3130 if (! validate_change (insn, loc, val, 0))
3132 /* Discard the current sequence and put the
3133 ADDRESSOF on stack. */
3134 end_sequence ();
3135 goto give_up;
3137 seq = gen_sequence ();
3138 end_sequence ();
3139 emit_insn_before (seq, insn);
3140 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3141 insn, ht);
3143 start_sequence ();
3144 store_bit_field (sub, size_x, 0, GET_MODE (x),
3145 val, GET_MODE_SIZE (GET_MODE (sub)),
3146 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3148 /* Make sure to unshare any shared rtl that store_bit_field
3149 might have created. */
3150 unshare_all_rtl_again (get_insns ());
3152 seq = gen_sequence ();
3153 end_sequence ();
3154 p = emit_insn_after (seq, insn);
3155 if (NEXT_INSN (insn))
3156 compute_insns_for_mem (NEXT_INSN (insn),
3157 p ? NEXT_INSN (p) : NULL_RTX,
3158 ht);
3160 else
3162 rtx p = PREV_INSN (insn);
3164 start_sequence ();
3165 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3166 GET_MODE (x), GET_MODE (x),
3167 GET_MODE_SIZE (GET_MODE (sub)),
3168 GET_MODE_SIZE (GET_MODE (sub)));
3170 if (! validate_change (insn, loc, val, 0))
3172 /* Discard the current sequence and put the
3173 ADDRESSOF on stack. */
3174 end_sequence ();
3175 goto give_up;
3178 seq = gen_sequence ();
3179 end_sequence ();
3180 emit_insn_before (seq, insn);
3181 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3182 insn, ht);
3185 /* Remember the replacement so that the same one can be done
3186 on the REG_NOTES. */
3187 purge_bitfield_addressof_replacements
3188 = gen_rtx_EXPR_LIST (VOIDmode, x,
3189 gen_rtx_EXPR_LIST
3190 (VOIDmode, val,
3191 purge_bitfield_addressof_replacements));
3193 /* We replaced with a reg -- all done. */
3194 return true;
3198 else if (validate_change (insn, loc, sub, 0))
3200 /* Remember the replacement so that the same one can be done
3201 on the REG_NOTES. */
3202 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3204 rtx tem;
3206 for (tem = purge_addressof_replacements;
3207 tem != NULL_RTX;
3208 tem = XEXP (XEXP (tem, 1), 1))
3209 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3211 XEXP (XEXP (tem, 1), 0) = sub;
3212 return true;
3214 purge_addressof_replacements
3215 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3216 gen_rtx_EXPR_LIST (VOIDmode, sub,
3217 purge_addressof_replacements));
3218 return true;
3220 goto restart;
3222 give_up:;
3223 /* else give up and put it into the stack */
3226 else if (code == ADDRESSOF)
3228 put_addressof_into_stack (x, ht);
3229 return true;
3231 else if (code == SET)
3233 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3234 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3235 return result;
3238 /* Scan all subexpressions. */
3239 fmt = GET_RTX_FORMAT (code);
3240 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3242 if (*fmt == 'e')
3243 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3244 else if (*fmt == 'E')
3245 for (j = 0; j < XVECLEN (x, i); j++)
3246 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3249 return result;
3252 /* Return a new hash table entry in HT. */
3254 static struct hash_entry *
3255 insns_for_mem_newfunc (he, ht, k)
3256 struct hash_entry *he;
3257 struct hash_table *ht;
3258 hash_table_key k ATTRIBUTE_UNUSED;
3260 struct insns_for_mem_entry *ifmhe;
3261 if (he)
3262 return he;
3264 ifmhe = ((struct insns_for_mem_entry *)
3265 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3266 ifmhe->insns = NULL_RTX;
3268 return &ifmhe->he;
3271 /* Return a hash value for K, a REG. */
3273 static unsigned long
3274 insns_for_mem_hash (k)
3275 hash_table_key k;
3277 /* K is really a RTX. Just use the address as the hash value. */
3278 return (unsigned long) k;
3281 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3283 static boolean
3284 insns_for_mem_comp (k1, k2)
3285 hash_table_key k1;
3286 hash_table_key k2;
3288 return k1 == k2;
3291 struct insns_for_mem_walk_info {
3292 /* The hash table that we are using to record which INSNs use which
3293 MEMs. */
3294 struct hash_table *ht;
3296 /* The INSN we are currently proessing. */
3297 rtx insn;
3299 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3300 to find the insns that use the REGs in the ADDRESSOFs. */
3301 int pass;
3304 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3305 that might be used in an ADDRESSOF expression, record this INSN in
3306 the hash table given by DATA (which is really a pointer to an
3307 insns_for_mem_walk_info structure). */
3309 static int
3310 insns_for_mem_walk (r, data)
3311 rtx *r;
3312 void *data;
3314 struct insns_for_mem_walk_info *ifmwi
3315 = (struct insns_for_mem_walk_info *) data;
3317 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3318 && GET_CODE (XEXP (*r, 0)) == REG)
3319 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3320 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3322 /* Lookup this MEM in the hashtable, creating it if necessary. */
3323 struct insns_for_mem_entry *ifme
3324 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3326 /*create=*/0,
3327 /*copy=*/0);
3329 /* If we have not already recorded this INSN, do so now. Since
3330 we process the INSNs in order, we know that if we have
3331 recorded it it must be at the front of the list. */
3332 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3333 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3334 ifme->insns);
3337 return 0;
3340 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3341 which REGs in HT. */
3343 static void
3344 compute_insns_for_mem (insns, last_insn, ht)
3345 rtx insns;
3346 rtx last_insn;
3347 struct hash_table *ht;
3349 rtx insn;
3350 struct insns_for_mem_walk_info ifmwi;
3351 ifmwi.ht = ht;
3353 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3354 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3355 if (INSN_P (insn))
3357 ifmwi.insn = insn;
3358 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3362 /* Helper function for purge_addressof called through for_each_rtx.
3363 Returns true iff the rtl is an ADDRESSOF. */
3364 static int
3365 is_addressof (rtl, data)
3366 rtx *rtl;
3367 void *data ATTRIBUTE_UNUSED;
3369 return GET_CODE (*rtl) == ADDRESSOF;
3372 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3373 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3374 stack. */
3376 void
3377 purge_addressof (insns)
3378 rtx insns;
3380 rtx insn;
3381 struct hash_table ht;
3383 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3384 requires a fixup pass over the instruction stream to correct
3385 INSNs that depended on the REG being a REG, and not a MEM. But,
3386 these fixup passes are slow. Furthermore, most MEMs are not
3387 mentioned in very many instructions. So, we speed up the process
3388 by pre-calculating which REGs occur in which INSNs; that allows
3389 us to perform the fixup passes much more quickly. */
3390 hash_table_init (&ht,
3391 insns_for_mem_newfunc,
3392 insns_for_mem_hash,
3393 insns_for_mem_comp);
3394 compute_insns_for_mem (insns, NULL_RTX, &ht);
3396 for (insn = insns; insn; insn = NEXT_INSN (insn))
3397 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3398 || GET_CODE (insn) == CALL_INSN)
3400 if (! purge_addressof_1 (&PATTERN (insn), insn,
3401 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3402 /* If we could not replace the ADDRESSOFs in the insn,
3403 something is wrong. */
3404 abort ();
3406 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3408 /* If we could not replace the ADDRESSOFs in the insn's notes,
3409 we can just remove the offending notes instead. */
3410 rtx note;
3412 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3414 /* If we find a REG_RETVAL note then the insn is a libcall.
3415 Such insns must have REG_EQUAL notes as well, in order
3416 for later passes of the compiler to work. So it is not
3417 safe to delete the notes here, and instead we abort. */
3418 if (REG_NOTE_KIND (note) == REG_RETVAL)
3419 abort ();
3420 if (for_each_rtx (&note, is_addressof, NULL))
3421 remove_note (insn, note);
3426 /* Clean up. */
3427 hash_table_free (&ht);
3428 purge_bitfield_addressof_replacements = 0;
3429 purge_addressof_replacements = 0;
3431 /* REGs are shared. purge_addressof will destructively replace a REG
3432 with a MEM, which creates shared MEMs.
3434 Unfortunately, the children of put_reg_into_stack assume that MEMs
3435 referring to the same stack slot are shared (fixup_var_refs and
3436 the associated hash table code).
3438 So, we have to do another unsharing pass after we have flushed any
3439 REGs that had their address taken into the stack.
3441 It may be worth tracking whether or not we converted any REGs into
3442 MEMs to avoid this overhead when it is not needed. */
3443 unshare_all_rtl_again (get_insns ());
3446 /* Convert a SET of a hard subreg to a set of the appropriet hard
3447 register. A subroutine of purge_hard_subreg_sets. */
3449 static void
3450 purge_single_hard_subreg_set (pattern)
3451 rtx pattern;
3453 rtx reg = SET_DEST (pattern);
3454 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3455 int word = 0;
3457 while (GET_CODE (reg) == SUBREG)
3459 word += SUBREG_WORD (reg);
3460 reg = SUBREG_REG (reg);
3463 if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
3465 reg = gen_rtx_REG (mode, REGNO (reg) + word);
3466 SET_DEST (pattern) = reg;
3470 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3471 only such SETs that we expect to see are those left in because
3472 integrate can't handle sets of parts of a return value register.
3474 We don't use alter_subreg because we only want to eliminate subregs
3475 of hard registers. */
3477 void
3478 purge_hard_subreg_sets (insn)
3479 rtx insn;
3481 for (; insn; insn = NEXT_INSN (insn))
3483 if (INSN_P (insn))
3485 rtx pattern = PATTERN (insn);
3486 switch (GET_CODE (pattern))
3488 case SET:
3489 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3490 purge_single_hard_subreg_set (pattern);
3491 break;
3492 case PARALLEL:
3494 int j;
3495 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3497 rtx inner_pattern = XVECEXP (pattern, 0, j);
3498 if (GET_CODE (inner_pattern) == SET
3499 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3500 purge_single_hard_subreg_set (inner_pattern);
3503 break;
3504 default:
3505 break;
3511 /* Pass through the INSNS of function FNDECL and convert virtual register
3512 references to hard register references. */
3514 void
3515 instantiate_virtual_regs (fndecl, insns)
3516 tree fndecl;
3517 rtx insns;
3519 rtx insn;
3520 unsigned int i;
3522 /* Compute the offsets to use for this function. */
3523 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3524 var_offset = STARTING_FRAME_OFFSET;
3525 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3526 out_arg_offset = STACK_POINTER_OFFSET;
3527 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3529 /* Scan all variables and parameters of this function. For each that is
3530 in memory, instantiate all virtual registers if the result is a valid
3531 address. If not, we do it later. That will handle most uses of virtual
3532 regs on many machines. */
3533 instantiate_decls (fndecl, 1);
3535 /* Initialize recognition, indicating that volatile is OK. */
3536 init_recog ();
3538 /* Scan through all the insns, instantiating every virtual register still
3539 present. */
3540 for (insn = insns; insn; insn = NEXT_INSN (insn))
3541 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3542 || GET_CODE (insn) == CALL_INSN)
3544 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3545 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3546 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3547 if (GET_CODE (insn) == CALL_INSN)
3548 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3549 NULL_RTX, 0);
3552 /* Instantiate the stack slots for the parm registers, for later use in
3553 addressof elimination. */
3554 for (i = 0; i < max_parm_reg; ++i)
3555 if (parm_reg_stack_loc[i])
3556 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3558 /* Now instantiate the remaining register equivalences for debugging info.
3559 These will not be valid addresses. */
3560 instantiate_decls (fndecl, 0);
3562 /* Indicate that, from now on, assign_stack_local should use
3563 frame_pointer_rtx. */
3564 virtuals_instantiated = 1;
3567 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3568 all virtual registers in their DECL_RTL's.
3570 If VALID_ONLY, do this only if the resulting address is still valid.
3571 Otherwise, always do it. */
3573 static void
3574 instantiate_decls (fndecl, valid_only)
3575 tree fndecl;
3576 int valid_only;
3578 tree decl;
3580 /* Process all parameters of the function. */
3581 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3583 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3585 instantiate_decl (DECL_RTL (decl), size, valid_only);
3587 /* If the parameter was promoted, then the incoming RTL mode may be
3588 larger than the declared type size. We must use the larger of
3589 the two sizes. */
3590 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3591 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3594 /* Now process all variables defined in the function or its subblocks. */
3595 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3598 /* Subroutine of instantiate_decls: Process all decls in the given
3599 BLOCK node and all its subblocks. */
3601 static void
3602 instantiate_decls_1 (let, valid_only)
3603 tree let;
3604 int valid_only;
3606 tree t;
3608 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3609 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3610 valid_only);
3612 /* Process all subblocks. */
3613 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3614 instantiate_decls_1 (t, valid_only);
3617 /* Subroutine of the preceding procedures: Given RTL representing a
3618 decl and the size of the object, do any instantiation required.
3620 If VALID_ONLY is non-zero, it means that the RTL should only be
3621 changed if the new address is valid. */
3623 static void
3624 instantiate_decl (x, size, valid_only)
3625 rtx x;
3626 HOST_WIDE_INT size;
3627 int valid_only;
3629 enum machine_mode mode;
3630 rtx addr;
3632 /* If this is not a MEM, no need to do anything. Similarly if the
3633 address is a constant or a register that is not a virtual register. */
3635 if (x == 0 || GET_CODE (x) != MEM)
3636 return;
3638 addr = XEXP (x, 0);
3639 if (CONSTANT_P (addr)
3640 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3641 || (GET_CODE (addr) == REG
3642 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3643 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3644 return;
3646 /* If we should only do this if the address is valid, copy the address.
3647 We need to do this so we can undo any changes that might make the
3648 address invalid. This copy is unfortunate, but probably can't be
3649 avoided. */
3651 if (valid_only)
3652 addr = copy_rtx (addr);
3654 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3656 if (valid_only && size >= 0)
3658 unsigned HOST_WIDE_INT decl_size = size;
3660 /* Now verify that the resulting address is valid for every integer or
3661 floating-point mode up to and including SIZE bytes long. We do this
3662 since the object might be accessed in any mode and frame addresses
3663 are shared. */
3665 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3666 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3667 mode = GET_MODE_WIDER_MODE (mode))
3668 if (! memory_address_p (mode, addr))
3669 return;
3671 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3672 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3673 mode = GET_MODE_WIDER_MODE (mode))
3674 if (! memory_address_p (mode, addr))
3675 return;
3678 /* Put back the address now that we have updated it and we either know
3679 it is valid or we don't care whether it is valid. */
3681 XEXP (x, 0) = addr;
3684 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3685 is a virtual register, return the requivalent hard register and set the
3686 offset indirectly through the pointer. Otherwise, return 0. */
3688 static rtx
3689 instantiate_new_reg (x, poffset)
3690 rtx x;
3691 HOST_WIDE_INT *poffset;
3693 rtx new;
3694 HOST_WIDE_INT offset;
3696 if (x == virtual_incoming_args_rtx)
3697 new = arg_pointer_rtx, offset = in_arg_offset;
3698 else if (x == virtual_stack_vars_rtx)
3699 new = frame_pointer_rtx, offset = var_offset;
3700 else if (x == virtual_stack_dynamic_rtx)
3701 new = stack_pointer_rtx, offset = dynamic_offset;
3702 else if (x == virtual_outgoing_args_rtx)
3703 new = stack_pointer_rtx, offset = out_arg_offset;
3704 else if (x == virtual_cfa_rtx)
3705 new = arg_pointer_rtx, offset = cfa_offset;
3706 else
3707 return 0;
3709 *poffset = offset;
3710 return new;
3713 /* Given a pointer to a piece of rtx and an optional pointer to the
3714 containing object, instantiate any virtual registers present in it.
3716 If EXTRA_INSNS, we always do the replacement and generate
3717 any extra insns before OBJECT. If it zero, we do nothing if replacement
3718 is not valid.
3720 Return 1 if we either had nothing to do or if we were able to do the
3721 needed replacement. Return 0 otherwise; we only return zero if
3722 EXTRA_INSNS is zero.
3724 We first try some simple transformations to avoid the creation of extra
3725 pseudos. */
3727 static int
3728 instantiate_virtual_regs_1 (loc, object, extra_insns)
3729 rtx *loc;
3730 rtx object;
3731 int extra_insns;
3733 rtx x;
3734 RTX_CODE code;
3735 rtx new = 0;
3736 HOST_WIDE_INT offset = 0;
3737 rtx temp;
3738 rtx seq;
3739 int i, j;
3740 const char *fmt;
3742 /* Re-start here to avoid recursion in common cases. */
3743 restart:
3745 x = *loc;
3746 if (x == 0)
3747 return 1;
3749 code = GET_CODE (x);
3751 /* Check for some special cases. */
3752 switch (code)
3754 case CONST_INT:
3755 case CONST_DOUBLE:
3756 case CONST:
3757 case SYMBOL_REF:
3758 case CODE_LABEL:
3759 case PC:
3760 case CC0:
3761 case ASM_INPUT:
3762 case ADDR_VEC:
3763 case ADDR_DIFF_VEC:
3764 case RETURN:
3765 return 1;
3767 case SET:
3768 /* We are allowed to set the virtual registers. This means that
3769 the actual register should receive the source minus the
3770 appropriate offset. This is used, for example, in the handling
3771 of non-local gotos. */
3772 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3774 rtx src = SET_SRC (x);
3776 /* We are setting the register, not using it, so the relevant
3777 offset is the negative of the offset to use were we using
3778 the register. */
3779 offset = - offset;
3780 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3782 /* The only valid sources here are PLUS or REG. Just do
3783 the simplest possible thing to handle them. */
3784 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3785 abort ();
3787 start_sequence ();
3788 if (GET_CODE (src) != REG)
3789 temp = force_operand (src, NULL_RTX);
3790 else
3791 temp = src;
3792 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3793 seq = get_insns ();
3794 end_sequence ();
3796 emit_insns_before (seq, object);
3797 SET_DEST (x) = new;
3799 if (! validate_change (object, &SET_SRC (x), temp, 0)
3800 || ! extra_insns)
3801 abort ();
3803 return 1;
3806 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3807 loc = &SET_SRC (x);
3808 goto restart;
3810 case PLUS:
3811 /* Handle special case of virtual register plus constant. */
3812 if (CONSTANT_P (XEXP (x, 1)))
3814 rtx old, new_offset;
3816 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3817 if (GET_CODE (XEXP (x, 0)) == PLUS)
3819 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3821 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3822 extra_insns);
3823 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3825 else
3827 loc = &XEXP (x, 0);
3828 goto restart;
3832 #ifdef POINTERS_EXTEND_UNSIGNED
3833 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3834 we can commute the PLUS and SUBREG because pointers into the
3835 frame are well-behaved. */
3836 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3837 && GET_CODE (XEXP (x, 1)) == CONST_INT
3838 && 0 != (new
3839 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3840 &offset))
3841 && validate_change (object, loc,
3842 plus_constant (gen_lowpart (ptr_mode,
3843 new),
3844 offset
3845 + INTVAL (XEXP (x, 1))),
3847 return 1;
3848 #endif
3849 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3851 /* We know the second operand is a constant. Unless the
3852 first operand is a REG (which has been already checked),
3853 it needs to be checked. */
3854 if (GET_CODE (XEXP (x, 0)) != REG)
3856 loc = &XEXP (x, 0);
3857 goto restart;
3859 return 1;
3862 new_offset = plus_constant (XEXP (x, 1), offset);
3864 /* If the new constant is zero, try to replace the sum with just
3865 the register. */
3866 if (new_offset == const0_rtx
3867 && validate_change (object, loc, new, 0))
3868 return 1;
3870 /* Next try to replace the register and new offset.
3871 There are two changes to validate here and we can't assume that
3872 in the case of old offset equals new just changing the register
3873 will yield a valid insn. In the interests of a little efficiency,
3874 however, we only call validate change once (we don't queue up the
3875 changes and then call apply_change_group). */
3877 old = XEXP (x, 0);
3878 if (offset == 0
3879 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3880 : (XEXP (x, 0) = new,
3881 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3883 if (! extra_insns)
3885 XEXP (x, 0) = old;
3886 return 0;
3889 /* Otherwise copy the new constant into a register and replace
3890 constant with that register. */
3891 temp = gen_reg_rtx (Pmode);
3892 XEXP (x, 0) = new;
3893 if (validate_change (object, &XEXP (x, 1), temp, 0))
3894 emit_insn_before (gen_move_insn (temp, new_offset), object);
3895 else
3897 /* If that didn't work, replace this expression with a
3898 register containing the sum. */
3900 XEXP (x, 0) = old;
3901 new = gen_rtx_PLUS (Pmode, new, new_offset);
3903 start_sequence ();
3904 temp = force_operand (new, NULL_RTX);
3905 seq = get_insns ();
3906 end_sequence ();
3908 emit_insns_before (seq, object);
3909 if (! validate_change (object, loc, temp, 0)
3910 && ! validate_replace_rtx (x, temp, object))
3911 abort ();
3915 return 1;
3918 /* Fall through to generic two-operand expression case. */
3919 case EXPR_LIST:
3920 case CALL:
3921 case COMPARE:
3922 case MINUS:
3923 case MULT:
3924 case DIV: case UDIV:
3925 case MOD: case UMOD:
3926 case AND: case IOR: case XOR:
3927 case ROTATERT: case ROTATE:
3928 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3929 case NE: case EQ:
3930 case GE: case GT: case GEU: case GTU:
3931 case LE: case LT: case LEU: case LTU:
3932 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3933 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3934 loc = &XEXP (x, 0);
3935 goto restart;
3937 case MEM:
3938 /* Most cases of MEM that convert to valid addresses have already been
3939 handled by our scan of decls. The only special handling we
3940 need here is to make a copy of the rtx to ensure it isn't being
3941 shared if we have to change it to a pseudo.
3943 If the rtx is a simple reference to an address via a virtual register,
3944 it can potentially be shared. In such cases, first try to make it
3945 a valid address, which can also be shared. Otherwise, copy it and
3946 proceed normally.
3948 First check for common cases that need no processing. These are
3949 usually due to instantiation already being done on a previous instance
3950 of a shared rtx. */
3952 temp = XEXP (x, 0);
3953 if (CONSTANT_ADDRESS_P (temp)
3954 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3955 || temp == arg_pointer_rtx
3956 #endif
3957 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3958 || temp == hard_frame_pointer_rtx
3959 #endif
3960 || temp == frame_pointer_rtx)
3961 return 1;
3963 if (GET_CODE (temp) == PLUS
3964 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3965 && (XEXP (temp, 0) == frame_pointer_rtx
3966 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3967 || XEXP (temp, 0) == hard_frame_pointer_rtx
3968 #endif
3969 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3970 || XEXP (temp, 0) == arg_pointer_rtx
3971 #endif
3973 return 1;
3975 if (temp == virtual_stack_vars_rtx
3976 || temp == virtual_incoming_args_rtx
3977 || (GET_CODE (temp) == PLUS
3978 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3979 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3980 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3982 /* This MEM may be shared. If the substitution can be done without
3983 the need to generate new pseudos, we want to do it in place
3984 so all copies of the shared rtx benefit. The call below will
3985 only make substitutions if the resulting address is still
3986 valid.
3988 Note that we cannot pass X as the object in the recursive call
3989 since the insn being processed may not allow all valid
3990 addresses. However, if we were not passed on object, we can
3991 only modify X without copying it if X will have a valid
3992 address.
3994 ??? Also note that this can still lose if OBJECT is an insn that
3995 has less restrictions on an address that some other insn.
3996 In that case, we will modify the shared address. This case
3997 doesn't seem very likely, though. One case where this could
3998 happen is in the case of a USE or CLOBBER reference, but we
3999 take care of that below. */
4001 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4002 object ? object : x, 0))
4003 return 1;
4005 /* Otherwise make a copy and process that copy. We copy the entire
4006 RTL expression since it might be a PLUS which could also be
4007 shared. */
4008 *loc = x = copy_rtx (x);
4011 /* Fall through to generic unary operation case. */
4012 case SUBREG:
4013 case STRICT_LOW_PART:
4014 case NEG: case NOT:
4015 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4016 case SIGN_EXTEND: case ZERO_EXTEND:
4017 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4018 case FLOAT: case FIX:
4019 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4020 case ABS:
4021 case SQRT:
4022 case FFS:
4023 /* These case either have just one operand or we know that we need not
4024 check the rest of the operands. */
4025 loc = &XEXP (x, 0);
4026 goto restart;
4028 case USE:
4029 case CLOBBER:
4030 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4031 go ahead and make the invalid one, but do it to a copy. For a REG,
4032 just make the recursive call, since there's no chance of a problem. */
4034 if ((GET_CODE (XEXP (x, 0)) == MEM
4035 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4037 || (GET_CODE (XEXP (x, 0)) == REG
4038 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4039 return 1;
4041 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4042 loc = &XEXP (x, 0);
4043 goto restart;
4045 case REG:
4046 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4047 in front of this insn and substitute the temporary. */
4048 if ((new = instantiate_new_reg (x, &offset)) != 0)
4050 temp = plus_constant (new, offset);
4051 if (!validate_change (object, loc, temp, 0))
4053 if (! extra_insns)
4054 return 0;
4056 start_sequence ();
4057 temp = force_operand (temp, NULL_RTX);
4058 seq = get_insns ();
4059 end_sequence ();
4061 emit_insns_before (seq, object);
4062 if (! validate_change (object, loc, temp, 0)
4063 && ! validate_replace_rtx (x, temp, object))
4064 abort ();
4068 return 1;
4070 case ADDRESSOF:
4071 if (GET_CODE (XEXP (x, 0)) == REG)
4072 return 1;
4074 else if (GET_CODE (XEXP (x, 0)) == MEM)
4076 /* If we have a (addressof (mem ..)), do any instantiation inside
4077 since we know we'll be making the inside valid when we finally
4078 remove the ADDRESSOF. */
4079 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4080 return 1;
4082 break;
4084 default:
4085 break;
4088 /* Scan all subexpressions. */
4089 fmt = GET_RTX_FORMAT (code);
4090 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4091 if (*fmt == 'e')
4093 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4094 return 0;
4096 else if (*fmt == 'E')
4097 for (j = 0; j < XVECLEN (x, i); j++)
4098 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4099 extra_insns))
4100 return 0;
4102 return 1;
4105 /* Optimization: assuming this function does not receive nonlocal gotos,
4106 delete the handlers for such, as well as the insns to establish
4107 and disestablish them. */
4109 static void
4110 delete_handlers ()
4112 rtx insn;
4113 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4115 /* Delete the handler by turning off the flag that would
4116 prevent jump_optimize from deleting it.
4117 Also permit deletion of the nonlocal labels themselves
4118 if nothing local refers to them. */
4119 if (GET_CODE (insn) == CODE_LABEL)
4121 tree t, last_t;
4123 LABEL_PRESERVE_P (insn) = 0;
4125 /* Remove it from the nonlocal_label list, to avoid confusing
4126 flow. */
4127 for (t = nonlocal_labels, last_t = 0; t;
4128 last_t = t, t = TREE_CHAIN (t))
4129 if (DECL_RTL (TREE_VALUE (t)) == insn)
4130 break;
4131 if (t)
4133 if (! last_t)
4134 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4135 else
4136 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4139 if (GET_CODE (insn) == INSN)
4141 int can_delete = 0;
4142 rtx t;
4143 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4144 if (reg_mentioned_p (t, PATTERN (insn)))
4146 can_delete = 1;
4147 break;
4149 if (can_delete
4150 || (nonlocal_goto_stack_level != 0
4151 && reg_mentioned_p (nonlocal_goto_stack_level,
4152 PATTERN (insn))))
4153 delete_insn (insn);
4159 max_parm_reg_num ()
4161 return max_parm_reg;
4164 /* Return the first insn following those generated by `assign_parms'. */
4167 get_first_nonparm_insn ()
4169 if (last_parm_insn)
4170 return NEXT_INSN (last_parm_insn);
4171 return get_insns ();
4174 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4175 Crash if there is none. */
4178 get_first_block_beg ()
4180 register rtx searcher;
4181 register rtx insn = get_first_nonparm_insn ();
4183 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4184 if (GET_CODE (searcher) == NOTE
4185 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4186 return searcher;
4188 abort (); /* Invalid call to this function. (See comments above.) */
4189 return NULL_RTX;
4192 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4193 This means a type for which function calls must pass an address to the
4194 function or get an address back from the function.
4195 EXP may be a type node or an expression (whose type is tested). */
4198 aggregate_value_p (exp)
4199 tree exp;
4201 int i, regno, nregs;
4202 rtx reg;
4204 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4206 if (TREE_CODE (type) == VOID_TYPE)
4207 return 0;
4208 if (RETURN_IN_MEMORY (type))
4209 return 1;
4210 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4211 and thus can't be returned in registers. */
4212 if (TREE_ADDRESSABLE (type))
4213 return 1;
4214 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4215 return 1;
4216 /* Make sure we have suitable call-clobbered regs to return
4217 the value in; if not, we must return it in memory. */
4218 reg = hard_function_value (type, 0, 0);
4220 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4221 it is OK. */
4222 if (GET_CODE (reg) != REG)
4223 return 0;
4225 regno = REGNO (reg);
4226 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4227 for (i = 0; i < nregs; i++)
4228 if (! call_used_regs[regno + i])
4229 return 1;
4230 return 0;
4233 /* Assign RTL expressions to the function's parameters.
4234 This may involve copying them into registers and using
4235 those registers as the RTL for them. */
4237 void
4238 assign_parms (fndecl)
4239 tree fndecl;
4241 register tree parm;
4242 register rtx entry_parm = 0;
4243 register rtx stack_parm = 0;
4244 CUMULATIVE_ARGS args_so_far;
4245 enum machine_mode promoted_mode, passed_mode;
4246 enum machine_mode nominal_mode, promoted_nominal_mode;
4247 int unsignedp;
4248 /* Total space needed so far for args on the stack,
4249 given as a constant and a tree-expression. */
4250 struct args_size stack_args_size;
4251 tree fntype = TREE_TYPE (fndecl);
4252 tree fnargs = DECL_ARGUMENTS (fndecl);
4253 /* This is used for the arg pointer when referring to stack args. */
4254 rtx internal_arg_pointer;
4255 /* This is a dummy PARM_DECL that we used for the function result if
4256 the function returns a structure. */
4257 tree function_result_decl = 0;
4258 #ifdef SETUP_INCOMING_VARARGS
4259 int varargs_setup = 0;
4260 #endif
4261 rtx conversion_insns = 0;
4262 struct args_size alignment_pad;
4264 /* Nonzero if the last arg is named `__builtin_va_alist',
4265 which is used on some machines for old-fashioned non-ANSI varargs.h;
4266 this should be stuck onto the stack as if it had arrived there. */
4267 int hide_last_arg
4268 = (current_function_varargs
4269 && fnargs
4270 && (parm = tree_last (fnargs)) != 0
4271 && DECL_NAME (parm)
4272 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4273 "__builtin_va_alist")));
4275 /* Nonzero if function takes extra anonymous args.
4276 This means the last named arg must be on the stack
4277 right before the anonymous ones. */
4278 int stdarg
4279 = (TYPE_ARG_TYPES (fntype) != 0
4280 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4281 != void_type_node));
4283 current_function_stdarg = stdarg;
4285 /* If the reg that the virtual arg pointer will be translated into is
4286 not a fixed reg or is the stack pointer, make a copy of the virtual
4287 arg pointer, and address parms via the copy. The frame pointer is
4288 considered fixed even though it is not marked as such.
4290 The second time through, simply use ap to avoid generating rtx. */
4292 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4293 || ! (fixed_regs[ARG_POINTER_REGNUM]
4294 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4295 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4296 else
4297 internal_arg_pointer = virtual_incoming_args_rtx;
4298 current_function_internal_arg_pointer = internal_arg_pointer;
4300 stack_args_size.constant = 0;
4301 stack_args_size.var = 0;
4303 /* If struct value address is treated as the first argument, make it so. */
4304 if (aggregate_value_p (DECL_RESULT (fndecl))
4305 && ! current_function_returns_pcc_struct
4306 && struct_value_incoming_rtx == 0)
4308 tree type = build_pointer_type (TREE_TYPE (fntype));
4310 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4312 DECL_ARG_TYPE (function_result_decl) = type;
4313 TREE_CHAIN (function_result_decl) = fnargs;
4314 fnargs = function_result_decl;
4317 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4318 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4320 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4321 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4322 #else
4323 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4324 #endif
4326 /* We haven't yet found an argument that we must push and pretend the
4327 caller did. */
4328 current_function_pretend_args_size = 0;
4330 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4332 struct args_size stack_offset;
4333 struct args_size arg_size;
4334 int passed_pointer = 0;
4335 int did_conversion = 0;
4336 tree passed_type = DECL_ARG_TYPE (parm);
4337 tree nominal_type = TREE_TYPE (parm);
4338 int pretend_named;
4340 /* Set LAST_NAMED if this is last named arg before some
4341 anonymous args. */
4342 int last_named = ((TREE_CHAIN (parm) == 0
4343 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4344 && (stdarg || current_function_varargs));
4345 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4346 most machines, if this is a varargs/stdarg function, then we treat
4347 the last named arg as if it were anonymous too. */
4348 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4350 if (TREE_TYPE (parm) == error_mark_node
4351 /* This can happen after weird syntax errors
4352 or if an enum type is defined among the parms. */
4353 || TREE_CODE (parm) != PARM_DECL
4354 || passed_type == NULL)
4356 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4357 = gen_rtx_MEM (BLKmode, const0_rtx);
4358 TREE_USED (parm) = 1;
4359 continue;
4362 /* For varargs.h function, save info about regs and stack space
4363 used by the individual args, not including the va_alist arg. */
4364 if (hide_last_arg && last_named)
4365 current_function_args_info = args_so_far;
4367 /* Find mode of arg as it is passed, and mode of arg
4368 as it should be during execution of this function. */
4369 passed_mode = TYPE_MODE (passed_type);
4370 nominal_mode = TYPE_MODE (nominal_type);
4372 /* If the parm's mode is VOID, its value doesn't matter,
4373 and avoid the usual things like emit_move_insn that could crash. */
4374 if (nominal_mode == VOIDmode)
4376 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4377 continue;
4380 /* If the parm is to be passed as a transparent union, use the
4381 type of the first field for the tests below. We have already
4382 verified that the modes are the same. */
4383 if (DECL_TRANSPARENT_UNION (parm)
4384 || (TREE_CODE (passed_type) == UNION_TYPE
4385 && TYPE_TRANSPARENT_UNION (passed_type)))
4386 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4388 /* See if this arg was passed by invisible reference. It is if
4389 it is an object whose size depends on the contents of the
4390 object itself or if the machine requires these objects be passed
4391 that way. */
4393 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4394 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4395 || TREE_ADDRESSABLE (passed_type)
4396 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4397 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4398 passed_type, named_arg)
4399 #endif
4402 passed_type = nominal_type = build_pointer_type (passed_type);
4403 passed_pointer = 1;
4404 passed_mode = nominal_mode = Pmode;
4407 promoted_mode = passed_mode;
4409 #ifdef PROMOTE_FUNCTION_ARGS
4410 /* Compute the mode in which the arg is actually extended to. */
4411 unsignedp = TREE_UNSIGNED (passed_type);
4412 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4413 #endif
4415 /* Let machine desc say which reg (if any) the parm arrives in.
4416 0 means it arrives on the stack. */
4417 #ifdef FUNCTION_INCOMING_ARG
4418 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4419 passed_type, named_arg);
4420 #else
4421 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4422 passed_type, named_arg);
4423 #endif
4425 if (entry_parm == 0)
4426 promoted_mode = passed_mode;
4428 #ifdef SETUP_INCOMING_VARARGS
4429 /* If this is the last named parameter, do any required setup for
4430 varargs or stdargs. We need to know about the case of this being an
4431 addressable type, in which case we skip the registers it
4432 would have arrived in.
4434 For stdargs, LAST_NAMED will be set for two parameters, the one that
4435 is actually the last named, and the dummy parameter. We only
4436 want to do this action once.
4438 Also, indicate when RTL generation is to be suppressed. */
4439 if (last_named && !varargs_setup)
4441 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4442 current_function_pretend_args_size, 0);
4443 varargs_setup = 1;
4445 #endif
4447 /* Determine parm's home in the stack,
4448 in case it arrives in the stack or we should pretend it did.
4450 Compute the stack position and rtx where the argument arrives
4451 and its size.
4453 There is one complexity here: If this was a parameter that would
4454 have been passed in registers, but wasn't only because it is
4455 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4456 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4457 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4458 0 as it was the previous time. */
4460 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4461 locate_and_pad_parm (promoted_mode, passed_type,
4462 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4464 #else
4465 #ifdef FUNCTION_INCOMING_ARG
4466 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4467 passed_type,
4468 pretend_named) != 0,
4469 #else
4470 FUNCTION_ARG (args_so_far, promoted_mode,
4471 passed_type,
4472 pretend_named) != 0,
4473 #endif
4474 #endif
4475 fndecl, &stack_args_size, &stack_offset, &arg_size,
4476 &alignment_pad);
4479 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4481 if (offset_rtx == const0_rtx)
4482 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4483 else
4484 stack_parm = gen_rtx_MEM (promoted_mode,
4485 gen_rtx_PLUS (Pmode,
4486 internal_arg_pointer,
4487 offset_rtx));
4489 set_mem_attributes (stack_parm, parm, 1);
4492 /* If this parameter was passed both in registers and in the stack,
4493 use the copy on the stack. */
4494 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4495 entry_parm = 0;
4497 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4498 /* If this parm was passed part in regs and part in memory,
4499 pretend it arrived entirely in memory
4500 by pushing the register-part onto the stack.
4502 In the special case of a DImode or DFmode that is split,
4503 we could put it together in a pseudoreg directly,
4504 but for now that's not worth bothering with. */
4506 if (entry_parm)
4508 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4509 passed_type, named_arg);
4511 if (nregs > 0)
4513 current_function_pretend_args_size
4514 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4515 / (PARM_BOUNDARY / BITS_PER_UNIT)
4516 * (PARM_BOUNDARY / BITS_PER_UNIT));
4518 /* Handle calls that pass values in multiple non-contiguous
4519 locations. The Irix 6 ABI has examples of this. */
4520 if (GET_CODE (entry_parm) == PARALLEL)
4521 emit_group_store (validize_mem (stack_parm), entry_parm,
4522 int_size_in_bytes (TREE_TYPE (parm)),
4523 TYPE_ALIGN (TREE_TYPE (parm)));
4525 else
4526 move_block_from_reg (REGNO (entry_parm),
4527 validize_mem (stack_parm), nregs,
4528 int_size_in_bytes (TREE_TYPE (parm)));
4530 entry_parm = stack_parm;
4533 #endif
4535 /* If we didn't decide this parm came in a register,
4536 by default it came on the stack. */
4537 if (entry_parm == 0)
4538 entry_parm = stack_parm;
4540 /* Record permanently how this parm was passed. */
4541 DECL_INCOMING_RTL (parm) = entry_parm;
4543 /* If there is actually space on the stack for this parm,
4544 count it in stack_args_size; otherwise set stack_parm to 0
4545 to indicate there is no preallocated stack slot for the parm. */
4547 if (entry_parm == stack_parm
4548 || (GET_CODE (entry_parm) == PARALLEL
4549 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4550 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4551 /* On some machines, even if a parm value arrives in a register
4552 there is still an (uninitialized) stack slot allocated for it.
4554 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4555 whether this parameter already has a stack slot allocated,
4556 because an arg block exists only if current_function_args_size
4557 is larger than some threshold, and we haven't calculated that
4558 yet. So, for now, we just assume that stack slots never exist
4559 in this case. */
4560 || REG_PARM_STACK_SPACE (fndecl) > 0
4561 #endif
4564 stack_args_size.constant += arg_size.constant;
4565 if (arg_size.var)
4566 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4568 else
4569 /* No stack slot was pushed for this parm. */
4570 stack_parm = 0;
4572 /* Update info on where next arg arrives in registers. */
4574 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4575 passed_type, named_arg);
4577 /* If we can't trust the parm stack slot to be aligned enough
4578 for its ultimate type, don't use that slot after entry.
4579 We'll make another stack slot, if we need one. */
4581 unsigned int thisparm_boundary
4582 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4584 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4585 stack_parm = 0;
4588 /* If parm was passed in memory, and we need to convert it on entry,
4589 don't store it back in that same slot. */
4590 if (entry_parm != 0
4591 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4592 stack_parm = 0;
4594 /* When an argument is passed in multiple locations, we can't
4595 make use of this information, but we can save some copying if
4596 the whole argument is passed in a single register. */
4597 if (GET_CODE (entry_parm) == PARALLEL
4598 && nominal_mode != BLKmode && passed_mode != BLKmode)
4600 int i, len = XVECLEN (entry_parm, 0);
4602 for (i = 0; i < len; i++)
4603 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4604 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4605 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4606 == passed_mode)
4607 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4609 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4610 DECL_INCOMING_RTL (parm) = entry_parm;
4611 break;
4615 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4616 in the mode in which it arrives.
4617 STACK_PARM is an RTX for a stack slot where the parameter can live
4618 during the function (in case we want to put it there).
4619 STACK_PARM is 0 if no stack slot was pushed for it.
4621 Now output code if necessary to convert ENTRY_PARM to
4622 the type in which this function declares it,
4623 and store that result in an appropriate place,
4624 which may be a pseudo reg, may be STACK_PARM,
4625 or may be a local stack slot if STACK_PARM is 0.
4627 Set DECL_RTL to that place. */
4629 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4631 /* If a BLKmode arrives in registers, copy it to a stack slot.
4632 Handle calls that pass values in multiple non-contiguous
4633 locations. The Irix 6 ABI has examples of this. */
4634 if (GET_CODE (entry_parm) == REG
4635 || GET_CODE (entry_parm) == PARALLEL)
4637 int size_stored
4638 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4639 UNITS_PER_WORD);
4641 /* Note that we will be storing an integral number of words.
4642 So we have to be careful to ensure that we allocate an
4643 integral number of words. We do this below in the
4644 assign_stack_local if space was not allocated in the argument
4645 list. If it was, this will not work if PARM_BOUNDARY is not
4646 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4647 if it becomes a problem. */
4649 if (stack_parm == 0)
4651 stack_parm
4652 = assign_stack_local (GET_MODE (entry_parm),
4653 size_stored, 0);
4654 set_mem_attributes (stack_parm, parm, 1);
4657 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4658 abort ();
4660 /* Handle calls that pass values in multiple non-contiguous
4661 locations. The Irix 6 ABI has examples of this. */
4662 if (GET_CODE (entry_parm) == PARALLEL)
4663 emit_group_store (validize_mem (stack_parm), entry_parm,
4664 int_size_in_bytes (TREE_TYPE (parm)),
4665 TYPE_ALIGN (TREE_TYPE (parm)));
4666 else
4667 move_block_from_reg (REGNO (entry_parm),
4668 validize_mem (stack_parm),
4669 size_stored / UNITS_PER_WORD,
4670 int_size_in_bytes (TREE_TYPE (parm)));
4672 DECL_RTL (parm) = stack_parm;
4674 else if (! ((! optimize
4675 && ! DECL_REGISTER (parm)
4676 && ! DECL_INLINE (fndecl))
4677 || TREE_SIDE_EFFECTS (parm)
4678 /* If -ffloat-store specified, don't put explicit
4679 float variables into registers. */
4680 || (flag_float_store
4681 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4682 /* Always assign pseudo to structure return or item passed
4683 by invisible reference. */
4684 || passed_pointer || parm == function_result_decl)
4686 /* Store the parm in a pseudoregister during the function, but we
4687 may need to do it in a wider mode. */
4689 register rtx parmreg;
4690 unsigned int regno, regnoi = 0, regnor = 0;
4692 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4694 promoted_nominal_mode
4695 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4697 parmreg = gen_reg_rtx (promoted_nominal_mode);
4698 mark_user_reg (parmreg);
4700 /* If this was an item that we received a pointer to, set DECL_RTL
4701 appropriately. */
4702 if (passed_pointer)
4704 DECL_RTL (parm)
4705 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4706 set_mem_attributes (DECL_RTL (parm), parm, 1);
4708 else
4709 DECL_RTL (parm) = parmreg;
4711 /* Copy the value into the register. */
4712 if (nominal_mode != passed_mode
4713 || promoted_nominal_mode != promoted_mode)
4715 int save_tree_used;
4716 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4717 mode, by the caller. We now have to convert it to
4718 NOMINAL_MODE, if different. However, PARMREG may be in
4719 a different mode than NOMINAL_MODE if it is being stored
4720 promoted.
4722 If ENTRY_PARM is a hard register, it might be in a register
4723 not valid for operating in its mode (e.g., an odd-numbered
4724 register for a DFmode). In that case, moves are the only
4725 thing valid, so we can't do a convert from there. This
4726 occurs when the calling sequence allow such misaligned
4727 usages.
4729 In addition, the conversion may involve a call, which could
4730 clobber parameters which haven't been copied to pseudo
4731 registers yet. Therefore, we must first copy the parm to
4732 a pseudo reg here, and save the conversion until after all
4733 parameters have been moved. */
4735 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4737 emit_move_insn (tempreg, validize_mem (entry_parm));
4739 push_to_sequence (conversion_insns);
4740 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4742 /* TREE_USED gets set erroneously during expand_assignment. */
4743 save_tree_used = TREE_USED (parm);
4744 expand_assignment (parm,
4745 make_tree (nominal_type, tempreg), 0, 0);
4746 TREE_USED (parm) = save_tree_used;
4747 conversion_insns = get_insns ();
4748 did_conversion = 1;
4749 end_sequence ();
4751 else
4752 emit_move_insn (parmreg, validize_mem (entry_parm));
4754 /* If we were passed a pointer but the actual value
4755 can safely live in a register, put it in one. */
4756 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4757 && ! ((! optimize
4758 && ! DECL_REGISTER (parm)
4759 && ! DECL_INLINE (fndecl))
4760 || TREE_SIDE_EFFECTS (parm)
4761 /* If -ffloat-store specified, don't put explicit
4762 float variables into registers. */
4763 || (flag_float_store
4764 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4766 /* We can't use nominal_mode, because it will have been set to
4767 Pmode above. We must use the actual mode of the parm. */
4768 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4769 mark_user_reg (parmreg);
4770 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4772 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4774 push_to_sequence (conversion_insns);
4775 emit_move_insn (tempreg, DECL_RTL (parm));
4776 DECL_RTL (parm)
4777 = convert_to_mode (GET_MODE (parmreg), tempreg,
4778 TREE_UNSIGNED (TREE_TYPE (parm)));
4779 emit_move_insn (parmreg, DECL_RTL (parm));
4780 conversion_insns = get_insns();
4781 did_conversion = 1;
4782 end_sequence ();
4784 else
4785 emit_move_insn (parmreg, DECL_RTL (parm));
4786 DECL_RTL (parm) = parmreg;
4787 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4788 now the parm. */
4789 stack_parm = 0;
4791 #ifdef FUNCTION_ARG_CALLEE_COPIES
4792 /* If we are passed an arg by reference and it is our responsibility
4793 to make a copy, do it now.
4794 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4795 original argument, so we must recreate them in the call to
4796 FUNCTION_ARG_CALLEE_COPIES. */
4797 /* ??? Later add code to handle the case that if the argument isn't
4798 modified, don't do the copy. */
4800 else if (passed_pointer
4801 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4802 TYPE_MODE (DECL_ARG_TYPE (parm)),
4803 DECL_ARG_TYPE (parm),
4804 named_arg)
4805 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4807 rtx copy;
4808 tree type = DECL_ARG_TYPE (parm);
4810 /* This sequence may involve a library call perhaps clobbering
4811 registers that haven't been copied to pseudos yet. */
4813 push_to_sequence (conversion_insns);
4815 if (!COMPLETE_TYPE_P (type)
4816 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4817 /* This is a variable sized object. */
4818 copy = gen_rtx_MEM (BLKmode,
4819 allocate_dynamic_stack_space
4820 (expr_size (parm), NULL_RTX,
4821 TYPE_ALIGN (type)));
4822 else
4823 copy = assign_stack_temp (TYPE_MODE (type),
4824 int_size_in_bytes (type), 1);
4825 set_mem_attributes (copy, parm, 1);
4827 store_expr (parm, copy, 0);
4828 emit_move_insn (parmreg, XEXP (copy, 0));
4829 if (current_function_check_memory_usage)
4830 emit_library_call (chkr_set_right_libfunc,
4831 LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
4832 XEXP (copy, 0), Pmode,
4833 GEN_INT (int_size_in_bytes (type)),
4834 TYPE_MODE (sizetype),
4835 GEN_INT (MEMORY_USE_RW),
4836 TYPE_MODE (integer_type_node));
4837 conversion_insns = get_insns ();
4838 did_conversion = 1;
4839 end_sequence ();
4841 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4843 /* In any case, record the parm's desired stack location
4844 in case we later discover it must live in the stack.
4846 If it is a COMPLEX value, store the stack location for both
4847 halves. */
4849 if (GET_CODE (parmreg) == CONCAT)
4850 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4851 else
4852 regno = REGNO (parmreg);
4854 if (regno >= max_parm_reg)
4856 rtx *new;
4857 int old_max_parm_reg = max_parm_reg;
4859 /* It's slow to expand this one register at a time,
4860 but it's also rare and we need max_parm_reg to be
4861 precisely correct. */
4862 max_parm_reg = regno + 1;
4863 new = (rtx *) xrealloc (parm_reg_stack_loc,
4864 max_parm_reg * sizeof (rtx));
4865 memset ((char *) (new + old_max_parm_reg), 0,
4866 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4867 parm_reg_stack_loc = new;
4870 if (GET_CODE (parmreg) == CONCAT)
4872 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4874 regnor = REGNO (gen_realpart (submode, parmreg));
4875 regnoi = REGNO (gen_imagpart (submode, parmreg));
4877 if (stack_parm != 0)
4879 parm_reg_stack_loc[regnor]
4880 = gen_realpart (submode, stack_parm);
4881 parm_reg_stack_loc[regnoi]
4882 = gen_imagpart (submode, stack_parm);
4884 else
4886 parm_reg_stack_loc[regnor] = 0;
4887 parm_reg_stack_loc[regnoi] = 0;
4890 else
4891 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4893 /* Mark the register as eliminable if we did no conversion
4894 and it was copied from memory at a fixed offset,
4895 and the arg pointer was not copied to a pseudo-reg.
4896 If the arg pointer is a pseudo reg or the offset formed
4897 an invalid address, such memory-equivalences
4898 as we make here would screw up life analysis for it. */
4899 if (nominal_mode == passed_mode
4900 && ! did_conversion
4901 && stack_parm != 0
4902 && GET_CODE (stack_parm) == MEM
4903 && stack_offset.var == 0
4904 && reg_mentioned_p (virtual_incoming_args_rtx,
4905 XEXP (stack_parm, 0)))
4907 rtx linsn = get_last_insn ();
4908 rtx sinsn, set;
4910 /* Mark complex types separately. */
4911 if (GET_CODE (parmreg) == CONCAT)
4912 /* Scan backwards for the set of the real and
4913 imaginary parts. */
4914 for (sinsn = linsn; sinsn != 0;
4915 sinsn = prev_nonnote_insn (sinsn))
4917 set = single_set (sinsn);
4918 if (set != 0
4919 && SET_DEST (set) == regno_reg_rtx [regnoi])
4920 REG_NOTES (sinsn)
4921 = gen_rtx_EXPR_LIST (REG_EQUIV,
4922 parm_reg_stack_loc[regnoi],
4923 REG_NOTES (sinsn));
4924 else if (set != 0
4925 && SET_DEST (set) == regno_reg_rtx [regnor])
4926 REG_NOTES (sinsn)
4927 = gen_rtx_EXPR_LIST (REG_EQUIV,
4928 parm_reg_stack_loc[regnor],
4929 REG_NOTES (sinsn));
4931 else if ((set = single_set (linsn)) != 0
4932 && SET_DEST (set) == parmreg)
4933 REG_NOTES (linsn)
4934 = gen_rtx_EXPR_LIST (REG_EQUIV,
4935 stack_parm, REG_NOTES (linsn));
4938 /* For pointer data type, suggest pointer register. */
4939 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4940 mark_reg_pointer (parmreg,
4941 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4943 /* If something wants our address, try to use ADDRESSOF. */
4944 if (TREE_ADDRESSABLE (parm))
4946 /* If we end up putting something into the stack,
4947 fixup_var_refs_insns will need to make a pass over
4948 all the instructions. It looks throughs the pending
4949 sequences -- but it can't see the ones in the
4950 CONVERSION_INSNS, if they're not on the sequence
4951 stack. So, we go back to that sequence, just so that
4952 the fixups will happen. */
4953 push_to_sequence (conversion_insns);
4954 put_var_into_stack (parm);
4955 conversion_insns = get_insns ();
4956 end_sequence ();
4959 else
4961 /* Value must be stored in the stack slot STACK_PARM
4962 during function execution. */
4964 if (promoted_mode != nominal_mode)
4966 /* Conversion is required. */
4967 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4969 emit_move_insn (tempreg, validize_mem (entry_parm));
4971 push_to_sequence (conversion_insns);
4972 entry_parm = convert_to_mode (nominal_mode, tempreg,
4973 TREE_UNSIGNED (TREE_TYPE (parm)));
4974 if (stack_parm)
4976 /* ??? This may need a big-endian conversion on sparc64. */
4977 stack_parm = change_address (stack_parm, nominal_mode,
4978 NULL_RTX);
4980 conversion_insns = get_insns ();
4981 did_conversion = 1;
4982 end_sequence ();
4985 if (entry_parm != stack_parm)
4987 if (stack_parm == 0)
4989 stack_parm
4990 = assign_stack_local (GET_MODE (entry_parm),
4991 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4992 set_mem_attributes (stack_parm, parm, 1);
4995 if (promoted_mode != nominal_mode)
4997 push_to_sequence (conversion_insns);
4998 emit_move_insn (validize_mem (stack_parm),
4999 validize_mem (entry_parm));
5000 conversion_insns = get_insns ();
5001 end_sequence ();
5003 else
5004 emit_move_insn (validize_mem (stack_parm),
5005 validize_mem (entry_parm));
5007 if (current_function_check_memory_usage)
5009 push_to_sequence (conversion_insns);
5010 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK,
5011 VOIDmode, 3, XEXP (stack_parm, 0), Pmode,
5012 GEN_INT (GET_MODE_SIZE (GET_MODE
5013 (entry_parm))),
5014 TYPE_MODE (sizetype),
5015 GEN_INT (MEMORY_USE_RW),
5016 TYPE_MODE (integer_type_node));
5018 conversion_insns = get_insns ();
5019 end_sequence ();
5021 DECL_RTL (parm) = stack_parm;
5024 /* If this "parameter" was the place where we are receiving the
5025 function's incoming structure pointer, set up the result. */
5026 if (parm == function_result_decl)
5028 tree result = DECL_RESULT (fndecl);
5030 DECL_RTL (result)
5031 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
5033 set_mem_attributes (DECL_RTL (result), result, 1);
5037 /* Output all parameter conversion instructions (possibly including calls)
5038 now that all parameters have been copied out of hard registers. */
5039 emit_insns (conversion_insns);
5041 last_parm_insn = get_last_insn ();
5043 current_function_args_size = stack_args_size.constant;
5045 /* Adjust function incoming argument size for alignment and
5046 minimum length. */
5048 #ifdef REG_PARM_STACK_SPACE
5049 #ifndef MAYBE_REG_PARM_STACK_SPACE
5050 current_function_args_size = MAX (current_function_args_size,
5051 REG_PARM_STACK_SPACE (fndecl));
5052 #endif
5053 #endif
5055 #ifdef STACK_BOUNDARY
5056 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5058 current_function_args_size
5059 = ((current_function_args_size + STACK_BYTES - 1)
5060 / STACK_BYTES) * STACK_BYTES;
5061 #endif
5063 #ifdef ARGS_GROW_DOWNWARD
5064 current_function_arg_offset_rtx
5065 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5066 : expand_expr (size_diffop (stack_args_size.var,
5067 size_int (-stack_args_size.constant)),
5068 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
5069 #else
5070 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5071 #endif
5073 /* See how many bytes, if any, of its args a function should try to pop
5074 on return. */
5076 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5077 current_function_args_size);
5079 /* For stdarg.h function, save info about
5080 regs and stack space used by the named args. */
5082 if (!hide_last_arg)
5083 current_function_args_info = args_so_far;
5085 /* Set the rtx used for the function return value. Put this in its
5086 own variable so any optimizers that need this information don't have
5087 to include tree.h. Do this here so it gets done when an inlined
5088 function gets output. */
5090 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
5093 /* Indicate whether REGNO is an incoming argument to the current function
5094 that was promoted to a wider mode. If so, return the RTX for the
5095 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5096 that REGNO is promoted from and whether the promotion was signed or
5097 unsigned. */
5099 #ifdef PROMOTE_FUNCTION_ARGS
5102 promoted_input_arg (regno, pmode, punsignedp)
5103 unsigned int regno;
5104 enum machine_mode *pmode;
5105 int *punsignedp;
5107 tree arg;
5109 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5110 arg = TREE_CHAIN (arg))
5111 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5112 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5113 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5115 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5116 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5118 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5119 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5120 && mode != DECL_MODE (arg))
5122 *pmode = DECL_MODE (arg);
5123 *punsignedp = unsignedp;
5124 return DECL_INCOMING_RTL (arg);
5128 return 0;
5131 #endif
5133 /* Compute the size and offset from the start of the stacked arguments for a
5134 parm passed in mode PASSED_MODE and with type TYPE.
5136 INITIAL_OFFSET_PTR points to the current offset into the stacked
5137 arguments.
5139 The starting offset and size for this parm are returned in *OFFSET_PTR
5140 and *ARG_SIZE_PTR, respectively.
5142 IN_REGS is non-zero if the argument will be passed in registers. It will
5143 never be set if REG_PARM_STACK_SPACE is not defined.
5145 FNDECL is the function in which the argument was defined.
5147 There are two types of rounding that are done. The first, controlled by
5148 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5149 list to be aligned to the specific boundary (in bits). This rounding
5150 affects the initial and starting offsets, but not the argument size.
5152 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5153 optionally rounds the size of the parm to PARM_BOUNDARY. The
5154 initial offset is not affected by this rounding, while the size always
5155 is and the starting offset may be. */
5157 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5158 initial_offset_ptr is positive because locate_and_pad_parm's
5159 callers pass in the total size of args so far as
5160 initial_offset_ptr. arg_size_ptr is always positive.*/
5162 void
5163 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5164 initial_offset_ptr, offset_ptr, arg_size_ptr,
5165 alignment_pad)
5166 enum machine_mode passed_mode;
5167 tree type;
5168 int in_regs ATTRIBUTE_UNUSED;
5169 tree fndecl ATTRIBUTE_UNUSED;
5170 struct args_size *initial_offset_ptr;
5171 struct args_size *offset_ptr;
5172 struct args_size *arg_size_ptr;
5173 struct args_size *alignment_pad;
5176 tree sizetree
5177 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5178 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5179 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5181 #ifdef REG_PARM_STACK_SPACE
5182 /* If we have found a stack parm before we reach the end of the
5183 area reserved for registers, skip that area. */
5184 if (! in_regs)
5186 int reg_parm_stack_space = 0;
5188 #ifdef MAYBE_REG_PARM_STACK_SPACE
5189 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5190 #else
5191 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5192 #endif
5193 if (reg_parm_stack_space > 0)
5195 if (initial_offset_ptr->var)
5197 initial_offset_ptr->var
5198 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5199 ssize_int (reg_parm_stack_space));
5200 initial_offset_ptr->constant = 0;
5202 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5203 initial_offset_ptr->constant = reg_parm_stack_space;
5206 #endif /* REG_PARM_STACK_SPACE */
5208 arg_size_ptr->var = 0;
5209 arg_size_ptr->constant = 0;
5210 alignment_pad->var = 0;
5211 alignment_pad->constant = 0;
5213 #ifdef ARGS_GROW_DOWNWARD
5214 if (initial_offset_ptr->var)
5216 offset_ptr->constant = 0;
5217 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5218 initial_offset_ptr->var);
5220 else
5222 offset_ptr->constant = -initial_offset_ptr->constant;
5223 offset_ptr->var = 0;
5225 if (where_pad != none
5226 && (!host_integerp (sizetree, 1)
5227 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5228 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5229 SUB_PARM_SIZE (*offset_ptr, sizetree);
5230 if (where_pad != downward)
5231 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5232 if (initial_offset_ptr->var)
5233 arg_size_ptr->var = size_binop (MINUS_EXPR,
5234 size_binop (MINUS_EXPR,
5235 ssize_int (0),
5236 initial_offset_ptr->var),
5237 offset_ptr->var);
5239 else
5240 arg_size_ptr->constant = (-initial_offset_ptr->constant
5241 - offset_ptr->constant);
5243 #else /* !ARGS_GROW_DOWNWARD */
5244 if (!in_regs
5245 #ifdef REG_PARM_STACK_SPACE
5246 || REG_PARM_STACK_SPACE (fndecl) > 0
5247 #endif
5249 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5250 *offset_ptr = *initial_offset_ptr;
5252 #ifdef PUSH_ROUNDING
5253 if (passed_mode != BLKmode)
5254 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5255 #endif
5257 /* Pad_below needs the pre-rounded size to know how much to pad below
5258 so this must be done before rounding up. */
5259 if (where_pad == downward
5260 /* However, BLKmode args passed in regs have their padding done elsewhere.
5261 The stack slot must be able to hold the entire register. */
5262 && !(in_regs && passed_mode == BLKmode))
5263 pad_below (offset_ptr, passed_mode, sizetree);
5265 if (where_pad != none
5266 && (!host_integerp (sizetree, 1)
5267 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5268 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5270 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5271 #endif /* ARGS_GROW_DOWNWARD */
5274 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5275 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5277 static void
5278 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5279 struct args_size *offset_ptr;
5280 int boundary;
5281 struct args_size *alignment_pad;
5283 tree save_var = NULL_TREE;
5284 HOST_WIDE_INT save_constant = 0;
5286 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5288 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5290 save_var = offset_ptr->var;
5291 save_constant = offset_ptr->constant;
5294 alignment_pad->var = NULL_TREE;
5295 alignment_pad->constant = 0;
5297 if (boundary > BITS_PER_UNIT)
5299 if (offset_ptr->var)
5301 offset_ptr->var =
5302 #ifdef ARGS_GROW_DOWNWARD
5303 round_down
5304 #else
5305 round_up
5306 #endif
5307 (ARGS_SIZE_TREE (*offset_ptr),
5308 boundary / BITS_PER_UNIT);
5309 offset_ptr->constant = 0; /*?*/
5310 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5311 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5312 save_var);
5314 else
5316 offset_ptr->constant =
5317 #ifdef ARGS_GROW_DOWNWARD
5318 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5319 #else
5320 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5321 #endif
5322 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5323 alignment_pad->constant = offset_ptr->constant - save_constant;
5328 #ifndef ARGS_GROW_DOWNWARD
5329 static void
5330 pad_below (offset_ptr, passed_mode, sizetree)
5331 struct args_size *offset_ptr;
5332 enum machine_mode passed_mode;
5333 tree sizetree;
5335 if (passed_mode != BLKmode)
5337 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5338 offset_ptr->constant
5339 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5340 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5341 - GET_MODE_SIZE (passed_mode));
5343 else
5345 if (TREE_CODE (sizetree) != INTEGER_CST
5346 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5348 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5349 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5350 /* Add it in. */
5351 ADD_PARM_SIZE (*offset_ptr, s2);
5352 SUB_PARM_SIZE (*offset_ptr, sizetree);
5356 #endif
5358 /* Walk the tree of blocks describing the binding levels within a function
5359 and warn about uninitialized variables.
5360 This is done after calling flow_analysis and before global_alloc
5361 clobbers the pseudo-regs to hard regs. */
5363 void
5364 uninitialized_vars_warning (block)
5365 tree block;
5367 register tree decl, sub;
5368 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5370 if (warn_uninitialized
5371 && TREE_CODE (decl) == VAR_DECL
5372 /* These warnings are unreliable for and aggregates
5373 because assigning the fields one by one can fail to convince
5374 flow.c that the entire aggregate was initialized.
5375 Unions are troublesome because members may be shorter. */
5376 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5377 && DECL_RTL (decl) != 0
5378 && GET_CODE (DECL_RTL (decl)) == REG
5379 /* Global optimizations can make it difficult to determine if a
5380 particular variable has been initialized. However, a VAR_DECL
5381 with a nonzero DECL_INITIAL had an initializer, so do not
5382 claim it is potentially uninitialized.
5384 We do not care about the actual value in DECL_INITIAL, so we do
5385 not worry that it may be a dangling pointer. */
5386 && DECL_INITIAL (decl) == NULL_TREE
5387 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5388 warning_with_decl (decl,
5389 "`%s' might be used uninitialized in this function");
5390 if (extra_warnings
5391 && TREE_CODE (decl) == VAR_DECL
5392 && DECL_RTL (decl) != 0
5393 && GET_CODE (DECL_RTL (decl)) == REG
5394 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5395 warning_with_decl (decl,
5396 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5398 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5399 uninitialized_vars_warning (sub);
5402 /* Do the appropriate part of uninitialized_vars_warning
5403 but for arguments instead of local variables. */
5405 void
5406 setjmp_args_warning ()
5408 register tree decl;
5409 for (decl = DECL_ARGUMENTS (current_function_decl);
5410 decl; decl = TREE_CHAIN (decl))
5411 if (DECL_RTL (decl) != 0
5412 && GET_CODE (DECL_RTL (decl)) == REG
5413 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5414 warning_with_decl (decl,
5415 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5418 /* If this function call setjmp, put all vars into the stack
5419 unless they were declared `register'. */
5421 void
5422 setjmp_protect (block)
5423 tree block;
5425 register tree decl, sub;
5426 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5427 if ((TREE_CODE (decl) == VAR_DECL
5428 || TREE_CODE (decl) == PARM_DECL)
5429 && DECL_RTL (decl) != 0
5430 && (GET_CODE (DECL_RTL (decl)) == REG
5431 || (GET_CODE (DECL_RTL (decl)) == MEM
5432 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5433 /* If this variable came from an inline function, it must be
5434 that its life doesn't overlap the setjmp. If there was a
5435 setjmp in the function, it would already be in memory. We
5436 must exclude such variable because their DECL_RTL might be
5437 set to strange things such as virtual_stack_vars_rtx. */
5438 && ! DECL_FROM_INLINE (decl)
5439 && (
5440 #ifdef NON_SAVING_SETJMP
5441 /* If longjmp doesn't restore the registers,
5442 don't put anything in them. */
5443 NON_SAVING_SETJMP
5445 #endif
5446 ! DECL_REGISTER (decl)))
5447 put_var_into_stack (decl);
5448 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5449 setjmp_protect (sub);
5452 /* Like the previous function, but for args instead of local variables. */
5454 void
5455 setjmp_protect_args ()
5457 register tree decl;
5458 for (decl = DECL_ARGUMENTS (current_function_decl);
5459 decl; decl = TREE_CHAIN (decl))
5460 if ((TREE_CODE (decl) == VAR_DECL
5461 || TREE_CODE (decl) == PARM_DECL)
5462 && DECL_RTL (decl) != 0
5463 && (GET_CODE (DECL_RTL (decl)) == REG
5464 || (GET_CODE (DECL_RTL (decl)) == MEM
5465 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5466 && (
5467 /* If longjmp doesn't restore the registers,
5468 don't put anything in them. */
5469 #ifdef NON_SAVING_SETJMP
5470 NON_SAVING_SETJMP
5472 #endif
5473 ! DECL_REGISTER (decl)))
5474 put_var_into_stack (decl);
5477 /* Return the context-pointer register corresponding to DECL,
5478 or 0 if it does not need one. */
5481 lookup_static_chain (decl)
5482 tree decl;
5484 tree context = decl_function_context (decl);
5485 tree link;
5487 if (context == 0
5488 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5489 return 0;
5491 /* We treat inline_function_decl as an alias for the current function
5492 because that is the inline function whose vars, types, etc.
5493 are being merged into the current function.
5494 See expand_inline_function. */
5495 if (context == current_function_decl || context == inline_function_decl)
5496 return virtual_stack_vars_rtx;
5498 for (link = context_display; link; link = TREE_CHAIN (link))
5499 if (TREE_PURPOSE (link) == context)
5500 return RTL_EXPR_RTL (TREE_VALUE (link));
5502 abort ();
5505 /* Convert a stack slot address ADDR for variable VAR
5506 (from a containing function)
5507 into an address valid in this function (using a static chain). */
5510 fix_lexical_addr (addr, var)
5511 rtx addr;
5512 tree var;
5514 rtx basereg;
5515 HOST_WIDE_INT displacement;
5516 tree context = decl_function_context (var);
5517 struct function *fp;
5518 rtx base = 0;
5520 /* If this is the present function, we need not do anything. */
5521 if (context == current_function_decl || context == inline_function_decl)
5522 return addr;
5524 for (fp = outer_function_chain; fp; fp = fp->next)
5525 if (fp->decl == context)
5526 break;
5528 if (fp == 0)
5529 abort ();
5531 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5532 addr = XEXP (XEXP (addr, 0), 0);
5534 /* Decode given address as base reg plus displacement. */
5535 if (GET_CODE (addr) == REG)
5536 basereg = addr, displacement = 0;
5537 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5538 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5539 else
5540 abort ();
5542 /* We accept vars reached via the containing function's
5543 incoming arg pointer and via its stack variables pointer. */
5544 if (basereg == fp->internal_arg_pointer)
5546 /* If reached via arg pointer, get the arg pointer value
5547 out of that function's stack frame.
5549 There are two cases: If a separate ap is needed, allocate a
5550 slot in the outer function for it and dereference it that way.
5551 This is correct even if the real ap is actually a pseudo.
5552 Otherwise, just adjust the offset from the frame pointer to
5553 compensate. */
5555 #ifdef NEED_SEPARATE_AP
5556 rtx addr;
5558 if (fp->x_arg_pointer_save_area == 0)
5559 fp->x_arg_pointer_save_area
5560 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5562 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5563 addr = memory_address (Pmode, addr);
5565 base = gen_rtx_MEM (Pmode, addr);
5566 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5567 base = copy_to_reg (base);
5568 #else
5569 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5570 base = lookup_static_chain (var);
5571 #endif
5574 else if (basereg == virtual_stack_vars_rtx)
5576 /* This is the same code as lookup_static_chain, duplicated here to
5577 avoid an extra call to decl_function_context. */
5578 tree link;
5580 for (link = context_display; link; link = TREE_CHAIN (link))
5581 if (TREE_PURPOSE (link) == context)
5583 base = RTL_EXPR_RTL (TREE_VALUE (link));
5584 break;
5588 if (base == 0)
5589 abort ();
5591 /* Use same offset, relative to appropriate static chain or argument
5592 pointer. */
5593 return plus_constant (base, displacement);
5596 /* Return the address of the trampoline for entering nested fn FUNCTION.
5597 If necessary, allocate a trampoline (in the stack frame)
5598 and emit rtl to initialize its contents (at entry to this function). */
5601 trampoline_address (function)
5602 tree function;
5604 tree link;
5605 tree rtlexp;
5606 rtx tramp;
5607 struct function *fp;
5608 tree fn_context;
5610 /* Find an existing trampoline and return it. */
5611 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5612 if (TREE_PURPOSE (link) == function)
5613 return
5614 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5616 for (fp = outer_function_chain; fp; fp = fp->next)
5617 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5618 if (TREE_PURPOSE (link) == function)
5620 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5621 function);
5622 return adjust_trampoline_addr (tramp);
5625 /* None exists; we must make one. */
5627 /* Find the `struct function' for the function containing FUNCTION. */
5628 fp = 0;
5629 fn_context = decl_function_context (function);
5630 if (fn_context != current_function_decl
5631 && fn_context != inline_function_decl)
5632 for (fp = outer_function_chain; fp; fp = fp->next)
5633 if (fp->decl == fn_context)
5634 break;
5636 /* Allocate run-time space for this trampoline
5637 (usually in the defining function's stack frame). */
5638 #ifdef ALLOCATE_TRAMPOLINE
5639 tramp = ALLOCATE_TRAMPOLINE (fp);
5640 #else
5641 /* If rounding needed, allocate extra space
5642 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5643 #ifdef TRAMPOLINE_ALIGNMENT
5644 #define TRAMPOLINE_REAL_SIZE \
5645 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5646 #else
5647 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5648 #endif
5649 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5650 fp ? fp : cfun);
5651 #endif
5653 /* Record the trampoline for reuse and note it for later initialization
5654 by expand_function_end. */
5655 if (fp != 0)
5657 rtlexp = make_node (RTL_EXPR);
5658 RTL_EXPR_RTL (rtlexp) = tramp;
5659 fp->x_trampoline_list = tree_cons (function, rtlexp,
5660 fp->x_trampoline_list);
5662 else
5664 /* Make the RTL_EXPR node temporary, not momentary, so that the
5665 trampoline_list doesn't become garbage. */
5666 rtlexp = make_node (RTL_EXPR);
5668 RTL_EXPR_RTL (rtlexp) = tramp;
5669 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5672 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5673 return adjust_trampoline_addr (tramp);
5676 /* Given a trampoline address,
5677 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5679 static rtx
5680 round_trampoline_addr (tramp)
5681 rtx tramp;
5683 #ifdef TRAMPOLINE_ALIGNMENT
5684 /* Round address up to desired boundary. */
5685 rtx temp = gen_reg_rtx (Pmode);
5686 temp = expand_binop (Pmode, add_optab, tramp,
5687 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5688 temp, 0, OPTAB_LIB_WIDEN);
5689 tramp = expand_binop (Pmode, and_optab, temp,
5690 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5691 temp, 0, OPTAB_LIB_WIDEN);
5692 #endif
5693 return tramp;
5696 /* Given a trampoline address, round it then apply any
5697 platform-specific adjustments so that the result can be used for a
5698 function call . */
5700 static rtx
5701 adjust_trampoline_addr (tramp)
5702 rtx tramp;
5704 tramp = round_trampoline_addr (tramp);
5705 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5706 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5707 #endif
5708 return tramp;
5711 /* Put all this function's BLOCK nodes including those that are chained
5712 onto the first block into a vector, and return it.
5713 Also store in each NOTE for the beginning or end of a block
5714 the index of that block in the vector.
5715 The arguments are BLOCK, the chain of top-level blocks of the function,
5716 and INSNS, the insn chain of the function. */
5718 void
5719 identify_blocks ()
5721 int n_blocks;
5722 tree *block_vector, *last_block_vector;
5723 tree *block_stack;
5724 tree block = DECL_INITIAL (current_function_decl);
5726 if (block == 0)
5727 return;
5729 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5730 depth-first order. */
5731 block_vector = get_block_vector (block, &n_blocks);
5732 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5734 last_block_vector = identify_blocks_1 (get_insns (),
5735 block_vector + 1,
5736 block_vector + n_blocks,
5737 block_stack);
5739 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5740 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5741 if (0 && last_block_vector != block_vector + n_blocks)
5742 abort ();
5744 free (block_vector);
5745 free (block_stack);
5748 /* Subroutine of identify_blocks. Do the block substitution on the
5749 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5751 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5752 BLOCK_VECTOR is incremented for each block seen. */
5754 static tree *
5755 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5756 rtx insns;
5757 tree *block_vector;
5758 tree *end_block_vector;
5759 tree *orig_block_stack;
5761 rtx insn;
5762 tree *block_stack = orig_block_stack;
5764 for (insn = insns; insn; insn = NEXT_INSN (insn))
5766 if (GET_CODE (insn) == NOTE)
5768 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5770 tree b;
5772 /* If there are more block notes than BLOCKs, something
5773 is badly wrong. */
5774 if (block_vector == end_block_vector)
5775 abort ();
5777 b = *block_vector++;
5778 NOTE_BLOCK (insn) = b;
5779 *block_stack++ = b;
5781 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5783 /* If there are more NOTE_INSN_BLOCK_ENDs than
5784 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5785 if (block_stack == orig_block_stack)
5786 abort ();
5788 NOTE_BLOCK (insn) = *--block_stack;
5791 else if (GET_CODE (insn) == CALL_INSN
5792 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5794 rtx cp = PATTERN (insn);
5796 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5797 end_block_vector, block_stack);
5798 if (XEXP (cp, 1))
5799 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5800 end_block_vector, block_stack);
5801 if (XEXP (cp, 2))
5802 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5803 end_block_vector, block_stack);
5807 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5808 something is badly wrong. */
5809 if (block_stack != orig_block_stack)
5810 abort ();
5812 return block_vector;
5815 /* Identify BLOCKs referenced by more than one
5816 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5818 void
5819 reorder_blocks ()
5821 tree block = DECL_INITIAL (current_function_decl);
5822 varray_type block_stack;
5824 if (block == NULL_TREE)
5825 return;
5827 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5829 /* Prune the old trees away, so that they don't get in the way. */
5830 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5831 BLOCK_CHAIN (block) = NULL_TREE;
5833 reorder_blocks_0 (get_insns ());
5834 reorder_blocks_1 (get_insns (), block, &block_stack);
5836 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5838 VARRAY_FREE (block_stack);
5841 /* Helper function for reorder_blocks. Process the insn chain beginning
5842 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5844 static void
5845 reorder_blocks_0 (insns)
5846 rtx insns;
5848 rtx insn;
5850 for (insn = insns; insn; insn = NEXT_INSN (insn))
5852 if (GET_CODE (insn) == NOTE)
5854 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5856 tree block = NOTE_BLOCK (insn);
5857 TREE_ASM_WRITTEN (block) = 0;
5860 else if (GET_CODE (insn) == CALL_INSN
5861 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5863 rtx cp = PATTERN (insn);
5864 reorder_blocks_0 (XEXP (cp, 0));
5865 if (XEXP (cp, 1))
5866 reorder_blocks_0 (XEXP (cp, 1));
5867 if (XEXP (cp, 2))
5868 reorder_blocks_0 (XEXP (cp, 2));
5873 static void
5874 reorder_blocks_1 (insns, current_block, p_block_stack)
5875 rtx insns;
5876 tree current_block;
5877 varray_type *p_block_stack;
5879 rtx insn;
5881 for (insn = insns; insn; insn = NEXT_INSN (insn))
5883 if (GET_CODE (insn) == NOTE)
5885 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5887 tree block = NOTE_BLOCK (insn);
5888 /* If we have seen this block before, copy it. */
5889 if (TREE_ASM_WRITTEN (block))
5891 block = copy_node (block);
5892 NOTE_BLOCK (insn) = block;
5894 BLOCK_SUBBLOCKS (block) = 0;
5895 TREE_ASM_WRITTEN (block) = 1;
5896 BLOCK_SUPERCONTEXT (block) = current_block;
5897 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5898 BLOCK_SUBBLOCKS (current_block) = block;
5899 current_block = block;
5900 VARRAY_PUSH_TREE (*p_block_stack, block);
5902 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5904 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5905 VARRAY_POP (*p_block_stack);
5906 BLOCK_SUBBLOCKS (current_block)
5907 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5908 current_block = BLOCK_SUPERCONTEXT (current_block);
5911 else if (GET_CODE (insn) == CALL_INSN
5912 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5914 rtx cp = PATTERN (insn);
5915 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5916 if (XEXP (cp, 1))
5917 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5918 if (XEXP (cp, 2))
5919 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5924 /* Reverse the order of elements in the chain T of blocks,
5925 and return the new head of the chain (old last element). */
5927 static tree
5928 blocks_nreverse (t)
5929 tree t;
5931 register tree prev = 0, decl, next;
5932 for (decl = t; decl; decl = next)
5934 next = BLOCK_CHAIN (decl);
5935 BLOCK_CHAIN (decl) = prev;
5936 prev = decl;
5938 return prev;
5941 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5942 non-NULL, list them all into VECTOR, in a depth-first preorder
5943 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5944 blocks. */
5946 static int
5947 all_blocks (block, vector)
5948 tree block;
5949 tree *vector;
5951 int n_blocks = 0;
5953 while (block)
5955 TREE_ASM_WRITTEN (block) = 0;
5957 /* Record this block. */
5958 if (vector)
5959 vector[n_blocks] = block;
5961 ++n_blocks;
5963 /* Record the subblocks, and their subblocks... */
5964 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5965 vector ? vector + n_blocks : 0);
5966 block = BLOCK_CHAIN (block);
5969 return n_blocks;
5972 /* Return a vector containing all the blocks rooted at BLOCK. The
5973 number of elements in the vector is stored in N_BLOCKS_P. The
5974 vector is dynamically allocated; it is the caller's responsibility
5975 to call `free' on the pointer returned. */
5977 static tree *
5978 get_block_vector (block, n_blocks_p)
5979 tree block;
5980 int *n_blocks_p;
5982 tree *block_vector;
5984 *n_blocks_p = all_blocks (block, NULL);
5985 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5986 all_blocks (block, block_vector);
5988 return block_vector;
5991 static int next_block_index = 2;
5993 /* Set BLOCK_NUMBER for all the blocks in FN. */
5995 void
5996 number_blocks (fn)
5997 tree fn;
5999 int i;
6000 int n_blocks;
6001 tree *block_vector;
6003 /* For SDB and XCOFF debugging output, we start numbering the blocks
6004 from 1 within each function, rather than keeping a running
6005 count. */
6006 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6007 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6008 next_block_index = 1;
6009 #endif
6011 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6013 /* The top-level BLOCK isn't numbered at all. */
6014 for (i = 1; i < n_blocks; ++i)
6015 /* We number the blocks from two. */
6016 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6018 free (block_vector);
6020 return;
6023 /* Allocate a function structure and reset its contents to the defaults. */
6024 static void
6025 prepare_function_start ()
6027 cfun = (struct function *) xcalloc (1, sizeof (struct function));
6029 init_stmt_for_function ();
6030 init_eh_for_function ();
6032 cse_not_expected = ! optimize;
6034 /* Caller save not needed yet. */
6035 caller_save_needed = 0;
6037 /* No stack slots have been made yet. */
6038 stack_slot_list = 0;
6040 current_function_has_nonlocal_label = 0;
6041 current_function_has_nonlocal_goto = 0;
6043 /* There is no stack slot for handling nonlocal gotos. */
6044 nonlocal_goto_handler_slots = 0;
6045 nonlocal_goto_stack_level = 0;
6047 /* No labels have been declared for nonlocal use. */
6048 nonlocal_labels = 0;
6049 nonlocal_goto_handler_labels = 0;
6051 /* No function calls so far in this function. */
6052 function_call_count = 0;
6054 /* No parm regs have been allocated.
6055 (This is important for output_inline_function.) */
6056 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6058 /* Initialize the RTL mechanism. */
6059 init_emit ();
6061 /* Initialize the queue of pending postincrement and postdecrements,
6062 and some other info in expr.c. */
6063 init_expr ();
6065 /* We haven't done register allocation yet. */
6066 reg_renumber = 0;
6068 init_varasm_status (cfun);
6070 /* Clear out data used for inlining. */
6071 cfun->inlinable = 0;
6072 cfun->original_decl_initial = 0;
6073 cfun->original_arg_vector = 0;
6075 #ifdef STACK_BOUNDARY
6076 cfun->stack_alignment_needed = STACK_BOUNDARY;
6077 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6078 #else
6079 cfun->stack_alignment_needed = 0;
6080 cfun->preferred_stack_boundary = 0;
6081 #endif
6083 /* Set if a call to setjmp is seen. */
6084 current_function_calls_setjmp = 0;
6086 /* Set if a call to longjmp is seen. */
6087 current_function_calls_longjmp = 0;
6089 current_function_calls_alloca = 0;
6090 current_function_contains_functions = 0;
6091 current_function_is_leaf = 0;
6092 current_function_nothrow = 0;
6093 current_function_sp_is_unchanging = 0;
6094 current_function_uses_only_leaf_regs = 0;
6095 current_function_has_computed_jump = 0;
6096 current_function_is_thunk = 0;
6098 current_function_returns_pcc_struct = 0;
6099 current_function_returns_struct = 0;
6100 current_function_epilogue_delay_list = 0;
6101 current_function_uses_const_pool = 0;
6102 current_function_uses_pic_offset_table = 0;
6103 current_function_cannot_inline = 0;
6105 /* We have not yet needed to make a label to jump to for tail-recursion. */
6106 tail_recursion_label = 0;
6108 /* We haven't had a need to make a save area for ap yet. */
6109 arg_pointer_save_area = 0;
6111 /* No stack slots allocated yet. */
6112 frame_offset = 0;
6114 /* No SAVE_EXPRs in this function yet. */
6115 save_expr_regs = 0;
6117 /* No RTL_EXPRs in this function yet. */
6118 rtl_expr_chain = 0;
6120 /* Set up to allocate temporaries. */
6121 init_temp_slots ();
6123 /* Indicate that we need to distinguish between the return value of the
6124 present function and the return value of a function being called. */
6125 rtx_equal_function_value_matters = 1;
6127 /* Indicate that we have not instantiated virtual registers yet. */
6128 virtuals_instantiated = 0;
6130 /* Indicate that we want CONCATs now. */
6131 generating_concat_p = 1;
6133 /* Indicate we have no need of a frame pointer yet. */
6134 frame_pointer_needed = 0;
6136 /* By default assume not varargs or stdarg. */
6137 current_function_varargs = 0;
6138 current_function_stdarg = 0;
6140 /* We haven't made any trampolines for this function yet. */
6141 trampoline_list = 0;
6143 init_pending_stack_adjust ();
6144 inhibit_defer_pop = 0;
6146 current_function_outgoing_args_size = 0;
6148 if (init_lang_status)
6149 (*init_lang_status) (cfun);
6150 if (init_machine_status)
6151 (*init_machine_status) (cfun);
6154 /* Initialize the rtl expansion mechanism so that we can do simple things
6155 like generate sequences. This is used to provide a context during global
6156 initialization of some passes. */
6157 void
6158 init_dummy_function_start ()
6160 prepare_function_start ();
6163 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6164 and initialize static variables for generating RTL for the statements
6165 of the function. */
6167 void
6168 init_function_start (subr, filename, line)
6169 tree subr;
6170 const char *filename;
6171 int line;
6173 prepare_function_start ();
6175 /* Remember this function for later. */
6176 cfun->next_global = all_functions;
6177 all_functions = cfun;
6179 current_function_name = (*decl_printable_name) (subr, 2);
6180 cfun->decl = subr;
6182 /* Nonzero if this is a nested function that uses a static chain. */
6184 current_function_needs_context
6185 = (decl_function_context (current_function_decl) != 0
6186 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6188 /* Within function body, compute a type's size as soon it is laid out. */
6189 immediate_size_expand++;
6191 /* Prevent ever trying to delete the first instruction of a function.
6192 Also tell final how to output a linenum before the function prologue.
6193 Note linenums could be missing, e.g. when compiling a Java .class file. */
6194 if (line > 0)
6195 emit_line_note (filename, line);
6197 /* Make sure first insn is a note even if we don't want linenums.
6198 This makes sure the first insn will never be deleted.
6199 Also, final expects a note to appear there. */
6200 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6202 /* Set flags used by final.c. */
6203 if (aggregate_value_p (DECL_RESULT (subr)))
6205 #ifdef PCC_STATIC_STRUCT_RETURN
6206 current_function_returns_pcc_struct = 1;
6207 #endif
6208 current_function_returns_struct = 1;
6211 /* Warn if this value is an aggregate type,
6212 regardless of which calling convention we are using for it. */
6213 if (warn_aggregate_return
6214 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6215 warning ("function returns an aggregate");
6217 current_function_returns_pointer
6218 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6221 /* Make sure all values used by the optimization passes have sane
6222 defaults. */
6223 void
6224 init_function_for_compilation ()
6226 reg_renumber = 0;
6228 /* No prologue/epilogue insns yet. */
6229 VARRAY_GROW (prologue, 0);
6230 VARRAY_GROW (epilogue, 0);
6231 VARRAY_GROW (sibcall_epilogue, 0);
6234 /* Indicate that the current function uses extra args
6235 not explicitly mentioned in the argument list in any fashion. */
6237 void
6238 mark_varargs ()
6240 current_function_varargs = 1;
6243 /* Expand a call to __main at the beginning of a possible main function. */
6245 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6246 #undef HAS_INIT_SECTION
6247 #define HAS_INIT_SECTION
6248 #endif
6250 void
6251 expand_main_function ()
6253 #if !defined (HAS_INIT_SECTION)
6254 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6255 VOIDmode, 0);
6256 #endif /* not HAS_INIT_SECTION */
6259 extern struct obstack permanent_obstack;
6261 /* Start the RTL for a new function, and set variables used for
6262 emitting RTL.
6263 SUBR is the FUNCTION_DECL node.
6264 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6265 the function's parameters, which must be run at any return statement. */
6267 void
6268 expand_function_start (subr, parms_have_cleanups)
6269 tree subr;
6270 int parms_have_cleanups;
6272 tree tem;
6273 rtx last_ptr = NULL_RTX;
6275 /* Make sure volatile mem refs aren't considered
6276 valid operands of arithmetic insns. */
6277 init_recog_no_volatile ();
6279 /* Set this before generating any memory accesses. */
6280 current_function_check_memory_usage
6281 = (flag_check_memory_usage
6282 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6284 current_function_instrument_entry_exit
6285 = (flag_instrument_function_entry_exit
6286 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6288 current_function_limit_stack
6289 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6291 /* If function gets a static chain arg, store it in the stack frame.
6292 Do this first, so it gets the first stack slot offset. */
6293 if (current_function_needs_context)
6295 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6297 /* Delay copying static chain if it is not a register to avoid
6298 conflicts with regs used for parameters. */
6299 if (! SMALL_REGISTER_CLASSES
6300 || GET_CODE (static_chain_incoming_rtx) == REG)
6301 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6304 /* If the parameters of this function need cleaning up, get a label
6305 for the beginning of the code which executes those cleanups. This must
6306 be done before doing anything with return_label. */
6307 if (parms_have_cleanups)
6308 cleanup_label = gen_label_rtx ();
6309 else
6310 cleanup_label = 0;
6312 /* Make the label for return statements to jump to, if this machine
6313 does not have a one-instruction return and uses an epilogue,
6314 or if it returns a structure, or if it has parm cleanups. */
6315 #ifdef HAVE_return
6316 if (cleanup_label == 0 && HAVE_return
6317 && ! current_function_instrument_entry_exit
6318 && ! current_function_returns_pcc_struct
6319 && ! (current_function_returns_struct && ! optimize))
6320 return_label = 0;
6321 else
6322 return_label = gen_label_rtx ();
6323 #else
6324 return_label = gen_label_rtx ();
6325 #endif
6327 /* Initialize rtx used to return the value. */
6328 /* Do this before assign_parms so that we copy the struct value address
6329 before any library calls that assign parms might generate. */
6331 /* Decide whether to return the value in memory or in a register. */
6332 if (aggregate_value_p (DECL_RESULT (subr)))
6334 /* Returning something that won't go in a register. */
6335 register rtx value_address = 0;
6337 #ifdef PCC_STATIC_STRUCT_RETURN
6338 if (current_function_returns_pcc_struct)
6340 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6341 value_address = assemble_static_space (size);
6343 else
6344 #endif
6346 /* Expect to be passed the address of a place to store the value.
6347 If it is passed as an argument, assign_parms will take care of
6348 it. */
6349 if (struct_value_incoming_rtx)
6351 value_address = gen_reg_rtx (Pmode);
6352 emit_move_insn (value_address, struct_value_incoming_rtx);
6355 if (value_address)
6357 DECL_RTL (DECL_RESULT (subr))
6358 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6359 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6360 DECL_RESULT (subr), 1);
6363 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6364 /* If return mode is void, this decl rtl should not be used. */
6365 DECL_RTL (DECL_RESULT (subr)) = 0;
6366 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6368 /* If function will end with cleanup code for parms,
6369 compute the return values into a pseudo reg,
6370 which we will copy into the true return register
6371 after the cleanups are done. */
6373 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6375 #ifdef PROMOTE_FUNCTION_RETURN
6376 tree type = TREE_TYPE (DECL_RESULT (subr));
6377 int unsignedp = TREE_UNSIGNED (type);
6379 mode = promote_mode (type, mode, &unsignedp, 1);
6380 #endif
6382 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6384 else
6385 /* Scalar, returned in a register. */
6387 DECL_RTL (DECL_RESULT (subr))
6388 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1);
6390 /* Mark this reg as the function's return value. */
6391 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6393 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6394 /* Needed because we may need to move this to memory
6395 in case it's a named return value whose address is taken. */
6396 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6400 /* Initialize rtx for parameters and local variables.
6401 In some cases this requires emitting insns. */
6403 assign_parms (subr);
6405 /* Copy the static chain now if it wasn't a register. The delay is to
6406 avoid conflicts with the parameter passing registers. */
6408 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6409 if (GET_CODE (static_chain_incoming_rtx) != REG)
6410 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6412 /* The following was moved from init_function_start.
6413 The move is supposed to make sdb output more accurate. */
6414 /* Indicate the beginning of the function body,
6415 as opposed to parm setup. */
6416 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6418 if (GET_CODE (get_last_insn ()) != NOTE)
6419 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6420 parm_birth_insn = get_last_insn ();
6422 context_display = 0;
6423 if (current_function_needs_context)
6425 /* Fetch static chain values for containing functions. */
6426 tem = decl_function_context (current_function_decl);
6427 /* Copy the static chain pointer into a pseudo. If we have
6428 small register classes, copy the value from memory if
6429 static_chain_incoming_rtx is a REG. */
6430 if (tem)
6432 /* If the static chain originally came in a register, put it back
6433 there, then move it out in the next insn. The reason for
6434 this peculiar code is to satisfy function integration. */
6435 if (SMALL_REGISTER_CLASSES
6436 && GET_CODE (static_chain_incoming_rtx) == REG)
6437 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6438 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6441 while (tem)
6443 tree rtlexp = make_node (RTL_EXPR);
6445 RTL_EXPR_RTL (rtlexp) = last_ptr;
6446 context_display = tree_cons (tem, rtlexp, context_display);
6447 tem = decl_function_context (tem);
6448 if (tem == 0)
6449 break;
6450 /* Chain thru stack frames, assuming pointer to next lexical frame
6451 is found at the place we always store it. */
6452 #ifdef FRAME_GROWS_DOWNWARD
6453 last_ptr = plus_constant (last_ptr,
6454 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6455 #endif
6456 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6457 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6458 last_ptr = copy_to_reg (last_ptr);
6460 /* If we are not optimizing, ensure that we know that this
6461 piece of context is live over the entire function. */
6462 if (! optimize)
6463 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6464 save_expr_regs);
6468 if (current_function_instrument_entry_exit)
6470 rtx fun = DECL_RTL (current_function_decl);
6471 if (GET_CODE (fun) == MEM)
6472 fun = XEXP (fun, 0);
6473 else
6474 abort ();
6475 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6476 fun, Pmode,
6477 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6479 hard_frame_pointer_rtx),
6480 Pmode);
6483 #ifdef PROFILE_HOOK
6484 if (profile_flag)
6485 PROFILE_HOOK (profile_label_no);
6486 #endif
6488 /* After the display initializations is where the tail-recursion label
6489 should go, if we end up needing one. Ensure we have a NOTE here
6490 since some things (like trampolines) get placed before this. */
6491 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6493 /* Evaluate now the sizes of any types declared among the arguments. */
6494 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6496 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6497 EXPAND_MEMORY_USE_BAD);
6498 /* Flush the queue in case this parameter declaration has
6499 side-effects. */
6500 emit_queue ();
6503 /* Make sure there is a line number after the function entry setup code. */
6504 force_next_line_note ();
6507 /* Undo the effects of init_dummy_function_start. */
6508 void
6509 expand_dummy_function_end ()
6511 /* End any sequences that failed to be closed due to syntax errors. */
6512 while (in_sequence_p ())
6513 end_sequence ();
6515 /* Outside function body, can't compute type's actual size
6516 until next function's body starts. */
6518 free_after_parsing (cfun);
6519 free_after_compilation (cfun);
6520 free (cfun);
6521 cfun = 0;
6524 /* Call DOIT for each hard register used as a return value from
6525 the current function. */
6527 void
6528 diddle_return_value (doit, arg)
6529 void (*doit) PARAMS ((rtx, void *));
6530 void *arg;
6532 rtx outgoing = current_function_return_rtx;
6533 int pcc;
6535 if (! outgoing)
6536 return;
6538 pcc = (current_function_returns_struct
6539 || current_function_returns_pcc_struct);
6541 if ((GET_CODE (outgoing) == REG
6542 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6543 || pcc)
6545 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6547 /* A PCC-style return returns a pointer to the memory in which
6548 the structure is stored. */
6549 if (pcc)
6550 type = build_pointer_type (type);
6552 #ifdef FUNCTION_OUTGOING_VALUE
6553 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6554 #else
6555 outgoing = FUNCTION_VALUE (type, current_function_decl);
6556 #endif
6557 /* If this is a BLKmode structure being returned in registers, then use
6558 the mode computed in expand_return. */
6559 if (GET_MODE (outgoing) == BLKmode)
6560 PUT_MODE (outgoing, GET_MODE (current_function_return_rtx));
6561 REG_FUNCTION_VALUE_P (outgoing) = 1;
6564 if (GET_CODE (outgoing) == REG)
6565 (*doit) (outgoing, arg);
6566 else if (GET_CODE (outgoing) == PARALLEL)
6568 int i;
6570 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6572 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6574 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6575 (*doit) (x, arg);
6580 static void
6581 do_clobber_return_reg (reg, arg)
6582 rtx reg;
6583 void *arg ATTRIBUTE_UNUSED;
6585 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6588 void
6589 clobber_return_register ()
6591 diddle_return_value (do_clobber_return_reg, NULL);
6594 static void
6595 do_use_return_reg (reg, arg)
6596 rtx reg;
6597 void *arg ATTRIBUTE_UNUSED;
6599 emit_insn (gen_rtx_USE (VOIDmode, reg));
6602 void
6603 use_return_register ()
6605 diddle_return_value (do_use_return_reg, NULL);
6608 /* Generate RTL for the end of the current function.
6609 FILENAME and LINE are the current position in the source file.
6611 It is up to language-specific callers to do cleanups for parameters--
6612 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6614 void
6615 expand_function_end (filename, line, end_bindings)
6616 const char *filename;
6617 int line;
6618 int end_bindings;
6620 tree link;
6622 #ifdef TRAMPOLINE_TEMPLATE
6623 static rtx initial_trampoline;
6624 #endif
6626 finish_expr_for_function ();
6628 #ifdef NON_SAVING_SETJMP
6629 /* Don't put any variables in registers if we call setjmp
6630 on a machine that fails to restore the registers. */
6631 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6633 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6634 setjmp_protect (DECL_INITIAL (current_function_decl));
6636 setjmp_protect_args ();
6638 #endif
6640 /* Save the argument pointer if a save area was made for it. */
6641 if (arg_pointer_save_area)
6643 /* arg_pointer_save_area may not be a valid memory address, so we
6644 have to check it and fix it if necessary. */
6645 rtx seq;
6646 start_sequence ();
6647 emit_move_insn (validize_mem (arg_pointer_save_area),
6648 virtual_incoming_args_rtx);
6649 seq = gen_sequence ();
6650 end_sequence ();
6651 emit_insn_before (seq, tail_recursion_reentry);
6654 /* Initialize any trampolines required by this function. */
6655 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6657 tree function = TREE_PURPOSE (link);
6658 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6659 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6660 #ifdef TRAMPOLINE_TEMPLATE
6661 rtx blktramp;
6662 #endif
6663 rtx seq;
6665 #ifdef TRAMPOLINE_TEMPLATE
6666 /* First make sure this compilation has a template for
6667 initializing trampolines. */
6668 if (initial_trampoline == 0)
6670 initial_trampoline
6671 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6673 ggc_add_rtx_root (&initial_trampoline, 1);
6675 #endif
6677 /* Generate insns to initialize the trampoline. */
6678 start_sequence ();
6679 tramp = round_trampoline_addr (XEXP (tramp, 0));
6680 #ifdef TRAMPOLINE_TEMPLATE
6681 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6682 emit_block_move (blktramp, initial_trampoline,
6683 GEN_INT (TRAMPOLINE_SIZE),
6684 TRAMPOLINE_ALIGNMENT);
6685 #endif
6686 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6687 seq = get_insns ();
6688 end_sequence ();
6690 /* Put those insns at entry to the containing function (this one). */
6691 emit_insns_before (seq, tail_recursion_reentry);
6694 /* If we are doing stack checking and this function makes calls,
6695 do a stack probe at the start of the function to ensure we have enough
6696 space for another stack frame. */
6697 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6699 rtx insn, seq;
6701 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6702 if (GET_CODE (insn) == CALL_INSN)
6704 start_sequence ();
6705 probe_stack_range (STACK_CHECK_PROTECT,
6706 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6707 seq = get_insns ();
6708 end_sequence ();
6709 emit_insns_before (seq, tail_recursion_reentry);
6710 break;
6714 /* Warn about unused parms if extra warnings were specified. */
6715 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6716 warning. WARN_UNUSED_PARAMETER is negative when set by
6717 -Wunused. */
6718 if (warn_unused_parameter > 0
6719 || (warn_unused_parameter < 0 && extra_warnings))
6721 tree decl;
6723 for (decl = DECL_ARGUMENTS (current_function_decl);
6724 decl; decl = TREE_CHAIN (decl))
6725 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6726 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6727 warning_with_decl (decl, "unused parameter `%s'");
6730 /* Delete handlers for nonlocal gotos if nothing uses them. */
6731 if (nonlocal_goto_handler_slots != 0
6732 && ! current_function_has_nonlocal_label)
6733 delete_handlers ();
6735 /* End any sequences that failed to be closed due to syntax errors. */
6736 while (in_sequence_p ())
6737 end_sequence ();
6739 /* Outside function body, can't compute type's actual size
6740 until next function's body starts. */
6741 immediate_size_expand--;
6743 clear_pending_stack_adjust ();
6744 do_pending_stack_adjust ();
6746 /* Mark the end of the function body.
6747 If control reaches this insn, the function can drop through
6748 without returning a value. */
6749 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6751 /* Must mark the last line number note in the function, so that the test
6752 coverage code can avoid counting the last line twice. This just tells
6753 the code to ignore the immediately following line note, since there
6754 already exists a copy of this note somewhere above. This line number
6755 note is still needed for debugging though, so we can't delete it. */
6756 if (flag_test_coverage)
6757 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6759 /* Output a linenumber for the end of the function.
6760 SDB depends on this. */
6761 emit_line_note_force (filename, line);
6763 /* Output the label for the actual return from the function,
6764 if one is expected. This happens either because a function epilogue
6765 is used instead of a return instruction, or because a return was done
6766 with a goto in order to run local cleanups, or because of pcc-style
6767 structure returning. */
6769 if (return_label)
6771 rtx before, after;
6773 /* Before the return label, clobber the return registers so that
6774 they are not propogated live to the rest of the function. This
6775 can only happen with functions that drop through; if there had
6776 been a return statement, there would have either been a return
6777 rtx, or a jump to the return label. */
6779 before = get_last_insn ();
6780 clobber_return_register ();
6781 after = get_last_insn ();
6783 if (before != after)
6784 cfun->x_clobber_return_insn = after;
6786 emit_label (return_label);
6789 /* C++ uses this. */
6790 if (end_bindings)
6791 expand_end_bindings (0, 0, 0);
6793 /* Now handle any leftover exception regions that may have been
6794 created for the parameters. */
6796 rtx last = get_last_insn ();
6797 rtx label;
6799 expand_leftover_cleanups ();
6801 /* If there are any catch_clauses remaining, output them now. */
6802 emit_insns (catch_clauses);
6803 catch_clauses = catch_clauses_last = NULL_RTX;
6804 /* If the above emitted any code, may sure we jump around it. */
6805 if (last != get_last_insn ())
6807 label = gen_label_rtx ();
6808 last = emit_jump_insn_after (gen_jump (label), last);
6809 last = emit_barrier_after (last);
6810 emit_label (label);
6814 if (current_function_instrument_entry_exit)
6816 rtx fun = DECL_RTL (current_function_decl);
6817 if (GET_CODE (fun) == MEM)
6818 fun = XEXP (fun, 0);
6819 else
6820 abort ();
6821 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6822 fun, Pmode,
6823 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6825 hard_frame_pointer_rtx),
6826 Pmode);
6829 /* If we had calls to alloca, and this machine needs
6830 an accurate stack pointer to exit the function,
6831 insert some code to save and restore the stack pointer. */
6832 #ifdef EXIT_IGNORE_STACK
6833 if (! EXIT_IGNORE_STACK)
6834 #endif
6835 if (current_function_calls_alloca)
6837 rtx tem = 0;
6839 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6840 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6843 /* If scalar return value was computed in a pseudo-reg, or was a named
6844 return value that got dumped to the stack, copy that to the hard
6845 return register. */
6846 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0)
6848 tree decl_result = DECL_RESULT (current_function_decl);
6849 rtx decl_rtl = DECL_RTL (decl_result);
6851 if (REG_P (decl_rtl)
6852 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6853 : DECL_REGISTER (decl_result))
6855 rtx real_decl_rtl;
6857 #ifdef FUNCTION_OUTGOING_VALUE
6858 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6859 current_function_decl);
6860 #else
6861 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6862 current_function_decl);
6863 #endif
6864 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6866 /* If this is a BLKmode structure being returned in registers,
6867 then use the mode computed in expand_return. Note that if
6868 decl_rtl is memory, then its mode may have been changed,
6869 but that current_function_return_rtx has not. */
6870 if (GET_MODE (real_decl_rtl) == BLKmode)
6871 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6873 /* If a named return value dumped decl_return to memory, then
6874 we may need to re-do the PROMOTE_MODE signed/unsigned
6875 extension. */
6876 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6878 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6880 #ifdef PROMOTE_FUNCTION_RETURN
6881 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6882 &unsignedp, 1);
6883 #endif
6885 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6887 else
6888 emit_move_insn (real_decl_rtl, decl_rtl);
6890 /* The delay slot scheduler assumes that current_function_return_rtx
6891 holds the hard register containing the return value, not a
6892 temporary pseudo. */
6893 current_function_return_rtx = real_decl_rtl;
6897 /* If returning a structure, arrange to return the address of the value
6898 in a place where debuggers expect to find it.
6900 If returning a structure PCC style,
6901 the caller also depends on this value.
6902 And current_function_returns_pcc_struct is not necessarily set. */
6903 if (current_function_returns_struct
6904 || current_function_returns_pcc_struct)
6906 rtx value_address
6907 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6908 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6909 #ifdef FUNCTION_OUTGOING_VALUE
6910 rtx outgoing
6911 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6912 current_function_decl);
6913 #else
6914 rtx outgoing
6915 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6916 #endif
6918 /* Mark this as a function return value so integrate will delete the
6919 assignment and USE below when inlining this function. */
6920 REG_FUNCTION_VALUE_P (outgoing) = 1;
6922 #ifdef POINTERS_EXTEND_UNSIGNED
6923 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6924 if (GET_MODE (outgoing) != GET_MODE (value_address))
6925 value_address = convert_memory_address (GET_MODE (outgoing),
6926 value_address);
6927 #endif
6929 emit_move_insn (outgoing, value_address);
6931 /* Show return register used to hold result (in this case the address
6932 of the result. */
6933 current_function_return_rtx = outgoing;
6936 /* ??? This should no longer be necessary since stupid is no longer with
6937 us, but there are some parts of the compiler (eg reload_combine, and
6938 sh mach_dep_reorg) that still try and compute their own lifetime info
6939 instead of using the general framework. */
6940 use_return_register ();
6942 /* If this is an implementation of __throw, do what's necessary to
6943 communicate between __builtin_eh_return and the epilogue. */
6944 expand_eh_return ();
6946 /* Output a return insn if we are using one.
6947 Otherwise, let the rtl chain end here, to drop through
6948 into the epilogue. */
6950 #ifdef HAVE_return
6951 if (HAVE_return)
6953 emit_jump_insn (gen_return ());
6954 emit_barrier ();
6956 #endif
6958 /* Fix up any gotos that jumped out to the outermost
6959 binding level of the function.
6960 Must follow emitting RETURN_LABEL. */
6962 /* If you have any cleanups to do at this point,
6963 and they need to create temporary variables,
6964 then you will lose. */
6965 expand_fixups (get_insns ());
6968 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6969 sequence or a single insn). */
6971 static void
6972 record_insns (insns, vecp)
6973 rtx insns;
6974 varray_type *vecp;
6976 if (GET_CODE (insns) == SEQUENCE)
6978 int len = XVECLEN (insns, 0);
6979 int i = VARRAY_SIZE (*vecp);
6981 VARRAY_GROW (*vecp, i + len);
6982 while (--len >= 0)
6984 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6985 ++i;
6988 else
6990 int i = VARRAY_SIZE (*vecp);
6991 VARRAY_GROW (*vecp, i + 1);
6992 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6996 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6998 static int
6999 contains (insn, vec)
7000 rtx insn;
7001 varray_type vec;
7003 register int i, j;
7005 if (GET_CODE (insn) == INSN
7006 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7008 int count = 0;
7009 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7010 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7011 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7012 count++;
7013 return count;
7015 else
7017 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7018 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7019 return 1;
7021 return 0;
7025 prologue_epilogue_contains (insn)
7026 rtx insn;
7028 if (contains (insn, prologue))
7029 return 1;
7030 if (contains (insn, epilogue))
7031 return 1;
7032 return 0;
7036 sibcall_epilogue_contains (insn)
7037 rtx insn;
7039 if (sibcall_epilogue)
7040 return contains (insn, sibcall_epilogue);
7041 return 0;
7044 #ifdef HAVE_return
7045 /* Insert gen_return at the end of block BB. This also means updating
7046 block_for_insn appropriately. */
7048 static void
7049 emit_return_into_block (bb, line_note)
7050 basic_block bb;
7051 rtx line_note;
7053 rtx p, end;
7055 p = NEXT_INSN (bb->end);
7056 end = emit_jump_insn_after (gen_return (), bb->end);
7057 if (line_note)
7058 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7059 NOTE_LINE_NUMBER (line_note), bb->end);
7061 while (1)
7063 set_block_for_insn (p, bb);
7064 if (p == bb->end)
7065 break;
7066 p = PREV_INSN (p);
7068 bb->end = end;
7070 #endif /* HAVE_return */
7072 #ifdef HAVE_epilogue
7074 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7075 to the stack pointer. */
7077 static void
7078 keep_stack_depressed (seq)
7079 rtx seq;
7081 int i;
7082 rtx sp_from_reg = 0;
7083 int sp_modified_unknown = 0;
7085 /* If the epilogue is just a single instruction, it's OK as is */
7087 if (GET_CODE (seq) != SEQUENCE)
7088 return;
7090 /* Scan all insns in SEQ looking for ones that modified the stack
7091 pointer. Record if it modified the stack pointer by copying it
7092 from the frame pointer or if it modified it in some other way.
7093 Then modify any subsequent stack pointer references to take that
7094 into account. We start by only allowing SP to be copied from a
7095 register (presumably FP) and then be subsequently referenced. */
7097 for (i = 0; i < XVECLEN (seq, 0); i++)
7099 rtx insn = XVECEXP (seq, 0, i);
7101 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7102 continue;
7104 if (reg_set_p (stack_pointer_rtx, insn))
7106 rtx set = single_set (insn);
7108 /* If SP is set as a side-effect, we can't support this. */
7109 if (set == 0)
7110 abort ();
7112 if (GET_CODE (SET_SRC (set)) == REG)
7113 sp_from_reg = SET_SRC (set);
7114 else
7115 sp_modified_unknown = 1;
7117 /* Don't allow the SP modification to happen. */
7118 PUT_CODE (insn, NOTE);
7119 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7120 NOTE_SOURCE_FILE (insn) = 0;
7122 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
7124 if (sp_modified_unknown)
7125 abort ();
7127 else if (sp_from_reg != 0)
7128 PATTERN (insn)
7129 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
7133 #endif
7135 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7136 this into place with notes indicating where the prologue ends and where
7137 the epilogue begins. Update the basic block information when possible. */
7139 void
7140 thread_prologue_and_epilogue_insns (f)
7141 rtx f ATTRIBUTE_UNUSED;
7143 int inserted = 0;
7144 edge e;
7145 rtx seq;
7146 #ifdef HAVE_prologue
7147 rtx prologue_end = NULL_RTX;
7148 #endif
7149 #if defined (HAVE_epilogue) || defined(HAVE_return)
7150 rtx epilogue_end = NULL_RTX;
7151 #endif
7153 #ifdef HAVE_prologue
7154 if (HAVE_prologue)
7156 start_sequence ();
7157 seq = gen_prologue ();
7158 emit_insn (seq);
7160 /* Retain a map of the prologue insns. */
7161 if (GET_CODE (seq) != SEQUENCE)
7162 seq = get_insns ();
7163 record_insns (seq, &prologue);
7164 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7166 seq = gen_sequence ();
7167 end_sequence ();
7169 /* If optimization is off, and perhaps in an empty function,
7170 the entry block will have no successors. */
7171 if (ENTRY_BLOCK_PTR->succ)
7173 /* Can't deal with multiple successsors of the entry block. */
7174 if (ENTRY_BLOCK_PTR->succ->succ_next)
7175 abort ();
7177 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7178 inserted = 1;
7180 else
7181 emit_insn_after (seq, f);
7183 #endif
7185 /* If the exit block has no non-fake predecessors, we don't need
7186 an epilogue. */
7187 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7188 if ((e->flags & EDGE_FAKE) == 0)
7189 break;
7190 if (e == NULL)
7191 goto epilogue_done;
7193 #ifdef HAVE_return
7194 if (optimize && HAVE_return)
7196 /* If we're allowed to generate a simple return instruction,
7197 then by definition we don't need a full epilogue. Examine
7198 the block that falls through to EXIT. If it does not
7199 contain any code, examine its predecessors and try to
7200 emit (conditional) return instructions. */
7202 basic_block last;
7203 edge e_next;
7204 rtx label;
7206 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7207 if (e->flags & EDGE_FALLTHRU)
7208 break;
7209 if (e == NULL)
7210 goto epilogue_done;
7211 last = e->src;
7213 /* Verify that there are no active instructions in the last block. */
7214 label = last->end;
7215 while (label && GET_CODE (label) != CODE_LABEL)
7217 if (active_insn_p (label))
7218 break;
7219 label = PREV_INSN (label);
7222 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7224 rtx epilogue_line_note = NULL_RTX;
7226 /* Locate the line number associated with the closing brace,
7227 if we can find one. */
7228 for (seq = get_last_insn ();
7229 seq && ! active_insn_p (seq);
7230 seq = PREV_INSN (seq))
7231 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7233 epilogue_line_note = seq;
7234 break;
7237 for (e = last->pred; e; e = e_next)
7239 basic_block bb = e->src;
7240 rtx jump;
7242 e_next = e->pred_next;
7243 if (bb == ENTRY_BLOCK_PTR)
7244 continue;
7246 jump = bb->end;
7247 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7248 continue;
7250 /* If we have an unconditional jump, we can replace that
7251 with a simple return instruction. */
7252 if (simplejump_p (jump))
7254 emit_return_into_block (bb, epilogue_line_note);
7255 flow_delete_insn (jump);
7258 /* If we have a conditional jump, we can try to replace
7259 that with a conditional return instruction. */
7260 else if (condjump_p (jump))
7262 rtx ret, *loc;
7264 ret = SET_SRC (PATTERN (jump));
7265 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7266 loc = &XEXP (ret, 1);
7267 else
7268 loc = &XEXP (ret, 2);
7269 ret = gen_rtx_RETURN (VOIDmode);
7271 if (! validate_change (jump, loc, ret, 0))
7272 continue;
7273 if (JUMP_LABEL (jump))
7274 LABEL_NUSES (JUMP_LABEL (jump))--;
7276 /* If this block has only one successor, it both jumps
7277 and falls through to the fallthru block, so we can't
7278 delete the edge. */
7279 if (bb->succ->succ_next == NULL)
7280 continue;
7282 else
7283 continue;
7285 /* Fix up the CFG for the successful change we just made. */
7286 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7289 /* Emit a return insn for the exit fallthru block. Whether
7290 this is still reachable will be determined later. */
7292 emit_barrier_after (last->end);
7293 emit_return_into_block (last, epilogue_line_note);
7294 epilogue_end = last->end;
7295 goto epilogue_done;
7298 #endif
7299 #ifdef HAVE_epilogue
7300 if (HAVE_epilogue)
7302 /* Find the edge that falls through to EXIT. Other edges may exist
7303 due to RETURN instructions, but those don't need epilogues.
7304 There really shouldn't be a mixture -- either all should have
7305 been converted or none, however... */
7307 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7308 if (e->flags & EDGE_FALLTHRU)
7309 break;
7310 if (e == NULL)
7311 goto epilogue_done;
7313 start_sequence ();
7314 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7316 seq = gen_epilogue ();
7318 /* If this function returns with the stack depressed, massage
7319 the epilogue to actually do that. */
7320 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7321 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7322 keep_stack_depressed (seq);
7324 emit_jump_insn (seq);
7326 /* Retain a map of the epilogue insns. */
7327 if (GET_CODE (seq) != SEQUENCE)
7328 seq = get_insns ();
7329 record_insns (seq, &epilogue);
7331 seq = gen_sequence ();
7332 end_sequence ();
7334 insert_insn_on_edge (seq, e);
7335 inserted = 1;
7337 #endif
7338 epilogue_done:
7340 if (inserted)
7341 commit_edge_insertions ();
7343 #ifdef HAVE_sibcall_epilogue
7344 /* Emit sibling epilogues before any sibling call sites. */
7345 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7347 basic_block bb = e->src;
7348 rtx insn = bb->end;
7349 rtx i;
7350 rtx newinsn;
7352 if (GET_CODE (insn) != CALL_INSN
7353 || ! SIBLING_CALL_P (insn))
7354 continue;
7356 start_sequence ();
7357 seq = gen_sibcall_epilogue ();
7358 end_sequence ();
7360 i = PREV_INSN (insn);
7361 newinsn = emit_insn_before (seq, insn);
7363 /* Update the UID to basic block map. */
7364 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7365 set_block_for_insn (i, bb);
7367 /* Retain a map of the epilogue insns. Used in life analysis to
7368 avoid getting rid of sibcall epilogue insns. */
7369 record_insns (GET_CODE (seq) == SEQUENCE
7370 ? seq : newinsn, &sibcall_epilogue);
7372 #endif
7374 #ifdef HAVE_prologue
7375 if (prologue_end)
7377 rtx insn, prev;
7379 /* GDB handles `break f' by setting a breakpoint on the first
7380 line note after the prologue. Which means (1) that if
7381 there are line number notes before where we inserted the
7382 prologue we should move them, and (2) we should generate a
7383 note before the end of the first basic block, if there isn't
7384 one already there. */
7386 for (insn = prologue_end; insn; insn = prev)
7388 prev = PREV_INSN (insn);
7389 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7391 /* Note that we cannot reorder the first insn in the
7392 chain, since rest_of_compilation relies on that
7393 remaining constant. */
7394 if (prev == NULL)
7395 break;
7396 reorder_insns (insn, insn, prologue_end);
7400 /* Find the last line number note in the first block. */
7401 for (insn = BASIC_BLOCK (0)->end;
7402 insn != prologue_end;
7403 insn = PREV_INSN (insn))
7404 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7405 break;
7407 /* If we didn't find one, make a copy of the first line number
7408 we run across. */
7409 if (! insn)
7411 for (insn = next_active_insn (prologue_end);
7412 insn;
7413 insn = PREV_INSN (insn))
7414 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7416 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7417 NOTE_LINE_NUMBER (insn),
7418 prologue_end);
7419 break;
7423 #endif
7424 #ifdef HAVE_epilogue
7425 if (epilogue_end)
7427 rtx insn, next;
7429 /* Similarly, move any line notes that appear after the epilogue.
7430 There is no need, however, to be quite so anal about the existance
7431 of such a note. */
7432 for (insn = epilogue_end; insn; insn = next)
7434 next = NEXT_INSN (insn);
7435 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7436 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7439 #endif
7442 /* Reposition the prologue-end and epilogue-begin notes after instruction
7443 scheduling and delayed branch scheduling. */
7445 void
7446 reposition_prologue_and_epilogue_notes (f)
7447 rtx f ATTRIBUTE_UNUSED;
7449 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7450 int len;
7452 if ((len = VARRAY_SIZE (prologue)) > 0)
7454 register rtx insn, note = 0;
7456 /* Scan from the beginning until we reach the last prologue insn.
7457 We apparently can't depend on basic_block_{head,end} after
7458 reorg has run. */
7459 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7461 if (GET_CODE (insn) == NOTE)
7463 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7464 note = insn;
7466 else if ((len -= contains (insn, prologue)) == 0)
7468 rtx next;
7469 /* Find the prologue-end note if we haven't already, and
7470 move it to just after the last prologue insn. */
7471 if (note == 0)
7473 for (note = insn; (note = NEXT_INSN (note));)
7474 if (GET_CODE (note) == NOTE
7475 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7476 break;
7479 next = NEXT_INSN (note);
7481 /* Whether or not we can depend on BLOCK_HEAD,
7482 attempt to keep it up-to-date. */
7483 if (BLOCK_HEAD (0) == note)
7484 BLOCK_HEAD (0) = next;
7486 remove_insn (note);
7487 add_insn_after (note, insn);
7492 if ((len = VARRAY_SIZE (epilogue)) > 0)
7494 register rtx insn, note = 0;
7496 /* Scan from the end until we reach the first epilogue insn.
7497 We apparently can't depend on basic_block_{head,end} after
7498 reorg has run. */
7499 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7501 if (GET_CODE (insn) == NOTE)
7503 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7504 note = insn;
7506 else if ((len -= contains (insn, epilogue)) == 0)
7508 /* Find the epilogue-begin note if we haven't already, and
7509 move it to just before the first epilogue insn. */
7510 if (note == 0)
7512 for (note = insn; (note = PREV_INSN (note));)
7513 if (GET_CODE (note) == NOTE
7514 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7515 break;
7518 /* Whether or not we can depend on BLOCK_HEAD,
7519 attempt to keep it up-to-date. */
7520 if (n_basic_blocks
7521 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7522 BLOCK_HEAD (n_basic_blocks-1) = note;
7524 remove_insn (note);
7525 add_insn_before (note, insn);
7529 #endif /* HAVE_prologue or HAVE_epilogue */
7532 /* Mark T for GC. */
7534 static void
7535 mark_temp_slot (t)
7536 struct temp_slot *t;
7538 while (t)
7540 ggc_mark_rtx (t->slot);
7541 ggc_mark_rtx (t->address);
7542 ggc_mark_tree (t->rtl_expr);
7543 ggc_mark_tree (t->type);
7545 t = t->next;
7549 /* Mark P for GC. */
7551 static void
7552 mark_function_status (p)
7553 struct function *p;
7555 int i;
7556 rtx *r;
7558 if (p == 0)
7559 return;
7561 ggc_mark_rtx (p->arg_offset_rtx);
7563 if (p->x_parm_reg_stack_loc)
7564 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7565 i > 0; --i, ++r)
7566 ggc_mark_rtx (*r);
7568 ggc_mark_rtx (p->return_rtx);
7569 ggc_mark_rtx (p->x_cleanup_label);
7570 ggc_mark_rtx (p->x_return_label);
7571 ggc_mark_rtx (p->x_save_expr_regs);
7572 ggc_mark_rtx (p->x_stack_slot_list);
7573 ggc_mark_rtx (p->x_parm_birth_insn);
7574 ggc_mark_rtx (p->x_tail_recursion_label);
7575 ggc_mark_rtx (p->x_tail_recursion_reentry);
7576 ggc_mark_rtx (p->internal_arg_pointer);
7577 ggc_mark_rtx (p->x_arg_pointer_save_area);
7578 ggc_mark_tree (p->x_rtl_expr_chain);
7579 ggc_mark_rtx (p->x_last_parm_insn);
7580 ggc_mark_tree (p->x_context_display);
7581 ggc_mark_tree (p->x_trampoline_list);
7582 ggc_mark_rtx (p->epilogue_delay_list);
7583 ggc_mark_rtx (p->x_clobber_return_insn);
7585 mark_temp_slot (p->x_temp_slots);
7588 struct var_refs_queue *q = p->fixup_var_refs_queue;
7589 while (q)
7591 ggc_mark_rtx (q->modified);
7592 q = q->next;
7596 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7597 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7598 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7599 ggc_mark_tree (p->x_nonlocal_labels);
7602 /* Mark the function chain ARG (which is really a struct function **)
7603 for GC. */
7605 static void
7606 mark_function_chain (arg)
7607 void *arg;
7609 struct function *f = *(struct function **) arg;
7611 for (; f; f = f->next_global)
7613 ggc_mark_tree (f->decl);
7615 mark_function_status (f);
7616 mark_eh_status (f->eh);
7617 mark_stmt_status (f->stmt);
7618 mark_expr_status (f->expr);
7619 mark_emit_status (f->emit);
7620 mark_varasm_status (f->varasm);
7622 if (mark_machine_status)
7623 (*mark_machine_status) (f);
7624 if (mark_lang_status)
7625 (*mark_lang_status) (f);
7627 if (f->original_arg_vector)
7628 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7629 if (f->original_decl_initial)
7630 ggc_mark_tree (f->original_decl_initial);
7634 /* Called once, at initialization, to initialize function.c. */
7636 void
7637 init_function_once ()
7639 ggc_add_root (&all_functions, 1, sizeof all_functions,
7640 mark_function_chain);
7642 VARRAY_INT_INIT (prologue, 0, "prologue");
7643 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7644 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");