2001-02-14 Tom Tromey <tromey@redhat.com>
[official-gcc.git] / gcc / explow.c
blob719421f6cd6e70a25b69e262918cb68f043f56ff
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "hard-reg-set.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "insn-flags.h"
36 #include "insn-codes.h"
38 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
39 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
40 #endif
42 static rtx break_out_memory_refs PARAMS ((rtx));
43 static void emit_stack_probe PARAMS ((rtx));
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 HOST_WIDE_INT
49 trunc_int_for_mode (c, mode)
50 HOST_WIDE_INT c;
51 enum machine_mode mode;
53 int width = GET_MODE_BITSIZE (mode);
55 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
56 if (mode == BImode)
57 return c & 1 ? STORE_FLAG_VALUE : 0;
59 /* Sign-extend for the requested mode. */
61 if (width < HOST_BITS_PER_WIDE_INT)
63 HOST_WIDE_INT sign = 1;
64 sign <<= width - 1;
65 c &= (sign << 1) - 1;
66 c ^= sign;
67 c -= sign;
70 return c;
73 /* Return an rtx for the sum of X and the integer C.
75 This function should be used via the `plus_constant' macro. */
77 rtx
78 plus_constant_wide (x, c)
79 register rtx x;
80 register HOST_WIDE_INT c;
82 register RTX_CODE code;
83 register enum machine_mode mode;
84 register rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 switch (code)
96 case CONST_INT:
97 return GEN_INT (INTVAL (x) + c);
99 case CONST_DOUBLE:
101 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
102 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
103 unsigned HOST_WIDE_INT l2 = c;
104 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
105 unsigned HOST_WIDE_INT lv;
106 HOST_WIDE_INT hv;
108 add_double (l1, h1, l2, h2, &lv, &hv);
110 return immed_double_const (lv, hv, VOIDmode);
113 case MEM:
114 /* If this is a reference to the constant pool, try replacing it with
115 a reference to a new constant. If the resulting address isn't
116 valid, don't return it because we have no way to validize it. */
117 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
118 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 = force_const_mem (GET_MODE (x),
122 plus_constant (get_pool_constant (XEXP (x, 0)),
123 c));
124 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125 return tem;
127 break;
129 case CONST:
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
132 x = XEXP (x, 0);
133 all_constant = 1;
134 goto restart;
136 case SYMBOL_REF:
137 case LABEL_REF:
138 all_constant = 1;
139 break;
141 case PLUS:
142 /* The interesting case is adding the integer to a sum.
143 Look for constant term in the sum and combine
144 with C. For an integer constant term, we make a combined
145 integer. For a constant term that is not an explicit integer,
146 we cannot really combine, but group them together anyway.
148 Restart or use a recursive call in case the remaining operand is
149 something that we handle specially, such as a SYMBOL_REF.
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
154 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
156 c += INTVAL (XEXP (x, 1));
158 if (GET_MODE (x) != VOIDmode)
159 c = trunc_int_for_mode (c, GET_MODE (x));
161 x = XEXP (x, 0);
162 goto restart;
164 else if (CONSTANT_P (XEXP (x, 0)))
166 x = gen_rtx_PLUS (mode,
167 plus_constant (XEXP (x, 0), c),
168 XEXP (x, 1));
169 c = 0;
171 else if (CONSTANT_P (XEXP (x, 1)))
173 x = gen_rtx_PLUS (mode,
174 XEXP (x, 0),
175 plus_constant (XEXP (x, 1), c));
176 c = 0;
178 break;
180 default:
181 break;
184 if (c != 0)
185 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
187 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
188 return x;
189 else if (all_constant)
190 return gen_rtx_CONST (mode, x);
191 else
192 return x;
195 /* This is the same as `plus_constant', except that it handles LO_SUM.
197 This function should be used via the `plus_constant_for_output' macro. */
200 plus_constant_for_output_wide (x, c)
201 register rtx x;
202 register HOST_WIDE_INT c;
204 register enum machine_mode mode = GET_MODE (x);
206 if (GET_CODE (x) == LO_SUM)
207 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
208 plus_constant_for_output (XEXP (x, 1), c));
210 else
211 return plus_constant (x, c);
214 /* If X is a sum, return a new sum like X but lacking any constant terms.
215 Add all the removed constant terms into *CONSTPTR.
216 X itself is not altered. The result != X if and only if
217 it is not isomorphic to X. */
220 eliminate_constant_term (x, constptr)
221 rtx x;
222 rtx *constptr;
224 register rtx x0, x1;
225 rtx tem;
227 if (GET_CODE (x) != PLUS)
228 return x;
230 /* First handle constants appearing at this level explicitly. */
231 if (GET_CODE (XEXP (x, 1)) == CONST_INT
232 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
233 XEXP (x, 1)))
234 && GET_CODE (tem) == CONST_INT)
236 *constptr = tem;
237 return eliminate_constant_term (XEXP (x, 0), constptr);
240 tem = const0_rtx;
241 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
242 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
243 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
244 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
245 *constptr, tem))
246 && GET_CODE (tem) == CONST_INT)
248 *constptr = tem;
249 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
252 return x;
255 /* Returns the insn that next references REG after INSN, or 0
256 if REG is clobbered before next referenced or we cannot find
257 an insn that references REG in a straight-line piece of code. */
260 find_next_ref (reg, insn)
261 rtx reg;
262 rtx insn;
264 rtx next;
266 for (insn = NEXT_INSN (insn); insn; insn = next)
268 next = NEXT_INSN (insn);
269 if (GET_CODE (insn) == NOTE)
270 continue;
271 if (GET_CODE (insn) == CODE_LABEL
272 || GET_CODE (insn) == BARRIER)
273 return 0;
274 if (GET_CODE (insn) == INSN
275 || GET_CODE (insn) == JUMP_INSN
276 || GET_CODE (insn) == CALL_INSN)
278 if (reg_set_p (reg, insn))
279 return 0;
280 if (reg_mentioned_p (reg, PATTERN (insn)))
281 return insn;
282 if (GET_CODE (insn) == JUMP_INSN)
284 if (any_uncondjump_p (insn))
285 next = JUMP_LABEL (insn);
286 else
287 return 0;
289 if (GET_CODE (insn) == CALL_INSN
290 && REGNO (reg) < FIRST_PSEUDO_REGISTER
291 && call_used_regs[REGNO (reg)])
292 return 0;
294 else
295 abort ();
297 return 0;
300 /* Return an rtx for the size in bytes of the value of EXP. */
303 expr_size (exp)
304 tree exp;
306 tree size = size_in_bytes (TREE_TYPE (exp));
308 if (TREE_CODE (size) != INTEGER_CST
309 && contains_placeholder_p (size))
310 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
312 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
313 EXPAND_MEMORY_USE_BAD);
316 /* Return a copy of X in which all memory references
317 and all constants that involve symbol refs
318 have been replaced with new temporary registers.
319 Also emit code to load the memory locations and constants
320 into those registers.
322 If X contains no such constants or memory references,
323 X itself (not a copy) is returned.
325 If a constant is found in the address that is not a legitimate constant
326 in an insn, it is left alone in the hope that it might be valid in the
327 address.
329 X may contain no arithmetic except addition, subtraction and multiplication.
330 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
332 static rtx
333 break_out_memory_refs (x)
334 register rtx x;
336 if (GET_CODE (x) == MEM
337 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
338 && GET_MODE (x) != VOIDmode))
339 x = force_reg (GET_MODE (x), x);
340 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
341 || GET_CODE (x) == MULT)
343 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
344 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
346 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
347 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
350 return x;
353 #ifdef POINTERS_EXTEND_UNSIGNED
355 /* Given X, a memory address in ptr_mode, convert it to an address
356 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
357 the fact that pointers are not allowed to overflow by commuting arithmetic
358 operations over conversions so that address arithmetic insns can be
359 used. */
362 convert_memory_address (to_mode, x)
363 enum machine_mode to_mode;
364 rtx x;
366 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
367 rtx temp;
369 /* Here we handle some special cases. If none of them apply, fall through
370 to the default case. */
371 switch (GET_CODE (x))
373 case CONST_INT:
374 case CONST_DOUBLE:
375 return x;
377 case SUBREG:
378 if (GET_MODE (SUBREG_REG (x)) == to_mode)
379 return SUBREG_REG (x);
380 break;
382 case LABEL_REF:
383 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
384 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
385 return temp;
387 case SYMBOL_REF:
388 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
389 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
390 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
391 STRING_POOL_ADDRESS_P (temp) = STRING_POOL_ADDRESS_P (x);
392 return temp;
394 case CONST:
395 return gen_rtx_CONST (to_mode,
396 convert_memory_address (to_mode, XEXP (x, 0)));
398 case PLUS:
399 case MULT:
400 /* For addition the second operand is a small constant, we can safely
401 permute the conversion and addition operation. We can always safely
402 permute them if we are making the address narrower. In addition,
403 always permute the operations if this is a constant. */
404 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
405 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
406 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
407 || CONSTANT_P (XEXP (x, 0)))))
408 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
409 convert_memory_address (to_mode, XEXP (x, 0)),
410 convert_memory_address (to_mode, XEXP (x, 1)));
411 break;
413 default:
414 break;
417 return convert_modes (to_mode, from_mode,
418 x, POINTERS_EXTEND_UNSIGNED);
420 #endif
422 /* Given a memory address or facsimile X, construct a new address,
423 currently equivalent, that is stable: future stores won't change it.
425 X must be composed of constants, register and memory references
426 combined with addition, subtraction and multiplication:
427 in other words, just what you can get from expand_expr if sum_ok is 1.
429 Works by making copies of all regs and memory locations used
430 by X and combining them the same way X does.
431 You could also stabilize the reference to this address
432 by copying the address to a register with copy_to_reg;
433 but then you wouldn't get indexed addressing in the reference. */
436 copy_all_regs (x)
437 register rtx x;
439 if (GET_CODE (x) == REG)
441 if (REGNO (x) != FRAME_POINTER_REGNUM
442 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
443 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
444 #endif
446 x = copy_to_reg (x);
448 else if (GET_CODE (x) == MEM)
449 x = copy_to_reg (x);
450 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
451 || GET_CODE (x) == MULT)
453 register rtx op0 = copy_all_regs (XEXP (x, 0));
454 register rtx op1 = copy_all_regs (XEXP (x, 1));
455 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
456 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
458 return x;
461 /* Return something equivalent to X but valid as a memory address
462 for something of mode MODE. When X is not itself valid, this
463 works by copying X or subexpressions of it into registers. */
466 memory_address (mode, x)
467 enum machine_mode mode;
468 register rtx x;
470 register rtx oldx = x;
472 if (GET_CODE (x) == ADDRESSOF)
473 return x;
475 #ifdef POINTERS_EXTEND_UNSIGNED
476 if (GET_MODE (x) == ptr_mode)
477 x = convert_memory_address (Pmode, x);
478 #endif
480 /* By passing constant addresses thru registers
481 we get a chance to cse them. */
482 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
483 x = force_reg (Pmode, x);
485 /* Accept a QUEUED that refers to a REG
486 even though that isn't a valid address.
487 On attempting to put this in an insn we will call protect_from_queue
488 which will turn it into a REG, which is valid. */
489 else if (GET_CODE (x) == QUEUED
490 && GET_CODE (QUEUED_VAR (x)) == REG)
493 /* We get better cse by rejecting indirect addressing at this stage.
494 Let the combiner create indirect addresses where appropriate.
495 For now, generate the code so that the subexpressions useful to share
496 are visible. But not if cse won't be done! */
497 else
499 if (! cse_not_expected && GET_CODE (x) != REG)
500 x = break_out_memory_refs (x);
502 /* At this point, any valid address is accepted. */
503 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
505 /* If it was valid before but breaking out memory refs invalidated it,
506 use it the old way. */
507 if (memory_address_p (mode, oldx))
508 goto win2;
510 /* Perform machine-dependent transformations on X
511 in certain cases. This is not necessary since the code
512 below can handle all possible cases, but machine-dependent
513 transformations can make better code. */
514 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
516 /* PLUS and MULT can appear in special ways
517 as the result of attempts to make an address usable for indexing.
518 Usually they are dealt with by calling force_operand, below.
519 But a sum containing constant terms is special
520 if removing them makes the sum a valid address:
521 then we generate that address in a register
522 and index off of it. We do this because it often makes
523 shorter code, and because the addresses thus generated
524 in registers often become common subexpressions. */
525 if (GET_CODE (x) == PLUS)
527 rtx constant_term = const0_rtx;
528 rtx y = eliminate_constant_term (x, &constant_term);
529 if (constant_term == const0_rtx
530 || ! memory_address_p (mode, y))
531 x = force_operand (x, NULL_RTX);
532 else
534 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
535 if (! memory_address_p (mode, y))
536 x = force_operand (x, NULL_RTX);
537 else
538 x = y;
542 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
543 x = force_operand (x, NULL_RTX);
545 /* If we have a register that's an invalid address,
546 it must be a hard reg of the wrong class. Copy it to a pseudo. */
547 else if (GET_CODE (x) == REG)
548 x = copy_to_reg (x);
550 /* Last resort: copy the value to a register, since
551 the register is a valid address. */
552 else
553 x = force_reg (Pmode, x);
555 goto done;
557 win2:
558 x = oldx;
559 win:
560 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
561 /* Don't copy an addr via a reg if it is one of our stack slots. */
562 && ! (GET_CODE (x) == PLUS
563 && (XEXP (x, 0) == virtual_stack_vars_rtx
564 || XEXP (x, 0) == virtual_incoming_args_rtx)))
566 if (general_operand (x, Pmode))
567 x = force_reg (Pmode, x);
568 else
569 x = force_operand (x, NULL_RTX);
573 done:
575 /* If we didn't change the address, we are done. Otherwise, mark
576 a reg as a pointer if we have REG or REG + CONST_INT. */
577 if (oldx == x)
578 return x;
579 else if (GET_CODE (x) == REG)
580 mark_reg_pointer (x, BITS_PER_UNIT);
581 else if (GET_CODE (x) == PLUS
582 && GET_CODE (XEXP (x, 0)) == REG
583 && GET_CODE (XEXP (x, 1)) == CONST_INT)
584 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
586 /* OLDX may have been the address on a temporary. Update the address
587 to indicate that X is now used. */
588 update_temp_slot_address (oldx, x);
590 return x;
593 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
596 memory_address_noforce (mode, x)
597 enum machine_mode mode;
598 rtx x;
600 int ambient_force_addr = flag_force_addr;
601 rtx val;
603 flag_force_addr = 0;
604 val = memory_address (mode, x);
605 flag_force_addr = ambient_force_addr;
606 return val;
609 /* Convert a mem ref into one with a valid memory address.
610 Pass through anything else unchanged. */
613 validize_mem (ref)
614 rtx ref;
616 if (GET_CODE (ref) != MEM)
617 return ref;
618 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
619 return ref;
620 /* Don't alter REF itself, since that is probably a stack slot. */
621 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
624 /* Given REF, either a MEM or a REG, and T, either the type of X or
625 the expression corresponding to REF, set RTX_UNCHANGING_P if
626 appropriate. */
628 void
629 maybe_set_unchanging (ref, t)
630 rtx ref;
631 tree t;
633 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
634 initialization is only executed once, or whose initializer always
635 has the same value. Currently we simplify this to PARM_DECLs in the
636 first case, and decls with TREE_CONSTANT initializers in the second. */
637 if ((TREE_READONLY (t) && DECL_P (t)
638 && (TREE_CODE (t) == PARM_DECL
639 || DECL_INITIAL (t) == NULL_TREE
640 || TREE_CONSTANT (DECL_INITIAL (t))))
641 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
642 RTX_UNCHANGING_P (ref) = 1;
645 /* Given REF, a MEM, and T, either the type of X or the expression
646 corresponding to REF, set the memory attributes. OBJECTP is nonzero
647 if we are making a new object of this type. */
649 void
650 set_mem_attributes (ref, t, objectp)
651 rtx ref;
652 tree t;
653 int objectp;
655 tree type;
657 /* It can happen that type_for_mode was given a mode for which there
658 is no language-level type. In which case it returns NULL, which
659 we can see here. */
660 if (t == NULL_TREE)
661 return;
663 type = TYPE_P (t) ? t : TREE_TYPE (t);
665 /* Get the alias set from the expression or type (perhaps using a
666 front-end routine) and then copy bits from the type. */
668 /* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY (type)
669 here, because, in C and C++, the fact that a location is accessed
670 through a const expression does not mean that the value there can
671 never change. */
672 MEM_ALIAS_SET (ref) = get_alias_set (t);
673 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
674 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
676 /* If we are making an object of this type, we know that it is a scalar if
677 the type is not an aggregate. */
678 if (objectp && ! AGGREGATE_TYPE_P (type))
679 MEM_SCALAR_P (ref) = 1;
681 /* If T is a type, this is all we can do. Otherwise, we may be able
682 to deduce some more information about the expression. */
683 if (TYPE_P (t))
684 return;
686 maybe_set_unchanging (ref, t);
687 if (TREE_THIS_VOLATILE (t))
688 MEM_VOLATILE_P (ref) = 1;
690 /* Now see if we can say more about whether it's an aggregate or
691 scalar. If we already know it's an aggregate, don't bother. */
692 if (MEM_IN_STRUCT_P (ref))
693 return;
695 /* Now remove any NOPs: they don't change what the underlying object is.
696 Likewise for SAVE_EXPR. */
697 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
698 || TREE_CODE (t) == NON_LVALUE_EXPR || TREE_CODE (t) == SAVE_EXPR)
699 t = TREE_OPERAND (t, 0);
701 /* Since we already know the type isn't an aggregate, if this is a decl,
702 it must be a scalar. Or if it is a reference into an aggregate,
703 this is part of an aggregate. Otherwise we don't know. */
704 if (DECL_P (t))
705 MEM_SCALAR_P (ref) = 1;
706 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
707 || TREE_CODE (t) == BIT_FIELD_REF)
708 MEM_IN_STRUCT_P (ref) = 1;
711 /* Return a modified copy of X with its memory address copied
712 into a temporary register to protect it from side effects.
713 If X is not a MEM, it is returned unchanged (and not copied).
714 Perhaps even if it is a MEM, if there is no need to change it. */
717 stabilize (x)
718 rtx x;
720 register rtx addr;
722 if (GET_CODE (x) != MEM)
723 return x;
725 addr = XEXP (x, 0);
726 if (rtx_unstable_p (addr))
728 rtx temp = force_reg (Pmode, copy_all_regs (addr));
729 rtx mem = gen_rtx_MEM (GET_MODE (x), temp);
731 MEM_COPY_ATTRIBUTES (mem, x);
732 return mem;
734 return x;
737 /* Copy the value or contents of X to a new temp reg and return that reg. */
740 copy_to_reg (x)
741 rtx x;
743 register rtx temp = gen_reg_rtx (GET_MODE (x));
745 /* If not an operand, must be an address with PLUS and MULT so
746 do the computation. */
747 if (! general_operand (x, VOIDmode))
748 x = force_operand (x, temp);
750 if (x != temp)
751 emit_move_insn (temp, x);
753 return temp;
756 /* Like copy_to_reg but always give the new register mode Pmode
757 in case X is a constant. */
760 copy_addr_to_reg (x)
761 rtx x;
763 return copy_to_mode_reg (Pmode, x);
766 /* Like copy_to_reg but always give the new register mode MODE
767 in case X is a constant. */
770 copy_to_mode_reg (mode, x)
771 enum machine_mode mode;
772 rtx x;
774 register rtx temp = gen_reg_rtx (mode);
776 /* If not an operand, must be an address with PLUS and MULT so
777 do the computation. */
778 if (! general_operand (x, VOIDmode))
779 x = force_operand (x, temp);
781 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
782 abort ();
783 if (x != temp)
784 emit_move_insn (temp, x);
785 return temp;
788 /* Load X into a register if it is not already one.
789 Use mode MODE for the register.
790 X should be valid for mode MODE, but it may be a constant which
791 is valid for all integer modes; that's why caller must specify MODE.
793 The caller must not alter the value in the register we return,
794 since we mark it as a "constant" register. */
797 force_reg (mode, x)
798 enum machine_mode mode;
799 rtx x;
801 register rtx temp, insn, set;
803 if (GET_CODE (x) == REG)
804 return x;
806 temp = gen_reg_rtx (mode);
808 if (! general_operand (x, mode))
809 x = force_operand (x, NULL_RTX);
811 insn = emit_move_insn (temp, x);
813 /* Let optimizers know that TEMP's value never changes
814 and that X can be substituted for it. Don't get confused
815 if INSN set something else (such as a SUBREG of TEMP). */
816 if (CONSTANT_P (x)
817 && (set = single_set (insn)) != 0
818 && SET_DEST (set) == temp)
820 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
822 if (note)
823 XEXP (note, 0) = x;
824 else
825 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
827 return temp;
830 /* If X is a memory ref, copy its contents to a new temp reg and return
831 that reg. Otherwise, return X. */
834 force_not_mem (x)
835 rtx x;
837 register rtx temp;
839 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
840 return x;
842 temp = gen_reg_rtx (GET_MODE (x));
843 emit_move_insn (temp, x);
844 return temp;
847 /* Copy X to TARGET (if it's nonzero and a reg)
848 or to a new temp reg and return that reg.
849 MODE is the mode to use for X in case it is a constant. */
852 copy_to_suggested_reg (x, target, mode)
853 rtx x, target;
854 enum machine_mode mode;
856 register rtx temp;
858 if (target && GET_CODE (target) == REG)
859 temp = target;
860 else
861 temp = gen_reg_rtx (mode);
863 emit_move_insn (temp, x);
864 return temp;
867 /* Return the mode to use to store a scalar of TYPE and MODE.
868 PUNSIGNEDP points to the signedness of the type and may be adjusted
869 to show what signedness to use on extension operations.
871 FOR_CALL is non-zero if this call is promoting args for a call. */
873 enum machine_mode
874 promote_mode (type, mode, punsignedp, for_call)
875 tree type;
876 enum machine_mode mode;
877 int *punsignedp;
878 int for_call ATTRIBUTE_UNUSED;
880 enum tree_code code = TREE_CODE (type);
881 int unsignedp = *punsignedp;
883 #ifdef PROMOTE_FOR_CALL_ONLY
884 if (! for_call)
885 return mode;
886 #endif
888 switch (code)
890 #ifdef PROMOTE_MODE
891 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
892 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
893 PROMOTE_MODE (mode, unsignedp, type);
894 break;
895 #endif
897 #ifdef POINTERS_EXTEND_UNSIGNED
898 case REFERENCE_TYPE:
899 case POINTER_TYPE:
900 mode = Pmode;
901 unsignedp = POINTERS_EXTEND_UNSIGNED;
902 break;
903 #endif
905 default:
906 break;
909 *punsignedp = unsignedp;
910 return mode;
913 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
914 This pops when ADJUST is positive. ADJUST need not be constant. */
916 void
917 adjust_stack (adjust)
918 rtx adjust;
920 rtx temp;
921 adjust = protect_from_queue (adjust, 0);
923 if (adjust == const0_rtx)
924 return;
926 /* We expect all variable sized adjustments to be multiple of
927 PREFERRED_STACK_BOUNDARY. */
928 if (GET_CODE (adjust) == CONST_INT)
929 stack_pointer_delta -= INTVAL (adjust);
931 temp = expand_binop (Pmode,
932 #ifdef STACK_GROWS_DOWNWARD
933 add_optab,
934 #else
935 sub_optab,
936 #endif
937 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
938 OPTAB_LIB_WIDEN);
940 if (temp != stack_pointer_rtx)
941 emit_move_insn (stack_pointer_rtx, temp);
944 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
945 This pushes when ADJUST is positive. ADJUST need not be constant. */
947 void
948 anti_adjust_stack (adjust)
949 rtx adjust;
951 rtx temp;
952 adjust = protect_from_queue (adjust, 0);
954 if (adjust == const0_rtx)
955 return;
957 /* We expect all variable sized adjustments to be multiple of
958 PREFERRED_STACK_BOUNDARY. */
959 if (GET_CODE (adjust) == CONST_INT)
960 stack_pointer_delta += INTVAL (adjust);
962 temp = expand_binop (Pmode,
963 #ifdef STACK_GROWS_DOWNWARD
964 sub_optab,
965 #else
966 add_optab,
967 #endif
968 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
969 OPTAB_LIB_WIDEN);
971 if (temp != stack_pointer_rtx)
972 emit_move_insn (stack_pointer_rtx, temp);
975 /* Round the size of a block to be pushed up to the boundary required
976 by this machine. SIZE is the desired size, which need not be constant. */
979 round_push (size)
980 rtx size;
982 #ifdef PREFERRED_STACK_BOUNDARY
983 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
984 if (align == 1)
985 return size;
986 if (GET_CODE (size) == CONST_INT)
988 int new = (INTVAL (size) + align - 1) / align * align;
989 if (INTVAL (size) != new)
990 size = GEN_INT (new);
992 else
994 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
995 but we know it can't. So add ourselves and then do
996 TRUNC_DIV_EXPR. */
997 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
998 NULL_RTX, 1, OPTAB_LIB_WIDEN);
999 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
1000 NULL_RTX, 1);
1001 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
1003 #endif /* PREFERRED_STACK_BOUNDARY */
1004 return size;
1007 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1008 to a previously-created save area. If no save area has been allocated,
1009 this function will allocate one. If a save area is specified, it
1010 must be of the proper mode.
1012 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
1013 are emitted at the current position. */
1015 void
1016 emit_stack_save (save_level, psave, after)
1017 enum save_level save_level;
1018 rtx *psave;
1019 rtx after;
1021 rtx sa = *psave;
1022 /* The default is that we use a move insn and save in a Pmode object. */
1023 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1024 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1026 /* See if this machine has anything special to do for this kind of save. */
1027 switch (save_level)
1029 #ifdef HAVE_save_stack_block
1030 case SAVE_BLOCK:
1031 if (HAVE_save_stack_block)
1032 fcn = gen_save_stack_block;
1033 break;
1034 #endif
1035 #ifdef HAVE_save_stack_function
1036 case SAVE_FUNCTION:
1037 if (HAVE_save_stack_function)
1038 fcn = gen_save_stack_function;
1039 break;
1040 #endif
1041 #ifdef HAVE_save_stack_nonlocal
1042 case SAVE_NONLOCAL:
1043 if (HAVE_save_stack_nonlocal)
1044 fcn = gen_save_stack_nonlocal;
1045 break;
1046 #endif
1047 default:
1048 break;
1051 /* If there is no save area and we have to allocate one, do so. Otherwise
1052 verify the save area is the proper mode. */
1054 if (sa == 0)
1056 if (mode != VOIDmode)
1058 if (save_level == SAVE_NONLOCAL)
1059 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1060 else
1061 *psave = sa = gen_reg_rtx (mode);
1064 else
1066 if (mode == VOIDmode || GET_MODE (sa) != mode)
1067 abort ();
1070 if (after)
1072 rtx seq;
1074 start_sequence ();
1075 /* We must validize inside the sequence, to ensure that any instructions
1076 created by the validize call also get moved to the right place. */
1077 if (sa != 0)
1078 sa = validize_mem (sa);
1079 emit_insn (fcn (sa, stack_pointer_rtx));
1080 seq = gen_sequence ();
1081 end_sequence ();
1082 emit_insn_after (seq, after);
1084 else
1086 if (sa != 0)
1087 sa = validize_mem (sa);
1088 emit_insn (fcn (sa, stack_pointer_rtx));
1092 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1093 area made by emit_stack_save. If it is zero, we have nothing to do.
1095 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1096 current position. */
1098 void
1099 emit_stack_restore (save_level, sa, after)
1100 enum save_level save_level;
1101 rtx after;
1102 rtx sa;
1104 /* The default is that we use a move insn. */
1105 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1107 /* See if this machine has anything special to do for this kind of save. */
1108 switch (save_level)
1110 #ifdef HAVE_restore_stack_block
1111 case SAVE_BLOCK:
1112 if (HAVE_restore_stack_block)
1113 fcn = gen_restore_stack_block;
1114 break;
1115 #endif
1116 #ifdef HAVE_restore_stack_function
1117 case SAVE_FUNCTION:
1118 if (HAVE_restore_stack_function)
1119 fcn = gen_restore_stack_function;
1120 break;
1121 #endif
1122 #ifdef HAVE_restore_stack_nonlocal
1123 case SAVE_NONLOCAL:
1124 if (HAVE_restore_stack_nonlocal)
1125 fcn = gen_restore_stack_nonlocal;
1126 break;
1127 #endif
1128 default:
1129 break;
1132 if (sa != 0)
1133 sa = validize_mem (sa);
1135 if (after)
1137 rtx seq;
1139 start_sequence ();
1140 emit_insn (fcn (stack_pointer_rtx, sa));
1141 seq = gen_sequence ();
1142 end_sequence ();
1143 emit_insn_after (seq, after);
1145 else
1146 emit_insn (fcn (stack_pointer_rtx, sa));
1149 #ifdef SETJMP_VIA_SAVE_AREA
1150 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1151 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1152 platforms, the dynamic stack space used can corrupt the original
1153 frame, thus causing a crash if a longjmp unwinds to it. */
1155 void
1156 optimize_save_area_alloca (insns)
1157 rtx insns;
1159 rtx insn;
1161 for (insn = insns; insn; insn = NEXT_INSN(insn))
1163 rtx note;
1165 if (GET_CODE (insn) != INSN)
1166 continue;
1168 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1170 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1171 continue;
1173 if (!current_function_calls_setjmp)
1175 rtx pat = PATTERN (insn);
1177 /* If we do not see the note in a pattern matching
1178 these precise characteristics, we did something
1179 entirely wrong in allocate_dynamic_stack_space.
1181 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1182 was defined on a machine where stacks grow towards higher
1183 addresses.
1185 Right now only supported port with stack that grow upward
1186 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1187 if (GET_CODE (pat) != SET
1188 || SET_DEST (pat) != stack_pointer_rtx
1189 || GET_CODE (SET_SRC (pat)) != MINUS
1190 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1191 abort ();
1193 /* This will now be transformed into a (set REG REG)
1194 so we can just blow away all the other notes. */
1195 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1196 REG_NOTES (insn) = NULL_RTX;
1198 else
1200 /* setjmp was called, we must remove the REG_SAVE_AREA
1201 note so that later passes do not get confused by its
1202 presence. */
1203 if (note == REG_NOTES (insn))
1205 REG_NOTES (insn) = XEXP (note, 1);
1207 else
1209 rtx srch;
1211 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1212 if (XEXP (srch, 1) == note)
1213 break;
1215 if (srch == NULL_RTX)
1216 abort();
1218 XEXP (srch, 1) = XEXP (note, 1);
1221 /* Once we've seen the note of interest, we need not look at
1222 the rest of them. */
1223 break;
1227 #endif /* SETJMP_VIA_SAVE_AREA */
1229 /* Return an rtx representing the address of an area of memory dynamically
1230 pushed on the stack. This region of memory is always aligned to
1231 a multiple of BIGGEST_ALIGNMENT.
1233 Any required stack pointer alignment is preserved.
1235 SIZE is an rtx representing the size of the area.
1236 TARGET is a place in which the address can be placed.
1238 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1241 allocate_dynamic_stack_space (size, target, known_align)
1242 rtx size;
1243 rtx target;
1244 int known_align;
1246 #ifdef SETJMP_VIA_SAVE_AREA
1247 rtx setjmpless_size = NULL_RTX;
1248 #endif
1250 /* If we're asking for zero bytes, it doesn't matter what we point
1251 to since we can't dereference it. But return a reasonable
1252 address anyway. */
1253 if (size == const0_rtx)
1254 return virtual_stack_dynamic_rtx;
1256 /* Otherwise, show we're calling alloca or equivalent. */
1257 current_function_calls_alloca = 1;
1259 /* Ensure the size is in the proper mode. */
1260 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1261 size = convert_to_mode (Pmode, size, 1);
1263 /* We can't attempt to minimize alignment necessary, because we don't
1264 know the final value of preferred_stack_boundary yet while executing
1265 this code. */
1266 #ifdef PREFERRED_STACK_BOUNDARY
1267 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1268 #endif
1270 /* We will need to ensure that the address we return is aligned to
1271 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1272 always know its final value at this point in the compilation (it
1273 might depend on the size of the outgoing parameter lists, for
1274 example), so we must align the value to be returned in that case.
1275 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1276 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1277 We must also do an alignment operation on the returned value if
1278 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1280 If we have to align, we must leave space in SIZE for the hole
1281 that might result from the alignment operation. */
1283 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (PREFERRED_STACK_BOUNDARY)
1284 #define MUST_ALIGN 1
1285 #else
1286 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1287 #endif
1289 if (MUST_ALIGN)
1290 size
1291 = force_operand (plus_constant (size,
1292 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1293 NULL_RTX);
1295 #ifdef SETJMP_VIA_SAVE_AREA
1296 /* If setjmp restores regs from a save area in the stack frame,
1297 avoid clobbering the reg save area. Note that the offset of
1298 virtual_incoming_args_rtx includes the preallocated stack args space.
1299 It would be no problem to clobber that, but it's on the wrong side
1300 of the old save area. */
1302 rtx dynamic_offset
1303 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1304 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1306 if (!current_function_calls_setjmp)
1308 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1310 /* See optimize_save_area_alloca to understand what is being
1311 set up here. */
1313 #if !defined(PREFERRED_STACK_BOUNDARY) || !defined(MUST_ALIGN) || (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1314 /* If anyone creates a target with these characteristics, let them
1315 know that our optimization cannot work correctly in such a case. */
1316 abort ();
1317 #endif
1319 if (GET_CODE (size) == CONST_INT)
1321 HOST_WIDE_INT new = INTVAL (size) / align * align;
1323 if (INTVAL (size) != new)
1324 setjmpless_size = GEN_INT (new);
1325 else
1326 setjmpless_size = size;
1328 else
1330 /* Since we know overflow is not possible, we avoid using
1331 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1332 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1333 GEN_INT (align), NULL_RTX, 1);
1334 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1335 GEN_INT (align), NULL_RTX, 1);
1337 /* Our optimization works based upon being able to perform a simple
1338 transformation of this RTL into a (set REG REG) so make sure things
1339 did in fact end up in a REG. */
1340 if (!register_operand (setjmpless_size, Pmode))
1341 setjmpless_size = force_reg (Pmode, setjmpless_size);
1344 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1345 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1347 #endif /* SETJMP_VIA_SAVE_AREA */
1349 /* Round the size to a multiple of the required stack alignment.
1350 Since the stack if presumed to be rounded before this allocation,
1351 this will maintain the required alignment.
1353 If the stack grows downward, we could save an insn by subtracting
1354 SIZE from the stack pointer and then aligning the stack pointer.
1355 The problem with this is that the stack pointer may be unaligned
1356 between the execution of the subtraction and alignment insns and
1357 some machines do not allow this. Even on those that do, some
1358 signal handlers malfunction if a signal should occur between those
1359 insns. Since this is an extremely rare event, we have no reliable
1360 way of knowing which systems have this problem. So we avoid even
1361 momentarily mis-aligning the stack. */
1363 #ifdef PREFERRED_STACK_BOUNDARY
1364 /* If we added a variable amount to SIZE,
1365 we can no longer assume it is aligned. */
1366 #if !defined (SETJMP_VIA_SAVE_AREA)
1367 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1368 #endif
1369 size = round_push (size);
1370 #endif
1372 do_pending_stack_adjust ();
1374 /* We ought to be called always on the toplevel and stack ought to be aligned
1375 propertly. */
1376 #ifdef PREFERRED_STACK_BOUNDARY
1377 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1378 abort ();
1379 #endif
1381 /* If needed, check that we have the required amount of stack. Take into
1382 account what has already been checked. */
1383 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1384 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1386 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1387 if (target == 0 || GET_CODE (target) != REG
1388 || REGNO (target) < FIRST_PSEUDO_REGISTER
1389 || GET_MODE (target) != Pmode)
1390 target = gen_reg_rtx (Pmode);
1392 mark_reg_pointer (target, known_align);
1394 /* Perform the required allocation from the stack. Some systems do
1395 this differently than simply incrementing/decrementing from the
1396 stack pointer, such as acquiring the space by calling malloc(). */
1397 #ifdef HAVE_allocate_stack
1398 if (HAVE_allocate_stack)
1400 enum machine_mode mode = STACK_SIZE_MODE;
1401 insn_operand_predicate_fn pred;
1403 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[0].predicate;
1404 if (pred && ! ((*pred) (target, Pmode)))
1405 #ifdef POINTERS_EXTEND_UNSIGNED
1406 target = convert_memory_address (Pmode, target);
1407 #else
1408 target = copy_to_mode_reg (Pmode, target);
1409 #endif
1411 if (mode == VOIDmode)
1412 mode = Pmode;
1414 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1415 if (pred && ! ((*pred) (size, mode)))
1416 size = copy_to_mode_reg (mode, size);
1418 emit_insn (gen_allocate_stack (target, size));
1420 else
1421 #endif
1423 #ifndef STACK_GROWS_DOWNWARD
1424 emit_move_insn (target, virtual_stack_dynamic_rtx);
1425 #endif
1427 /* Check stack bounds if necessary. */
1428 if (current_function_limit_stack)
1430 rtx available;
1431 rtx space_available = gen_label_rtx ();
1432 #ifdef STACK_GROWS_DOWNWARD
1433 available = expand_binop (Pmode, sub_optab,
1434 stack_pointer_rtx, stack_limit_rtx,
1435 NULL_RTX, 1, OPTAB_WIDEN);
1436 #else
1437 available = expand_binop (Pmode, sub_optab,
1438 stack_limit_rtx, stack_pointer_rtx,
1439 NULL_RTX, 1, OPTAB_WIDEN);
1440 #endif
1441 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1442 0, space_available);
1443 #ifdef HAVE_trap
1444 if (HAVE_trap)
1445 emit_insn (gen_trap ());
1446 else
1447 #endif
1448 error ("stack limits not supported on this target");
1449 emit_barrier ();
1450 emit_label (space_available);
1453 anti_adjust_stack (size);
1454 #ifdef SETJMP_VIA_SAVE_AREA
1455 if (setjmpless_size != NULL_RTX)
1457 rtx note_target = get_last_insn ();
1459 REG_NOTES (note_target)
1460 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1461 REG_NOTES (note_target));
1463 #endif /* SETJMP_VIA_SAVE_AREA */
1465 #ifdef STACK_GROWS_DOWNWARD
1466 emit_move_insn (target, virtual_stack_dynamic_rtx);
1467 #endif
1470 if (MUST_ALIGN)
1472 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1473 but we know it can't. So add ourselves and then do
1474 TRUNC_DIV_EXPR. */
1475 target = expand_binop (Pmode, add_optab, target,
1476 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1477 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1478 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1479 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1480 NULL_RTX, 1);
1481 target = expand_mult (Pmode, target,
1482 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1483 NULL_RTX, 1);
1486 /* Some systems require a particular insn to refer to the stack
1487 to make the pages exist. */
1488 #ifdef HAVE_probe
1489 if (HAVE_probe)
1490 emit_insn (gen_probe ());
1491 #endif
1493 /* Record the new stack level for nonlocal gotos. */
1494 if (nonlocal_goto_handler_slots != 0)
1495 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1497 return target;
1500 /* A front end may want to override GCC's stack checking by providing a
1501 run-time routine to call to check the stack, so provide a mechanism for
1502 calling that routine. */
1504 static rtx stack_check_libfunc;
1506 void
1507 set_stack_check_libfunc (libfunc)
1508 rtx libfunc;
1510 stack_check_libfunc = libfunc;
1513 /* Emit one stack probe at ADDRESS, an address within the stack. */
1515 static void
1516 emit_stack_probe (address)
1517 rtx address;
1519 rtx memref = gen_rtx_MEM (word_mode, address);
1521 MEM_VOLATILE_P (memref) = 1;
1523 if (STACK_CHECK_PROBE_LOAD)
1524 emit_move_insn (gen_reg_rtx (word_mode), memref);
1525 else
1526 emit_move_insn (memref, const0_rtx);
1529 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1530 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1531 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1532 subtract from the stack. If SIZE is constant, this is done
1533 with a fixed number of probes. Otherwise, we must make a loop. */
1535 #ifdef STACK_GROWS_DOWNWARD
1536 #define STACK_GROW_OP MINUS
1537 #else
1538 #define STACK_GROW_OP PLUS
1539 #endif
1541 void
1542 probe_stack_range (first, size)
1543 HOST_WIDE_INT first;
1544 rtx size;
1546 /* First see if the front end has set up a function for us to call to
1547 check the stack. */
1548 if (stack_check_libfunc != 0)
1550 rtx addr = memory_address (QImode,
1551 gen_rtx (STACK_GROW_OP, Pmode,
1552 stack_pointer_rtx,
1553 plus_constant (size, first)));
1555 #ifdef POINTERS_EXTEND_UNSIGNED
1556 if (GET_MODE (addr) != ptr_mode)
1557 addr = convert_memory_address (ptr_mode, addr);
1558 #endif
1560 emit_library_call (stack_check_libfunc, 0, VOIDmode, 1, addr,
1561 ptr_mode);
1564 /* Next see if we have an insn to check the stack. Use it if so. */
1565 #ifdef HAVE_check_stack
1566 else if (HAVE_check_stack)
1568 insn_operand_predicate_fn pred;
1569 rtx last_addr
1570 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1571 stack_pointer_rtx,
1572 plus_constant (size, first)),
1573 NULL_RTX);
1575 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1576 if (pred && ! ((*pred) (last_addr, Pmode)))
1577 last_addr = copy_to_mode_reg (Pmode, last_addr);
1579 emit_insn (gen_check_stack (last_addr));
1581 #endif
1583 /* If we have to generate explicit probes, see if we have a constant
1584 small number of them to generate. If so, that's the easy case. */
1585 else if (GET_CODE (size) == CONST_INT
1586 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1588 HOST_WIDE_INT offset;
1590 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1591 for values of N from 1 until it exceeds LAST. If only one
1592 probe is needed, this will not generate any code. Then probe
1593 at LAST. */
1594 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1595 offset < INTVAL (size);
1596 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1597 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1598 stack_pointer_rtx,
1599 GEN_INT (offset)));
1601 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1602 stack_pointer_rtx,
1603 plus_constant (size, first)));
1606 /* In the variable case, do the same as above, but in a loop. We emit loop
1607 notes so that loop optimization can be done. */
1608 else
1610 rtx test_addr
1611 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1612 stack_pointer_rtx,
1613 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1614 NULL_RTX);
1615 rtx last_addr
1616 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1617 stack_pointer_rtx,
1618 plus_constant (size, first)),
1619 NULL_RTX);
1620 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1621 rtx loop_lab = gen_label_rtx ();
1622 rtx test_lab = gen_label_rtx ();
1623 rtx end_lab = gen_label_rtx ();
1624 rtx temp;
1626 if (GET_CODE (test_addr) != REG
1627 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1628 test_addr = force_reg (Pmode, test_addr);
1630 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1631 emit_jump (test_lab);
1633 emit_label (loop_lab);
1634 emit_stack_probe (test_addr);
1636 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1638 #ifdef STACK_GROWS_DOWNWARD
1639 #define CMP_OPCODE GTU
1640 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1641 1, OPTAB_WIDEN);
1642 #else
1643 #define CMP_OPCODE LTU
1644 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1645 1, OPTAB_WIDEN);
1646 #endif
1648 if (temp != test_addr)
1649 abort ();
1651 emit_label (test_lab);
1652 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1653 NULL_RTX, Pmode, 1, 0, loop_lab);
1654 emit_jump (end_lab);
1655 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1656 emit_label (end_lab);
1658 emit_stack_probe (last_addr);
1662 /* Return an rtx representing the register or memory location
1663 in which a scalar value of data type VALTYPE
1664 was returned by a function call to function FUNC.
1665 FUNC is a FUNCTION_DECL node if the precise function is known,
1666 otherwise 0.
1667 OUTGOING is 1 if on a machine with register windows this function
1668 should return the register in which the function will put its result
1669 and 0 otherwise. */
1672 hard_function_value (valtype, func, outgoing)
1673 tree valtype;
1674 tree func ATTRIBUTE_UNUSED;
1675 int outgoing ATTRIBUTE_UNUSED;
1677 rtx val;
1679 #ifdef FUNCTION_OUTGOING_VALUE
1680 if (outgoing)
1681 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1682 else
1683 #endif
1684 val = FUNCTION_VALUE (valtype, func);
1686 if (GET_CODE (val) == REG
1687 && GET_MODE (val) == BLKmode)
1689 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1690 enum machine_mode tmpmode;
1692 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1693 tmpmode != VOIDmode;
1694 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1696 /* Have we found a large enough mode? */
1697 if (GET_MODE_SIZE (tmpmode) >= bytes)
1698 break;
1701 /* No suitable mode found. */
1702 if (tmpmode == VOIDmode)
1703 abort ();
1705 PUT_MODE (val, tmpmode);
1707 return val;
1710 /* Return an rtx representing the register or memory location
1711 in which a scalar value of mode MODE was returned by a library call. */
1714 hard_libcall_value (mode)
1715 enum machine_mode mode;
1717 return LIBCALL_VALUE (mode);
1720 /* Look up the tree code for a given rtx code
1721 to provide the arithmetic operation for REAL_ARITHMETIC.
1722 The function returns an int because the caller may not know
1723 what `enum tree_code' means. */
1726 rtx_to_tree_code (code)
1727 enum rtx_code code;
1729 enum tree_code tcode;
1731 switch (code)
1733 case PLUS:
1734 tcode = PLUS_EXPR;
1735 break;
1736 case MINUS:
1737 tcode = MINUS_EXPR;
1738 break;
1739 case MULT:
1740 tcode = MULT_EXPR;
1741 break;
1742 case DIV:
1743 tcode = RDIV_EXPR;
1744 break;
1745 case SMIN:
1746 tcode = MIN_EXPR;
1747 break;
1748 case SMAX:
1749 tcode = MAX_EXPR;
1750 break;
1751 default:
1752 tcode = LAST_AND_UNUSED_TREE_CODE;
1753 break;
1755 return ((int) tcode);