Daily bump.
[official-gcc.git] / gcc / sel-sched-ir.c
blob67484dd77d9fc86c6012a736e9bbfbb791b7464c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 /* We don't have to use it except for sel_print_insn. */
51 #include "sel-sched-dump.h"
53 /* A vector holding bb info for whole scheduling pass. */
54 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
56 /* A vector holding bb info. */
57 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
59 /* A pool for allocating all lists. */
60 alloc_pool sched_lists_pool;
62 /* This contains information about successors for compute_av_set. */
63 struct succs_info current_succs;
65 /* Data structure to describe interaction with the generic scheduler utils. */
66 static struct common_sched_info_def sel_common_sched_info;
68 /* The loop nest being pipelined. */
69 struct loop *current_loop_nest;
71 /* LOOP_NESTS is a vector containing the corresponding loop nest for
72 each region. */
73 static VEC(loop_p, heap) *loop_nests = NULL;
75 /* Saves blocks already in loop regions, indexed by bb->index. */
76 static sbitmap bbs_in_loop_rgns = NULL;
78 /* CFG hooks that are saved before changing create_basic_block hook. */
79 static struct cfg_hooks orig_cfg_hooks;
82 /* Array containing reverse topological index of function basic blocks,
83 indexed by BB->INDEX. */
84 static int *rev_top_order_index = NULL;
86 /* Length of the above array. */
87 static int rev_top_order_index_len = -1;
89 /* A regset pool structure. */
90 static struct
92 /* The stack to which regsets are returned. */
93 regset *v;
95 /* Its pointer. */
96 int n;
98 /* Its size. */
99 int s;
101 /* In VV we save all generated regsets so that, when destructing the
102 pool, we can compare it with V and check that every regset was returned
103 back to pool. */
104 regset *vv;
106 /* The pointer of VV stack. */
107 int nn;
109 /* Its size. */
110 int ss;
112 /* The difference between allocated and returned regsets. */
113 int diff;
114 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
116 /* This represents the nop pool. */
117 static struct
119 /* The vector which holds previously emitted nops. */
120 insn_t *v;
122 /* Its pointer. */
123 int n;
125 /* Its size. */
126 int s;
127 } nop_pool = { NULL, 0, 0 };
129 /* The pool for basic block notes. */
130 static rtx_vec_t bb_note_pool;
132 /* A NOP pattern used to emit placeholder insns. */
133 rtx nop_pattern = NULL_RTX;
134 /* A special instruction that resides in EXIT_BLOCK.
135 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
136 rtx exit_insn = NULL_RTX;
138 /* TRUE if while scheduling current region, which is loop, its preheader
139 was removed. */
140 bool preheader_removed = false;
143 /* Forward static declarations. */
144 static void fence_clear (fence_t);
146 static void deps_init_id (idata_t, insn_t, bool);
147 static void init_id_from_df (idata_t, insn_t, bool);
148 static expr_t set_insn_init (expr_t, vinsn_t, int);
150 static void cfg_preds (basic_block, insn_t **, int *);
151 static void prepare_insn_expr (insn_t, int);
152 static void free_history_vect (VEC (expr_history_def, heap) **);
154 static void move_bb_info (basic_block, basic_block);
155 static void remove_empty_bb (basic_block, bool);
156 static void sel_merge_blocks (basic_block, basic_block);
157 static void sel_remove_loop_preheader (void);
158 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
160 static bool insn_is_the_only_one_in_bb_p (insn_t);
161 static void create_initial_data_sets (basic_block);
163 static void free_av_set (basic_block);
164 static void invalidate_av_set (basic_block);
165 static void extend_insn_data (void);
166 static void sel_init_new_insn (insn_t, int);
167 static void finish_insns (void);
169 /* Various list functions. */
171 /* Copy an instruction list L. */
172 ilist_t
173 ilist_copy (ilist_t l)
175 ilist_t head = NULL, *tailp = &head;
177 while (l)
179 ilist_add (tailp, ILIST_INSN (l));
180 tailp = &ILIST_NEXT (*tailp);
181 l = ILIST_NEXT (l);
184 return head;
187 /* Invert an instruction list L. */
188 ilist_t
189 ilist_invert (ilist_t l)
191 ilist_t res = NULL;
193 while (l)
195 ilist_add (&res, ILIST_INSN (l));
196 l = ILIST_NEXT (l);
199 return res;
202 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
203 void
204 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
206 bnd_t bnd;
208 _list_add (lp);
209 bnd = BLIST_BND (*lp);
211 BND_TO (bnd) = to;
212 BND_PTR (bnd) = ptr;
213 BND_AV (bnd) = NULL;
214 BND_AV1 (bnd) = NULL;
215 BND_DC (bnd) = dc;
218 /* Remove the list note pointed to by LP. */
219 void
220 blist_remove (blist_t *lp)
222 bnd_t b = BLIST_BND (*lp);
224 av_set_clear (&BND_AV (b));
225 av_set_clear (&BND_AV1 (b));
226 ilist_clear (&BND_PTR (b));
228 _list_remove (lp);
231 /* Init a fence tail L. */
232 void
233 flist_tail_init (flist_tail_t l)
235 FLIST_TAIL_HEAD (l) = NULL;
236 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
239 /* Try to find fence corresponding to INSN in L. */
240 fence_t
241 flist_lookup (flist_t l, insn_t insn)
243 while (l)
245 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
246 return FLIST_FENCE (l);
248 l = FLIST_NEXT (l);
251 return NULL;
254 /* Init the fields of F before running fill_insns. */
255 static void
256 init_fence_for_scheduling (fence_t f)
258 FENCE_BNDS (f) = NULL;
259 FENCE_PROCESSED_P (f) = false;
260 FENCE_SCHEDULED_P (f) = false;
263 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
264 static void
265 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
266 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
267 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
268 int cycle, int cycle_issued_insns, int issue_more,
269 bool starts_cycle_p, bool after_stall_p)
271 fence_t f;
273 _list_add (lp);
274 f = FLIST_FENCE (*lp);
276 FENCE_INSN (f) = insn;
278 gcc_assert (state != NULL);
279 FENCE_STATE (f) = state;
281 FENCE_CYCLE (f) = cycle;
282 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
283 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
284 FENCE_AFTER_STALL_P (f) = after_stall_p;
286 gcc_assert (dc != NULL);
287 FENCE_DC (f) = dc;
289 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
290 FENCE_TC (f) = tc;
292 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
293 FENCE_ISSUE_MORE (f) = issue_more;
294 FENCE_EXECUTING_INSNS (f) = executing_insns;
295 FENCE_READY_TICKS (f) = ready_ticks;
296 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
297 FENCE_SCHED_NEXT (f) = sched_next;
299 init_fence_for_scheduling (f);
302 /* Remove the head node of the list pointed to by LP. */
303 static void
304 flist_remove (flist_t *lp)
306 if (FENCE_INSN (FLIST_FENCE (*lp)))
307 fence_clear (FLIST_FENCE (*lp));
308 _list_remove (lp);
311 /* Clear the fence list pointed to by LP. */
312 void
313 flist_clear (flist_t *lp)
315 while (*lp)
316 flist_remove (lp);
319 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
320 void
321 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
323 def_t d;
325 _list_add (dl);
326 d = DEF_LIST_DEF (*dl);
328 d->orig_insn = original_insn;
329 d->crosses_call = crosses_call;
333 /* Functions to work with target contexts. */
335 /* Bulk target context. It is convenient for debugging purposes to ensure
336 that there are no uninitialized (null) target contexts. */
337 static tc_t bulk_tc = (tc_t) 1;
339 /* Target hooks wrappers. In the future we can provide some default
340 implementations for them. */
342 /* Allocate a store for the target context. */
343 static tc_t
344 alloc_target_context (void)
346 return (targetm.sched.alloc_sched_context
347 ? targetm.sched.alloc_sched_context () : bulk_tc);
350 /* Init target context TC.
351 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352 Overwise, copy current backend context to TC. */
353 static void
354 init_target_context (tc_t tc, bool clean_p)
356 if (targetm.sched.init_sched_context)
357 targetm.sched.init_sched_context (tc, clean_p);
360 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
361 int init_target_context (). */
362 tc_t
363 create_target_context (bool clean_p)
365 tc_t tc = alloc_target_context ();
367 init_target_context (tc, clean_p);
368 return tc;
371 /* Copy TC to the current backend context. */
372 void
373 set_target_context (tc_t tc)
375 if (targetm.sched.set_sched_context)
376 targetm.sched.set_sched_context (tc);
379 /* TC is about to be destroyed. Free any internal data. */
380 static void
381 clear_target_context (tc_t tc)
383 if (targetm.sched.clear_sched_context)
384 targetm.sched.clear_sched_context (tc);
387 /* Clear and free it. */
388 static void
389 delete_target_context (tc_t tc)
391 clear_target_context (tc);
393 if (targetm.sched.free_sched_context)
394 targetm.sched.free_sched_context (tc);
397 /* Make a copy of FROM in TO.
398 NB: May be this should be a hook. */
399 static void
400 copy_target_context (tc_t to, tc_t from)
402 tc_t tmp = create_target_context (false);
404 set_target_context (from);
405 init_target_context (to, false);
407 set_target_context (tmp);
408 delete_target_context (tmp);
411 /* Create a copy of TC. */
412 static tc_t
413 create_copy_of_target_context (tc_t tc)
415 tc_t copy = alloc_target_context ();
417 copy_target_context (copy, tc);
419 return copy;
422 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
423 is the same as in init_target_context (). */
424 void
425 reset_target_context (tc_t tc, bool clean_p)
427 clear_target_context (tc);
428 init_target_context (tc, clean_p);
431 /* Functions to work with dependence contexts.
432 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
433 context. It accumulates information about processed insns to decide if
434 current insn is dependent on the processed ones. */
436 /* Make a copy of FROM in TO. */
437 static void
438 copy_deps_context (deps_t to, deps_t from)
440 init_deps (to, false);
441 deps_join (to, from);
444 /* Allocate store for dep context. */
445 static deps_t
446 alloc_deps_context (void)
448 return XNEW (struct deps_desc);
451 /* Allocate and initialize dep context. */
452 static deps_t
453 create_deps_context (void)
455 deps_t dc = alloc_deps_context ();
457 init_deps (dc, false);
458 return dc;
461 /* Create a copy of FROM. */
462 static deps_t
463 create_copy_of_deps_context (deps_t from)
465 deps_t to = alloc_deps_context ();
467 copy_deps_context (to, from);
468 return to;
471 /* Clean up internal data of DC. */
472 static void
473 clear_deps_context (deps_t dc)
475 free_deps (dc);
478 /* Clear and free DC. */
479 static void
480 delete_deps_context (deps_t dc)
482 clear_deps_context (dc);
483 free (dc);
486 /* Clear and init DC. */
487 static void
488 reset_deps_context (deps_t dc)
490 clear_deps_context (dc);
491 init_deps (dc, false);
494 /* This structure describes the dependence analysis hooks for advancing
495 dependence context. */
496 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
498 NULL,
500 NULL, /* start_insn */
501 NULL, /* finish_insn */
502 NULL, /* start_lhs */
503 NULL, /* finish_lhs */
504 NULL, /* start_rhs */
505 NULL, /* finish_rhs */
506 haifa_note_reg_set,
507 haifa_note_reg_clobber,
508 haifa_note_reg_use,
509 NULL, /* note_mem_dep */
510 NULL, /* note_dep */
512 0, 0, 0
515 /* Process INSN and add its impact on DC. */
516 void
517 advance_deps_context (deps_t dc, insn_t insn)
519 sched_deps_info = &advance_deps_context_sched_deps_info;
520 deps_analyze_insn (dc, insn);
524 /* Functions to work with DFA states. */
526 /* Allocate store for a DFA state. */
527 static state_t
528 state_alloc (void)
530 return xmalloc (dfa_state_size);
533 /* Allocate and initialize DFA state. */
534 static state_t
535 state_create (void)
537 state_t state = state_alloc ();
539 state_reset (state);
540 advance_state (state);
541 return state;
544 /* Free DFA state. */
545 static void
546 state_free (state_t state)
548 free (state);
551 /* Make a copy of FROM in TO. */
552 static void
553 state_copy (state_t to, state_t from)
555 memcpy (to, from, dfa_state_size);
558 /* Create a copy of FROM. */
559 static state_t
560 state_create_copy (state_t from)
562 state_t to = state_alloc ();
564 state_copy (to, from);
565 return to;
569 /* Functions to work with fences. */
571 /* Clear the fence. */
572 static void
573 fence_clear (fence_t f)
575 state_t s = FENCE_STATE (f);
576 deps_t dc = FENCE_DC (f);
577 void *tc = FENCE_TC (f);
579 ilist_clear (&FENCE_BNDS (f));
581 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
582 || (s == NULL && dc == NULL && tc == NULL));
584 if (s != NULL)
585 free (s);
587 if (dc != NULL)
588 delete_deps_context (dc);
590 if (tc != NULL)
591 delete_target_context (tc);
592 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
593 free (FENCE_READY_TICKS (f));
594 FENCE_READY_TICKS (f) = NULL;
597 /* Init a list of fences with successors of OLD_FENCE. */
598 void
599 init_fences (insn_t old_fence)
601 insn_t succ;
602 succ_iterator si;
603 bool first = true;
604 int ready_ticks_size = get_max_uid () + 1;
606 FOR_EACH_SUCC_1 (succ, si, old_fence,
607 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
610 if (first)
611 first = false;
612 else
613 gcc_assert (flag_sel_sched_pipelining_outer_loops);
615 flist_add (&fences, succ,
616 state_create (),
617 create_deps_context () /* dc */,
618 create_target_context (true) /* tc */,
619 NULL_RTX /* last_scheduled_insn */,
620 NULL, /* executing_insns */
621 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
622 ready_ticks_size,
623 NULL_RTX /* sched_next */,
624 1 /* cycle */, 0 /* cycle_issued_insns */,
625 issue_rate, /* issue_more */
626 1 /* starts_cycle_p */, 0 /* after_stall_p */);
630 /* Merges two fences (filling fields of fence F with resulting values) by
631 following rules: 1) state, target context and last scheduled insn are
632 propagated from fallthrough edge if it is available;
633 2) deps context and cycle is propagated from more probable edge;
634 3) all other fields are set to corresponding constant values.
636 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
637 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
638 and AFTER_STALL_P are the corresponding fields of the second fence. */
639 static void
640 merge_fences (fence_t f, insn_t insn,
641 state_t state, deps_t dc, void *tc,
642 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
643 int *ready_ticks, int ready_ticks_size,
644 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
646 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
648 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
649 && !sched_next && !FENCE_SCHED_NEXT (f));
651 /* Check if we can decide which path fences came.
652 If we can't (or don't want to) - reset all. */
653 if (last_scheduled_insn == NULL
654 || last_scheduled_insn_old == NULL
655 /* This is a case when INSN is reachable on several paths from
656 one insn (this can happen when pipelining of outer loops is on and
657 there are two edges: one going around of inner loop and the other -
658 right through it; in such case just reset everything). */
659 || last_scheduled_insn == last_scheduled_insn_old)
661 state_reset (FENCE_STATE (f));
662 state_free (state);
664 reset_deps_context (FENCE_DC (f));
665 delete_deps_context (dc);
667 reset_target_context (FENCE_TC (f), true);
668 delete_target_context (tc);
670 if (cycle > FENCE_CYCLE (f))
671 FENCE_CYCLE (f) = cycle;
673 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
674 FENCE_ISSUE_MORE (f) = issue_rate;
675 VEC_free (rtx, gc, executing_insns);
676 free (ready_ticks);
677 if (FENCE_EXECUTING_INSNS (f))
678 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
679 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
680 if (FENCE_READY_TICKS (f))
681 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
683 else
685 edge edge_old = NULL, edge_new = NULL;
686 edge candidate;
687 succ_iterator si;
688 insn_t succ;
690 /* Find fallthrough edge. */
691 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
692 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
694 if (!candidate
695 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
696 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
698 /* No fallthrough edge leading to basic block of INSN. */
699 state_reset (FENCE_STATE (f));
700 state_free (state);
702 reset_target_context (FENCE_TC (f), true);
703 delete_target_context (tc);
705 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
706 FENCE_ISSUE_MORE (f) = issue_rate;
708 else
709 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
711 /* Would be weird if same insn is successor of several fallthrough
712 edges. */
713 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
714 != BLOCK_FOR_INSN (last_scheduled_insn_old));
716 state_free (FENCE_STATE (f));
717 FENCE_STATE (f) = state;
719 delete_target_context (FENCE_TC (f));
720 FENCE_TC (f) = tc;
722 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
723 FENCE_ISSUE_MORE (f) = issue_more;
725 else
727 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
728 state_free (state);
729 delete_target_context (tc);
731 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
732 != BLOCK_FOR_INSN (last_scheduled_insn));
735 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
736 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
737 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
739 if (succ == insn)
741 /* No same successor allowed from several edges. */
742 gcc_assert (!edge_old);
743 edge_old = si.e1;
746 /* Find edge of second predecessor (last_scheduled_insn->insn). */
747 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
748 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
750 if (succ == insn)
752 /* No same successor allowed from several edges. */
753 gcc_assert (!edge_new);
754 edge_new = si.e1;
758 /* Check if we can choose most probable predecessor. */
759 if (edge_old == NULL || edge_new == NULL)
761 reset_deps_context (FENCE_DC (f));
762 delete_deps_context (dc);
763 VEC_free (rtx, gc, executing_insns);
764 free (ready_ticks);
766 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
767 if (FENCE_EXECUTING_INSNS (f))
768 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
769 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
770 if (FENCE_READY_TICKS (f))
771 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
773 else
774 if (edge_new->probability > edge_old->probability)
776 delete_deps_context (FENCE_DC (f));
777 FENCE_DC (f) = dc;
778 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
779 FENCE_EXECUTING_INSNS (f) = executing_insns;
780 free (FENCE_READY_TICKS (f));
781 FENCE_READY_TICKS (f) = ready_ticks;
782 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
783 FENCE_CYCLE (f) = cycle;
785 else
787 /* Leave DC and CYCLE untouched. */
788 delete_deps_context (dc);
789 VEC_free (rtx, gc, executing_insns);
790 free (ready_ticks);
794 /* Fill remaining invariant fields. */
795 if (after_stall_p)
796 FENCE_AFTER_STALL_P (f) = 1;
798 FENCE_ISSUED_INSNS (f) = 0;
799 FENCE_STARTS_CYCLE_P (f) = 1;
800 FENCE_SCHED_NEXT (f) = NULL;
803 /* Add a new fence to NEW_FENCES list, initializing it from all
804 other parameters. */
805 static void
806 add_to_fences (flist_tail_t new_fences, insn_t insn,
807 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
808 VEC(rtx, gc) *executing_insns, int *ready_ticks,
809 int ready_ticks_size, rtx sched_next, int cycle,
810 int cycle_issued_insns, int issue_rate,
811 bool starts_cycle_p, bool after_stall_p)
813 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
815 if (! f)
817 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
818 last_scheduled_insn, executing_insns, ready_ticks,
819 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
820 issue_rate, starts_cycle_p, after_stall_p);
822 FLIST_TAIL_TAILP (new_fences)
823 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
825 else
827 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
828 executing_insns, ready_ticks, ready_ticks_size,
829 sched_next, cycle, issue_rate, after_stall_p);
833 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
834 void
835 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
837 fence_t f, old;
838 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
840 old = FLIST_FENCE (old_fences);
841 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
842 FENCE_INSN (FLIST_FENCE (old_fences)));
843 if (f)
845 merge_fences (f, old->insn, old->state, old->dc, old->tc,
846 old->last_scheduled_insn, old->executing_insns,
847 old->ready_ticks, old->ready_ticks_size,
848 old->sched_next, old->cycle, old->issue_more,
849 old->after_stall_p);
851 else
853 _list_add (tailp);
854 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
855 *FLIST_FENCE (*tailp) = *old;
856 init_fence_for_scheduling (FLIST_FENCE (*tailp));
858 FENCE_INSN (old) = NULL;
861 /* Add a new fence to NEW_FENCES list and initialize most of its data
862 as a clean one. */
863 void
864 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
866 int ready_ticks_size = get_max_uid () + 1;
868 add_to_fences (new_fences,
869 succ, state_create (), create_deps_context (),
870 create_target_context (true),
871 NULL_RTX, NULL,
872 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
873 NULL_RTX, FENCE_CYCLE (fence) + 1,
874 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
877 /* Add a new fence to NEW_FENCES list and initialize all of its data
878 from FENCE and SUCC. */
879 void
880 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
882 int * new_ready_ticks
883 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
885 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
886 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
887 add_to_fences (new_fences,
888 succ, state_create_copy (FENCE_STATE (fence)),
889 create_copy_of_deps_context (FENCE_DC (fence)),
890 create_copy_of_target_context (FENCE_TC (fence)),
891 FENCE_LAST_SCHEDULED_INSN (fence),
892 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
893 new_ready_ticks,
894 FENCE_READY_TICKS_SIZE (fence),
895 FENCE_SCHED_NEXT (fence),
896 FENCE_CYCLE (fence),
897 FENCE_ISSUED_INSNS (fence),
898 FENCE_ISSUE_MORE (fence),
899 FENCE_STARTS_CYCLE_P (fence),
900 FENCE_AFTER_STALL_P (fence));
904 /* Functions to work with regset and nop pools. */
906 /* Returns the new regset from pool. It might have some of the bits set
907 from the previous usage. */
908 regset
909 get_regset_from_pool (void)
911 regset rs;
913 if (regset_pool.n != 0)
914 rs = regset_pool.v[--regset_pool.n];
915 else
916 /* We need to create the regset. */
918 rs = ALLOC_REG_SET (&reg_obstack);
920 if (regset_pool.nn == regset_pool.ss)
921 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
922 (regset_pool.ss = 2 * regset_pool.ss + 1));
923 regset_pool.vv[regset_pool.nn++] = rs;
926 regset_pool.diff++;
928 return rs;
931 /* Same as above, but returns the empty regset. */
932 regset
933 get_clear_regset_from_pool (void)
935 regset rs = get_regset_from_pool ();
937 CLEAR_REG_SET (rs);
938 return rs;
941 /* Return regset RS to the pool for future use. */
942 void
943 return_regset_to_pool (regset rs)
945 gcc_assert (rs);
946 regset_pool.diff--;
948 if (regset_pool.n == regset_pool.s)
949 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
950 (regset_pool.s = 2 * regset_pool.s + 1));
951 regset_pool.v[regset_pool.n++] = rs;
954 #ifdef ENABLE_CHECKING
955 /* This is used as a qsort callback for sorting regset pool stacks.
956 X and XX are addresses of two regsets. They are never equal. */
957 static int
958 cmp_v_in_regset_pool (const void *x, const void *xx)
960 return *((const regset *) x) - *((const regset *) xx);
962 #endif
964 /* Free the regset pool possibly checking for memory leaks. */
965 void
966 free_regset_pool (void)
968 #ifdef ENABLE_CHECKING
970 regset *v = regset_pool.v;
971 int i = 0;
972 int n = regset_pool.n;
974 regset *vv = regset_pool.vv;
975 int ii = 0;
976 int nn = regset_pool.nn;
978 int diff = 0;
980 gcc_assert (n <= nn);
982 /* Sort both vectors so it will be possible to compare them. */
983 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
984 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
986 while (ii < nn)
988 if (v[i] == vv[ii])
989 i++;
990 else
991 /* VV[II] was lost. */
992 diff++;
994 ii++;
997 gcc_assert (diff == regset_pool.diff);
999 #endif
1001 /* If not true - we have a memory leak. */
1002 gcc_assert (regset_pool.diff == 0);
1004 while (regset_pool.n)
1006 --regset_pool.n;
1007 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1010 free (regset_pool.v);
1011 regset_pool.v = NULL;
1012 regset_pool.s = 0;
1014 free (regset_pool.vv);
1015 regset_pool.vv = NULL;
1016 regset_pool.nn = 0;
1017 regset_pool.ss = 0;
1019 regset_pool.diff = 0;
1023 /* Functions to work with nop pools. NOP insns are used as temporary
1024 placeholders of the insns being scheduled to allow correct update of
1025 the data sets. When update is finished, NOPs are deleted. */
1027 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1028 nops sel-sched generates. */
1029 static vinsn_t nop_vinsn = NULL;
1031 /* Emit a nop before INSN, taking it from pool. */
1032 insn_t
1033 get_nop_from_pool (insn_t insn)
1035 insn_t nop;
1036 bool old_p = nop_pool.n != 0;
1037 int flags;
1039 if (old_p)
1040 nop = nop_pool.v[--nop_pool.n];
1041 else
1042 nop = nop_pattern;
1044 nop = emit_insn_before (nop, insn);
1046 if (old_p)
1047 flags = INSN_INIT_TODO_SSID;
1048 else
1049 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1051 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1052 sel_init_new_insn (nop, flags);
1054 return nop;
1057 /* Remove NOP from the instruction stream and return it to the pool. */
1058 void
1059 return_nop_to_pool (insn_t nop, bool full_tidying)
1061 gcc_assert (INSN_IN_STREAM_P (nop));
1062 sel_remove_insn (nop, false, full_tidying);
1064 if (nop_pool.n == nop_pool.s)
1065 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1066 (nop_pool.s = 2 * nop_pool.s + 1));
1067 nop_pool.v[nop_pool.n++] = nop;
1070 /* Free the nop pool. */
1071 void
1072 free_nop_pool (void)
1074 nop_pool.n = 0;
1075 nop_pool.s = 0;
1076 free (nop_pool.v);
1077 nop_pool.v = NULL;
1081 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1082 The callback is given two rtxes XX and YY and writes the new rtxes
1083 to NX and NY in case some needs to be skipped. */
1084 static int
1085 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1087 const_rtx x = *xx;
1088 const_rtx y = *yy;
1090 if (GET_CODE (x) == UNSPEC
1091 && (targetm.sched.skip_rtx_p == NULL
1092 || targetm.sched.skip_rtx_p (x)))
1094 *nx = XVECEXP (x, 0, 0);
1095 *ny = CONST_CAST_RTX (y);
1096 return 1;
1099 if (GET_CODE (y) == UNSPEC
1100 && (targetm.sched.skip_rtx_p == NULL
1101 || targetm.sched.skip_rtx_p (y)))
1103 *nx = CONST_CAST_RTX (x);
1104 *ny = XVECEXP (y, 0, 0);
1105 return 1;
1108 return 0;
1111 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1112 to support ia64 speculation. When changes are needed, new rtx X and new mode
1113 NMODE are written, and the callback returns true. */
1114 static int
1115 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1116 rtx *nx, enum machine_mode* nmode)
1118 if (GET_CODE (x) == UNSPEC
1119 && targetm.sched.skip_rtx_p
1120 && targetm.sched.skip_rtx_p (x))
1122 *nx = XVECEXP (x, 0 ,0);
1123 *nmode = VOIDmode;
1124 return 1;
1127 return 0;
1130 /* Returns LHS and RHS are ok to be scheduled separately. */
1131 static bool
1132 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1134 if (lhs == NULL || rhs == NULL)
1135 return false;
1137 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1138 to use reg, if const can be used. Moreover, scheduling const as rhs may
1139 lead to mode mismatch cause consts don't have modes but they could be
1140 merged from branches where the same const used in different modes. */
1141 if (CONSTANT_P (rhs))
1142 return false;
1144 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1145 if (COMPARISON_P (rhs))
1146 return false;
1148 /* Do not allow single REG to be an rhs. */
1149 if (REG_P (rhs))
1150 return false;
1152 /* See comment at find_used_regs_1 (*1) for explanation of this
1153 restriction. */
1154 /* FIXME: remove this later. */
1155 if (MEM_P (lhs))
1156 return false;
1158 /* This will filter all tricky things like ZERO_EXTRACT etc.
1159 For now we don't handle it. */
1160 if (!REG_P (lhs) && !MEM_P (lhs))
1161 return false;
1163 return true;
1166 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1167 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1168 used e.g. for insns from recovery blocks. */
1169 static void
1170 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1172 hash_rtx_callback_function hrcf;
1173 int insn_class;
1175 VINSN_INSN_RTX (vi) = insn;
1176 VINSN_COUNT (vi) = 0;
1177 vi->cost = -1;
1179 if (INSN_NOP_P (insn))
1180 return;
1182 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1183 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1184 else
1185 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1187 /* Hash vinsn depending on whether it is separable or not. */
1188 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1189 if (VINSN_SEPARABLE_P (vi))
1191 rtx rhs = VINSN_RHS (vi);
1193 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1194 NULL, NULL, false, hrcf);
1195 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1196 VOIDmode, NULL, NULL,
1197 false, hrcf);
1199 else
1201 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1202 NULL, NULL, false, hrcf);
1203 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1206 insn_class = haifa_classify_insn (insn);
1207 if (insn_class >= 2
1208 && (!targetm.sched.get_insn_spec_ds
1209 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1210 == 0)))
1211 VINSN_MAY_TRAP_P (vi) = true;
1212 else
1213 VINSN_MAY_TRAP_P (vi) = false;
1216 /* Indicate that VI has become the part of an rtx object. */
1217 void
1218 vinsn_attach (vinsn_t vi)
1220 /* Assert that VI is not pending for deletion. */
1221 gcc_assert (VINSN_INSN_RTX (vi));
1223 VINSN_COUNT (vi)++;
1226 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1227 VINSN_TYPE (VI). */
1228 static vinsn_t
1229 vinsn_create (insn_t insn, bool force_unique_p)
1231 vinsn_t vi = XCNEW (struct vinsn_def);
1233 vinsn_init (vi, insn, force_unique_p);
1234 return vi;
1237 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1238 the copy. */
1239 vinsn_t
1240 vinsn_copy (vinsn_t vi, bool reattach_p)
1242 rtx copy;
1243 bool unique = VINSN_UNIQUE_P (vi);
1244 vinsn_t new_vi;
1246 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1247 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1248 if (reattach_p)
1250 vinsn_detach (vi);
1251 vinsn_attach (new_vi);
1254 return new_vi;
1257 /* Delete the VI vinsn and free its data. */
1258 static void
1259 vinsn_delete (vinsn_t vi)
1261 gcc_assert (VINSN_COUNT (vi) == 0);
1263 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1265 return_regset_to_pool (VINSN_REG_SETS (vi));
1266 return_regset_to_pool (VINSN_REG_USES (vi));
1267 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1270 free (vi);
1273 /* Indicate that VI is no longer a part of some rtx object.
1274 Remove VI if it is no longer needed. */
1275 void
1276 vinsn_detach (vinsn_t vi)
1278 gcc_assert (VINSN_COUNT (vi) > 0);
1280 if (--VINSN_COUNT (vi) == 0)
1281 vinsn_delete (vi);
1284 /* Returns TRUE if VI is a branch. */
1285 bool
1286 vinsn_cond_branch_p (vinsn_t vi)
1288 insn_t insn;
1290 if (!VINSN_UNIQUE_P (vi))
1291 return false;
1293 insn = VINSN_INSN_RTX (vi);
1294 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1295 return false;
1297 return control_flow_insn_p (insn);
1300 /* Return latency of INSN. */
1301 static int
1302 sel_insn_rtx_cost (rtx insn)
1304 int cost;
1306 /* A USE insn, or something else we don't need to
1307 understand. We can't pass these directly to
1308 result_ready_cost or insn_default_latency because it will
1309 trigger a fatal error for unrecognizable insns. */
1310 if (recog_memoized (insn) < 0)
1311 cost = 0;
1312 else
1314 cost = insn_default_latency (insn);
1316 if (cost < 0)
1317 cost = 0;
1320 return cost;
1323 /* Return the cost of the VI.
1324 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1326 sel_vinsn_cost (vinsn_t vi)
1328 int cost = vi->cost;
1330 if (cost < 0)
1332 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1333 vi->cost = cost;
1336 return cost;
1340 /* Functions for insn emitting. */
1342 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1343 EXPR and SEQNO. */
1344 insn_t
1345 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1347 insn_t new_insn;
1349 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1351 new_insn = emit_insn_after (pattern, after);
1352 set_insn_init (expr, NULL, seqno);
1353 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1355 return new_insn;
1358 /* Force newly generated vinsns to be unique. */
1359 static bool init_insn_force_unique_p = false;
1361 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1362 initialize its data from EXPR and SEQNO. */
1363 insn_t
1364 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1365 insn_t after)
1367 insn_t insn;
1369 gcc_assert (!init_insn_force_unique_p);
1371 init_insn_force_unique_p = true;
1372 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1373 CANT_MOVE (insn) = 1;
1374 init_insn_force_unique_p = false;
1376 return insn;
1379 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1380 take it as a new vinsn instead of EXPR's vinsn.
1381 We simplify insns later, after scheduling region in
1382 simplify_changed_insns. */
1383 insn_t
1384 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1385 insn_t after)
1387 expr_t emit_expr;
1388 insn_t insn;
1389 int flags;
1391 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1392 seqno);
1393 insn = EXPR_INSN_RTX (emit_expr);
1394 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1396 flags = INSN_INIT_TODO_SSID;
1397 if (INSN_LUID (insn) == 0)
1398 flags |= INSN_INIT_TODO_LUID;
1399 sel_init_new_insn (insn, flags);
1401 return insn;
1404 /* Move insn from EXPR after AFTER. */
1405 insn_t
1406 sel_move_insn (expr_t expr, int seqno, insn_t after)
1408 insn_t insn = EXPR_INSN_RTX (expr);
1409 basic_block bb = BLOCK_FOR_INSN (after);
1410 insn_t next = NEXT_INSN (after);
1412 /* Assert that in move_op we disconnected this insn properly. */
1413 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1414 PREV_INSN (insn) = after;
1415 NEXT_INSN (insn) = next;
1417 NEXT_INSN (after) = insn;
1418 PREV_INSN (next) = insn;
1420 /* Update links from insn to bb and vice versa. */
1421 df_insn_change_bb (insn, bb);
1422 if (BB_END (bb) == after)
1423 BB_END (bb) = insn;
1425 prepare_insn_expr (insn, seqno);
1426 return insn;
1430 /* Functions to work with right-hand sides. */
1432 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1433 VECT and return true when found. Use NEW_VINSN for comparison only when
1434 COMPARE_VINSNS is true. Write to INDP the index on which
1435 the search has stopped, such that inserting the new element at INDP will
1436 retain VECT's sort order. */
1437 static bool
1438 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1439 unsigned uid, vinsn_t new_vinsn,
1440 bool compare_vinsns, int *indp)
1442 expr_history_def *arr;
1443 int i, j, len = VEC_length (expr_history_def, vect);
1445 if (len == 0)
1447 *indp = 0;
1448 return false;
1451 arr = VEC_address (expr_history_def, vect);
1452 i = 0, j = len - 1;
1454 while (i <= j)
1456 unsigned auid = arr[i].uid;
1457 vinsn_t avinsn = arr[i].new_expr_vinsn;
1459 if (auid == uid
1460 /* When undoing transformation on a bookkeeping copy, the new vinsn
1461 may not be exactly equal to the one that is saved in the vector.
1462 This is because the insn whose copy we're checking was possibly
1463 substituted itself. */
1464 && (! compare_vinsns
1465 || vinsn_equal_p (avinsn, new_vinsn)))
1467 *indp = i;
1468 return true;
1470 else if (auid > uid)
1471 break;
1472 i++;
1475 *indp = i;
1476 return false;
1479 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1480 the position found or -1, if no such value is in vector.
1481 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1483 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1484 vinsn_t new_vinsn, bool originators_p)
1486 int ind;
1488 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1489 false, &ind))
1490 return ind;
1492 if (INSN_ORIGINATORS (insn) && originators_p)
1494 unsigned uid;
1495 bitmap_iterator bi;
1497 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1498 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1499 return ind;
1502 return -1;
1505 /* Insert new element in a sorted history vector pointed to by PVECT,
1506 if it is not there already. The element is searched using
1507 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1508 the history of a transformation. */
1509 void
1510 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1511 unsigned uid, enum local_trans_type type,
1512 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1513 ds_t spec_ds)
1515 VEC(expr_history_def, heap) *vect = *pvect;
1516 expr_history_def temp;
1517 bool res;
1518 int ind;
1520 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1522 if (res)
1524 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1526 /* It is possible that speculation types of expressions that were
1527 propagated through different paths will be different here. In this
1528 case, merge the status to get the correct check later. */
1529 if (phist->spec_ds != spec_ds)
1530 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1531 return;
1534 temp.uid = uid;
1535 temp.old_expr_vinsn = old_expr_vinsn;
1536 temp.new_expr_vinsn = new_expr_vinsn;
1537 temp.spec_ds = spec_ds;
1538 temp.type = type;
1540 vinsn_attach (old_expr_vinsn);
1541 vinsn_attach (new_expr_vinsn);
1542 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1543 *pvect = vect;
1546 /* Free history vector PVECT. */
1547 static void
1548 free_history_vect (VEC (expr_history_def, heap) **pvect)
1550 unsigned i;
1551 expr_history_def *phist;
1553 if (! *pvect)
1554 return;
1556 for (i = 0;
1557 VEC_iterate (expr_history_def, *pvect, i, phist);
1558 i++)
1560 vinsn_detach (phist->old_expr_vinsn);
1561 vinsn_detach (phist->new_expr_vinsn);
1564 VEC_free (expr_history_def, heap, *pvect);
1565 *pvect = NULL;
1568 /* Merge vector FROM to PVECT. */
1569 static void
1570 merge_history_vect (VEC (expr_history_def, heap) **pvect,
1571 VEC (expr_history_def, heap) *from)
1573 expr_history_def *phist;
1574 int i;
1576 /* We keep this vector sorted. */
1577 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1578 insert_in_history_vect (pvect, phist->uid, phist->type,
1579 phist->old_expr_vinsn, phist->new_expr_vinsn,
1580 phist->spec_ds);
1583 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1584 bool
1585 vinsn_equal_p (vinsn_t x, vinsn_t y)
1587 rtx_equal_p_callback_function repcf;
1589 if (x == y)
1590 return true;
1592 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1593 return false;
1595 if (VINSN_HASH (x) != VINSN_HASH (y))
1596 return false;
1598 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1599 if (VINSN_SEPARABLE_P (x))
1601 /* Compare RHSes of VINSNs. */
1602 gcc_assert (VINSN_RHS (x));
1603 gcc_assert (VINSN_RHS (y));
1605 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1608 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1612 /* Functions for working with expressions. */
1614 /* Initialize EXPR. */
1615 static void
1616 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1617 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1618 ds_t spec_to_check_ds, int orig_sched_cycle,
1619 VEC(expr_history_def, heap) *history, signed char target_available,
1620 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1621 bool cant_move)
1623 vinsn_attach (vi);
1625 EXPR_VINSN (expr) = vi;
1626 EXPR_SPEC (expr) = spec;
1627 EXPR_USEFULNESS (expr) = use;
1628 EXPR_PRIORITY (expr) = priority;
1629 EXPR_PRIORITY_ADJ (expr) = 0;
1630 EXPR_SCHED_TIMES (expr) = sched_times;
1631 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1632 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1633 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1634 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1636 if (history)
1637 EXPR_HISTORY_OF_CHANGES (expr) = history;
1638 else
1639 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1641 EXPR_TARGET_AVAILABLE (expr) = target_available;
1642 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1643 EXPR_WAS_RENAMED (expr) = was_renamed;
1644 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1645 EXPR_CANT_MOVE (expr) = cant_move;
1648 /* Make a copy of the expr FROM into the expr TO. */
1649 void
1650 copy_expr (expr_t to, expr_t from)
1652 VEC(expr_history_def, heap) *temp = NULL;
1654 if (EXPR_HISTORY_OF_CHANGES (from))
1656 unsigned i;
1657 expr_history_def *phist;
1659 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1660 for (i = 0;
1661 VEC_iterate (expr_history_def, temp, i, phist);
1662 i++)
1664 vinsn_attach (phist->old_expr_vinsn);
1665 vinsn_attach (phist->new_expr_vinsn);
1669 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1670 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1671 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1672 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1673 EXPR_ORIG_SCHED_CYCLE (from), temp,
1674 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1675 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1676 EXPR_CANT_MOVE (from));
1679 /* Same, but the final expr will not ever be in av sets, so don't copy
1680 "uninteresting" data such as bitmap cache. */
1681 void
1682 copy_expr_onside (expr_t to, expr_t from)
1684 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1685 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1686 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1687 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1688 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1689 EXPR_CANT_MOVE (from));
1692 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1693 initializing new insns. */
1694 static void
1695 prepare_insn_expr (insn_t insn, int seqno)
1697 expr_t expr = INSN_EXPR (insn);
1698 ds_t ds;
1700 INSN_SEQNO (insn) = seqno;
1701 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1702 EXPR_SPEC (expr) = 0;
1703 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1704 EXPR_WAS_SUBSTITUTED (expr) = 0;
1705 EXPR_WAS_RENAMED (expr) = 0;
1706 EXPR_TARGET_AVAILABLE (expr) = 1;
1707 INSN_LIVE_VALID_P (insn) = false;
1709 /* ??? If this expression is speculative, make its dependence
1710 as weak as possible. We can filter this expression later
1711 in process_spec_exprs, because we do not distinguish
1712 between the status we got during compute_av_set and the
1713 existing status. To be fixed. */
1714 ds = EXPR_SPEC_DONE_DS (expr);
1715 if (ds)
1716 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1718 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1721 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1722 is non-null when expressions are merged from different successors at
1723 a split point. */
1724 static void
1725 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1727 if (EXPR_TARGET_AVAILABLE (to) < 0
1728 || EXPR_TARGET_AVAILABLE (from) < 0)
1729 EXPR_TARGET_AVAILABLE (to) = -1;
1730 else
1732 /* We try to detect the case when one of the expressions
1733 can only be reached through another one. In this case,
1734 we can do better. */
1735 if (split_point == NULL)
1737 int toind, fromind;
1739 toind = EXPR_ORIG_BB_INDEX (to);
1740 fromind = EXPR_ORIG_BB_INDEX (from);
1742 if (toind && toind == fromind)
1743 /* Do nothing -- everything is done in
1744 merge_with_other_exprs. */
1746 else
1747 EXPR_TARGET_AVAILABLE (to) = -1;
1749 else
1750 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1754 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1755 is non-null when expressions are merged from different successors at
1756 a split point. */
1757 static void
1758 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1760 ds_t old_to_ds, old_from_ds;
1762 old_to_ds = EXPR_SPEC_DONE_DS (to);
1763 old_from_ds = EXPR_SPEC_DONE_DS (from);
1765 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1766 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1767 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1769 /* When merging e.g. control & data speculative exprs, or a control
1770 speculative with a control&data speculative one, we really have
1771 to change vinsn too. Also, when speculative status is changed,
1772 we also need to record this as a transformation in expr's history. */
1773 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1775 old_to_ds = ds_get_speculation_types (old_to_ds);
1776 old_from_ds = ds_get_speculation_types (old_from_ds);
1778 if (old_to_ds != old_from_ds)
1780 ds_t record_ds;
1782 /* When both expressions are speculative, we need to change
1783 the vinsn first. */
1784 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1786 int res;
1788 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1789 gcc_assert (res >= 0);
1792 if (split_point != NULL)
1794 /* Record the change with proper status. */
1795 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1796 record_ds &= ~(old_to_ds & SPECULATIVE);
1797 record_ds &= ~(old_from_ds & SPECULATIVE);
1799 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1800 INSN_UID (split_point), TRANS_SPECULATION,
1801 EXPR_VINSN (from), EXPR_VINSN (to),
1802 record_ds);
1809 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1810 this is done along different paths. */
1811 void
1812 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1814 /* For now, we just set the spec of resulting expr to be minimum of the specs
1815 of merged exprs. */
1816 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1817 EXPR_SPEC (to) = EXPR_SPEC (from);
1819 if (split_point)
1820 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1821 else
1822 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1823 EXPR_USEFULNESS (from));
1825 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1826 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1828 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1829 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1831 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1832 EXPR_ORIG_BB_INDEX (to) = 0;
1834 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1835 EXPR_ORIG_SCHED_CYCLE (from));
1837 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1838 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1839 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1841 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1842 EXPR_HISTORY_OF_CHANGES (from));
1843 update_target_availability (to, from, split_point);
1844 update_speculative_bits (to, from, split_point);
1847 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1848 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1849 are merged from different successors at a split point. */
1850 void
1851 merge_expr (expr_t to, expr_t from, insn_t split_point)
1853 vinsn_t to_vi = EXPR_VINSN (to);
1854 vinsn_t from_vi = EXPR_VINSN (from);
1856 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1858 /* Make sure that speculative pattern is propagated into exprs that
1859 have non-speculative one. This will provide us with consistent
1860 speculative bits and speculative patterns inside expr. */
1861 if (EXPR_SPEC_DONE_DS (to) == 0
1862 && EXPR_SPEC_DONE_DS (from) != 0)
1863 change_vinsn_in_expr (to, EXPR_VINSN (from));
1865 merge_expr_data (to, from, split_point);
1866 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1869 /* Clear the information of this EXPR. */
1870 void
1871 clear_expr (expr_t expr)
1874 vinsn_detach (EXPR_VINSN (expr));
1875 EXPR_VINSN (expr) = NULL;
1877 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1880 /* For a given LV_SET, mark EXPR having unavailable target register. */
1881 static void
1882 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1884 if (EXPR_SEPARABLE_P (expr))
1886 if (REG_P (EXPR_LHS (expr))
1887 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1889 /* If it's an insn like r1 = use (r1, ...), and it exists in
1890 different forms in each of the av_sets being merged, we can't say
1891 whether original destination register is available or not.
1892 However, this still works if destination register is not used
1893 in the original expression: if the branch at which LV_SET we're
1894 looking here is not actually 'other branch' in sense that same
1895 expression is available through it (but it can't be determined
1896 at computation stage because of transformations on one of the
1897 branches), it still won't affect the availability.
1898 Liveness of a register somewhere on a code motion path means
1899 it's either read somewhere on a codemotion path, live on
1900 'other' branch, live at the point immediately following
1901 the original operation, or is read by the original operation.
1902 The latter case is filtered out in the condition below.
1903 It still doesn't cover the case when register is defined and used
1904 somewhere within the code motion path, and in this case we could
1905 miss a unifying code motion along both branches using a renamed
1906 register, but it won't affect a code correctness since upon
1907 an actual code motion a bookkeeping code would be generated. */
1908 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1909 REGNO (EXPR_LHS (expr))))
1910 EXPR_TARGET_AVAILABLE (expr) = -1;
1911 else
1912 EXPR_TARGET_AVAILABLE (expr) = false;
1915 else
1917 unsigned regno;
1918 reg_set_iterator rsi;
1920 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1921 0, regno, rsi)
1922 if (bitmap_bit_p (lv_set, regno))
1924 EXPR_TARGET_AVAILABLE (expr) = false;
1925 break;
1928 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1929 0, regno, rsi)
1930 if (bitmap_bit_p (lv_set, regno))
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 break;
1938 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1939 or dependence status have changed, 2 when also the target register
1940 became unavailable, 0 if nothing had to be changed. */
1942 speculate_expr (expr_t expr, ds_t ds)
1944 int res;
1945 rtx orig_insn_rtx;
1946 rtx spec_pat;
1947 ds_t target_ds, current_ds;
1949 /* Obtain the status we need to put on EXPR. */
1950 target_ds = (ds & SPECULATIVE);
1951 current_ds = EXPR_SPEC_DONE_DS (expr);
1952 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1954 orig_insn_rtx = EXPR_INSN_RTX (expr);
1956 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1958 switch (res)
1960 case 0:
1961 EXPR_SPEC_DONE_DS (expr) = ds;
1962 return current_ds != ds ? 1 : 0;
1964 case 1:
1966 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1967 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1969 change_vinsn_in_expr (expr, spec_vinsn);
1970 EXPR_SPEC_DONE_DS (expr) = ds;
1971 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1973 /* Do not allow clobbering the address register of speculative
1974 insns. */
1975 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1976 expr_dest_regno (expr)))
1978 EXPR_TARGET_AVAILABLE (expr) = false;
1979 return 2;
1982 return 1;
1985 case -1:
1986 return -1;
1988 default:
1989 gcc_unreachable ();
1990 return -1;
1994 /* Return a destination register, if any, of EXPR. */
1996 expr_dest_reg (expr_t expr)
1998 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2000 if (dest != NULL_RTX && REG_P (dest))
2001 return dest;
2003 return NULL_RTX;
2006 /* Returns the REGNO of the R's destination. */
2007 unsigned
2008 expr_dest_regno (expr_t expr)
2010 rtx dest = expr_dest_reg (expr);
2012 gcc_assert (dest != NULL_RTX);
2013 return REGNO (dest);
2016 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2017 AV_SET having unavailable target register. */
2018 void
2019 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2021 expr_t expr;
2022 av_set_iterator avi;
2024 FOR_EACH_EXPR (expr, avi, join_set)
2025 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2026 set_unavailable_target_for_expr (expr, lv_set);
2030 /* Av set functions. */
2032 /* Add a new element to av set SETP.
2033 Return the element added. */
2034 static av_set_t
2035 av_set_add_element (av_set_t *setp)
2037 /* Insert at the beginning of the list. */
2038 _list_add (setp);
2039 return *setp;
2042 /* Add EXPR to SETP. */
2043 void
2044 av_set_add (av_set_t *setp, expr_t expr)
2046 av_set_t elem;
2048 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2049 elem = av_set_add_element (setp);
2050 copy_expr (_AV_SET_EXPR (elem), expr);
2053 /* Same, but do not copy EXPR. */
2054 static void
2055 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2057 av_set_t elem;
2059 elem = av_set_add_element (setp);
2060 *_AV_SET_EXPR (elem) = *expr;
2063 /* Remove expr pointed to by IP from the av_set. */
2064 void
2065 av_set_iter_remove (av_set_iterator *ip)
2067 clear_expr (_AV_SET_EXPR (*ip->lp));
2068 _list_iter_remove (ip);
2071 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2072 sense of vinsn_equal_p function. Return NULL if no such expr is
2073 in SET was found. */
2074 expr_t
2075 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2077 expr_t expr;
2078 av_set_iterator i;
2080 FOR_EACH_EXPR (expr, i, set)
2081 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2082 return expr;
2083 return NULL;
2086 /* Same, but also remove the EXPR found. */
2087 static expr_t
2088 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2090 expr_t expr;
2091 av_set_iterator i;
2093 FOR_EACH_EXPR_1 (expr, i, setp)
2094 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2096 _list_iter_remove_nofree (&i);
2097 return expr;
2099 return NULL;
2102 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2103 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2104 Returns NULL if no such expr is in SET was found. */
2105 static expr_t
2106 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2108 expr_t cur_expr;
2109 av_set_iterator i;
2111 FOR_EACH_EXPR (cur_expr, i, set)
2113 if (cur_expr == expr)
2114 continue;
2115 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2116 return cur_expr;
2119 return NULL;
2122 /* If other expression is already in AVP, remove one of them. */
2123 expr_t
2124 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2126 expr_t expr2;
2128 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2129 if (expr2 != NULL)
2131 /* Reset target availability on merge, since taking it only from one
2132 of the exprs would be controversial for different code. */
2133 EXPR_TARGET_AVAILABLE (expr2) = -1;
2134 EXPR_USEFULNESS (expr2) = 0;
2136 merge_expr (expr2, expr, NULL);
2138 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2139 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2141 av_set_iter_remove (ip);
2142 return expr2;
2145 return expr;
2148 /* Return true if there is an expr that correlates to VI in SET. */
2149 bool
2150 av_set_is_in_p (av_set_t set, vinsn_t vi)
2152 return av_set_lookup (set, vi) != NULL;
2155 /* Return a copy of SET. */
2156 av_set_t
2157 av_set_copy (av_set_t set)
2159 expr_t expr;
2160 av_set_iterator i;
2161 av_set_t res = NULL;
2163 FOR_EACH_EXPR (expr, i, set)
2164 av_set_add (&res, expr);
2166 return res;
2169 /* Join two av sets that do not have common elements by attaching second set
2170 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2171 _AV_SET_NEXT of first set's last element). */
2172 static void
2173 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2175 gcc_assert (*to_tailp == NULL);
2176 *to_tailp = *fromp;
2177 *fromp = NULL;
2180 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2181 pointed to by FROMP afterwards. */
2182 void
2183 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2185 expr_t expr1;
2186 av_set_iterator i;
2188 /* Delete from TOP all exprs, that present in FROMP. */
2189 FOR_EACH_EXPR_1 (expr1, i, top)
2191 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2193 if (expr2)
2195 merge_expr (expr2, expr1, insn);
2196 av_set_iter_remove (&i);
2200 join_distinct_sets (i.lp, fromp);
2203 /* Same as above, but also update availability of target register in
2204 TOP judging by TO_LV_SET and FROM_LV_SET. */
2205 void
2206 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2207 regset from_lv_set, insn_t insn)
2209 expr_t expr1;
2210 av_set_iterator i;
2211 av_set_t *to_tailp, in_both_set = NULL;
2213 /* Delete from TOP all expres, that present in FROMP. */
2214 FOR_EACH_EXPR_1 (expr1, i, top)
2216 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2218 if (expr2)
2220 /* It may be that the expressions have different destination
2221 registers, in which case we need to check liveness here. */
2222 if (EXPR_SEPARABLE_P (expr1))
2224 int regno1 = (REG_P (EXPR_LHS (expr1))
2225 ? (int) expr_dest_regno (expr1) : -1);
2226 int regno2 = (REG_P (EXPR_LHS (expr2))
2227 ? (int) expr_dest_regno (expr2) : -1);
2229 /* ??? We don't have a way to check restrictions for
2230 *other* register on the current path, we did it only
2231 for the current target register. Give up. */
2232 if (regno1 != regno2)
2233 EXPR_TARGET_AVAILABLE (expr2) = -1;
2235 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2236 EXPR_TARGET_AVAILABLE (expr2) = -1;
2238 merge_expr (expr2, expr1, insn);
2239 av_set_add_nocopy (&in_both_set, expr2);
2240 av_set_iter_remove (&i);
2242 else
2243 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2244 FROM_LV_SET. */
2245 set_unavailable_target_for_expr (expr1, from_lv_set);
2247 to_tailp = i.lp;
2249 /* These expressions are not present in TOP. Check liveness
2250 restrictions on TO_LV_SET. */
2251 FOR_EACH_EXPR (expr1, i, *fromp)
2252 set_unavailable_target_for_expr (expr1, to_lv_set);
2254 join_distinct_sets (i.lp, &in_both_set);
2255 join_distinct_sets (to_tailp, fromp);
2258 /* Clear av_set pointed to by SETP. */
2259 void
2260 av_set_clear (av_set_t *setp)
2262 expr_t expr;
2263 av_set_iterator i;
2265 FOR_EACH_EXPR_1 (expr, i, setp)
2266 av_set_iter_remove (&i);
2268 gcc_assert (*setp == NULL);
2271 /* Leave only one non-speculative element in the SETP. */
2272 void
2273 av_set_leave_one_nonspec (av_set_t *setp)
2275 expr_t expr;
2276 av_set_iterator i;
2277 bool has_one_nonspec = false;
2279 /* Keep all speculative exprs, and leave one non-speculative
2280 (the first one). */
2281 FOR_EACH_EXPR_1 (expr, i, setp)
2283 if (!EXPR_SPEC_DONE_DS (expr))
2285 if (has_one_nonspec)
2286 av_set_iter_remove (&i);
2287 else
2288 has_one_nonspec = true;
2293 /* Return the N'th element of the SET. */
2294 expr_t
2295 av_set_element (av_set_t set, int n)
2297 expr_t expr;
2298 av_set_iterator i;
2300 FOR_EACH_EXPR (expr, i, set)
2301 if (n-- == 0)
2302 return expr;
2304 gcc_unreachable ();
2305 return NULL;
2308 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2309 void
2310 av_set_substract_cond_branches (av_set_t *avp)
2312 av_set_iterator i;
2313 expr_t expr;
2315 FOR_EACH_EXPR_1 (expr, i, avp)
2316 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2317 av_set_iter_remove (&i);
2320 /* Multiplies usefulness attribute of each member of av-set *AVP by
2321 value PROB / ALL_PROB. */
2322 void
2323 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2325 av_set_iterator i;
2326 expr_t expr;
2328 FOR_EACH_EXPR (expr, i, av)
2329 EXPR_USEFULNESS (expr) = (all_prob
2330 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2331 : 0);
2334 /* Leave in AVP only those expressions, which are present in AV,
2335 and return it, merging history expressions. */
2336 void
2337 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2339 av_set_iterator i;
2340 expr_t expr, expr2;
2342 FOR_EACH_EXPR_1 (expr, i, avp)
2343 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2344 av_set_iter_remove (&i);
2345 else
2346 /* When updating av sets in bookkeeping blocks, we can add more insns
2347 there which will be transformed but the upper av sets will not
2348 reflect those transformations. We then fail to undo those
2349 when searching for such insns. So merge the history saved
2350 in the av set of the block we are processing. */
2351 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2352 EXPR_HISTORY_OF_CHANGES (expr2));
2357 /* Dependence hooks to initialize insn data. */
2359 /* This is used in hooks callable from dependence analysis when initializing
2360 instruction's data. */
2361 static struct
2363 /* Where the dependence was found (lhs/rhs). */
2364 deps_where_t where;
2366 /* The actual data object to initialize. */
2367 idata_t id;
2369 /* True when the insn should not be made clonable. */
2370 bool force_unique_p;
2372 /* True when insn should be treated as of type USE, i.e. never renamed. */
2373 bool force_use_p;
2374 } deps_init_id_data;
2377 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2378 clonable. */
2379 static void
2380 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2382 int type;
2384 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2385 That clonable insns which can be separated into lhs and rhs have type SET.
2386 Other clonable insns have type USE. */
2387 type = GET_CODE (insn);
2389 /* Only regular insns could be cloned. */
2390 if (type == INSN && !force_unique_p)
2391 type = SET;
2392 else if (type == JUMP_INSN && simplejump_p (insn))
2393 type = PC;
2394 else if (type == DEBUG_INSN)
2395 type = !force_unique_p ? USE : INSN;
2397 IDATA_TYPE (id) = type;
2398 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2399 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2400 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2403 /* Start initializing insn data. */
2404 static void
2405 deps_init_id_start_insn (insn_t insn)
2407 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2409 setup_id_for_insn (deps_init_id_data.id, insn,
2410 deps_init_id_data.force_unique_p);
2411 deps_init_id_data.where = DEPS_IN_INSN;
2414 /* Start initializing lhs data. */
2415 static void
2416 deps_init_id_start_lhs (rtx lhs)
2418 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2419 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2421 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2423 IDATA_LHS (deps_init_id_data.id) = lhs;
2424 deps_init_id_data.where = DEPS_IN_LHS;
2428 /* Finish initializing lhs data. */
2429 static void
2430 deps_init_id_finish_lhs (void)
2432 deps_init_id_data.where = DEPS_IN_INSN;
2435 /* Note a set of REGNO. */
2436 static void
2437 deps_init_id_note_reg_set (int regno)
2439 haifa_note_reg_set (regno);
2441 if (deps_init_id_data.where == DEPS_IN_RHS)
2442 deps_init_id_data.force_use_p = true;
2444 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2445 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2447 #ifdef STACK_REGS
2448 /* Make instructions that set stack registers to be ineligible for
2449 renaming to avoid issues with find_used_regs. */
2450 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2451 deps_init_id_data.force_use_p = true;
2452 #endif
2455 /* Note a clobber of REGNO. */
2456 static void
2457 deps_init_id_note_reg_clobber (int regno)
2459 haifa_note_reg_clobber (regno);
2461 if (deps_init_id_data.where == DEPS_IN_RHS)
2462 deps_init_id_data.force_use_p = true;
2464 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2465 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2468 /* Note a use of REGNO. */
2469 static void
2470 deps_init_id_note_reg_use (int regno)
2472 haifa_note_reg_use (regno);
2474 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2475 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2478 /* Start initializing rhs data. */
2479 static void
2480 deps_init_id_start_rhs (rtx rhs)
2482 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2484 /* And there was no sel_deps_reset_to_insn (). */
2485 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2487 IDATA_RHS (deps_init_id_data.id) = rhs;
2488 deps_init_id_data.where = DEPS_IN_RHS;
2492 /* Finish initializing rhs data. */
2493 static void
2494 deps_init_id_finish_rhs (void)
2496 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2497 || deps_init_id_data.where == DEPS_IN_INSN);
2498 deps_init_id_data.where = DEPS_IN_INSN;
2501 /* Finish initializing insn data. */
2502 static void
2503 deps_init_id_finish_insn (void)
2505 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2507 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2509 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2510 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2512 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2513 || deps_init_id_data.force_use_p)
2515 /* This should be a USE, as we don't want to schedule its RHS
2516 separately. However, we still want to have them recorded
2517 for the purposes of substitution. That's why we don't
2518 simply call downgrade_to_use () here. */
2519 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2520 gcc_assert (!lhs == !rhs);
2522 IDATA_TYPE (deps_init_id_data.id) = USE;
2526 deps_init_id_data.where = DEPS_IN_NOWHERE;
2529 /* This is dependence info used for initializing insn's data. */
2530 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2532 /* This initializes most of the static part of the above structure. */
2533 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2535 NULL,
2537 deps_init_id_start_insn,
2538 deps_init_id_finish_insn,
2539 deps_init_id_start_lhs,
2540 deps_init_id_finish_lhs,
2541 deps_init_id_start_rhs,
2542 deps_init_id_finish_rhs,
2543 deps_init_id_note_reg_set,
2544 deps_init_id_note_reg_clobber,
2545 deps_init_id_note_reg_use,
2546 NULL, /* note_mem_dep */
2547 NULL, /* note_dep */
2549 0, /* use_cselib */
2550 0, /* use_deps_list */
2551 0 /* generate_spec_deps */
2554 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2555 we don't actually need information about lhs and rhs. */
2556 static void
2557 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2559 rtx pat = PATTERN (insn);
2561 if (NONJUMP_INSN_P (insn)
2562 && GET_CODE (pat) == SET
2563 && !force_unique_p)
2565 IDATA_RHS (id) = SET_SRC (pat);
2566 IDATA_LHS (id) = SET_DEST (pat);
2568 else
2569 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2572 /* Possibly downgrade INSN to USE. */
2573 static void
2574 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2576 bool must_be_use = false;
2577 unsigned uid = INSN_UID (insn);
2578 df_ref *rec;
2579 rtx lhs = IDATA_LHS (id);
2580 rtx rhs = IDATA_RHS (id);
2582 /* We downgrade only SETs. */
2583 if (IDATA_TYPE (id) != SET)
2584 return;
2586 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2588 IDATA_TYPE (id) = USE;
2589 return;
2592 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2594 df_ref def = *rec;
2596 if (DF_REF_INSN (def)
2597 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2598 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2600 must_be_use = true;
2601 break;
2604 #ifdef STACK_REGS
2605 /* Make instructions that set stack registers to be ineligible for
2606 renaming to avoid issues with find_used_regs. */
2607 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2609 must_be_use = true;
2610 break;
2612 #endif
2615 if (must_be_use)
2616 IDATA_TYPE (id) = USE;
2619 /* Setup register sets describing INSN in ID. */
2620 static void
2621 setup_id_reg_sets (idata_t id, insn_t insn)
2623 unsigned uid = INSN_UID (insn);
2624 df_ref *rec;
2625 regset tmp = get_clear_regset_from_pool ();
2627 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2629 df_ref def = *rec;
2630 unsigned int regno = DF_REF_REGNO (def);
2632 /* Post modifies are treated like clobbers by sched-deps.c. */
2633 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2634 | DF_REF_PRE_POST_MODIFY)))
2635 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2636 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2638 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2640 #ifdef STACK_REGS
2641 /* For stack registers, treat writes to them as writes
2642 to the first one to be consistent with sched-deps.c. */
2643 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2644 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2645 #endif
2647 /* Mark special refs that generate read/write def pair. */
2648 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2649 || regno == STACK_POINTER_REGNUM)
2650 bitmap_set_bit (tmp, regno);
2653 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2655 df_ref use = *rec;
2656 unsigned int regno = DF_REF_REGNO (use);
2658 /* When these refs are met for the first time, skip them, as
2659 these uses are just counterparts of some defs. */
2660 if (bitmap_bit_p (tmp, regno))
2661 bitmap_clear_bit (tmp, regno);
2662 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2664 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2666 #ifdef STACK_REGS
2667 /* For stack registers, treat reads from them as reads from
2668 the first one to be consistent with sched-deps.c. */
2669 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2670 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2671 #endif
2675 return_regset_to_pool (tmp);
2678 /* Initialize instruction data for INSN in ID using DF's data. */
2679 static void
2680 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2682 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2684 setup_id_for_insn (id, insn, force_unique_p);
2685 setup_id_lhs_rhs (id, insn, force_unique_p);
2687 if (INSN_NOP_P (insn))
2688 return;
2690 maybe_downgrade_id_to_use (id, insn);
2691 setup_id_reg_sets (id, insn);
2694 /* Initialize instruction data for INSN in ID. */
2695 static void
2696 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2698 struct deps_desc _dc, *dc = &_dc;
2700 deps_init_id_data.where = DEPS_IN_NOWHERE;
2701 deps_init_id_data.id = id;
2702 deps_init_id_data.force_unique_p = force_unique_p;
2703 deps_init_id_data.force_use_p = false;
2705 init_deps (dc, false);
2707 memcpy (&deps_init_id_sched_deps_info,
2708 &const_deps_init_id_sched_deps_info,
2709 sizeof (deps_init_id_sched_deps_info));
2711 if (spec_info != NULL)
2712 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2714 sched_deps_info = &deps_init_id_sched_deps_info;
2716 deps_analyze_insn (dc, insn);
2718 free_deps (dc);
2720 deps_init_id_data.id = NULL;
2725 /* Implement hooks for collecting fundamental insn properties like if insn is
2726 an ASM or is within a SCHED_GROUP. */
2728 /* True when a "one-time init" data for INSN was already inited. */
2729 static bool
2730 first_time_insn_init (insn_t insn)
2732 return INSN_LIVE (insn) == NULL;
2735 /* Hash an entry in a transformed_insns hashtable. */
2736 static hashval_t
2737 hash_transformed_insns (const void *p)
2739 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2742 /* Compare the entries in a transformed_insns hashtable. */
2743 static int
2744 eq_transformed_insns (const void *p, const void *q)
2746 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2747 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2749 if (INSN_UID (i1) == INSN_UID (i2))
2750 return 1;
2751 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2754 /* Free an entry in a transformed_insns hashtable. */
2755 static void
2756 free_transformed_insns (void *p)
2758 struct transformed_insns *pti = (struct transformed_insns *) p;
2760 vinsn_detach (pti->vinsn_old);
2761 vinsn_detach (pti->vinsn_new);
2762 free (pti);
2765 /* Init the s_i_d data for INSN which should be inited just once, when
2766 we first see the insn. */
2767 static void
2768 init_first_time_insn_data (insn_t insn)
2770 /* This should not be set if this is the first time we init data for
2771 insn. */
2772 gcc_assert (first_time_insn_init (insn));
2774 /* These are needed for nops too. */
2775 INSN_LIVE (insn) = get_regset_from_pool ();
2776 INSN_LIVE_VALID_P (insn) = false;
2778 if (!INSN_NOP_P (insn))
2780 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2781 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2782 INSN_TRANSFORMED_INSNS (insn)
2783 = htab_create (16, hash_transformed_insns,
2784 eq_transformed_insns, free_transformed_insns);
2785 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2789 /* Free almost all above data for INSN that is scheduled already.
2790 Used for extra-large basic blocks. */
2791 void
2792 free_data_for_scheduled_insn (insn_t insn)
2794 gcc_assert (! first_time_insn_init (insn));
2796 if (! INSN_ANALYZED_DEPS (insn))
2797 return;
2799 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2800 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2801 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2803 /* This is allocated only for bookkeeping insns. */
2804 if (INSN_ORIGINATORS (insn))
2805 BITMAP_FREE (INSN_ORIGINATORS (insn));
2806 free_deps (&INSN_DEPS_CONTEXT (insn));
2808 INSN_ANALYZED_DEPS (insn) = NULL;
2810 /* Clear the readonly flag so we would ICE when trying to recalculate
2811 the deps context (as we believe that it should not happen). */
2812 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2815 /* Free the same data as above for INSN. */
2816 static void
2817 free_first_time_insn_data (insn_t insn)
2819 gcc_assert (! first_time_insn_init (insn));
2821 free_data_for_scheduled_insn (insn);
2822 return_regset_to_pool (INSN_LIVE (insn));
2823 INSN_LIVE (insn) = NULL;
2824 INSN_LIVE_VALID_P (insn) = false;
2827 /* Initialize region-scope data structures for basic blocks. */
2828 static void
2829 init_global_and_expr_for_bb (basic_block bb)
2831 if (sel_bb_empty_p (bb))
2832 return;
2834 invalidate_av_set (bb);
2837 /* Data for global dependency analysis (to initialize CANT_MOVE and
2838 SCHED_GROUP_P). */
2839 static struct
2841 /* Previous insn. */
2842 insn_t prev_insn;
2843 } init_global_data;
2845 /* Determine if INSN is in the sched_group, is an asm or should not be
2846 cloned. After that initialize its expr. */
2847 static void
2848 init_global_and_expr_for_insn (insn_t insn)
2850 if (LABEL_P (insn))
2851 return;
2853 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2855 init_global_data.prev_insn = NULL_RTX;
2856 return;
2859 gcc_assert (INSN_P (insn));
2861 if (SCHED_GROUP_P (insn))
2862 /* Setup a sched_group. */
2864 insn_t prev_insn = init_global_data.prev_insn;
2866 if (prev_insn)
2867 INSN_SCHED_NEXT (prev_insn) = insn;
2869 init_global_data.prev_insn = insn;
2871 else
2872 init_global_data.prev_insn = NULL_RTX;
2874 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2875 || asm_noperands (PATTERN (insn)) >= 0)
2876 /* Mark INSN as an asm. */
2877 INSN_ASM_P (insn) = true;
2880 bool force_unique_p;
2881 ds_t spec_done_ds;
2883 /* Certain instructions cannot be cloned, and frame related insns and
2884 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2885 their block. */
2886 if (prologue_epilogue_contains (insn))
2888 if (RTX_FRAME_RELATED_P (insn))
2889 CANT_MOVE (insn) = 1;
2890 else
2892 rtx note;
2893 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2894 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2895 && ((enum insn_note) INTVAL (XEXP (note, 0))
2896 == NOTE_INSN_EPILOGUE_BEG))
2898 CANT_MOVE (insn) = 1;
2899 break;
2902 force_unique_p = true;
2904 else
2905 if (CANT_MOVE (insn)
2906 || INSN_ASM_P (insn)
2907 || SCHED_GROUP_P (insn)
2908 /* Exception handling insns are always unique. */
2909 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2910 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2911 || control_flow_insn_p (insn))
2912 force_unique_p = true;
2913 else
2914 force_unique_p = false;
2916 if (targetm.sched.get_insn_spec_ds)
2918 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2919 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2921 else
2922 spec_done_ds = 0;
2924 /* Initialize INSN's expr. */
2925 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2926 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2927 spec_done_ds, 0, 0, NULL, true, false, false, false,
2928 CANT_MOVE (insn));
2931 init_first_time_insn_data (insn);
2934 /* Scan the region and initialize instruction data for basic blocks BBS. */
2935 void
2936 sel_init_global_and_expr (bb_vec_t bbs)
2938 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2939 const struct sched_scan_info_def ssi =
2941 NULL, /* extend_bb */
2942 init_global_and_expr_for_bb, /* init_bb */
2943 extend_insn_data, /* extend_insn */
2944 init_global_and_expr_for_insn /* init_insn */
2947 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2950 /* Finalize region-scope data structures for basic blocks. */
2951 static void
2952 finish_global_and_expr_for_bb (basic_block bb)
2954 av_set_clear (&BB_AV_SET (bb));
2955 BB_AV_LEVEL (bb) = 0;
2958 /* Finalize INSN's data. */
2959 static void
2960 finish_global_and_expr_insn (insn_t insn)
2962 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2963 return;
2965 gcc_assert (INSN_P (insn));
2967 if (INSN_LUID (insn) > 0)
2969 free_first_time_insn_data (insn);
2970 INSN_WS_LEVEL (insn) = 0;
2971 CANT_MOVE (insn) = 0;
2973 /* We can no longer assert this, as vinsns of this insn could be
2974 easily live in other insn's caches. This should be changed to
2975 a counter-like approach among all vinsns. */
2976 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2977 clear_expr (INSN_EXPR (insn));
2981 /* Finalize per instruction data for the whole region. */
2982 void
2983 sel_finish_global_and_expr (void)
2986 bb_vec_t bbs;
2987 int i;
2989 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2991 for (i = 0; i < current_nr_blocks; i++)
2992 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2994 /* Clear AV_SETs and INSN_EXPRs. */
2996 const struct sched_scan_info_def ssi =
2998 NULL, /* extend_bb */
2999 finish_global_and_expr_for_bb, /* init_bb */
3000 NULL, /* extend_insn */
3001 finish_global_and_expr_insn /* init_insn */
3004 sched_scan (&ssi, bbs, NULL, NULL, NULL);
3007 VEC_free (basic_block, heap, bbs);
3010 finish_insns ();
3014 /* In the below hooks, we merely calculate whether or not a dependence
3015 exists, and in what part of insn. However, we will need more data
3016 when we'll start caching dependence requests. */
3018 /* Container to hold information for dependency analysis. */
3019 static struct
3021 deps_t dc;
3023 /* A variable to track which part of rtx we are scanning in
3024 sched-deps.c: sched_analyze_insn (). */
3025 deps_where_t where;
3027 /* Current producer. */
3028 insn_t pro;
3030 /* Current consumer. */
3031 vinsn_t con;
3033 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3034 X is from { INSN, LHS, RHS }. */
3035 ds_t has_dep_p[DEPS_IN_NOWHERE];
3036 } has_dependence_data;
3038 /* Start analyzing dependencies of INSN. */
3039 static void
3040 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3042 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3044 has_dependence_data.where = DEPS_IN_INSN;
3047 /* Finish analyzing dependencies of an insn. */
3048 static void
3049 has_dependence_finish_insn (void)
3051 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3053 has_dependence_data.where = DEPS_IN_NOWHERE;
3056 /* Start analyzing dependencies of LHS. */
3057 static void
3058 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3060 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3062 if (VINSN_LHS (has_dependence_data.con) != NULL)
3063 has_dependence_data.where = DEPS_IN_LHS;
3066 /* Finish analyzing dependencies of an lhs. */
3067 static void
3068 has_dependence_finish_lhs (void)
3070 has_dependence_data.where = DEPS_IN_INSN;
3073 /* Start analyzing dependencies of RHS. */
3074 static void
3075 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3077 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3079 if (VINSN_RHS (has_dependence_data.con) != NULL)
3080 has_dependence_data.where = DEPS_IN_RHS;
3083 /* Start analyzing dependencies of an rhs. */
3084 static void
3085 has_dependence_finish_rhs (void)
3087 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3088 || has_dependence_data.where == DEPS_IN_INSN);
3090 has_dependence_data.where = DEPS_IN_INSN;
3093 /* Note a set of REGNO. */
3094 static void
3095 has_dependence_note_reg_set (int regno)
3097 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3099 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3100 VINSN_INSN_RTX
3101 (has_dependence_data.con)))
3103 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3105 if (reg_last->sets != NULL
3106 || reg_last->clobbers != NULL)
3107 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3109 if (reg_last->uses)
3110 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3114 /* Note a clobber of REGNO. */
3115 static void
3116 has_dependence_note_reg_clobber (int regno)
3118 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3120 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3121 VINSN_INSN_RTX
3122 (has_dependence_data.con)))
3124 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3126 if (reg_last->sets)
3127 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3129 if (reg_last->uses)
3130 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3134 /* Note a use of REGNO. */
3135 static void
3136 has_dependence_note_reg_use (int regno)
3138 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3140 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3141 VINSN_INSN_RTX
3142 (has_dependence_data.con)))
3144 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3146 if (reg_last->sets)
3147 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3149 if (reg_last->clobbers)
3150 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3152 /* Handle BE_IN_SPEC. */
3153 if (reg_last->uses)
3155 ds_t pro_spec_checked_ds;
3157 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3158 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3160 if (pro_spec_checked_ds != 0)
3161 /* Merge BE_IN_SPEC bits into *DSP. */
3162 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3163 NULL_RTX, NULL_RTX);
3168 /* Note a memory dependence. */
3169 static void
3170 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3171 rtx pending_mem ATTRIBUTE_UNUSED,
3172 insn_t pending_insn ATTRIBUTE_UNUSED,
3173 ds_t ds ATTRIBUTE_UNUSED)
3175 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3176 VINSN_INSN_RTX (has_dependence_data.con)))
3178 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3180 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3184 /* Note a dependence. */
3185 static void
3186 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3187 ds_t ds ATTRIBUTE_UNUSED)
3189 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3190 VINSN_INSN_RTX (has_dependence_data.con)))
3192 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3194 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3198 /* Mark the insn as having a hard dependence that prevents speculation. */
3199 void
3200 sel_mark_hard_insn (rtx insn)
3202 int i;
3204 /* Only work when we're in has_dependence_p mode.
3205 ??? This is a hack, this should actually be a hook. */
3206 if (!has_dependence_data.dc || !has_dependence_data.pro)
3207 return;
3209 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3210 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3212 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3213 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3216 /* This structure holds the hooks for the dependency analysis used when
3217 actually processing dependencies in the scheduler. */
3218 static struct sched_deps_info_def has_dependence_sched_deps_info;
3220 /* This initializes most of the fields of the above structure. */
3221 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3223 NULL,
3225 has_dependence_start_insn,
3226 has_dependence_finish_insn,
3227 has_dependence_start_lhs,
3228 has_dependence_finish_lhs,
3229 has_dependence_start_rhs,
3230 has_dependence_finish_rhs,
3231 has_dependence_note_reg_set,
3232 has_dependence_note_reg_clobber,
3233 has_dependence_note_reg_use,
3234 has_dependence_note_mem_dep,
3235 has_dependence_note_dep,
3237 0, /* use_cselib */
3238 0, /* use_deps_list */
3239 0 /* generate_spec_deps */
3242 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3243 static void
3244 setup_has_dependence_sched_deps_info (void)
3246 memcpy (&has_dependence_sched_deps_info,
3247 &const_has_dependence_sched_deps_info,
3248 sizeof (has_dependence_sched_deps_info));
3250 if (spec_info != NULL)
3251 has_dependence_sched_deps_info.generate_spec_deps = 1;
3253 sched_deps_info = &has_dependence_sched_deps_info;
3256 /* Remove all dependences found and recorded in has_dependence_data array. */
3257 void
3258 sel_clear_has_dependence (void)
3260 int i;
3262 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3263 has_dependence_data.has_dep_p[i] = 0;
3266 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3267 to the dependence information array in HAS_DEP_PP. */
3268 ds_t
3269 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3271 int i;
3272 ds_t ds;
3273 struct deps_desc *dc;
3275 if (INSN_SIMPLEJUMP_P (pred))
3276 /* Unconditional jump is just a transfer of control flow.
3277 Ignore it. */
3278 return false;
3280 dc = &INSN_DEPS_CONTEXT (pred);
3282 /* We init this field lazily. */
3283 if (dc->reg_last == NULL)
3284 init_deps_reg_last (dc);
3286 if (!dc->readonly)
3288 has_dependence_data.pro = NULL;
3289 /* Initialize empty dep context with information about PRED. */
3290 advance_deps_context (dc, pred);
3291 dc->readonly = 1;
3294 has_dependence_data.where = DEPS_IN_NOWHERE;
3295 has_dependence_data.pro = pred;
3296 has_dependence_data.con = EXPR_VINSN (expr);
3297 has_dependence_data.dc = dc;
3299 sel_clear_has_dependence ();
3301 /* Now catch all dependencies that would be generated between PRED and
3302 INSN. */
3303 setup_has_dependence_sched_deps_info ();
3304 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3305 has_dependence_data.dc = NULL;
3307 /* When a barrier was found, set DEPS_IN_INSN bits. */
3308 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3309 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3310 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3311 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3313 /* Do not allow stores to memory to move through checks. Currently
3314 we don't move this to sched-deps.c as the check doesn't have
3315 obvious places to which this dependence can be attached.
3316 FIMXE: this should go to a hook. */
3317 if (EXPR_LHS (expr)
3318 && MEM_P (EXPR_LHS (expr))
3319 && sel_insn_is_speculation_check (pred))
3320 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3322 *has_dep_pp = has_dependence_data.has_dep_p;
3323 ds = 0;
3324 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3325 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3326 NULL_RTX, NULL_RTX);
3328 return ds;
3332 /* Dependence hooks implementation that checks dependence latency constraints
3333 on the insns being scheduled. The entry point for these routines is
3334 tick_check_p predicate. */
3336 static struct
3338 /* An expr we are currently checking. */
3339 expr_t expr;
3341 /* A minimal cycle for its scheduling. */
3342 int cycle;
3344 /* Whether we have seen a true dependence while checking. */
3345 bool seen_true_dep_p;
3346 } tick_check_data;
3348 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3349 on PRO with status DS and weight DW. */
3350 static void
3351 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3353 expr_t con_expr = tick_check_data.expr;
3354 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3356 if (con_insn != pro_insn)
3358 enum reg_note dt;
3359 int tick;
3361 if (/* PROducer was removed from above due to pipelining. */
3362 !INSN_IN_STREAM_P (pro_insn)
3363 /* Or PROducer was originally on the next iteration regarding the
3364 CONsumer. */
3365 || (INSN_SCHED_TIMES (pro_insn)
3366 - EXPR_SCHED_TIMES (con_expr)) > 1)
3367 /* Don't count this dependence. */
3368 return;
3370 dt = ds_to_dt (ds);
3371 if (dt == REG_DEP_TRUE)
3372 tick_check_data.seen_true_dep_p = true;
3374 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3377 dep_def _dep, *dep = &_dep;
3379 init_dep (dep, pro_insn, con_insn, dt);
3381 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3384 /* When there are several kinds of dependencies between pro and con,
3385 only REG_DEP_TRUE should be taken into account. */
3386 if (tick > tick_check_data.cycle
3387 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3388 tick_check_data.cycle = tick;
3392 /* An implementation of note_dep hook. */
3393 static void
3394 tick_check_note_dep (insn_t pro, ds_t ds)
3396 tick_check_dep_with_dw (pro, ds, 0);
3399 /* An implementation of note_mem_dep hook. */
3400 static void
3401 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3403 dw_t dw;
3405 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3406 ? estimate_dep_weak (mem1, mem2)
3407 : 0);
3409 tick_check_dep_with_dw (pro, ds, dw);
3412 /* This structure contains hooks for dependence analysis used when determining
3413 whether an insn is ready for scheduling. */
3414 static struct sched_deps_info_def tick_check_sched_deps_info =
3416 NULL,
3418 NULL,
3419 NULL,
3420 NULL,
3421 NULL,
3422 NULL,
3423 NULL,
3424 haifa_note_reg_set,
3425 haifa_note_reg_clobber,
3426 haifa_note_reg_use,
3427 tick_check_note_mem_dep,
3428 tick_check_note_dep,
3430 0, 0, 0
3433 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3434 scheduled. Return 0 if all data from producers in DC is ready. */
3436 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3438 int cycles_left;
3439 /* Initialize variables. */
3440 tick_check_data.expr = expr;
3441 tick_check_data.cycle = 0;
3442 tick_check_data.seen_true_dep_p = false;
3443 sched_deps_info = &tick_check_sched_deps_info;
3445 gcc_assert (!dc->readonly);
3446 dc->readonly = 1;
3447 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3448 dc->readonly = 0;
3450 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3452 return cycles_left >= 0 ? cycles_left : 0;
3456 /* Functions to work with insns. */
3458 /* Returns true if LHS of INSN is the same as DEST of an insn
3459 being moved. */
3460 bool
3461 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3463 rtx lhs = INSN_LHS (insn);
3465 if (lhs == NULL || dest == NULL)
3466 return false;
3468 return rtx_equal_p (lhs, dest);
3471 /* Return s_i_d entry of INSN. Callable from debugger. */
3472 sel_insn_data_def
3473 insn_sid (insn_t insn)
3475 return *SID (insn);
3478 /* True when INSN is a speculative check. We can tell this by looking
3479 at the data structures of the selective scheduler, not by examining
3480 the pattern. */
3481 bool
3482 sel_insn_is_speculation_check (rtx insn)
3484 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3487 /* Extracts machine mode MODE and destination location DST_LOC
3488 for given INSN. */
3489 void
3490 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3492 rtx pat = PATTERN (insn);
3494 gcc_assert (dst_loc);
3495 gcc_assert (GET_CODE (pat) == SET);
3497 *dst_loc = SET_DEST (pat);
3499 gcc_assert (*dst_loc);
3500 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3502 if (mode)
3503 *mode = GET_MODE (*dst_loc);
3506 /* Returns true when moving through JUMP will result in bookkeeping
3507 creation. */
3508 bool
3509 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3511 insn_t succ;
3512 succ_iterator si;
3514 FOR_EACH_SUCC (succ, si, jump)
3515 if (sel_num_cfg_preds_gt_1 (succ))
3516 return true;
3518 return false;
3521 /* Return 'true' if INSN is the only one in its basic block. */
3522 static bool
3523 insn_is_the_only_one_in_bb_p (insn_t insn)
3525 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3528 #ifdef ENABLE_CHECKING
3529 /* Check that the region we're scheduling still has at most one
3530 backedge. */
3531 static void
3532 verify_backedges (void)
3534 if (pipelining_p)
3536 int i, n = 0;
3537 edge e;
3538 edge_iterator ei;
3540 for (i = 0; i < current_nr_blocks; i++)
3541 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3542 if (in_current_region_p (e->dest)
3543 && BLOCK_TO_BB (e->dest->index) < i)
3544 n++;
3546 gcc_assert (n <= 1);
3549 #endif
3552 /* Functions to work with control flow. */
3554 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3555 are sorted in topological order (it might have been invalidated by
3556 redirecting an edge). */
3557 static void
3558 sel_recompute_toporder (void)
3560 int i, n, rgn;
3561 int *postorder, n_blocks;
3563 postorder = XALLOCAVEC (int, n_basic_blocks);
3564 n_blocks = post_order_compute (postorder, false, false);
3566 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3567 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3568 if (CONTAINING_RGN (postorder[i]) == rgn)
3570 BLOCK_TO_BB (postorder[i]) = n;
3571 BB_TO_BLOCK (n) = postorder[i];
3572 n++;
3575 /* Assert that we updated info for all blocks. We may miss some blocks if
3576 this function is called when redirecting an edge made a block
3577 unreachable, but that block is not deleted yet. */
3578 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3581 /* Tidy the possibly empty block BB. */
3582 static bool
3583 maybe_tidy_empty_bb (basic_block bb)
3585 basic_block succ_bb, pred_bb;
3586 VEC (basic_block, heap) *dom_bbs;
3587 edge e;
3588 edge_iterator ei;
3589 bool rescan_p;
3591 /* Keep empty bb only if this block immediately precedes EXIT and
3592 has incoming non-fallthrough edge, or it has no predecessors or
3593 successors. Otherwise remove it. */
3594 if (!sel_bb_empty_p (bb)
3595 || (single_succ_p (bb)
3596 && single_succ (bb) == EXIT_BLOCK_PTR
3597 && (!single_pred_p (bb)
3598 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3599 || EDGE_COUNT (bb->preds) == 0
3600 || EDGE_COUNT (bb->succs) == 0)
3601 return false;
3603 /* Do not attempt to redirect complex edges. */
3604 FOR_EACH_EDGE (e, ei, bb->preds)
3605 if (e->flags & EDGE_COMPLEX)
3606 return false;
3608 free_data_sets (bb);
3610 /* Do not delete BB if it has more than one successor.
3611 That can occur when we moving a jump. */
3612 if (!single_succ_p (bb))
3614 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3615 sel_merge_blocks (bb->prev_bb, bb);
3616 return true;
3619 succ_bb = single_succ (bb);
3620 rescan_p = true;
3621 pred_bb = NULL;
3622 dom_bbs = NULL;
3624 /* Redirect all non-fallthru edges to the next bb. */
3625 while (rescan_p)
3627 rescan_p = false;
3629 FOR_EACH_EDGE (e, ei, bb->preds)
3631 pred_bb = e->src;
3633 if (!(e->flags & EDGE_FALLTHRU))
3635 /* We can not invalidate computed topological order by moving
3636 the edge destination block (E->SUCC) along a fallthru edge.
3638 We will update dominators here only when we'll get
3639 an unreachable block when redirecting, otherwise
3640 sel_redirect_edge_and_branch will take care of it. */
3641 if (e->dest != bb
3642 && single_pred_p (e->dest))
3643 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3644 sel_redirect_edge_and_branch (e, succ_bb);
3645 rescan_p = true;
3646 break;
3648 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3649 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3650 still have to adjust it. */
3651 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3653 /* If possible, try to remove the unneeded conditional jump. */
3654 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3655 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3657 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3658 tidy_fallthru_edge (e);
3660 else
3661 sel_redirect_edge_and_branch (e, succ_bb);
3662 rescan_p = true;
3663 break;
3668 if (can_merge_blocks_p (bb->prev_bb, bb))
3669 sel_merge_blocks (bb->prev_bb, bb);
3670 else
3672 /* This is a block without fallthru predecessor. Just delete it. */
3673 gcc_assert (pred_bb != NULL);
3675 if (in_current_region_p (pred_bb))
3676 move_bb_info (pred_bb, bb);
3677 remove_empty_bb (bb, true);
3680 if (!VEC_empty (basic_block, dom_bbs))
3682 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3683 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3684 VEC_free (basic_block, heap, dom_bbs);
3687 return true;
3690 /* Tidy the control flow after we have removed original insn from
3691 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3692 is true, also try to optimize control flow on non-empty blocks. */
3693 bool
3694 tidy_control_flow (basic_block xbb, bool full_tidying)
3696 bool changed = true;
3697 insn_t first, last;
3699 /* First check whether XBB is empty. */
3700 changed = maybe_tidy_empty_bb (xbb);
3701 if (changed || !full_tidying)
3702 return changed;
3704 /* Check if there is a unnecessary jump after insn left. */
3705 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3706 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3707 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3709 if (sel_remove_insn (BB_END (xbb), false, false))
3710 return true;
3711 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3714 first = sel_bb_head (xbb);
3715 last = sel_bb_end (xbb);
3716 if (MAY_HAVE_DEBUG_INSNS)
3718 if (first != last && DEBUG_INSN_P (first))
3720 first = NEXT_INSN (first);
3721 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3723 if (first != last && DEBUG_INSN_P (last))
3725 last = PREV_INSN (last);
3726 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3728 /* Check if there is an unnecessary jump in previous basic block leading
3729 to next basic block left after removing INSN from stream.
3730 If it is so, remove that jump and redirect edge to current
3731 basic block (where there was INSN before deletion). This way
3732 when NOP will be deleted several instructions later with its
3733 basic block we will not get a jump to next instruction, which
3734 can be harmful. */
3735 if (first == last
3736 && !sel_bb_empty_p (xbb)
3737 && INSN_NOP_P (last)
3738 /* Flow goes fallthru from current block to the next. */
3739 && EDGE_COUNT (xbb->succs) == 1
3740 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3741 /* When successor is an EXIT block, it may not be the next block. */
3742 && single_succ (xbb) != EXIT_BLOCK_PTR
3743 /* And unconditional jump in previous basic block leads to
3744 next basic block of XBB and this jump can be safely removed. */
3745 && in_current_region_p (xbb->prev_bb)
3746 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3747 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3748 /* Also this jump is not at the scheduling boundary. */
3749 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3751 bool recompute_toporder_p;
3752 /* Clear data structures of jump - jump itself will be removed
3753 by sel_redirect_edge_and_branch. */
3754 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3755 recompute_toporder_p
3756 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3758 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3760 /* It can turn out that after removing unused jump, basic block
3761 that contained that jump, becomes empty too. In such case
3762 remove it too. */
3763 if (sel_bb_empty_p (xbb->prev_bb))
3764 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3765 if (recompute_toporder_p)
3766 sel_recompute_toporder ();
3769 #ifdef ENABLE_CHECKING
3770 verify_backedges ();
3771 verify_dominators (CDI_DOMINATORS);
3772 #endif
3774 return changed;
3777 /* Purge meaningless empty blocks in the middle of a region. */
3778 void
3779 purge_empty_blocks (void)
3781 int i;
3783 /* Do not attempt to delete the first basic block in the region. */
3784 for (i = 1; i < current_nr_blocks; )
3786 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3788 if (maybe_tidy_empty_bb (b))
3789 continue;
3791 i++;
3795 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3796 do not delete insn's data, because it will be later re-emitted.
3797 Return true if we have removed some blocks afterwards. */
3798 bool
3799 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3801 basic_block bb = BLOCK_FOR_INSN (insn);
3803 gcc_assert (INSN_IN_STREAM_P (insn));
3805 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3807 expr_t expr;
3808 av_set_iterator i;
3810 /* When we remove a debug insn that is head of a BB, it remains
3811 in the AV_SET of the block, but it shouldn't. */
3812 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3813 if (EXPR_INSN_RTX (expr) == insn)
3815 av_set_iter_remove (&i);
3816 break;
3820 if (only_disconnect)
3822 insn_t prev = PREV_INSN (insn);
3823 insn_t next = NEXT_INSN (insn);
3824 basic_block bb = BLOCK_FOR_INSN (insn);
3826 NEXT_INSN (prev) = next;
3827 PREV_INSN (next) = prev;
3829 if (BB_HEAD (bb) == insn)
3831 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3832 BB_HEAD (bb) = prev;
3834 if (BB_END (bb) == insn)
3835 BB_END (bb) = prev;
3837 else
3839 remove_insn (insn);
3840 clear_expr (INSN_EXPR (insn));
3843 /* It is necessary to null this fields before calling add_insn (). */
3844 PREV_INSN (insn) = NULL_RTX;
3845 NEXT_INSN (insn) = NULL_RTX;
3847 return tidy_control_flow (bb, full_tidying);
3850 /* Estimate number of the insns in BB. */
3851 static int
3852 sel_estimate_number_of_insns (basic_block bb)
3854 int res = 0;
3855 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3857 for (; insn != next_tail; insn = NEXT_INSN (insn))
3858 if (NONDEBUG_INSN_P (insn))
3859 res++;
3861 return res;
3864 /* We don't need separate luids for notes or labels. */
3865 static int
3866 sel_luid_for_non_insn (rtx x)
3868 gcc_assert (NOTE_P (x) || LABEL_P (x));
3870 return -1;
3873 /* Return seqno of the only predecessor of INSN. */
3874 static int
3875 get_seqno_of_a_pred (insn_t insn)
3877 int seqno;
3879 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3881 if (!sel_bb_head_p (insn))
3882 seqno = INSN_SEQNO (PREV_INSN (insn));
3883 else
3885 basic_block bb = BLOCK_FOR_INSN (insn);
3887 if (single_pred_p (bb)
3888 && !in_current_region_p (single_pred (bb)))
3890 /* We can have preds outside a region when splitting edges
3891 for pipelining of an outer loop. Use succ instead.
3892 There should be only one of them. */
3893 insn_t succ = NULL;
3894 succ_iterator si;
3895 bool first = true;
3897 gcc_assert (flag_sel_sched_pipelining_outer_loops
3898 && current_loop_nest);
3899 FOR_EACH_SUCC_1 (succ, si, insn,
3900 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3902 gcc_assert (first);
3903 first = false;
3906 gcc_assert (succ != NULL);
3907 seqno = INSN_SEQNO (succ);
3909 else
3911 insn_t *preds;
3912 int n;
3914 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3915 gcc_assert (n == 1);
3917 seqno = INSN_SEQNO (preds[0]);
3919 free (preds);
3923 return seqno;
3926 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3927 with positive seqno exist. */
3929 get_seqno_by_preds (rtx insn)
3931 basic_block bb = BLOCK_FOR_INSN (insn);
3932 rtx tmp = insn, head = BB_HEAD (bb);
3933 insn_t *preds;
3934 int n, i, seqno;
3936 while (tmp != head)
3937 if (INSN_P (tmp))
3938 return INSN_SEQNO (tmp);
3939 else
3940 tmp = PREV_INSN (tmp);
3942 cfg_preds (bb, &preds, &n);
3943 for (i = 0, seqno = -1; i < n; i++)
3944 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3946 return seqno;
3951 /* Extend pass-scope data structures for basic blocks. */
3952 void
3953 sel_extend_global_bb_info (void)
3955 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3956 last_basic_block);
3959 /* Extend region-scope data structures for basic blocks. */
3960 static void
3961 extend_region_bb_info (void)
3963 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3964 last_basic_block);
3967 /* Extend all data structures to fit for all basic blocks. */
3968 static void
3969 extend_bb_info (void)
3971 sel_extend_global_bb_info ();
3972 extend_region_bb_info ();
3975 /* Finalize pass-scope data structures for basic blocks. */
3976 void
3977 sel_finish_global_bb_info (void)
3979 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3982 /* Finalize region-scope data structures for basic blocks. */
3983 static void
3984 finish_region_bb_info (void)
3986 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3990 /* Data for each insn in current region. */
3991 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3993 /* A vector for the insns we've emitted. */
3994 static insn_vec_t new_insns = NULL;
3996 /* Extend data structures for insns from current region. */
3997 static void
3998 extend_insn_data (void)
4000 int reserve;
4002 sched_extend_target ();
4003 sched_deps_init (false);
4005 /* Extend data structures for insns from current region. */
4006 reserve = (sched_max_luid + 1
4007 - VEC_length (sel_insn_data_def, s_i_d));
4008 if (reserve > 0
4009 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
4011 int size;
4013 if (sched_max_luid / 2 > 1024)
4014 size = sched_max_luid + 1024;
4015 else
4016 size = 3 * sched_max_luid / 2;
4019 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4023 /* Finalize data structures for insns from current region. */
4024 static void
4025 finish_insns (void)
4027 unsigned i;
4029 /* Clear here all dependence contexts that may have left from insns that were
4030 removed during the scheduling. */
4031 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4033 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4035 if (sid_entry->live)
4036 return_regset_to_pool (sid_entry->live);
4037 if (sid_entry->analyzed_deps)
4039 BITMAP_FREE (sid_entry->analyzed_deps);
4040 BITMAP_FREE (sid_entry->found_deps);
4041 htab_delete (sid_entry->transformed_insns);
4042 free_deps (&sid_entry->deps_context);
4044 if (EXPR_VINSN (&sid_entry->expr))
4046 clear_expr (&sid_entry->expr);
4048 /* Also, clear CANT_MOVE bit here, because we really don't want it
4049 to be passed to the next region. */
4050 CANT_MOVE_BY_LUID (i) = 0;
4054 VEC_free (sel_insn_data_def, heap, s_i_d);
4057 /* A proxy to pass initialization data to init_insn (). */
4058 static sel_insn_data_def _insn_init_ssid;
4059 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4061 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4062 static bool insn_init_create_new_vinsn_p;
4064 /* Set all necessary data for initialization of the new insn[s]. */
4065 static expr_t
4066 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4068 expr_t x = &insn_init_ssid->expr;
4070 copy_expr_onside (x, expr);
4071 if (vi != NULL)
4073 insn_init_create_new_vinsn_p = false;
4074 change_vinsn_in_expr (x, vi);
4076 else
4077 insn_init_create_new_vinsn_p = true;
4079 insn_init_ssid->seqno = seqno;
4080 return x;
4083 /* Init data for INSN. */
4084 static void
4085 init_insn_data (insn_t insn)
4087 expr_t expr;
4088 sel_insn_data_t ssid = insn_init_ssid;
4090 /* The fields mentioned below are special and hence are not being
4091 propagated to the new insns. */
4092 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4093 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4094 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4096 expr = INSN_EXPR (insn);
4097 copy_expr (expr, &ssid->expr);
4098 prepare_insn_expr (insn, ssid->seqno);
4100 if (insn_init_create_new_vinsn_p)
4101 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4103 if (first_time_insn_init (insn))
4104 init_first_time_insn_data (insn);
4107 /* This is used to initialize spurious jumps generated by
4108 sel_redirect_edge (). */
4109 static void
4110 init_simplejump_data (insn_t insn)
4112 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4113 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4114 false, true);
4115 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4116 init_first_time_insn_data (insn);
4119 /* Perform deferred initialization of insns. This is used to process
4120 a new jump that may be created by redirect_edge. */
4121 void
4122 sel_init_new_insn (insn_t insn, int flags)
4124 /* We create data structures for bb when the first insn is emitted in it. */
4125 if (INSN_P (insn)
4126 && INSN_IN_STREAM_P (insn)
4127 && insn_is_the_only_one_in_bb_p (insn))
4129 extend_bb_info ();
4130 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4133 if (flags & INSN_INIT_TODO_LUID)
4134 sched_init_luids (NULL, NULL, NULL, insn);
4136 if (flags & INSN_INIT_TODO_SSID)
4138 extend_insn_data ();
4139 init_insn_data (insn);
4140 clear_expr (&insn_init_ssid->expr);
4143 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4145 extend_insn_data ();
4146 init_simplejump_data (insn);
4149 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4150 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4154 /* Functions to init/finish work with lv sets. */
4156 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4157 static void
4158 init_lv_set (basic_block bb)
4160 gcc_assert (!BB_LV_SET_VALID_P (bb));
4162 BB_LV_SET (bb) = get_regset_from_pool ();
4163 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4164 BB_LV_SET_VALID_P (bb) = true;
4167 /* Copy liveness information to BB from FROM_BB. */
4168 static void
4169 copy_lv_set_from (basic_block bb, basic_block from_bb)
4171 gcc_assert (!BB_LV_SET_VALID_P (bb));
4173 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4174 BB_LV_SET_VALID_P (bb) = true;
4177 /* Initialize lv set of all bb headers. */
4178 void
4179 init_lv_sets (void)
4181 basic_block bb;
4183 /* Initialize of LV sets. */
4184 FOR_EACH_BB (bb)
4185 init_lv_set (bb);
4187 /* Don't forget EXIT_BLOCK. */
4188 init_lv_set (EXIT_BLOCK_PTR);
4191 /* Release lv set of HEAD. */
4192 static void
4193 free_lv_set (basic_block bb)
4195 gcc_assert (BB_LV_SET (bb) != NULL);
4197 return_regset_to_pool (BB_LV_SET (bb));
4198 BB_LV_SET (bb) = NULL;
4199 BB_LV_SET_VALID_P (bb) = false;
4202 /* Finalize lv sets of all bb headers. */
4203 void
4204 free_lv_sets (void)
4206 basic_block bb;
4208 /* Don't forget EXIT_BLOCK. */
4209 free_lv_set (EXIT_BLOCK_PTR);
4211 /* Free LV sets. */
4212 FOR_EACH_BB (bb)
4213 if (BB_LV_SET (bb))
4214 free_lv_set (bb);
4217 /* Initialize an invalid AV_SET for BB.
4218 This set will be updated next time compute_av () process BB. */
4219 static void
4220 invalidate_av_set (basic_block bb)
4222 gcc_assert (BB_AV_LEVEL (bb) <= 0
4223 && BB_AV_SET (bb) == NULL);
4225 BB_AV_LEVEL (bb) = -1;
4228 /* Create initial data sets for BB (they will be invalid). */
4229 static void
4230 create_initial_data_sets (basic_block bb)
4232 if (BB_LV_SET (bb))
4233 BB_LV_SET_VALID_P (bb) = false;
4234 else
4235 BB_LV_SET (bb) = get_regset_from_pool ();
4236 invalidate_av_set (bb);
4239 /* Free av set of BB. */
4240 static void
4241 free_av_set (basic_block bb)
4243 av_set_clear (&BB_AV_SET (bb));
4244 BB_AV_LEVEL (bb) = 0;
4247 /* Free data sets of BB. */
4248 void
4249 free_data_sets (basic_block bb)
4251 free_lv_set (bb);
4252 free_av_set (bb);
4255 /* Exchange lv sets of TO and FROM. */
4256 static void
4257 exchange_lv_sets (basic_block to, basic_block from)
4260 regset to_lv_set = BB_LV_SET (to);
4262 BB_LV_SET (to) = BB_LV_SET (from);
4263 BB_LV_SET (from) = to_lv_set;
4267 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4269 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4270 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4275 /* Exchange av sets of TO and FROM. */
4276 static void
4277 exchange_av_sets (basic_block to, basic_block from)
4280 av_set_t to_av_set = BB_AV_SET (to);
4282 BB_AV_SET (to) = BB_AV_SET (from);
4283 BB_AV_SET (from) = to_av_set;
4287 int to_av_level = BB_AV_LEVEL (to);
4289 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4290 BB_AV_LEVEL (from) = to_av_level;
4294 /* Exchange data sets of TO and FROM. */
4295 void
4296 exchange_data_sets (basic_block to, basic_block from)
4298 exchange_lv_sets (to, from);
4299 exchange_av_sets (to, from);
4302 /* Copy data sets of FROM to TO. */
4303 void
4304 copy_data_sets (basic_block to, basic_block from)
4306 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4307 gcc_assert (BB_AV_SET (to) == NULL);
4309 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4310 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4312 if (BB_AV_SET_VALID_P (from))
4314 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4316 if (BB_LV_SET_VALID_P (from))
4318 gcc_assert (BB_LV_SET (to) != NULL);
4319 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4323 /* Return an av set for INSN, if any. */
4324 av_set_t
4325 get_av_set (insn_t insn)
4327 av_set_t av_set;
4329 gcc_assert (AV_SET_VALID_P (insn));
4331 if (sel_bb_head_p (insn))
4332 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4333 else
4334 av_set = NULL;
4336 return av_set;
4339 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4341 get_av_level (insn_t insn)
4343 int av_level;
4345 gcc_assert (INSN_P (insn));
4347 if (sel_bb_head_p (insn))
4348 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4349 else
4350 av_level = INSN_WS_LEVEL (insn);
4352 return av_level;
4357 /* Variables to work with control-flow graph. */
4359 /* The basic block that already has been processed by the sched_data_update (),
4360 but hasn't been in sel_add_bb () yet. */
4361 static VEC (basic_block, heap) *last_added_blocks = NULL;
4363 /* A pool for allocating successor infos. */
4364 static struct
4366 /* A stack for saving succs_info structures. */
4367 struct succs_info *stack;
4369 /* Its size. */
4370 int size;
4372 /* Top of the stack. */
4373 int top;
4375 /* Maximal value of the top. */
4376 int max_top;
4377 } succs_info_pool;
4379 /* Functions to work with control-flow graph. */
4381 /* Return basic block note of BB. */
4382 insn_t
4383 sel_bb_head (basic_block bb)
4385 insn_t head;
4387 if (bb == EXIT_BLOCK_PTR)
4389 gcc_assert (exit_insn != NULL_RTX);
4390 head = exit_insn;
4392 else
4394 insn_t note;
4396 note = bb_note (bb);
4397 head = next_nonnote_insn (note);
4399 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4400 head = NULL_RTX;
4403 return head;
4406 /* Return true if INSN is a basic block header. */
4407 bool
4408 sel_bb_head_p (insn_t insn)
4410 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4413 /* Return last insn of BB. */
4414 insn_t
4415 sel_bb_end (basic_block bb)
4417 if (sel_bb_empty_p (bb))
4418 return NULL_RTX;
4420 gcc_assert (bb != EXIT_BLOCK_PTR);
4422 return BB_END (bb);
4425 /* Return true if INSN is the last insn in its basic block. */
4426 bool
4427 sel_bb_end_p (insn_t insn)
4429 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4432 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4433 bool
4434 sel_bb_empty_p (basic_block bb)
4436 return sel_bb_head (bb) == NULL;
4439 /* True when BB belongs to the current scheduling region. */
4440 bool
4441 in_current_region_p (basic_block bb)
4443 if (bb->index < NUM_FIXED_BLOCKS)
4444 return false;
4446 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4449 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4450 basic_block
4451 fallthru_bb_of_jump (rtx jump)
4453 if (!JUMP_P (jump))
4454 return NULL;
4456 if (!any_condjump_p (jump))
4457 return NULL;
4459 /* A basic block that ends with a conditional jump may still have one successor
4460 (and be followed by a barrier), we are not interested. */
4461 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4462 return NULL;
4464 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4467 /* Remove all notes from BB. */
4468 static void
4469 init_bb (basic_block bb)
4471 remove_notes (bb_note (bb), BB_END (bb));
4472 BB_NOTE_LIST (bb) = note_list;
4475 void
4476 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4478 const struct sched_scan_info_def ssi =
4480 extend_bb_info, /* extend_bb */
4481 init_bb, /* init_bb */
4482 NULL, /* extend_insn */
4483 NULL /* init_insn */
4486 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4489 /* Restore notes for the whole region. */
4490 static void
4491 sel_restore_notes (void)
4493 int bb;
4494 insn_t insn;
4496 for (bb = 0; bb < current_nr_blocks; bb++)
4498 basic_block first, last;
4500 first = EBB_FIRST_BB (bb);
4501 last = EBB_LAST_BB (bb)->next_bb;
4505 note_list = BB_NOTE_LIST (first);
4506 restore_other_notes (NULL, first);
4507 BB_NOTE_LIST (first) = NULL_RTX;
4509 FOR_BB_INSNS (first, insn)
4510 if (NONDEBUG_INSN_P (insn))
4511 reemit_notes (insn);
4513 first = first->next_bb;
4515 while (first != last);
4519 /* Free per-bb data structures. */
4520 void
4521 sel_finish_bbs (void)
4523 sel_restore_notes ();
4525 /* Remove current loop preheader from this loop. */
4526 if (current_loop_nest)
4527 sel_remove_loop_preheader ();
4529 finish_region_bb_info ();
4532 /* Return true if INSN has a single successor of type FLAGS. */
4533 bool
4534 sel_insn_has_single_succ_p (insn_t insn, int flags)
4536 insn_t succ;
4537 succ_iterator si;
4538 bool first_p = true;
4540 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4542 if (first_p)
4543 first_p = false;
4544 else
4545 return false;
4548 return true;
4551 /* Allocate successor's info. */
4552 static struct succs_info *
4553 alloc_succs_info (void)
4555 if (succs_info_pool.top == succs_info_pool.max_top)
4557 int i;
4559 if (++succs_info_pool.max_top >= succs_info_pool.size)
4560 gcc_unreachable ();
4562 i = ++succs_info_pool.top;
4563 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4564 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4565 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4567 else
4568 succs_info_pool.top++;
4570 return &succs_info_pool.stack[succs_info_pool.top];
4573 /* Free successor's info. */
4574 void
4575 free_succs_info (struct succs_info * sinfo)
4577 gcc_assert (succs_info_pool.top >= 0
4578 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4579 succs_info_pool.top--;
4581 /* Clear stale info. */
4582 VEC_block_remove (rtx, sinfo->succs_ok,
4583 0, VEC_length (rtx, sinfo->succs_ok));
4584 VEC_block_remove (rtx, sinfo->succs_other,
4585 0, VEC_length (rtx, sinfo->succs_other));
4586 VEC_block_remove (int, sinfo->probs_ok,
4587 0, VEC_length (int, sinfo->probs_ok));
4588 sinfo->all_prob = 0;
4589 sinfo->succs_ok_n = 0;
4590 sinfo->all_succs_n = 0;
4593 /* Compute successor info for INSN. FLAGS are the flags passed
4594 to the FOR_EACH_SUCC_1 iterator. */
4595 struct succs_info *
4596 compute_succs_info (insn_t insn, short flags)
4598 succ_iterator si;
4599 insn_t succ;
4600 struct succs_info *sinfo = alloc_succs_info ();
4602 /* Traverse *all* successors and decide what to do with each. */
4603 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4605 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4606 perform code motion through inner loops. */
4607 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4609 if (current_flags & flags)
4611 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4612 VEC_safe_push (int, heap, sinfo->probs_ok,
4613 /* FIXME: Improve calculation when skipping
4614 inner loop to exits. */
4615 (si.bb_end
4616 ? si.e1->probability
4617 : REG_BR_PROB_BASE));
4618 sinfo->succs_ok_n++;
4620 else
4621 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4623 /* Compute all_prob. */
4624 if (!si.bb_end)
4625 sinfo->all_prob = REG_BR_PROB_BASE;
4626 else
4627 sinfo->all_prob += si.e1->probability;
4629 sinfo->all_succs_n++;
4632 return sinfo;
4635 /* Return the predecessors of BB in PREDS and their number in N.
4636 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4637 static void
4638 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4640 edge e;
4641 edge_iterator ei;
4643 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4645 FOR_EACH_EDGE (e, ei, bb->preds)
4647 basic_block pred_bb = e->src;
4648 insn_t bb_end = BB_END (pred_bb);
4650 if (!in_current_region_p (pred_bb))
4652 gcc_assert (flag_sel_sched_pipelining_outer_loops
4653 && current_loop_nest);
4654 continue;
4657 if (sel_bb_empty_p (pred_bb))
4658 cfg_preds_1 (pred_bb, preds, n, size);
4659 else
4661 if (*n == *size)
4662 *preds = XRESIZEVEC (insn_t, *preds,
4663 (*size = 2 * *size + 1));
4664 (*preds)[(*n)++] = bb_end;
4668 gcc_assert (*n != 0
4669 || (flag_sel_sched_pipelining_outer_loops
4670 && current_loop_nest));
4673 /* Find all predecessors of BB and record them in PREDS and their number
4674 in N. Empty blocks are skipped, and only normal (forward in-region)
4675 edges are processed. */
4676 static void
4677 cfg_preds (basic_block bb, insn_t **preds, int *n)
4679 int size = 0;
4681 *preds = NULL;
4682 *n = 0;
4683 cfg_preds_1 (bb, preds, n, &size);
4686 /* Returns true if we are moving INSN through join point. */
4687 bool
4688 sel_num_cfg_preds_gt_1 (insn_t insn)
4690 basic_block bb;
4692 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4693 return false;
4695 bb = BLOCK_FOR_INSN (insn);
4697 while (1)
4699 if (EDGE_COUNT (bb->preds) > 1)
4700 return true;
4702 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4703 bb = EDGE_PRED (bb, 0)->src;
4705 if (!sel_bb_empty_p (bb))
4706 break;
4709 return false;
4712 /* Returns true when BB should be the end of an ebb. Adapted from the
4713 code in sched-ebb.c. */
4714 bool
4715 bb_ends_ebb_p (basic_block bb)
4717 basic_block next_bb = bb_next_bb (bb);
4718 edge e;
4720 if (next_bb == EXIT_BLOCK_PTR
4721 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4722 || (LABEL_P (BB_HEAD (next_bb))
4723 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4724 Work around that. */
4725 && !single_pred_p (next_bb)))
4726 return true;
4728 if (!in_current_region_p (next_bb))
4729 return true;
4731 e = find_fallthru_edge (bb->succs);
4732 if (e)
4734 gcc_assert (e->dest == next_bb);
4736 return false;
4739 return true;
4742 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4743 successor of INSN. */
4744 bool
4745 in_same_ebb_p (insn_t insn, insn_t succ)
4747 basic_block ptr = BLOCK_FOR_INSN (insn);
4749 for(;;)
4751 if (ptr == BLOCK_FOR_INSN (succ))
4752 return true;
4754 if (bb_ends_ebb_p (ptr))
4755 return false;
4757 ptr = bb_next_bb (ptr);
4760 gcc_unreachable ();
4761 return false;
4764 /* Recomputes the reverse topological order for the function and
4765 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4766 modified appropriately. */
4767 static void
4768 recompute_rev_top_order (void)
4770 int *postorder;
4771 int n_blocks, i;
4773 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4775 rev_top_order_index_len = last_basic_block;
4776 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4777 rev_top_order_index_len);
4780 postorder = XNEWVEC (int, n_basic_blocks);
4782 n_blocks = post_order_compute (postorder, true, false);
4783 gcc_assert (n_basic_blocks == n_blocks);
4785 /* Build reverse function: for each basic block with BB->INDEX == K
4786 rev_top_order_index[K] is it's reverse topological sort number. */
4787 for (i = 0; i < n_blocks; i++)
4789 gcc_assert (postorder[i] < rev_top_order_index_len);
4790 rev_top_order_index[postorder[i]] = i;
4793 free (postorder);
4796 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4797 void
4798 clear_outdated_rtx_info (basic_block bb)
4800 rtx insn;
4802 FOR_BB_INSNS (bb, insn)
4803 if (INSN_P (insn))
4805 SCHED_GROUP_P (insn) = 0;
4806 INSN_AFTER_STALL_P (insn) = 0;
4807 INSN_SCHED_TIMES (insn) = 0;
4808 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4810 /* We cannot use the changed caches, as previously we could ignore
4811 the LHS dependence due to enabled renaming and transform
4812 the expression, and currently we'll be unable to do this. */
4813 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4817 /* Add BB_NOTE to the pool of available basic block notes. */
4818 static void
4819 return_bb_to_pool (basic_block bb)
4821 rtx note = bb_note (bb);
4823 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4824 && bb->aux == NULL);
4826 /* It turns out that current cfg infrastructure does not support
4827 reuse of basic blocks. Don't bother for now. */
4828 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4831 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4832 static rtx
4833 get_bb_note_from_pool (void)
4835 if (VEC_empty (rtx, bb_note_pool))
4836 return NULL_RTX;
4837 else
4839 rtx note = VEC_pop (rtx, bb_note_pool);
4841 PREV_INSN (note) = NULL_RTX;
4842 NEXT_INSN (note) = NULL_RTX;
4844 return note;
4848 /* Free bb_note_pool. */
4849 void
4850 free_bb_note_pool (void)
4852 VEC_free (rtx, heap, bb_note_pool);
4855 /* Setup scheduler pool and successor structure. */
4856 void
4857 alloc_sched_pools (void)
4859 int succs_size;
4861 succs_size = MAX_WS + 1;
4862 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4863 succs_info_pool.size = succs_size;
4864 succs_info_pool.top = -1;
4865 succs_info_pool.max_top = -1;
4867 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4868 sizeof (struct _list_node), 500);
4871 /* Free the pools. */
4872 void
4873 free_sched_pools (void)
4875 int i;
4877 free_alloc_pool (sched_lists_pool);
4878 gcc_assert (succs_info_pool.top == -1);
4879 for (i = 0; i < succs_info_pool.max_top; i++)
4881 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4882 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4883 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4885 free (succs_info_pool.stack);
4889 /* Returns a position in RGN where BB can be inserted retaining
4890 topological order. */
4891 static int
4892 find_place_to_insert_bb (basic_block bb, int rgn)
4894 bool has_preds_outside_rgn = false;
4895 edge e;
4896 edge_iterator ei;
4898 /* Find whether we have preds outside the region. */
4899 FOR_EACH_EDGE (e, ei, bb->preds)
4900 if (!in_current_region_p (e->src))
4902 has_preds_outside_rgn = true;
4903 break;
4906 /* Recompute the top order -- needed when we have > 1 pred
4907 and in case we don't have preds outside. */
4908 if (flag_sel_sched_pipelining_outer_loops
4909 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4911 int i, bbi = bb->index, cur_bbi;
4913 recompute_rev_top_order ();
4914 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4916 cur_bbi = BB_TO_BLOCK (i);
4917 if (rev_top_order_index[bbi]
4918 < rev_top_order_index[cur_bbi])
4919 break;
4922 /* We skipped the right block, so we increase i. We accomodate
4923 it for increasing by step later, so we decrease i. */
4924 return (i + 1) - 1;
4926 else if (has_preds_outside_rgn)
4928 /* This is the case when we generate an extra empty block
4929 to serve as region head during pipelining. */
4930 e = EDGE_SUCC (bb, 0);
4931 gcc_assert (EDGE_COUNT (bb->succs) == 1
4932 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4933 && (BLOCK_TO_BB (e->dest->index) == 0));
4934 return -1;
4937 /* We don't have preds outside the region. We should have
4938 the only pred, because the multiple preds case comes from
4939 the pipelining of outer loops, and that is handled above.
4940 Just take the bbi of this single pred. */
4941 if (EDGE_COUNT (bb->succs) > 0)
4943 int pred_bbi;
4945 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4947 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4948 return BLOCK_TO_BB (pred_bbi);
4950 else
4951 /* BB has no successors. It is safe to put it in the end. */
4952 return current_nr_blocks - 1;
4955 /* Deletes an empty basic block freeing its data. */
4956 static void
4957 delete_and_free_basic_block (basic_block bb)
4959 gcc_assert (sel_bb_empty_p (bb));
4961 if (BB_LV_SET (bb))
4962 free_lv_set (bb);
4964 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4966 /* Can't assert av_set properties because we use sel_aremove_bb
4967 when removing loop preheader from the region. At the point of
4968 removing the preheader we already have deallocated sel_region_bb_info. */
4969 gcc_assert (BB_LV_SET (bb) == NULL
4970 && !BB_LV_SET_VALID_P (bb)
4971 && BB_AV_LEVEL (bb) == 0
4972 && BB_AV_SET (bb) == NULL);
4974 delete_basic_block (bb);
4977 /* Add BB to the current region and update the region data. */
4978 static void
4979 add_block_to_current_region (basic_block bb)
4981 int i, pos, bbi = -2, rgn;
4983 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4984 bbi = find_place_to_insert_bb (bb, rgn);
4985 bbi += 1;
4986 pos = RGN_BLOCKS (rgn) + bbi;
4988 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4989 && ebb_head[bbi] == pos);
4991 /* Make a place for the new block. */
4992 extend_regions ();
4994 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4995 BLOCK_TO_BB (rgn_bb_table[i])++;
4997 memmove (rgn_bb_table + pos + 1,
4998 rgn_bb_table + pos,
4999 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5001 /* Initialize data for BB. */
5002 rgn_bb_table[pos] = bb->index;
5003 BLOCK_TO_BB (bb->index) = bbi;
5004 CONTAINING_RGN (bb->index) = rgn;
5006 RGN_NR_BLOCKS (rgn)++;
5008 for (i = rgn + 1; i <= nr_regions; i++)
5009 RGN_BLOCKS (i)++;
5012 /* Remove BB from the current region and update the region data. */
5013 static void
5014 remove_bb_from_region (basic_block bb)
5016 int i, pos, bbi = -2, rgn;
5018 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5019 bbi = BLOCK_TO_BB (bb->index);
5020 pos = RGN_BLOCKS (rgn) + bbi;
5022 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5023 && ebb_head[bbi] == pos);
5025 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5026 BLOCK_TO_BB (rgn_bb_table[i])--;
5028 memmove (rgn_bb_table + pos,
5029 rgn_bb_table + pos + 1,
5030 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5032 RGN_NR_BLOCKS (rgn)--;
5033 for (i = rgn + 1; i <= nr_regions; i++)
5034 RGN_BLOCKS (i)--;
5037 /* Add BB to the current region and update all data. If BB is NULL, add all
5038 blocks from last_added_blocks vector. */
5039 static void
5040 sel_add_bb (basic_block bb)
5042 /* Extend luids so that new notes will receive zero luids. */
5043 sched_init_luids (NULL, NULL, NULL, NULL);
5044 sched_init_bbs ();
5045 sel_init_bbs (last_added_blocks, NULL);
5047 /* When bb is passed explicitly, the vector should contain
5048 the only element that equals to bb; otherwise, the vector
5049 should not be NULL. */
5050 gcc_assert (last_added_blocks != NULL);
5052 if (bb != NULL)
5054 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5055 && VEC_index (basic_block,
5056 last_added_blocks, 0) == bb);
5057 add_block_to_current_region (bb);
5059 /* We associate creating/deleting data sets with the first insn
5060 appearing / disappearing in the bb. */
5061 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5062 create_initial_data_sets (bb);
5064 VEC_free (basic_block, heap, last_added_blocks);
5066 else
5067 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5069 int i;
5070 basic_block temp_bb = NULL;
5072 for (i = 0;
5073 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5075 add_block_to_current_region (bb);
5076 temp_bb = bb;
5079 /* We need to fetch at least one bb so we know the region
5080 to update. */
5081 gcc_assert (temp_bb != NULL);
5082 bb = temp_bb;
5084 VEC_free (basic_block, heap, last_added_blocks);
5087 rgn_setup_region (CONTAINING_RGN (bb->index));
5090 /* Remove BB from the current region and update all data.
5091 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5092 static void
5093 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5095 unsigned idx = bb->index;
5097 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5099 remove_bb_from_region (bb);
5100 return_bb_to_pool (bb);
5101 bitmap_clear_bit (blocks_to_reschedule, idx);
5103 if (remove_from_cfg_p)
5105 basic_block succ = single_succ (bb);
5106 delete_and_free_basic_block (bb);
5107 set_immediate_dominator (CDI_DOMINATORS, succ,
5108 recompute_dominator (CDI_DOMINATORS, succ));
5111 rgn_setup_region (CONTAINING_RGN (idx));
5114 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5115 static void
5116 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5118 gcc_assert (in_current_region_p (merge_bb));
5120 concat_note_lists (BB_NOTE_LIST (empty_bb),
5121 &BB_NOTE_LIST (merge_bb));
5122 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5126 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5127 region, but keep it in CFG. */
5128 static void
5129 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5131 /* The block should contain just a note or a label.
5132 We try to check whether it is unused below. */
5133 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5134 || LABEL_P (BB_HEAD (empty_bb)));
5136 /* If basic block has predecessors or successors, redirect them. */
5137 if (remove_from_cfg_p
5138 && (EDGE_COUNT (empty_bb->preds) > 0
5139 || EDGE_COUNT (empty_bb->succs) > 0))
5141 basic_block pred;
5142 basic_block succ;
5144 /* We need to init PRED and SUCC before redirecting edges. */
5145 if (EDGE_COUNT (empty_bb->preds) > 0)
5147 edge e;
5149 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5151 e = EDGE_PRED (empty_bb, 0);
5152 gcc_assert (e->src == empty_bb->prev_bb
5153 && (e->flags & EDGE_FALLTHRU));
5155 pred = empty_bb->prev_bb;
5157 else
5158 pred = NULL;
5160 if (EDGE_COUNT (empty_bb->succs) > 0)
5162 /* We do not check fallthruness here as above, because
5163 after removing a jump the edge may actually be not fallthru. */
5164 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5165 succ = EDGE_SUCC (empty_bb, 0)->dest;
5167 else
5168 succ = NULL;
5170 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5172 edge e = EDGE_PRED (empty_bb, 0);
5174 if (e->flags & EDGE_FALLTHRU)
5175 redirect_edge_succ_nodup (e, succ);
5176 else
5177 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5180 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5182 edge e = EDGE_SUCC (empty_bb, 0);
5184 if (find_edge (pred, e->dest) == NULL)
5185 redirect_edge_pred (e, pred);
5189 /* Finish removing. */
5190 sel_remove_bb (empty_bb, remove_from_cfg_p);
5193 /* An implementation of create_basic_block hook, which additionally updates
5194 per-bb data structures. */
5195 static basic_block
5196 sel_create_basic_block (void *headp, void *endp, basic_block after)
5198 basic_block new_bb;
5199 insn_t new_bb_note;
5201 gcc_assert (flag_sel_sched_pipelining_outer_loops
5202 || last_added_blocks == NULL);
5204 new_bb_note = get_bb_note_from_pool ();
5206 if (new_bb_note == NULL_RTX)
5207 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5208 else
5210 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5211 new_bb_note, after);
5212 new_bb->aux = NULL;
5215 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5217 return new_bb;
5220 /* Implement sched_init_only_bb (). */
5221 static void
5222 sel_init_only_bb (basic_block bb, basic_block after)
5224 gcc_assert (after == NULL);
5226 extend_regions ();
5227 rgn_make_new_region_out_of_new_block (bb);
5230 /* Update the latch when we've splitted or merged it from FROM block to TO.
5231 This should be checked for all outer loops, too. */
5232 static void
5233 change_loops_latches (basic_block from, basic_block to)
5235 gcc_assert (from != to);
5237 if (current_loop_nest)
5239 struct loop *loop;
5241 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5242 if (considered_for_pipelining_p (loop) && loop->latch == from)
5244 gcc_assert (loop == current_loop_nest);
5245 loop->latch = to;
5246 gcc_assert (loop_latch_edge (loop));
5251 /* Splits BB on two basic blocks, adding it to the region and extending
5252 per-bb data structures. Returns the newly created bb. */
5253 static basic_block
5254 sel_split_block (basic_block bb, rtx after)
5256 basic_block new_bb;
5257 insn_t insn;
5259 new_bb = sched_split_block_1 (bb, after);
5260 sel_add_bb (new_bb);
5262 /* This should be called after sel_add_bb, because this uses
5263 CONTAINING_RGN for the new block, which is not yet initialized.
5264 FIXME: this function may be a no-op now. */
5265 change_loops_latches (bb, new_bb);
5267 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5268 FOR_BB_INSNS (new_bb, insn)
5269 if (INSN_P (insn))
5270 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5272 if (sel_bb_empty_p (bb))
5274 gcc_assert (!sel_bb_empty_p (new_bb));
5276 /* NEW_BB has data sets that need to be updated and BB holds
5277 data sets that should be removed. Exchange these data sets
5278 so that we won't lose BB's valid data sets. */
5279 exchange_data_sets (new_bb, bb);
5280 free_data_sets (bb);
5283 if (!sel_bb_empty_p (new_bb)
5284 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5285 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5287 return new_bb;
5290 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5291 Otherwise returns NULL. */
5292 static rtx
5293 check_for_new_jump (basic_block bb, int prev_max_uid)
5295 rtx end;
5297 end = sel_bb_end (bb);
5298 if (end && INSN_UID (end) >= prev_max_uid)
5299 return end;
5300 return NULL;
5303 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5304 New means having UID at least equal to PREV_MAX_UID. */
5305 static rtx
5306 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5308 rtx jump;
5310 /* Return immediately if no new insns were emitted. */
5311 if (get_max_uid () == prev_max_uid)
5312 return NULL;
5314 /* Now check both blocks for new jumps. It will ever be only one. */
5315 if ((jump = check_for_new_jump (from, prev_max_uid)))
5316 return jump;
5318 if (jump_bb != NULL
5319 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5320 return jump;
5321 return NULL;
5324 /* Splits E and adds the newly created basic block to the current region.
5325 Returns this basic block. */
5326 basic_block
5327 sel_split_edge (edge e)
5329 basic_block new_bb, src, other_bb = NULL;
5330 int prev_max_uid;
5331 rtx jump;
5333 src = e->src;
5334 prev_max_uid = get_max_uid ();
5335 new_bb = split_edge (e);
5337 if (flag_sel_sched_pipelining_outer_loops
5338 && current_loop_nest)
5340 int i;
5341 basic_block bb;
5343 /* Some of the basic blocks might not have been added to the loop.
5344 Add them here, until this is fixed in force_fallthru. */
5345 for (i = 0;
5346 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5347 if (!bb->loop_father)
5349 add_bb_to_loop (bb, e->dest->loop_father);
5351 gcc_assert (!other_bb && (new_bb->index != bb->index));
5352 other_bb = bb;
5356 /* Add all last_added_blocks to the region. */
5357 sel_add_bb (NULL);
5359 jump = find_new_jump (src, new_bb, prev_max_uid);
5360 if (jump)
5361 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5363 /* Put the correct lv set on this block. */
5364 if (other_bb && !sel_bb_empty_p (other_bb))
5365 compute_live (sel_bb_head (other_bb));
5367 return new_bb;
5370 /* Implement sched_create_empty_bb (). */
5371 static basic_block
5372 sel_create_empty_bb (basic_block after)
5374 basic_block new_bb;
5376 new_bb = sched_create_empty_bb_1 (after);
5378 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5379 later. */
5380 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5381 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5383 VEC_free (basic_block, heap, last_added_blocks);
5384 return new_bb;
5387 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5388 will be splitted to insert a check. */
5389 basic_block
5390 sel_create_recovery_block (insn_t orig_insn)
5392 basic_block first_bb, second_bb, recovery_block;
5393 basic_block before_recovery = NULL;
5394 rtx jump;
5396 first_bb = BLOCK_FOR_INSN (orig_insn);
5397 if (sel_bb_end_p (orig_insn))
5399 /* Avoid introducing an empty block while splitting. */
5400 gcc_assert (single_succ_p (first_bb));
5401 second_bb = single_succ (first_bb);
5403 else
5404 second_bb = sched_split_block (first_bb, orig_insn);
5406 recovery_block = sched_create_recovery_block (&before_recovery);
5407 if (before_recovery)
5408 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5410 gcc_assert (sel_bb_empty_p (recovery_block));
5411 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5412 if (current_loops != NULL)
5413 add_bb_to_loop (recovery_block, first_bb->loop_father);
5415 sel_add_bb (recovery_block);
5417 jump = BB_END (recovery_block);
5418 gcc_assert (sel_bb_head (recovery_block) == jump);
5419 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5421 return recovery_block;
5424 /* Merge basic block B into basic block A. */
5425 static void
5426 sel_merge_blocks (basic_block a, basic_block b)
5428 gcc_assert (sel_bb_empty_p (b)
5429 && EDGE_COUNT (b->preds) == 1
5430 && EDGE_PRED (b, 0)->src == b->prev_bb);
5432 move_bb_info (b->prev_bb, b);
5433 remove_empty_bb (b, false);
5434 merge_blocks (a, b);
5435 change_loops_latches (b, a);
5438 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5439 data structures for possibly created bb and insns. Returns the newly
5440 added bb or NULL, when a bb was not needed. */
5441 void
5442 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5444 basic_block jump_bb, src, orig_dest = e->dest;
5445 int prev_max_uid;
5446 rtx jump;
5448 /* This function is now used only for bookkeeping code creation, where
5449 we'll never get the single pred of orig_dest block and thus will not
5450 hit unreachable blocks when updating dominator info. */
5451 gcc_assert (!sel_bb_empty_p (e->src)
5452 && !single_pred_p (orig_dest));
5453 src = e->src;
5454 prev_max_uid = get_max_uid ();
5455 jump_bb = redirect_edge_and_branch_force (e, to);
5457 if (jump_bb != NULL)
5458 sel_add_bb (jump_bb);
5460 /* This function could not be used to spoil the loop structure by now,
5461 thus we don't care to update anything. But check it to be sure. */
5462 if (current_loop_nest
5463 && pipelining_p)
5464 gcc_assert (loop_latch_edge (current_loop_nest));
5466 jump = find_new_jump (src, jump_bb, prev_max_uid);
5467 if (jump)
5468 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5469 set_immediate_dominator (CDI_DOMINATORS, to,
5470 recompute_dominator (CDI_DOMINATORS, to));
5471 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5472 recompute_dominator (CDI_DOMINATORS, orig_dest));
5475 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5476 redirected edge are in reverse topological order. */
5477 bool
5478 sel_redirect_edge_and_branch (edge e, basic_block to)
5480 bool latch_edge_p;
5481 basic_block src, orig_dest = e->dest;
5482 int prev_max_uid;
5483 rtx jump;
5484 edge redirected;
5485 bool recompute_toporder_p = false;
5486 bool maybe_unreachable = single_pred_p (orig_dest);
5488 latch_edge_p = (pipelining_p
5489 && current_loop_nest
5490 && e == loop_latch_edge (current_loop_nest));
5492 src = e->src;
5493 prev_max_uid = get_max_uid ();
5495 redirected = redirect_edge_and_branch (e, to);
5497 gcc_assert (redirected && last_added_blocks == NULL);
5499 /* When we've redirected a latch edge, update the header. */
5500 if (latch_edge_p)
5502 current_loop_nest->header = to;
5503 gcc_assert (loop_latch_edge (current_loop_nest));
5506 /* In rare situations, the topological relation between the blocks connected
5507 by the redirected edge can change (see PR42245 for an example). Update
5508 block_to_bb/bb_to_block. */
5509 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5510 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5511 recompute_toporder_p = true;
5513 jump = find_new_jump (src, NULL, prev_max_uid);
5514 if (jump)
5515 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5517 /* Only update dominator info when we don't have unreachable blocks.
5518 Otherwise we'll update in maybe_tidy_empty_bb. */
5519 if (!maybe_unreachable)
5521 set_immediate_dominator (CDI_DOMINATORS, to,
5522 recompute_dominator (CDI_DOMINATORS, to));
5523 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5524 recompute_dominator (CDI_DOMINATORS, orig_dest));
5526 return recompute_toporder_p;
5529 /* This variable holds the cfg hooks used by the selective scheduler. */
5530 static struct cfg_hooks sel_cfg_hooks;
5532 /* Register sel-sched cfg hooks. */
5533 void
5534 sel_register_cfg_hooks (void)
5536 sched_split_block = sel_split_block;
5538 orig_cfg_hooks = get_cfg_hooks ();
5539 sel_cfg_hooks = orig_cfg_hooks;
5541 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5543 set_cfg_hooks (sel_cfg_hooks);
5545 sched_init_only_bb = sel_init_only_bb;
5546 sched_split_block = sel_split_block;
5547 sched_create_empty_bb = sel_create_empty_bb;
5550 /* Unregister sel-sched cfg hooks. */
5551 void
5552 sel_unregister_cfg_hooks (void)
5554 sched_create_empty_bb = NULL;
5555 sched_split_block = NULL;
5556 sched_init_only_bb = NULL;
5558 set_cfg_hooks (orig_cfg_hooks);
5562 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5563 LABEL is where this jump should be directed. */
5565 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5567 rtx insn_rtx;
5569 gcc_assert (!INSN_P (pattern));
5571 start_sequence ();
5573 if (label == NULL_RTX)
5574 insn_rtx = emit_insn (pattern);
5575 else if (DEBUG_INSN_P (label))
5576 insn_rtx = emit_debug_insn (pattern);
5577 else
5579 insn_rtx = emit_jump_insn (pattern);
5580 JUMP_LABEL (insn_rtx) = label;
5581 ++LABEL_NUSES (label);
5584 end_sequence ();
5586 sched_init_luids (NULL, NULL, NULL, NULL);
5587 sched_extend_target ();
5588 sched_deps_init (false);
5590 /* Initialize INSN_CODE now. */
5591 recog_memoized (insn_rtx);
5592 return insn_rtx;
5595 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5596 must not be clonable. */
5597 vinsn_t
5598 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5600 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5602 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5603 return vinsn_create (insn_rtx, force_unique_p);
5606 /* Create a copy of INSN_RTX. */
5608 create_copy_of_insn_rtx (rtx insn_rtx)
5610 rtx res;
5612 if (DEBUG_INSN_P (insn_rtx))
5613 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5614 insn_rtx);
5616 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5618 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5619 NULL_RTX);
5620 return res;
5623 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5624 void
5625 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5627 vinsn_detach (EXPR_VINSN (expr));
5629 EXPR_VINSN (expr) = new_vinsn;
5630 vinsn_attach (new_vinsn);
5633 /* Helpers for global init. */
5634 /* This structure is used to be able to call existing bundling mechanism
5635 and calculate insn priorities. */
5636 static struct haifa_sched_info sched_sel_haifa_sched_info =
5638 NULL, /* init_ready_list */
5639 NULL, /* can_schedule_ready_p */
5640 NULL, /* schedule_more_p */
5641 NULL, /* new_ready */
5642 NULL, /* rgn_rank */
5643 sel_print_insn, /* rgn_print_insn */
5644 contributes_to_priority,
5645 NULL, /* insn_finishes_block_p */
5647 NULL, NULL,
5648 NULL, NULL,
5649 0, 0,
5651 NULL, /* add_remove_insn */
5652 NULL, /* begin_schedule_ready */
5653 NULL, /* begin_move_insn */
5654 NULL, /* advance_target_bb */
5655 SEL_SCHED | NEW_BBS
5658 /* Setup special insns used in the scheduler. */
5659 void
5660 setup_nop_and_exit_insns (void)
5662 gcc_assert (nop_pattern == NULL_RTX
5663 && exit_insn == NULL_RTX);
5665 nop_pattern = constm1_rtx;
5667 start_sequence ();
5668 emit_insn (nop_pattern);
5669 exit_insn = get_insns ();
5670 end_sequence ();
5671 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5674 /* Free special insns used in the scheduler. */
5675 void
5676 free_nop_and_exit_insns (void)
5678 exit_insn = NULL_RTX;
5679 nop_pattern = NULL_RTX;
5682 /* Setup a special vinsn used in new insns initialization. */
5683 void
5684 setup_nop_vinsn (void)
5686 nop_vinsn = vinsn_create (exit_insn, false);
5687 vinsn_attach (nop_vinsn);
5690 /* Free a special vinsn used in new insns initialization. */
5691 void
5692 free_nop_vinsn (void)
5694 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5695 vinsn_detach (nop_vinsn);
5696 nop_vinsn = NULL;
5699 /* Call a set_sched_flags hook. */
5700 void
5701 sel_set_sched_flags (void)
5703 /* ??? This means that set_sched_flags were called, and we decided to
5704 support speculation. However, set_sched_flags also modifies flags
5705 on current_sched_info, doing this only at global init. And we
5706 sometimes change c_s_i later. So put the correct flags again. */
5707 if (spec_info && targetm.sched.set_sched_flags)
5708 targetm.sched.set_sched_flags (spec_info);
5711 /* Setup pointers to global sched info structures. */
5712 void
5713 sel_setup_sched_infos (void)
5715 rgn_setup_common_sched_info ();
5717 memcpy (&sel_common_sched_info, common_sched_info,
5718 sizeof (sel_common_sched_info));
5720 sel_common_sched_info.fix_recovery_cfg = NULL;
5721 sel_common_sched_info.add_block = NULL;
5722 sel_common_sched_info.estimate_number_of_insns
5723 = sel_estimate_number_of_insns;
5724 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5725 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5727 common_sched_info = &sel_common_sched_info;
5729 current_sched_info = &sched_sel_haifa_sched_info;
5730 current_sched_info->sched_max_insns_priority =
5731 get_rgn_sched_max_insns_priority ();
5733 sel_set_sched_flags ();
5737 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5738 *BB_ORD_INDEX after that is increased. */
5739 static void
5740 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5742 RGN_NR_BLOCKS (rgn) += 1;
5743 RGN_DONT_CALC_DEPS (rgn) = 0;
5744 RGN_HAS_REAL_EBB (rgn) = 0;
5745 CONTAINING_RGN (bb->index) = rgn;
5746 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5747 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5748 (*bb_ord_index)++;
5750 /* FIXME: it is true only when not scheduling ebbs. */
5751 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5754 /* Functions to support pipelining of outer loops. */
5756 /* Creates a new empty region and returns it's number. */
5757 static int
5758 sel_create_new_region (void)
5760 int new_rgn_number = nr_regions;
5762 RGN_NR_BLOCKS (new_rgn_number) = 0;
5764 /* FIXME: This will work only when EBBs are not created. */
5765 if (new_rgn_number != 0)
5766 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5767 RGN_NR_BLOCKS (new_rgn_number - 1);
5768 else
5769 RGN_BLOCKS (new_rgn_number) = 0;
5771 /* Set the blocks of the next region so the other functions may
5772 calculate the number of blocks in the region. */
5773 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5774 RGN_NR_BLOCKS (new_rgn_number);
5776 nr_regions++;
5778 return new_rgn_number;
5781 /* If X has a smaller topological sort number than Y, returns -1;
5782 if greater, returns 1. */
5783 static int
5784 bb_top_order_comparator (const void *x, const void *y)
5786 basic_block bb1 = *(const basic_block *) x;
5787 basic_block bb2 = *(const basic_block *) y;
5789 gcc_assert (bb1 == bb2
5790 || rev_top_order_index[bb1->index]
5791 != rev_top_order_index[bb2->index]);
5793 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5794 bbs with greater number should go earlier. */
5795 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5796 return -1;
5797 else
5798 return 1;
5801 /* Create a region for LOOP and return its number. If we don't want
5802 to pipeline LOOP, return -1. */
5803 static int
5804 make_region_from_loop (struct loop *loop)
5806 unsigned int i;
5807 int new_rgn_number = -1;
5808 struct loop *inner;
5810 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5811 int bb_ord_index = 0;
5812 basic_block *loop_blocks;
5813 basic_block preheader_block;
5815 if (loop->num_nodes
5816 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5817 return -1;
5819 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5820 for (inner = loop->inner; inner; inner = inner->inner)
5821 if (flow_bb_inside_loop_p (inner, loop->latch))
5822 return -1;
5824 loop->ninsns = num_loop_insns (loop);
5825 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5826 return -1;
5828 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5830 for (i = 0; i < loop->num_nodes; i++)
5831 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5833 free (loop_blocks);
5834 return -1;
5837 preheader_block = loop_preheader_edge (loop)->src;
5838 gcc_assert (preheader_block);
5839 gcc_assert (loop_blocks[0] == loop->header);
5841 new_rgn_number = sel_create_new_region ();
5843 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5844 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5846 for (i = 0; i < loop->num_nodes; i++)
5848 /* Add only those blocks that haven't been scheduled in the inner loop.
5849 The exception is the basic blocks with bookkeeping code - they should
5850 be added to the region (and they actually don't belong to the loop
5851 body, but to the region containing that loop body). */
5853 gcc_assert (new_rgn_number >= 0);
5855 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5857 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5858 new_rgn_number);
5859 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5863 free (loop_blocks);
5864 MARK_LOOP_FOR_PIPELINING (loop);
5866 return new_rgn_number;
5869 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5870 void
5871 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5873 unsigned int i;
5874 int new_rgn_number = -1;
5875 basic_block bb;
5877 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5878 int bb_ord_index = 0;
5880 new_rgn_number = sel_create_new_region ();
5882 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
5884 gcc_assert (new_rgn_number >= 0);
5886 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5889 VEC_free (basic_block, heap, *loop_blocks);
5890 gcc_assert (*loop_blocks == NULL);
5894 /* Create region(s) from loop nest LOOP, such that inner loops will be
5895 pipelined before outer loops. Returns true when a region for LOOP
5896 is created. */
5897 static bool
5898 make_regions_from_loop_nest (struct loop *loop)
5900 struct loop *cur_loop;
5901 int rgn_number;
5903 /* Traverse all inner nodes of the loop. */
5904 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5905 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5906 return false;
5908 /* At this moment all regular inner loops should have been pipelined.
5909 Try to create a region from this loop. */
5910 rgn_number = make_region_from_loop (loop);
5912 if (rgn_number < 0)
5913 return false;
5915 VEC_safe_push (loop_p, heap, loop_nests, loop);
5916 return true;
5919 /* Initalize data structures needed. */
5920 void
5921 sel_init_pipelining (void)
5923 /* Collect loop information to be used in outer loops pipelining. */
5924 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5925 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5926 | LOOPS_HAVE_RECORDED_EXITS
5927 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5928 current_loop_nest = NULL;
5930 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5931 sbitmap_zero (bbs_in_loop_rgns);
5933 recompute_rev_top_order ();
5936 /* Returns a struct loop for region RGN. */
5937 loop_p
5938 get_loop_nest_for_rgn (unsigned int rgn)
5940 /* Regions created with extend_rgns don't have corresponding loop nests,
5941 because they don't represent loops. */
5942 if (rgn < VEC_length (loop_p, loop_nests))
5943 return VEC_index (loop_p, loop_nests, rgn);
5944 else
5945 return NULL;
5948 /* True when LOOP was included into pipelining regions. */
5949 bool
5950 considered_for_pipelining_p (struct loop *loop)
5952 if (loop_depth (loop) == 0)
5953 return false;
5955 /* Now, the loop could be too large or irreducible. Check whether its
5956 region is in LOOP_NESTS.
5957 We determine the region number of LOOP as the region number of its
5958 latch. We can't use header here, because this header could be
5959 just removed preheader and it will give us the wrong region number.
5960 Latch can't be used because it could be in the inner loop too. */
5961 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5963 int rgn = CONTAINING_RGN (loop->latch->index);
5965 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5966 return true;
5969 return false;
5972 /* Makes regions from the rest of the blocks, after loops are chosen
5973 for pipelining. */
5974 static void
5975 make_regions_from_the_rest (void)
5977 int cur_rgn_blocks;
5978 int *loop_hdr;
5979 int i;
5981 basic_block bb;
5982 edge e;
5983 edge_iterator ei;
5984 int *degree;
5986 /* Index in rgn_bb_table where to start allocating new regions. */
5987 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5989 /* Make regions from all the rest basic blocks - those that don't belong to
5990 any loop or belong to irreducible loops. Prepare the data structures
5991 for extend_rgns. */
5993 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5994 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5995 loop. */
5996 loop_hdr = XNEWVEC (int, last_basic_block);
5997 degree = XCNEWVEC (int, last_basic_block);
6000 /* For each basic block that belongs to some loop assign the number
6001 of innermost loop it belongs to. */
6002 for (i = 0; i < last_basic_block; i++)
6003 loop_hdr[i] = -1;
6005 FOR_EACH_BB (bb)
6007 if (bb->loop_father && !bb->loop_father->num == 0
6008 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6009 loop_hdr[bb->index] = bb->loop_father->num;
6012 /* For each basic block degree is calculated as the number of incoming
6013 edges, that are going out of bbs that are not yet scheduled.
6014 The basic blocks that are scheduled have degree value of zero. */
6015 FOR_EACH_BB (bb)
6017 degree[bb->index] = 0;
6019 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6021 FOR_EACH_EDGE (e, ei, bb->preds)
6022 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6023 degree[bb->index]++;
6025 else
6026 degree[bb->index] = -1;
6029 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6031 /* Any block that did not end up in a region is placed into a region
6032 by itself. */
6033 FOR_EACH_BB (bb)
6034 if (degree[bb->index] >= 0)
6036 rgn_bb_table[cur_rgn_blocks] = bb->index;
6037 RGN_NR_BLOCKS (nr_regions) = 1;
6038 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6039 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6040 RGN_HAS_REAL_EBB (nr_regions) = 0;
6041 CONTAINING_RGN (bb->index) = nr_regions++;
6042 BLOCK_TO_BB (bb->index) = 0;
6045 free (degree);
6046 free (loop_hdr);
6049 /* Free data structures used in pipelining of loops. */
6050 void sel_finish_pipelining (void)
6052 loop_iterator li;
6053 struct loop *loop;
6055 /* Release aux fields so we don't free them later by mistake. */
6056 FOR_EACH_LOOP (li, loop, 0)
6057 loop->aux = NULL;
6059 loop_optimizer_finalize ();
6061 VEC_free (loop_p, heap, loop_nests);
6063 free (rev_top_order_index);
6064 rev_top_order_index = NULL;
6067 /* This function replaces the find_rgns when
6068 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6069 void
6070 sel_find_rgns (void)
6072 sel_init_pipelining ();
6073 extend_regions ();
6075 if (current_loops)
6077 loop_p loop;
6078 loop_iterator li;
6080 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6081 ? LI_FROM_INNERMOST
6082 : LI_ONLY_INNERMOST))
6083 make_regions_from_loop_nest (loop);
6086 /* Make regions from all the rest basic blocks and schedule them.
6087 These blocks include blocks that don't belong to any loop or belong
6088 to irreducible loops. */
6089 make_regions_from_the_rest ();
6091 /* We don't need bbs_in_loop_rgns anymore. */
6092 sbitmap_free (bbs_in_loop_rgns);
6093 bbs_in_loop_rgns = NULL;
6096 /* Adds the preheader blocks from previous loop to current region taking
6097 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
6098 This function is only used with -fsel-sched-pipelining-outer-loops. */
6099 void
6100 sel_add_loop_preheaders (void)
6102 int i;
6103 basic_block bb;
6104 VEC(basic_block, heap) *preheader_blocks
6105 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6107 for (i = 0;
6108 VEC_iterate (basic_block, preheader_blocks, i, bb);
6109 i++)
6111 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6112 sel_add_bb (bb);
6115 VEC_free (basic_block, heap, preheader_blocks);
6118 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6119 Please note that the function should also work when pipelining_p is
6120 false, because it is used when deciding whether we should or should
6121 not reschedule pipelined code. */
6122 bool
6123 sel_is_loop_preheader_p (basic_block bb)
6125 if (current_loop_nest)
6127 struct loop *outer;
6129 if (preheader_removed)
6130 return false;
6132 /* Preheader is the first block in the region. */
6133 if (BLOCK_TO_BB (bb->index) == 0)
6134 return true;
6136 /* We used to find a preheader with the topological information.
6137 Check that the above code is equivalent to what we did before. */
6139 if (in_current_region_p (current_loop_nest->header))
6140 gcc_assert (!(BLOCK_TO_BB (bb->index)
6141 < BLOCK_TO_BB (current_loop_nest->header->index)));
6143 /* Support the situation when the latch block of outer loop
6144 could be from here. */
6145 for (outer = loop_outer (current_loop_nest);
6146 outer;
6147 outer = loop_outer (outer))
6148 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6149 gcc_unreachable ();
6152 return false;
6155 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6156 can be removed, making the corresponding edge fallthrough (assuming that
6157 all basic blocks between JUMP_BB and DEST_BB are empty). */
6158 static bool
6159 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6161 if (!onlyjump_p (BB_END (jump_bb))
6162 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6163 return false;
6165 /* Several outgoing edges, abnormal edge or destination of jump is
6166 not DEST_BB. */
6167 if (EDGE_COUNT (jump_bb->succs) != 1
6168 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6169 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6170 return false;
6172 /* If not anything of the upper. */
6173 return true;
6176 /* Removes the loop preheader from the current region and saves it in
6177 PREHEADER_BLOCKS of the father loop, so they will be added later to
6178 region that represents an outer loop. */
6179 static void
6180 sel_remove_loop_preheader (void)
6182 int i, old_len;
6183 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6184 basic_block bb;
6185 bool all_empty_p = true;
6186 VEC(basic_block, heap) *preheader_blocks
6187 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6189 gcc_assert (current_loop_nest);
6190 old_len = VEC_length (basic_block, preheader_blocks);
6192 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6193 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6195 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6197 /* If the basic block belongs to region, but doesn't belong to
6198 corresponding loop, then it should be a preheader. */
6199 if (sel_is_loop_preheader_p (bb))
6201 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6202 if (BB_END (bb) != bb_note (bb))
6203 all_empty_p = false;
6207 /* Remove these blocks only after iterating over the whole region. */
6208 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6209 i >= old_len;
6210 i--)
6212 bb = VEC_index (basic_block, preheader_blocks, i);
6213 sel_remove_bb (bb, false);
6216 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6218 if (!all_empty_p)
6219 /* Immediately create new region from preheader. */
6220 make_region_from_loop_preheader (&preheader_blocks);
6221 else
6223 /* If all preheader blocks are empty - dont create new empty region.
6224 Instead, remove them completely. */
6225 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6227 edge e;
6228 edge_iterator ei;
6229 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6231 /* Redirect all incoming edges to next basic block. */
6232 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6234 if (! (e->flags & EDGE_FALLTHRU))
6235 redirect_edge_and_branch (e, bb->next_bb);
6236 else
6237 redirect_edge_succ (e, bb->next_bb);
6239 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6240 delete_and_free_basic_block (bb);
6242 /* Check if after deleting preheader there is a nonconditional
6243 jump in PREV_BB that leads to the next basic block NEXT_BB.
6244 If it is so - delete this jump and clear data sets of its
6245 basic block if it becomes empty. */
6246 if (next_bb->prev_bb == prev_bb
6247 && prev_bb != ENTRY_BLOCK_PTR
6248 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6250 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6251 if (BB_END (prev_bb) == bb_note (prev_bb))
6252 free_data_sets (prev_bb);
6255 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6256 recompute_dominator (CDI_DOMINATORS,
6257 next_bb));
6260 VEC_free (basic_block, heap, preheader_blocks);
6262 else
6263 /* Store preheader within the father's loop structure. */
6264 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6265 preheader_blocks);
6267 #endif