Daily bump.
[official-gcc.git] / gcc / combine.c
blob37236ccf70155cad80537796d2d1a80be25e9376
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 typedef struct reg_stat_struct {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 } reg_stat_type;
254 DEF_VEC_O(reg_stat_type);
255 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257 static VEC(reg_stat_type,heap) *reg_stat;
259 /* Record the luid of the last insn that invalidated memory
260 (anything that writes memory, and subroutine calls, but not pushes). */
262 static int mem_last_set;
264 /* Record the luid of the last CALL_INSN
265 so we can tell whether a potential combination crosses any calls. */
267 static int last_call_luid;
269 /* When `subst' is called, this is the insn that is being modified
270 (by combining in a previous insn). The PATTERN of this insn
271 is still the old pattern partially modified and it should not be
272 looked at, but this may be used to examine the successors of the insn
273 to judge whether a simplification is valid. */
275 static rtx subst_insn;
277 /* This is the lowest LUID that `subst' is currently dealing with.
278 get_last_value will not return a value if the register was set at or
279 after this LUID. If not for this mechanism, we could get confused if
280 I2 or I1 in try_combine were an insn that used the old value of a register
281 to obtain a new value. In that case, we might erroneously get the
282 new value of the register when we wanted the old one. */
284 static int subst_low_luid;
286 /* This contains any hard registers that are used in newpat; reg_dead_at_p
287 must consider all these registers to be always live. */
289 static HARD_REG_SET newpat_used_regs;
291 /* This is an insn to which a LOG_LINKS entry has been added. If this
292 insn is the earlier than I2 or I3, combine should rescan starting at
293 that location. */
295 static rtx added_links_insn;
297 /* Basic block in which we are performing combines. */
298 static basic_block this_basic_block;
299 static bool optimize_this_for_speed_p;
302 /* Length of the currently allocated uid_insn_cost array. */
304 static int max_uid_known;
306 /* The following array records the insn_rtx_cost for every insn
307 in the instruction stream. */
309 static int *uid_insn_cost;
311 /* The following array records the LOG_LINKS for every insn in the
312 instruction stream as an INSN_LIST rtx. */
314 static rtx *uid_log_links;
316 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
317 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319 /* Incremented for each basic block. */
321 static int label_tick;
323 /* Reset to label_tick for each extended basic block in scanning order. */
325 static int label_tick_ebb_start;
327 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
328 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330 static enum machine_mode nonzero_bits_mode;
332 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
333 be safely used. It is zero while computing them and after combine has
334 completed. This former test prevents propagating values based on
335 previously set values, which can be incorrect if a variable is modified
336 in a loop. */
338 static int nonzero_sign_valid;
341 /* Record one modification to rtl structure
342 to be undone by storing old_contents into *where. */
344 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346 struct undo
348 struct undo *next;
349 enum undo_kind kind;
350 union { rtx r; int i; enum machine_mode m; } old_contents;
351 union { rtx *r; int *i; } where;
354 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
355 num_undo says how many are currently recorded.
357 other_insn is nonzero if we have modified some other insn in the process
358 of working on subst_insn. It must be verified too. */
360 struct undobuf
362 struct undo *undos;
363 struct undo *frees;
364 rtx other_insn;
367 static struct undobuf undobuf;
369 /* Number of times the pseudo being substituted for
370 was found and replaced. */
372 static int n_occurrences;
374 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
375 enum machine_mode,
376 unsigned HOST_WIDE_INT,
377 unsigned HOST_WIDE_INT *);
378 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
379 enum machine_mode,
380 unsigned int, unsigned int *);
381 static void do_SUBST (rtx *, rtx);
382 static void do_SUBST_INT (int *, int);
383 static void init_reg_last (void);
384 static void setup_incoming_promotions (rtx);
385 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
386 static int cant_combine_insn_p (rtx);
387 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
388 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
389 static int contains_muldiv (rtx);
390 static rtx try_combine (rtx, rtx, rtx, rtx, int *);
391 static void undo_all (void);
392 static void undo_commit (void);
393 static rtx *find_split_point (rtx *, rtx, bool);
394 static rtx subst (rtx, rtx, rtx, int, int);
395 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
396 static rtx simplify_if_then_else (rtx);
397 static rtx simplify_set (rtx);
398 static rtx simplify_logical (rtx);
399 static rtx expand_compound_operation (rtx);
400 static const_rtx expand_field_assignment (const_rtx);
401 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
402 rtx, unsigned HOST_WIDE_INT, int, int, int);
403 static rtx extract_left_shift (rtx, int);
404 static rtx make_compound_operation (rtx, enum rtx_code);
405 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
406 unsigned HOST_WIDE_INT *);
407 static rtx canon_reg_for_combine (rtx, rtx);
408 static rtx force_to_mode (rtx, enum machine_mode,
409 unsigned HOST_WIDE_INT, int);
410 static rtx if_then_else_cond (rtx, rtx *, rtx *);
411 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
412 static int rtx_equal_for_field_assignment_p (rtx, rtx);
413 static rtx make_field_assignment (rtx);
414 static rtx apply_distributive_law (rtx);
415 static rtx distribute_and_simplify_rtx (rtx, int);
416 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
417 unsigned HOST_WIDE_INT);
418 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
419 unsigned HOST_WIDE_INT);
420 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
421 HOST_WIDE_INT, enum machine_mode, int *);
422 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
423 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
424 int);
425 static int recog_for_combine (rtx *, rtx, rtx *);
426 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
427 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
428 static void update_table_tick (rtx);
429 static void record_value_for_reg (rtx, rtx, rtx);
430 static void check_promoted_subreg (rtx, rtx);
431 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
432 static void record_dead_and_set_regs (rtx);
433 static int get_last_value_validate (rtx *, rtx, int, int);
434 static rtx get_last_value (const_rtx);
435 static int use_crosses_set_p (const_rtx, int);
436 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
437 static int reg_dead_at_p (rtx, rtx);
438 static void move_deaths (rtx, rtx, int, rtx, rtx *);
439 static int reg_bitfield_target_p (rtx, rtx);
440 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
441 static void distribute_links (rtx);
442 static void mark_used_regs_combine (rtx);
443 static void record_promoted_value (rtx, rtx);
444 static int unmentioned_reg_p_1 (rtx *, void *);
445 static bool unmentioned_reg_p (rtx, rtx);
446 static int record_truncated_value (rtx *, void *);
447 static void record_truncated_values (rtx *, void *);
448 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
449 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
452 /* It is not safe to use ordinary gen_lowpart in combine.
453 See comments in gen_lowpart_for_combine. */
454 #undef RTL_HOOKS_GEN_LOWPART
455 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457 /* Our implementation of gen_lowpart never emits a new pseudo. */
458 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
459 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
462 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
465 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
468 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
473 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
474 PATTERN can not be split. Otherwise, it returns an insn sequence.
475 This is a wrapper around split_insns which ensures that the
476 reg_stat vector is made larger if the splitter creates a new
477 register. */
479 static rtx
480 combine_split_insns (rtx pattern, rtx insn)
482 rtx ret;
483 unsigned int nregs;
485 ret = split_insns (pattern, insn);
486 nregs = max_reg_num ();
487 if (nregs > VEC_length (reg_stat_type, reg_stat))
488 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
489 return ret;
492 /* This is used by find_single_use to locate an rtx in LOC that
493 contains exactly one use of DEST, which is typically either a REG
494 or CC0. It returns a pointer to the innermost rtx expression
495 containing DEST. Appearances of DEST that are being used to
496 totally replace it are not counted. */
498 static rtx *
499 find_single_use_1 (rtx dest, rtx *loc)
501 rtx x = *loc;
502 enum rtx_code code = GET_CODE (x);
503 rtx *result = NULL;
504 rtx *this_result;
505 int i;
506 const char *fmt;
508 switch (code)
510 case CONST_INT:
511 case CONST:
512 case LABEL_REF:
513 case SYMBOL_REF:
514 case CONST_DOUBLE:
515 case CONST_VECTOR:
516 case CLOBBER:
517 return 0;
519 case SET:
520 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
521 of a REG that occupies all of the REG, the insn uses DEST if
522 it is mentioned in the destination or the source. Otherwise, we
523 need just check the source. */
524 if (GET_CODE (SET_DEST (x)) != CC0
525 && GET_CODE (SET_DEST (x)) != PC
526 && !REG_P (SET_DEST (x))
527 && ! (GET_CODE (SET_DEST (x)) == SUBREG
528 && REG_P (SUBREG_REG (SET_DEST (x)))
529 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
530 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
531 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
532 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
533 break;
535 return find_single_use_1 (dest, &SET_SRC (x));
537 case MEM:
538 case SUBREG:
539 return find_single_use_1 (dest, &XEXP (x, 0));
541 default:
542 break;
545 /* If it wasn't one of the common cases above, check each expression and
546 vector of this code. Look for a unique usage of DEST. */
548 fmt = GET_RTX_FORMAT (code);
549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 if (fmt[i] == 'e')
553 if (dest == XEXP (x, i)
554 || (REG_P (dest) && REG_P (XEXP (x, i))
555 && REGNO (dest) == REGNO (XEXP (x, i))))
556 this_result = loc;
557 else
558 this_result = find_single_use_1 (dest, &XEXP (x, i));
560 if (result == NULL)
561 result = this_result;
562 else if (this_result)
563 /* Duplicate usage. */
564 return NULL;
566 else if (fmt[i] == 'E')
568 int j;
570 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 if (XVECEXP (x, i, j) == dest
573 || (REG_P (dest)
574 && REG_P (XVECEXP (x, i, j))
575 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
576 this_result = loc;
577 else
578 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580 if (result == NULL)
581 result = this_result;
582 else if (this_result)
583 return NULL;
588 return result;
592 /* See if DEST, produced in INSN, is used only a single time in the
593 sequel. If so, return a pointer to the innermost rtx expression in which
594 it is used.
596 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
599 care about REG_DEAD notes or LOG_LINKS.
601 Otherwise, we find the single use by finding an insn that has a
602 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
603 only referenced once in that insn, we know that it must be the first
604 and last insn referencing DEST. */
606 static rtx *
607 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 basic_block bb;
610 rtx next;
611 rtx *result;
612 rtx link;
614 #ifdef HAVE_cc0
615 if (dest == cc0_rtx)
617 next = NEXT_INSN (insn);
618 if (next == 0
619 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
620 return 0;
622 result = find_single_use_1 (dest, &PATTERN (next));
623 if (result && ploc)
624 *ploc = next;
625 return result;
627 #endif
629 if (!REG_P (dest))
630 return 0;
632 bb = BLOCK_FOR_INSN (insn);
633 for (next = NEXT_INSN (insn);
634 next && BLOCK_FOR_INSN (next) == bb;
635 next = NEXT_INSN (next))
636 if (INSN_P (next) && dead_or_set_p (next, dest))
638 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
639 if (XEXP (link, 0) == insn)
640 break;
642 if (link)
644 result = find_single_use_1 (dest, &PATTERN (next));
645 if (ploc)
646 *ploc = next;
647 return result;
651 return 0;
654 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
655 insn. The substitution can be undone by undo_all. If INTO is already
656 set to NEWVAL, do not record this change. Because computing NEWVAL might
657 also call SUBST, we have to compute it before we put anything into
658 the undo table. */
660 static void
661 do_SUBST (rtx *into, rtx newval)
663 struct undo *buf;
664 rtx oldval = *into;
666 if (oldval == newval)
667 return;
669 /* We'd like to catch as many invalid transformations here as
670 possible. Unfortunately, there are way too many mode changes
671 that are perfectly valid, so we'd waste too much effort for
672 little gain doing the checks here. Focus on catching invalid
673 transformations involving integer constants. */
674 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
675 && CONST_INT_P (newval))
677 /* Sanity check that we're replacing oldval with a CONST_INT
678 that is a valid sign-extension for the original mode. */
679 gcc_assert (INTVAL (newval)
680 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
683 CONST_INT is not valid, because after the replacement, the
684 original mode would be gone. Unfortunately, we can't tell
685 when do_SUBST is called to replace the operand thereof, so we
686 perform this test on oldval instead, checking whether an
687 invalid replacement took place before we got here. */
688 gcc_assert (!(GET_CODE (oldval) == SUBREG
689 && CONST_INT_P (SUBREG_REG (oldval))));
690 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
691 && CONST_INT_P (XEXP (oldval, 0))));
694 if (undobuf.frees)
695 buf = undobuf.frees, undobuf.frees = buf->next;
696 else
697 buf = XNEW (struct undo);
699 buf->kind = UNDO_RTX;
700 buf->where.r = into;
701 buf->old_contents.r = oldval;
702 *into = newval;
704 buf->next = undobuf.undos, undobuf.undos = buf;
707 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
710 for the value of a HOST_WIDE_INT value (including CONST_INT) is
711 not safe. */
713 static void
714 do_SUBST_INT (int *into, int newval)
716 struct undo *buf;
717 int oldval = *into;
719 if (oldval == newval)
720 return;
722 if (undobuf.frees)
723 buf = undobuf.frees, undobuf.frees = buf->next;
724 else
725 buf = XNEW (struct undo);
727 buf->kind = UNDO_INT;
728 buf->where.i = into;
729 buf->old_contents.i = oldval;
730 *into = newval;
732 buf->next = undobuf.undos, undobuf.undos = buf;
735 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737 /* Similar to SUBST, but just substitute the mode. This is used when
738 changing the mode of a pseudo-register, so that any other
739 references to the entry in the regno_reg_rtx array will change as
740 well. */
742 static void
743 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 struct undo *buf;
746 enum machine_mode oldval = GET_MODE (*into);
748 if (oldval == newval)
749 return;
751 if (undobuf.frees)
752 buf = undobuf.frees, undobuf.frees = buf->next;
753 else
754 buf = XNEW (struct undo);
756 buf->kind = UNDO_MODE;
757 buf->where.r = into;
758 buf->old_contents.m = oldval;
759 adjust_reg_mode (*into, newval);
761 buf->next = undobuf.undos, undobuf.undos = buf;
764 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 /* Subroutine of try_combine. Determine whether the combine replacement
767 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
768 insn_rtx_cost that the original instruction sequence I0, I1, I2, I3 and
769 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
770 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
771 function returns false, if the costs of all instructions can be
772 estimated, and the replacements are more expensive than the original
773 sequence. */
775 static bool
776 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
777 rtx newi2pat, rtx newotherpat)
779 int i0_cost, i1_cost, i2_cost, i3_cost;
780 int new_i2_cost, new_i3_cost;
781 int old_cost, new_cost;
783 /* Lookup the original insn_rtx_costs. */
784 i2_cost = INSN_COST (i2);
785 i3_cost = INSN_COST (i3);
787 if (i1)
789 i1_cost = INSN_COST (i1);
790 if (i0)
792 i0_cost = INSN_COST (i0);
793 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
794 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
796 else
798 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
799 ? i1_cost + i2_cost + i3_cost : 0);
800 i0_cost = 0;
803 else
805 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
806 i1_cost = i0_cost = 0;
809 /* Calculate the replacement insn_rtx_costs. */
810 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
811 if (newi2pat)
813 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
814 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
815 ? new_i2_cost + new_i3_cost : 0;
817 else
819 new_cost = new_i3_cost;
820 new_i2_cost = 0;
823 if (undobuf.other_insn)
825 int old_other_cost, new_other_cost;
827 old_other_cost = INSN_COST (undobuf.other_insn);
828 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
829 if (old_other_cost > 0 && new_other_cost > 0)
831 old_cost += old_other_cost;
832 new_cost += new_other_cost;
834 else
835 old_cost = 0;
838 /* Disallow this recombination if both new_cost and old_cost are
839 greater than zero, and new_cost is greater than old cost. */
840 if (old_cost > 0
841 && new_cost > old_cost)
843 if (dump_file)
845 if (i0)
847 fprintf (dump_file,
848 "rejecting combination of insns %d, %d, %d and %d\n",
849 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
850 INSN_UID (i3));
851 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
852 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
854 else if (i1)
856 fprintf (dump_file,
857 "rejecting combination of insns %d, %d and %d\n",
858 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
859 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
860 i1_cost, i2_cost, i3_cost, old_cost);
862 else
864 fprintf (dump_file,
865 "rejecting combination of insns %d and %d\n",
866 INSN_UID (i2), INSN_UID (i3));
867 fprintf (dump_file, "original costs %d + %d = %d\n",
868 i2_cost, i3_cost, old_cost);
871 if (newi2pat)
873 fprintf (dump_file, "replacement costs %d + %d = %d\n",
874 new_i2_cost, new_i3_cost, new_cost);
876 else
877 fprintf (dump_file, "replacement cost %d\n", new_cost);
880 return false;
883 /* Update the uid_insn_cost array with the replacement costs. */
884 INSN_COST (i2) = new_i2_cost;
885 INSN_COST (i3) = new_i3_cost;
886 if (i1)
887 INSN_COST (i1) = 0;
889 return true;
893 /* Delete any insns that copy a register to itself. */
895 static void
896 delete_noop_moves (void)
898 rtx insn, next;
899 basic_block bb;
901 FOR_EACH_BB (bb)
903 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
905 next = NEXT_INSN (insn);
906 if (INSN_P (insn) && noop_move_p (insn))
908 if (dump_file)
909 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
911 delete_insn_and_edges (insn);
918 /* Fill in log links field for all insns. */
920 static void
921 create_log_links (void)
923 basic_block bb;
924 rtx *next_use, insn;
925 df_ref *def_vec, *use_vec;
927 next_use = XCNEWVEC (rtx, max_reg_num ());
929 /* Pass through each block from the end, recording the uses of each
930 register and establishing log links when def is encountered.
931 Note that we do not clear next_use array in order to save time,
932 so we have to test whether the use is in the same basic block as def.
934 There are a few cases below when we do not consider the definition or
935 usage -- these are taken from original flow.c did. Don't ask me why it is
936 done this way; I don't know and if it works, I don't want to know. */
938 FOR_EACH_BB (bb)
940 FOR_BB_INSNS_REVERSE (bb, insn)
942 if (!NONDEBUG_INSN_P (insn))
943 continue;
945 /* Log links are created only once. */
946 gcc_assert (!LOG_LINKS (insn));
948 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
950 df_ref def = *def_vec;
951 int regno = DF_REF_REGNO (def);
952 rtx use_insn;
954 if (!next_use[regno])
955 continue;
957 /* Do not consider if it is pre/post modification in MEM. */
958 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
959 continue;
961 /* Do not make the log link for frame pointer. */
962 if ((regno == FRAME_POINTER_REGNUM
963 && (! reload_completed || frame_pointer_needed))
964 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
965 || (regno == HARD_FRAME_POINTER_REGNUM
966 && (! reload_completed || frame_pointer_needed))
967 #endif
968 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
969 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
970 #endif
972 continue;
974 use_insn = next_use[regno];
975 if (BLOCK_FOR_INSN (use_insn) == bb)
977 /* flow.c claimed:
979 We don't build a LOG_LINK for hard registers contained
980 in ASM_OPERANDs. If these registers get replaced,
981 we might wind up changing the semantics of the insn,
982 even if reload can make what appear to be valid
983 assignments later. */
984 if (regno >= FIRST_PSEUDO_REGISTER
985 || asm_noperands (PATTERN (use_insn)) < 0)
987 /* Don't add duplicate links between instructions. */
988 rtx links;
989 for (links = LOG_LINKS (use_insn); links;
990 links = XEXP (links, 1))
991 if (insn == XEXP (links, 0))
992 break;
994 if (!links)
995 LOG_LINKS (use_insn) =
996 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
999 next_use[regno] = NULL_RTX;
1002 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1004 df_ref use = *use_vec;
1005 int regno = DF_REF_REGNO (use);
1007 /* Do not consider the usage of the stack pointer
1008 by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 continue;
1012 next_use[regno] = insn;
1017 free (next_use);
1020 /* Clear LOG_LINKS fields of insns. */
1022 static void
1023 clear_log_links (void)
1025 rtx insn;
1027 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1028 if (INSN_P (insn))
1029 free_INSN_LIST_list (&LOG_LINKS (insn));
1032 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1033 true if we found a LOG_LINK that proves that A feeds B. This only works
1034 if there are no instructions between A and B which could have a link
1035 depending on A, since in that case we would not record a link for B.
1036 We also check the implicit dependency created by a cc0 setter/user
1037 pair. */
1039 static bool
1040 insn_a_feeds_b (rtx a, rtx b)
1042 rtx links;
1043 for (links = LOG_LINKS (b); links; links = XEXP (links, 1))
1044 if (XEXP (links, 0) == a)
1045 return true;
1046 #ifdef HAVE_cc0
1047 if (sets_cc0_p (a))
1048 return true;
1049 #endif
1050 return false;
1053 /* Main entry point for combiner. F is the first insn of the function.
1054 NREGS is the first unused pseudo-reg number.
1056 Return nonzero if the combiner has turned an indirect jump
1057 instruction into a direct jump. */
1058 static int
1059 combine_instructions (rtx f, unsigned int nregs)
1061 rtx insn, next;
1062 #ifdef HAVE_cc0
1063 rtx prev;
1064 #endif
1065 rtx links, nextlinks;
1066 rtx first;
1067 basic_block last_bb;
1069 int new_direct_jump_p = 0;
1071 for (first = f; first && !INSN_P (first); )
1072 first = NEXT_INSN (first);
1073 if (!first)
1074 return 0;
1076 combine_attempts = 0;
1077 combine_merges = 0;
1078 combine_extras = 0;
1079 combine_successes = 0;
1081 rtl_hooks = combine_rtl_hooks;
1083 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1085 init_recog_no_volatile ();
1087 /* Allocate array for insn info. */
1088 max_uid_known = get_max_uid ();
1089 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1090 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1092 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1094 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1095 problems when, for example, we have j <<= 1 in a loop. */
1097 nonzero_sign_valid = 0;
1098 label_tick = label_tick_ebb_start = 1;
1100 /* Scan all SETs and see if we can deduce anything about what
1101 bits are known to be zero for some registers and how many copies
1102 of the sign bit are known to exist for those registers.
1104 Also set any known values so that we can use it while searching
1105 for what bits are known to be set. */
1107 setup_incoming_promotions (first);
1108 /* Allow the entry block and the first block to fall into the same EBB.
1109 Conceptually the incoming promotions are assigned to the entry block. */
1110 last_bb = ENTRY_BLOCK_PTR;
1112 create_log_links ();
1113 FOR_EACH_BB (this_basic_block)
1115 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1116 last_call_luid = 0;
1117 mem_last_set = -1;
1119 label_tick++;
1120 if (!single_pred_p (this_basic_block)
1121 || single_pred (this_basic_block) != last_bb)
1122 label_tick_ebb_start = label_tick;
1123 last_bb = this_basic_block;
1125 FOR_BB_INSNS (this_basic_block, insn)
1126 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1128 subst_low_luid = DF_INSN_LUID (insn);
1129 subst_insn = insn;
1131 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1132 insn);
1133 record_dead_and_set_regs (insn);
1135 #ifdef AUTO_INC_DEC
1136 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1137 if (REG_NOTE_KIND (links) == REG_INC)
1138 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1139 insn);
1140 #endif
1142 /* Record the current insn_rtx_cost of this instruction. */
1143 if (NONJUMP_INSN_P (insn))
1144 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1145 optimize_this_for_speed_p);
1146 if (dump_file)
1147 fprintf(dump_file, "insn_cost %d: %d\n",
1148 INSN_UID (insn), INSN_COST (insn));
1152 nonzero_sign_valid = 1;
1154 /* Now scan all the insns in forward order. */
1155 label_tick = label_tick_ebb_start = 1;
1156 init_reg_last ();
1157 setup_incoming_promotions (first);
1158 last_bb = ENTRY_BLOCK_PTR;
1160 FOR_EACH_BB (this_basic_block)
1162 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1163 last_call_luid = 0;
1164 mem_last_set = -1;
1166 label_tick++;
1167 if (!single_pred_p (this_basic_block)
1168 || single_pred (this_basic_block) != last_bb)
1169 label_tick_ebb_start = label_tick;
1170 last_bb = this_basic_block;
1172 rtl_profile_for_bb (this_basic_block);
1173 for (insn = BB_HEAD (this_basic_block);
1174 insn != NEXT_INSN (BB_END (this_basic_block));
1175 insn = next ? next : NEXT_INSN (insn))
1177 next = 0;
1178 if (NONDEBUG_INSN_P (insn))
1180 /* See if we know about function return values before this
1181 insn based upon SUBREG flags. */
1182 check_promoted_subreg (insn, PATTERN (insn));
1184 /* See if we can find hardregs and subreg of pseudos in
1185 narrower modes. This could help turning TRUNCATEs
1186 into SUBREGs. */
1187 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1189 /* Try this insn with each insn it links back to. */
1191 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1192 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX,
1193 NULL_RTX, &new_direct_jump_p)) != 0)
1194 goto retry;
1196 /* Try each sequence of three linked insns ending with this one. */
1198 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1200 rtx link = XEXP (links, 0);
1202 /* If the linked insn has been replaced by a note, then there
1203 is no point in pursuing this chain any further. */
1204 if (NOTE_P (link))
1205 continue;
1207 for (nextlinks = LOG_LINKS (link);
1208 nextlinks;
1209 nextlinks = XEXP (nextlinks, 1))
1210 if ((next = try_combine (insn, link, XEXP (nextlinks, 0),
1211 NULL_RTX,
1212 &new_direct_jump_p)) != 0)
1213 goto retry;
1216 #ifdef HAVE_cc0
1217 /* Try to combine a jump insn that uses CC0
1218 with a preceding insn that sets CC0, and maybe with its
1219 logical predecessor as well.
1220 This is how we make decrement-and-branch insns.
1221 We need this special code because data flow connections
1222 via CC0 do not get entered in LOG_LINKS. */
1224 if (JUMP_P (insn)
1225 && (prev = prev_nonnote_insn (insn)) != 0
1226 && NONJUMP_INSN_P (prev)
1227 && sets_cc0_p (PATTERN (prev)))
1229 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1230 &new_direct_jump_p)) != 0)
1231 goto retry;
1233 for (nextlinks = LOG_LINKS (prev); nextlinks;
1234 nextlinks = XEXP (nextlinks, 1))
1235 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1236 NULL_RTX,
1237 &new_direct_jump_p)) != 0)
1238 goto retry;
1241 /* Do the same for an insn that explicitly references CC0. */
1242 if (NONJUMP_INSN_P (insn)
1243 && (prev = prev_nonnote_insn (insn)) != 0
1244 && NONJUMP_INSN_P (prev)
1245 && sets_cc0_p (PATTERN (prev))
1246 && GET_CODE (PATTERN (insn)) == SET
1247 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1249 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1250 &new_direct_jump_p)) != 0)
1251 goto retry;
1253 for (nextlinks = LOG_LINKS (prev); nextlinks;
1254 nextlinks = XEXP (nextlinks, 1))
1255 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1256 NULL_RTX,
1257 &new_direct_jump_p)) != 0)
1258 goto retry;
1261 /* Finally, see if any of the insns that this insn links to
1262 explicitly references CC0. If so, try this insn, that insn,
1263 and its predecessor if it sets CC0. */
1264 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1265 if (NONJUMP_INSN_P (XEXP (links, 0))
1266 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1267 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1268 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1269 && NONJUMP_INSN_P (prev)
1270 && sets_cc0_p (PATTERN (prev))
1271 && (next = try_combine (insn, XEXP (links, 0),
1272 prev, NULL_RTX,
1273 &new_direct_jump_p)) != 0)
1274 goto retry;
1275 #endif
1277 /* Try combining an insn with two different insns whose results it
1278 uses. */
1279 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1280 for (nextlinks = XEXP (links, 1); nextlinks;
1281 nextlinks = XEXP (nextlinks, 1))
1282 if ((next = try_combine (insn, XEXP (links, 0),
1283 XEXP (nextlinks, 0), NULL_RTX,
1284 &new_direct_jump_p)) != 0)
1285 goto retry;
1287 /* Try four-instruction combinations. */
1288 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1290 rtx next1;
1291 rtx link = XEXP (links, 0);
1293 /* If the linked insn has been replaced by a note, then there
1294 is no point in pursuing this chain any further. */
1295 if (NOTE_P (link))
1296 continue;
1298 for (next1 = LOG_LINKS (link); next1; next1 = XEXP (next1, 1))
1300 rtx link1 = XEXP (next1, 0);
1301 if (NOTE_P (link1))
1302 continue;
1303 /* I0 -> I1 -> I2 -> I3. */
1304 for (nextlinks = LOG_LINKS (link1); nextlinks;
1305 nextlinks = XEXP (nextlinks, 1))
1306 if ((next = try_combine (insn, link, link1,
1307 XEXP (nextlinks, 0),
1308 &new_direct_jump_p)) != 0)
1309 goto retry;
1310 /* I0, I1 -> I2, I2 -> I3. */
1311 for (nextlinks = XEXP (next1, 1); nextlinks;
1312 nextlinks = XEXP (nextlinks, 1))
1313 if ((next = try_combine (insn, link, link1,
1314 XEXP (nextlinks, 0),
1315 &new_direct_jump_p)) != 0)
1316 goto retry;
1319 for (next1 = XEXP (links, 1); next1; next1 = XEXP (next1, 1))
1321 rtx link1 = XEXP (next1, 0);
1322 if (NOTE_P (link1))
1323 continue;
1324 /* I0 -> I2; I1, I2 -> I3. */
1325 for (nextlinks = LOG_LINKS (link); nextlinks;
1326 nextlinks = XEXP (nextlinks, 1))
1327 if ((next = try_combine (insn, link, link1,
1328 XEXP (nextlinks, 0),
1329 &new_direct_jump_p)) != 0)
1330 goto retry;
1331 /* I0 -> I1; I1, I2 -> I3. */
1332 for (nextlinks = LOG_LINKS (link1); nextlinks;
1333 nextlinks = XEXP (nextlinks, 1))
1334 if ((next = try_combine (insn, link, link1,
1335 XEXP (nextlinks, 0),
1336 &new_direct_jump_p)) != 0)
1337 goto retry;
1341 /* Try this insn with each REG_EQUAL note it links back to. */
1342 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1344 rtx set, note;
1345 rtx temp = XEXP (links, 0);
1346 if ((set = single_set (temp)) != 0
1347 && (note = find_reg_equal_equiv_note (temp)) != 0
1348 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1349 /* Avoid using a register that may already been marked
1350 dead by an earlier instruction. */
1351 && ! unmentioned_reg_p (note, SET_SRC (set))
1352 && (GET_MODE (note) == VOIDmode
1353 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1354 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1356 /* Temporarily replace the set's source with the
1357 contents of the REG_EQUAL note. The insn will
1358 be deleted or recognized by try_combine. */
1359 rtx orig = SET_SRC (set);
1360 SET_SRC (set) = note;
1361 i2mod = temp;
1362 i2mod_old_rhs = copy_rtx (orig);
1363 i2mod_new_rhs = copy_rtx (note);
1364 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1365 &new_direct_jump_p);
1366 i2mod = NULL_RTX;
1367 if (next)
1368 goto retry;
1369 SET_SRC (set) = orig;
1373 if (!NOTE_P (insn))
1374 record_dead_and_set_regs (insn);
1376 retry:
1382 default_rtl_profile ();
1383 clear_log_links ();
1384 clear_bb_flags ();
1385 new_direct_jump_p |= purge_all_dead_edges ();
1386 delete_noop_moves ();
1388 /* Clean up. */
1389 free (uid_log_links);
1390 free (uid_insn_cost);
1391 VEC_free (reg_stat_type, heap, reg_stat);
1394 struct undo *undo, *next;
1395 for (undo = undobuf.frees; undo; undo = next)
1397 next = undo->next;
1398 free (undo);
1400 undobuf.frees = 0;
1403 total_attempts += combine_attempts;
1404 total_merges += combine_merges;
1405 total_extras += combine_extras;
1406 total_successes += combine_successes;
1408 nonzero_sign_valid = 0;
1409 rtl_hooks = general_rtl_hooks;
1411 /* Make recognizer allow volatile MEMs again. */
1412 init_recog ();
1414 return new_direct_jump_p;
1417 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1419 static void
1420 init_reg_last (void)
1422 unsigned int i;
1423 reg_stat_type *p;
1425 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1426 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1429 /* Set up any promoted values for incoming argument registers. */
1431 static void
1432 setup_incoming_promotions (rtx first)
1434 tree arg;
1435 bool strictly_local = false;
1437 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1438 arg = DECL_CHAIN (arg))
1440 rtx x, reg = DECL_INCOMING_RTL (arg);
1441 int uns1, uns3;
1442 enum machine_mode mode1, mode2, mode3, mode4;
1444 /* Only continue if the incoming argument is in a register. */
1445 if (!REG_P (reg))
1446 continue;
1448 /* Determine, if possible, whether all call sites of the current
1449 function lie within the current compilation unit. (This does
1450 take into account the exporting of a function via taking its
1451 address, and so forth.) */
1452 strictly_local = cgraph_local_info (current_function_decl)->local;
1454 /* The mode and signedness of the argument before any promotions happen
1455 (equal to the mode of the pseudo holding it at that stage). */
1456 mode1 = TYPE_MODE (TREE_TYPE (arg));
1457 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1459 /* The mode and signedness of the argument after any source language and
1460 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1461 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1462 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1464 /* The mode and signedness of the argument as it is actually passed,
1465 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1466 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1467 TREE_TYPE (cfun->decl), 0);
1469 /* The mode of the register in which the argument is being passed. */
1470 mode4 = GET_MODE (reg);
1472 /* Eliminate sign extensions in the callee when:
1473 (a) A mode promotion has occurred; */
1474 if (mode1 == mode3)
1475 continue;
1476 /* (b) The mode of the register is the same as the mode of
1477 the argument as it is passed; */
1478 if (mode3 != mode4)
1479 continue;
1480 /* (c) There's no language level extension; */
1481 if (mode1 == mode2)
1483 /* (c.1) All callers are from the current compilation unit. If that's
1484 the case we don't have to rely on an ABI, we only have to know
1485 what we're generating right now, and we know that we will do the
1486 mode1 to mode2 promotion with the given sign. */
1487 else if (!strictly_local)
1488 continue;
1489 /* (c.2) The combination of the two promotions is useful. This is
1490 true when the signs match, or if the first promotion is unsigned.
1491 In the later case, (sign_extend (zero_extend x)) is the same as
1492 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1493 else if (uns1)
1494 uns3 = true;
1495 else if (uns3)
1496 continue;
1498 /* Record that the value was promoted from mode1 to mode3,
1499 so that any sign extension at the head of the current
1500 function may be eliminated. */
1501 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1502 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1503 record_value_for_reg (reg, first, x);
1507 /* Called via note_stores. If X is a pseudo that is narrower than
1508 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1510 If we are setting only a portion of X and we can't figure out what
1511 portion, assume all bits will be used since we don't know what will
1512 be happening.
1514 Similarly, set how many bits of X are known to be copies of the sign bit
1515 at all locations in the function. This is the smallest number implied
1516 by any set of X. */
1518 static void
1519 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1521 rtx insn = (rtx) data;
1522 unsigned int num;
1524 if (REG_P (x)
1525 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1526 /* If this register is undefined at the start of the file, we can't
1527 say what its contents were. */
1528 && ! REGNO_REG_SET_P
1529 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1530 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1532 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1534 if (set == 0 || GET_CODE (set) == CLOBBER)
1536 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1537 rsp->sign_bit_copies = 1;
1538 return;
1541 /* If this register is being initialized using itself, and the
1542 register is uninitialized in this basic block, and there are
1543 no LOG_LINKS which set the register, then part of the
1544 register is uninitialized. In that case we can't assume
1545 anything about the number of nonzero bits.
1547 ??? We could do better if we checked this in
1548 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1549 could avoid making assumptions about the insn which initially
1550 sets the register, while still using the information in other
1551 insns. We would have to be careful to check every insn
1552 involved in the combination. */
1554 if (insn
1555 && reg_referenced_p (x, PATTERN (insn))
1556 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1557 REGNO (x)))
1559 rtx link;
1561 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1563 if (dead_or_set_p (XEXP (link, 0), x))
1564 break;
1566 if (!link)
1568 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1569 rsp->sign_bit_copies = 1;
1570 return;
1574 /* If this is a complex assignment, see if we can convert it into a
1575 simple assignment. */
1576 set = expand_field_assignment (set);
1578 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1579 set what we know about X. */
1581 if (SET_DEST (set) == x
1582 || (GET_CODE (SET_DEST (set)) == SUBREG
1583 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1584 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1585 && SUBREG_REG (SET_DEST (set)) == x))
1587 rtx src = SET_SRC (set);
1589 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1590 /* If X is narrower than a word and SRC is a non-negative
1591 constant that would appear negative in the mode of X,
1592 sign-extend it for use in reg_stat[].nonzero_bits because some
1593 machines (maybe most) will actually do the sign-extension
1594 and this is the conservative approach.
1596 ??? For 2.5, try to tighten up the MD files in this regard
1597 instead of this kludge. */
1599 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1600 && CONST_INT_P (src)
1601 && INTVAL (src) > 0
1602 && 0 != (UINTVAL (src)
1603 & ((unsigned HOST_WIDE_INT) 1
1604 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1605 src = GEN_INT (UINTVAL (src)
1606 | ((unsigned HOST_WIDE_INT) (-1)
1607 << GET_MODE_BITSIZE (GET_MODE (x))));
1608 #endif
1610 /* Don't call nonzero_bits if it cannot change anything. */
1611 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1612 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1613 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1614 if (rsp->sign_bit_copies == 0
1615 || rsp->sign_bit_copies > num)
1616 rsp->sign_bit_copies = num;
1618 else
1620 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1621 rsp->sign_bit_copies = 1;
1626 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1627 optionally insns that were previously combined into I3 or that will be
1628 combined into the merger of INSN and I3. The order is PRED, PRED2,
1629 INSN, SUCC, SUCC2, I3.
1631 Return 0 if the combination is not allowed for any reason.
1633 If the combination is allowed, *PDEST will be set to the single
1634 destination of INSN and *PSRC to the single source, and this function
1635 will return 1. */
1637 static int
1638 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1639 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1640 rtx *pdest, rtx *psrc)
1642 int i;
1643 const_rtx set = 0;
1644 rtx src, dest;
1645 rtx p;
1646 #ifdef AUTO_INC_DEC
1647 rtx link;
1648 #endif
1649 bool all_adjacent = true;
1651 if (succ)
1653 if (succ2)
1655 if (next_active_insn (succ2) != i3)
1656 all_adjacent = false;
1657 if (next_active_insn (succ) != succ2)
1658 all_adjacent = false;
1660 else if (next_active_insn (succ) != i3)
1661 all_adjacent = false;
1662 if (next_active_insn (insn) != succ)
1663 all_adjacent = false;
1665 else if (next_active_insn (insn) != i3)
1666 all_adjacent = false;
1668 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1669 or a PARALLEL consisting of such a SET and CLOBBERs.
1671 If INSN has CLOBBER parallel parts, ignore them for our processing.
1672 By definition, these happen during the execution of the insn. When it
1673 is merged with another insn, all bets are off. If they are, in fact,
1674 needed and aren't also supplied in I3, they may be added by
1675 recog_for_combine. Otherwise, it won't match.
1677 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1678 note.
1680 Get the source and destination of INSN. If more than one, can't
1681 combine. */
1683 if (GET_CODE (PATTERN (insn)) == SET)
1684 set = PATTERN (insn);
1685 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1686 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1688 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1690 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1692 switch (GET_CODE (elt))
1694 /* This is important to combine floating point insns
1695 for the SH4 port. */
1696 case USE:
1697 /* Combining an isolated USE doesn't make sense.
1698 We depend here on combinable_i3pat to reject them. */
1699 /* The code below this loop only verifies that the inputs of
1700 the SET in INSN do not change. We call reg_set_between_p
1701 to verify that the REG in the USE does not change between
1702 I3 and INSN.
1703 If the USE in INSN was for a pseudo register, the matching
1704 insn pattern will likely match any register; combining this
1705 with any other USE would only be safe if we knew that the
1706 used registers have identical values, or if there was
1707 something to tell them apart, e.g. different modes. For
1708 now, we forgo such complicated tests and simply disallow
1709 combining of USES of pseudo registers with any other USE. */
1710 if (REG_P (XEXP (elt, 0))
1711 && GET_CODE (PATTERN (i3)) == PARALLEL)
1713 rtx i3pat = PATTERN (i3);
1714 int i = XVECLEN (i3pat, 0) - 1;
1715 unsigned int regno = REGNO (XEXP (elt, 0));
1719 rtx i3elt = XVECEXP (i3pat, 0, i);
1721 if (GET_CODE (i3elt) == USE
1722 && REG_P (XEXP (i3elt, 0))
1723 && (REGNO (XEXP (i3elt, 0)) == regno
1724 ? reg_set_between_p (XEXP (elt, 0),
1725 PREV_INSN (insn), i3)
1726 : regno >= FIRST_PSEUDO_REGISTER))
1727 return 0;
1729 while (--i >= 0);
1731 break;
1733 /* We can ignore CLOBBERs. */
1734 case CLOBBER:
1735 break;
1737 case SET:
1738 /* Ignore SETs whose result isn't used but not those that
1739 have side-effects. */
1740 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1741 && insn_nothrow_p (insn)
1742 && !side_effects_p (elt))
1743 break;
1745 /* If we have already found a SET, this is a second one and
1746 so we cannot combine with this insn. */
1747 if (set)
1748 return 0;
1750 set = elt;
1751 break;
1753 default:
1754 /* Anything else means we can't combine. */
1755 return 0;
1759 if (set == 0
1760 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1761 so don't do anything with it. */
1762 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1763 return 0;
1765 else
1766 return 0;
1768 if (set == 0)
1769 return 0;
1771 set = expand_field_assignment (set);
1772 src = SET_SRC (set), dest = SET_DEST (set);
1774 /* Don't eliminate a store in the stack pointer. */
1775 if (dest == stack_pointer_rtx
1776 /* Don't combine with an insn that sets a register to itself if it has
1777 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1778 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1779 /* Can't merge an ASM_OPERANDS. */
1780 || GET_CODE (src) == ASM_OPERANDS
1781 /* Can't merge a function call. */
1782 || GET_CODE (src) == CALL
1783 /* Don't eliminate a function call argument. */
1784 || (CALL_P (i3)
1785 && (find_reg_fusage (i3, USE, dest)
1786 || (REG_P (dest)
1787 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1788 && global_regs[REGNO (dest)])))
1789 /* Don't substitute into an incremented register. */
1790 || FIND_REG_INC_NOTE (i3, dest)
1791 || (succ && FIND_REG_INC_NOTE (succ, dest))
1792 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1793 /* Don't substitute into a non-local goto, this confuses CFG. */
1794 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1795 /* Make sure that DEST is not used after SUCC but before I3. */
1796 || (!all_adjacent
1797 && ((succ2
1798 && (reg_used_between_p (dest, succ2, i3)
1799 || reg_used_between_p (dest, succ, succ2)))
1800 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1801 /* Make sure that the value that is to be substituted for the register
1802 does not use any registers whose values alter in between. However,
1803 If the insns are adjacent, a use can't cross a set even though we
1804 think it might (this can happen for a sequence of insns each setting
1805 the same destination; last_set of that register might point to
1806 a NOTE). If INSN has a REG_EQUIV note, the register is always
1807 equivalent to the memory so the substitution is valid even if there
1808 are intervening stores. Also, don't move a volatile asm or
1809 UNSPEC_VOLATILE across any other insns. */
1810 || (! all_adjacent
1811 && (((!MEM_P (src)
1812 || ! find_reg_note (insn, REG_EQUIV, src))
1813 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1814 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1815 || GET_CODE (src) == UNSPEC_VOLATILE))
1816 /* Don't combine across a CALL_INSN, because that would possibly
1817 change whether the life span of some REGs crosses calls or not,
1818 and it is a pain to update that information.
1819 Exception: if source is a constant, moving it later can't hurt.
1820 Accept that as a special case. */
1821 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1822 return 0;
1824 /* DEST must either be a REG or CC0. */
1825 if (REG_P (dest))
1827 /* If register alignment is being enforced for multi-word items in all
1828 cases except for parameters, it is possible to have a register copy
1829 insn referencing a hard register that is not allowed to contain the
1830 mode being copied and which would not be valid as an operand of most
1831 insns. Eliminate this problem by not combining with such an insn.
1833 Also, on some machines we don't want to extend the life of a hard
1834 register. */
1836 if (REG_P (src)
1837 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1838 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1839 /* Don't extend the life of a hard register unless it is
1840 user variable (if we have few registers) or it can't
1841 fit into the desired register (meaning something special
1842 is going on).
1843 Also avoid substituting a return register into I3, because
1844 reload can't handle a conflict with constraints of other
1845 inputs. */
1846 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1847 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1848 return 0;
1850 else if (GET_CODE (dest) != CC0)
1851 return 0;
1854 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1855 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1856 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1858 /* Don't substitute for a register intended as a clobberable
1859 operand. */
1860 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1861 if (rtx_equal_p (reg, dest))
1862 return 0;
1864 /* If the clobber represents an earlyclobber operand, we must not
1865 substitute an expression containing the clobbered register.
1866 As we do not analyze the constraint strings here, we have to
1867 make the conservative assumption. However, if the register is
1868 a fixed hard reg, the clobber cannot represent any operand;
1869 we leave it up to the machine description to either accept or
1870 reject use-and-clobber patterns. */
1871 if (!REG_P (reg)
1872 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1873 || !fixed_regs[REGNO (reg)])
1874 if (reg_overlap_mentioned_p (reg, src))
1875 return 0;
1878 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1879 or not), reject, unless nothing volatile comes between it and I3 */
1881 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1883 /* Make sure neither succ nor succ2 contains a volatile reference. */
1884 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1885 return 0;
1886 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1887 return 0;
1888 /* We'll check insns between INSN and I3 below. */
1891 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1892 to be an explicit register variable, and was chosen for a reason. */
1894 if (GET_CODE (src) == ASM_OPERANDS
1895 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1896 return 0;
1898 /* If there are any volatile insns between INSN and I3, reject, because
1899 they might affect machine state. */
1901 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1902 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1903 return 0;
1905 /* If INSN contains an autoincrement or autodecrement, make sure that
1906 register is not used between there and I3, and not already used in
1907 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1908 Also insist that I3 not be a jump; if it were one
1909 and the incremented register were spilled, we would lose. */
1911 #ifdef AUTO_INC_DEC
1912 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1913 if (REG_NOTE_KIND (link) == REG_INC
1914 && (JUMP_P (i3)
1915 || reg_used_between_p (XEXP (link, 0), insn, i3)
1916 || (pred != NULL_RTX
1917 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1918 || (pred2 != NULL_RTX
1919 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1920 || (succ != NULL_RTX
1921 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1922 || (succ2 != NULL_RTX
1923 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1924 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1925 return 0;
1926 #endif
1928 #ifdef HAVE_cc0
1929 /* Don't combine an insn that follows a CC0-setting insn.
1930 An insn that uses CC0 must not be separated from the one that sets it.
1931 We do, however, allow I2 to follow a CC0-setting insn if that insn
1932 is passed as I1; in that case it will be deleted also.
1933 We also allow combining in this case if all the insns are adjacent
1934 because that would leave the two CC0 insns adjacent as well.
1935 It would be more logical to test whether CC0 occurs inside I1 or I2,
1936 but that would be much slower, and this ought to be equivalent. */
1938 p = prev_nonnote_insn (insn);
1939 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1940 && ! all_adjacent)
1941 return 0;
1942 #endif
1944 /* If we get here, we have passed all the tests and the combination is
1945 to be allowed. */
1947 *pdest = dest;
1948 *psrc = src;
1950 return 1;
1953 /* LOC is the location within I3 that contains its pattern or the component
1954 of a PARALLEL of the pattern. We validate that it is valid for combining.
1956 One problem is if I3 modifies its output, as opposed to replacing it
1957 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1958 doing so would produce an insn that is not equivalent to the original insns.
1960 Consider:
1962 (set (reg:DI 101) (reg:DI 100))
1963 (set (subreg:SI (reg:DI 101) 0) <foo>)
1965 This is NOT equivalent to:
1967 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1968 (set (reg:DI 101) (reg:DI 100))])
1970 Not only does this modify 100 (in which case it might still be valid
1971 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1973 We can also run into a problem if I2 sets a register that I1
1974 uses and I1 gets directly substituted into I3 (not via I2). In that
1975 case, we would be getting the wrong value of I2DEST into I3, so we
1976 must reject the combination. This case occurs when I2 and I1 both
1977 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1978 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1979 of a SET must prevent combination from occurring. The same situation
1980 can occur for I0, in which case I0_NOT_IN_SRC is set.
1982 Before doing the above check, we first try to expand a field assignment
1983 into a set of logical operations.
1985 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1986 we place a register that is both set and used within I3. If more than one
1987 such register is detected, we fail.
1989 Return 1 if the combination is valid, zero otherwise. */
1991 static int
1992 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
1993 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
1995 rtx x = *loc;
1997 if (GET_CODE (x) == SET)
1999 rtx set = x ;
2000 rtx dest = SET_DEST (set);
2001 rtx src = SET_SRC (set);
2002 rtx inner_dest = dest;
2003 rtx subdest;
2005 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2006 || GET_CODE (inner_dest) == SUBREG
2007 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2008 inner_dest = XEXP (inner_dest, 0);
2010 /* Check for the case where I3 modifies its output, as discussed
2011 above. We don't want to prevent pseudos from being combined
2012 into the address of a MEM, so only prevent the combination if
2013 i1 or i2 set the same MEM. */
2014 if ((inner_dest != dest &&
2015 (!MEM_P (inner_dest)
2016 || rtx_equal_p (i2dest, inner_dest)
2017 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2018 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2019 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2020 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2021 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2023 /* This is the same test done in can_combine_p except we can't test
2024 all_adjacent; we don't have to, since this instruction will stay
2025 in place, thus we are not considering increasing the lifetime of
2026 INNER_DEST.
2028 Also, if this insn sets a function argument, combining it with
2029 something that might need a spill could clobber a previous
2030 function argument; the all_adjacent test in can_combine_p also
2031 checks this; here, we do a more specific test for this case. */
2033 || (REG_P (inner_dest)
2034 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2035 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2036 GET_MODE (inner_dest))))
2037 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2038 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2039 return 0;
2041 /* If DEST is used in I3, it is being killed in this insn, so
2042 record that for later. We have to consider paradoxical
2043 subregs here, since they kill the whole register, but we
2044 ignore partial subregs, STRICT_LOW_PART, etc.
2045 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2046 STACK_POINTER_REGNUM, since these are always considered to be
2047 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2048 subdest = dest;
2049 if (GET_CODE (subdest) == SUBREG
2050 && (GET_MODE_SIZE (GET_MODE (subdest))
2051 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2052 subdest = SUBREG_REG (subdest);
2053 if (pi3dest_killed
2054 && REG_P (subdest)
2055 && reg_referenced_p (subdest, PATTERN (i3))
2056 && REGNO (subdest) != FRAME_POINTER_REGNUM
2057 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2058 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2059 #endif
2060 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2061 && (REGNO (subdest) != ARG_POINTER_REGNUM
2062 || ! fixed_regs [REGNO (subdest)])
2063 #endif
2064 && REGNO (subdest) != STACK_POINTER_REGNUM)
2066 if (*pi3dest_killed)
2067 return 0;
2069 *pi3dest_killed = subdest;
2073 else if (GET_CODE (x) == PARALLEL)
2075 int i;
2077 for (i = 0; i < XVECLEN (x, 0); i++)
2078 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2079 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2080 return 0;
2083 return 1;
2086 /* Return 1 if X is an arithmetic expression that contains a multiplication
2087 and division. We don't count multiplications by powers of two here. */
2089 static int
2090 contains_muldiv (rtx x)
2092 switch (GET_CODE (x))
2094 case MOD: case DIV: case UMOD: case UDIV:
2095 return 1;
2097 case MULT:
2098 return ! (CONST_INT_P (XEXP (x, 1))
2099 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2100 default:
2101 if (BINARY_P (x))
2102 return contains_muldiv (XEXP (x, 0))
2103 || contains_muldiv (XEXP (x, 1));
2105 if (UNARY_P (x))
2106 return contains_muldiv (XEXP (x, 0));
2108 return 0;
2112 /* Determine whether INSN can be used in a combination. Return nonzero if
2113 not. This is used in try_combine to detect early some cases where we
2114 can't perform combinations. */
2116 static int
2117 cant_combine_insn_p (rtx insn)
2119 rtx set;
2120 rtx src, dest;
2122 /* If this isn't really an insn, we can't do anything.
2123 This can occur when flow deletes an insn that it has merged into an
2124 auto-increment address. */
2125 if (! INSN_P (insn))
2126 return 1;
2128 /* Never combine loads and stores involving hard regs that are likely
2129 to be spilled. The register allocator can usually handle such
2130 reg-reg moves by tying. If we allow the combiner to make
2131 substitutions of likely-spilled regs, reload might die.
2132 As an exception, we allow combinations involving fixed regs; these are
2133 not available to the register allocator so there's no risk involved. */
2135 set = single_set (insn);
2136 if (! set)
2137 return 0;
2138 src = SET_SRC (set);
2139 dest = SET_DEST (set);
2140 if (GET_CODE (src) == SUBREG)
2141 src = SUBREG_REG (src);
2142 if (GET_CODE (dest) == SUBREG)
2143 dest = SUBREG_REG (dest);
2144 if (REG_P (src) && REG_P (dest)
2145 && ((HARD_REGISTER_P (src)
2146 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2147 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2148 || (HARD_REGISTER_P (dest)
2149 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2150 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2151 return 1;
2153 return 0;
2156 struct likely_spilled_retval_info
2158 unsigned regno, nregs;
2159 unsigned mask;
2162 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2163 hard registers that are known to be written to / clobbered in full. */
2164 static void
2165 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2167 struct likely_spilled_retval_info *const info =
2168 (struct likely_spilled_retval_info *) data;
2169 unsigned regno, nregs;
2170 unsigned new_mask;
2172 if (!REG_P (XEXP (set, 0)))
2173 return;
2174 regno = REGNO (x);
2175 if (regno >= info->regno + info->nregs)
2176 return;
2177 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2178 if (regno + nregs <= info->regno)
2179 return;
2180 new_mask = (2U << (nregs - 1)) - 1;
2181 if (regno < info->regno)
2182 new_mask >>= info->regno - regno;
2183 else
2184 new_mask <<= regno - info->regno;
2185 info->mask &= ~new_mask;
2188 /* Return nonzero iff part of the return value is live during INSN, and
2189 it is likely spilled. This can happen when more than one insn is needed
2190 to copy the return value, e.g. when we consider to combine into the
2191 second copy insn for a complex value. */
2193 static int
2194 likely_spilled_retval_p (rtx insn)
2196 rtx use = BB_END (this_basic_block);
2197 rtx reg, p;
2198 unsigned regno, nregs;
2199 /* We assume here that no machine mode needs more than
2200 32 hard registers when the value overlaps with a register
2201 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2202 unsigned mask;
2203 struct likely_spilled_retval_info info;
2205 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2206 return 0;
2207 reg = XEXP (PATTERN (use), 0);
2208 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2209 return 0;
2210 regno = REGNO (reg);
2211 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2212 if (nregs == 1)
2213 return 0;
2214 mask = (2U << (nregs - 1)) - 1;
2216 /* Disregard parts of the return value that are set later. */
2217 info.regno = regno;
2218 info.nregs = nregs;
2219 info.mask = mask;
2220 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2221 if (INSN_P (p))
2222 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2223 mask = info.mask;
2225 /* Check if any of the (probably) live return value registers is
2226 likely spilled. */
2227 nregs --;
2230 if ((mask & 1 << nregs)
2231 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2232 return 1;
2233 } while (nregs--);
2234 return 0;
2237 /* Adjust INSN after we made a change to its destination.
2239 Changing the destination can invalidate notes that say something about
2240 the results of the insn and a LOG_LINK pointing to the insn. */
2242 static void
2243 adjust_for_new_dest (rtx insn)
2245 /* For notes, be conservative and simply remove them. */
2246 remove_reg_equal_equiv_notes (insn);
2248 /* The new insn will have a destination that was previously the destination
2249 of an insn just above it. Call distribute_links to make a LOG_LINK from
2250 the next use of that destination. */
2251 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2253 df_insn_rescan (insn);
2256 /* Return TRUE if combine can reuse reg X in mode MODE.
2257 ADDED_SETS is nonzero if the original set is still required. */
2258 static bool
2259 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2261 unsigned int regno;
2263 if (!REG_P(x))
2264 return false;
2266 regno = REGNO (x);
2267 /* Allow hard registers if the new mode is legal, and occupies no more
2268 registers than the old mode. */
2269 if (regno < FIRST_PSEUDO_REGISTER)
2270 return (HARD_REGNO_MODE_OK (regno, mode)
2271 && (hard_regno_nregs[regno][GET_MODE (x)]
2272 >= hard_regno_nregs[regno][mode]));
2274 /* Or a pseudo that is only used once. */
2275 return (REG_N_SETS (regno) == 1 && !added_sets
2276 && !REG_USERVAR_P (x));
2280 /* Check whether X, the destination of a set, refers to part of
2281 the register specified by REG. */
2283 static bool
2284 reg_subword_p (rtx x, rtx reg)
2286 /* Check that reg is an integer mode register. */
2287 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2288 return false;
2290 if (GET_CODE (x) == STRICT_LOW_PART
2291 || GET_CODE (x) == ZERO_EXTRACT)
2292 x = XEXP (x, 0);
2294 return GET_CODE (x) == SUBREG
2295 && SUBREG_REG (x) == reg
2296 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2299 #ifdef AUTO_INC_DEC
2300 /* Replace auto-increment addressing modes with explicit operations to access
2301 the same addresses without modifying the corresponding registers. */
2303 static rtx
2304 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2306 rtx x = src;
2307 const RTX_CODE code = GET_CODE (x);
2308 int i;
2309 const char *fmt;
2311 switch (code)
2313 case REG:
2314 case CONST_INT:
2315 case CONST_DOUBLE:
2316 case CONST_FIXED:
2317 case CONST_VECTOR:
2318 case SYMBOL_REF:
2319 case CODE_LABEL:
2320 case PC:
2321 case CC0:
2322 case SCRATCH:
2323 /* SCRATCH must be shared because they represent distinct values. */
2324 return x;
2325 case CLOBBER:
2326 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2327 return x;
2328 break;
2330 case CONST:
2331 if (shared_const_p (x))
2332 return x;
2333 break;
2335 case MEM:
2336 mem_mode = GET_MODE (x);
2337 break;
2339 case PRE_INC:
2340 case PRE_DEC:
2341 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2342 return gen_rtx_PLUS (GET_MODE (x),
2343 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2344 GEN_INT (code == PRE_INC
2345 ? GET_MODE_SIZE (mem_mode)
2346 : -GET_MODE_SIZE (mem_mode)));
2348 case POST_INC:
2349 case POST_DEC:
2350 case PRE_MODIFY:
2351 case POST_MODIFY:
2352 return cleanup_auto_inc_dec (code == PRE_MODIFY
2353 ? XEXP (x, 1) : XEXP (x, 0),
2354 mem_mode);
2356 default:
2357 break;
2360 /* Copy the various flags, fields, and other information. We assume
2361 that all fields need copying, and then clear the fields that should
2362 not be copied. That is the sensible default behavior, and forces
2363 us to explicitly document why we are *not* copying a flag. */
2364 x = shallow_copy_rtx (x);
2366 /* We do not copy the USED flag, which is used as a mark bit during
2367 walks over the RTL. */
2368 RTX_FLAG (x, used) = 0;
2370 /* We do not copy FRAME_RELATED for INSNs. */
2371 if (INSN_P (x))
2372 RTX_FLAG (x, frame_related) = 0;
2374 fmt = GET_RTX_FORMAT (code);
2375 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2376 if (fmt[i] == 'e')
2377 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2378 else if (fmt[i] == 'E' || fmt[i] == 'V')
2380 int j;
2381 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2382 for (j = 0; j < XVECLEN (x, i); j++)
2383 XVECEXP (x, i, j)
2384 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2387 return x;
2389 #endif
2391 /* Auxiliary data structure for propagate_for_debug_stmt. */
2393 struct rtx_subst_pair
2395 rtx to;
2396 bool adjusted;
2399 /* DATA points to an rtx_subst_pair. Return the value that should be
2400 substituted. */
2402 static rtx
2403 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2405 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2407 if (!rtx_equal_p (from, old_rtx))
2408 return NULL_RTX;
2409 if (!pair->adjusted)
2411 pair->adjusted = true;
2412 #ifdef AUTO_INC_DEC
2413 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2414 #else
2415 pair->to = copy_rtx (pair->to);
2416 #endif
2417 pair->to = make_compound_operation (pair->to, SET);
2418 return pair->to;
2420 return copy_rtx (pair->to);
2423 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2424 and LAST. */
2426 static void
2427 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2429 rtx next, loc;
2431 struct rtx_subst_pair p;
2432 p.to = src;
2433 p.adjusted = false;
2435 next = NEXT_INSN (insn);
2436 while (next != last)
2438 insn = next;
2439 next = NEXT_INSN (insn);
2440 if (DEBUG_INSN_P (insn))
2442 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2443 dest, propagate_for_debug_subst, &p);
2444 if (loc == INSN_VAR_LOCATION_LOC (insn))
2445 continue;
2446 INSN_VAR_LOCATION_LOC (insn) = loc;
2447 df_insn_rescan (insn);
2452 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2453 Note that the INSN should be deleted *after* removing dead edges, so
2454 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2455 but not for a (set (pc) (label_ref FOO)). */
2457 static void
2458 update_cfg_for_uncondjump (rtx insn)
2460 basic_block bb = BLOCK_FOR_INSN (insn);
2461 bool at_end = (BB_END (bb) == insn);
2463 if (at_end)
2464 purge_dead_edges (bb);
2466 delete_insn (insn);
2467 if (at_end && EDGE_COUNT (bb->succs) == 1)
2469 rtx insn;
2471 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2473 /* Remove barriers from the footer if there are any. */
2474 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2475 if (BARRIER_P (insn))
2477 if (PREV_INSN (insn))
2478 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2479 else
2480 bb->il.rtl->footer = NEXT_INSN (insn);
2481 if (NEXT_INSN (insn))
2482 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2484 else if (LABEL_P (insn))
2485 break;
2489 /* Try to combine the insns I0, I1 and I2 into I3.
2490 Here I0, I1 and I2 appear earlier than I3.
2491 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2494 If we are combining more than two insns and the resulting insn is not
2495 recognized, try splitting it into two insns. If that happens, I2 and I3
2496 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2497 Otherwise, I0, I1 and I2 are pseudo-deleted.
2499 Return 0 if the combination does not work. Then nothing is changed.
2500 If we did the combination, return the insn at which combine should
2501 resume scanning.
2503 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2504 new direct jump instruction. */
2506 static rtx
2507 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p)
2509 /* New patterns for I3 and I2, respectively. */
2510 rtx newpat, newi2pat = 0;
2511 rtvec newpat_vec_with_clobbers = 0;
2512 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2513 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2514 dead. */
2515 int added_sets_0, added_sets_1, added_sets_2;
2516 /* Total number of SETs to put into I3. */
2517 int total_sets;
2518 /* Nonzero if I2's or I1's body now appears in I3. */
2519 int i2_is_used = 0, i1_is_used = 0;
2520 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2521 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2522 /* Contains I3 if the destination of I3 is used in its source, which means
2523 that the old life of I3 is being killed. If that usage is placed into
2524 I2 and not in I3, a REG_DEAD note must be made. */
2525 rtx i3dest_killed = 0;
2526 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2527 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2528 /* Copy of SET_SRC of I1, if needed. */
2529 rtx i1src_copy = 0;
2530 /* Set if I2DEST was reused as a scratch register. */
2531 bool i2scratch = false;
2532 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2533 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2534 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2535 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2536 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2537 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2538 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2539 /* Notes that must be added to REG_NOTES in I3 and I2. */
2540 rtx new_i3_notes, new_i2_notes;
2541 /* Notes that we substituted I3 into I2 instead of the normal case. */
2542 int i3_subst_into_i2 = 0;
2543 /* Notes that I1, I2 or I3 is a MULT operation. */
2544 int have_mult = 0;
2545 int swap_i2i3 = 0;
2546 int changed_i3_dest = 0;
2548 int maxreg;
2549 rtx temp;
2550 rtx link;
2551 rtx other_pat = 0;
2552 rtx new_other_notes;
2553 int i;
2555 /* Only try four-insn combinations when there's high likelihood of
2556 success. Look for simple insns, such as loads of constants or
2557 binary operations involving a constant. */
2558 if (i0)
2560 int i;
2561 int ngood = 0;
2562 int nshift = 0;
2564 if (!flag_expensive_optimizations)
2565 return 0;
2567 for (i = 0; i < 4; i++)
2569 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2570 rtx set = single_set (insn);
2571 rtx src;
2572 if (!set)
2573 continue;
2574 src = SET_SRC (set);
2575 if (CONSTANT_P (src))
2577 ngood += 2;
2578 break;
2580 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2581 ngood++;
2582 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2583 || GET_CODE (src) == LSHIFTRT)
2584 nshift++;
2586 if (ngood < 2 && nshift < 2)
2587 return 0;
2590 /* Exit early if one of the insns involved can't be used for
2591 combinations. */
2592 if (cant_combine_insn_p (i3)
2593 || cant_combine_insn_p (i2)
2594 || (i1 && cant_combine_insn_p (i1))
2595 || (i0 && cant_combine_insn_p (i0))
2596 || likely_spilled_retval_p (i3))
2597 return 0;
2599 combine_attempts++;
2600 undobuf.other_insn = 0;
2602 /* Reset the hard register usage information. */
2603 CLEAR_HARD_REG_SET (newpat_used_regs);
2605 if (dump_file && (dump_flags & TDF_DETAILS))
2607 if (i0)
2608 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2609 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2610 else if (i1)
2611 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2612 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2613 else
2614 fprintf (dump_file, "\nTrying %d -> %d:\n",
2615 INSN_UID (i2), INSN_UID (i3));
2618 /* If multiple insns feed into one of I2 or I3, they can be in any
2619 order. To simplify the code below, reorder them in sequence. */
2620 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2621 temp = i2, i2 = i0, i0 = temp;
2622 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2623 temp = i1, i1 = i0, i0 = temp;
2624 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2625 temp = i1, i1 = i2, i2 = temp;
2627 added_links_insn = 0;
2629 /* First check for one important special case that the code below will
2630 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2631 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2632 we may be able to replace that destination with the destination of I3.
2633 This occurs in the common code where we compute both a quotient and
2634 remainder into a structure, in which case we want to do the computation
2635 directly into the structure to avoid register-register copies.
2637 Note that this case handles both multiple sets in I2 and also cases
2638 where I2 has a number of CLOBBERs inside the PARALLEL.
2640 We make very conservative checks below and only try to handle the
2641 most common cases of this. For example, we only handle the case
2642 where I2 and I3 are adjacent to avoid making difficult register
2643 usage tests. */
2645 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2646 && REG_P (SET_SRC (PATTERN (i3)))
2647 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2648 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2649 && GET_CODE (PATTERN (i2)) == PARALLEL
2650 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2651 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2652 below would need to check what is inside (and reg_overlap_mentioned_p
2653 doesn't support those codes anyway). Don't allow those destinations;
2654 the resulting insn isn't likely to be recognized anyway. */
2655 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2656 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2657 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2658 SET_DEST (PATTERN (i3)))
2659 && next_active_insn (i2) == i3)
2661 rtx p2 = PATTERN (i2);
2663 /* Make sure that the destination of I3,
2664 which we are going to substitute into one output of I2,
2665 is not used within another output of I2. We must avoid making this:
2666 (parallel [(set (mem (reg 69)) ...)
2667 (set (reg 69) ...)])
2668 which is not well-defined as to order of actions.
2669 (Besides, reload can't handle output reloads for this.)
2671 The problem can also happen if the dest of I3 is a memory ref,
2672 if another dest in I2 is an indirect memory ref. */
2673 for (i = 0; i < XVECLEN (p2, 0); i++)
2674 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2675 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2676 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2677 SET_DEST (XVECEXP (p2, 0, i))))
2678 break;
2680 if (i == XVECLEN (p2, 0))
2681 for (i = 0; i < XVECLEN (p2, 0); i++)
2682 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2683 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2685 combine_merges++;
2687 subst_insn = i3;
2688 subst_low_luid = DF_INSN_LUID (i2);
2690 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2691 i2src = SET_SRC (XVECEXP (p2, 0, i));
2692 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2693 i2dest_killed = dead_or_set_p (i2, i2dest);
2695 /* Replace the dest in I2 with our dest and make the resulting
2696 insn the new pattern for I3. Then skip to where we validate
2697 the pattern. Everything was set up above. */
2698 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2699 newpat = p2;
2700 i3_subst_into_i2 = 1;
2701 goto validate_replacement;
2705 /* If I2 is setting a pseudo to a constant and I3 is setting some
2706 sub-part of it to another constant, merge them by making a new
2707 constant. */
2708 if (i1 == 0
2709 && (temp = single_set (i2)) != 0
2710 && (CONST_INT_P (SET_SRC (temp))
2711 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2712 && GET_CODE (PATTERN (i3)) == SET
2713 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2714 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2715 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2717 rtx dest = SET_DEST (PATTERN (i3));
2718 int offset = -1;
2719 int width = 0;
2721 if (GET_CODE (dest) == ZERO_EXTRACT)
2723 if (CONST_INT_P (XEXP (dest, 1))
2724 && CONST_INT_P (XEXP (dest, 2)))
2726 width = INTVAL (XEXP (dest, 1));
2727 offset = INTVAL (XEXP (dest, 2));
2728 dest = XEXP (dest, 0);
2729 if (BITS_BIG_ENDIAN)
2730 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2733 else
2735 if (GET_CODE (dest) == STRICT_LOW_PART)
2736 dest = XEXP (dest, 0);
2737 width = GET_MODE_BITSIZE (GET_MODE (dest));
2738 offset = 0;
2741 if (offset >= 0)
2743 /* If this is the low part, we're done. */
2744 if (subreg_lowpart_p (dest))
2746 /* Handle the case where inner is twice the size of outer. */
2747 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2748 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2749 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2750 /* Otherwise give up for now. */
2751 else
2752 offset = -1;
2755 if (offset >= 0
2756 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2757 <= HOST_BITS_PER_DOUBLE_INT))
2759 double_int m, o, i;
2760 rtx inner = SET_SRC (PATTERN (i3));
2761 rtx outer = SET_SRC (temp);
2763 o = rtx_to_double_int (outer);
2764 i = rtx_to_double_int (inner);
2766 m = double_int_mask (width);
2767 i = double_int_and (i, m);
2768 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2769 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2770 o = double_int_ior (double_int_and_not (o, m), i);
2772 combine_merges++;
2773 subst_insn = i3;
2774 subst_low_luid = DF_INSN_LUID (i2);
2775 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2776 i2dest = SET_DEST (temp);
2777 i2dest_killed = dead_or_set_p (i2, i2dest);
2779 /* Replace the source in I2 with the new constant and make the
2780 resulting insn the new pattern for I3. Then skip to where we
2781 validate the pattern. Everything was set up above. */
2782 SUBST (SET_SRC (temp),
2783 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2785 newpat = PATTERN (i2);
2787 /* The dest of I3 has been replaced with the dest of I2. */
2788 changed_i3_dest = 1;
2789 goto validate_replacement;
2793 #ifndef HAVE_cc0
2794 /* If we have no I1 and I2 looks like:
2795 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2796 (set Y OP)])
2797 make up a dummy I1 that is
2798 (set Y OP)
2799 and change I2 to be
2800 (set (reg:CC X) (compare:CC Y (const_int 0)))
2802 (We can ignore any trailing CLOBBERs.)
2804 This undoes a previous combination and allows us to match a branch-and-
2805 decrement insn. */
2807 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2808 && XVECLEN (PATTERN (i2), 0) >= 2
2809 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2810 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2811 == MODE_CC)
2812 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2813 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2814 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2815 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2816 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2817 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2819 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2820 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2821 break;
2823 if (i == 1)
2825 /* We make I1 with the same INSN_UID as I2. This gives it
2826 the same DF_INSN_LUID for value tracking. Our fake I1 will
2827 never appear in the insn stream so giving it the same INSN_UID
2828 as I2 will not cause a problem. */
2830 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2831 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2832 INSN_LOCATOR (i2), -1, NULL_RTX);
2834 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2835 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2836 SET_DEST (PATTERN (i1)));
2839 #endif
2841 /* Verify that I2 and I1 are valid for combining. */
2842 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2843 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2844 &i1dest, &i1src))
2845 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2846 &i0dest, &i0src)))
2848 undo_all ();
2849 return 0;
2852 /* Record whether I2DEST is used in I2SRC and similarly for the other
2853 cases. Knowing this will help in register status updating below. */
2854 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2855 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2856 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2857 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2858 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2859 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2860 i2dest_killed = dead_or_set_p (i2, i2dest);
2861 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2862 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2864 /* For the earlier insns, determine which of the subsequent ones they
2865 feed. */
2866 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2867 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2868 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2869 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2870 && reg_overlap_mentioned_p (i0dest, i2src))));
2872 /* Ensure that I3's pattern can be the destination of combines. */
2873 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2874 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2875 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2876 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2877 &i3dest_killed))
2879 undo_all ();
2880 return 0;
2883 /* See if any of the insns is a MULT operation. Unless one is, we will
2884 reject a combination that is, since it must be slower. Be conservative
2885 here. */
2886 if (GET_CODE (i2src) == MULT
2887 || (i1 != 0 && GET_CODE (i1src) == MULT)
2888 || (i0 != 0 && GET_CODE (i0src) == MULT)
2889 || (GET_CODE (PATTERN (i3)) == SET
2890 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2891 have_mult = 1;
2893 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2894 We used to do this EXCEPT in one case: I3 has a post-inc in an
2895 output operand. However, that exception can give rise to insns like
2896 mov r3,(r3)+
2897 which is a famous insn on the PDP-11 where the value of r3 used as the
2898 source was model-dependent. Avoid this sort of thing. */
2900 #if 0
2901 if (!(GET_CODE (PATTERN (i3)) == SET
2902 && REG_P (SET_SRC (PATTERN (i3)))
2903 && MEM_P (SET_DEST (PATTERN (i3)))
2904 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2905 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2906 /* It's not the exception. */
2907 #endif
2908 #ifdef AUTO_INC_DEC
2909 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2910 if (REG_NOTE_KIND (link) == REG_INC
2911 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2912 || (i1 != 0
2913 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2915 undo_all ();
2916 return 0;
2918 #endif
2920 /* See if the SETs in I1 or I2 need to be kept around in the merged
2921 instruction: whenever the value set there is still needed past I3.
2922 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2924 For the SET in I1, we have two cases: If I1 and I2 independently
2925 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2926 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2927 in I1 needs to be kept around unless I1DEST dies or is set in either
2928 I2 or I3. The same consideration applies to I0. */
2930 added_sets_2 = !dead_or_set_p (i3, i2dest);
2932 if (i1)
2933 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2934 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2935 else
2936 added_sets_1 = 0;
2938 if (i0)
2939 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2940 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2941 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2942 else
2943 added_sets_0 = 0;
2945 /* We are about to copy insns for the case where they need to be kept
2946 around. Check that they can be copied in the merged instruction. */
2948 if (targetm.cannot_copy_insn_p
2949 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2950 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2951 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2953 undo_all ();
2954 return 0;
2957 /* If the set in I2 needs to be kept around, we must make a copy of
2958 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2959 PATTERN (I2), we are only substituting for the original I1DEST, not into
2960 an already-substituted copy. This also prevents making self-referential
2961 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2962 I2DEST. */
2964 if (added_sets_2)
2966 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2967 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2968 else
2969 i2pat = copy_rtx (PATTERN (i2));
2972 if (added_sets_1)
2974 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2975 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2976 else
2977 i1pat = copy_rtx (PATTERN (i1));
2980 if (added_sets_0)
2982 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2983 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2984 else
2985 i0pat = copy_rtx (PATTERN (i0));
2988 combine_merges++;
2990 /* Substitute in the latest insn for the regs set by the earlier ones. */
2992 maxreg = max_reg_num ();
2994 subst_insn = i3;
2996 #ifndef HAVE_cc0
2997 /* Many machines that don't use CC0 have insns that can both perform an
2998 arithmetic operation and set the condition code. These operations will
2999 be represented as a PARALLEL with the first element of the vector
3000 being a COMPARE of an arithmetic operation with the constant zero.
3001 The second element of the vector will set some pseudo to the result
3002 of the same arithmetic operation. If we simplify the COMPARE, we won't
3003 match such a pattern and so will generate an extra insn. Here we test
3004 for this case, where both the comparison and the operation result are
3005 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3006 I2SRC. Later we will make the PARALLEL that contains I2. */
3008 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3009 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3010 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
3011 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3013 #ifdef SELECT_CC_MODE
3014 rtx *cc_use;
3015 enum machine_mode compare_mode;
3016 #endif
3018 newpat = PATTERN (i3);
3019 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
3021 i2_is_used = 1;
3023 #ifdef SELECT_CC_MODE
3024 /* See if a COMPARE with the operand we substituted in should be done
3025 with the mode that is currently being used. If not, do the same
3026 processing we do in `subst' for a SET; namely, if the destination
3027 is used only once, try to replace it with a register of the proper
3028 mode and also replace the COMPARE. */
3029 if (undobuf.other_insn == 0
3030 && (cc_use = find_single_use (SET_DEST (newpat), i3,
3031 &undobuf.other_insn))
3032 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
3033 i2src, const0_rtx))
3034 != GET_MODE (SET_DEST (newpat))))
3036 if (can_change_dest_mode (SET_DEST (newpat), added_sets_2,
3037 compare_mode))
3039 unsigned int regno = REGNO (SET_DEST (newpat));
3040 rtx new_dest;
3042 if (regno < FIRST_PSEUDO_REGISTER)
3043 new_dest = gen_rtx_REG (compare_mode, regno);
3044 else
3046 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3047 new_dest = regno_reg_rtx[regno];
3050 SUBST (SET_DEST (newpat), new_dest);
3051 SUBST (XEXP (*cc_use, 0), new_dest);
3052 SUBST (SET_SRC (newpat),
3053 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
3055 else
3056 undobuf.other_insn = 0;
3058 #endif
3060 else
3061 #endif
3063 /* It is possible that the source of I2 or I1 may be performing
3064 an unneeded operation, such as a ZERO_EXTEND of something
3065 that is known to have the high part zero. Handle that case
3066 by letting subst look at the inner insns.
3068 Another way to do this would be to have a function that tries
3069 to simplify a single insn instead of merging two or more
3070 insns. We don't do this because of the potential of infinite
3071 loops and because of the potential extra memory required.
3072 However, doing it the way we are is a bit of a kludge and
3073 doesn't catch all cases.
3075 But only do this if -fexpensive-optimizations since it slows
3076 things down and doesn't usually win.
3078 This is not done in the COMPARE case above because the
3079 unmodified I2PAT is used in the PARALLEL and so a pattern
3080 with a modified I2SRC would not match. */
3082 if (flag_expensive_optimizations)
3084 /* Pass pc_rtx so no substitutions are done, just
3085 simplifications. */
3086 if (i1)
3088 subst_low_luid = DF_INSN_LUID (i1);
3089 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
3092 subst_low_luid = DF_INSN_LUID (i2);
3093 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
3096 n_occurrences = 0; /* `subst' counts here */
3097 subst_low_luid = DF_INSN_LUID (i2);
3099 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3100 copy of I2SRC each time we substitute it, in order to avoid creating
3101 self-referential RTL when we will be substituting I1SRC for I1DEST
3102 later. Likewise if I0 feeds into I2, either directly or indirectly
3103 through I1, and I0DEST is in I0SRC. */
3104 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
3105 (i1_feeds_i2_n && i1dest_in_i1src)
3106 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3107 && i0dest_in_i0src));
3108 substed_i2 = 1;
3110 /* Record whether I2's body now appears within I3's body. */
3111 i2_is_used = n_occurrences;
3114 /* If we already got a failure, don't try to do more. Otherwise, try to
3115 substitute I1 if we have it. */
3117 if (i1 && GET_CODE (newpat) != CLOBBER)
3119 /* Check that an autoincrement side-effect on I1 has not been lost.
3120 This happens if I1DEST is mentioned in I2 and dies there, and
3121 has disappeared from the new pattern. */
3122 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3123 && i1_feeds_i2_n
3124 && dead_or_set_p (i2, i1dest)
3125 && !reg_overlap_mentioned_p (i1dest, newpat))
3126 /* Before we can do this substitution, we must redo the test done
3127 above (see detailed comments there) that ensures I1DEST isn't
3128 mentioned in any SETs in NEWPAT that are field assignments. */
3129 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3130 0, 0, 0))
3132 undo_all ();
3133 return 0;
3136 n_occurrences = 0;
3137 subst_low_luid = DF_INSN_LUID (i1);
3139 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3140 copy of I1SRC each time we substitute it, in order to avoid creating
3141 self-referential RTL when we will be substituting I0SRC for I0DEST
3142 later. */
3143 newpat = subst (newpat, i1dest, i1src, 0,
3144 i0_feeds_i1_n && i0dest_in_i0src);
3145 substed_i1 = 1;
3147 /* Record whether I1's body now appears within I3's body. */
3148 i1_is_used = n_occurrences;
3151 /* Likewise for I0 if we have it. */
3153 if (i0 && GET_CODE (newpat) != CLOBBER)
3155 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3156 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3157 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3158 && !reg_overlap_mentioned_p (i0dest, newpat))
3159 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3160 0, 0, 0))
3162 undo_all ();
3163 return 0;
3166 /* If the following substitution will modify I1SRC, make a copy of it
3167 for the case where it is substituted for I1DEST in I2PAT later. */
3168 if (i0_feeds_i1_n && added_sets_2 && i1_feeds_i2_n)
3169 i1src_copy = copy_rtx (i1src);
3171 n_occurrences = 0;
3172 subst_low_luid = DF_INSN_LUID (i0);
3173 newpat = subst (newpat, i0dest, i0src, 0, 0);
3174 substed_i0 = 1;
3177 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3178 to count all the ways that I2SRC and I1SRC can be used. */
3179 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3180 && i2_is_used + added_sets_2 > 1)
3181 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3182 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3183 > 1))
3184 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3185 && (n_occurrences + added_sets_0
3186 + (added_sets_1 && i0_feeds_i1_n)
3187 + (added_sets_2 && i0_feeds_i2_n)
3188 > 1))
3189 /* Fail if we tried to make a new register. */
3190 || max_reg_num () != maxreg
3191 /* Fail if we couldn't do something and have a CLOBBER. */
3192 || GET_CODE (newpat) == CLOBBER
3193 /* Fail if this new pattern is a MULT and we didn't have one before
3194 at the outer level. */
3195 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3196 && ! have_mult))
3198 undo_all ();
3199 return 0;
3202 /* If the actions of the earlier insns must be kept
3203 in addition to substituting them into the latest one,
3204 we must make a new PARALLEL for the latest insn
3205 to hold additional the SETs. */
3207 if (added_sets_0 || added_sets_1 || added_sets_2)
3209 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3210 combine_extras++;
3212 if (GET_CODE (newpat) == PARALLEL)
3214 rtvec old = XVEC (newpat, 0);
3215 total_sets = XVECLEN (newpat, 0) + extra_sets;
3216 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3217 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3218 sizeof (old->elem[0]) * old->num_elem);
3220 else
3222 rtx old = newpat;
3223 total_sets = 1 + extra_sets;
3224 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3225 XVECEXP (newpat, 0, 0) = old;
3228 if (added_sets_0)
3229 XVECEXP (newpat, 0, --total_sets) = i0pat;
3231 if (added_sets_1)
3233 rtx t = i1pat;
3234 if (i0_feeds_i1_n)
3235 t = subst (t, i0dest, i0src, 0, 0);
3237 XVECEXP (newpat, 0, --total_sets) = t;
3239 if (added_sets_2)
3241 rtx t = i2pat;
3242 if (i1_feeds_i2_n)
3243 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0,
3244 i0_feeds_i1_n && i0dest_in_i0src);
3245 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3246 t = subst (t, i0dest, i0src, 0, 0);
3248 XVECEXP (newpat, 0, --total_sets) = t;
3252 validate_replacement:
3254 /* Note which hard regs this insn has as inputs. */
3255 mark_used_regs_combine (newpat);
3257 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3258 consider splitting this pattern, we might need these clobbers. */
3259 if (i1 && GET_CODE (newpat) == PARALLEL
3260 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3262 int len = XVECLEN (newpat, 0);
3264 newpat_vec_with_clobbers = rtvec_alloc (len);
3265 for (i = 0; i < len; i++)
3266 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3269 /* Is the result of combination a valid instruction? */
3270 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3272 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3273 the second SET's destination is a register that is unused and isn't
3274 marked as an instruction that might trap in an EH region. In that case,
3275 we just need the first SET. This can occur when simplifying a divmod
3276 insn. We *must* test for this case here because the code below that
3277 splits two independent SETs doesn't handle this case correctly when it
3278 updates the register status.
3280 It's pointless doing this if we originally had two sets, one from
3281 i3, and one from i2. Combining then splitting the parallel results
3282 in the original i2 again plus an invalid insn (which we delete).
3283 The net effect is only to move instructions around, which makes
3284 debug info less accurate.
3286 Also check the case where the first SET's destination is unused.
3287 That would not cause incorrect code, but does cause an unneeded
3288 insn to remain. */
3290 if (insn_code_number < 0
3291 && !(added_sets_2 && i1 == 0)
3292 && GET_CODE (newpat) == PARALLEL
3293 && XVECLEN (newpat, 0) == 2
3294 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3295 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3296 && asm_noperands (newpat) < 0)
3298 rtx set0 = XVECEXP (newpat, 0, 0);
3299 rtx set1 = XVECEXP (newpat, 0, 1);
3301 if (((REG_P (SET_DEST (set1))
3302 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3303 || (GET_CODE (SET_DEST (set1)) == SUBREG
3304 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3305 && insn_nothrow_p (i3)
3306 && !side_effects_p (SET_SRC (set1)))
3308 newpat = set0;
3309 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3312 else if (((REG_P (SET_DEST (set0))
3313 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3314 || (GET_CODE (SET_DEST (set0)) == SUBREG
3315 && find_reg_note (i3, REG_UNUSED,
3316 SUBREG_REG (SET_DEST (set0)))))
3317 && insn_nothrow_p (i3)
3318 && !side_effects_p (SET_SRC (set0)))
3320 newpat = set1;
3321 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3323 if (insn_code_number >= 0)
3324 changed_i3_dest = 1;
3328 /* If we were combining three insns and the result is a simple SET
3329 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3330 insns. There are two ways to do this. It can be split using a
3331 machine-specific method (like when you have an addition of a large
3332 constant) or by combine in the function find_split_point. */
3334 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3335 && asm_noperands (newpat) < 0)
3337 rtx parallel, m_split, *split;
3339 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3340 use I2DEST as a scratch register will help. In the latter case,
3341 convert I2DEST to the mode of the source of NEWPAT if we can. */
3343 m_split = combine_split_insns (newpat, i3);
3345 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3346 inputs of NEWPAT. */
3348 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3349 possible to try that as a scratch reg. This would require adding
3350 more code to make it work though. */
3352 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3354 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3356 /* First try to split using the original register as a
3357 scratch register. */
3358 parallel = gen_rtx_PARALLEL (VOIDmode,
3359 gen_rtvec (2, newpat,
3360 gen_rtx_CLOBBER (VOIDmode,
3361 i2dest)));
3362 m_split = combine_split_insns (parallel, i3);
3364 /* If that didn't work, try changing the mode of I2DEST if
3365 we can. */
3366 if (m_split == 0
3367 && new_mode != GET_MODE (i2dest)
3368 && new_mode != VOIDmode
3369 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3371 enum machine_mode old_mode = GET_MODE (i2dest);
3372 rtx ni2dest;
3374 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3375 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3376 else
3378 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3379 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3382 parallel = (gen_rtx_PARALLEL
3383 (VOIDmode,
3384 gen_rtvec (2, newpat,
3385 gen_rtx_CLOBBER (VOIDmode,
3386 ni2dest))));
3387 m_split = combine_split_insns (parallel, i3);
3389 if (m_split == 0
3390 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3392 struct undo *buf;
3394 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3395 buf = undobuf.undos;
3396 undobuf.undos = buf->next;
3397 buf->next = undobuf.frees;
3398 undobuf.frees = buf;
3402 i2scratch = m_split != 0;
3405 /* If recog_for_combine has discarded clobbers, try to use them
3406 again for the split. */
3407 if (m_split == 0 && newpat_vec_with_clobbers)
3409 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3410 m_split = combine_split_insns (parallel, i3);
3413 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3415 m_split = PATTERN (m_split);
3416 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3417 if (insn_code_number >= 0)
3418 newpat = m_split;
3420 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3421 && (next_real_insn (i2) == i3
3422 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3424 rtx i2set, i3set;
3425 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3426 newi2pat = PATTERN (m_split);
3428 i3set = single_set (NEXT_INSN (m_split));
3429 i2set = single_set (m_split);
3431 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3433 /* If I2 or I3 has multiple SETs, we won't know how to track
3434 register status, so don't use these insns. If I2's destination
3435 is used between I2 and I3, we also can't use these insns. */
3437 if (i2_code_number >= 0 && i2set && i3set
3438 && (next_real_insn (i2) == i3
3439 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3440 insn_code_number = recog_for_combine (&newi3pat, i3,
3441 &new_i3_notes);
3442 if (insn_code_number >= 0)
3443 newpat = newi3pat;
3445 /* It is possible that both insns now set the destination of I3.
3446 If so, we must show an extra use of it. */
3448 if (insn_code_number >= 0)
3450 rtx new_i3_dest = SET_DEST (i3set);
3451 rtx new_i2_dest = SET_DEST (i2set);
3453 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3454 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3455 || GET_CODE (new_i3_dest) == SUBREG)
3456 new_i3_dest = XEXP (new_i3_dest, 0);
3458 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3459 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3460 || GET_CODE (new_i2_dest) == SUBREG)
3461 new_i2_dest = XEXP (new_i2_dest, 0);
3463 if (REG_P (new_i3_dest)
3464 && REG_P (new_i2_dest)
3465 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3466 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3470 /* If we can split it and use I2DEST, go ahead and see if that
3471 helps things be recognized. Verify that none of the registers
3472 are set between I2 and I3. */
3473 if (insn_code_number < 0
3474 && (split = find_split_point (&newpat, i3, false)) != 0
3475 #ifdef HAVE_cc0
3476 && REG_P (i2dest)
3477 #endif
3478 /* We need I2DEST in the proper mode. If it is a hard register
3479 or the only use of a pseudo, we can change its mode.
3480 Make sure we don't change a hard register to have a mode that
3481 isn't valid for it, or change the number of registers. */
3482 && (GET_MODE (*split) == GET_MODE (i2dest)
3483 || GET_MODE (*split) == VOIDmode
3484 || can_change_dest_mode (i2dest, added_sets_2,
3485 GET_MODE (*split)))
3486 && (next_real_insn (i2) == i3
3487 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3488 /* We can't overwrite I2DEST if its value is still used by
3489 NEWPAT. */
3490 && ! reg_referenced_p (i2dest, newpat))
3492 rtx newdest = i2dest;
3493 enum rtx_code split_code = GET_CODE (*split);
3494 enum machine_mode split_mode = GET_MODE (*split);
3495 bool subst_done = false;
3496 newi2pat = NULL_RTX;
3498 i2scratch = true;
3500 /* *SPLIT may be part of I2SRC, so make sure we have the
3501 original expression around for later debug processing.
3502 We should not need I2SRC any more in other cases. */
3503 if (MAY_HAVE_DEBUG_INSNS)
3504 i2src = copy_rtx (i2src);
3505 else
3506 i2src = NULL;
3508 /* Get NEWDEST as a register in the proper mode. We have already
3509 validated that we can do this. */
3510 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3512 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3513 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3514 else
3516 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3517 newdest = regno_reg_rtx[REGNO (i2dest)];
3521 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3522 an ASHIFT. This can occur if it was inside a PLUS and hence
3523 appeared to be a memory address. This is a kludge. */
3524 if (split_code == MULT
3525 && CONST_INT_P (XEXP (*split, 1))
3526 && INTVAL (XEXP (*split, 1)) > 0
3527 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3529 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3530 XEXP (*split, 0), GEN_INT (i)));
3531 /* Update split_code because we may not have a multiply
3532 anymore. */
3533 split_code = GET_CODE (*split);
3536 #ifdef INSN_SCHEDULING
3537 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3538 be written as a ZERO_EXTEND. */
3539 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3541 #ifdef LOAD_EXTEND_OP
3542 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3543 what it really is. */
3544 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3545 == SIGN_EXTEND)
3546 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3547 SUBREG_REG (*split)));
3548 else
3549 #endif
3550 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3551 SUBREG_REG (*split)));
3553 #endif
3555 /* Attempt to split binary operators using arithmetic identities. */
3556 if (BINARY_P (SET_SRC (newpat))
3557 && split_mode == GET_MODE (SET_SRC (newpat))
3558 && ! side_effects_p (SET_SRC (newpat)))
3560 rtx setsrc = SET_SRC (newpat);
3561 enum machine_mode mode = GET_MODE (setsrc);
3562 enum rtx_code code = GET_CODE (setsrc);
3563 rtx src_op0 = XEXP (setsrc, 0);
3564 rtx src_op1 = XEXP (setsrc, 1);
3566 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3567 if (rtx_equal_p (src_op0, src_op1))
3569 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3570 SUBST (XEXP (setsrc, 0), newdest);
3571 SUBST (XEXP (setsrc, 1), newdest);
3572 subst_done = true;
3574 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3575 else if ((code == PLUS || code == MULT)
3576 && GET_CODE (src_op0) == code
3577 && GET_CODE (XEXP (src_op0, 0)) == code
3578 && (INTEGRAL_MODE_P (mode)
3579 || (FLOAT_MODE_P (mode)
3580 && flag_unsafe_math_optimizations)))
3582 rtx p = XEXP (XEXP (src_op0, 0), 0);
3583 rtx q = XEXP (XEXP (src_op0, 0), 1);
3584 rtx r = XEXP (src_op0, 1);
3585 rtx s = src_op1;
3587 /* Split both "((X op Y) op X) op Y" and
3588 "((X op Y) op Y) op X" as "T op T" where T is
3589 "X op Y". */
3590 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3591 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3593 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3594 XEXP (src_op0, 0));
3595 SUBST (XEXP (setsrc, 0), newdest);
3596 SUBST (XEXP (setsrc, 1), newdest);
3597 subst_done = true;
3599 /* Split "((X op X) op Y) op Y)" as "T op T" where
3600 T is "X op Y". */
3601 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3603 rtx tmp = simplify_gen_binary (code, mode, p, r);
3604 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3605 SUBST (XEXP (setsrc, 0), newdest);
3606 SUBST (XEXP (setsrc, 1), newdest);
3607 subst_done = true;
3612 if (!subst_done)
3614 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3615 SUBST (*split, newdest);
3618 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3620 /* recog_for_combine might have added CLOBBERs to newi2pat.
3621 Make sure NEWPAT does not depend on the clobbered regs. */
3622 if (GET_CODE (newi2pat) == PARALLEL)
3623 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3624 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3626 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3627 if (reg_overlap_mentioned_p (reg, newpat))
3629 undo_all ();
3630 return 0;
3634 /* If the split point was a MULT and we didn't have one before,
3635 don't use one now. */
3636 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3637 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3641 /* Check for a case where we loaded from memory in a narrow mode and
3642 then sign extended it, but we need both registers. In that case,
3643 we have a PARALLEL with both loads from the same memory location.
3644 We can split this into a load from memory followed by a register-register
3645 copy. This saves at least one insn, more if register allocation can
3646 eliminate the copy.
3648 We cannot do this if the destination of the first assignment is a
3649 condition code register or cc0. We eliminate this case by making sure
3650 the SET_DEST and SET_SRC have the same mode.
3652 We cannot do this if the destination of the second assignment is
3653 a register that we have already assumed is zero-extended. Similarly
3654 for a SUBREG of such a register. */
3656 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3657 && GET_CODE (newpat) == PARALLEL
3658 && XVECLEN (newpat, 0) == 2
3659 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3660 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3661 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3662 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3663 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3664 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3665 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3666 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3667 DF_INSN_LUID (i2))
3668 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3669 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3670 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3671 (REG_P (temp)
3672 && VEC_index (reg_stat_type, reg_stat,
3673 REGNO (temp))->nonzero_bits != 0
3674 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3675 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3676 && (VEC_index (reg_stat_type, reg_stat,
3677 REGNO (temp))->nonzero_bits
3678 != GET_MODE_MASK (word_mode))))
3679 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3680 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3681 (REG_P (temp)
3682 && VEC_index (reg_stat_type, reg_stat,
3683 REGNO (temp))->nonzero_bits != 0
3684 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3685 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3686 && (VEC_index (reg_stat_type, reg_stat,
3687 REGNO (temp))->nonzero_bits
3688 != GET_MODE_MASK (word_mode)))))
3689 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3690 SET_SRC (XVECEXP (newpat, 0, 1)))
3691 && ! find_reg_note (i3, REG_UNUSED,
3692 SET_DEST (XVECEXP (newpat, 0, 0))))
3694 rtx ni2dest;
3696 newi2pat = XVECEXP (newpat, 0, 0);
3697 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3698 newpat = XVECEXP (newpat, 0, 1);
3699 SUBST (SET_SRC (newpat),
3700 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3701 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3703 if (i2_code_number >= 0)
3704 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3706 if (insn_code_number >= 0)
3707 swap_i2i3 = 1;
3710 /* Similarly, check for a case where we have a PARALLEL of two independent
3711 SETs but we started with three insns. In this case, we can do the sets
3712 as two separate insns. This case occurs when some SET allows two
3713 other insns to combine, but the destination of that SET is still live. */
3715 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3716 && GET_CODE (newpat) == PARALLEL
3717 && XVECLEN (newpat, 0) == 2
3718 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3719 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3720 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3721 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3722 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3723 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3724 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3725 XVECEXP (newpat, 0, 0))
3726 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3727 XVECEXP (newpat, 0, 1))
3728 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3729 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3731 /* Normally, it doesn't matter which of the two is done first,
3732 but the one that references cc0 can't be the second, and
3733 one which uses any regs/memory set in between i2 and i3 can't
3734 be first. */
3735 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3736 DF_INSN_LUID (i2))
3737 #ifdef HAVE_cc0
3738 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3739 #endif
3742 newi2pat = XVECEXP (newpat, 0, 1);
3743 newpat = XVECEXP (newpat, 0, 0);
3745 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3746 DF_INSN_LUID (i2))
3747 #ifdef HAVE_cc0
3748 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3749 #endif
3752 newi2pat = XVECEXP (newpat, 0, 0);
3753 newpat = XVECEXP (newpat, 0, 1);
3755 else
3757 undo_all ();
3758 return 0;
3761 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3763 if (i2_code_number >= 0)
3765 /* recog_for_combine might have added CLOBBERs to newi2pat.
3766 Make sure NEWPAT does not depend on the clobbered regs. */
3767 if (GET_CODE (newi2pat) == PARALLEL)
3769 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3770 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3772 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3773 if (reg_overlap_mentioned_p (reg, newpat))
3775 undo_all ();
3776 return 0;
3781 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3785 /* If it still isn't recognized, fail and change things back the way they
3786 were. */
3787 if ((insn_code_number < 0
3788 /* Is the result a reasonable ASM_OPERANDS? */
3789 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3791 undo_all ();
3792 return 0;
3795 /* If we had to change another insn, make sure it is valid also. */
3796 if (undobuf.other_insn)
3798 CLEAR_HARD_REG_SET (newpat_used_regs);
3800 other_pat = PATTERN (undobuf.other_insn);
3801 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3802 &new_other_notes);
3804 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3806 undo_all ();
3807 return 0;
3811 #ifdef HAVE_cc0
3812 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3813 they are adjacent to each other or not. */
3815 rtx p = prev_nonnote_insn (i3);
3816 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3817 && sets_cc0_p (newi2pat))
3819 undo_all ();
3820 return 0;
3823 #endif
3825 /* Only allow this combination if insn_rtx_costs reports that the
3826 replacement instructions are cheaper than the originals. */
3827 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3829 undo_all ();
3830 return 0;
3833 if (MAY_HAVE_DEBUG_INSNS)
3835 struct undo *undo;
3837 for (undo = undobuf.undos; undo; undo = undo->next)
3838 if (undo->kind == UNDO_MODE)
3840 rtx reg = *undo->where.r;
3841 enum machine_mode new_mode = GET_MODE (reg);
3842 enum machine_mode old_mode = undo->old_contents.m;
3844 /* Temporarily revert mode back. */
3845 adjust_reg_mode (reg, old_mode);
3847 if (reg == i2dest && i2scratch)
3849 /* If we used i2dest as a scratch register with a
3850 different mode, substitute it for the original
3851 i2src while its original mode is temporarily
3852 restored, and then clear i2scratch so that we don't
3853 do it again later. */
3854 propagate_for_debug (i2, i3, reg, i2src);
3855 i2scratch = false;
3856 /* Put back the new mode. */
3857 adjust_reg_mode (reg, new_mode);
3859 else
3861 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3862 rtx first, last;
3864 if (reg == i2dest)
3866 first = i2;
3867 last = i3;
3869 else
3871 first = i3;
3872 last = undobuf.other_insn;
3873 gcc_assert (last);
3876 /* We're dealing with a reg that changed mode but not
3877 meaning, so we want to turn it into a subreg for
3878 the new mode. However, because of REG sharing and
3879 because its mode had already changed, we have to do
3880 it in two steps. First, replace any debug uses of
3881 reg, with its original mode temporarily restored,
3882 with this copy we have created; then, replace the
3883 copy with the SUBREG of the original shared reg,
3884 once again changed to the new mode. */
3885 propagate_for_debug (first, last, reg, tempreg);
3886 adjust_reg_mode (reg, new_mode);
3887 propagate_for_debug (first, last, tempreg,
3888 lowpart_subreg (old_mode, reg, new_mode));
3893 /* If we will be able to accept this, we have made a
3894 change to the destination of I3. This requires us to
3895 do a few adjustments. */
3897 if (changed_i3_dest)
3899 PATTERN (i3) = newpat;
3900 adjust_for_new_dest (i3);
3903 /* We now know that we can do this combination. Merge the insns and
3904 update the status of registers and LOG_LINKS. */
3906 if (undobuf.other_insn)
3908 rtx note, next;
3910 PATTERN (undobuf.other_insn) = other_pat;
3912 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3913 are still valid. Then add any non-duplicate notes added by
3914 recog_for_combine. */
3915 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3917 next = XEXP (note, 1);
3919 if (REG_NOTE_KIND (note) == REG_UNUSED
3920 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3921 remove_note (undobuf.other_insn, note);
3924 distribute_notes (new_other_notes, undobuf.other_insn,
3925 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3926 NULL_RTX);
3929 if (swap_i2i3)
3931 rtx insn;
3932 rtx link;
3933 rtx ni2dest;
3935 /* I3 now uses what used to be its destination and which is now
3936 I2's destination. This requires us to do a few adjustments. */
3937 PATTERN (i3) = newpat;
3938 adjust_for_new_dest (i3);
3940 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3941 so we still will.
3943 However, some later insn might be using I2's dest and have
3944 a LOG_LINK pointing at I3. We must remove this link.
3945 The simplest way to remove the link is to point it at I1,
3946 which we know will be a NOTE. */
3948 /* newi2pat is usually a SET here; however, recog_for_combine might
3949 have added some clobbers. */
3950 if (GET_CODE (newi2pat) == PARALLEL)
3951 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3952 else
3953 ni2dest = SET_DEST (newi2pat);
3955 for (insn = NEXT_INSN (i3);
3956 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3957 || insn != BB_HEAD (this_basic_block->next_bb));
3958 insn = NEXT_INSN (insn))
3960 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3962 for (link = LOG_LINKS (insn); link;
3963 link = XEXP (link, 1))
3964 if (XEXP (link, 0) == i3)
3965 XEXP (link, 0) = i1;
3967 break;
3973 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3974 rtx i3links, i2links, i1links = 0, i0links = 0;
3975 rtx midnotes = 0;
3976 int from_luid;
3977 /* Compute which registers we expect to eliminate. newi2pat may be setting
3978 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3979 same as i3dest, in which case newi2pat may be setting i1dest. */
3980 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3981 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3982 || !i2dest_killed
3983 ? 0 : i2dest);
3984 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3985 || (newi2pat && reg_set_p (i1dest, newi2pat))
3986 || !i1dest_killed
3987 ? 0 : i1dest);
3988 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3989 || (newi2pat && reg_set_p (i0dest, newi2pat))
3990 || !i0dest_killed
3991 ? 0 : i0dest);
3993 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3994 clear them. */
3995 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3996 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3997 if (i1)
3998 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3999 if (i0)
4000 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4002 /* Ensure that we do not have something that should not be shared but
4003 occurs multiple times in the new insns. Check this by first
4004 resetting all the `used' flags and then copying anything is shared. */
4006 reset_used_flags (i3notes);
4007 reset_used_flags (i2notes);
4008 reset_used_flags (i1notes);
4009 reset_used_flags (i0notes);
4010 reset_used_flags (newpat);
4011 reset_used_flags (newi2pat);
4012 if (undobuf.other_insn)
4013 reset_used_flags (PATTERN (undobuf.other_insn));
4015 i3notes = copy_rtx_if_shared (i3notes);
4016 i2notes = copy_rtx_if_shared (i2notes);
4017 i1notes = copy_rtx_if_shared (i1notes);
4018 i0notes = copy_rtx_if_shared (i0notes);
4019 newpat = copy_rtx_if_shared (newpat);
4020 newi2pat = copy_rtx_if_shared (newi2pat);
4021 if (undobuf.other_insn)
4022 reset_used_flags (PATTERN (undobuf.other_insn));
4024 INSN_CODE (i3) = insn_code_number;
4025 PATTERN (i3) = newpat;
4027 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4029 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4031 reset_used_flags (call_usage);
4032 call_usage = copy_rtx (call_usage);
4034 if (substed_i2)
4036 /* I2SRC must still be meaningful at this point. Some splitting
4037 operations can invalidate I2SRC, but those operations do not
4038 apply to calls. */
4039 gcc_assert (i2src);
4040 replace_rtx (call_usage, i2dest, i2src);
4043 if (substed_i1)
4044 replace_rtx (call_usage, i1dest, i1src);
4045 if (substed_i0)
4046 replace_rtx (call_usage, i0dest, i0src);
4048 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4051 if (undobuf.other_insn)
4052 INSN_CODE (undobuf.other_insn) = other_code_number;
4054 /* We had one special case above where I2 had more than one set and
4055 we replaced a destination of one of those sets with the destination
4056 of I3. In that case, we have to update LOG_LINKS of insns later
4057 in this basic block. Note that this (expensive) case is rare.
4059 Also, in this case, we must pretend that all REG_NOTEs for I2
4060 actually came from I3, so that REG_UNUSED notes from I2 will be
4061 properly handled. */
4063 if (i3_subst_into_i2)
4065 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4066 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4067 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4068 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4069 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4070 && ! find_reg_note (i2, REG_UNUSED,
4071 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4072 for (temp = NEXT_INSN (i2);
4073 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4074 || BB_HEAD (this_basic_block) != temp);
4075 temp = NEXT_INSN (temp))
4076 if (temp != i3 && INSN_P (temp))
4077 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
4078 if (XEXP (link, 0) == i2)
4079 XEXP (link, 0) = i3;
4081 if (i3notes)
4083 rtx link = i3notes;
4084 while (XEXP (link, 1))
4085 link = XEXP (link, 1);
4086 XEXP (link, 1) = i2notes;
4088 else
4089 i3notes = i2notes;
4090 i2notes = 0;
4093 LOG_LINKS (i3) = 0;
4094 REG_NOTES (i3) = 0;
4095 LOG_LINKS (i2) = 0;
4096 REG_NOTES (i2) = 0;
4098 if (newi2pat)
4100 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4101 propagate_for_debug (i2, i3, i2dest, i2src);
4102 INSN_CODE (i2) = i2_code_number;
4103 PATTERN (i2) = newi2pat;
4105 else
4107 if (MAY_HAVE_DEBUG_INSNS && i2src)
4108 propagate_for_debug (i2, i3, i2dest, i2src);
4109 SET_INSN_DELETED (i2);
4112 if (i1)
4114 LOG_LINKS (i1) = 0;
4115 REG_NOTES (i1) = 0;
4116 if (MAY_HAVE_DEBUG_INSNS)
4117 propagate_for_debug (i1, i3, i1dest, i1src);
4118 SET_INSN_DELETED (i1);
4121 if (i0)
4123 LOG_LINKS (i0) = 0;
4124 REG_NOTES (i0) = 0;
4125 if (MAY_HAVE_DEBUG_INSNS)
4126 propagate_for_debug (i0, i3, i0dest, i0src);
4127 SET_INSN_DELETED (i0);
4130 /* Get death notes for everything that is now used in either I3 or
4131 I2 and used to die in a previous insn. If we built two new
4132 patterns, move from I1 to I2 then I2 to I3 so that we get the
4133 proper movement on registers that I2 modifies. */
4135 if (i0)
4136 from_luid = DF_INSN_LUID (i0);
4137 else if (i1)
4138 from_luid = DF_INSN_LUID (i1);
4139 else
4140 from_luid = DF_INSN_LUID (i2);
4141 if (newi2pat)
4142 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4143 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4145 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4146 if (i3notes)
4147 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4148 elim_i2, elim_i1, elim_i0);
4149 if (i2notes)
4150 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4151 elim_i2, elim_i1, elim_i0);
4152 if (i1notes)
4153 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4154 elim_i2, elim_i1, elim_i0);
4155 if (i0notes)
4156 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4157 elim_i2, elim_i1, elim_i0);
4158 if (midnotes)
4159 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4160 elim_i2, elim_i1, elim_i0);
4162 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4163 know these are REG_UNUSED and want them to go to the desired insn,
4164 so we always pass it as i3. */
4166 if (newi2pat && new_i2_notes)
4167 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4168 NULL_RTX);
4170 if (new_i3_notes)
4171 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4172 NULL_RTX);
4174 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4175 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4176 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4177 in that case, it might delete I2. Similarly for I2 and I1.
4178 Show an additional death due to the REG_DEAD note we make here. If
4179 we discard it in distribute_notes, we will decrement it again. */
4181 if (i3dest_killed)
4183 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4184 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4185 NULL_RTX),
4186 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4187 else
4188 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4189 NULL_RTX),
4190 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4191 elim_i2, elim_i1, elim_i0);
4194 if (i2dest_in_i2src)
4196 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4197 if (newi2pat && reg_set_p (i2dest, newi2pat))
4198 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4199 NULL_RTX, NULL_RTX);
4200 else
4201 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4202 NULL_RTX, NULL_RTX, NULL_RTX);
4205 if (i1dest_in_i1src)
4207 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4208 if (newi2pat && reg_set_p (i1dest, newi2pat))
4209 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4210 NULL_RTX, NULL_RTX);
4211 else
4212 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4213 NULL_RTX, NULL_RTX, NULL_RTX);
4216 if (i0dest_in_i0src)
4218 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4219 if (newi2pat && reg_set_p (i0dest, newi2pat))
4220 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4221 NULL_RTX, NULL_RTX);
4222 else
4223 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4224 NULL_RTX, NULL_RTX, NULL_RTX);
4227 distribute_links (i3links);
4228 distribute_links (i2links);
4229 distribute_links (i1links);
4230 distribute_links (i0links);
4232 if (REG_P (i2dest))
4234 rtx link, i2_insn = 0, i2_val = 0, set;
4236 /* The insn that used to set this register doesn't exist, and
4237 this life of the register may not exist either. See if one of
4238 I3's links points to an insn that sets I2DEST. If it does,
4239 that is now the last known value for I2DEST. If we don't update
4240 this and I2 set the register to a value that depended on its old
4241 contents, we will get confused. If this insn is used, thing
4242 will be set correctly in combine_instructions. */
4243 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4244 if ((set = single_set (XEXP (link, 0))) != 0
4245 && rtx_equal_p (i2dest, SET_DEST (set)))
4246 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
4248 record_value_for_reg (i2dest, i2_insn, i2_val);
4250 /* If the reg formerly set in I2 died only once and that was in I3,
4251 zero its use count so it won't make `reload' do any work. */
4252 if (! added_sets_2
4253 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4254 && ! i2dest_in_i2src)
4255 INC_REG_N_SETS (REGNO (i2dest), -1);
4258 if (i1 && REG_P (i1dest))
4260 rtx link, i1_insn = 0, i1_val = 0, set;
4262 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4263 if ((set = single_set (XEXP (link, 0))) != 0
4264 && rtx_equal_p (i1dest, SET_DEST (set)))
4265 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
4267 record_value_for_reg (i1dest, i1_insn, i1_val);
4269 if (! added_sets_1 && ! i1dest_in_i1src)
4270 INC_REG_N_SETS (REGNO (i1dest), -1);
4273 if (i0 && REG_P (i0dest))
4275 rtx link, i0_insn = 0, i0_val = 0, set;
4277 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4278 if ((set = single_set (XEXP (link, 0))) != 0
4279 && rtx_equal_p (i0dest, SET_DEST (set)))
4280 i0_insn = XEXP (link, 0), i0_val = SET_SRC (set);
4282 record_value_for_reg (i0dest, i0_insn, i0_val);
4284 if (! added_sets_0 && ! i0dest_in_i0src)
4285 INC_REG_N_SETS (REGNO (i0dest), -1);
4288 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4289 been made to this insn. The order of
4290 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4291 can affect nonzero_bits of newpat */
4292 if (newi2pat)
4293 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4294 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4297 if (undobuf.other_insn != NULL_RTX)
4299 if (dump_file)
4301 fprintf (dump_file, "modifying other_insn ");
4302 dump_insn_slim (dump_file, undobuf.other_insn);
4304 df_insn_rescan (undobuf.other_insn);
4307 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4309 if (dump_file)
4311 fprintf (dump_file, "modifying insn i1 ");
4312 dump_insn_slim (dump_file, i0);
4314 df_insn_rescan (i0);
4317 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4319 if (dump_file)
4321 fprintf (dump_file, "modifying insn i1 ");
4322 dump_insn_slim (dump_file, i1);
4324 df_insn_rescan (i1);
4327 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4329 if (dump_file)
4331 fprintf (dump_file, "modifying insn i2 ");
4332 dump_insn_slim (dump_file, i2);
4334 df_insn_rescan (i2);
4337 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4339 if (dump_file)
4341 fprintf (dump_file, "modifying insn i3 ");
4342 dump_insn_slim (dump_file, i3);
4344 df_insn_rescan (i3);
4347 /* Set new_direct_jump_p if a new return or simple jump instruction
4348 has been created. Adjust the CFG accordingly. */
4350 if (returnjump_p (i3) || any_uncondjump_p (i3))
4352 *new_direct_jump_p = 1;
4353 mark_jump_label (PATTERN (i3), i3, 0);
4354 update_cfg_for_uncondjump (i3);
4357 if (undobuf.other_insn != NULL_RTX
4358 && (returnjump_p (undobuf.other_insn)
4359 || any_uncondjump_p (undobuf.other_insn)))
4361 *new_direct_jump_p = 1;
4362 update_cfg_for_uncondjump (undobuf.other_insn);
4365 /* A noop might also need cleaning up of CFG, if it comes from the
4366 simplification of a jump. */
4367 if (GET_CODE (newpat) == SET
4368 && SET_SRC (newpat) == pc_rtx
4369 && SET_DEST (newpat) == pc_rtx)
4371 *new_direct_jump_p = 1;
4372 update_cfg_for_uncondjump (i3);
4375 if (undobuf.other_insn != NULL_RTX
4376 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4377 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4378 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4380 *new_direct_jump_p = 1;
4381 update_cfg_for_uncondjump (undobuf.other_insn);
4384 combine_successes++;
4385 undo_commit ();
4387 if (added_links_insn
4388 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4389 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4390 return added_links_insn;
4391 else
4392 return newi2pat ? i2 : i3;
4395 /* Undo all the modifications recorded in undobuf. */
4397 static void
4398 undo_all (void)
4400 struct undo *undo, *next;
4402 for (undo = undobuf.undos; undo; undo = next)
4404 next = undo->next;
4405 switch (undo->kind)
4407 case UNDO_RTX:
4408 *undo->where.r = undo->old_contents.r;
4409 break;
4410 case UNDO_INT:
4411 *undo->where.i = undo->old_contents.i;
4412 break;
4413 case UNDO_MODE:
4414 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4415 break;
4416 default:
4417 gcc_unreachable ();
4420 undo->next = undobuf.frees;
4421 undobuf.frees = undo;
4424 undobuf.undos = 0;
4427 /* We've committed to accepting the changes we made. Move all
4428 of the undos to the free list. */
4430 static void
4431 undo_commit (void)
4433 struct undo *undo, *next;
4435 for (undo = undobuf.undos; undo; undo = next)
4437 next = undo->next;
4438 undo->next = undobuf.frees;
4439 undobuf.frees = undo;
4441 undobuf.undos = 0;
4444 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4445 where we have an arithmetic expression and return that point. LOC will
4446 be inside INSN.
4448 try_combine will call this function to see if an insn can be split into
4449 two insns. */
4451 static rtx *
4452 find_split_point (rtx *loc, rtx insn, bool set_src)
4454 rtx x = *loc;
4455 enum rtx_code code = GET_CODE (x);
4456 rtx *split;
4457 unsigned HOST_WIDE_INT len = 0;
4458 HOST_WIDE_INT pos = 0;
4459 int unsignedp = 0;
4460 rtx inner = NULL_RTX;
4462 /* First special-case some codes. */
4463 switch (code)
4465 case SUBREG:
4466 #ifdef INSN_SCHEDULING
4467 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4468 point. */
4469 if (MEM_P (SUBREG_REG (x)))
4470 return loc;
4471 #endif
4472 return find_split_point (&SUBREG_REG (x), insn, false);
4474 case MEM:
4475 #ifdef HAVE_lo_sum
4476 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4477 using LO_SUM and HIGH. */
4478 if (GET_CODE (XEXP (x, 0)) == CONST
4479 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4481 enum machine_mode address_mode
4482 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4484 SUBST (XEXP (x, 0),
4485 gen_rtx_LO_SUM (address_mode,
4486 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4487 XEXP (x, 0)));
4488 return &XEXP (XEXP (x, 0), 0);
4490 #endif
4492 /* If we have a PLUS whose second operand is a constant and the
4493 address is not valid, perhaps will can split it up using
4494 the machine-specific way to split large constants. We use
4495 the first pseudo-reg (one of the virtual regs) as a placeholder;
4496 it will not remain in the result. */
4497 if (GET_CODE (XEXP (x, 0)) == PLUS
4498 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4499 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4500 MEM_ADDR_SPACE (x)))
4502 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4503 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4504 XEXP (x, 0)),
4505 subst_insn);
4507 /* This should have produced two insns, each of which sets our
4508 placeholder. If the source of the second is a valid address,
4509 we can make put both sources together and make a split point
4510 in the middle. */
4512 if (seq
4513 && NEXT_INSN (seq) != NULL_RTX
4514 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4515 && NONJUMP_INSN_P (seq)
4516 && GET_CODE (PATTERN (seq)) == SET
4517 && SET_DEST (PATTERN (seq)) == reg
4518 && ! reg_mentioned_p (reg,
4519 SET_SRC (PATTERN (seq)))
4520 && NONJUMP_INSN_P (NEXT_INSN (seq))
4521 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4522 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4523 && memory_address_addr_space_p
4524 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4525 MEM_ADDR_SPACE (x)))
4527 rtx src1 = SET_SRC (PATTERN (seq));
4528 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4530 /* Replace the placeholder in SRC2 with SRC1. If we can
4531 find where in SRC2 it was placed, that can become our
4532 split point and we can replace this address with SRC2.
4533 Just try two obvious places. */
4535 src2 = replace_rtx (src2, reg, src1);
4536 split = 0;
4537 if (XEXP (src2, 0) == src1)
4538 split = &XEXP (src2, 0);
4539 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4540 && XEXP (XEXP (src2, 0), 0) == src1)
4541 split = &XEXP (XEXP (src2, 0), 0);
4543 if (split)
4545 SUBST (XEXP (x, 0), src2);
4546 return split;
4550 /* If that didn't work, perhaps the first operand is complex and
4551 needs to be computed separately, so make a split point there.
4552 This will occur on machines that just support REG + CONST
4553 and have a constant moved through some previous computation. */
4555 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4556 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4557 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4558 return &XEXP (XEXP (x, 0), 0);
4561 /* If we have a PLUS whose first operand is complex, try computing it
4562 separately by making a split there. */
4563 if (GET_CODE (XEXP (x, 0)) == PLUS
4564 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4565 MEM_ADDR_SPACE (x))
4566 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4567 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4568 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4569 return &XEXP (XEXP (x, 0), 0);
4570 break;
4572 case SET:
4573 #ifdef HAVE_cc0
4574 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4575 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4576 we need to put the operand into a register. So split at that
4577 point. */
4579 if (SET_DEST (x) == cc0_rtx
4580 && GET_CODE (SET_SRC (x)) != COMPARE
4581 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4582 && !OBJECT_P (SET_SRC (x))
4583 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4584 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4585 return &SET_SRC (x);
4586 #endif
4588 /* See if we can split SET_SRC as it stands. */
4589 split = find_split_point (&SET_SRC (x), insn, true);
4590 if (split && split != &SET_SRC (x))
4591 return split;
4593 /* See if we can split SET_DEST as it stands. */
4594 split = find_split_point (&SET_DEST (x), insn, false);
4595 if (split && split != &SET_DEST (x))
4596 return split;
4598 /* See if this is a bitfield assignment with everything constant. If
4599 so, this is an IOR of an AND, so split it into that. */
4600 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4601 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4602 <= HOST_BITS_PER_WIDE_INT)
4603 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4604 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4605 && CONST_INT_P (SET_SRC (x))
4606 && ((INTVAL (XEXP (SET_DEST (x), 1))
4607 + INTVAL (XEXP (SET_DEST (x), 2)))
4608 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4609 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4611 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4612 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4613 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4614 rtx dest = XEXP (SET_DEST (x), 0);
4615 enum machine_mode mode = GET_MODE (dest);
4616 unsigned HOST_WIDE_INT mask
4617 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4618 rtx or_mask;
4620 if (BITS_BIG_ENDIAN)
4621 pos = GET_MODE_BITSIZE (mode) - len - pos;
4623 or_mask = gen_int_mode (src << pos, mode);
4624 if (src == mask)
4625 SUBST (SET_SRC (x),
4626 simplify_gen_binary (IOR, mode, dest, or_mask));
4627 else
4629 rtx negmask = gen_int_mode (~(mask << pos), mode);
4630 SUBST (SET_SRC (x),
4631 simplify_gen_binary (IOR, mode,
4632 simplify_gen_binary (AND, mode,
4633 dest, negmask),
4634 or_mask));
4637 SUBST (SET_DEST (x), dest);
4639 split = find_split_point (&SET_SRC (x), insn, true);
4640 if (split && split != &SET_SRC (x))
4641 return split;
4644 /* Otherwise, see if this is an operation that we can split into two.
4645 If so, try to split that. */
4646 code = GET_CODE (SET_SRC (x));
4648 switch (code)
4650 case AND:
4651 /* If we are AND'ing with a large constant that is only a single
4652 bit and the result is only being used in a context where we
4653 need to know if it is zero or nonzero, replace it with a bit
4654 extraction. This will avoid the large constant, which might
4655 have taken more than one insn to make. If the constant were
4656 not a valid argument to the AND but took only one insn to make,
4657 this is no worse, but if it took more than one insn, it will
4658 be better. */
4660 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4661 && REG_P (XEXP (SET_SRC (x), 0))
4662 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4663 && REG_P (SET_DEST (x))
4664 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4665 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4666 && XEXP (*split, 0) == SET_DEST (x)
4667 && XEXP (*split, 1) == const0_rtx)
4669 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4670 XEXP (SET_SRC (x), 0),
4671 pos, NULL_RTX, 1, 1, 0, 0);
4672 if (extraction != 0)
4674 SUBST (SET_SRC (x), extraction);
4675 return find_split_point (loc, insn, false);
4678 break;
4680 case NE:
4681 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4682 is known to be on, this can be converted into a NEG of a shift. */
4683 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4684 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4685 && 1 <= (pos = exact_log2
4686 (nonzero_bits (XEXP (SET_SRC (x), 0),
4687 GET_MODE (XEXP (SET_SRC (x), 0))))))
4689 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4691 SUBST (SET_SRC (x),
4692 gen_rtx_NEG (mode,
4693 gen_rtx_LSHIFTRT (mode,
4694 XEXP (SET_SRC (x), 0),
4695 GEN_INT (pos))));
4697 split = find_split_point (&SET_SRC (x), insn, true);
4698 if (split && split != &SET_SRC (x))
4699 return split;
4701 break;
4703 case SIGN_EXTEND:
4704 inner = XEXP (SET_SRC (x), 0);
4706 /* We can't optimize if either mode is a partial integer
4707 mode as we don't know how many bits are significant
4708 in those modes. */
4709 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4710 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4711 break;
4713 pos = 0;
4714 len = GET_MODE_BITSIZE (GET_MODE (inner));
4715 unsignedp = 0;
4716 break;
4718 case SIGN_EXTRACT:
4719 case ZERO_EXTRACT:
4720 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4721 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4723 inner = XEXP (SET_SRC (x), 0);
4724 len = INTVAL (XEXP (SET_SRC (x), 1));
4725 pos = INTVAL (XEXP (SET_SRC (x), 2));
4727 if (BITS_BIG_ENDIAN)
4728 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4729 unsignedp = (code == ZERO_EXTRACT);
4731 break;
4733 default:
4734 break;
4737 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4739 enum machine_mode mode = GET_MODE (SET_SRC (x));
4741 /* For unsigned, we have a choice of a shift followed by an
4742 AND or two shifts. Use two shifts for field sizes where the
4743 constant might be too large. We assume here that we can
4744 always at least get 8-bit constants in an AND insn, which is
4745 true for every current RISC. */
4747 if (unsignedp && len <= 8)
4749 SUBST (SET_SRC (x),
4750 gen_rtx_AND (mode,
4751 gen_rtx_LSHIFTRT
4752 (mode, gen_lowpart (mode, inner),
4753 GEN_INT (pos)),
4754 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4755 - 1)));
4757 split = find_split_point (&SET_SRC (x), insn, true);
4758 if (split && split != &SET_SRC (x))
4759 return split;
4761 else
4763 SUBST (SET_SRC (x),
4764 gen_rtx_fmt_ee
4765 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4766 gen_rtx_ASHIFT (mode,
4767 gen_lowpart (mode, inner),
4768 GEN_INT (GET_MODE_BITSIZE (mode)
4769 - len - pos)),
4770 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4772 split = find_split_point (&SET_SRC (x), insn, true);
4773 if (split && split != &SET_SRC (x))
4774 return split;
4778 /* See if this is a simple operation with a constant as the second
4779 operand. It might be that this constant is out of range and hence
4780 could be used as a split point. */
4781 if (BINARY_P (SET_SRC (x))
4782 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4783 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4784 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4785 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4786 return &XEXP (SET_SRC (x), 1);
4788 /* Finally, see if this is a simple operation with its first operand
4789 not in a register. The operation might require this operand in a
4790 register, so return it as a split point. We can always do this
4791 because if the first operand were another operation, we would have
4792 already found it as a split point. */
4793 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4794 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4795 return &XEXP (SET_SRC (x), 0);
4797 return 0;
4799 case AND:
4800 case IOR:
4801 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4802 it is better to write this as (not (ior A B)) so we can split it.
4803 Similarly for IOR. */
4804 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4806 SUBST (*loc,
4807 gen_rtx_NOT (GET_MODE (x),
4808 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4809 GET_MODE (x),
4810 XEXP (XEXP (x, 0), 0),
4811 XEXP (XEXP (x, 1), 0))));
4812 return find_split_point (loc, insn, set_src);
4815 /* Many RISC machines have a large set of logical insns. If the
4816 second operand is a NOT, put it first so we will try to split the
4817 other operand first. */
4818 if (GET_CODE (XEXP (x, 1)) == NOT)
4820 rtx tem = XEXP (x, 0);
4821 SUBST (XEXP (x, 0), XEXP (x, 1));
4822 SUBST (XEXP (x, 1), tem);
4824 break;
4826 case PLUS:
4827 case MINUS:
4828 /* Canonicalization can produce (minus A (mult B C)), where C is a
4829 constant. It may be better to try splitting (plus (mult B -C) A)
4830 instead if this isn't a multiply by a power of two. */
4831 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4832 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4833 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4835 enum machine_mode mode = GET_MODE (x);
4836 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4837 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4838 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4839 XEXP (XEXP (x, 1), 0),
4840 GEN_INT (other_int)),
4841 XEXP (x, 0)));
4842 return find_split_point (loc, insn, set_src);
4845 /* Split at a multiply-accumulate instruction. However if this is
4846 the SET_SRC, we likely do not have such an instruction and it's
4847 worthless to try this split. */
4848 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4849 return loc;
4851 default:
4852 break;
4855 /* Otherwise, select our actions depending on our rtx class. */
4856 switch (GET_RTX_CLASS (code))
4858 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4859 case RTX_TERNARY:
4860 split = find_split_point (&XEXP (x, 2), insn, false);
4861 if (split)
4862 return split;
4863 /* ... fall through ... */
4864 case RTX_BIN_ARITH:
4865 case RTX_COMM_ARITH:
4866 case RTX_COMPARE:
4867 case RTX_COMM_COMPARE:
4868 split = find_split_point (&XEXP (x, 1), insn, false);
4869 if (split)
4870 return split;
4871 /* ... fall through ... */
4872 case RTX_UNARY:
4873 /* Some machines have (and (shift ...) ...) insns. If X is not
4874 an AND, but XEXP (X, 0) is, use it as our split point. */
4875 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4876 return &XEXP (x, 0);
4878 split = find_split_point (&XEXP (x, 0), insn, false);
4879 if (split)
4880 return split;
4881 return loc;
4883 default:
4884 /* Otherwise, we don't have a split point. */
4885 return 0;
4889 /* Throughout X, replace FROM with TO, and return the result.
4890 The result is TO if X is FROM;
4891 otherwise the result is X, but its contents may have been modified.
4892 If they were modified, a record was made in undobuf so that
4893 undo_all will (among other things) return X to its original state.
4895 If the number of changes necessary is too much to record to undo,
4896 the excess changes are not made, so the result is invalid.
4897 The changes already made can still be undone.
4898 undobuf.num_undo is incremented for such changes, so by testing that
4899 the caller can tell whether the result is valid.
4901 `n_occurrences' is incremented each time FROM is replaced.
4903 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4905 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4906 by copying if `n_occurrences' is nonzero. */
4908 static rtx
4909 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4911 enum rtx_code code = GET_CODE (x);
4912 enum machine_mode op0_mode = VOIDmode;
4913 const char *fmt;
4914 int len, i;
4915 rtx new_rtx;
4917 /* Two expressions are equal if they are identical copies of a shared
4918 RTX or if they are both registers with the same register number
4919 and mode. */
4921 #define COMBINE_RTX_EQUAL_P(X,Y) \
4922 ((X) == (Y) \
4923 || (REG_P (X) && REG_P (Y) \
4924 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4926 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4928 n_occurrences++;
4929 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4932 /* If X and FROM are the same register but different modes, they
4933 will not have been seen as equal above. However, the log links code
4934 will make a LOG_LINKS entry for that case. If we do nothing, we
4935 will try to rerecognize our original insn and, when it succeeds,
4936 we will delete the feeding insn, which is incorrect.
4938 So force this insn not to match in this (rare) case. */
4939 if (! in_dest && code == REG && REG_P (from)
4940 && reg_overlap_mentioned_p (x, from))
4941 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4943 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4944 of which may contain things that can be combined. */
4945 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4946 return x;
4948 /* It is possible to have a subexpression appear twice in the insn.
4949 Suppose that FROM is a register that appears within TO.
4950 Then, after that subexpression has been scanned once by `subst',
4951 the second time it is scanned, TO may be found. If we were
4952 to scan TO here, we would find FROM within it and create a
4953 self-referent rtl structure which is completely wrong. */
4954 if (COMBINE_RTX_EQUAL_P (x, to))
4955 return to;
4957 /* Parallel asm_operands need special attention because all of the
4958 inputs are shared across the arms. Furthermore, unsharing the
4959 rtl results in recognition failures. Failure to handle this case
4960 specially can result in circular rtl.
4962 Solve this by doing a normal pass across the first entry of the
4963 parallel, and only processing the SET_DESTs of the subsequent
4964 entries. Ug. */
4966 if (code == PARALLEL
4967 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4968 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4970 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4972 /* If this substitution failed, this whole thing fails. */
4973 if (GET_CODE (new_rtx) == CLOBBER
4974 && XEXP (new_rtx, 0) == const0_rtx)
4975 return new_rtx;
4977 SUBST (XVECEXP (x, 0, 0), new_rtx);
4979 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4981 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4983 if (!REG_P (dest)
4984 && GET_CODE (dest) != CC0
4985 && GET_CODE (dest) != PC)
4987 new_rtx = subst (dest, from, to, 0, unique_copy);
4989 /* If this substitution failed, this whole thing fails. */
4990 if (GET_CODE (new_rtx) == CLOBBER
4991 && XEXP (new_rtx, 0) == const0_rtx)
4992 return new_rtx;
4994 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4998 else
5000 len = GET_RTX_LENGTH (code);
5001 fmt = GET_RTX_FORMAT (code);
5003 /* We don't need to process a SET_DEST that is a register, CC0,
5004 or PC, so set up to skip this common case. All other cases
5005 where we want to suppress replacing something inside a
5006 SET_SRC are handled via the IN_DEST operand. */
5007 if (code == SET
5008 && (REG_P (SET_DEST (x))
5009 || GET_CODE (SET_DEST (x)) == CC0
5010 || GET_CODE (SET_DEST (x)) == PC))
5011 fmt = "ie";
5013 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5014 constant. */
5015 if (fmt[0] == 'e')
5016 op0_mode = GET_MODE (XEXP (x, 0));
5018 for (i = 0; i < len; i++)
5020 if (fmt[i] == 'E')
5022 int j;
5023 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5025 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5027 new_rtx = (unique_copy && n_occurrences
5028 ? copy_rtx (to) : to);
5029 n_occurrences++;
5031 else
5033 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
5034 unique_copy);
5036 /* If this substitution failed, this whole thing
5037 fails. */
5038 if (GET_CODE (new_rtx) == CLOBBER
5039 && XEXP (new_rtx, 0) == const0_rtx)
5040 return new_rtx;
5043 SUBST (XVECEXP (x, i, j), new_rtx);
5046 else if (fmt[i] == 'e')
5048 /* If this is a register being set, ignore it. */
5049 new_rtx = XEXP (x, i);
5050 if (in_dest
5051 && i == 0
5052 && (((code == SUBREG || code == ZERO_EXTRACT)
5053 && REG_P (new_rtx))
5054 || code == STRICT_LOW_PART))
5057 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5059 /* In general, don't install a subreg involving two
5060 modes not tieable. It can worsen register
5061 allocation, and can even make invalid reload
5062 insns, since the reg inside may need to be copied
5063 from in the outside mode, and that may be invalid
5064 if it is an fp reg copied in integer mode.
5066 We allow two exceptions to this: It is valid if
5067 it is inside another SUBREG and the mode of that
5068 SUBREG and the mode of the inside of TO is
5069 tieable and it is valid if X is a SET that copies
5070 FROM to CC0. */
5072 if (GET_CODE (to) == SUBREG
5073 && ! MODES_TIEABLE_P (GET_MODE (to),
5074 GET_MODE (SUBREG_REG (to)))
5075 && ! (code == SUBREG
5076 && MODES_TIEABLE_P (GET_MODE (x),
5077 GET_MODE (SUBREG_REG (to))))
5078 #ifdef HAVE_cc0
5079 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5080 #endif
5082 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5084 #ifdef CANNOT_CHANGE_MODE_CLASS
5085 if (code == SUBREG
5086 && REG_P (to)
5087 && REGNO (to) < FIRST_PSEUDO_REGISTER
5088 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5089 GET_MODE (to),
5090 GET_MODE (x)))
5091 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5092 #endif
5094 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5095 n_occurrences++;
5097 else
5098 /* If we are in a SET_DEST, suppress most cases unless we
5099 have gone inside a MEM, in which case we want to
5100 simplify the address. We assume here that things that
5101 are actually part of the destination have their inner
5102 parts in the first expression. This is true for SUBREG,
5103 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5104 things aside from REG and MEM that should appear in a
5105 SET_DEST. */
5106 new_rtx = subst (XEXP (x, i), from, to,
5107 (((in_dest
5108 && (code == SUBREG || code == STRICT_LOW_PART
5109 || code == ZERO_EXTRACT))
5110 || code == SET)
5111 && i == 0), unique_copy);
5113 /* If we found that we will have to reject this combination,
5114 indicate that by returning the CLOBBER ourselves, rather than
5115 an expression containing it. This will speed things up as
5116 well as prevent accidents where two CLOBBERs are considered
5117 to be equal, thus producing an incorrect simplification. */
5119 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5120 return new_rtx;
5122 if (GET_CODE (x) == SUBREG
5123 && (CONST_INT_P (new_rtx)
5124 || GET_CODE (new_rtx) == CONST_DOUBLE))
5126 enum machine_mode mode = GET_MODE (x);
5128 x = simplify_subreg (GET_MODE (x), new_rtx,
5129 GET_MODE (SUBREG_REG (x)),
5130 SUBREG_BYTE (x));
5131 if (! x)
5132 x = gen_rtx_CLOBBER (mode, const0_rtx);
5134 else if (CONST_INT_P (new_rtx)
5135 && GET_CODE (x) == ZERO_EXTEND)
5137 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5138 new_rtx, GET_MODE (XEXP (x, 0)));
5139 gcc_assert (x);
5141 else
5142 SUBST (XEXP (x, i), new_rtx);
5147 /* Check if we are loading something from the constant pool via float
5148 extension; in this case we would undo compress_float_constant
5149 optimization and degenerate constant load to an immediate value. */
5150 if (GET_CODE (x) == FLOAT_EXTEND
5151 && MEM_P (XEXP (x, 0))
5152 && MEM_READONLY_P (XEXP (x, 0)))
5154 rtx tmp = avoid_constant_pool_reference (x);
5155 if (x != tmp)
5156 return x;
5159 /* Try to simplify X. If the simplification changed the code, it is likely
5160 that further simplification will help, so loop, but limit the number
5161 of repetitions that will be performed. */
5163 for (i = 0; i < 4; i++)
5165 /* If X is sufficiently simple, don't bother trying to do anything
5166 with it. */
5167 if (code != CONST_INT && code != REG && code != CLOBBER)
5168 x = combine_simplify_rtx (x, op0_mode, in_dest);
5170 if (GET_CODE (x) == code)
5171 break;
5173 code = GET_CODE (x);
5175 /* We no longer know the original mode of operand 0 since we
5176 have changed the form of X) */
5177 op0_mode = VOIDmode;
5180 return x;
5183 /* Simplify X, a piece of RTL. We just operate on the expression at the
5184 outer level; call `subst' to simplify recursively. Return the new
5185 expression.
5187 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5188 if we are inside a SET_DEST. */
5190 static rtx
5191 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
5193 enum rtx_code code = GET_CODE (x);
5194 enum machine_mode mode = GET_MODE (x);
5195 rtx temp;
5196 int i;
5198 /* If this is a commutative operation, put a constant last and a complex
5199 expression first. We don't need to do this for comparisons here. */
5200 if (COMMUTATIVE_ARITH_P (x)
5201 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5203 temp = XEXP (x, 0);
5204 SUBST (XEXP (x, 0), XEXP (x, 1));
5205 SUBST (XEXP (x, 1), temp);
5208 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5209 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5210 things. Check for cases where both arms are testing the same
5211 condition.
5213 Don't do anything if all operands are very simple. */
5215 if ((BINARY_P (x)
5216 && ((!OBJECT_P (XEXP (x, 0))
5217 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5218 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5219 || (!OBJECT_P (XEXP (x, 1))
5220 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5221 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5222 || (UNARY_P (x)
5223 && (!OBJECT_P (XEXP (x, 0))
5224 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5225 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5227 rtx cond, true_rtx, false_rtx;
5229 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5230 if (cond != 0
5231 /* If everything is a comparison, what we have is highly unlikely
5232 to be simpler, so don't use it. */
5233 && ! (COMPARISON_P (x)
5234 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5236 rtx cop1 = const0_rtx;
5237 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5239 if (cond_code == NE && COMPARISON_P (cond))
5240 return x;
5242 /* Simplify the alternative arms; this may collapse the true and
5243 false arms to store-flag values. Be careful to use copy_rtx
5244 here since true_rtx or false_rtx might share RTL with x as a
5245 result of the if_then_else_cond call above. */
5246 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
5247 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
5249 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5250 is unlikely to be simpler. */
5251 if (general_operand (true_rtx, VOIDmode)
5252 && general_operand (false_rtx, VOIDmode))
5254 enum rtx_code reversed;
5256 /* Restarting if we generate a store-flag expression will cause
5257 us to loop. Just drop through in this case. */
5259 /* If the result values are STORE_FLAG_VALUE and zero, we can
5260 just make the comparison operation. */
5261 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5262 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5263 cond, cop1);
5264 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5265 && ((reversed = reversed_comparison_code_parts
5266 (cond_code, cond, cop1, NULL))
5267 != UNKNOWN))
5268 x = simplify_gen_relational (reversed, mode, VOIDmode,
5269 cond, cop1);
5271 /* Likewise, we can make the negate of a comparison operation
5272 if the result values are - STORE_FLAG_VALUE and zero. */
5273 else if (CONST_INT_P (true_rtx)
5274 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5275 && false_rtx == const0_rtx)
5276 x = simplify_gen_unary (NEG, mode,
5277 simplify_gen_relational (cond_code,
5278 mode, VOIDmode,
5279 cond, cop1),
5280 mode);
5281 else if (CONST_INT_P (false_rtx)
5282 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5283 && true_rtx == const0_rtx
5284 && ((reversed = reversed_comparison_code_parts
5285 (cond_code, cond, cop1, NULL))
5286 != UNKNOWN))
5287 x = simplify_gen_unary (NEG, mode,
5288 simplify_gen_relational (reversed,
5289 mode, VOIDmode,
5290 cond, cop1),
5291 mode);
5292 else
5293 return gen_rtx_IF_THEN_ELSE (mode,
5294 simplify_gen_relational (cond_code,
5295 mode,
5296 VOIDmode,
5297 cond,
5298 cop1),
5299 true_rtx, false_rtx);
5301 code = GET_CODE (x);
5302 op0_mode = VOIDmode;
5307 /* Try to fold this expression in case we have constants that weren't
5308 present before. */
5309 temp = 0;
5310 switch (GET_RTX_CLASS (code))
5312 case RTX_UNARY:
5313 if (op0_mode == VOIDmode)
5314 op0_mode = GET_MODE (XEXP (x, 0));
5315 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5316 break;
5317 case RTX_COMPARE:
5318 case RTX_COMM_COMPARE:
5320 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5321 if (cmp_mode == VOIDmode)
5323 cmp_mode = GET_MODE (XEXP (x, 1));
5324 if (cmp_mode == VOIDmode)
5325 cmp_mode = op0_mode;
5327 temp = simplify_relational_operation (code, mode, cmp_mode,
5328 XEXP (x, 0), XEXP (x, 1));
5330 break;
5331 case RTX_COMM_ARITH:
5332 case RTX_BIN_ARITH:
5333 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5334 break;
5335 case RTX_BITFIELD_OPS:
5336 case RTX_TERNARY:
5337 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5338 XEXP (x, 1), XEXP (x, 2));
5339 break;
5340 default:
5341 break;
5344 if (temp)
5346 x = temp;
5347 code = GET_CODE (temp);
5348 op0_mode = VOIDmode;
5349 mode = GET_MODE (temp);
5352 /* First see if we can apply the inverse distributive law. */
5353 if (code == PLUS || code == MINUS
5354 || code == AND || code == IOR || code == XOR)
5356 x = apply_distributive_law (x);
5357 code = GET_CODE (x);
5358 op0_mode = VOIDmode;
5361 /* If CODE is an associative operation not otherwise handled, see if we
5362 can associate some operands. This can win if they are constants or
5363 if they are logically related (i.e. (a & b) & a). */
5364 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5365 || code == AND || code == IOR || code == XOR
5366 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5367 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5368 || (flag_associative_math && FLOAT_MODE_P (mode))))
5370 if (GET_CODE (XEXP (x, 0)) == code)
5372 rtx other = XEXP (XEXP (x, 0), 0);
5373 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5374 rtx inner_op1 = XEXP (x, 1);
5375 rtx inner;
5377 /* Make sure we pass the constant operand if any as the second
5378 one if this is a commutative operation. */
5379 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5381 rtx tem = inner_op0;
5382 inner_op0 = inner_op1;
5383 inner_op1 = tem;
5385 inner = simplify_binary_operation (code == MINUS ? PLUS
5386 : code == DIV ? MULT
5387 : code,
5388 mode, inner_op0, inner_op1);
5390 /* For commutative operations, try the other pair if that one
5391 didn't simplify. */
5392 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5394 other = XEXP (XEXP (x, 0), 1);
5395 inner = simplify_binary_operation (code, mode,
5396 XEXP (XEXP (x, 0), 0),
5397 XEXP (x, 1));
5400 if (inner)
5401 return simplify_gen_binary (code, mode, other, inner);
5405 /* A little bit of algebraic simplification here. */
5406 switch (code)
5408 case MEM:
5409 /* Ensure that our address has any ASHIFTs converted to MULT in case
5410 address-recognizing predicates are called later. */
5411 temp = make_compound_operation (XEXP (x, 0), MEM);
5412 SUBST (XEXP (x, 0), temp);
5413 break;
5415 case SUBREG:
5416 if (op0_mode == VOIDmode)
5417 op0_mode = GET_MODE (SUBREG_REG (x));
5419 /* See if this can be moved to simplify_subreg. */
5420 if (CONSTANT_P (SUBREG_REG (x))
5421 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5422 /* Don't call gen_lowpart if the inner mode
5423 is VOIDmode and we cannot simplify it, as SUBREG without
5424 inner mode is invalid. */
5425 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5426 || gen_lowpart_common (mode, SUBREG_REG (x))))
5427 return gen_lowpart (mode, SUBREG_REG (x));
5429 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5430 break;
5432 rtx temp;
5433 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5434 SUBREG_BYTE (x));
5435 if (temp)
5436 return temp;
5439 /* Don't change the mode of the MEM if that would change the meaning
5440 of the address. */
5441 if (MEM_P (SUBREG_REG (x))
5442 && (MEM_VOLATILE_P (SUBREG_REG (x))
5443 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5444 return gen_rtx_CLOBBER (mode, const0_rtx);
5446 /* Note that we cannot do any narrowing for non-constants since
5447 we might have been counting on using the fact that some bits were
5448 zero. We now do this in the SET. */
5450 break;
5452 case NEG:
5453 temp = expand_compound_operation (XEXP (x, 0));
5455 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5456 replaced by (lshiftrt X C). This will convert
5457 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5459 if (GET_CODE (temp) == ASHIFTRT
5460 && CONST_INT_P (XEXP (temp, 1))
5461 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5462 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5463 INTVAL (XEXP (temp, 1)));
5465 /* If X has only a single bit that might be nonzero, say, bit I, convert
5466 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5467 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5468 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5469 or a SUBREG of one since we'd be making the expression more
5470 complex if it was just a register. */
5472 if (!REG_P (temp)
5473 && ! (GET_CODE (temp) == SUBREG
5474 && REG_P (SUBREG_REG (temp)))
5475 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5477 rtx temp1 = simplify_shift_const
5478 (NULL_RTX, ASHIFTRT, mode,
5479 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5480 GET_MODE_BITSIZE (mode) - 1 - i),
5481 GET_MODE_BITSIZE (mode) - 1 - i);
5483 /* If all we did was surround TEMP with the two shifts, we
5484 haven't improved anything, so don't use it. Otherwise,
5485 we are better off with TEMP1. */
5486 if (GET_CODE (temp1) != ASHIFTRT
5487 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5488 || XEXP (XEXP (temp1, 0), 0) != temp)
5489 return temp1;
5491 break;
5493 case TRUNCATE:
5494 /* We can't handle truncation to a partial integer mode here
5495 because we don't know the real bitsize of the partial
5496 integer mode. */
5497 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5498 break;
5500 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5501 SUBST (XEXP (x, 0),
5502 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5503 GET_MODE_MASK (mode), 0));
5505 /* We can truncate a constant value and return it. */
5506 if (CONST_INT_P (XEXP (x, 0)))
5507 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5509 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5510 whose value is a comparison can be replaced with a subreg if
5511 STORE_FLAG_VALUE permits. */
5512 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5513 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5514 && (temp = get_last_value (XEXP (x, 0)))
5515 && COMPARISON_P (temp))
5516 return gen_lowpart (mode, XEXP (x, 0));
5517 break;
5519 case CONST:
5520 /* (const (const X)) can become (const X). Do it this way rather than
5521 returning the inner CONST since CONST can be shared with a
5522 REG_EQUAL note. */
5523 if (GET_CODE (XEXP (x, 0)) == CONST)
5524 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5525 break;
5527 #ifdef HAVE_lo_sum
5528 case LO_SUM:
5529 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5530 can add in an offset. find_split_point will split this address up
5531 again if it doesn't match. */
5532 if (GET_CODE (XEXP (x, 0)) == HIGH
5533 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5534 return XEXP (x, 1);
5535 break;
5536 #endif
5538 case PLUS:
5539 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5540 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5541 bit-field and can be replaced by either a sign_extend or a
5542 sign_extract. The `and' may be a zero_extend and the two
5543 <c>, -<c> constants may be reversed. */
5544 if (GET_CODE (XEXP (x, 0)) == XOR
5545 && CONST_INT_P (XEXP (x, 1))
5546 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5547 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5548 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5549 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5550 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5551 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5552 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5553 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5554 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5555 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5556 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5557 == (unsigned int) i + 1))))
5558 return simplify_shift_const
5559 (NULL_RTX, ASHIFTRT, mode,
5560 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5561 XEXP (XEXP (XEXP (x, 0), 0), 0),
5562 GET_MODE_BITSIZE (mode) - (i + 1)),
5563 GET_MODE_BITSIZE (mode) - (i + 1));
5565 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5566 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5567 the bitsize of the mode - 1. This allows simplification of
5568 "a = (b & 8) == 0;" */
5569 if (XEXP (x, 1) == constm1_rtx
5570 && !REG_P (XEXP (x, 0))
5571 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5572 && REG_P (SUBREG_REG (XEXP (x, 0))))
5573 && nonzero_bits (XEXP (x, 0), mode) == 1)
5574 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5575 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5576 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5577 GET_MODE_BITSIZE (mode) - 1),
5578 GET_MODE_BITSIZE (mode) - 1);
5580 /* If we are adding two things that have no bits in common, convert
5581 the addition into an IOR. This will often be further simplified,
5582 for example in cases like ((a & 1) + (a & 2)), which can
5583 become a & 3. */
5585 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5586 && (nonzero_bits (XEXP (x, 0), mode)
5587 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5589 /* Try to simplify the expression further. */
5590 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5591 temp = combine_simplify_rtx (tor, mode, in_dest);
5593 /* If we could, great. If not, do not go ahead with the IOR
5594 replacement, since PLUS appears in many special purpose
5595 address arithmetic instructions. */
5596 if (GET_CODE (temp) != CLOBBER && temp != tor)
5597 return temp;
5599 break;
5601 case MINUS:
5602 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5603 (and <foo> (const_int pow2-1)) */
5604 if (GET_CODE (XEXP (x, 1)) == AND
5605 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5606 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5607 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5608 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5609 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5610 break;
5612 case MULT:
5613 /* If we have (mult (plus A B) C), apply the distributive law and then
5614 the inverse distributive law to see if things simplify. This
5615 occurs mostly in addresses, often when unrolling loops. */
5617 if (GET_CODE (XEXP (x, 0)) == PLUS)
5619 rtx result = distribute_and_simplify_rtx (x, 0);
5620 if (result)
5621 return result;
5624 /* Try simplify a*(b/c) as (a*b)/c. */
5625 if (FLOAT_MODE_P (mode) && flag_associative_math
5626 && GET_CODE (XEXP (x, 0)) == DIV)
5628 rtx tem = simplify_binary_operation (MULT, mode,
5629 XEXP (XEXP (x, 0), 0),
5630 XEXP (x, 1));
5631 if (tem)
5632 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5634 break;
5636 case UDIV:
5637 /* If this is a divide by a power of two, treat it as a shift if
5638 its first operand is a shift. */
5639 if (CONST_INT_P (XEXP (x, 1))
5640 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5641 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5642 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5643 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5644 || GET_CODE (XEXP (x, 0)) == ROTATE
5645 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5646 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5647 break;
5649 case EQ: case NE:
5650 case GT: case GTU: case GE: case GEU:
5651 case LT: case LTU: case LE: case LEU:
5652 case UNEQ: case LTGT:
5653 case UNGT: case UNGE:
5654 case UNLT: case UNLE:
5655 case UNORDERED: case ORDERED:
5656 /* If the first operand is a condition code, we can't do anything
5657 with it. */
5658 if (GET_CODE (XEXP (x, 0)) == COMPARE
5659 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5660 && ! CC0_P (XEXP (x, 0))))
5662 rtx op0 = XEXP (x, 0);
5663 rtx op1 = XEXP (x, 1);
5664 enum rtx_code new_code;
5666 if (GET_CODE (op0) == COMPARE)
5667 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5669 /* Simplify our comparison, if possible. */
5670 new_code = simplify_comparison (code, &op0, &op1);
5672 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5673 if only the low-order bit is possibly nonzero in X (such as when
5674 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5675 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5676 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5677 (plus X 1).
5679 Remove any ZERO_EXTRACT we made when thinking this was a
5680 comparison. It may now be simpler to use, e.g., an AND. If a
5681 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5682 the call to make_compound_operation in the SET case. */
5684 if (STORE_FLAG_VALUE == 1
5685 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5686 && op1 == const0_rtx
5687 && mode == GET_MODE (op0)
5688 && nonzero_bits (op0, mode) == 1)
5689 return gen_lowpart (mode,
5690 expand_compound_operation (op0));
5692 else if (STORE_FLAG_VALUE == 1
5693 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5694 && op1 == const0_rtx
5695 && mode == GET_MODE (op0)
5696 && (num_sign_bit_copies (op0, mode)
5697 == GET_MODE_BITSIZE (mode)))
5699 op0 = expand_compound_operation (op0);
5700 return simplify_gen_unary (NEG, mode,
5701 gen_lowpart (mode, op0),
5702 mode);
5705 else if (STORE_FLAG_VALUE == 1
5706 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5707 && op1 == const0_rtx
5708 && mode == GET_MODE (op0)
5709 && nonzero_bits (op0, mode) == 1)
5711 op0 = expand_compound_operation (op0);
5712 return simplify_gen_binary (XOR, mode,
5713 gen_lowpart (mode, op0),
5714 const1_rtx);
5717 else if (STORE_FLAG_VALUE == 1
5718 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5719 && op1 == const0_rtx
5720 && mode == GET_MODE (op0)
5721 && (num_sign_bit_copies (op0, mode)
5722 == GET_MODE_BITSIZE (mode)))
5724 op0 = expand_compound_operation (op0);
5725 return plus_constant (gen_lowpart (mode, op0), 1);
5728 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5729 those above. */
5730 if (STORE_FLAG_VALUE == -1
5731 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5732 && op1 == const0_rtx
5733 && (num_sign_bit_copies (op0, mode)
5734 == GET_MODE_BITSIZE (mode)))
5735 return gen_lowpart (mode,
5736 expand_compound_operation (op0));
5738 else if (STORE_FLAG_VALUE == -1
5739 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5740 && op1 == const0_rtx
5741 && mode == GET_MODE (op0)
5742 && nonzero_bits (op0, mode) == 1)
5744 op0 = expand_compound_operation (op0);
5745 return simplify_gen_unary (NEG, mode,
5746 gen_lowpart (mode, op0),
5747 mode);
5750 else if (STORE_FLAG_VALUE == -1
5751 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5752 && op1 == const0_rtx
5753 && mode == GET_MODE (op0)
5754 && (num_sign_bit_copies (op0, mode)
5755 == GET_MODE_BITSIZE (mode)))
5757 op0 = expand_compound_operation (op0);
5758 return simplify_gen_unary (NOT, mode,
5759 gen_lowpart (mode, op0),
5760 mode);
5763 /* If X is 0/1, (eq X 0) is X-1. */
5764 else if (STORE_FLAG_VALUE == -1
5765 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5766 && op1 == const0_rtx
5767 && mode == GET_MODE (op0)
5768 && nonzero_bits (op0, mode) == 1)
5770 op0 = expand_compound_operation (op0);
5771 return plus_constant (gen_lowpart (mode, op0), -1);
5774 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5775 one bit that might be nonzero, we can convert (ne x 0) to
5776 (ashift x c) where C puts the bit in the sign bit. Remove any
5777 AND with STORE_FLAG_VALUE when we are done, since we are only
5778 going to test the sign bit. */
5779 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5780 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5781 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5782 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5783 && op1 == const0_rtx
5784 && mode == GET_MODE (op0)
5785 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5787 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5788 expand_compound_operation (op0),
5789 GET_MODE_BITSIZE (mode) - 1 - i);
5790 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5791 return XEXP (x, 0);
5792 else
5793 return x;
5796 /* If the code changed, return a whole new comparison. */
5797 if (new_code != code)
5798 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5800 /* Otherwise, keep this operation, but maybe change its operands.
5801 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5802 SUBST (XEXP (x, 0), op0);
5803 SUBST (XEXP (x, 1), op1);
5805 break;
5807 case IF_THEN_ELSE:
5808 return simplify_if_then_else (x);
5810 case ZERO_EXTRACT:
5811 case SIGN_EXTRACT:
5812 case ZERO_EXTEND:
5813 case SIGN_EXTEND:
5814 /* If we are processing SET_DEST, we are done. */
5815 if (in_dest)
5816 return x;
5818 return expand_compound_operation (x);
5820 case SET:
5821 return simplify_set (x);
5823 case AND:
5824 case IOR:
5825 return simplify_logical (x);
5827 case ASHIFT:
5828 case LSHIFTRT:
5829 case ASHIFTRT:
5830 case ROTATE:
5831 case ROTATERT:
5832 /* If this is a shift by a constant amount, simplify it. */
5833 if (CONST_INT_P (XEXP (x, 1)))
5834 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5835 INTVAL (XEXP (x, 1)));
5837 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5838 SUBST (XEXP (x, 1),
5839 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5840 ((unsigned HOST_WIDE_INT) 1
5841 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5842 - 1,
5843 0));
5844 break;
5846 default:
5847 break;
5850 return x;
5853 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5855 static rtx
5856 simplify_if_then_else (rtx x)
5858 enum machine_mode mode = GET_MODE (x);
5859 rtx cond = XEXP (x, 0);
5860 rtx true_rtx = XEXP (x, 1);
5861 rtx false_rtx = XEXP (x, 2);
5862 enum rtx_code true_code = GET_CODE (cond);
5863 int comparison_p = COMPARISON_P (cond);
5864 rtx temp;
5865 int i;
5866 enum rtx_code false_code;
5867 rtx reversed;
5869 /* Simplify storing of the truth value. */
5870 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5871 return simplify_gen_relational (true_code, mode, VOIDmode,
5872 XEXP (cond, 0), XEXP (cond, 1));
5874 /* Also when the truth value has to be reversed. */
5875 if (comparison_p
5876 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5877 && (reversed = reversed_comparison (cond, mode)))
5878 return reversed;
5880 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5881 in it is being compared against certain values. Get the true and false
5882 comparisons and see if that says anything about the value of each arm. */
5884 if (comparison_p
5885 && ((false_code = reversed_comparison_code (cond, NULL))
5886 != UNKNOWN)
5887 && REG_P (XEXP (cond, 0)))
5889 HOST_WIDE_INT nzb;
5890 rtx from = XEXP (cond, 0);
5891 rtx true_val = XEXP (cond, 1);
5892 rtx false_val = true_val;
5893 int swapped = 0;
5895 /* If FALSE_CODE is EQ, swap the codes and arms. */
5897 if (false_code == EQ)
5899 swapped = 1, true_code = EQ, false_code = NE;
5900 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5903 /* If we are comparing against zero and the expression being tested has
5904 only a single bit that might be nonzero, that is its value when it is
5905 not equal to zero. Similarly if it is known to be -1 or 0. */
5907 if (true_code == EQ && true_val == const0_rtx
5908 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5910 false_code = EQ;
5911 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5913 else if (true_code == EQ && true_val == const0_rtx
5914 && (num_sign_bit_copies (from, GET_MODE (from))
5915 == GET_MODE_BITSIZE (GET_MODE (from))))
5917 false_code = EQ;
5918 false_val = constm1_rtx;
5921 /* Now simplify an arm if we know the value of the register in the
5922 branch and it is used in the arm. Be careful due to the potential
5923 of locally-shared RTL. */
5925 if (reg_mentioned_p (from, true_rtx))
5926 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5927 from, true_val),
5928 pc_rtx, pc_rtx, 0, 0);
5929 if (reg_mentioned_p (from, false_rtx))
5930 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5931 from, false_val),
5932 pc_rtx, pc_rtx, 0, 0);
5934 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5935 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5937 true_rtx = XEXP (x, 1);
5938 false_rtx = XEXP (x, 2);
5939 true_code = GET_CODE (cond);
5942 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5943 reversed, do so to avoid needing two sets of patterns for
5944 subtract-and-branch insns. Similarly if we have a constant in the true
5945 arm, the false arm is the same as the first operand of the comparison, or
5946 the false arm is more complicated than the true arm. */
5948 if (comparison_p
5949 && reversed_comparison_code (cond, NULL) != UNKNOWN
5950 && (true_rtx == pc_rtx
5951 || (CONSTANT_P (true_rtx)
5952 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5953 || true_rtx == const0_rtx
5954 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5955 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5956 && !OBJECT_P (false_rtx))
5957 || reg_mentioned_p (true_rtx, false_rtx)
5958 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5960 true_code = reversed_comparison_code (cond, NULL);
5961 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5962 SUBST (XEXP (x, 1), false_rtx);
5963 SUBST (XEXP (x, 2), true_rtx);
5965 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5966 cond = XEXP (x, 0);
5968 /* It is possible that the conditional has been simplified out. */
5969 true_code = GET_CODE (cond);
5970 comparison_p = COMPARISON_P (cond);
5973 /* If the two arms are identical, we don't need the comparison. */
5975 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5976 return true_rtx;
5978 /* Convert a == b ? b : a to "a". */
5979 if (true_code == EQ && ! side_effects_p (cond)
5980 && !HONOR_NANS (mode)
5981 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5982 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5983 return false_rtx;
5984 else if (true_code == NE && ! side_effects_p (cond)
5985 && !HONOR_NANS (mode)
5986 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5987 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5988 return true_rtx;
5990 /* Look for cases where we have (abs x) or (neg (abs X)). */
5992 if (GET_MODE_CLASS (mode) == MODE_INT
5993 && comparison_p
5994 && XEXP (cond, 1) == const0_rtx
5995 && GET_CODE (false_rtx) == NEG
5996 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5997 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5998 && ! side_effects_p (true_rtx))
5999 switch (true_code)
6001 case GT:
6002 case GE:
6003 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6004 case LT:
6005 case LE:
6006 return
6007 simplify_gen_unary (NEG, mode,
6008 simplify_gen_unary (ABS, mode, true_rtx, mode),
6009 mode);
6010 default:
6011 break;
6014 /* Look for MIN or MAX. */
6016 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6017 && comparison_p
6018 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6019 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6020 && ! side_effects_p (cond))
6021 switch (true_code)
6023 case GE:
6024 case GT:
6025 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6026 case LE:
6027 case LT:
6028 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6029 case GEU:
6030 case GTU:
6031 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6032 case LEU:
6033 case LTU:
6034 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6035 default:
6036 break;
6039 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6040 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6041 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6042 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6043 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6044 neither 1 or -1, but it isn't worth checking for. */
6046 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6047 && comparison_p
6048 && GET_MODE_CLASS (mode) == MODE_INT
6049 && ! side_effects_p (x))
6051 rtx t = make_compound_operation (true_rtx, SET);
6052 rtx f = make_compound_operation (false_rtx, SET);
6053 rtx cond_op0 = XEXP (cond, 0);
6054 rtx cond_op1 = XEXP (cond, 1);
6055 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6056 enum machine_mode m = mode;
6057 rtx z = 0, c1 = NULL_RTX;
6059 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6060 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6061 || GET_CODE (t) == ASHIFT
6062 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6063 && rtx_equal_p (XEXP (t, 0), f))
6064 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6066 /* If an identity-zero op is commutative, check whether there
6067 would be a match if we swapped the operands. */
6068 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6069 || GET_CODE (t) == XOR)
6070 && rtx_equal_p (XEXP (t, 1), f))
6071 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6072 else if (GET_CODE (t) == SIGN_EXTEND
6073 && (GET_CODE (XEXP (t, 0)) == PLUS
6074 || GET_CODE (XEXP (t, 0)) == MINUS
6075 || GET_CODE (XEXP (t, 0)) == IOR
6076 || GET_CODE (XEXP (t, 0)) == XOR
6077 || GET_CODE (XEXP (t, 0)) == ASHIFT
6078 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6079 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6080 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6081 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6082 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6083 && (num_sign_bit_copies (f, GET_MODE (f))
6084 > (unsigned int)
6085 (GET_MODE_BITSIZE (mode)
6086 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6088 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6089 extend_op = SIGN_EXTEND;
6090 m = GET_MODE (XEXP (t, 0));
6092 else if (GET_CODE (t) == SIGN_EXTEND
6093 && (GET_CODE (XEXP (t, 0)) == PLUS
6094 || GET_CODE (XEXP (t, 0)) == IOR
6095 || GET_CODE (XEXP (t, 0)) == XOR)
6096 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6097 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6098 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6099 && (num_sign_bit_copies (f, GET_MODE (f))
6100 > (unsigned int)
6101 (GET_MODE_BITSIZE (mode)
6102 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6104 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6105 extend_op = SIGN_EXTEND;
6106 m = GET_MODE (XEXP (t, 0));
6108 else if (GET_CODE (t) == ZERO_EXTEND
6109 && (GET_CODE (XEXP (t, 0)) == PLUS
6110 || GET_CODE (XEXP (t, 0)) == MINUS
6111 || GET_CODE (XEXP (t, 0)) == IOR
6112 || GET_CODE (XEXP (t, 0)) == XOR
6113 || GET_CODE (XEXP (t, 0)) == ASHIFT
6114 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6115 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6116 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6117 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6118 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6119 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6120 && ((nonzero_bits (f, GET_MODE (f))
6121 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6122 == 0))
6124 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6125 extend_op = ZERO_EXTEND;
6126 m = GET_MODE (XEXP (t, 0));
6128 else if (GET_CODE (t) == ZERO_EXTEND
6129 && (GET_CODE (XEXP (t, 0)) == PLUS
6130 || GET_CODE (XEXP (t, 0)) == IOR
6131 || GET_CODE (XEXP (t, 0)) == XOR)
6132 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6133 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6134 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6135 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6136 && ((nonzero_bits (f, GET_MODE (f))
6137 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6138 == 0))
6140 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6141 extend_op = ZERO_EXTEND;
6142 m = GET_MODE (XEXP (t, 0));
6145 if (z)
6147 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6148 cond_op0, cond_op1),
6149 pc_rtx, pc_rtx, 0, 0);
6150 temp = simplify_gen_binary (MULT, m, temp,
6151 simplify_gen_binary (MULT, m, c1,
6152 const_true_rtx));
6153 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
6154 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6156 if (extend_op != UNKNOWN)
6157 temp = simplify_gen_unary (extend_op, mode, temp, m);
6159 return temp;
6163 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6164 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6165 negation of a single bit, we can convert this operation to a shift. We
6166 can actually do this more generally, but it doesn't seem worth it. */
6168 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6169 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6170 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6171 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6172 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6173 == GET_MODE_BITSIZE (mode))
6174 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6175 return
6176 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6177 gen_lowpart (mode, XEXP (cond, 0)), i);
6179 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6180 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6181 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6182 && GET_MODE (XEXP (cond, 0)) == mode
6183 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6184 == nonzero_bits (XEXP (cond, 0), mode)
6185 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6186 return XEXP (cond, 0);
6188 return x;
6191 /* Simplify X, a SET expression. Return the new expression. */
6193 static rtx
6194 simplify_set (rtx x)
6196 rtx src = SET_SRC (x);
6197 rtx dest = SET_DEST (x);
6198 enum machine_mode mode
6199 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6200 rtx other_insn;
6201 rtx *cc_use;
6203 /* (set (pc) (return)) gets written as (return). */
6204 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6205 return src;
6207 /* Now that we know for sure which bits of SRC we are using, see if we can
6208 simplify the expression for the object knowing that we only need the
6209 low-order bits. */
6211 if (GET_MODE_CLASS (mode) == MODE_INT
6212 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6214 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6215 SUBST (SET_SRC (x), src);
6218 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6219 the comparison result and try to simplify it unless we already have used
6220 undobuf.other_insn. */
6221 if ((GET_MODE_CLASS (mode) == MODE_CC
6222 || GET_CODE (src) == COMPARE
6223 || CC0_P (dest))
6224 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6225 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6226 && COMPARISON_P (*cc_use)
6227 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6229 enum rtx_code old_code = GET_CODE (*cc_use);
6230 enum rtx_code new_code;
6231 rtx op0, op1, tmp;
6232 int other_changed = 0;
6233 rtx inner_compare = NULL_RTX;
6234 enum machine_mode compare_mode = GET_MODE (dest);
6236 if (GET_CODE (src) == COMPARE)
6238 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6239 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6241 inner_compare = op0;
6242 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6245 else
6246 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6248 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6249 op0, op1);
6250 if (!tmp)
6251 new_code = old_code;
6252 else if (!CONSTANT_P (tmp))
6254 new_code = GET_CODE (tmp);
6255 op0 = XEXP (tmp, 0);
6256 op1 = XEXP (tmp, 1);
6258 else
6260 rtx pat = PATTERN (other_insn);
6261 undobuf.other_insn = other_insn;
6262 SUBST (*cc_use, tmp);
6264 /* Attempt to simplify CC user. */
6265 if (GET_CODE (pat) == SET)
6267 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6268 if (new_rtx != NULL_RTX)
6269 SUBST (SET_SRC (pat), new_rtx);
6272 /* Convert X into a no-op move. */
6273 SUBST (SET_DEST (x), pc_rtx);
6274 SUBST (SET_SRC (x), pc_rtx);
6275 return x;
6278 /* Simplify our comparison, if possible. */
6279 new_code = simplify_comparison (new_code, &op0, &op1);
6281 #ifdef SELECT_CC_MODE
6282 /* If this machine has CC modes other than CCmode, check to see if we
6283 need to use a different CC mode here. */
6284 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6285 compare_mode = GET_MODE (op0);
6286 else if (inner_compare
6287 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6288 && new_code == old_code
6289 && op0 == XEXP (inner_compare, 0)
6290 && op1 == XEXP (inner_compare, 1))
6291 compare_mode = GET_MODE (inner_compare);
6292 else
6293 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6295 #ifndef HAVE_cc0
6296 /* If the mode changed, we have to change SET_DEST, the mode in the
6297 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6298 a hard register, just build new versions with the proper mode. If it
6299 is a pseudo, we lose unless it is only time we set the pseudo, in
6300 which case we can safely change its mode. */
6301 if (compare_mode != GET_MODE (dest))
6303 if (can_change_dest_mode (dest, 0, compare_mode))
6305 unsigned int regno = REGNO (dest);
6306 rtx new_dest;
6308 if (regno < FIRST_PSEUDO_REGISTER)
6309 new_dest = gen_rtx_REG (compare_mode, regno);
6310 else
6312 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6313 new_dest = regno_reg_rtx[regno];
6316 SUBST (SET_DEST (x), new_dest);
6317 SUBST (XEXP (*cc_use, 0), new_dest);
6318 other_changed = 1;
6320 dest = new_dest;
6323 #endif /* cc0 */
6324 #endif /* SELECT_CC_MODE */
6326 /* If the code changed, we have to build a new comparison in
6327 undobuf.other_insn. */
6328 if (new_code != old_code)
6330 int other_changed_previously = other_changed;
6331 unsigned HOST_WIDE_INT mask;
6332 rtx old_cc_use = *cc_use;
6334 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6335 dest, const0_rtx));
6336 other_changed = 1;
6338 /* If the only change we made was to change an EQ into an NE or
6339 vice versa, OP0 has only one bit that might be nonzero, and OP1
6340 is zero, check if changing the user of the condition code will
6341 produce a valid insn. If it won't, we can keep the original code
6342 in that insn by surrounding our operation with an XOR. */
6344 if (((old_code == NE && new_code == EQ)
6345 || (old_code == EQ && new_code == NE))
6346 && ! other_changed_previously && op1 == const0_rtx
6347 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6348 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6350 rtx pat = PATTERN (other_insn), note = 0;
6352 if ((recog_for_combine (&pat, other_insn, &note) < 0
6353 && ! check_asm_operands (pat)))
6355 *cc_use = old_cc_use;
6356 other_changed = 0;
6358 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6359 op0, GEN_INT (mask));
6364 if (other_changed)
6365 undobuf.other_insn = other_insn;
6367 /* Otherwise, if we didn't previously have a COMPARE in the
6368 correct mode, we need one. */
6369 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6371 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6372 src = SET_SRC (x);
6374 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6376 SUBST (SET_SRC (x), op0);
6377 src = SET_SRC (x);
6379 /* Otherwise, update the COMPARE if needed. */
6380 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6382 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6383 src = SET_SRC (x);
6386 else
6388 /* Get SET_SRC in a form where we have placed back any
6389 compound expressions. Then do the checks below. */
6390 src = make_compound_operation (src, SET);
6391 SUBST (SET_SRC (x), src);
6394 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6395 and X being a REG or (subreg (reg)), we may be able to convert this to
6396 (set (subreg:m2 x) (op)).
6398 We can always do this if M1 is narrower than M2 because that means that
6399 we only care about the low bits of the result.
6401 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6402 perform a narrower operation than requested since the high-order bits will
6403 be undefined. On machine where it is defined, this transformation is safe
6404 as long as M1 and M2 have the same number of words. */
6406 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6407 && !OBJECT_P (SUBREG_REG (src))
6408 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6409 / UNITS_PER_WORD)
6410 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6411 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6412 #ifndef WORD_REGISTER_OPERATIONS
6413 && (GET_MODE_SIZE (GET_MODE (src))
6414 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6415 #endif
6416 #ifdef CANNOT_CHANGE_MODE_CLASS
6417 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6418 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6419 GET_MODE (SUBREG_REG (src)),
6420 GET_MODE (src)))
6421 #endif
6422 && (REG_P (dest)
6423 || (GET_CODE (dest) == SUBREG
6424 && REG_P (SUBREG_REG (dest)))))
6426 SUBST (SET_DEST (x),
6427 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6428 dest));
6429 SUBST (SET_SRC (x), SUBREG_REG (src));
6431 src = SET_SRC (x), dest = SET_DEST (x);
6434 #ifdef HAVE_cc0
6435 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6436 in SRC. */
6437 if (dest == cc0_rtx
6438 && GET_CODE (src) == SUBREG
6439 && subreg_lowpart_p (src)
6440 && (GET_MODE_BITSIZE (GET_MODE (src))
6441 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6443 rtx inner = SUBREG_REG (src);
6444 enum machine_mode inner_mode = GET_MODE (inner);
6446 /* Here we make sure that we don't have a sign bit on. */
6447 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6448 && (nonzero_bits (inner, inner_mode)
6449 < ((unsigned HOST_WIDE_INT) 1
6450 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6452 SUBST (SET_SRC (x), inner);
6453 src = SET_SRC (x);
6456 #endif
6458 #ifdef LOAD_EXTEND_OP
6459 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6460 would require a paradoxical subreg. Replace the subreg with a
6461 zero_extend to avoid the reload that would otherwise be required. */
6463 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6464 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6465 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6466 && SUBREG_BYTE (src) == 0
6467 && (GET_MODE_SIZE (GET_MODE (src))
6468 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6469 && MEM_P (SUBREG_REG (src)))
6471 SUBST (SET_SRC (x),
6472 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6473 GET_MODE (src), SUBREG_REG (src)));
6475 src = SET_SRC (x);
6477 #endif
6479 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6480 are comparing an item known to be 0 or -1 against 0, use a logical
6481 operation instead. Check for one of the arms being an IOR of the other
6482 arm with some value. We compute three terms to be IOR'ed together. In
6483 practice, at most two will be nonzero. Then we do the IOR's. */
6485 if (GET_CODE (dest) != PC
6486 && GET_CODE (src) == IF_THEN_ELSE
6487 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6488 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6489 && XEXP (XEXP (src, 0), 1) == const0_rtx
6490 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6491 #ifdef HAVE_conditional_move
6492 && ! can_conditionally_move_p (GET_MODE (src))
6493 #endif
6494 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6495 GET_MODE (XEXP (XEXP (src, 0), 0)))
6496 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6497 && ! side_effects_p (src))
6499 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6500 ? XEXP (src, 1) : XEXP (src, 2));
6501 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6502 ? XEXP (src, 2) : XEXP (src, 1));
6503 rtx term1 = const0_rtx, term2, term3;
6505 if (GET_CODE (true_rtx) == IOR
6506 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6507 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6508 else if (GET_CODE (true_rtx) == IOR
6509 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6510 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6511 else if (GET_CODE (false_rtx) == IOR
6512 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6513 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6514 else if (GET_CODE (false_rtx) == IOR
6515 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6516 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6518 term2 = simplify_gen_binary (AND, GET_MODE (src),
6519 XEXP (XEXP (src, 0), 0), true_rtx);
6520 term3 = simplify_gen_binary (AND, GET_MODE (src),
6521 simplify_gen_unary (NOT, GET_MODE (src),
6522 XEXP (XEXP (src, 0), 0),
6523 GET_MODE (src)),
6524 false_rtx);
6526 SUBST (SET_SRC (x),
6527 simplify_gen_binary (IOR, GET_MODE (src),
6528 simplify_gen_binary (IOR, GET_MODE (src),
6529 term1, term2),
6530 term3));
6532 src = SET_SRC (x);
6535 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6536 whole thing fail. */
6537 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6538 return src;
6539 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6540 return dest;
6541 else
6542 /* Convert this into a field assignment operation, if possible. */
6543 return make_field_assignment (x);
6546 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6547 result. */
6549 static rtx
6550 simplify_logical (rtx x)
6552 enum machine_mode mode = GET_MODE (x);
6553 rtx op0 = XEXP (x, 0);
6554 rtx op1 = XEXP (x, 1);
6556 switch (GET_CODE (x))
6558 case AND:
6559 /* We can call simplify_and_const_int only if we don't lose
6560 any (sign) bits when converting INTVAL (op1) to
6561 "unsigned HOST_WIDE_INT". */
6562 if (CONST_INT_P (op1)
6563 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6564 || INTVAL (op1) > 0))
6566 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6567 if (GET_CODE (x) != AND)
6568 return x;
6570 op0 = XEXP (x, 0);
6571 op1 = XEXP (x, 1);
6574 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6575 apply the distributive law and then the inverse distributive
6576 law to see if things simplify. */
6577 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6579 rtx result = distribute_and_simplify_rtx (x, 0);
6580 if (result)
6581 return result;
6583 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6585 rtx result = distribute_and_simplify_rtx (x, 1);
6586 if (result)
6587 return result;
6589 break;
6591 case IOR:
6592 /* If we have (ior (and A B) C), apply the distributive law and then
6593 the inverse distributive law to see if things simplify. */
6595 if (GET_CODE (op0) == AND)
6597 rtx result = distribute_and_simplify_rtx (x, 0);
6598 if (result)
6599 return result;
6602 if (GET_CODE (op1) == AND)
6604 rtx result = distribute_and_simplify_rtx (x, 1);
6605 if (result)
6606 return result;
6608 break;
6610 default:
6611 gcc_unreachable ();
6614 return x;
6617 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6618 operations" because they can be replaced with two more basic operations.
6619 ZERO_EXTEND is also considered "compound" because it can be replaced with
6620 an AND operation, which is simpler, though only one operation.
6622 The function expand_compound_operation is called with an rtx expression
6623 and will convert it to the appropriate shifts and AND operations,
6624 simplifying at each stage.
6626 The function make_compound_operation is called to convert an expression
6627 consisting of shifts and ANDs into the equivalent compound expression.
6628 It is the inverse of this function, loosely speaking. */
6630 static rtx
6631 expand_compound_operation (rtx x)
6633 unsigned HOST_WIDE_INT pos = 0, len;
6634 int unsignedp = 0;
6635 unsigned int modewidth;
6636 rtx tem;
6638 switch (GET_CODE (x))
6640 case ZERO_EXTEND:
6641 unsignedp = 1;
6642 case SIGN_EXTEND:
6643 /* We can't necessarily use a const_int for a multiword mode;
6644 it depends on implicitly extending the value.
6645 Since we don't know the right way to extend it,
6646 we can't tell whether the implicit way is right.
6648 Even for a mode that is no wider than a const_int,
6649 we can't win, because we need to sign extend one of its bits through
6650 the rest of it, and we don't know which bit. */
6651 if (CONST_INT_P (XEXP (x, 0)))
6652 return x;
6654 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6655 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6656 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6657 reloaded. If not for that, MEM's would very rarely be safe.
6659 Reject MODEs bigger than a word, because we might not be able
6660 to reference a two-register group starting with an arbitrary register
6661 (and currently gen_lowpart might crash for a SUBREG). */
6663 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6664 return x;
6666 /* Reject MODEs that aren't scalar integers because turning vector
6667 or complex modes into shifts causes problems. */
6669 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6670 return x;
6672 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6673 /* If the inner object has VOIDmode (the only way this can happen
6674 is if it is an ASM_OPERANDS), we can't do anything since we don't
6675 know how much masking to do. */
6676 if (len == 0)
6677 return x;
6679 break;
6681 case ZERO_EXTRACT:
6682 unsignedp = 1;
6684 /* ... fall through ... */
6686 case SIGN_EXTRACT:
6687 /* If the operand is a CLOBBER, just return it. */
6688 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6689 return XEXP (x, 0);
6691 if (!CONST_INT_P (XEXP (x, 1))
6692 || !CONST_INT_P (XEXP (x, 2))
6693 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6694 return x;
6696 /* Reject MODEs that aren't scalar integers because turning vector
6697 or complex modes into shifts causes problems. */
6699 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6700 return x;
6702 len = INTVAL (XEXP (x, 1));
6703 pos = INTVAL (XEXP (x, 2));
6705 /* This should stay within the object being extracted, fail otherwise. */
6706 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6707 return x;
6709 if (BITS_BIG_ENDIAN)
6710 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6712 break;
6714 default:
6715 return x;
6717 /* Convert sign extension to zero extension, if we know that the high
6718 bit is not set, as this is easier to optimize. It will be converted
6719 back to cheaper alternative in make_extraction. */
6720 if (GET_CODE (x) == SIGN_EXTEND
6721 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6722 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6723 & ~(((unsigned HOST_WIDE_INT)
6724 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6725 >> 1))
6726 == 0)))
6728 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6729 rtx temp2 = expand_compound_operation (temp);
6731 /* Make sure this is a profitable operation. */
6732 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6733 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6734 return temp2;
6735 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6736 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6737 return temp;
6738 else
6739 return x;
6742 /* We can optimize some special cases of ZERO_EXTEND. */
6743 if (GET_CODE (x) == ZERO_EXTEND)
6745 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6746 know that the last value didn't have any inappropriate bits
6747 set. */
6748 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6749 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6750 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6751 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6752 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6753 return XEXP (XEXP (x, 0), 0);
6755 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6756 if (GET_CODE (XEXP (x, 0)) == SUBREG
6757 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6758 && subreg_lowpart_p (XEXP (x, 0))
6759 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6760 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6761 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6762 return SUBREG_REG (XEXP (x, 0));
6764 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6765 is a comparison and STORE_FLAG_VALUE permits. This is like
6766 the first case, but it works even when GET_MODE (x) is larger
6767 than HOST_WIDE_INT. */
6768 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6769 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6770 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6771 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6772 <= HOST_BITS_PER_WIDE_INT)
6773 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6774 return XEXP (XEXP (x, 0), 0);
6776 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6777 if (GET_CODE (XEXP (x, 0)) == SUBREG
6778 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6779 && subreg_lowpart_p (XEXP (x, 0))
6780 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6781 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6782 <= HOST_BITS_PER_WIDE_INT)
6783 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6784 return SUBREG_REG (XEXP (x, 0));
6788 /* If we reach here, we want to return a pair of shifts. The inner
6789 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6790 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6791 logical depending on the value of UNSIGNEDP.
6793 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6794 converted into an AND of a shift.
6796 We must check for the case where the left shift would have a negative
6797 count. This can happen in a case like (x >> 31) & 255 on machines
6798 that can't shift by a constant. On those machines, we would first
6799 combine the shift with the AND to produce a variable-position
6800 extraction. Then the constant of 31 would be substituted in
6801 to produce such a position. */
6803 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6804 if (modewidth >= pos + len)
6806 enum machine_mode mode = GET_MODE (x);
6807 tem = gen_lowpart (mode, XEXP (x, 0));
6808 if (!tem || GET_CODE (tem) == CLOBBER)
6809 return x;
6810 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6811 tem, modewidth - pos - len);
6812 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6813 mode, tem, modewidth - len);
6815 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6816 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6817 simplify_shift_const (NULL_RTX, LSHIFTRT,
6818 GET_MODE (x),
6819 XEXP (x, 0), pos),
6820 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6821 else
6822 /* Any other cases we can't handle. */
6823 return x;
6825 /* If we couldn't do this for some reason, return the original
6826 expression. */
6827 if (GET_CODE (tem) == CLOBBER)
6828 return x;
6830 return tem;
6833 /* X is a SET which contains an assignment of one object into
6834 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6835 or certain SUBREGS). If possible, convert it into a series of
6836 logical operations.
6838 We half-heartedly support variable positions, but do not at all
6839 support variable lengths. */
6841 static const_rtx
6842 expand_field_assignment (const_rtx x)
6844 rtx inner;
6845 rtx pos; /* Always counts from low bit. */
6846 int len;
6847 rtx mask, cleared, masked;
6848 enum machine_mode compute_mode;
6850 /* Loop until we find something we can't simplify. */
6851 while (1)
6853 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6854 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6856 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6857 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6858 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6860 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6861 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6863 inner = XEXP (SET_DEST (x), 0);
6864 len = INTVAL (XEXP (SET_DEST (x), 1));
6865 pos = XEXP (SET_DEST (x), 2);
6867 /* A constant position should stay within the width of INNER. */
6868 if (CONST_INT_P (pos)
6869 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6870 break;
6872 if (BITS_BIG_ENDIAN)
6874 if (CONST_INT_P (pos))
6875 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6876 - INTVAL (pos));
6877 else if (GET_CODE (pos) == MINUS
6878 && CONST_INT_P (XEXP (pos, 1))
6879 && (INTVAL (XEXP (pos, 1))
6880 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6881 /* If position is ADJUST - X, new position is X. */
6882 pos = XEXP (pos, 0);
6883 else
6884 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6885 GEN_INT (GET_MODE_BITSIZE (
6886 GET_MODE (inner))
6887 - len),
6888 pos);
6892 /* A SUBREG between two modes that occupy the same numbers of words
6893 can be done by moving the SUBREG to the source. */
6894 else if (GET_CODE (SET_DEST (x)) == SUBREG
6895 /* We need SUBREGs to compute nonzero_bits properly. */
6896 && nonzero_sign_valid
6897 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6898 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6899 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6900 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6902 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6903 gen_lowpart
6904 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6905 SET_SRC (x)));
6906 continue;
6908 else
6909 break;
6911 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6912 inner = SUBREG_REG (inner);
6914 compute_mode = GET_MODE (inner);
6916 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6917 if (! SCALAR_INT_MODE_P (compute_mode))
6919 enum machine_mode imode;
6921 /* Don't do anything for vector or complex integral types. */
6922 if (! FLOAT_MODE_P (compute_mode))
6923 break;
6925 /* Try to find an integral mode to pun with. */
6926 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6927 if (imode == BLKmode)
6928 break;
6930 compute_mode = imode;
6931 inner = gen_lowpart (imode, inner);
6934 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6935 if (len >= HOST_BITS_PER_WIDE_INT)
6936 break;
6938 /* Now compute the equivalent expression. Make a copy of INNER
6939 for the SET_DEST in case it is a MEM into which we will substitute;
6940 we don't want shared RTL in that case. */
6941 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6942 cleared = simplify_gen_binary (AND, compute_mode,
6943 simplify_gen_unary (NOT, compute_mode,
6944 simplify_gen_binary (ASHIFT,
6945 compute_mode,
6946 mask, pos),
6947 compute_mode),
6948 inner);
6949 masked = simplify_gen_binary (ASHIFT, compute_mode,
6950 simplify_gen_binary (
6951 AND, compute_mode,
6952 gen_lowpart (compute_mode, SET_SRC (x)),
6953 mask),
6954 pos);
6956 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6957 simplify_gen_binary (IOR, compute_mode,
6958 cleared, masked));
6961 return x;
6964 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6965 it is an RTX that represents a variable starting position; otherwise,
6966 POS is the (constant) starting bit position (counted from the LSB).
6968 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6969 signed reference.
6971 IN_DEST is nonzero if this is a reference in the destination of a
6972 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6973 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6974 be used.
6976 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6977 ZERO_EXTRACT should be built even for bits starting at bit 0.
6979 MODE is the desired mode of the result (if IN_DEST == 0).
6981 The result is an RTX for the extraction or NULL_RTX if the target
6982 can't handle it. */
6984 static rtx
6985 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6986 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6987 int in_dest, int in_compare)
6989 /* This mode describes the size of the storage area
6990 to fetch the overall value from. Within that, we
6991 ignore the POS lowest bits, etc. */
6992 enum machine_mode is_mode = GET_MODE (inner);
6993 enum machine_mode inner_mode;
6994 enum machine_mode wanted_inner_mode;
6995 enum machine_mode wanted_inner_reg_mode = word_mode;
6996 enum machine_mode pos_mode = word_mode;
6997 enum machine_mode extraction_mode = word_mode;
6998 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6999 rtx new_rtx = 0;
7000 rtx orig_pos_rtx = pos_rtx;
7001 HOST_WIDE_INT orig_pos;
7003 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7005 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7006 consider just the QI as the memory to extract from.
7007 The subreg adds or removes high bits; its mode is
7008 irrelevant to the meaning of this extraction,
7009 since POS and LEN count from the lsb. */
7010 if (MEM_P (SUBREG_REG (inner)))
7011 is_mode = GET_MODE (SUBREG_REG (inner));
7012 inner = SUBREG_REG (inner);
7014 else if (GET_CODE (inner) == ASHIFT
7015 && CONST_INT_P (XEXP (inner, 1))
7016 && pos_rtx == 0 && pos == 0
7017 && len > UINTVAL (XEXP (inner, 1)))
7019 /* We're extracting the least significant bits of an rtx
7020 (ashift X (const_int C)), where LEN > C. Extract the
7021 least significant (LEN - C) bits of X, giving an rtx
7022 whose mode is MODE, then shift it left C times. */
7023 new_rtx = make_extraction (mode, XEXP (inner, 0),
7024 0, 0, len - INTVAL (XEXP (inner, 1)),
7025 unsignedp, in_dest, in_compare);
7026 if (new_rtx != 0)
7027 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7030 inner_mode = GET_MODE (inner);
7032 if (pos_rtx && CONST_INT_P (pos_rtx))
7033 pos = INTVAL (pos_rtx), pos_rtx = 0;
7035 /* See if this can be done without an extraction. We never can if the
7036 width of the field is not the same as that of some integer mode. For
7037 registers, we can only avoid the extraction if the position is at the
7038 low-order bit and this is either not in the destination or we have the
7039 appropriate STRICT_LOW_PART operation available.
7041 For MEM, we can avoid an extract if the field starts on an appropriate
7042 boundary and we can change the mode of the memory reference. */
7044 if (tmode != BLKmode
7045 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7046 && !MEM_P (inner)
7047 && (inner_mode == tmode
7048 || !REG_P (inner)
7049 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
7050 GET_MODE_BITSIZE (inner_mode))
7051 || reg_truncated_to_mode (tmode, inner))
7052 && (! in_dest
7053 || (REG_P (inner)
7054 && have_insn_for (STRICT_LOW_PART, tmode))))
7055 || (MEM_P (inner) && pos_rtx == 0
7056 && (pos
7057 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7058 : BITS_PER_UNIT)) == 0
7059 /* We can't do this if we are widening INNER_MODE (it
7060 may not be aligned, for one thing). */
7061 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
7062 && (inner_mode == tmode
7063 || (! mode_dependent_address_p (XEXP (inner, 0))
7064 && ! MEM_VOLATILE_P (inner))))))
7066 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7067 field. If the original and current mode are the same, we need not
7068 adjust the offset. Otherwise, we do if bytes big endian.
7070 If INNER is not a MEM, get a piece consisting of just the field
7071 of interest (in this case POS % BITS_PER_WORD must be 0). */
7073 if (MEM_P (inner))
7075 HOST_WIDE_INT offset;
7077 /* POS counts from lsb, but make OFFSET count in memory order. */
7078 if (BYTES_BIG_ENDIAN)
7079 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
7080 else
7081 offset = pos / BITS_PER_UNIT;
7083 new_rtx = adjust_address_nv (inner, tmode, offset);
7085 else if (REG_P (inner))
7087 if (tmode != inner_mode)
7089 /* We can't call gen_lowpart in a DEST since we
7090 always want a SUBREG (see below) and it would sometimes
7091 return a new hard register. */
7092 if (pos || in_dest)
7094 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7096 if (WORDS_BIG_ENDIAN
7097 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7098 final_word = ((GET_MODE_SIZE (inner_mode)
7099 - GET_MODE_SIZE (tmode))
7100 / UNITS_PER_WORD) - final_word;
7102 final_word *= UNITS_PER_WORD;
7103 if (BYTES_BIG_ENDIAN &&
7104 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7105 final_word += (GET_MODE_SIZE (inner_mode)
7106 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7108 /* Avoid creating invalid subregs, for example when
7109 simplifying (x>>32)&255. */
7110 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7111 return NULL_RTX;
7113 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7115 else
7116 new_rtx = gen_lowpart (tmode, inner);
7118 else
7119 new_rtx = inner;
7121 else
7122 new_rtx = force_to_mode (inner, tmode,
7123 len >= HOST_BITS_PER_WIDE_INT
7124 ? ~(unsigned HOST_WIDE_INT) 0
7125 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7128 /* If this extraction is going into the destination of a SET,
7129 make a STRICT_LOW_PART unless we made a MEM. */
7131 if (in_dest)
7132 return (MEM_P (new_rtx) ? new_rtx
7133 : (GET_CODE (new_rtx) != SUBREG
7134 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7135 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7137 if (mode == tmode)
7138 return new_rtx;
7140 if (CONST_INT_P (new_rtx)
7141 || GET_CODE (new_rtx) == CONST_DOUBLE)
7142 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7143 mode, new_rtx, tmode);
7145 /* If we know that no extraneous bits are set, and that the high
7146 bit is not set, convert the extraction to the cheaper of
7147 sign and zero extension, that are equivalent in these cases. */
7148 if (flag_expensive_optimizations
7149 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
7150 && ((nonzero_bits (new_rtx, tmode)
7151 & ~(((unsigned HOST_WIDE_INT)
7152 GET_MODE_MASK (tmode))
7153 >> 1))
7154 == 0)))
7156 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7157 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7159 /* Prefer ZERO_EXTENSION, since it gives more information to
7160 backends. */
7161 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7162 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7163 return temp;
7164 return temp1;
7167 /* Otherwise, sign- or zero-extend unless we already are in the
7168 proper mode. */
7170 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7171 mode, new_rtx));
7174 /* Unless this is a COMPARE or we have a funny memory reference,
7175 don't do anything with zero-extending field extracts starting at
7176 the low-order bit since they are simple AND operations. */
7177 if (pos_rtx == 0 && pos == 0 && ! in_dest
7178 && ! in_compare && unsignedp)
7179 return 0;
7181 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7182 if the position is not a constant and the length is not 1. In all
7183 other cases, we would only be going outside our object in cases when
7184 an original shift would have been undefined. */
7185 if (MEM_P (inner)
7186 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
7187 || (pos_rtx != 0 && len != 1)))
7188 return 0;
7190 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7191 and the mode for the result. */
7192 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7194 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7195 pos_mode = mode_for_extraction (EP_insv, 2);
7196 extraction_mode = mode_for_extraction (EP_insv, 3);
7199 if (! in_dest && unsignedp
7200 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7202 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7203 pos_mode = mode_for_extraction (EP_extzv, 3);
7204 extraction_mode = mode_for_extraction (EP_extzv, 0);
7207 if (! in_dest && ! unsignedp
7208 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7210 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7211 pos_mode = mode_for_extraction (EP_extv, 3);
7212 extraction_mode = mode_for_extraction (EP_extv, 0);
7215 /* Never narrow an object, since that might not be safe. */
7217 if (mode != VOIDmode
7218 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7219 extraction_mode = mode;
7221 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7222 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7223 pos_mode = GET_MODE (pos_rtx);
7225 /* If this is not from memory, the desired mode is the preferred mode
7226 for an extraction pattern's first input operand, or word_mode if there
7227 is none. */
7228 if (!MEM_P (inner))
7229 wanted_inner_mode = wanted_inner_reg_mode;
7230 else
7232 /* Be careful not to go beyond the extracted object and maintain the
7233 natural alignment of the memory. */
7234 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7235 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7236 > GET_MODE_BITSIZE (wanted_inner_mode))
7238 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7239 gcc_assert (wanted_inner_mode != VOIDmode);
7242 /* If we have to change the mode of memory and cannot, the desired mode
7243 is EXTRACTION_MODE. */
7244 if (inner_mode != wanted_inner_mode
7245 && (mode_dependent_address_p (XEXP (inner, 0))
7246 || MEM_VOLATILE_P (inner)
7247 || pos_rtx))
7248 wanted_inner_mode = extraction_mode;
7251 orig_pos = pos;
7253 if (BITS_BIG_ENDIAN)
7255 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7256 BITS_BIG_ENDIAN style. If position is constant, compute new
7257 position. Otherwise, build subtraction.
7258 Note that POS is relative to the mode of the original argument.
7259 If it's a MEM we need to recompute POS relative to that.
7260 However, if we're extracting from (or inserting into) a register,
7261 we want to recompute POS relative to wanted_inner_mode. */
7262 int width = (MEM_P (inner)
7263 ? GET_MODE_BITSIZE (is_mode)
7264 : GET_MODE_BITSIZE (wanted_inner_mode));
7266 if (pos_rtx == 0)
7267 pos = width - len - pos;
7268 else
7269 pos_rtx
7270 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7271 /* POS may be less than 0 now, but we check for that below.
7272 Note that it can only be less than 0 if !MEM_P (inner). */
7275 /* If INNER has a wider mode, and this is a constant extraction, try to
7276 make it smaller and adjust the byte to point to the byte containing
7277 the value. */
7278 if (wanted_inner_mode != VOIDmode
7279 && inner_mode != wanted_inner_mode
7280 && ! pos_rtx
7281 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7282 && MEM_P (inner)
7283 && ! mode_dependent_address_p (XEXP (inner, 0))
7284 && ! MEM_VOLATILE_P (inner))
7286 int offset = 0;
7288 /* The computations below will be correct if the machine is big
7289 endian in both bits and bytes or little endian in bits and bytes.
7290 If it is mixed, we must adjust. */
7292 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7293 adjust OFFSET to compensate. */
7294 if (BYTES_BIG_ENDIAN
7295 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7296 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7298 /* We can now move to the desired byte. */
7299 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7300 * GET_MODE_SIZE (wanted_inner_mode);
7301 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7303 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7304 && is_mode != wanted_inner_mode)
7305 offset = (GET_MODE_SIZE (is_mode)
7306 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7308 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7311 /* If INNER is not memory, get it into the proper mode. If we are changing
7312 its mode, POS must be a constant and smaller than the size of the new
7313 mode. */
7314 else if (!MEM_P (inner))
7316 /* On the LHS, don't create paradoxical subregs implicitely truncating
7317 the register unless TRULY_NOOP_TRUNCATION. */
7318 if (in_dest
7319 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
7320 GET_MODE_BITSIZE (wanted_inner_mode)))
7321 return NULL_RTX;
7323 if (GET_MODE (inner) != wanted_inner_mode
7324 && (pos_rtx != 0
7325 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7326 return NULL_RTX;
7328 if (orig_pos < 0)
7329 return NULL_RTX;
7331 inner = force_to_mode (inner, wanted_inner_mode,
7332 pos_rtx
7333 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7334 ? ~(unsigned HOST_WIDE_INT) 0
7335 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7336 << orig_pos),
7340 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7341 have to zero extend. Otherwise, we can just use a SUBREG. */
7342 if (pos_rtx != 0
7343 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7345 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7347 /* If we know that no extraneous bits are set, and that the high
7348 bit is not set, convert extraction to cheaper one - either
7349 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7350 cases. */
7351 if (flag_expensive_optimizations
7352 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7353 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7354 & ~(((unsigned HOST_WIDE_INT)
7355 GET_MODE_MASK (GET_MODE (pos_rtx)))
7356 >> 1))
7357 == 0)))
7359 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7361 /* Prefer ZERO_EXTENSION, since it gives more information to
7362 backends. */
7363 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7364 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7365 temp = temp1;
7367 pos_rtx = temp;
7369 else if (pos_rtx != 0
7370 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7371 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7373 /* Make POS_RTX unless we already have it and it is correct. If we don't
7374 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7375 be a CONST_INT. */
7376 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7377 pos_rtx = orig_pos_rtx;
7379 else if (pos_rtx == 0)
7380 pos_rtx = GEN_INT (pos);
7382 /* Make the required operation. See if we can use existing rtx. */
7383 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7384 extraction_mode, inner, GEN_INT (len), pos_rtx);
7385 if (! in_dest)
7386 new_rtx = gen_lowpart (mode, new_rtx);
7388 return new_rtx;
7391 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7392 with any other operations in X. Return X without that shift if so. */
7394 static rtx
7395 extract_left_shift (rtx x, int count)
7397 enum rtx_code code = GET_CODE (x);
7398 enum machine_mode mode = GET_MODE (x);
7399 rtx tem;
7401 switch (code)
7403 case ASHIFT:
7404 /* This is the shift itself. If it is wide enough, we will return
7405 either the value being shifted if the shift count is equal to
7406 COUNT or a shift for the difference. */
7407 if (CONST_INT_P (XEXP (x, 1))
7408 && INTVAL (XEXP (x, 1)) >= count)
7409 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7410 INTVAL (XEXP (x, 1)) - count);
7411 break;
7413 case NEG: case NOT:
7414 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7415 return simplify_gen_unary (code, mode, tem, mode);
7417 break;
7419 case PLUS: case IOR: case XOR: case AND:
7420 /* If we can safely shift this constant and we find the inner shift,
7421 make a new operation. */
7422 if (CONST_INT_P (XEXP (x, 1))
7423 && (UINTVAL (XEXP (x, 1))
7424 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7425 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7426 return simplify_gen_binary (code, mode, tem,
7427 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7429 break;
7431 default:
7432 break;
7435 return 0;
7438 /* Look at the expression rooted at X. Look for expressions
7439 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7440 Form these expressions.
7442 Return the new rtx, usually just X.
7444 Also, for machines like the VAX that don't have logical shift insns,
7445 try to convert logical to arithmetic shift operations in cases where
7446 they are equivalent. This undoes the canonicalizations to logical
7447 shifts done elsewhere.
7449 We try, as much as possible, to re-use rtl expressions to save memory.
7451 IN_CODE says what kind of expression we are processing. Normally, it is
7452 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7453 being kludges), it is MEM. When processing the arguments of a comparison
7454 or a COMPARE against zero, it is COMPARE. */
7456 static rtx
7457 make_compound_operation (rtx x, enum rtx_code in_code)
7459 enum rtx_code code = GET_CODE (x);
7460 enum machine_mode mode = GET_MODE (x);
7461 int mode_width = GET_MODE_BITSIZE (mode);
7462 rtx rhs, lhs;
7463 enum rtx_code next_code;
7464 int i, j;
7465 rtx new_rtx = 0;
7466 rtx tem;
7467 const char *fmt;
7469 /* Select the code to be used in recursive calls. Once we are inside an
7470 address, we stay there. If we have a comparison, set to COMPARE,
7471 but once inside, go back to our default of SET. */
7473 next_code = (code == MEM ? MEM
7474 : ((code == PLUS || code == MINUS)
7475 && SCALAR_INT_MODE_P (mode)) ? MEM
7476 : ((code == COMPARE || COMPARISON_P (x))
7477 && XEXP (x, 1) == const0_rtx) ? COMPARE
7478 : in_code == COMPARE ? SET : in_code);
7480 /* Process depending on the code of this operation. If NEW is set
7481 nonzero, it will be returned. */
7483 switch (code)
7485 case ASHIFT:
7486 /* Convert shifts by constants into multiplications if inside
7487 an address. */
7488 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7489 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7490 && INTVAL (XEXP (x, 1)) >= 0
7491 && SCALAR_INT_MODE_P (mode))
7493 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7494 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7496 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7497 if (GET_CODE (new_rtx) == NEG)
7499 new_rtx = XEXP (new_rtx, 0);
7500 multval = -multval;
7502 multval = trunc_int_for_mode (multval, mode);
7503 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7505 break;
7507 case PLUS:
7508 lhs = XEXP (x, 0);
7509 rhs = XEXP (x, 1);
7510 lhs = make_compound_operation (lhs, next_code);
7511 rhs = make_compound_operation (rhs, next_code);
7512 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7513 && SCALAR_INT_MODE_P (mode))
7515 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7516 XEXP (lhs, 1));
7517 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7519 else if (GET_CODE (lhs) == MULT
7520 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7522 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7523 simplify_gen_unary (NEG, mode,
7524 XEXP (lhs, 1),
7525 mode));
7526 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7528 else
7530 SUBST (XEXP (x, 0), lhs);
7531 SUBST (XEXP (x, 1), rhs);
7532 goto maybe_swap;
7534 x = gen_lowpart (mode, new_rtx);
7535 goto maybe_swap;
7537 case MINUS:
7538 lhs = XEXP (x, 0);
7539 rhs = XEXP (x, 1);
7540 lhs = make_compound_operation (lhs, next_code);
7541 rhs = make_compound_operation (rhs, next_code);
7542 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7543 && SCALAR_INT_MODE_P (mode))
7545 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7546 XEXP (rhs, 1));
7547 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7549 else if (GET_CODE (rhs) == MULT
7550 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7552 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7553 simplify_gen_unary (NEG, mode,
7554 XEXP (rhs, 1),
7555 mode));
7556 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7558 else
7560 SUBST (XEXP (x, 0), lhs);
7561 SUBST (XEXP (x, 1), rhs);
7562 return x;
7564 return gen_lowpart (mode, new_rtx);
7566 case AND:
7567 /* If the second operand is not a constant, we can't do anything
7568 with it. */
7569 if (!CONST_INT_P (XEXP (x, 1)))
7570 break;
7572 /* If the constant is a power of two minus one and the first operand
7573 is a logical right shift, make an extraction. */
7574 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7575 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7577 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7578 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7579 0, in_code == COMPARE);
7582 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7583 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7584 && subreg_lowpart_p (XEXP (x, 0))
7585 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7586 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7588 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7589 next_code);
7590 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7591 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7592 0, in_code == COMPARE);
7594 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7595 else if ((GET_CODE (XEXP (x, 0)) == XOR
7596 || GET_CODE (XEXP (x, 0)) == IOR)
7597 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7598 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7599 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7601 /* Apply the distributive law, and then try to make extractions. */
7602 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7603 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7604 XEXP (x, 1)),
7605 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7606 XEXP (x, 1)));
7607 new_rtx = make_compound_operation (new_rtx, in_code);
7610 /* If we are have (and (rotate X C) M) and C is larger than the number
7611 of bits in M, this is an extraction. */
7613 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7614 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7615 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7616 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7618 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7619 new_rtx = make_extraction (mode, new_rtx,
7620 (GET_MODE_BITSIZE (mode)
7621 - INTVAL (XEXP (XEXP (x, 0), 1))),
7622 NULL_RTX, i, 1, 0, in_code == COMPARE);
7625 /* On machines without logical shifts, if the operand of the AND is
7626 a logical shift and our mask turns off all the propagated sign
7627 bits, we can replace the logical shift with an arithmetic shift. */
7628 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7629 && !have_insn_for (LSHIFTRT, mode)
7630 && have_insn_for (ASHIFTRT, mode)
7631 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7632 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7633 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7634 && mode_width <= HOST_BITS_PER_WIDE_INT)
7636 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7638 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7639 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7640 SUBST (XEXP (x, 0),
7641 gen_rtx_ASHIFTRT (mode,
7642 make_compound_operation
7643 (XEXP (XEXP (x, 0), 0), next_code),
7644 XEXP (XEXP (x, 0), 1)));
7647 /* If the constant is one less than a power of two, this might be
7648 representable by an extraction even if no shift is present.
7649 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7650 we are in a COMPARE. */
7651 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7652 new_rtx = make_extraction (mode,
7653 make_compound_operation (XEXP (x, 0),
7654 next_code),
7655 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7657 /* If we are in a comparison and this is an AND with a power of two,
7658 convert this into the appropriate bit extract. */
7659 else if (in_code == COMPARE
7660 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7661 new_rtx = make_extraction (mode,
7662 make_compound_operation (XEXP (x, 0),
7663 next_code),
7664 i, NULL_RTX, 1, 1, 0, 1);
7666 break;
7668 case LSHIFTRT:
7669 /* If the sign bit is known to be zero, replace this with an
7670 arithmetic shift. */
7671 if (have_insn_for (ASHIFTRT, mode)
7672 && ! have_insn_for (LSHIFTRT, mode)
7673 && mode_width <= HOST_BITS_PER_WIDE_INT
7674 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7676 new_rtx = gen_rtx_ASHIFTRT (mode,
7677 make_compound_operation (XEXP (x, 0),
7678 next_code),
7679 XEXP (x, 1));
7680 break;
7683 /* ... fall through ... */
7685 case ASHIFTRT:
7686 lhs = XEXP (x, 0);
7687 rhs = XEXP (x, 1);
7689 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7690 this is a SIGN_EXTRACT. */
7691 if (CONST_INT_P (rhs)
7692 && GET_CODE (lhs) == ASHIFT
7693 && CONST_INT_P (XEXP (lhs, 1))
7694 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7695 && INTVAL (rhs) < mode_width)
7697 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7698 new_rtx = make_extraction (mode, new_rtx,
7699 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7700 NULL_RTX, mode_width - INTVAL (rhs),
7701 code == LSHIFTRT, 0, in_code == COMPARE);
7702 break;
7705 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7706 If so, try to merge the shifts into a SIGN_EXTEND. We could
7707 also do this for some cases of SIGN_EXTRACT, but it doesn't
7708 seem worth the effort; the case checked for occurs on Alpha. */
7710 if (!OBJECT_P (lhs)
7711 && ! (GET_CODE (lhs) == SUBREG
7712 && (OBJECT_P (SUBREG_REG (lhs))))
7713 && CONST_INT_P (rhs)
7714 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7715 && INTVAL (rhs) < mode_width
7716 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7717 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7718 0, NULL_RTX, mode_width - INTVAL (rhs),
7719 code == LSHIFTRT, 0, in_code == COMPARE);
7721 break;
7723 case SUBREG:
7724 /* Call ourselves recursively on the inner expression. If we are
7725 narrowing the object and it has a different RTL code from
7726 what it originally did, do this SUBREG as a force_to_mode. */
7728 rtx inner = SUBREG_REG (x), simplified;
7730 tem = make_compound_operation (inner, in_code);
7732 simplified
7733 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7734 if (simplified)
7735 tem = simplified;
7737 if (GET_CODE (tem) != GET_CODE (inner)
7738 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7739 && subreg_lowpart_p (x))
7741 rtx newer
7742 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7744 /* If we have something other than a SUBREG, we might have
7745 done an expansion, so rerun ourselves. */
7746 if (GET_CODE (newer) != SUBREG)
7747 newer = make_compound_operation (newer, in_code);
7749 /* force_to_mode can expand compounds. If it just re-expanded the
7750 compound, use gen_lowpart to convert to the desired mode. */
7751 if (rtx_equal_p (newer, x)
7752 /* Likewise if it re-expanded the compound only partially.
7753 This happens for SUBREG of ZERO_EXTRACT if they extract
7754 the same number of bits. */
7755 || (GET_CODE (newer) == SUBREG
7756 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7757 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7758 && GET_CODE (inner) == AND
7759 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7760 return gen_lowpart (GET_MODE (x), tem);
7762 return newer;
7765 if (simplified)
7766 return tem;
7768 break;
7770 default:
7771 break;
7774 if (new_rtx)
7776 x = gen_lowpart (mode, new_rtx);
7777 code = GET_CODE (x);
7780 /* Now recursively process each operand of this operation. */
7781 fmt = GET_RTX_FORMAT (code);
7782 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7783 if (fmt[i] == 'e')
7785 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7786 SUBST (XEXP (x, i), new_rtx);
7788 else if (fmt[i] == 'E')
7789 for (j = 0; j < XVECLEN (x, i); j++)
7791 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7792 SUBST (XVECEXP (x, i, j), new_rtx);
7795 maybe_swap:
7796 /* If this is a commutative operation, the changes to the operands
7797 may have made it noncanonical. */
7798 if (COMMUTATIVE_ARITH_P (x)
7799 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7801 tem = XEXP (x, 0);
7802 SUBST (XEXP (x, 0), XEXP (x, 1));
7803 SUBST (XEXP (x, 1), tem);
7806 return x;
7809 /* Given M see if it is a value that would select a field of bits
7810 within an item, but not the entire word. Return -1 if not.
7811 Otherwise, return the starting position of the field, where 0 is the
7812 low-order bit.
7814 *PLEN is set to the length of the field. */
7816 static int
7817 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7819 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7820 int pos = m ? ctz_hwi (m) : -1;
7821 int len = 0;
7823 if (pos >= 0)
7824 /* Now shift off the low-order zero bits and see if we have a
7825 power of two minus 1. */
7826 len = exact_log2 ((m >> pos) + 1);
7828 if (len <= 0)
7829 pos = -1;
7831 *plen = len;
7832 return pos;
7835 /* If X refers to a register that equals REG in value, replace these
7836 references with REG. */
7837 static rtx
7838 canon_reg_for_combine (rtx x, rtx reg)
7840 rtx op0, op1, op2;
7841 const char *fmt;
7842 int i;
7843 bool copied;
7845 enum rtx_code code = GET_CODE (x);
7846 switch (GET_RTX_CLASS (code))
7848 case RTX_UNARY:
7849 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7850 if (op0 != XEXP (x, 0))
7851 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7852 GET_MODE (reg));
7853 break;
7855 case RTX_BIN_ARITH:
7856 case RTX_COMM_ARITH:
7857 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7858 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7859 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7860 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7861 break;
7863 case RTX_COMPARE:
7864 case RTX_COMM_COMPARE:
7865 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7866 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7867 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7868 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7869 GET_MODE (op0), op0, op1);
7870 break;
7872 case RTX_TERNARY:
7873 case RTX_BITFIELD_OPS:
7874 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7875 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7876 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7877 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7878 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7879 GET_MODE (op0), op0, op1, op2);
7881 case RTX_OBJ:
7882 if (REG_P (x))
7884 if (rtx_equal_p (get_last_value (reg), x)
7885 || rtx_equal_p (reg, get_last_value (x)))
7886 return reg;
7887 else
7888 break;
7891 /* fall through */
7893 default:
7894 fmt = GET_RTX_FORMAT (code);
7895 copied = false;
7896 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7897 if (fmt[i] == 'e')
7899 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7900 if (op != XEXP (x, i))
7902 if (!copied)
7904 copied = true;
7905 x = copy_rtx (x);
7907 XEXP (x, i) = op;
7910 else if (fmt[i] == 'E')
7912 int j;
7913 for (j = 0; j < XVECLEN (x, i); j++)
7915 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7916 if (op != XVECEXP (x, i, j))
7918 if (!copied)
7920 copied = true;
7921 x = copy_rtx (x);
7923 XVECEXP (x, i, j) = op;
7928 break;
7931 return x;
7934 /* Return X converted to MODE. If the value is already truncated to
7935 MODE we can just return a subreg even though in the general case we
7936 would need an explicit truncation. */
7938 static rtx
7939 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7941 if (!CONST_INT_P (x)
7942 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7943 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7944 GET_MODE_BITSIZE (GET_MODE (x)))
7945 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7947 /* Bit-cast X into an integer mode. */
7948 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7949 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7950 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7951 x, GET_MODE (x));
7954 return gen_lowpart (mode, x);
7957 /* See if X can be simplified knowing that we will only refer to it in
7958 MODE and will only refer to those bits that are nonzero in MASK.
7959 If other bits are being computed or if masking operations are done
7960 that select a superset of the bits in MASK, they can sometimes be
7961 ignored.
7963 Return a possibly simplified expression, but always convert X to
7964 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7966 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7967 are all off in X. This is used when X will be complemented, by either
7968 NOT, NEG, or XOR. */
7970 static rtx
7971 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7972 int just_select)
7974 enum rtx_code code = GET_CODE (x);
7975 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7976 enum machine_mode op_mode;
7977 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7978 rtx op0, op1, temp;
7980 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7981 code below will do the wrong thing since the mode of such an
7982 expression is VOIDmode.
7984 Also do nothing if X is a CLOBBER; this can happen if X was
7985 the return value from a call to gen_lowpart. */
7986 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7987 return x;
7989 /* We want to perform the operation is its present mode unless we know
7990 that the operation is valid in MODE, in which case we do the operation
7991 in MODE. */
7992 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7993 && have_insn_for (code, mode))
7994 ? mode : GET_MODE (x));
7996 /* It is not valid to do a right-shift in a narrower mode
7997 than the one it came in with. */
7998 if ((code == LSHIFTRT || code == ASHIFTRT)
7999 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
8000 op_mode = GET_MODE (x);
8002 /* Truncate MASK to fit OP_MODE. */
8003 if (op_mode)
8004 mask &= GET_MODE_MASK (op_mode);
8006 /* When we have an arithmetic operation, or a shift whose count we
8007 do not know, we need to assume that all bits up to the highest-order
8008 bit in MASK will be needed. This is how we form such a mask. */
8009 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8010 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8011 else
8012 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8013 - 1);
8015 /* Determine what bits of X are guaranteed to be (non)zero. */
8016 nonzero = nonzero_bits (x, mode);
8018 /* If none of the bits in X are needed, return a zero. */
8019 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8020 x = const0_rtx;
8022 /* If X is a CONST_INT, return a new one. Do this here since the
8023 test below will fail. */
8024 if (CONST_INT_P (x))
8026 if (SCALAR_INT_MODE_P (mode))
8027 return gen_int_mode (INTVAL (x) & mask, mode);
8028 else
8030 x = GEN_INT (INTVAL (x) & mask);
8031 return gen_lowpart_common (mode, x);
8035 /* If X is narrower than MODE and we want all the bits in X's mode, just
8036 get X in the proper mode. */
8037 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8038 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8039 return gen_lowpart (mode, x);
8041 /* We can ignore the effect of a SUBREG if it narrows the mode or
8042 if the constant masks to zero all the bits the mode doesn't have. */
8043 if (GET_CODE (x) == SUBREG
8044 && subreg_lowpart_p (x)
8045 && ((GET_MODE_SIZE (GET_MODE (x))
8046 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8047 || (0 == (mask
8048 & GET_MODE_MASK (GET_MODE (x))
8049 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8050 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8052 /* The arithmetic simplifications here only work for scalar integer modes. */
8053 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8054 return gen_lowpart_or_truncate (mode, x);
8056 switch (code)
8058 case CLOBBER:
8059 /* If X is a (clobber (const_int)), return it since we know we are
8060 generating something that won't match. */
8061 return x;
8063 case SIGN_EXTEND:
8064 case ZERO_EXTEND:
8065 case ZERO_EXTRACT:
8066 case SIGN_EXTRACT:
8067 x = expand_compound_operation (x);
8068 if (GET_CODE (x) != code)
8069 return force_to_mode (x, mode, mask, next_select);
8070 break;
8072 case TRUNCATE:
8073 /* Similarly for a truncate. */
8074 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8076 case AND:
8077 /* If this is an AND with a constant, convert it into an AND
8078 whose constant is the AND of that constant with MASK. If it
8079 remains an AND of MASK, delete it since it is redundant. */
8081 if (CONST_INT_P (XEXP (x, 1)))
8083 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8084 mask & INTVAL (XEXP (x, 1)));
8086 /* If X is still an AND, see if it is an AND with a mask that
8087 is just some low-order bits. If so, and it is MASK, we don't
8088 need it. */
8090 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8091 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8092 == mask))
8093 x = XEXP (x, 0);
8095 /* If it remains an AND, try making another AND with the bits
8096 in the mode mask that aren't in MASK turned on. If the
8097 constant in the AND is wide enough, this might make a
8098 cheaper constant. */
8100 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8101 && GET_MODE_MASK (GET_MODE (x)) != mask
8102 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
8104 unsigned HOST_WIDE_INT cval
8105 = UINTVAL (XEXP (x, 1))
8106 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8107 int width = GET_MODE_BITSIZE (GET_MODE (x));
8108 rtx y;
8110 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8111 number, sign extend it. */
8112 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8113 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8114 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8116 y = simplify_gen_binary (AND, GET_MODE (x),
8117 XEXP (x, 0), GEN_INT (cval));
8118 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8119 < rtx_cost (x, SET, optimize_this_for_speed_p))
8120 x = y;
8123 break;
8126 goto binop;
8128 case PLUS:
8129 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8130 low-order bits (as in an alignment operation) and FOO is already
8131 aligned to that boundary, mask C1 to that boundary as well.
8132 This may eliminate that PLUS and, later, the AND. */
8135 unsigned int width = GET_MODE_BITSIZE (mode);
8136 unsigned HOST_WIDE_INT smask = mask;
8138 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8139 number, sign extend it. */
8141 if (width < HOST_BITS_PER_WIDE_INT
8142 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8143 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8145 if (CONST_INT_P (XEXP (x, 1))
8146 && exact_log2 (- smask) >= 0
8147 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8148 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8149 return force_to_mode (plus_constant (XEXP (x, 0),
8150 (INTVAL (XEXP (x, 1)) & smask)),
8151 mode, smask, next_select);
8154 /* ... fall through ... */
8156 case MULT:
8157 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8158 most significant bit in MASK since carries from those bits will
8159 affect the bits we are interested in. */
8160 mask = fuller_mask;
8161 goto binop;
8163 case MINUS:
8164 /* If X is (minus C Y) where C's least set bit is larger than any bit
8165 in the mask, then we may replace with (neg Y). */
8166 if (CONST_INT_P (XEXP (x, 0))
8167 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8168 & -INTVAL (XEXP (x, 0))))
8169 > mask))
8171 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8172 GET_MODE (x));
8173 return force_to_mode (x, mode, mask, next_select);
8176 /* Similarly, if C contains every bit in the fuller_mask, then we may
8177 replace with (not Y). */
8178 if (CONST_INT_P (XEXP (x, 0))
8179 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8181 x = simplify_gen_unary (NOT, GET_MODE (x),
8182 XEXP (x, 1), GET_MODE (x));
8183 return force_to_mode (x, mode, mask, next_select);
8186 mask = fuller_mask;
8187 goto binop;
8189 case IOR:
8190 case XOR:
8191 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8192 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8193 operation which may be a bitfield extraction. Ensure that the
8194 constant we form is not wider than the mode of X. */
8196 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8197 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8198 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8199 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8200 && CONST_INT_P (XEXP (x, 1))
8201 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8202 + floor_log2 (INTVAL (XEXP (x, 1))))
8203 < GET_MODE_BITSIZE (GET_MODE (x)))
8204 && (UINTVAL (XEXP (x, 1))
8205 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8207 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8208 << INTVAL (XEXP (XEXP (x, 0), 1)));
8209 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8210 XEXP (XEXP (x, 0), 0), temp);
8211 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8212 XEXP (XEXP (x, 0), 1));
8213 return force_to_mode (x, mode, mask, next_select);
8216 binop:
8217 /* For most binary operations, just propagate into the operation and
8218 change the mode if we have an operation of that mode. */
8220 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8221 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8223 /* If we ended up truncating both operands, truncate the result of the
8224 operation instead. */
8225 if (GET_CODE (op0) == TRUNCATE
8226 && GET_CODE (op1) == TRUNCATE)
8228 op0 = XEXP (op0, 0);
8229 op1 = XEXP (op1, 0);
8232 op0 = gen_lowpart_or_truncate (op_mode, op0);
8233 op1 = gen_lowpart_or_truncate (op_mode, op1);
8235 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8236 x = simplify_gen_binary (code, op_mode, op0, op1);
8237 break;
8239 case ASHIFT:
8240 /* For left shifts, do the same, but just for the first operand.
8241 However, we cannot do anything with shifts where we cannot
8242 guarantee that the counts are smaller than the size of the mode
8243 because such a count will have a different meaning in a
8244 wider mode. */
8246 if (! (CONST_INT_P (XEXP (x, 1))
8247 && INTVAL (XEXP (x, 1)) >= 0
8248 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
8249 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8250 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8251 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
8252 break;
8254 /* If the shift count is a constant and we can do arithmetic in
8255 the mode of the shift, refine which bits we need. Otherwise, use the
8256 conservative form of the mask. */
8257 if (CONST_INT_P (XEXP (x, 1))
8258 && INTVAL (XEXP (x, 1)) >= 0
8259 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
8260 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8261 mask >>= INTVAL (XEXP (x, 1));
8262 else
8263 mask = fuller_mask;
8265 op0 = gen_lowpart_or_truncate (op_mode,
8266 force_to_mode (XEXP (x, 0), op_mode,
8267 mask, next_select));
8269 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8270 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8271 break;
8273 case LSHIFTRT:
8274 /* Here we can only do something if the shift count is a constant,
8275 this shift constant is valid for the host, and we can do arithmetic
8276 in OP_MODE. */
8278 if (CONST_INT_P (XEXP (x, 1))
8279 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8280 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8282 rtx inner = XEXP (x, 0);
8283 unsigned HOST_WIDE_INT inner_mask;
8285 /* Select the mask of the bits we need for the shift operand. */
8286 inner_mask = mask << INTVAL (XEXP (x, 1));
8288 /* We can only change the mode of the shift if we can do arithmetic
8289 in the mode of the shift and INNER_MASK is no wider than the
8290 width of X's mode. */
8291 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8292 op_mode = GET_MODE (x);
8294 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8296 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8297 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8300 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8301 shift and AND produces only copies of the sign bit (C2 is one less
8302 than a power of two), we can do this with just a shift. */
8304 if (GET_CODE (x) == LSHIFTRT
8305 && CONST_INT_P (XEXP (x, 1))
8306 /* The shift puts one of the sign bit copies in the least significant
8307 bit. */
8308 && ((INTVAL (XEXP (x, 1))
8309 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8310 >= GET_MODE_BITSIZE (GET_MODE (x)))
8311 && exact_log2 (mask + 1) >= 0
8312 /* Number of bits left after the shift must be more than the mask
8313 needs. */
8314 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8315 <= GET_MODE_BITSIZE (GET_MODE (x)))
8316 /* Must be more sign bit copies than the mask needs. */
8317 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8318 >= exact_log2 (mask + 1)))
8319 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8320 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
8321 - exact_log2 (mask + 1)));
8323 goto shiftrt;
8325 case ASHIFTRT:
8326 /* If we are just looking for the sign bit, we don't need this shift at
8327 all, even if it has a variable count. */
8328 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8329 && (mask == ((unsigned HOST_WIDE_INT) 1
8330 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8331 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8333 /* If this is a shift by a constant, get a mask that contains those bits
8334 that are not copies of the sign bit. We then have two cases: If
8335 MASK only includes those bits, this can be a logical shift, which may
8336 allow simplifications. If MASK is a single-bit field not within
8337 those bits, we are requesting a copy of the sign bit and hence can
8338 shift the sign bit to the appropriate location. */
8340 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8341 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8343 int i;
8345 /* If the considered data is wider than HOST_WIDE_INT, we can't
8346 represent a mask for all its bits in a single scalar.
8347 But we only care about the lower bits, so calculate these. */
8349 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8351 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8353 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8354 is the number of bits a full-width mask would have set.
8355 We need only shift if these are fewer than nonzero can
8356 hold. If not, we must keep all bits set in nonzero. */
8358 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8359 < HOST_BITS_PER_WIDE_INT)
8360 nonzero >>= INTVAL (XEXP (x, 1))
8361 + HOST_BITS_PER_WIDE_INT
8362 - GET_MODE_BITSIZE (GET_MODE (x)) ;
8364 else
8366 nonzero = GET_MODE_MASK (GET_MODE (x));
8367 nonzero >>= INTVAL (XEXP (x, 1));
8370 if ((mask & ~nonzero) == 0)
8372 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8373 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8374 if (GET_CODE (x) != ASHIFTRT)
8375 return force_to_mode (x, mode, mask, next_select);
8378 else if ((i = exact_log2 (mask)) >= 0)
8380 x = simplify_shift_const
8381 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8382 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8384 if (GET_CODE (x) != ASHIFTRT)
8385 return force_to_mode (x, mode, mask, next_select);
8389 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8390 even if the shift count isn't a constant. */
8391 if (mask == 1)
8392 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8393 XEXP (x, 0), XEXP (x, 1));
8395 shiftrt:
8397 /* If this is a zero- or sign-extension operation that just affects bits
8398 we don't care about, remove it. Be sure the call above returned
8399 something that is still a shift. */
8401 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8402 && CONST_INT_P (XEXP (x, 1))
8403 && INTVAL (XEXP (x, 1)) >= 0
8404 && (INTVAL (XEXP (x, 1))
8405 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8406 && GET_CODE (XEXP (x, 0)) == ASHIFT
8407 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8408 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8409 next_select);
8411 break;
8413 case ROTATE:
8414 case ROTATERT:
8415 /* If the shift count is constant and we can do computations
8416 in the mode of X, compute where the bits we care about are.
8417 Otherwise, we can't do anything. Don't change the mode of
8418 the shift or propagate MODE into the shift, though. */
8419 if (CONST_INT_P (XEXP (x, 1))
8420 && INTVAL (XEXP (x, 1)) >= 0)
8422 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8423 GET_MODE (x), GEN_INT (mask),
8424 XEXP (x, 1));
8425 if (temp && CONST_INT_P (temp))
8426 SUBST (XEXP (x, 0),
8427 force_to_mode (XEXP (x, 0), GET_MODE (x),
8428 INTVAL (temp), next_select));
8430 break;
8432 case NEG:
8433 /* If we just want the low-order bit, the NEG isn't needed since it
8434 won't change the low-order bit. */
8435 if (mask == 1)
8436 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8438 /* We need any bits less significant than the most significant bit in
8439 MASK since carries from those bits will affect the bits we are
8440 interested in. */
8441 mask = fuller_mask;
8442 goto unop;
8444 case NOT:
8445 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8446 same as the XOR case above. Ensure that the constant we form is not
8447 wider than the mode of X. */
8449 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8450 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8451 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8452 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8453 < GET_MODE_BITSIZE (GET_MODE (x)))
8454 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8456 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8457 GET_MODE (x));
8458 temp = simplify_gen_binary (XOR, GET_MODE (x),
8459 XEXP (XEXP (x, 0), 0), temp);
8460 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8461 temp, XEXP (XEXP (x, 0), 1));
8463 return force_to_mode (x, mode, mask, next_select);
8466 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8467 use the full mask inside the NOT. */
8468 mask = fuller_mask;
8470 unop:
8471 op0 = gen_lowpart_or_truncate (op_mode,
8472 force_to_mode (XEXP (x, 0), mode, mask,
8473 next_select));
8474 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8475 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8476 break;
8478 case NE:
8479 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8480 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8481 which is equal to STORE_FLAG_VALUE. */
8482 if ((mask & ~STORE_FLAG_VALUE) == 0
8483 && XEXP (x, 1) == const0_rtx
8484 && GET_MODE (XEXP (x, 0)) == mode
8485 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8486 && (nonzero_bits (XEXP (x, 0), mode)
8487 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8488 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8490 break;
8492 case IF_THEN_ELSE:
8493 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8494 written in a narrower mode. We play it safe and do not do so. */
8496 SUBST (XEXP (x, 1),
8497 gen_lowpart_or_truncate (GET_MODE (x),
8498 force_to_mode (XEXP (x, 1), mode,
8499 mask, next_select)));
8500 SUBST (XEXP (x, 2),
8501 gen_lowpart_or_truncate (GET_MODE (x),
8502 force_to_mode (XEXP (x, 2), mode,
8503 mask, next_select)));
8504 break;
8506 default:
8507 break;
8510 /* Ensure we return a value of the proper mode. */
8511 return gen_lowpart_or_truncate (mode, x);
8514 /* Return nonzero if X is an expression that has one of two values depending on
8515 whether some other value is zero or nonzero. In that case, we return the
8516 value that is being tested, *PTRUE is set to the value if the rtx being
8517 returned has a nonzero value, and *PFALSE is set to the other alternative.
8519 If we return zero, we set *PTRUE and *PFALSE to X. */
8521 static rtx
8522 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8524 enum machine_mode mode = GET_MODE (x);
8525 enum rtx_code code = GET_CODE (x);
8526 rtx cond0, cond1, true0, true1, false0, false1;
8527 unsigned HOST_WIDE_INT nz;
8529 /* If we are comparing a value against zero, we are done. */
8530 if ((code == NE || code == EQ)
8531 && XEXP (x, 1) == const0_rtx)
8533 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8534 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8535 return XEXP (x, 0);
8538 /* If this is a unary operation whose operand has one of two values, apply
8539 our opcode to compute those values. */
8540 else if (UNARY_P (x)
8541 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8543 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8544 *pfalse = simplify_gen_unary (code, mode, false0,
8545 GET_MODE (XEXP (x, 0)));
8546 return cond0;
8549 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8550 make can't possibly match and would suppress other optimizations. */
8551 else if (code == COMPARE)
8554 /* If this is a binary operation, see if either side has only one of two
8555 values. If either one does or if both do and they are conditional on
8556 the same value, compute the new true and false values. */
8557 else if (BINARY_P (x))
8559 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8560 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8562 if ((cond0 != 0 || cond1 != 0)
8563 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8565 /* If if_then_else_cond returned zero, then true/false are the
8566 same rtl. We must copy one of them to prevent invalid rtl
8567 sharing. */
8568 if (cond0 == 0)
8569 true0 = copy_rtx (true0);
8570 else if (cond1 == 0)
8571 true1 = copy_rtx (true1);
8573 if (COMPARISON_P (x))
8575 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8576 true0, true1);
8577 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8578 false0, false1);
8580 else
8582 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8583 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8586 return cond0 ? cond0 : cond1;
8589 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8590 operands is zero when the other is nonzero, and vice-versa,
8591 and STORE_FLAG_VALUE is 1 or -1. */
8593 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8594 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8595 || code == UMAX)
8596 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8598 rtx op0 = XEXP (XEXP (x, 0), 1);
8599 rtx op1 = XEXP (XEXP (x, 1), 1);
8601 cond0 = XEXP (XEXP (x, 0), 0);
8602 cond1 = XEXP (XEXP (x, 1), 0);
8604 if (COMPARISON_P (cond0)
8605 && COMPARISON_P (cond1)
8606 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8607 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8608 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8609 || ((swap_condition (GET_CODE (cond0))
8610 == reversed_comparison_code (cond1, NULL))
8611 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8612 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8613 && ! side_effects_p (x))
8615 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8616 *pfalse = simplify_gen_binary (MULT, mode,
8617 (code == MINUS
8618 ? simplify_gen_unary (NEG, mode,
8619 op1, mode)
8620 : op1),
8621 const_true_rtx);
8622 return cond0;
8626 /* Similarly for MULT, AND and UMIN, except that for these the result
8627 is always zero. */
8628 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8629 && (code == MULT || code == AND || code == UMIN)
8630 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8632 cond0 = XEXP (XEXP (x, 0), 0);
8633 cond1 = XEXP (XEXP (x, 1), 0);
8635 if (COMPARISON_P (cond0)
8636 && COMPARISON_P (cond1)
8637 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8638 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8639 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8640 || ((swap_condition (GET_CODE (cond0))
8641 == reversed_comparison_code (cond1, NULL))
8642 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8643 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8644 && ! side_effects_p (x))
8646 *ptrue = *pfalse = const0_rtx;
8647 return cond0;
8652 else if (code == IF_THEN_ELSE)
8654 /* If we have IF_THEN_ELSE already, extract the condition and
8655 canonicalize it if it is NE or EQ. */
8656 cond0 = XEXP (x, 0);
8657 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8658 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8659 return XEXP (cond0, 0);
8660 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8662 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8663 return XEXP (cond0, 0);
8665 else
8666 return cond0;
8669 /* If X is a SUBREG, we can narrow both the true and false values
8670 if the inner expression, if there is a condition. */
8671 else if (code == SUBREG
8672 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8673 &true0, &false0)))
8675 true0 = simplify_gen_subreg (mode, true0,
8676 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8677 false0 = simplify_gen_subreg (mode, false0,
8678 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8679 if (true0 && false0)
8681 *ptrue = true0;
8682 *pfalse = false0;
8683 return cond0;
8687 /* If X is a constant, this isn't special and will cause confusions
8688 if we treat it as such. Likewise if it is equivalent to a constant. */
8689 else if (CONSTANT_P (x)
8690 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8693 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8694 will be least confusing to the rest of the compiler. */
8695 else if (mode == BImode)
8697 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8698 return x;
8701 /* If X is known to be either 0 or -1, those are the true and
8702 false values when testing X. */
8703 else if (x == constm1_rtx || x == const0_rtx
8704 || (mode != VOIDmode
8705 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8707 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8708 return x;
8711 /* Likewise for 0 or a single bit. */
8712 else if (SCALAR_INT_MODE_P (mode)
8713 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8714 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8716 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8717 return x;
8720 /* Otherwise fail; show no condition with true and false values the same. */
8721 *ptrue = *pfalse = x;
8722 return 0;
8725 /* Return the value of expression X given the fact that condition COND
8726 is known to be true when applied to REG as its first operand and VAL
8727 as its second. X is known to not be shared and so can be modified in
8728 place.
8730 We only handle the simplest cases, and specifically those cases that
8731 arise with IF_THEN_ELSE expressions. */
8733 static rtx
8734 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8736 enum rtx_code code = GET_CODE (x);
8737 rtx temp;
8738 const char *fmt;
8739 int i, j;
8741 if (side_effects_p (x))
8742 return x;
8744 /* If either operand of the condition is a floating point value,
8745 then we have to avoid collapsing an EQ comparison. */
8746 if (cond == EQ
8747 && rtx_equal_p (x, reg)
8748 && ! FLOAT_MODE_P (GET_MODE (x))
8749 && ! FLOAT_MODE_P (GET_MODE (val)))
8750 return val;
8752 if (cond == UNEQ && rtx_equal_p (x, reg))
8753 return val;
8755 /* If X is (abs REG) and we know something about REG's relationship
8756 with zero, we may be able to simplify this. */
8758 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8759 switch (cond)
8761 case GE: case GT: case EQ:
8762 return XEXP (x, 0);
8763 case LT: case LE:
8764 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8765 XEXP (x, 0),
8766 GET_MODE (XEXP (x, 0)));
8767 default:
8768 break;
8771 /* The only other cases we handle are MIN, MAX, and comparisons if the
8772 operands are the same as REG and VAL. */
8774 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8776 if (rtx_equal_p (XEXP (x, 0), val))
8777 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8779 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8781 if (COMPARISON_P (x))
8783 if (comparison_dominates_p (cond, code))
8784 return const_true_rtx;
8786 code = reversed_comparison_code (x, NULL);
8787 if (code != UNKNOWN
8788 && comparison_dominates_p (cond, code))
8789 return const0_rtx;
8790 else
8791 return x;
8793 else if (code == SMAX || code == SMIN
8794 || code == UMIN || code == UMAX)
8796 int unsignedp = (code == UMIN || code == UMAX);
8798 /* Do not reverse the condition when it is NE or EQ.
8799 This is because we cannot conclude anything about
8800 the value of 'SMAX (x, y)' when x is not equal to y,
8801 but we can when x equals y. */
8802 if ((code == SMAX || code == UMAX)
8803 && ! (cond == EQ || cond == NE))
8804 cond = reverse_condition (cond);
8806 switch (cond)
8808 case GE: case GT:
8809 return unsignedp ? x : XEXP (x, 1);
8810 case LE: case LT:
8811 return unsignedp ? x : XEXP (x, 0);
8812 case GEU: case GTU:
8813 return unsignedp ? XEXP (x, 1) : x;
8814 case LEU: case LTU:
8815 return unsignedp ? XEXP (x, 0) : x;
8816 default:
8817 break;
8822 else if (code == SUBREG)
8824 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8825 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8827 if (SUBREG_REG (x) != r)
8829 /* We must simplify subreg here, before we lose track of the
8830 original inner_mode. */
8831 new_rtx = simplify_subreg (GET_MODE (x), r,
8832 inner_mode, SUBREG_BYTE (x));
8833 if (new_rtx)
8834 return new_rtx;
8835 else
8836 SUBST (SUBREG_REG (x), r);
8839 return x;
8841 /* We don't have to handle SIGN_EXTEND here, because even in the
8842 case of replacing something with a modeless CONST_INT, a
8843 CONST_INT is already (supposed to be) a valid sign extension for
8844 its narrower mode, which implies it's already properly
8845 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8846 story is different. */
8847 else if (code == ZERO_EXTEND)
8849 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8850 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8852 if (XEXP (x, 0) != r)
8854 /* We must simplify the zero_extend here, before we lose
8855 track of the original inner_mode. */
8856 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8857 r, inner_mode);
8858 if (new_rtx)
8859 return new_rtx;
8860 else
8861 SUBST (XEXP (x, 0), r);
8864 return x;
8867 fmt = GET_RTX_FORMAT (code);
8868 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8870 if (fmt[i] == 'e')
8871 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8872 else if (fmt[i] == 'E')
8873 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8874 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8875 cond, reg, val));
8878 return x;
8881 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8882 assignment as a field assignment. */
8884 static int
8885 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8887 if (x == y || rtx_equal_p (x, y))
8888 return 1;
8890 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8891 return 0;
8893 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8894 Note that all SUBREGs of MEM are paradoxical; otherwise they
8895 would have been rewritten. */
8896 if (MEM_P (x) && GET_CODE (y) == SUBREG
8897 && MEM_P (SUBREG_REG (y))
8898 && rtx_equal_p (SUBREG_REG (y),
8899 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8900 return 1;
8902 if (MEM_P (y) && GET_CODE (x) == SUBREG
8903 && MEM_P (SUBREG_REG (x))
8904 && rtx_equal_p (SUBREG_REG (x),
8905 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8906 return 1;
8908 /* We used to see if get_last_value of X and Y were the same but that's
8909 not correct. In one direction, we'll cause the assignment to have
8910 the wrong destination and in the case, we'll import a register into this
8911 insn that might have already have been dead. So fail if none of the
8912 above cases are true. */
8913 return 0;
8916 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8917 Return that assignment if so.
8919 We only handle the most common cases. */
8921 static rtx
8922 make_field_assignment (rtx x)
8924 rtx dest = SET_DEST (x);
8925 rtx src = SET_SRC (x);
8926 rtx assign;
8927 rtx rhs, lhs;
8928 HOST_WIDE_INT c1;
8929 HOST_WIDE_INT pos;
8930 unsigned HOST_WIDE_INT len;
8931 rtx other;
8932 enum machine_mode mode;
8934 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8935 a clear of a one-bit field. We will have changed it to
8936 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8937 for a SUBREG. */
8939 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8940 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8941 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8942 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8944 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8945 1, 1, 1, 0);
8946 if (assign != 0)
8947 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8948 return x;
8951 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8952 && subreg_lowpart_p (XEXP (src, 0))
8953 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8954 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8955 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8956 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8957 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8958 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8960 assign = make_extraction (VOIDmode, dest, 0,
8961 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8962 1, 1, 1, 0);
8963 if (assign != 0)
8964 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8965 return x;
8968 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8969 one-bit field. */
8970 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8971 && XEXP (XEXP (src, 0), 0) == const1_rtx
8972 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8974 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8975 1, 1, 1, 0);
8976 if (assign != 0)
8977 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8978 return x;
8981 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8982 SRC is an AND with all bits of that field set, then we can discard
8983 the AND. */
8984 if (GET_CODE (dest) == ZERO_EXTRACT
8985 && CONST_INT_P (XEXP (dest, 1))
8986 && GET_CODE (src) == AND
8987 && CONST_INT_P (XEXP (src, 1)))
8989 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8990 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8991 unsigned HOST_WIDE_INT ze_mask;
8993 if (width >= HOST_BITS_PER_WIDE_INT)
8994 ze_mask = -1;
8995 else
8996 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8998 /* Complete overlap. We can remove the source AND. */
8999 if ((and_mask & ze_mask) == ze_mask)
9000 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9002 /* Partial overlap. We can reduce the source AND. */
9003 if ((and_mask & ze_mask) != and_mask)
9005 mode = GET_MODE (src);
9006 src = gen_rtx_AND (mode, XEXP (src, 0),
9007 gen_int_mode (and_mask & ze_mask, mode));
9008 return gen_rtx_SET (VOIDmode, dest, src);
9012 /* The other case we handle is assignments into a constant-position
9013 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9014 a mask that has all one bits except for a group of zero bits and
9015 OTHER is known to have zeros where C1 has ones, this is such an
9016 assignment. Compute the position and length from C1. Shift OTHER
9017 to the appropriate position, force it to the required mode, and
9018 make the extraction. Check for the AND in both operands. */
9020 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9021 return x;
9023 rhs = expand_compound_operation (XEXP (src, 0));
9024 lhs = expand_compound_operation (XEXP (src, 1));
9026 if (GET_CODE (rhs) == AND
9027 && CONST_INT_P (XEXP (rhs, 1))
9028 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9029 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9030 else if (GET_CODE (lhs) == AND
9031 && CONST_INT_P (XEXP (lhs, 1))
9032 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9033 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9034 else
9035 return x;
9037 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9038 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
9039 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9040 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9041 return x;
9043 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9044 if (assign == 0)
9045 return x;
9047 /* The mode to use for the source is the mode of the assignment, or of
9048 what is inside a possible STRICT_LOW_PART. */
9049 mode = (GET_CODE (assign) == STRICT_LOW_PART
9050 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9052 /* Shift OTHER right POS places and make it the source, restricting it
9053 to the proper length and mode. */
9055 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9056 GET_MODE (src),
9057 other, pos),
9058 dest);
9059 src = force_to_mode (src, mode,
9060 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
9061 ? ~(unsigned HOST_WIDE_INT) 0
9062 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9065 /* If SRC is masked by an AND that does not make a difference in
9066 the value being stored, strip it. */
9067 if (GET_CODE (assign) == ZERO_EXTRACT
9068 && CONST_INT_P (XEXP (assign, 1))
9069 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9070 && GET_CODE (src) == AND
9071 && CONST_INT_P (XEXP (src, 1))
9072 && UINTVAL (XEXP (src, 1))
9073 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9074 src = XEXP (src, 0);
9076 return gen_rtx_SET (VOIDmode, assign, src);
9079 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9080 if so. */
9082 static rtx
9083 apply_distributive_law (rtx x)
9085 enum rtx_code code = GET_CODE (x);
9086 enum rtx_code inner_code;
9087 rtx lhs, rhs, other;
9088 rtx tem;
9090 /* Distributivity is not true for floating point as it can change the
9091 value. So we don't do it unless -funsafe-math-optimizations. */
9092 if (FLOAT_MODE_P (GET_MODE (x))
9093 && ! flag_unsafe_math_optimizations)
9094 return x;
9096 /* The outer operation can only be one of the following: */
9097 if (code != IOR && code != AND && code != XOR
9098 && code != PLUS && code != MINUS)
9099 return x;
9101 lhs = XEXP (x, 0);
9102 rhs = XEXP (x, 1);
9104 /* If either operand is a primitive we can't do anything, so get out
9105 fast. */
9106 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9107 return x;
9109 lhs = expand_compound_operation (lhs);
9110 rhs = expand_compound_operation (rhs);
9111 inner_code = GET_CODE (lhs);
9112 if (inner_code != GET_CODE (rhs))
9113 return x;
9115 /* See if the inner and outer operations distribute. */
9116 switch (inner_code)
9118 case LSHIFTRT:
9119 case ASHIFTRT:
9120 case AND:
9121 case IOR:
9122 /* These all distribute except over PLUS. */
9123 if (code == PLUS || code == MINUS)
9124 return x;
9125 break;
9127 case MULT:
9128 if (code != PLUS && code != MINUS)
9129 return x;
9130 break;
9132 case ASHIFT:
9133 /* This is also a multiply, so it distributes over everything. */
9134 break;
9136 case SUBREG:
9137 /* Non-paradoxical SUBREGs distributes over all operations,
9138 provided the inner modes and byte offsets are the same, this
9139 is an extraction of a low-order part, we don't convert an fp
9140 operation to int or vice versa, this is not a vector mode,
9141 and we would not be converting a single-word operation into a
9142 multi-word operation. The latter test is not required, but
9143 it prevents generating unneeded multi-word operations. Some
9144 of the previous tests are redundant given the latter test,
9145 but are retained because they are required for correctness.
9147 We produce the result slightly differently in this case. */
9149 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9150 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9151 || ! subreg_lowpart_p (lhs)
9152 || (GET_MODE_CLASS (GET_MODE (lhs))
9153 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9154 || (GET_MODE_SIZE (GET_MODE (lhs))
9155 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
9156 || VECTOR_MODE_P (GET_MODE (lhs))
9157 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9158 /* Result might need to be truncated. Don't change mode if
9159 explicit truncation is needed. */
9160 || !TRULY_NOOP_TRUNCATION
9161 (GET_MODE_BITSIZE (GET_MODE (x)),
9162 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
9163 return x;
9165 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9166 SUBREG_REG (lhs), SUBREG_REG (rhs));
9167 return gen_lowpart (GET_MODE (x), tem);
9169 default:
9170 return x;
9173 /* Set LHS and RHS to the inner operands (A and B in the example
9174 above) and set OTHER to the common operand (C in the example).
9175 There is only one way to do this unless the inner operation is
9176 commutative. */
9177 if (COMMUTATIVE_ARITH_P (lhs)
9178 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9179 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9180 else if (COMMUTATIVE_ARITH_P (lhs)
9181 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9182 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9183 else if (COMMUTATIVE_ARITH_P (lhs)
9184 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9185 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9186 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9187 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9188 else
9189 return x;
9191 /* Form the new inner operation, seeing if it simplifies first. */
9192 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9194 /* There is one exception to the general way of distributing:
9195 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9196 if (code == XOR && inner_code == IOR)
9198 inner_code = AND;
9199 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9202 /* We may be able to continuing distributing the result, so call
9203 ourselves recursively on the inner operation before forming the
9204 outer operation, which we return. */
9205 return simplify_gen_binary (inner_code, GET_MODE (x),
9206 apply_distributive_law (tem), other);
9209 /* See if X is of the form (* (+ A B) C), and if so convert to
9210 (+ (* A C) (* B C)) and try to simplify.
9212 Most of the time, this results in no change. However, if some of
9213 the operands are the same or inverses of each other, simplifications
9214 will result.
9216 For example, (and (ior A B) (not B)) can occur as the result of
9217 expanding a bit field assignment. When we apply the distributive
9218 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9219 which then simplifies to (and (A (not B))).
9221 Note that no checks happen on the validity of applying the inverse
9222 distributive law. This is pointless since we can do it in the
9223 few places where this routine is called.
9225 N is the index of the term that is decomposed (the arithmetic operation,
9226 i.e. (+ A B) in the first example above). !N is the index of the term that
9227 is distributed, i.e. of C in the first example above. */
9228 static rtx
9229 distribute_and_simplify_rtx (rtx x, int n)
9231 enum machine_mode mode;
9232 enum rtx_code outer_code, inner_code;
9233 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9235 /* Distributivity is not true for floating point as it can change the
9236 value. So we don't do it unless -funsafe-math-optimizations. */
9237 if (FLOAT_MODE_P (GET_MODE (x))
9238 && ! flag_unsafe_math_optimizations)
9239 return NULL_RTX;
9241 decomposed = XEXP (x, n);
9242 if (!ARITHMETIC_P (decomposed))
9243 return NULL_RTX;
9245 mode = GET_MODE (x);
9246 outer_code = GET_CODE (x);
9247 distributed = XEXP (x, !n);
9249 inner_code = GET_CODE (decomposed);
9250 inner_op0 = XEXP (decomposed, 0);
9251 inner_op1 = XEXP (decomposed, 1);
9253 /* Special case (and (xor B C) (not A)), which is equivalent to
9254 (xor (ior A B) (ior A C)) */
9255 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9257 distributed = XEXP (distributed, 0);
9258 outer_code = IOR;
9261 if (n == 0)
9263 /* Distribute the second term. */
9264 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9265 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9267 else
9269 /* Distribute the first term. */
9270 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9271 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9274 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9275 new_op0, new_op1));
9276 if (GET_CODE (tmp) != outer_code
9277 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9278 < rtx_cost (x, SET, optimize_this_for_speed_p))
9279 return tmp;
9281 return NULL_RTX;
9284 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9285 in MODE. Return an equivalent form, if different from (and VAROP
9286 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9288 static rtx
9289 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9290 unsigned HOST_WIDE_INT constop)
9292 unsigned HOST_WIDE_INT nonzero;
9293 unsigned HOST_WIDE_INT orig_constop;
9294 rtx orig_varop;
9295 int i;
9297 orig_varop = varop;
9298 orig_constop = constop;
9299 if (GET_CODE (varop) == CLOBBER)
9300 return NULL_RTX;
9302 /* Simplify VAROP knowing that we will be only looking at some of the
9303 bits in it.
9305 Note by passing in CONSTOP, we guarantee that the bits not set in
9306 CONSTOP are not significant and will never be examined. We must
9307 ensure that is the case by explicitly masking out those bits
9308 before returning. */
9309 varop = force_to_mode (varop, mode, constop, 0);
9311 /* If VAROP is a CLOBBER, we will fail so return it. */
9312 if (GET_CODE (varop) == CLOBBER)
9313 return varop;
9315 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9316 to VAROP and return the new constant. */
9317 if (CONST_INT_P (varop))
9318 return gen_int_mode (INTVAL (varop) & constop, mode);
9320 /* See what bits may be nonzero in VAROP. Unlike the general case of
9321 a call to nonzero_bits, here we don't care about bits outside
9322 MODE. */
9324 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9326 /* Turn off all bits in the constant that are known to already be zero.
9327 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9328 which is tested below. */
9330 constop &= nonzero;
9332 /* If we don't have any bits left, return zero. */
9333 if (constop == 0)
9334 return const0_rtx;
9336 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9337 a power of two, we can replace this with an ASHIFT. */
9338 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9339 && (i = exact_log2 (constop)) >= 0)
9340 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9342 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9343 or XOR, then try to apply the distributive law. This may eliminate
9344 operations if either branch can be simplified because of the AND.
9345 It may also make some cases more complex, but those cases probably
9346 won't match a pattern either with or without this. */
9348 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9349 return
9350 gen_lowpart
9351 (mode,
9352 apply_distributive_law
9353 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9354 simplify_and_const_int (NULL_RTX,
9355 GET_MODE (varop),
9356 XEXP (varop, 0),
9357 constop),
9358 simplify_and_const_int (NULL_RTX,
9359 GET_MODE (varop),
9360 XEXP (varop, 1),
9361 constop))));
9363 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9364 the AND and see if one of the operands simplifies to zero. If so, we
9365 may eliminate it. */
9367 if (GET_CODE (varop) == PLUS
9368 && exact_log2 (constop + 1) >= 0)
9370 rtx o0, o1;
9372 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9373 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9374 if (o0 == const0_rtx)
9375 return o1;
9376 if (o1 == const0_rtx)
9377 return o0;
9380 /* Make a SUBREG if necessary. If we can't make it, fail. */
9381 varop = gen_lowpart (mode, varop);
9382 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9383 return NULL_RTX;
9385 /* If we are only masking insignificant bits, return VAROP. */
9386 if (constop == nonzero)
9387 return varop;
9389 if (varop == orig_varop && constop == orig_constop)
9390 return NULL_RTX;
9392 /* Otherwise, return an AND. */
9393 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9397 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9398 in MODE.
9400 Return an equivalent form, if different from X. Otherwise, return X. If
9401 X is zero, we are to always construct the equivalent form. */
9403 static rtx
9404 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9405 unsigned HOST_WIDE_INT constop)
9407 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9408 if (tem)
9409 return tem;
9411 if (!x)
9412 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9413 gen_int_mode (constop, mode));
9414 if (GET_MODE (x) != mode)
9415 x = gen_lowpart (mode, x);
9416 return x;
9419 /* Given a REG, X, compute which bits in X can be nonzero.
9420 We don't care about bits outside of those defined in MODE.
9422 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9423 a shift, AND, or zero_extract, we can do better. */
9425 static rtx
9426 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9427 const_rtx known_x ATTRIBUTE_UNUSED,
9428 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9429 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9430 unsigned HOST_WIDE_INT *nonzero)
9432 rtx tem;
9433 reg_stat_type *rsp;
9435 /* If X is a register whose nonzero bits value is current, use it.
9436 Otherwise, if X is a register whose value we can find, use that
9437 value. Otherwise, use the previously-computed global nonzero bits
9438 for this register. */
9440 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9441 if (rsp->last_set_value != 0
9442 && (rsp->last_set_mode == mode
9443 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9444 && GET_MODE_CLASS (mode) == MODE_INT))
9445 && ((rsp->last_set_label >= label_tick_ebb_start
9446 && rsp->last_set_label < label_tick)
9447 || (rsp->last_set_label == label_tick
9448 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9449 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9450 && REG_N_SETS (REGNO (x)) == 1
9451 && !REGNO_REG_SET_P
9452 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9454 *nonzero &= rsp->last_set_nonzero_bits;
9455 return NULL;
9458 tem = get_last_value (x);
9460 if (tem)
9462 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9463 /* If X is narrower than MODE and TEM is a non-negative
9464 constant that would appear negative in the mode of X,
9465 sign-extend it for use in reg_nonzero_bits because some
9466 machines (maybe most) will actually do the sign-extension
9467 and this is the conservative approach.
9469 ??? For 2.5, try to tighten up the MD files in this regard
9470 instead of this kludge. */
9472 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9473 && CONST_INT_P (tem)
9474 && INTVAL (tem) > 0
9475 && 0 != (UINTVAL (tem)
9476 & ((unsigned HOST_WIDE_INT) 1
9477 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9478 tem = GEN_INT (UINTVAL (tem)
9479 | ((unsigned HOST_WIDE_INT) (-1)
9480 << GET_MODE_BITSIZE (GET_MODE (x))));
9481 #endif
9482 return tem;
9484 else if (nonzero_sign_valid && rsp->nonzero_bits)
9486 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9488 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9489 /* We don't know anything about the upper bits. */
9490 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9491 *nonzero &= mask;
9494 return NULL;
9497 /* Return the number of bits at the high-order end of X that are known to
9498 be equal to the sign bit. X will be used in mode MODE; if MODE is
9499 VOIDmode, X will be used in its own mode. The returned value will always
9500 be between 1 and the number of bits in MODE. */
9502 static rtx
9503 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9504 const_rtx known_x ATTRIBUTE_UNUSED,
9505 enum machine_mode known_mode
9506 ATTRIBUTE_UNUSED,
9507 unsigned int known_ret ATTRIBUTE_UNUSED,
9508 unsigned int *result)
9510 rtx tem;
9511 reg_stat_type *rsp;
9513 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9514 if (rsp->last_set_value != 0
9515 && rsp->last_set_mode == mode
9516 && ((rsp->last_set_label >= label_tick_ebb_start
9517 && rsp->last_set_label < label_tick)
9518 || (rsp->last_set_label == label_tick
9519 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9520 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9521 && REG_N_SETS (REGNO (x)) == 1
9522 && !REGNO_REG_SET_P
9523 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9525 *result = rsp->last_set_sign_bit_copies;
9526 return NULL;
9529 tem = get_last_value (x);
9530 if (tem != 0)
9531 return tem;
9533 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9534 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9535 *result = rsp->sign_bit_copies;
9537 return NULL;
9540 /* Return the number of "extended" bits there are in X, when interpreted
9541 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9542 unsigned quantities, this is the number of high-order zero bits.
9543 For signed quantities, this is the number of copies of the sign bit
9544 minus 1. In both case, this function returns the number of "spare"
9545 bits. For example, if two quantities for which this function returns
9546 at least 1 are added, the addition is known not to overflow.
9548 This function will always return 0 unless called during combine, which
9549 implies that it must be called from a define_split. */
9551 unsigned int
9552 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9554 if (nonzero_sign_valid == 0)
9555 return 0;
9557 return (unsignedp
9558 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9559 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9560 - floor_log2 (nonzero_bits (x, mode)))
9561 : 0)
9562 : num_sign_bit_copies (x, mode) - 1);
9565 /* This function is called from `simplify_shift_const' to merge two
9566 outer operations. Specifically, we have already found that we need
9567 to perform operation *POP0 with constant *PCONST0 at the outermost
9568 position. We would now like to also perform OP1 with constant CONST1
9569 (with *POP0 being done last).
9571 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9572 the resulting operation. *PCOMP_P is set to 1 if we would need to
9573 complement the innermost operand, otherwise it is unchanged.
9575 MODE is the mode in which the operation will be done. No bits outside
9576 the width of this mode matter. It is assumed that the width of this mode
9577 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9579 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9580 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9581 result is simply *PCONST0.
9583 If the resulting operation cannot be expressed as one operation, we
9584 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9586 static int
9587 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9589 enum rtx_code op0 = *pop0;
9590 HOST_WIDE_INT const0 = *pconst0;
9592 const0 &= GET_MODE_MASK (mode);
9593 const1 &= GET_MODE_MASK (mode);
9595 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9596 if (op0 == AND)
9597 const1 &= const0;
9599 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9600 if OP0 is SET. */
9602 if (op1 == UNKNOWN || op0 == SET)
9603 return 1;
9605 else if (op0 == UNKNOWN)
9606 op0 = op1, const0 = const1;
9608 else if (op0 == op1)
9610 switch (op0)
9612 case AND:
9613 const0 &= const1;
9614 break;
9615 case IOR:
9616 const0 |= const1;
9617 break;
9618 case XOR:
9619 const0 ^= const1;
9620 break;
9621 case PLUS:
9622 const0 += const1;
9623 break;
9624 case NEG:
9625 op0 = UNKNOWN;
9626 break;
9627 default:
9628 break;
9632 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9633 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9634 return 0;
9636 /* If the two constants aren't the same, we can't do anything. The
9637 remaining six cases can all be done. */
9638 else if (const0 != const1)
9639 return 0;
9641 else
9642 switch (op0)
9644 case IOR:
9645 if (op1 == AND)
9646 /* (a & b) | b == b */
9647 op0 = SET;
9648 else /* op1 == XOR */
9649 /* (a ^ b) | b == a | b */
9651 break;
9653 case XOR:
9654 if (op1 == AND)
9655 /* (a & b) ^ b == (~a) & b */
9656 op0 = AND, *pcomp_p = 1;
9657 else /* op1 == IOR */
9658 /* (a | b) ^ b == a & ~b */
9659 op0 = AND, const0 = ~const0;
9660 break;
9662 case AND:
9663 if (op1 == IOR)
9664 /* (a | b) & b == b */
9665 op0 = SET;
9666 else /* op1 == XOR */
9667 /* (a ^ b) & b) == (~a) & b */
9668 *pcomp_p = 1;
9669 break;
9670 default:
9671 break;
9674 /* Check for NO-OP cases. */
9675 const0 &= GET_MODE_MASK (mode);
9676 if (const0 == 0
9677 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9678 op0 = UNKNOWN;
9679 else if (const0 == 0 && op0 == AND)
9680 op0 = SET;
9681 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9682 && op0 == AND)
9683 op0 = UNKNOWN;
9685 *pop0 = op0;
9687 /* ??? Slightly redundant with the above mask, but not entirely.
9688 Moving this above means we'd have to sign-extend the mode mask
9689 for the final test. */
9690 if (op0 != UNKNOWN && op0 != NEG)
9691 *pconst0 = trunc_int_for_mode (const0, mode);
9693 return 1;
9696 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9697 the shift in. The original shift operation CODE is performed on OP in
9698 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9699 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9700 result of the shift is subject to operation OUTER_CODE with operand
9701 OUTER_CONST. */
9703 static enum machine_mode
9704 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9705 enum machine_mode orig_mode, enum machine_mode mode,
9706 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9708 if (orig_mode == mode)
9709 return mode;
9710 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9712 /* In general we can't perform in wider mode for right shift and rotate. */
9713 switch (code)
9715 case ASHIFTRT:
9716 /* We can still widen if the bits brought in from the left are identical
9717 to the sign bit of ORIG_MODE. */
9718 if (num_sign_bit_copies (op, mode)
9719 > (unsigned) (GET_MODE_BITSIZE (mode)
9720 - GET_MODE_BITSIZE (orig_mode)))
9721 return mode;
9722 return orig_mode;
9724 case LSHIFTRT:
9725 /* Similarly here but with zero bits. */
9726 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9727 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9728 return mode;
9730 /* We can also widen if the bits brought in will be masked off. This
9731 operation is performed in ORIG_MODE. */
9732 if (outer_code == AND)
9734 int care_bits = low_bitmask_len (orig_mode, outer_const);
9736 if (care_bits >= 0
9737 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9738 return mode;
9740 /* fall through */
9742 case ROTATE:
9743 return orig_mode;
9745 case ROTATERT:
9746 gcc_unreachable ();
9748 default:
9749 return mode;
9753 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9754 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9755 simplify it. Otherwise, return a simplified value.
9757 The shift is normally computed in the widest mode we find in VAROP, as
9758 long as it isn't a different number of words than RESULT_MODE. Exceptions
9759 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9761 static rtx
9762 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9763 rtx varop, int orig_count)
9765 enum rtx_code orig_code = code;
9766 rtx orig_varop = varop;
9767 int count;
9768 enum machine_mode mode = result_mode;
9769 enum machine_mode shift_mode, tmode;
9770 unsigned int mode_words
9771 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9772 /* We form (outer_op (code varop count) (outer_const)). */
9773 enum rtx_code outer_op = UNKNOWN;
9774 HOST_WIDE_INT outer_const = 0;
9775 int complement_p = 0;
9776 rtx new_rtx, x;
9778 /* Make sure and truncate the "natural" shift on the way in. We don't
9779 want to do this inside the loop as it makes it more difficult to
9780 combine shifts. */
9781 if (SHIFT_COUNT_TRUNCATED)
9782 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9784 /* If we were given an invalid count, don't do anything except exactly
9785 what was requested. */
9787 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9788 return NULL_RTX;
9790 count = orig_count;
9792 /* Unless one of the branches of the `if' in this loop does a `continue',
9793 we will `break' the loop after the `if'. */
9795 while (count != 0)
9797 /* If we have an operand of (clobber (const_int 0)), fail. */
9798 if (GET_CODE (varop) == CLOBBER)
9799 return NULL_RTX;
9801 /* Convert ROTATERT to ROTATE. */
9802 if (code == ROTATERT)
9804 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9805 code = ROTATE;
9806 if (VECTOR_MODE_P (result_mode))
9807 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9808 else
9809 count = bitsize - count;
9812 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9813 mode, outer_op, outer_const);
9815 /* Handle cases where the count is greater than the size of the mode
9816 minus 1. For ASHIFT, use the size minus one as the count (this can
9817 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9818 take the count modulo the size. For other shifts, the result is
9819 zero.
9821 Since these shifts are being produced by the compiler by combining
9822 multiple operations, each of which are defined, we know what the
9823 result is supposed to be. */
9825 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9827 if (code == ASHIFTRT)
9828 count = GET_MODE_BITSIZE (shift_mode) - 1;
9829 else if (code == ROTATE || code == ROTATERT)
9830 count %= GET_MODE_BITSIZE (shift_mode);
9831 else
9833 /* We can't simply return zero because there may be an
9834 outer op. */
9835 varop = const0_rtx;
9836 count = 0;
9837 break;
9841 /* If we discovered we had to complement VAROP, leave. Making a NOT
9842 here would cause an infinite loop. */
9843 if (complement_p)
9844 break;
9846 /* An arithmetic right shift of a quantity known to be -1 or 0
9847 is a no-op. */
9848 if (code == ASHIFTRT
9849 && (num_sign_bit_copies (varop, shift_mode)
9850 == GET_MODE_BITSIZE (shift_mode)))
9852 count = 0;
9853 break;
9856 /* If we are doing an arithmetic right shift and discarding all but
9857 the sign bit copies, this is equivalent to doing a shift by the
9858 bitsize minus one. Convert it into that shift because it will often
9859 allow other simplifications. */
9861 if (code == ASHIFTRT
9862 && (count + num_sign_bit_copies (varop, shift_mode)
9863 >= GET_MODE_BITSIZE (shift_mode)))
9864 count = GET_MODE_BITSIZE (shift_mode) - 1;
9866 /* We simplify the tests below and elsewhere by converting
9867 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9868 `make_compound_operation' will convert it to an ASHIFTRT for
9869 those machines (such as VAX) that don't have an LSHIFTRT. */
9870 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9871 && code == ASHIFTRT
9872 && ((nonzero_bits (varop, shift_mode)
9873 & ((unsigned HOST_WIDE_INT) 1
9874 << (GET_MODE_BITSIZE (shift_mode) - 1))) == 0))
9875 code = LSHIFTRT;
9877 if (((code == LSHIFTRT
9878 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9879 && !(nonzero_bits (varop, shift_mode) >> count))
9880 || (code == ASHIFT
9881 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9882 && !((nonzero_bits (varop, shift_mode) << count)
9883 & GET_MODE_MASK (shift_mode))))
9884 && !side_effects_p (varop))
9885 varop = const0_rtx;
9887 switch (GET_CODE (varop))
9889 case SIGN_EXTEND:
9890 case ZERO_EXTEND:
9891 case SIGN_EXTRACT:
9892 case ZERO_EXTRACT:
9893 new_rtx = expand_compound_operation (varop);
9894 if (new_rtx != varop)
9896 varop = new_rtx;
9897 continue;
9899 break;
9901 case MEM:
9902 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9903 minus the width of a smaller mode, we can do this with a
9904 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9905 if ((code == ASHIFTRT || code == LSHIFTRT)
9906 && ! mode_dependent_address_p (XEXP (varop, 0))
9907 && ! MEM_VOLATILE_P (varop)
9908 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9909 MODE_INT, 1)) != BLKmode)
9911 new_rtx = adjust_address_nv (varop, tmode,
9912 BYTES_BIG_ENDIAN ? 0
9913 : count / BITS_PER_UNIT);
9915 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9916 : ZERO_EXTEND, mode, new_rtx);
9917 count = 0;
9918 continue;
9920 break;
9922 case SUBREG:
9923 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9924 the same number of words as what we've seen so far. Then store
9925 the widest mode in MODE. */
9926 if (subreg_lowpart_p (varop)
9927 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9928 > GET_MODE_SIZE (GET_MODE (varop)))
9929 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9930 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9931 == mode_words
9932 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9933 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9935 varop = SUBREG_REG (varop);
9936 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9937 mode = GET_MODE (varop);
9938 continue;
9940 break;
9942 case MULT:
9943 /* Some machines use MULT instead of ASHIFT because MULT
9944 is cheaper. But it is still better on those machines to
9945 merge two shifts into one. */
9946 if (CONST_INT_P (XEXP (varop, 1))
9947 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9949 varop
9950 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9951 XEXP (varop, 0),
9952 GEN_INT (exact_log2 (
9953 UINTVAL (XEXP (varop, 1)))));
9954 continue;
9956 break;
9958 case UDIV:
9959 /* Similar, for when divides are cheaper. */
9960 if (CONST_INT_P (XEXP (varop, 1))
9961 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9963 varop
9964 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9965 XEXP (varop, 0),
9966 GEN_INT (exact_log2 (
9967 UINTVAL (XEXP (varop, 1)))));
9968 continue;
9970 break;
9972 case ASHIFTRT:
9973 /* If we are extracting just the sign bit of an arithmetic
9974 right shift, that shift is not needed. However, the sign
9975 bit of a wider mode may be different from what would be
9976 interpreted as the sign bit in a narrower mode, so, if
9977 the result is narrower, don't discard the shift. */
9978 if (code == LSHIFTRT
9979 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9980 && (GET_MODE_BITSIZE (result_mode)
9981 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9983 varop = XEXP (varop, 0);
9984 continue;
9987 /* ... fall through ... */
9989 case LSHIFTRT:
9990 case ASHIFT:
9991 case ROTATE:
9992 /* Here we have two nested shifts. The result is usually the
9993 AND of a new shift with a mask. We compute the result below. */
9994 if (CONST_INT_P (XEXP (varop, 1))
9995 && INTVAL (XEXP (varop, 1)) >= 0
9996 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9997 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9998 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9999 && !VECTOR_MODE_P (result_mode))
10001 enum rtx_code first_code = GET_CODE (varop);
10002 unsigned int first_count = INTVAL (XEXP (varop, 1));
10003 unsigned HOST_WIDE_INT mask;
10004 rtx mask_rtx;
10006 /* We have one common special case. We can't do any merging if
10007 the inner code is an ASHIFTRT of a smaller mode. However, if
10008 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10009 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10010 we can convert it to
10011 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
10012 This simplifies certain SIGN_EXTEND operations. */
10013 if (code == ASHIFT && first_code == ASHIFTRT
10014 && count == (GET_MODE_BITSIZE (result_mode)
10015 - GET_MODE_BITSIZE (GET_MODE (varop))))
10017 /* C3 has the low-order C1 bits zero. */
10019 mask = GET_MODE_MASK (mode)
10020 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10022 varop = simplify_and_const_int (NULL_RTX, result_mode,
10023 XEXP (varop, 0), mask);
10024 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10025 varop, count);
10026 count = first_count;
10027 code = ASHIFTRT;
10028 continue;
10031 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10032 than C1 high-order bits equal to the sign bit, we can convert
10033 this to either an ASHIFT or an ASHIFTRT depending on the
10034 two counts.
10036 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10038 if (code == ASHIFTRT && first_code == ASHIFT
10039 && GET_MODE (varop) == shift_mode
10040 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10041 > first_count))
10043 varop = XEXP (varop, 0);
10044 count -= first_count;
10045 if (count < 0)
10047 count = -count;
10048 code = ASHIFT;
10051 continue;
10054 /* There are some cases we can't do. If CODE is ASHIFTRT,
10055 we can only do this if FIRST_CODE is also ASHIFTRT.
10057 We can't do the case when CODE is ROTATE and FIRST_CODE is
10058 ASHIFTRT.
10060 If the mode of this shift is not the mode of the outer shift,
10061 we can't do this if either shift is a right shift or ROTATE.
10063 Finally, we can't do any of these if the mode is too wide
10064 unless the codes are the same.
10066 Handle the case where the shift codes are the same
10067 first. */
10069 if (code == first_code)
10071 if (GET_MODE (varop) != result_mode
10072 && (code == ASHIFTRT || code == LSHIFTRT
10073 || code == ROTATE))
10074 break;
10076 count += first_count;
10077 varop = XEXP (varop, 0);
10078 continue;
10081 if (code == ASHIFTRT
10082 || (code == ROTATE && first_code == ASHIFTRT)
10083 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
10084 || (GET_MODE (varop) != result_mode
10085 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10086 || first_code == ROTATE
10087 || code == ROTATE)))
10088 break;
10090 /* To compute the mask to apply after the shift, shift the
10091 nonzero bits of the inner shift the same way the
10092 outer shift will. */
10094 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10096 mask_rtx
10097 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10098 GEN_INT (count));
10100 /* Give up if we can't compute an outer operation to use. */
10101 if (mask_rtx == 0
10102 || !CONST_INT_P (mask_rtx)
10103 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10104 INTVAL (mask_rtx),
10105 result_mode, &complement_p))
10106 break;
10108 /* If the shifts are in the same direction, we add the
10109 counts. Otherwise, we subtract them. */
10110 if ((code == ASHIFTRT || code == LSHIFTRT)
10111 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10112 count += first_count;
10113 else
10114 count -= first_count;
10116 /* If COUNT is positive, the new shift is usually CODE,
10117 except for the two exceptions below, in which case it is
10118 FIRST_CODE. If the count is negative, FIRST_CODE should
10119 always be used */
10120 if (count > 0
10121 && ((first_code == ROTATE && code == ASHIFT)
10122 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10123 code = first_code;
10124 else if (count < 0)
10125 code = first_code, count = -count;
10127 varop = XEXP (varop, 0);
10128 continue;
10131 /* If we have (A << B << C) for any shift, we can convert this to
10132 (A << C << B). This wins if A is a constant. Only try this if
10133 B is not a constant. */
10135 else if (GET_CODE (varop) == code
10136 && CONST_INT_P (XEXP (varop, 0))
10137 && !CONST_INT_P (XEXP (varop, 1)))
10139 rtx new_rtx = simplify_const_binary_operation (code, mode,
10140 XEXP (varop, 0),
10141 GEN_INT (count));
10142 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10143 count = 0;
10144 continue;
10146 break;
10148 case NOT:
10149 if (VECTOR_MODE_P (mode))
10150 break;
10152 /* Make this fit the case below. */
10153 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10154 GEN_INT (GET_MODE_MASK (mode)));
10155 continue;
10157 case IOR:
10158 case AND:
10159 case XOR:
10160 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10161 with C the size of VAROP - 1 and the shift is logical if
10162 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10163 we have an (le X 0) operation. If we have an arithmetic shift
10164 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10165 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10167 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10168 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10169 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10170 && (code == LSHIFTRT || code == ASHIFTRT)
10171 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10172 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10174 count = 0;
10175 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10176 const0_rtx);
10178 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10179 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10181 continue;
10184 /* If we have (shift (logical)), move the logical to the outside
10185 to allow it to possibly combine with another logical and the
10186 shift to combine with another shift. This also canonicalizes to
10187 what a ZERO_EXTRACT looks like. Also, some machines have
10188 (and (shift)) insns. */
10190 if (CONST_INT_P (XEXP (varop, 1))
10191 /* We can't do this if we have (ashiftrt (xor)) and the
10192 constant has its sign bit set in shift_mode. */
10193 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10194 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10195 shift_mode))
10196 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10197 XEXP (varop, 1),
10198 GEN_INT (count))) != 0
10199 && CONST_INT_P (new_rtx)
10200 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10201 INTVAL (new_rtx), result_mode, &complement_p))
10203 varop = XEXP (varop, 0);
10204 continue;
10207 /* If we can't do that, try to simplify the shift in each arm of the
10208 logical expression, make a new logical expression, and apply
10209 the inverse distributive law. This also can't be done
10210 for some (ashiftrt (xor)). */
10211 if (CONST_INT_P (XEXP (varop, 1))
10212 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10213 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10214 shift_mode)))
10216 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10217 XEXP (varop, 0), count);
10218 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10219 XEXP (varop, 1), count);
10221 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10222 lhs, rhs);
10223 varop = apply_distributive_law (varop);
10225 count = 0;
10226 continue;
10228 break;
10230 case EQ:
10231 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10232 says that the sign bit can be tested, FOO has mode MODE, C is
10233 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
10234 that may be nonzero. */
10235 if (code == LSHIFTRT
10236 && XEXP (varop, 1) == const0_rtx
10237 && GET_MODE (XEXP (varop, 0)) == result_mode
10238 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10239 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10240 && STORE_FLAG_VALUE == -1
10241 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10242 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10243 &complement_p))
10245 varop = XEXP (varop, 0);
10246 count = 0;
10247 continue;
10249 break;
10251 case NEG:
10252 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10253 than the number of bits in the mode is equivalent to A. */
10254 if (code == LSHIFTRT
10255 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10256 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10258 varop = XEXP (varop, 0);
10259 count = 0;
10260 continue;
10263 /* NEG commutes with ASHIFT since it is multiplication. Move the
10264 NEG outside to allow shifts to combine. */
10265 if (code == ASHIFT
10266 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10267 &complement_p))
10269 varop = XEXP (varop, 0);
10270 continue;
10272 break;
10274 case PLUS:
10275 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10276 is one less than the number of bits in the mode is
10277 equivalent to (xor A 1). */
10278 if (code == LSHIFTRT
10279 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10280 && XEXP (varop, 1) == constm1_rtx
10281 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10282 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10283 &complement_p))
10285 count = 0;
10286 varop = XEXP (varop, 0);
10287 continue;
10290 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10291 that might be nonzero in BAR are those being shifted out and those
10292 bits are known zero in FOO, we can replace the PLUS with FOO.
10293 Similarly in the other operand order. This code occurs when
10294 we are computing the size of a variable-size array. */
10296 if ((code == ASHIFTRT || code == LSHIFTRT)
10297 && count < HOST_BITS_PER_WIDE_INT
10298 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10299 && (nonzero_bits (XEXP (varop, 1), result_mode)
10300 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10302 varop = XEXP (varop, 0);
10303 continue;
10305 else if ((code == ASHIFTRT || code == LSHIFTRT)
10306 && count < HOST_BITS_PER_WIDE_INT
10307 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10308 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10309 >> count)
10310 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10311 & nonzero_bits (XEXP (varop, 1),
10312 result_mode)))
10314 varop = XEXP (varop, 1);
10315 continue;
10318 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10319 if (code == ASHIFT
10320 && CONST_INT_P (XEXP (varop, 1))
10321 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10322 XEXP (varop, 1),
10323 GEN_INT (count))) != 0
10324 && CONST_INT_P (new_rtx)
10325 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10326 INTVAL (new_rtx), result_mode, &complement_p))
10328 varop = XEXP (varop, 0);
10329 continue;
10332 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10333 signbit', and attempt to change the PLUS to an XOR and move it to
10334 the outer operation as is done above in the AND/IOR/XOR case
10335 leg for shift(logical). See details in logical handling above
10336 for reasoning in doing so. */
10337 if (code == LSHIFTRT
10338 && CONST_INT_P (XEXP (varop, 1))
10339 && mode_signbit_p (result_mode, XEXP (varop, 1))
10340 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10341 XEXP (varop, 1),
10342 GEN_INT (count))) != 0
10343 && CONST_INT_P (new_rtx)
10344 && merge_outer_ops (&outer_op, &outer_const, XOR,
10345 INTVAL (new_rtx), result_mode, &complement_p))
10347 varop = XEXP (varop, 0);
10348 continue;
10351 break;
10353 case MINUS:
10354 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10355 with C the size of VAROP - 1 and the shift is logical if
10356 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10357 we have a (gt X 0) operation. If the shift is arithmetic with
10358 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10359 we have a (neg (gt X 0)) operation. */
10361 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10362 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10363 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10364 && (code == LSHIFTRT || code == ASHIFTRT)
10365 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10366 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10367 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10369 count = 0;
10370 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10371 const0_rtx);
10373 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10374 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10376 continue;
10378 break;
10380 case TRUNCATE:
10381 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10382 if the truncate does not affect the value. */
10383 if (code == LSHIFTRT
10384 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10385 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10386 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10387 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10388 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10390 rtx varop_inner = XEXP (varop, 0);
10392 varop_inner
10393 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10394 XEXP (varop_inner, 0),
10395 GEN_INT
10396 (count + INTVAL (XEXP (varop_inner, 1))));
10397 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10398 count = 0;
10399 continue;
10401 break;
10403 default:
10404 break;
10407 break;
10410 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10411 outer_op, outer_const);
10413 /* We have now finished analyzing the shift. The result should be
10414 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10415 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10416 to the result of the shift. OUTER_CONST is the relevant constant,
10417 but we must turn off all bits turned off in the shift. */
10419 if (outer_op == UNKNOWN
10420 && orig_code == code && orig_count == count
10421 && varop == orig_varop
10422 && shift_mode == GET_MODE (varop))
10423 return NULL_RTX;
10425 /* Make a SUBREG if necessary. If we can't make it, fail. */
10426 varop = gen_lowpart (shift_mode, varop);
10427 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10428 return NULL_RTX;
10430 /* If we have an outer operation and we just made a shift, it is
10431 possible that we could have simplified the shift were it not
10432 for the outer operation. So try to do the simplification
10433 recursively. */
10435 if (outer_op != UNKNOWN)
10436 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10437 else
10438 x = NULL_RTX;
10440 if (x == NULL_RTX)
10441 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10443 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10444 turn off all the bits that the shift would have turned off. */
10445 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10446 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10447 GET_MODE_MASK (result_mode) >> orig_count);
10449 /* Do the remainder of the processing in RESULT_MODE. */
10450 x = gen_lowpart_or_truncate (result_mode, x);
10452 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10453 operation. */
10454 if (complement_p)
10455 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10457 if (outer_op != UNKNOWN)
10459 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10460 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10461 outer_const = trunc_int_for_mode (outer_const, result_mode);
10463 if (outer_op == AND)
10464 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10465 else if (outer_op == SET)
10467 /* This means that we have determined that the result is
10468 equivalent to a constant. This should be rare. */
10469 if (!side_effects_p (x))
10470 x = GEN_INT (outer_const);
10472 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10473 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10474 else
10475 x = simplify_gen_binary (outer_op, result_mode, x,
10476 GEN_INT (outer_const));
10479 return x;
10482 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10483 The result of the shift is RESULT_MODE. If we cannot simplify it,
10484 return X or, if it is NULL, synthesize the expression with
10485 simplify_gen_binary. Otherwise, return a simplified value.
10487 The shift is normally computed in the widest mode we find in VAROP, as
10488 long as it isn't a different number of words than RESULT_MODE. Exceptions
10489 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10491 static rtx
10492 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10493 rtx varop, int count)
10495 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10496 if (tem)
10497 return tem;
10499 if (!x)
10500 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10501 if (GET_MODE (x) != result_mode)
10502 x = gen_lowpart (result_mode, x);
10503 return x;
10507 /* Like recog, but we receive the address of a pointer to a new pattern.
10508 We try to match the rtx that the pointer points to.
10509 If that fails, we may try to modify or replace the pattern,
10510 storing the replacement into the same pointer object.
10512 Modifications include deletion or addition of CLOBBERs.
10514 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10515 the CLOBBERs are placed.
10517 The value is the final insn code from the pattern ultimately matched,
10518 or -1. */
10520 static int
10521 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10523 rtx pat = *pnewpat;
10524 int insn_code_number;
10525 int num_clobbers_to_add = 0;
10526 int i;
10527 rtx notes = 0;
10528 rtx old_notes, old_pat;
10530 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10531 we use to indicate that something didn't match. If we find such a
10532 thing, force rejection. */
10533 if (GET_CODE (pat) == PARALLEL)
10534 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10535 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10536 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10537 return -1;
10539 old_pat = PATTERN (insn);
10540 old_notes = REG_NOTES (insn);
10541 PATTERN (insn) = pat;
10542 REG_NOTES (insn) = 0;
10544 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10545 if (dump_file && (dump_flags & TDF_DETAILS))
10547 if (insn_code_number < 0)
10548 fputs ("Failed to match this instruction:\n", dump_file);
10549 else
10550 fputs ("Successfully matched this instruction:\n", dump_file);
10551 print_rtl_single (dump_file, pat);
10554 /* If it isn't, there is the possibility that we previously had an insn
10555 that clobbered some register as a side effect, but the combined
10556 insn doesn't need to do that. So try once more without the clobbers
10557 unless this represents an ASM insn. */
10559 if (insn_code_number < 0 && ! check_asm_operands (pat)
10560 && GET_CODE (pat) == PARALLEL)
10562 int pos;
10564 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10565 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10567 if (i != pos)
10568 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10569 pos++;
10572 SUBST_INT (XVECLEN (pat, 0), pos);
10574 if (pos == 1)
10575 pat = XVECEXP (pat, 0, 0);
10577 PATTERN (insn) = pat;
10578 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10579 if (dump_file && (dump_flags & TDF_DETAILS))
10581 if (insn_code_number < 0)
10582 fputs ("Failed to match this instruction:\n", dump_file);
10583 else
10584 fputs ("Successfully matched this instruction:\n", dump_file);
10585 print_rtl_single (dump_file, pat);
10588 PATTERN (insn) = old_pat;
10589 REG_NOTES (insn) = old_notes;
10591 /* Recognize all noop sets, these will be killed by followup pass. */
10592 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10593 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10595 /* If we had any clobbers to add, make a new pattern than contains
10596 them. Then check to make sure that all of them are dead. */
10597 if (num_clobbers_to_add)
10599 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10600 rtvec_alloc (GET_CODE (pat) == PARALLEL
10601 ? (XVECLEN (pat, 0)
10602 + num_clobbers_to_add)
10603 : num_clobbers_to_add + 1));
10605 if (GET_CODE (pat) == PARALLEL)
10606 for (i = 0; i < XVECLEN (pat, 0); i++)
10607 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10608 else
10609 XVECEXP (newpat, 0, 0) = pat;
10611 add_clobbers (newpat, insn_code_number);
10613 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10614 i < XVECLEN (newpat, 0); i++)
10616 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10617 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10618 return -1;
10619 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10621 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10622 notes = alloc_reg_note (REG_UNUSED,
10623 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10626 pat = newpat;
10629 *pnewpat = pat;
10630 *pnotes = notes;
10632 return insn_code_number;
10635 /* Like gen_lowpart_general but for use by combine. In combine it
10636 is not possible to create any new pseudoregs. However, it is
10637 safe to create invalid memory addresses, because combine will
10638 try to recognize them and all they will do is make the combine
10639 attempt fail.
10641 If for some reason this cannot do its job, an rtx
10642 (clobber (const_int 0)) is returned.
10643 An insn containing that will not be recognized. */
10645 static rtx
10646 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10648 enum machine_mode imode = GET_MODE (x);
10649 unsigned int osize = GET_MODE_SIZE (omode);
10650 unsigned int isize = GET_MODE_SIZE (imode);
10651 rtx result;
10653 if (omode == imode)
10654 return x;
10656 /* Return identity if this is a CONST or symbolic reference. */
10657 if (omode == Pmode
10658 && (GET_CODE (x) == CONST
10659 || GET_CODE (x) == SYMBOL_REF
10660 || GET_CODE (x) == LABEL_REF))
10661 return x;
10663 /* We can only support MODE being wider than a word if X is a
10664 constant integer or has a mode the same size. */
10665 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10666 && ! ((imode == VOIDmode
10667 && (CONST_INT_P (x)
10668 || GET_CODE (x) == CONST_DOUBLE))
10669 || isize == osize))
10670 goto fail;
10672 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10673 won't know what to do. So we will strip off the SUBREG here and
10674 process normally. */
10675 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10677 x = SUBREG_REG (x);
10679 /* For use in case we fall down into the address adjustments
10680 further below, we need to adjust the known mode and size of
10681 x; imode and isize, since we just adjusted x. */
10682 imode = GET_MODE (x);
10684 if (imode == omode)
10685 return x;
10687 isize = GET_MODE_SIZE (imode);
10690 result = gen_lowpart_common (omode, x);
10692 if (result)
10693 return result;
10695 if (MEM_P (x))
10697 int offset = 0;
10699 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10700 address. */
10701 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10702 goto fail;
10704 /* If we want to refer to something bigger than the original memref,
10705 generate a paradoxical subreg instead. That will force a reload
10706 of the original memref X. */
10707 if (isize < osize)
10708 return gen_rtx_SUBREG (omode, x, 0);
10710 if (WORDS_BIG_ENDIAN)
10711 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10713 /* Adjust the address so that the address-after-the-data is
10714 unchanged. */
10715 if (BYTES_BIG_ENDIAN)
10716 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10718 return adjust_address_nv (x, omode, offset);
10721 /* If X is a comparison operator, rewrite it in a new mode. This
10722 probably won't match, but may allow further simplifications. */
10723 else if (COMPARISON_P (x))
10724 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10726 /* If we couldn't simplify X any other way, just enclose it in a
10727 SUBREG. Normally, this SUBREG won't match, but some patterns may
10728 include an explicit SUBREG or we may simplify it further in combine. */
10729 else
10731 int offset = 0;
10732 rtx res;
10734 offset = subreg_lowpart_offset (omode, imode);
10735 if (imode == VOIDmode)
10737 imode = int_mode_for_mode (omode);
10738 x = gen_lowpart_common (imode, x);
10739 if (x == NULL)
10740 goto fail;
10742 res = simplify_gen_subreg (omode, x, imode, offset);
10743 if (res)
10744 return res;
10747 fail:
10748 return gen_rtx_CLOBBER (omode, const0_rtx);
10751 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10752 comparison code that will be tested.
10754 The result is a possibly different comparison code to use. *POP0 and
10755 *POP1 may be updated.
10757 It is possible that we might detect that a comparison is either always
10758 true or always false. However, we do not perform general constant
10759 folding in combine, so this knowledge isn't useful. Such tautologies
10760 should have been detected earlier. Hence we ignore all such cases. */
10762 static enum rtx_code
10763 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10765 rtx op0 = *pop0;
10766 rtx op1 = *pop1;
10767 rtx tem, tem1;
10768 int i;
10769 enum machine_mode mode, tmode;
10771 /* Try a few ways of applying the same transformation to both operands. */
10772 while (1)
10774 #ifndef WORD_REGISTER_OPERATIONS
10775 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10776 so check specially. */
10777 if (code != GTU && code != GEU && code != LTU && code != LEU
10778 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10779 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10780 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10781 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10782 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10783 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10784 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10785 && CONST_INT_P (XEXP (op0, 1))
10786 && XEXP (op0, 1) == XEXP (op1, 1)
10787 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10788 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10789 && (INTVAL (XEXP (op0, 1))
10790 == (GET_MODE_BITSIZE (GET_MODE (op0))
10791 - (GET_MODE_BITSIZE
10792 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10794 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10795 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10797 #endif
10799 /* If both operands are the same constant shift, see if we can ignore the
10800 shift. We can if the shift is a rotate or if the bits shifted out of
10801 this shift are known to be zero for both inputs and if the type of
10802 comparison is compatible with the shift. */
10803 if (GET_CODE (op0) == GET_CODE (op1)
10804 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10805 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10806 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10807 && (code != GT && code != LT && code != GE && code != LE))
10808 || (GET_CODE (op0) == ASHIFTRT
10809 && (code != GTU && code != LTU
10810 && code != GEU && code != LEU)))
10811 && CONST_INT_P (XEXP (op0, 1))
10812 && INTVAL (XEXP (op0, 1)) >= 0
10813 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10814 && XEXP (op0, 1) == XEXP (op1, 1))
10816 enum machine_mode mode = GET_MODE (op0);
10817 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10818 int shift_count = INTVAL (XEXP (op0, 1));
10820 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10821 mask &= (mask >> shift_count) << shift_count;
10822 else if (GET_CODE (op0) == ASHIFT)
10823 mask = (mask & (mask << shift_count)) >> shift_count;
10825 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10826 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10827 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10828 else
10829 break;
10832 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10833 SUBREGs are of the same mode, and, in both cases, the AND would
10834 be redundant if the comparison was done in the narrower mode,
10835 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10836 and the operand's possibly nonzero bits are 0xffffff01; in that case
10837 if we only care about QImode, we don't need the AND). This case
10838 occurs if the output mode of an scc insn is not SImode and
10839 STORE_FLAG_VALUE == 1 (e.g., the 386).
10841 Similarly, check for a case where the AND's are ZERO_EXTEND
10842 operations from some narrower mode even though a SUBREG is not
10843 present. */
10845 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10846 && CONST_INT_P (XEXP (op0, 1))
10847 && CONST_INT_P (XEXP (op1, 1)))
10849 rtx inner_op0 = XEXP (op0, 0);
10850 rtx inner_op1 = XEXP (op1, 0);
10851 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10852 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10853 int changed = 0;
10855 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10856 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10857 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10858 && (GET_MODE (SUBREG_REG (inner_op0))
10859 == GET_MODE (SUBREG_REG (inner_op1)))
10860 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10861 <= HOST_BITS_PER_WIDE_INT)
10862 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10863 GET_MODE (SUBREG_REG (inner_op0)))))
10864 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10865 GET_MODE (SUBREG_REG (inner_op1))))))
10867 op0 = SUBREG_REG (inner_op0);
10868 op1 = SUBREG_REG (inner_op1);
10870 /* The resulting comparison is always unsigned since we masked
10871 off the original sign bit. */
10872 code = unsigned_condition (code);
10874 changed = 1;
10877 else if (c0 == c1)
10878 for (tmode = GET_CLASS_NARROWEST_MODE
10879 (GET_MODE_CLASS (GET_MODE (op0)));
10880 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10881 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10883 op0 = gen_lowpart (tmode, inner_op0);
10884 op1 = gen_lowpart (tmode, inner_op1);
10885 code = unsigned_condition (code);
10886 changed = 1;
10887 break;
10890 if (! changed)
10891 break;
10894 /* If both operands are NOT, we can strip off the outer operation
10895 and adjust the comparison code for swapped operands; similarly for
10896 NEG, except that this must be an equality comparison. */
10897 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10898 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10899 && (code == EQ || code == NE)))
10900 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10902 else
10903 break;
10906 /* If the first operand is a constant, swap the operands and adjust the
10907 comparison code appropriately, but don't do this if the second operand
10908 is already a constant integer. */
10909 if (swap_commutative_operands_p (op0, op1))
10911 tem = op0, op0 = op1, op1 = tem;
10912 code = swap_condition (code);
10915 /* We now enter a loop during which we will try to simplify the comparison.
10916 For the most part, we only are concerned with comparisons with zero,
10917 but some things may really be comparisons with zero but not start
10918 out looking that way. */
10920 while (CONST_INT_P (op1))
10922 enum machine_mode mode = GET_MODE (op0);
10923 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10924 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10925 int equality_comparison_p;
10926 int sign_bit_comparison_p;
10927 int unsigned_comparison_p;
10928 HOST_WIDE_INT const_op;
10930 /* We only want to handle integral modes. This catches VOIDmode,
10931 CCmode, and the floating-point modes. An exception is that we
10932 can handle VOIDmode if OP0 is a COMPARE or a comparison
10933 operation. */
10935 if (GET_MODE_CLASS (mode) != MODE_INT
10936 && ! (mode == VOIDmode
10937 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10938 break;
10940 /* Get the constant we are comparing against and turn off all bits
10941 not on in our mode. */
10942 const_op = INTVAL (op1);
10943 if (mode != VOIDmode)
10944 const_op = trunc_int_for_mode (const_op, mode);
10945 op1 = GEN_INT (const_op);
10947 /* If we are comparing against a constant power of two and the value
10948 being compared can only have that single bit nonzero (e.g., it was
10949 `and'ed with that bit), we can replace this with a comparison
10950 with zero. */
10951 if (const_op
10952 && (code == EQ || code == NE || code == GE || code == GEU
10953 || code == LT || code == LTU)
10954 && mode_width <= HOST_BITS_PER_WIDE_INT
10955 && exact_log2 (const_op) >= 0
10956 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10958 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10959 op1 = const0_rtx, const_op = 0;
10962 /* Similarly, if we are comparing a value known to be either -1 or
10963 0 with -1, change it to the opposite comparison against zero. */
10965 if (const_op == -1
10966 && (code == EQ || code == NE || code == GT || code == LE
10967 || code == GEU || code == LTU)
10968 && num_sign_bit_copies (op0, mode) == mode_width)
10970 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10971 op1 = const0_rtx, const_op = 0;
10974 /* Do some canonicalizations based on the comparison code. We prefer
10975 comparisons against zero and then prefer equality comparisons.
10976 If we can reduce the size of a constant, we will do that too. */
10978 switch (code)
10980 case LT:
10981 /* < C is equivalent to <= (C - 1) */
10982 if (const_op > 0)
10984 const_op -= 1;
10985 op1 = GEN_INT (const_op);
10986 code = LE;
10987 /* ... fall through to LE case below. */
10989 else
10990 break;
10992 case LE:
10993 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10994 if (const_op < 0)
10996 const_op += 1;
10997 op1 = GEN_INT (const_op);
10998 code = LT;
11001 /* If we are doing a <= 0 comparison on a value known to have
11002 a zero sign bit, we can replace this with == 0. */
11003 else if (const_op == 0
11004 && mode_width <= HOST_BITS_PER_WIDE_INT
11005 && (nonzero_bits (op0, mode)
11006 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11007 == 0)
11008 code = EQ;
11009 break;
11011 case GE:
11012 /* >= C is equivalent to > (C - 1). */
11013 if (const_op > 0)
11015 const_op -= 1;
11016 op1 = GEN_INT (const_op);
11017 code = GT;
11018 /* ... fall through to GT below. */
11020 else
11021 break;
11023 case GT:
11024 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11025 if (const_op < 0)
11027 const_op += 1;
11028 op1 = GEN_INT (const_op);
11029 code = GE;
11032 /* If we are doing a > 0 comparison on a value known to have
11033 a zero sign bit, we can replace this with != 0. */
11034 else if (const_op == 0
11035 && mode_width <= HOST_BITS_PER_WIDE_INT
11036 && (nonzero_bits (op0, mode)
11037 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11038 == 0)
11039 code = NE;
11040 break;
11042 case LTU:
11043 /* < C is equivalent to <= (C - 1). */
11044 if (const_op > 0)
11046 const_op -= 1;
11047 op1 = GEN_INT (const_op);
11048 code = LEU;
11049 /* ... fall through ... */
11052 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11053 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11054 && (unsigned HOST_WIDE_INT) const_op
11055 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11057 const_op = 0, op1 = const0_rtx;
11058 code = GE;
11059 break;
11061 else
11062 break;
11064 case LEU:
11065 /* unsigned <= 0 is equivalent to == 0 */
11066 if (const_op == 0)
11067 code = EQ;
11069 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11070 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11071 && (unsigned HOST_WIDE_INT) const_op
11072 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11074 const_op = 0, op1 = const0_rtx;
11075 code = GE;
11077 break;
11079 case GEU:
11080 /* >= C is equivalent to > (C - 1). */
11081 if (const_op > 1)
11083 const_op -= 1;
11084 op1 = GEN_INT (const_op);
11085 code = GTU;
11086 /* ... fall through ... */
11089 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11090 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11091 && (unsigned HOST_WIDE_INT) const_op
11092 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11094 const_op = 0, op1 = const0_rtx;
11095 code = LT;
11096 break;
11098 else
11099 break;
11101 case GTU:
11102 /* unsigned > 0 is equivalent to != 0 */
11103 if (const_op == 0)
11104 code = NE;
11106 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11107 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11108 && (unsigned HOST_WIDE_INT) const_op
11109 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11111 const_op = 0, op1 = const0_rtx;
11112 code = LT;
11114 break;
11116 default:
11117 break;
11120 /* Compute some predicates to simplify code below. */
11122 equality_comparison_p = (code == EQ || code == NE);
11123 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11124 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11125 || code == GEU);
11127 /* If this is a sign bit comparison and we can do arithmetic in
11128 MODE, say that we will only be needing the sign bit of OP0. */
11129 if (sign_bit_comparison_p
11130 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11131 op0 = force_to_mode (op0, mode,
11132 (unsigned HOST_WIDE_INT) 1
11133 << (GET_MODE_BITSIZE (mode) - 1),
11136 /* Now try cases based on the opcode of OP0. If none of the cases
11137 does a "continue", we exit this loop immediately after the
11138 switch. */
11140 switch (GET_CODE (op0))
11142 case ZERO_EXTRACT:
11143 /* If we are extracting a single bit from a variable position in
11144 a constant that has only a single bit set and are comparing it
11145 with zero, we can convert this into an equality comparison
11146 between the position and the location of the single bit. */
11147 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11148 have already reduced the shift count modulo the word size. */
11149 if (!SHIFT_COUNT_TRUNCATED
11150 && CONST_INT_P (XEXP (op0, 0))
11151 && XEXP (op0, 1) == const1_rtx
11152 && equality_comparison_p && const_op == 0
11153 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11155 if (BITS_BIG_ENDIAN)
11157 enum machine_mode new_mode
11158 = mode_for_extraction (EP_extzv, 1);
11159 if (new_mode == MAX_MACHINE_MODE)
11160 i = BITS_PER_WORD - 1 - i;
11161 else
11163 mode = new_mode;
11164 i = (GET_MODE_BITSIZE (mode) - 1 - i);
11168 op0 = XEXP (op0, 2);
11169 op1 = GEN_INT (i);
11170 const_op = i;
11172 /* Result is nonzero iff shift count is equal to I. */
11173 code = reverse_condition (code);
11174 continue;
11177 /* ... fall through ... */
11179 case SIGN_EXTRACT:
11180 tem = expand_compound_operation (op0);
11181 if (tem != op0)
11183 op0 = tem;
11184 continue;
11186 break;
11188 case NOT:
11189 /* If testing for equality, we can take the NOT of the constant. */
11190 if (equality_comparison_p
11191 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11193 op0 = XEXP (op0, 0);
11194 op1 = tem;
11195 continue;
11198 /* If just looking at the sign bit, reverse the sense of the
11199 comparison. */
11200 if (sign_bit_comparison_p)
11202 op0 = XEXP (op0, 0);
11203 code = (code == GE ? LT : GE);
11204 continue;
11206 break;
11208 case NEG:
11209 /* If testing for equality, we can take the NEG of the constant. */
11210 if (equality_comparison_p
11211 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11213 op0 = XEXP (op0, 0);
11214 op1 = tem;
11215 continue;
11218 /* The remaining cases only apply to comparisons with zero. */
11219 if (const_op != 0)
11220 break;
11222 /* When X is ABS or is known positive,
11223 (neg X) is < 0 if and only if X != 0. */
11225 if (sign_bit_comparison_p
11226 && (GET_CODE (XEXP (op0, 0)) == ABS
11227 || (mode_width <= HOST_BITS_PER_WIDE_INT
11228 && (nonzero_bits (XEXP (op0, 0), mode)
11229 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11230 == 0)))
11232 op0 = XEXP (op0, 0);
11233 code = (code == LT ? NE : EQ);
11234 continue;
11237 /* If we have NEG of something whose two high-order bits are the
11238 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11239 if (num_sign_bit_copies (op0, mode) >= 2)
11241 op0 = XEXP (op0, 0);
11242 code = swap_condition (code);
11243 continue;
11245 break;
11247 case ROTATE:
11248 /* If we are testing equality and our count is a constant, we
11249 can perform the inverse operation on our RHS. */
11250 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11251 && (tem = simplify_binary_operation (ROTATERT, mode,
11252 op1, XEXP (op0, 1))) != 0)
11254 op0 = XEXP (op0, 0);
11255 op1 = tem;
11256 continue;
11259 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11260 a particular bit. Convert it to an AND of a constant of that
11261 bit. This will be converted into a ZERO_EXTRACT. */
11262 if (const_op == 0 && sign_bit_comparison_p
11263 && CONST_INT_P (XEXP (op0, 1))
11264 && mode_width <= HOST_BITS_PER_WIDE_INT)
11266 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11267 ((unsigned HOST_WIDE_INT) 1
11268 << (mode_width - 1
11269 - INTVAL (XEXP (op0, 1)))));
11270 code = (code == LT ? NE : EQ);
11271 continue;
11274 /* Fall through. */
11276 case ABS:
11277 /* ABS is ignorable inside an equality comparison with zero. */
11278 if (const_op == 0 && equality_comparison_p)
11280 op0 = XEXP (op0, 0);
11281 continue;
11283 break;
11285 case SIGN_EXTEND:
11286 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11287 (compare FOO CONST) if CONST fits in FOO's mode and we
11288 are either testing inequality or have an unsigned
11289 comparison with ZERO_EXTEND or a signed comparison with
11290 SIGN_EXTEND. But don't do it if we don't have a compare
11291 insn of the given mode, since we'd have to revert it
11292 later on, and then we wouldn't know whether to sign- or
11293 zero-extend. */
11294 mode = GET_MODE (XEXP (op0, 0));
11295 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11296 && ! unsigned_comparison_p
11297 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11298 && ((unsigned HOST_WIDE_INT) const_op
11299 < (((unsigned HOST_WIDE_INT) 1
11300 << (GET_MODE_BITSIZE (mode) - 1))))
11301 && have_insn_for (COMPARE, mode))
11303 op0 = XEXP (op0, 0);
11304 continue;
11306 break;
11308 case SUBREG:
11309 /* Check for the case where we are comparing A - C1 with C2, that is
11311 (subreg:MODE (plus (A) (-C1))) op (C2)
11313 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11314 comparison in the wider mode. One of the following two conditions
11315 must be true in order for this to be valid:
11317 1. The mode extension results in the same bit pattern being added
11318 on both sides and the comparison is equality or unsigned. As
11319 C2 has been truncated to fit in MODE, the pattern can only be
11320 all 0s or all 1s.
11322 2. The mode extension results in the sign bit being copied on
11323 each side.
11325 The difficulty here is that we have predicates for A but not for
11326 (A - C1) so we need to check that C1 is within proper bounds so
11327 as to perturbate A as little as possible. */
11329 if (mode_width <= HOST_BITS_PER_WIDE_INT
11330 && subreg_lowpart_p (op0)
11331 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
11332 && GET_CODE (SUBREG_REG (op0)) == PLUS
11333 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11335 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11336 rtx a = XEXP (SUBREG_REG (op0), 0);
11337 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11339 if ((c1 > 0
11340 && (unsigned HOST_WIDE_INT) c1
11341 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11342 && (equality_comparison_p || unsigned_comparison_p)
11343 /* (A - C1) zero-extends if it is positive and sign-extends
11344 if it is negative, C2 both zero- and sign-extends. */
11345 && ((0 == (nonzero_bits (a, inner_mode)
11346 & ~GET_MODE_MASK (mode))
11347 && const_op >= 0)
11348 /* (A - C1) sign-extends if it is positive and 1-extends
11349 if it is negative, C2 both sign- and 1-extends. */
11350 || (num_sign_bit_copies (a, inner_mode)
11351 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11352 - mode_width)
11353 && const_op < 0)))
11354 || ((unsigned HOST_WIDE_INT) c1
11355 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11356 /* (A - C1) always sign-extends, like C2. */
11357 && num_sign_bit_copies (a, inner_mode)
11358 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11359 - (mode_width - 1))))
11361 op0 = SUBREG_REG (op0);
11362 continue;
11366 /* If the inner mode is narrower and we are extracting the low part,
11367 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11368 if (subreg_lowpart_p (op0)
11369 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
11370 /* Fall through */ ;
11371 else
11372 break;
11374 /* ... fall through ... */
11376 case ZERO_EXTEND:
11377 mode = GET_MODE (XEXP (op0, 0));
11378 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11379 && (unsigned_comparison_p || equality_comparison_p)
11380 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11381 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11382 && have_insn_for (COMPARE, mode))
11384 op0 = XEXP (op0, 0);
11385 continue;
11387 break;
11389 case PLUS:
11390 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11391 this for equality comparisons due to pathological cases involving
11392 overflows. */
11393 if (equality_comparison_p
11394 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11395 op1, XEXP (op0, 1))))
11397 op0 = XEXP (op0, 0);
11398 op1 = tem;
11399 continue;
11402 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11403 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11404 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11406 op0 = XEXP (XEXP (op0, 0), 0);
11407 code = (code == LT ? EQ : NE);
11408 continue;
11410 break;
11412 case MINUS:
11413 /* We used to optimize signed comparisons against zero, but that
11414 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11415 arrive here as equality comparisons, or (GEU, LTU) are
11416 optimized away. No need to special-case them. */
11418 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11419 (eq B (minus A C)), whichever simplifies. We can only do
11420 this for equality comparisons due to pathological cases involving
11421 overflows. */
11422 if (equality_comparison_p
11423 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11424 XEXP (op0, 1), op1)))
11426 op0 = XEXP (op0, 0);
11427 op1 = tem;
11428 continue;
11431 if (equality_comparison_p
11432 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11433 XEXP (op0, 0), op1)))
11435 op0 = XEXP (op0, 1);
11436 op1 = tem;
11437 continue;
11440 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11441 of bits in X minus 1, is one iff X > 0. */
11442 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11443 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11444 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11445 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11447 op0 = XEXP (op0, 1);
11448 code = (code == GE ? LE : GT);
11449 continue;
11451 break;
11453 case XOR:
11454 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11455 if C is zero or B is a constant. */
11456 if (equality_comparison_p
11457 && 0 != (tem = simplify_binary_operation (XOR, mode,
11458 XEXP (op0, 1), op1)))
11460 op0 = XEXP (op0, 0);
11461 op1 = tem;
11462 continue;
11464 break;
11466 case EQ: case NE:
11467 case UNEQ: case LTGT:
11468 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11469 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11470 case UNORDERED: case ORDERED:
11471 /* We can't do anything if OP0 is a condition code value, rather
11472 than an actual data value. */
11473 if (const_op != 0
11474 || CC0_P (XEXP (op0, 0))
11475 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11476 break;
11478 /* Get the two operands being compared. */
11479 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11480 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11481 else
11482 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11484 /* Check for the cases where we simply want the result of the
11485 earlier test or the opposite of that result. */
11486 if (code == NE || code == EQ
11487 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11488 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11489 && (STORE_FLAG_VALUE
11490 & (((unsigned HOST_WIDE_INT) 1
11491 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11492 && (code == LT || code == GE)))
11494 enum rtx_code new_code;
11495 if (code == LT || code == NE)
11496 new_code = GET_CODE (op0);
11497 else
11498 new_code = reversed_comparison_code (op0, NULL);
11500 if (new_code != UNKNOWN)
11502 code = new_code;
11503 op0 = tem;
11504 op1 = tem1;
11505 continue;
11508 break;
11510 case IOR:
11511 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11512 iff X <= 0. */
11513 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11514 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11515 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11517 op0 = XEXP (op0, 1);
11518 code = (code == GE ? GT : LE);
11519 continue;
11521 break;
11523 case AND:
11524 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11525 will be converted to a ZERO_EXTRACT later. */
11526 if (const_op == 0 && equality_comparison_p
11527 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11528 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11530 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11531 XEXP (XEXP (op0, 0), 1));
11532 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11533 continue;
11536 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11537 zero and X is a comparison and C1 and C2 describe only bits set
11538 in STORE_FLAG_VALUE, we can compare with X. */
11539 if (const_op == 0 && equality_comparison_p
11540 && mode_width <= HOST_BITS_PER_WIDE_INT
11541 && CONST_INT_P (XEXP (op0, 1))
11542 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11543 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11544 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11545 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11547 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11548 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11549 if ((~STORE_FLAG_VALUE & mask) == 0
11550 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11551 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11552 && COMPARISON_P (tem))))
11554 op0 = XEXP (XEXP (op0, 0), 0);
11555 continue;
11559 /* If we are doing an equality comparison of an AND of a bit equal
11560 to the sign bit, replace this with a LT or GE comparison of
11561 the underlying value. */
11562 if (equality_comparison_p
11563 && const_op == 0
11564 && CONST_INT_P (XEXP (op0, 1))
11565 && mode_width <= HOST_BITS_PER_WIDE_INT
11566 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11567 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11569 op0 = XEXP (op0, 0);
11570 code = (code == EQ ? GE : LT);
11571 continue;
11574 /* If this AND operation is really a ZERO_EXTEND from a narrower
11575 mode, the constant fits within that mode, and this is either an
11576 equality or unsigned comparison, try to do this comparison in
11577 the narrower mode.
11579 Note that in:
11581 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11582 -> (ne:DI (reg:SI 4) (const_int 0))
11584 unless TRULY_NOOP_TRUNCATION allows it or the register is
11585 known to hold a value of the required mode the
11586 transformation is invalid. */
11587 if ((equality_comparison_p || unsigned_comparison_p)
11588 && CONST_INT_P (XEXP (op0, 1))
11589 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11590 & GET_MODE_MASK (mode))
11591 + 1)) >= 0
11592 && const_op >> i == 0
11593 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11594 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11595 GET_MODE_BITSIZE (GET_MODE (op0)))
11596 || (REG_P (XEXP (op0, 0))
11597 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11599 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11600 continue;
11603 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11604 fits in both M1 and M2 and the SUBREG is either paradoxical
11605 or represents the low part, permute the SUBREG and the AND
11606 and try again. */
11607 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11609 unsigned HOST_WIDE_INT c1;
11610 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11611 /* Require an integral mode, to avoid creating something like
11612 (AND:SF ...). */
11613 if (SCALAR_INT_MODE_P (tmode)
11614 /* It is unsafe to commute the AND into the SUBREG if the
11615 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11616 not defined. As originally written the upper bits
11617 have a defined value due to the AND operation.
11618 However, if we commute the AND inside the SUBREG then
11619 they no longer have defined values and the meaning of
11620 the code has been changed. */
11621 && (0
11622 #ifdef WORD_REGISTER_OPERATIONS
11623 || (mode_width > GET_MODE_BITSIZE (tmode)
11624 && mode_width <= BITS_PER_WORD)
11625 #endif
11626 || (mode_width <= GET_MODE_BITSIZE (tmode)
11627 && subreg_lowpart_p (XEXP (op0, 0))))
11628 && CONST_INT_P (XEXP (op0, 1))
11629 && mode_width <= HOST_BITS_PER_WIDE_INT
11630 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11631 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11632 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11633 && c1 != mask
11634 && c1 != GET_MODE_MASK (tmode))
11636 op0 = simplify_gen_binary (AND, tmode,
11637 SUBREG_REG (XEXP (op0, 0)),
11638 gen_int_mode (c1, tmode));
11639 op0 = gen_lowpart (mode, op0);
11640 continue;
11644 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11645 if (const_op == 0 && equality_comparison_p
11646 && XEXP (op0, 1) == const1_rtx
11647 && GET_CODE (XEXP (op0, 0)) == NOT)
11649 op0 = simplify_and_const_int (NULL_RTX, mode,
11650 XEXP (XEXP (op0, 0), 0), 1);
11651 code = (code == NE ? EQ : NE);
11652 continue;
11655 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11656 (eq (and (lshiftrt X) 1) 0).
11657 Also handle the case where (not X) is expressed using xor. */
11658 if (const_op == 0 && equality_comparison_p
11659 && XEXP (op0, 1) == const1_rtx
11660 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11662 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11663 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11665 if (GET_CODE (shift_op) == NOT
11666 || (GET_CODE (shift_op) == XOR
11667 && CONST_INT_P (XEXP (shift_op, 1))
11668 && CONST_INT_P (shift_count)
11669 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11670 && (UINTVAL (XEXP (shift_op, 1))
11671 == (unsigned HOST_WIDE_INT) 1
11672 << INTVAL (shift_count))))
11675 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11676 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11677 code = (code == NE ? EQ : NE);
11678 continue;
11681 break;
11683 case ASHIFT:
11684 /* If we have (compare (ashift FOO N) (const_int C)) and
11685 the high order N bits of FOO (N+1 if an inequality comparison)
11686 are known to be zero, we can do this by comparing FOO with C
11687 shifted right N bits so long as the low-order N bits of C are
11688 zero. */
11689 if (CONST_INT_P (XEXP (op0, 1))
11690 && INTVAL (XEXP (op0, 1)) >= 0
11691 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11692 < HOST_BITS_PER_WIDE_INT)
11693 && (((unsigned HOST_WIDE_INT) const_op
11694 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11695 - 1)) == 0)
11696 && mode_width <= HOST_BITS_PER_WIDE_INT
11697 && (nonzero_bits (XEXP (op0, 0), mode)
11698 & ~(mask >> (INTVAL (XEXP (op0, 1))
11699 + ! equality_comparison_p))) == 0)
11701 /* We must perform a logical shift, not an arithmetic one,
11702 as we want the top N bits of C to be zero. */
11703 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11705 temp >>= INTVAL (XEXP (op0, 1));
11706 op1 = gen_int_mode (temp, mode);
11707 op0 = XEXP (op0, 0);
11708 continue;
11711 /* If we are doing a sign bit comparison, it means we are testing
11712 a particular bit. Convert it to the appropriate AND. */
11713 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11714 && mode_width <= HOST_BITS_PER_WIDE_INT)
11716 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11717 ((unsigned HOST_WIDE_INT) 1
11718 << (mode_width - 1
11719 - INTVAL (XEXP (op0, 1)))));
11720 code = (code == LT ? NE : EQ);
11721 continue;
11724 /* If this an equality comparison with zero and we are shifting
11725 the low bit to the sign bit, we can convert this to an AND of the
11726 low-order bit. */
11727 if (const_op == 0 && equality_comparison_p
11728 && CONST_INT_P (XEXP (op0, 1))
11729 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11731 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11732 continue;
11734 break;
11736 case ASHIFTRT:
11737 /* If this is an equality comparison with zero, we can do this
11738 as a logical shift, which might be much simpler. */
11739 if (equality_comparison_p && const_op == 0
11740 && CONST_INT_P (XEXP (op0, 1)))
11742 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11743 XEXP (op0, 0),
11744 INTVAL (XEXP (op0, 1)));
11745 continue;
11748 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11749 do the comparison in a narrower mode. */
11750 if (! unsigned_comparison_p
11751 && CONST_INT_P (XEXP (op0, 1))
11752 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11753 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11754 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11755 MODE_INT, 1)) != BLKmode
11756 && (((unsigned HOST_WIDE_INT) const_op
11757 + (GET_MODE_MASK (tmode) >> 1) + 1)
11758 <= GET_MODE_MASK (tmode)))
11760 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11761 continue;
11764 /* Likewise if OP0 is a PLUS of a sign extension with a
11765 constant, which is usually represented with the PLUS
11766 between the shifts. */
11767 if (! unsigned_comparison_p
11768 && CONST_INT_P (XEXP (op0, 1))
11769 && GET_CODE (XEXP (op0, 0)) == PLUS
11770 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11771 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11772 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11773 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11774 MODE_INT, 1)) != BLKmode
11775 && (((unsigned HOST_WIDE_INT) const_op
11776 + (GET_MODE_MASK (tmode) >> 1) + 1)
11777 <= GET_MODE_MASK (tmode)))
11779 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11780 rtx add_const = XEXP (XEXP (op0, 0), 1);
11781 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11782 add_const, XEXP (op0, 1));
11784 op0 = simplify_gen_binary (PLUS, tmode,
11785 gen_lowpart (tmode, inner),
11786 new_const);
11787 continue;
11790 /* ... fall through ... */
11791 case LSHIFTRT:
11792 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11793 the low order N bits of FOO are known to be zero, we can do this
11794 by comparing FOO with C shifted left N bits so long as no
11795 overflow occurs. Even if the low order N bits of FOO aren't known
11796 to be zero, if the comparison is >= or < we can use the same
11797 optimization and for > or <= by setting all the low
11798 order N bits in the comparison constant. */
11799 if (CONST_INT_P (XEXP (op0, 1))
11800 && INTVAL (XEXP (op0, 1)) > 0
11801 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11802 && mode_width <= HOST_BITS_PER_WIDE_INT
11803 && (((unsigned HOST_WIDE_INT) const_op
11804 + (GET_CODE (op0) != LSHIFTRT
11805 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11806 + 1)
11807 : 0))
11808 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11810 unsigned HOST_WIDE_INT low_bits
11811 = (nonzero_bits (XEXP (op0, 0), mode)
11812 & (((unsigned HOST_WIDE_INT) 1
11813 << INTVAL (XEXP (op0, 1))) - 1));
11814 if (low_bits == 0 || !equality_comparison_p)
11816 /* If the shift was logical, then we must make the condition
11817 unsigned. */
11818 if (GET_CODE (op0) == LSHIFTRT)
11819 code = unsigned_condition (code);
11821 const_op <<= INTVAL (XEXP (op0, 1));
11822 if (low_bits != 0
11823 && (code == GT || code == GTU
11824 || code == LE || code == LEU))
11825 const_op
11826 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11827 op1 = GEN_INT (const_op);
11828 op0 = XEXP (op0, 0);
11829 continue;
11833 /* If we are using this shift to extract just the sign bit, we
11834 can replace this with an LT or GE comparison. */
11835 if (const_op == 0
11836 && (equality_comparison_p || sign_bit_comparison_p)
11837 && CONST_INT_P (XEXP (op0, 1))
11838 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11840 op0 = XEXP (op0, 0);
11841 code = (code == NE || code == GT ? LT : GE);
11842 continue;
11844 break;
11846 default:
11847 break;
11850 break;
11853 /* Now make any compound operations involved in this comparison. Then,
11854 check for an outmost SUBREG on OP0 that is not doing anything or is
11855 paradoxical. The latter transformation must only be performed when
11856 it is known that the "extra" bits will be the same in op0 and op1 or
11857 that they don't matter. There are three cases to consider:
11859 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11860 care bits and we can assume they have any convenient value. So
11861 making the transformation is safe.
11863 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11864 In this case the upper bits of op0 are undefined. We should not make
11865 the simplification in that case as we do not know the contents of
11866 those bits.
11868 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11869 UNKNOWN. In that case we know those bits are zeros or ones. We must
11870 also be sure that they are the same as the upper bits of op1.
11872 We can never remove a SUBREG for a non-equality comparison because
11873 the sign bit is in a different place in the underlying object. */
11875 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11876 op1 = make_compound_operation (op1, SET);
11878 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11879 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11880 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11881 && (code == NE || code == EQ))
11883 if (GET_MODE_SIZE (GET_MODE (op0))
11884 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11886 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11887 implemented. */
11888 if (REG_P (SUBREG_REG (op0)))
11890 op0 = SUBREG_REG (op0);
11891 op1 = gen_lowpart (GET_MODE (op0), op1);
11894 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11895 <= HOST_BITS_PER_WIDE_INT)
11896 && (nonzero_bits (SUBREG_REG (op0),
11897 GET_MODE (SUBREG_REG (op0)))
11898 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11900 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11902 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11903 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11904 op0 = SUBREG_REG (op0), op1 = tem;
11908 /* We now do the opposite procedure: Some machines don't have compare
11909 insns in all modes. If OP0's mode is an integer mode smaller than a
11910 word and we can't do a compare in that mode, see if there is a larger
11911 mode for which we can do the compare. There are a number of cases in
11912 which we can use the wider mode. */
11914 mode = GET_MODE (op0);
11915 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11916 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11917 && ! have_insn_for (COMPARE, mode))
11918 for (tmode = GET_MODE_WIDER_MODE (mode);
11919 (tmode != VOIDmode
11920 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11921 tmode = GET_MODE_WIDER_MODE (tmode))
11922 if (have_insn_for (COMPARE, tmode))
11924 int zero_extended;
11926 /* If this is a test for negative, we can make an explicit
11927 test of the sign bit. Test this first so we can use
11928 a paradoxical subreg to extend OP0. */
11930 if (op1 == const0_rtx && (code == LT || code == GE)
11931 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11933 op0 = simplify_gen_binary (AND, tmode,
11934 gen_lowpart (tmode, op0),
11935 GEN_INT ((unsigned HOST_WIDE_INT) 1
11936 << (GET_MODE_BITSIZE (mode)
11937 - 1)));
11938 code = (code == LT) ? NE : EQ;
11939 break;
11942 /* If the only nonzero bits in OP0 and OP1 are those in the
11943 narrower mode and this is an equality or unsigned comparison,
11944 we can use the wider mode. Similarly for sign-extended
11945 values, in which case it is true for all comparisons. */
11946 zero_extended = ((code == EQ || code == NE
11947 || code == GEU || code == GTU
11948 || code == LEU || code == LTU)
11949 && (nonzero_bits (op0, tmode)
11950 & ~GET_MODE_MASK (mode)) == 0
11951 && ((CONST_INT_P (op1)
11952 || (nonzero_bits (op1, tmode)
11953 & ~GET_MODE_MASK (mode)) == 0)));
11955 if (zero_extended
11956 || ((num_sign_bit_copies (op0, tmode)
11957 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11958 - GET_MODE_BITSIZE (mode)))
11959 && (num_sign_bit_copies (op1, tmode)
11960 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11961 - GET_MODE_BITSIZE (mode)))))
11963 /* If OP0 is an AND and we don't have an AND in MODE either,
11964 make a new AND in the proper mode. */
11965 if (GET_CODE (op0) == AND
11966 && !have_insn_for (AND, mode))
11967 op0 = simplify_gen_binary (AND, tmode,
11968 gen_lowpart (tmode,
11969 XEXP (op0, 0)),
11970 gen_lowpart (tmode,
11971 XEXP (op0, 1)));
11972 else
11974 if (zero_extended)
11976 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11977 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11979 else
11981 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11982 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11984 break;
11989 #ifdef CANONICALIZE_COMPARISON
11990 /* If this machine only supports a subset of valid comparisons, see if we
11991 can convert an unsupported one into a supported one. */
11992 CANONICALIZE_COMPARISON (code, op0, op1);
11993 #endif
11995 *pop0 = op0;
11996 *pop1 = op1;
11998 return code;
12001 /* Utility function for record_value_for_reg. Count number of
12002 rtxs in X. */
12003 static int
12004 count_rtxs (rtx x)
12006 enum rtx_code code = GET_CODE (x);
12007 const char *fmt;
12008 int i, j, ret = 1;
12010 if (GET_RTX_CLASS (code) == '2'
12011 || GET_RTX_CLASS (code) == 'c')
12013 rtx x0 = XEXP (x, 0);
12014 rtx x1 = XEXP (x, 1);
12016 if (x0 == x1)
12017 return 1 + 2 * count_rtxs (x0);
12019 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12020 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12021 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12022 return 2 + 2 * count_rtxs (x0)
12023 + count_rtxs (x == XEXP (x1, 0)
12024 ? XEXP (x1, 1) : XEXP (x1, 0));
12026 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12027 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12028 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12029 return 2 + 2 * count_rtxs (x1)
12030 + count_rtxs (x == XEXP (x0, 0)
12031 ? XEXP (x0, 1) : XEXP (x0, 0));
12034 fmt = GET_RTX_FORMAT (code);
12035 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12036 if (fmt[i] == 'e')
12037 ret += count_rtxs (XEXP (x, i));
12038 else if (fmt[i] == 'E')
12039 for (j = 0; j < XVECLEN (x, i); j++)
12040 ret += count_rtxs (XVECEXP (x, i, j));
12042 return ret;
12045 /* Utility function for following routine. Called when X is part of a value
12046 being stored into last_set_value. Sets last_set_table_tick
12047 for each register mentioned. Similar to mention_regs in cse.c */
12049 static void
12050 update_table_tick (rtx x)
12052 enum rtx_code code = GET_CODE (x);
12053 const char *fmt = GET_RTX_FORMAT (code);
12054 int i, j;
12056 if (code == REG)
12058 unsigned int regno = REGNO (x);
12059 unsigned int endregno = END_REGNO (x);
12060 unsigned int r;
12062 for (r = regno; r < endregno; r++)
12064 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12065 rsp->last_set_table_tick = label_tick;
12068 return;
12071 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12072 if (fmt[i] == 'e')
12074 /* Check for identical subexpressions. If x contains
12075 identical subexpression we only have to traverse one of
12076 them. */
12077 if (i == 0 && ARITHMETIC_P (x))
12079 /* Note that at this point x1 has already been
12080 processed. */
12081 rtx x0 = XEXP (x, 0);
12082 rtx x1 = XEXP (x, 1);
12084 /* If x0 and x1 are identical then there is no need to
12085 process x0. */
12086 if (x0 == x1)
12087 break;
12089 /* If x0 is identical to a subexpression of x1 then while
12090 processing x1, x0 has already been processed. Thus we
12091 are done with x. */
12092 if (ARITHMETIC_P (x1)
12093 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12094 break;
12096 /* If x1 is identical to a subexpression of x0 then we
12097 still have to process the rest of x0. */
12098 if (ARITHMETIC_P (x0)
12099 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12101 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12102 break;
12106 update_table_tick (XEXP (x, i));
12108 else if (fmt[i] == 'E')
12109 for (j = 0; j < XVECLEN (x, i); j++)
12110 update_table_tick (XVECEXP (x, i, j));
12113 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12114 are saying that the register is clobbered and we no longer know its
12115 value. If INSN is zero, don't update reg_stat[].last_set; this is
12116 only permitted with VALUE also zero and is used to invalidate the
12117 register. */
12119 static void
12120 record_value_for_reg (rtx reg, rtx insn, rtx value)
12122 unsigned int regno = REGNO (reg);
12123 unsigned int endregno = END_REGNO (reg);
12124 unsigned int i;
12125 reg_stat_type *rsp;
12127 /* If VALUE contains REG and we have a previous value for REG, substitute
12128 the previous value. */
12129 if (value && insn && reg_overlap_mentioned_p (reg, value))
12131 rtx tem;
12133 /* Set things up so get_last_value is allowed to see anything set up to
12134 our insn. */
12135 subst_low_luid = DF_INSN_LUID (insn);
12136 tem = get_last_value (reg);
12138 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12139 it isn't going to be useful and will take a lot of time to process,
12140 so just use the CLOBBER. */
12142 if (tem)
12144 if (ARITHMETIC_P (tem)
12145 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12146 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12147 tem = XEXP (tem, 0);
12148 else if (count_occurrences (value, reg, 1) >= 2)
12150 /* If there are two or more occurrences of REG in VALUE,
12151 prevent the value from growing too much. */
12152 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12153 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12156 value = replace_rtx (copy_rtx (value), reg, tem);
12160 /* For each register modified, show we don't know its value, that
12161 we don't know about its bitwise content, that its value has been
12162 updated, and that we don't know the location of the death of the
12163 register. */
12164 for (i = regno; i < endregno; i++)
12166 rsp = VEC_index (reg_stat_type, reg_stat, i);
12168 if (insn)
12169 rsp->last_set = insn;
12171 rsp->last_set_value = 0;
12172 rsp->last_set_mode = VOIDmode;
12173 rsp->last_set_nonzero_bits = 0;
12174 rsp->last_set_sign_bit_copies = 0;
12175 rsp->last_death = 0;
12176 rsp->truncated_to_mode = VOIDmode;
12179 /* Mark registers that are being referenced in this value. */
12180 if (value)
12181 update_table_tick (value);
12183 /* Now update the status of each register being set.
12184 If someone is using this register in this block, set this register
12185 to invalid since we will get confused between the two lives in this
12186 basic block. This makes using this register always invalid. In cse, we
12187 scan the table to invalidate all entries using this register, but this
12188 is too much work for us. */
12190 for (i = regno; i < endregno; i++)
12192 rsp = VEC_index (reg_stat_type, reg_stat, i);
12193 rsp->last_set_label = label_tick;
12194 if (!insn
12195 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12196 rsp->last_set_invalid = 1;
12197 else
12198 rsp->last_set_invalid = 0;
12201 /* The value being assigned might refer to X (like in "x++;"). In that
12202 case, we must replace it with (clobber (const_int 0)) to prevent
12203 infinite loops. */
12204 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12205 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12207 value = copy_rtx (value);
12208 if (!get_last_value_validate (&value, insn, label_tick, 1))
12209 value = 0;
12212 /* For the main register being modified, update the value, the mode, the
12213 nonzero bits, and the number of sign bit copies. */
12215 rsp->last_set_value = value;
12217 if (value)
12219 enum machine_mode mode = GET_MODE (reg);
12220 subst_low_luid = DF_INSN_LUID (insn);
12221 rsp->last_set_mode = mode;
12222 if (GET_MODE_CLASS (mode) == MODE_INT
12223 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12224 mode = nonzero_bits_mode;
12225 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12226 rsp->last_set_sign_bit_copies
12227 = num_sign_bit_copies (value, GET_MODE (reg));
12231 /* Called via note_stores from record_dead_and_set_regs to handle one
12232 SET or CLOBBER in an insn. DATA is the instruction in which the
12233 set is occurring. */
12235 static void
12236 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12238 rtx record_dead_insn = (rtx) data;
12240 if (GET_CODE (dest) == SUBREG)
12241 dest = SUBREG_REG (dest);
12243 if (!record_dead_insn)
12245 if (REG_P (dest))
12246 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12247 return;
12250 if (REG_P (dest))
12252 /* If we are setting the whole register, we know its value. Otherwise
12253 show that we don't know the value. We can handle SUBREG in
12254 some cases. */
12255 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12256 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12257 else if (GET_CODE (setter) == SET
12258 && GET_CODE (SET_DEST (setter)) == SUBREG
12259 && SUBREG_REG (SET_DEST (setter)) == dest
12260 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
12261 && subreg_lowpart_p (SET_DEST (setter)))
12262 record_value_for_reg (dest, record_dead_insn,
12263 gen_lowpart (GET_MODE (dest),
12264 SET_SRC (setter)));
12265 else
12266 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12268 else if (MEM_P (dest)
12269 /* Ignore pushes, they clobber nothing. */
12270 && ! push_operand (dest, GET_MODE (dest)))
12271 mem_last_set = DF_INSN_LUID (record_dead_insn);
12274 /* Update the records of when each REG was most recently set or killed
12275 for the things done by INSN. This is the last thing done in processing
12276 INSN in the combiner loop.
12278 We update reg_stat[], in particular fields last_set, last_set_value,
12279 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12280 last_death, and also the similar information mem_last_set (which insn
12281 most recently modified memory) and last_call_luid (which insn was the
12282 most recent subroutine call). */
12284 static void
12285 record_dead_and_set_regs (rtx insn)
12287 rtx link;
12288 unsigned int i;
12290 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12292 if (REG_NOTE_KIND (link) == REG_DEAD
12293 && REG_P (XEXP (link, 0)))
12295 unsigned int regno = REGNO (XEXP (link, 0));
12296 unsigned int endregno = END_REGNO (XEXP (link, 0));
12298 for (i = regno; i < endregno; i++)
12300 reg_stat_type *rsp;
12302 rsp = VEC_index (reg_stat_type, reg_stat, i);
12303 rsp->last_death = insn;
12306 else if (REG_NOTE_KIND (link) == REG_INC)
12307 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12310 if (CALL_P (insn))
12312 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12313 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12315 reg_stat_type *rsp;
12317 rsp = VEC_index (reg_stat_type, reg_stat, i);
12318 rsp->last_set_invalid = 1;
12319 rsp->last_set = insn;
12320 rsp->last_set_value = 0;
12321 rsp->last_set_mode = VOIDmode;
12322 rsp->last_set_nonzero_bits = 0;
12323 rsp->last_set_sign_bit_copies = 0;
12324 rsp->last_death = 0;
12325 rsp->truncated_to_mode = VOIDmode;
12328 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12330 /* We can't combine into a call pattern. Remember, though, that
12331 the return value register is set at this LUID. We could
12332 still replace a register with the return value from the
12333 wrong subroutine call! */
12334 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12336 else
12337 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12340 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12341 register present in the SUBREG, so for each such SUBREG go back and
12342 adjust nonzero and sign bit information of the registers that are
12343 known to have some zero/sign bits set.
12345 This is needed because when combine blows the SUBREGs away, the
12346 information on zero/sign bits is lost and further combines can be
12347 missed because of that. */
12349 static void
12350 record_promoted_value (rtx insn, rtx subreg)
12352 rtx links, set;
12353 unsigned int regno = REGNO (SUBREG_REG (subreg));
12354 enum machine_mode mode = GET_MODE (subreg);
12356 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
12357 return;
12359 for (links = LOG_LINKS (insn); links;)
12361 reg_stat_type *rsp;
12363 insn = XEXP (links, 0);
12364 set = single_set (insn);
12366 if (! set || !REG_P (SET_DEST (set))
12367 || REGNO (SET_DEST (set)) != regno
12368 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12370 links = XEXP (links, 1);
12371 continue;
12374 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12375 if (rsp->last_set == insn)
12377 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12378 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12381 if (REG_P (SET_SRC (set)))
12383 regno = REGNO (SET_SRC (set));
12384 links = LOG_LINKS (insn);
12386 else
12387 break;
12391 /* Check if X, a register, is known to contain a value already
12392 truncated to MODE. In this case we can use a subreg to refer to
12393 the truncated value even though in the generic case we would need
12394 an explicit truncation. */
12396 static bool
12397 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12399 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12400 enum machine_mode truncated = rsp->truncated_to_mode;
12402 if (truncated == 0
12403 || rsp->truncation_label < label_tick_ebb_start)
12404 return false;
12405 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12406 return true;
12407 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12408 GET_MODE_BITSIZE (truncated)))
12409 return true;
12410 return false;
12413 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12414 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12415 might be able to turn a truncate into a subreg using this information.
12416 Return -1 if traversing *P is complete or 0 otherwise. */
12418 static int
12419 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12421 rtx x = *p;
12422 enum machine_mode truncated_mode;
12423 reg_stat_type *rsp;
12425 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12427 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12428 truncated_mode = GET_MODE (x);
12430 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12431 return -1;
12433 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12434 GET_MODE_BITSIZE (original_mode)))
12435 return -1;
12437 x = SUBREG_REG (x);
12439 /* ??? For hard-regs we now record everything. We might be able to
12440 optimize this using last_set_mode. */
12441 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12442 truncated_mode = GET_MODE (x);
12443 else
12444 return 0;
12446 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12447 if (rsp->truncated_to_mode == 0
12448 || rsp->truncation_label < label_tick_ebb_start
12449 || (GET_MODE_SIZE (truncated_mode)
12450 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12452 rsp->truncated_to_mode = truncated_mode;
12453 rsp->truncation_label = label_tick;
12456 return -1;
12459 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12460 the modes they are used in. This can help truning TRUNCATEs into
12461 SUBREGs. */
12463 static void
12464 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12466 for_each_rtx (x, record_truncated_value, NULL);
12469 /* Scan X for promoted SUBREGs. For each one found,
12470 note what it implies to the registers used in it. */
12472 static void
12473 check_promoted_subreg (rtx insn, rtx x)
12475 if (GET_CODE (x) == SUBREG
12476 && SUBREG_PROMOTED_VAR_P (x)
12477 && REG_P (SUBREG_REG (x)))
12478 record_promoted_value (insn, x);
12479 else
12481 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12482 int i, j;
12484 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12485 switch (format[i])
12487 case 'e':
12488 check_promoted_subreg (insn, XEXP (x, i));
12489 break;
12490 case 'V':
12491 case 'E':
12492 if (XVEC (x, i) != 0)
12493 for (j = 0; j < XVECLEN (x, i); j++)
12494 check_promoted_subreg (insn, XVECEXP (x, i, j));
12495 break;
12500 /* Verify that all the registers and memory references mentioned in *LOC are
12501 still valid. *LOC was part of a value set in INSN when label_tick was
12502 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12503 the invalid references with (clobber (const_int 0)) and return 1. This
12504 replacement is useful because we often can get useful information about
12505 the form of a value (e.g., if it was produced by a shift that always
12506 produces -1 or 0) even though we don't know exactly what registers it
12507 was produced from. */
12509 static int
12510 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12512 rtx x = *loc;
12513 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12514 int len = GET_RTX_LENGTH (GET_CODE (x));
12515 int i, j;
12517 if (REG_P (x))
12519 unsigned int regno = REGNO (x);
12520 unsigned int endregno = END_REGNO (x);
12521 unsigned int j;
12523 for (j = regno; j < endregno; j++)
12525 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12526 if (rsp->last_set_invalid
12527 /* If this is a pseudo-register that was only set once and not
12528 live at the beginning of the function, it is always valid. */
12529 || (! (regno >= FIRST_PSEUDO_REGISTER
12530 && REG_N_SETS (regno) == 1
12531 && (!REGNO_REG_SET_P
12532 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12533 && rsp->last_set_label > tick))
12535 if (replace)
12536 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12537 return replace;
12541 return 1;
12543 /* If this is a memory reference, make sure that there were no stores after
12544 it that might have clobbered the value. We don't have alias info, so we
12545 assume any store invalidates it. Moreover, we only have local UIDs, so
12546 we also assume that there were stores in the intervening basic blocks. */
12547 else if (MEM_P (x) && !MEM_READONLY_P (x)
12548 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12550 if (replace)
12551 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12552 return replace;
12555 for (i = 0; i < len; i++)
12557 if (fmt[i] == 'e')
12559 /* Check for identical subexpressions. If x contains
12560 identical subexpression we only have to traverse one of
12561 them. */
12562 if (i == 1 && ARITHMETIC_P (x))
12564 /* Note that at this point x0 has already been checked
12565 and found valid. */
12566 rtx x0 = XEXP (x, 0);
12567 rtx x1 = XEXP (x, 1);
12569 /* If x0 and x1 are identical then x is also valid. */
12570 if (x0 == x1)
12571 return 1;
12573 /* If x1 is identical to a subexpression of x0 then
12574 while checking x0, x1 has already been checked. Thus
12575 it is valid and so as x. */
12576 if (ARITHMETIC_P (x0)
12577 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12578 return 1;
12580 /* If x0 is identical to a subexpression of x1 then x is
12581 valid iff the rest of x1 is valid. */
12582 if (ARITHMETIC_P (x1)
12583 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12584 return
12585 get_last_value_validate (&XEXP (x1,
12586 x0 == XEXP (x1, 0) ? 1 : 0),
12587 insn, tick, replace);
12590 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12591 replace) == 0)
12592 return 0;
12594 else if (fmt[i] == 'E')
12595 for (j = 0; j < XVECLEN (x, i); j++)
12596 if (get_last_value_validate (&XVECEXP (x, i, j),
12597 insn, tick, replace) == 0)
12598 return 0;
12601 /* If we haven't found a reason for it to be invalid, it is valid. */
12602 return 1;
12605 /* Get the last value assigned to X, if known. Some registers
12606 in the value may be replaced with (clobber (const_int 0)) if their value
12607 is known longer known reliably. */
12609 static rtx
12610 get_last_value (const_rtx x)
12612 unsigned int regno;
12613 rtx value;
12614 reg_stat_type *rsp;
12616 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12617 then convert it to the desired mode. If this is a paradoxical SUBREG,
12618 we cannot predict what values the "extra" bits might have. */
12619 if (GET_CODE (x) == SUBREG
12620 && subreg_lowpart_p (x)
12621 && (GET_MODE_SIZE (GET_MODE (x))
12622 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12623 && (value = get_last_value (SUBREG_REG (x))) != 0)
12624 return gen_lowpart (GET_MODE (x), value);
12626 if (!REG_P (x))
12627 return 0;
12629 regno = REGNO (x);
12630 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12631 value = rsp->last_set_value;
12633 /* If we don't have a value, or if it isn't for this basic block and
12634 it's either a hard register, set more than once, or it's a live
12635 at the beginning of the function, return 0.
12637 Because if it's not live at the beginning of the function then the reg
12638 is always set before being used (is never used without being set).
12639 And, if it's set only once, and it's always set before use, then all
12640 uses must have the same last value, even if it's not from this basic
12641 block. */
12643 if (value == 0
12644 || (rsp->last_set_label < label_tick_ebb_start
12645 && (regno < FIRST_PSEUDO_REGISTER
12646 || REG_N_SETS (regno) != 1
12647 || REGNO_REG_SET_P
12648 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12649 return 0;
12651 /* If the value was set in a later insn than the ones we are processing,
12652 we can't use it even if the register was only set once. */
12653 if (rsp->last_set_label == label_tick
12654 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12655 return 0;
12657 /* If the value has all its registers valid, return it. */
12658 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12659 return value;
12661 /* Otherwise, make a copy and replace any invalid register with
12662 (clobber (const_int 0)). If that fails for some reason, return 0. */
12664 value = copy_rtx (value);
12665 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12666 return value;
12668 return 0;
12671 /* Return nonzero if expression X refers to a REG or to memory
12672 that is set in an instruction more recent than FROM_LUID. */
12674 static int
12675 use_crosses_set_p (const_rtx x, int from_luid)
12677 const char *fmt;
12678 int i;
12679 enum rtx_code code = GET_CODE (x);
12681 if (code == REG)
12683 unsigned int regno = REGNO (x);
12684 unsigned endreg = END_REGNO (x);
12686 #ifdef PUSH_ROUNDING
12687 /* Don't allow uses of the stack pointer to be moved,
12688 because we don't know whether the move crosses a push insn. */
12689 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12690 return 1;
12691 #endif
12692 for (; regno < endreg; regno++)
12694 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12695 if (rsp->last_set
12696 && rsp->last_set_label == label_tick
12697 && DF_INSN_LUID (rsp->last_set) > from_luid)
12698 return 1;
12700 return 0;
12703 if (code == MEM && mem_last_set > from_luid)
12704 return 1;
12706 fmt = GET_RTX_FORMAT (code);
12708 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12710 if (fmt[i] == 'E')
12712 int j;
12713 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12714 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12715 return 1;
12717 else if (fmt[i] == 'e'
12718 && use_crosses_set_p (XEXP (x, i), from_luid))
12719 return 1;
12721 return 0;
12724 /* Define three variables used for communication between the following
12725 routines. */
12727 static unsigned int reg_dead_regno, reg_dead_endregno;
12728 static int reg_dead_flag;
12730 /* Function called via note_stores from reg_dead_at_p.
12732 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12733 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12735 static void
12736 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12738 unsigned int regno, endregno;
12740 if (!REG_P (dest))
12741 return;
12743 regno = REGNO (dest);
12744 endregno = END_REGNO (dest);
12745 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12746 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12749 /* Return nonzero if REG is known to be dead at INSN.
12751 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12752 referencing REG, it is dead. If we hit a SET referencing REG, it is
12753 live. Otherwise, see if it is live or dead at the start of the basic
12754 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12755 must be assumed to be always live. */
12757 static int
12758 reg_dead_at_p (rtx reg, rtx insn)
12760 basic_block block;
12761 unsigned int i;
12763 /* Set variables for reg_dead_at_p_1. */
12764 reg_dead_regno = REGNO (reg);
12765 reg_dead_endregno = END_REGNO (reg);
12767 reg_dead_flag = 0;
12769 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12770 we allow the machine description to decide whether use-and-clobber
12771 patterns are OK. */
12772 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12774 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12775 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12776 return 0;
12779 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12780 beginning of basic block. */
12781 block = BLOCK_FOR_INSN (insn);
12782 for (;;)
12784 if (INSN_P (insn))
12786 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12787 if (reg_dead_flag)
12788 return reg_dead_flag == 1 ? 1 : 0;
12790 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12791 return 1;
12794 if (insn == BB_HEAD (block))
12795 break;
12797 insn = PREV_INSN (insn);
12800 /* Look at live-in sets for the basic block that we were in. */
12801 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12802 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12803 return 0;
12805 return 1;
12808 /* Note hard registers in X that are used. */
12810 static void
12811 mark_used_regs_combine (rtx x)
12813 RTX_CODE code = GET_CODE (x);
12814 unsigned int regno;
12815 int i;
12817 switch (code)
12819 case LABEL_REF:
12820 case SYMBOL_REF:
12821 case CONST_INT:
12822 case CONST:
12823 case CONST_DOUBLE:
12824 case CONST_VECTOR:
12825 case PC:
12826 case ADDR_VEC:
12827 case ADDR_DIFF_VEC:
12828 case ASM_INPUT:
12829 #ifdef HAVE_cc0
12830 /* CC0 must die in the insn after it is set, so we don't need to take
12831 special note of it here. */
12832 case CC0:
12833 #endif
12834 return;
12836 case CLOBBER:
12837 /* If we are clobbering a MEM, mark any hard registers inside the
12838 address as used. */
12839 if (MEM_P (XEXP (x, 0)))
12840 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12841 return;
12843 case REG:
12844 regno = REGNO (x);
12845 /* A hard reg in a wide mode may really be multiple registers.
12846 If so, mark all of them just like the first. */
12847 if (regno < FIRST_PSEUDO_REGISTER)
12849 /* None of this applies to the stack, frame or arg pointers. */
12850 if (regno == STACK_POINTER_REGNUM
12851 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12852 || regno == HARD_FRAME_POINTER_REGNUM
12853 #endif
12854 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12855 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12856 #endif
12857 || regno == FRAME_POINTER_REGNUM)
12858 return;
12860 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12862 return;
12864 case SET:
12866 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12867 the address. */
12868 rtx testreg = SET_DEST (x);
12870 while (GET_CODE (testreg) == SUBREG
12871 || GET_CODE (testreg) == ZERO_EXTRACT
12872 || GET_CODE (testreg) == STRICT_LOW_PART)
12873 testreg = XEXP (testreg, 0);
12875 if (MEM_P (testreg))
12876 mark_used_regs_combine (XEXP (testreg, 0));
12878 mark_used_regs_combine (SET_SRC (x));
12880 return;
12882 default:
12883 break;
12886 /* Recursively scan the operands of this expression. */
12889 const char *fmt = GET_RTX_FORMAT (code);
12891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12893 if (fmt[i] == 'e')
12894 mark_used_regs_combine (XEXP (x, i));
12895 else if (fmt[i] == 'E')
12897 int j;
12899 for (j = 0; j < XVECLEN (x, i); j++)
12900 mark_used_regs_combine (XVECEXP (x, i, j));
12906 /* Remove register number REGNO from the dead registers list of INSN.
12908 Return the note used to record the death, if there was one. */
12911 remove_death (unsigned int regno, rtx insn)
12913 rtx note = find_regno_note (insn, REG_DEAD, regno);
12915 if (note)
12916 remove_note (insn, note);
12918 return note;
12921 /* For each register (hardware or pseudo) used within expression X, if its
12922 death is in an instruction with luid between FROM_LUID (inclusive) and
12923 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12924 list headed by PNOTES.
12926 That said, don't move registers killed by maybe_kill_insn.
12928 This is done when X is being merged by combination into TO_INSN. These
12929 notes will then be distributed as needed. */
12931 static void
12932 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12933 rtx *pnotes)
12935 const char *fmt;
12936 int len, i;
12937 enum rtx_code code = GET_CODE (x);
12939 if (code == REG)
12941 unsigned int regno = REGNO (x);
12942 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12944 /* Don't move the register if it gets killed in between from and to. */
12945 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12946 && ! reg_referenced_p (x, maybe_kill_insn))
12947 return;
12949 if (where_dead
12950 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12951 && DF_INSN_LUID (where_dead) >= from_luid
12952 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12954 rtx note = remove_death (regno, where_dead);
12956 /* It is possible for the call above to return 0. This can occur
12957 when last_death points to I2 or I1 that we combined with.
12958 In that case make a new note.
12960 We must also check for the case where X is a hard register
12961 and NOTE is a death note for a range of hard registers
12962 including X. In that case, we must put REG_DEAD notes for
12963 the remaining registers in place of NOTE. */
12965 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12966 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12967 > GET_MODE_SIZE (GET_MODE (x))))
12969 unsigned int deadregno = REGNO (XEXP (note, 0));
12970 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12971 unsigned int ourend = END_HARD_REGNO (x);
12972 unsigned int i;
12974 for (i = deadregno; i < deadend; i++)
12975 if (i < regno || i >= ourend)
12976 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12979 /* If we didn't find any note, or if we found a REG_DEAD note that
12980 covers only part of the given reg, and we have a multi-reg hard
12981 register, then to be safe we must check for REG_DEAD notes
12982 for each register other than the first. They could have
12983 their own REG_DEAD notes lying around. */
12984 else if ((note == 0
12985 || (note != 0
12986 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12987 < GET_MODE_SIZE (GET_MODE (x)))))
12988 && regno < FIRST_PSEUDO_REGISTER
12989 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12991 unsigned int ourend = END_HARD_REGNO (x);
12992 unsigned int i, offset;
12993 rtx oldnotes = 0;
12995 if (note)
12996 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12997 else
12998 offset = 1;
13000 for (i = regno + offset; i < ourend; i++)
13001 move_deaths (regno_reg_rtx[i],
13002 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13005 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13007 XEXP (note, 1) = *pnotes;
13008 *pnotes = note;
13010 else
13011 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13014 return;
13017 else if (GET_CODE (x) == SET)
13019 rtx dest = SET_DEST (x);
13021 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13023 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13024 that accesses one word of a multi-word item, some
13025 piece of everything register in the expression is used by
13026 this insn, so remove any old death. */
13027 /* ??? So why do we test for equality of the sizes? */
13029 if (GET_CODE (dest) == ZERO_EXTRACT
13030 || GET_CODE (dest) == STRICT_LOW_PART
13031 || (GET_CODE (dest) == SUBREG
13032 && (((GET_MODE_SIZE (GET_MODE (dest))
13033 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13034 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13035 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13037 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13038 return;
13041 /* If this is some other SUBREG, we know it replaces the entire
13042 value, so use that as the destination. */
13043 if (GET_CODE (dest) == SUBREG)
13044 dest = SUBREG_REG (dest);
13046 /* If this is a MEM, adjust deaths of anything used in the address.
13047 For a REG (the only other possibility), the entire value is
13048 being replaced so the old value is not used in this insn. */
13050 if (MEM_P (dest))
13051 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13052 to_insn, pnotes);
13053 return;
13056 else if (GET_CODE (x) == CLOBBER)
13057 return;
13059 len = GET_RTX_LENGTH (code);
13060 fmt = GET_RTX_FORMAT (code);
13062 for (i = 0; i < len; i++)
13064 if (fmt[i] == 'E')
13066 int j;
13067 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13068 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13069 to_insn, pnotes);
13071 else if (fmt[i] == 'e')
13072 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13076 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13077 pattern of an insn. X must be a REG. */
13079 static int
13080 reg_bitfield_target_p (rtx x, rtx body)
13082 int i;
13084 if (GET_CODE (body) == SET)
13086 rtx dest = SET_DEST (body);
13087 rtx target;
13088 unsigned int regno, tregno, endregno, endtregno;
13090 if (GET_CODE (dest) == ZERO_EXTRACT)
13091 target = XEXP (dest, 0);
13092 else if (GET_CODE (dest) == STRICT_LOW_PART)
13093 target = SUBREG_REG (XEXP (dest, 0));
13094 else
13095 return 0;
13097 if (GET_CODE (target) == SUBREG)
13098 target = SUBREG_REG (target);
13100 if (!REG_P (target))
13101 return 0;
13103 tregno = REGNO (target), regno = REGNO (x);
13104 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13105 return target == x;
13107 endtregno = end_hard_regno (GET_MODE (target), tregno);
13108 endregno = end_hard_regno (GET_MODE (x), regno);
13110 return endregno > tregno && regno < endtregno;
13113 else if (GET_CODE (body) == PARALLEL)
13114 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13115 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13116 return 1;
13118 return 0;
13121 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13122 as appropriate. I3 and I2 are the insns resulting from the combination
13123 insns including FROM (I2 may be zero).
13125 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13126 not need REG_DEAD notes because they are being substituted for. This
13127 saves searching in the most common cases.
13129 Each note in the list is either ignored or placed on some insns, depending
13130 on the type of note. */
13132 static void
13133 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13134 rtx elim_i1, rtx elim_i0)
13136 rtx note, next_note;
13137 rtx tem;
13139 for (note = notes; note; note = next_note)
13141 rtx place = 0, place2 = 0;
13143 next_note = XEXP (note, 1);
13144 switch (REG_NOTE_KIND (note))
13146 case REG_BR_PROB:
13147 case REG_BR_PRED:
13148 /* Doesn't matter much where we put this, as long as it's somewhere.
13149 It is preferable to keep these notes on branches, which is most
13150 likely to be i3. */
13151 place = i3;
13152 break;
13154 case REG_NON_LOCAL_GOTO:
13155 if (JUMP_P (i3))
13156 place = i3;
13157 else
13159 gcc_assert (i2 && JUMP_P (i2));
13160 place = i2;
13162 break;
13164 case REG_EH_REGION:
13165 /* These notes must remain with the call or trapping instruction. */
13166 if (CALL_P (i3))
13167 place = i3;
13168 else if (i2 && CALL_P (i2))
13169 place = i2;
13170 else
13172 gcc_assert (cfun->can_throw_non_call_exceptions);
13173 if (may_trap_p (i3))
13174 place = i3;
13175 else if (i2 && may_trap_p (i2))
13176 place = i2;
13177 /* ??? Otherwise assume we've combined things such that we
13178 can now prove that the instructions can't trap. Drop the
13179 note in this case. */
13181 break;
13183 case REG_NORETURN:
13184 case REG_SETJMP:
13185 /* These notes must remain with the call. It should not be
13186 possible for both I2 and I3 to be a call. */
13187 if (CALL_P (i3))
13188 place = i3;
13189 else
13191 gcc_assert (i2 && CALL_P (i2));
13192 place = i2;
13194 break;
13196 case REG_UNUSED:
13197 /* Any clobbers for i3 may still exist, and so we must process
13198 REG_UNUSED notes from that insn.
13200 Any clobbers from i2 or i1 can only exist if they were added by
13201 recog_for_combine. In that case, recog_for_combine created the
13202 necessary REG_UNUSED notes. Trying to keep any original
13203 REG_UNUSED notes from these insns can cause incorrect output
13204 if it is for the same register as the original i3 dest.
13205 In that case, we will notice that the register is set in i3,
13206 and then add a REG_UNUSED note for the destination of i3, which
13207 is wrong. However, it is possible to have REG_UNUSED notes from
13208 i2 or i1 for register which were both used and clobbered, so
13209 we keep notes from i2 or i1 if they will turn into REG_DEAD
13210 notes. */
13212 /* If this register is set or clobbered in I3, put the note there
13213 unless there is one already. */
13214 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13216 if (from_insn != i3)
13217 break;
13219 if (! (REG_P (XEXP (note, 0))
13220 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13221 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13222 place = i3;
13224 /* Otherwise, if this register is used by I3, then this register
13225 now dies here, so we must put a REG_DEAD note here unless there
13226 is one already. */
13227 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13228 && ! (REG_P (XEXP (note, 0))
13229 ? find_regno_note (i3, REG_DEAD,
13230 REGNO (XEXP (note, 0)))
13231 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13233 PUT_REG_NOTE_KIND (note, REG_DEAD);
13234 place = i3;
13236 break;
13238 case REG_EQUAL:
13239 case REG_EQUIV:
13240 case REG_NOALIAS:
13241 /* These notes say something about results of an insn. We can
13242 only support them if they used to be on I3 in which case they
13243 remain on I3. Otherwise they are ignored.
13245 If the note refers to an expression that is not a constant, we
13246 must also ignore the note since we cannot tell whether the
13247 equivalence is still true. It might be possible to do
13248 slightly better than this (we only have a problem if I2DEST
13249 or I1DEST is present in the expression), but it doesn't
13250 seem worth the trouble. */
13252 if (from_insn == i3
13253 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13254 place = i3;
13255 break;
13257 case REG_INC:
13258 /* These notes say something about how a register is used. They must
13259 be present on any use of the register in I2 or I3. */
13260 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13261 place = i3;
13263 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13265 if (place)
13266 place2 = i2;
13267 else
13268 place = i2;
13270 break;
13272 case REG_LABEL_TARGET:
13273 case REG_LABEL_OPERAND:
13274 /* This can show up in several ways -- either directly in the
13275 pattern, or hidden off in the constant pool with (or without?)
13276 a REG_EQUAL note. */
13277 /* ??? Ignore the without-reg_equal-note problem for now. */
13278 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13279 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13280 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13281 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13282 place = i3;
13284 if (i2
13285 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13286 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13287 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13288 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13290 if (place)
13291 place2 = i2;
13292 else
13293 place = i2;
13296 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13297 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13298 there. */
13299 if (place && JUMP_P (place)
13300 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13301 && (JUMP_LABEL (place) == NULL
13302 || JUMP_LABEL (place) == XEXP (note, 0)))
13304 rtx label = JUMP_LABEL (place);
13306 if (!label)
13307 JUMP_LABEL (place) = XEXP (note, 0);
13308 else if (LABEL_P (label))
13309 LABEL_NUSES (label)--;
13312 if (place2 && JUMP_P (place2)
13313 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13314 && (JUMP_LABEL (place2) == NULL
13315 || JUMP_LABEL (place2) == XEXP (note, 0)))
13317 rtx label = JUMP_LABEL (place2);
13319 if (!label)
13320 JUMP_LABEL (place2) = XEXP (note, 0);
13321 else if (LABEL_P (label))
13322 LABEL_NUSES (label)--;
13323 place2 = 0;
13325 break;
13327 case REG_NONNEG:
13328 /* This note says something about the value of a register prior
13329 to the execution of an insn. It is too much trouble to see
13330 if the note is still correct in all situations. It is better
13331 to simply delete it. */
13332 break;
13334 case REG_DEAD:
13335 /* If we replaced the right hand side of FROM_INSN with a
13336 REG_EQUAL note, the original use of the dying register
13337 will not have been combined into I3 and I2. In such cases,
13338 FROM_INSN is guaranteed to be the first of the combined
13339 instructions, so we simply need to search back before
13340 FROM_INSN for the previous use or set of this register,
13341 then alter the notes there appropriately.
13343 If the register is used as an input in I3, it dies there.
13344 Similarly for I2, if it is nonzero and adjacent to I3.
13346 If the register is not used as an input in either I3 or I2
13347 and it is not one of the registers we were supposed to eliminate,
13348 there are two possibilities. We might have a non-adjacent I2
13349 or we might have somehow eliminated an additional register
13350 from a computation. For example, we might have had A & B where
13351 we discover that B will always be zero. In this case we will
13352 eliminate the reference to A.
13354 In both cases, we must search to see if we can find a previous
13355 use of A and put the death note there. */
13357 if (from_insn
13358 && from_insn == i2mod
13359 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13360 tem = from_insn;
13361 else
13363 if (from_insn
13364 && CALL_P (from_insn)
13365 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13366 place = from_insn;
13367 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13368 place = i3;
13369 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13370 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13371 place = i2;
13372 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13373 && !(i2mod
13374 && reg_overlap_mentioned_p (XEXP (note, 0),
13375 i2mod_old_rhs)))
13376 || rtx_equal_p (XEXP (note, 0), elim_i1)
13377 || rtx_equal_p (XEXP (note, 0), elim_i0))
13378 break;
13379 tem = i3;
13382 if (place == 0)
13384 basic_block bb = this_basic_block;
13386 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13388 if (!NONDEBUG_INSN_P (tem))
13390 if (tem == BB_HEAD (bb))
13391 break;
13392 continue;
13395 /* If the register is being set at TEM, see if that is all
13396 TEM is doing. If so, delete TEM. Otherwise, make this
13397 into a REG_UNUSED note instead. Don't delete sets to
13398 global register vars. */
13399 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13400 || !global_regs[REGNO (XEXP (note, 0))])
13401 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13403 rtx set = single_set (tem);
13404 rtx inner_dest = 0;
13405 #ifdef HAVE_cc0
13406 rtx cc0_setter = NULL_RTX;
13407 #endif
13409 if (set != 0)
13410 for (inner_dest = SET_DEST (set);
13411 (GET_CODE (inner_dest) == STRICT_LOW_PART
13412 || GET_CODE (inner_dest) == SUBREG
13413 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13414 inner_dest = XEXP (inner_dest, 0))
13417 /* Verify that it was the set, and not a clobber that
13418 modified the register.
13420 CC0 targets must be careful to maintain setter/user
13421 pairs. If we cannot delete the setter due to side
13422 effects, mark the user with an UNUSED note instead
13423 of deleting it. */
13425 if (set != 0 && ! side_effects_p (SET_SRC (set))
13426 && rtx_equal_p (XEXP (note, 0), inner_dest)
13427 #ifdef HAVE_cc0
13428 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13429 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13430 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13431 #endif
13434 /* Move the notes and links of TEM elsewhere.
13435 This might delete other dead insns recursively.
13436 First set the pattern to something that won't use
13437 any register. */
13438 rtx old_notes = REG_NOTES (tem);
13440 PATTERN (tem) = pc_rtx;
13441 REG_NOTES (tem) = NULL;
13443 distribute_notes (old_notes, tem, tem, NULL_RTX,
13444 NULL_RTX, NULL_RTX, NULL_RTX);
13445 distribute_links (LOG_LINKS (tem));
13447 SET_INSN_DELETED (tem);
13448 if (tem == i2)
13449 i2 = NULL_RTX;
13451 #ifdef HAVE_cc0
13452 /* Delete the setter too. */
13453 if (cc0_setter)
13455 PATTERN (cc0_setter) = pc_rtx;
13456 old_notes = REG_NOTES (cc0_setter);
13457 REG_NOTES (cc0_setter) = NULL;
13459 distribute_notes (old_notes, cc0_setter,
13460 cc0_setter, NULL_RTX,
13461 NULL_RTX, NULL_RTX, NULL_RTX);
13462 distribute_links (LOG_LINKS (cc0_setter));
13464 SET_INSN_DELETED (cc0_setter);
13465 if (cc0_setter == i2)
13466 i2 = NULL_RTX;
13468 #endif
13470 else
13472 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13474 /* If there isn't already a REG_UNUSED note, put one
13475 here. Do not place a REG_DEAD note, even if
13476 the register is also used here; that would not
13477 match the algorithm used in lifetime analysis
13478 and can cause the consistency check in the
13479 scheduler to fail. */
13480 if (! find_regno_note (tem, REG_UNUSED,
13481 REGNO (XEXP (note, 0))))
13482 place = tem;
13483 break;
13486 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13487 || (CALL_P (tem)
13488 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13490 place = tem;
13492 /* If we are doing a 3->2 combination, and we have a
13493 register which formerly died in i3 and was not used
13494 by i2, which now no longer dies in i3 and is used in
13495 i2 but does not die in i2, and place is between i2
13496 and i3, then we may need to move a link from place to
13497 i2. */
13498 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13499 && from_insn
13500 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13501 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13503 rtx links = LOG_LINKS (place);
13504 LOG_LINKS (place) = 0;
13505 distribute_links (links);
13507 break;
13510 if (tem == BB_HEAD (bb))
13511 break;
13516 /* If the register is set or already dead at PLACE, we needn't do
13517 anything with this note if it is still a REG_DEAD note.
13518 We check here if it is set at all, not if is it totally replaced,
13519 which is what `dead_or_set_p' checks, so also check for it being
13520 set partially. */
13522 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13524 unsigned int regno = REGNO (XEXP (note, 0));
13525 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13527 if (dead_or_set_p (place, XEXP (note, 0))
13528 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13530 /* Unless the register previously died in PLACE, clear
13531 last_death. [I no longer understand why this is
13532 being done.] */
13533 if (rsp->last_death != place)
13534 rsp->last_death = 0;
13535 place = 0;
13537 else
13538 rsp->last_death = place;
13540 /* If this is a death note for a hard reg that is occupying
13541 multiple registers, ensure that we are still using all
13542 parts of the object. If we find a piece of the object
13543 that is unused, we must arrange for an appropriate REG_DEAD
13544 note to be added for it. However, we can't just emit a USE
13545 and tag the note to it, since the register might actually
13546 be dead; so we recourse, and the recursive call then finds
13547 the previous insn that used this register. */
13549 if (place && regno < FIRST_PSEUDO_REGISTER
13550 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13552 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13553 int all_used = 1;
13554 unsigned int i;
13556 for (i = regno; i < endregno; i++)
13557 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13558 && ! find_regno_fusage (place, USE, i))
13559 || dead_or_set_regno_p (place, i))
13560 all_used = 0;
13562 if (! all_used)
13564 /* Put only REG_DEAD notes for pieces that are
13565 not already dead or set. */
13567 for (i = regno; i < endregno;
13568 i += hard_regno_nregs[i][reg_raw_mode[i]])
13570 rtx piece = regno_reg_rtx[i];
13571 basic_block bb = this_basic_block;
13573 if (! dead_or_set_p (place, piece)
13574 && ! reg_bitfield_target_p (piece,
13575 PATTERN (place)))
13577 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13578 NULL_RTX);
13580 distribute_notes (new_note, place, place,
13581 NULL_RTX, NULL_RTX, NULL_RTX,
13582 NULL_RTX);
13584 else if (! refers_to_regno_p (i, i + 1,
13585 PATTERN (place), 0)
13586 && ! find_regno_fusage (place, USE, i))
13587 for (tem = PREV_INSN (place); ;
13588 tem = PREV_INSN (tem))
13590 if (!NONDEBUG_INSN_P (tem))
13592 if (tem == BB_HEAD (bb))
13593 break;
13594 continue;
13596 if (dead_or_set_p (tem, piece)
13597 || reg_bitfield_target_p (piece,
13598 PATTERN (tem)))
13600 add_reg_note (tem, REG_UNUSED, piece);
13601 break;
13607 place = 0;
13611 break;
13613 default:
13614 /* Any other notes should not be present at this point in the
13615 compilation. */
13616 gcc_unreachable ();
13619 if (place)
13621 XEXP (note, 1) = REG_NOTES (place);
13622 REG_NOTES (place) = note;
13625 if (place2)
13626 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13630 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13631 I3, I2, and I1 to new locations. This is also called to add a link
13632 pointing at I3 when I3's destination is changed. */
13634 static void
13635 distribute_links (rtx links)
13637 rtx link, next_link;
13639 for (link = links; link; link = next_link)
13641 rtx place = 0;
13642 rtx insn;
13643 rtx set, reg;
13645 next_link = XEXP (link, 1);
13647 /* If the insn that this link points to is a NOTE or isn't a single
13648 set, ignore it. In the latter case, it isn't clear what we
13649 can do other than ignore the link, since we can't tell which
13650 register it was for. Such links wouldn't be used by combine
13651 anyway.
13653 It is not possible for the destination of the target of the link to
13654 have been changed by combine. The only potential of this is if we
13655 replace I3, I2, and I1 by I3 and I2. But in that case the
13656 destination of I2 also remains unchanged. */
13658 if (NOTE_P (XEXP (link, 0))
13659 || (set = single_set (XEXP (link, 0))) == 0)
13660 continue;
13662 reg = SET_DEST (set);
13663 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13664 || GET_CODE (reg) == STRICT_LOW_PART)
13665 reg = XEXP (reg, 0);
13667 /* A LOG_LINK is defined as being placed on the first insn that uses
13668 a register and points to the insn that sets the register. Start
13669 searching at the next insn after the target of the link and stop
13670 when we reach a set of the register or the end of the basic block.
13672 Note that this correctly handles the link that used to point from
13673 I3 to I2. Also note that not much searching is typically done here
13674 since most links don't point very far away. */
13676 for (insn = NEXT_INSN (XEXP (link, 0));
13677 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13678 || BB_HEAD (this_basic_block->next_bb) != insn));
13679 insn = NEXT_INSN (insn))
13680 if (DEBUG_INSN_P (insn))
13681 continue;
13682 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13684 if (reg_referenced_p (reg, PATTERN (insn)))
13685 place = insn;
13686 break;
13688 else if (CALL_P (insn)
13689 && find_reg_fusage (insn, USE, reg))
13691 place = insn;
13692 break;
13694 else if (INSN_P (insn) && reg_set_p (reg, insn))
13695 break;
13697 /* If we found a place to put the link, place it there unless there
13698 is already a link to the same insn as LINK at that point. */
13700 if (place)
13702 rtx link2;
13704 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13705 if (XEXP (link2, 0) == XEXP (link, 0))
13706 break;
13708 if (link2 == 0)
13710 XEXP (link, 1) = LOG_LINKS (place);
13711 LOG_LINKS (place) = link;
13713 /* Set added_links_insn to the earliest insn we added a
13714 link to. */
13715 if (added_links_insn == 0
13716 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13717 added_links_insn = place;
13723 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13724 Check whether the expression pointer to by LOC is a register or
13725 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13726 Otherwise return zero. */
13728 static int
13729 unmentioned_reg_p_1 (rtx *loc, void *expr)
13731 rtx x = *loc;
13733 if (x != NULL_RTX
13734 && (REG_P (x) || MEM_P (x))
13735 && ! reg_mentioned_p (x, (rtx) expr))
13736 return 1;
13737 return 0;
13740 /* Check for any register or memory mentioned in EQUIV that is not
13741 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13742 of EXPR where some registers may have been replaced by constants. */
13744 static bool
13745 unmentioned_reg_p (rtx equiv, rtx expr)
13747 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13750 void
13751 dump_combine_stats (FILE *file)
13753 fprintf
13754 (file,
13755 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13756 combine_attempts, combine_merges, combine_extras, combine_successes);
13759 void
13760 dump_combine_total_stats (FILE *file)
13762 fprintf
13763 (file,
13764 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13765 total_attempts, total_merges, total_extras, total_successes);
13768 static bool
13769 gate_handle_combine (void)
13771 return (optimize > 0);
13774 /* Try combining insns through substitution. */
13775 static unsigned int
13776 rest_of_handle_combine (void)
13778 int rebuild_jump_labels_after_combine;
13780 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13781 df_note_add_problem ();
13782 df_analyze ();
13784 regstat_init_n_sets_and_refs ();
13786 rebuild_jump_labels_after_combine
13787 = combine_instructions (get_insns (), max_reg_num ());
13789 /* Combining insns may have turned an indirect jump into a
13790 direct jump. Rebuild the JUMP_LABEL fields of jumping
13791 instructions. */
13792 if (rebuild_jump_labels_after_combine)
13794 timevar_push (TV_JUMP);
13795 rebuild_jump_labels (get_insns ());
13796 cleanup_cfg (0);
13797 timevar_pop (TV_JUMP);
13800 regstat_free_n_sets_and_refs ();
13801 return 0;
13804 struct rtl_opt_pass pass_combine =
13807 RTL_PASS,
13808 "combine", /* name */
13809 gate_handle_combine, /* gate */
13810 rest_of_handle_combine, /* execute */
13811 NULL, /* sub */
13812 NULL, /* next */
13813 0, /* static_pass_number */
13814 TV_COMBINE, /* tv_id */
13815 PROP_cfglayout, /* properties_required */
13816 0, /* properties_provided */
13817 0, /* properties_destroyed */
13818 0, /* todo_flags_start */
13819 TODO_dump_func |
13820 TODO_df_finish | TODO_verify_rtl_sharing |
13821 TODO_ggc_collect, /* todo_flags_finish */